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ABSTRACT

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

– in fact, the de facto – virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale, local events

such as a local Halloween block party. During these events, we often witness a large

amount of commentary contributed by crowds on social media. This burst of social

media responses surges with the “second-screen” behavior and greatly enriches the

user experience when interacting with the event and people’s awareness of an event.

Monitoring and analyzing this rich and continuous flow of user-generated content can

yield unprecedentedly valuable information about the event, since these responses

usually offer far more rich and powerful views about the event that mainstream news

simply could not achieve. Despite these benefits, social media also tends to be noisy,

chaotic, and overwhelming, posing challenges to users in seeking and distilling high

quality content from that noise.

In this dissertation, I explore ways to leverage social media as a source of in-

formation and analyze events based on their social media responses collectively. I

develop, implement and evaluate EventRadar, an event analysis toolbox which is able

to identify, enrich, and characterize events using the massive amounts of social me-

dia responses. EventRadar contains three automated, scalable tools to handle three

core event analysis tasks: Event Characterization, Event Recognition, and Event En-

richment. More specifically, I develop ET-LDA, a Bayesian model and SocSent,

a matrix factorization framework for handling the Event Characterization task, i.e.,

modeling characterizing an event in terms of its topics and its audience’s response

behavior (via ET-LDA), and the sentiments regarding its topics (via SocSent). I also

develop DeMa, an unsupervised event detection algorithm for handling the Event
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Recognition task, i.e., detecting trending events from a stream of noisy social media

posts. Last, I develop CrowdX, a spatial crowdsourcing system for handling the Event

Enrichment task, i.e., gathering additional first hand information (e.g., photos) from

the field to enrich the given event’s context.

Enabled by EventRadar, it is more feasible to uncover patterns that have not been

explored previously and re-validating existing social theories with new evidence. As a

result, I am able to gain deep insights into how people respond to the event that they

are engaged in. The results reveal several key insights into people’s various responding

behavior over the event’s timeline such the topical context of people’s tweets does not

always correlate with the timeline of the event. In addition, I also explore the factors

that affect a person’s engagement with real-world events on Twitter and find that

people engage in an event because they are interested in the topics pertaining to

that event; and while engaging, their engagement is largely affected by their friends’

behavior.
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Chapter 1

INTRODUCTION

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

– in fact, the de facto – virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events (e.g., the U.S Presidential debate, the Superbowl, the Haiti

earthquake) to smaller scale, local events (e.g., a gas leak at 5th street, a local parade,

a local Halloween block party). During these events, we often witness a large amount

of commentary contributed by crowds on social media. For example, there were more

than 1,500,000 tweets about the first U.S Presidential debate in September 2012 in

only one and a half hours. Likewise, over 10,000 tweets were posted within the first

15 minutes of a series of shootings in downtown Seattle on May 23, 2012.

This burst of social media responses surges with the “second-screen” behavior 1 ,

and greatly enriches an event context as well as the user experience when interacting

with the event. For example, during the 2010 Haiti earthquake, enabled by the

connectivity and ubiquity of social media, people engaged with that event by writing,

sharing, reposting, commenting and curating tens of thousands of stories, thoughts,

videos and photos of the disaster on Twitter and blogs from various perspectives

(Yates and Paquette, 2011). These responses can be seen as a dynamic source of

information enabling individuals, corporations, and government organizations to stay

1The first screen usually refers to the traditional medium like TV, where the live events and/or
linear content (such content progresses without any navigational control for the viewer) is rendered.
Second screen on the other hand refers to an additional portable device (usually tablet and smart-
phone) that allows a content consumer to interact with the content in different ways (e.g., tweeting
about the event on Twitter) while it is being displayed on TV in parallel. More references about
First vs. Second screen can be found in (Google, 2012; Times, 2012; eMarketer, 2011).
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informed of “what is happening now”, “who is involved”, “where is it happening”,

“when did it happen” and so on.

Monitoring and analyzing this rich and continuous flow of user-generated con-

tent/responses can yield unprecedentedly valuable information about the event, since

these responses usually offer far more rich and powerful views about the event that

mainstream news simply could not achieve during and following the event. For in-

stance, people are likely to be interested in getting advice, opinions, or updates on

news or events (Java et al., 2007; Krishnamurthy et al., 2008; Zhao and Rosson, 2009).

Companies are increasingly using social media to advertise products, brands and ser-

vices; to build and maintain reputations; and to analyze users’ sentiment regarding

their products (or those of their competitors), especially during and following their

press conferences. Such (mined) deep knowledge from such a collection of responses

– known as collective intelligence – is crucial to many applications such as decision

making and business intelligence, as highlighted by James Surowiecki in his landmark

book (Surowiecki, 2005) and studied by other researchers (Pak and Paroubek, 2010;

Liu et al., 2012; Jiang et al., 2011).

Moreover, social media also enriches people’s awareness of an event. Due to the

immediacy and rapidity of social media, news events are often reported and spread

on Twitter or Facebook ahead of traditional news media. For example, the news

of both the 2012 Aurora shootings in Colorado and the 2012 Empire State Building

shooting in New York City were reported by social media users minutes earlier than

by traditional news outlets (Fillion, 2012; Lotan, 2012). This also results in the

transformation of the established paradigm of – a government or news media which

inform its citizens – to a citizen body that not only informs its government and news

media, but also the world.
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Despite these benefits, social media also tends to be noisy, chaotic, and overwhelm-

ing, posing challenges to users in seeking and distilling high quality content from that

noise. It should be no surprise that regardless of the popularity of social media as a

source of event information, people are still using television and newspapers (among

other traditional sources) as their main channels for acquiring information about the

events that they care about(Rosenstiel et al., 2011).

In this dissertation, we explore ways to leverage social media as a source of infor-

mation and analyze events based on their social media responses collectively. Here,

events are defined as real-world occurrences that unfold over space and time (Troncy

et al., 2010; Xie et al., 2008; Yang et al., 1998; Allan, 2002). We aim to develop a set

of computational tools that is able to automatically identify, enrich, and characterize

events using the massive amounts of social media responses. Enabled by these tools,

another important goal of this dissertation is to gain deep insights into how people

respond to events on social media and why they do so.

As a result, the technical contributions of the dissertation is that I develop, imple-

ment and evaluate EventRadar, a toolbox for event analysis using Twitter responses.

Unlike traditional human-based or primitive tools (e.g., (Shamma et al., 2009; Livne

et al., 2011), see Chapter 2 for more discussions), EventRadar contains three au-

tomated, scalable tools that leverage the connectivity and rapidity of social media

to handle three core event analysis tasks (see Figure 1.1 for the structure of Even-

tRadar). These tools facilitate novel applications in computational journalism, event

playback, storytelling, and civic engagement (see the usage scenario of EventRadar

in journalism in Section 1.1).

These tools are:

• ET-LDA (Hu et al., 2012c), a Bayesian model and SocSent(Hu et al., 2013c),

a matrix factorization framework for handling the Event Characterization
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task, i.e., modeling characterizing an event in terms of its topics and its audi-

ence’s response behavior (via ET-LDA), and the sentiments regarding its topics

(via SocSent).

• DeMa(Hu et al., 2013b), an unsupervised event detection algorithm for han-

dling the Event Recognition task, i.e., detecting trending events from a

stream of noisy social media posts.

• CrowdX (Hu et al., 2014), a spatial crowdsourcing system for handling the

Event Enrichment task, i.e., gathering additional first hand information (e.g.,

photos) from the field to enrich a given event’s context.

Moreover, based on the computational power of the EventRadar toolbox, we are

able to make scientific contributions in this dissertation by uncovering insights that

have not been explored previously and re-validating existing social theories with new

evidence. For example, we gain deep insight into how people’s Twitter responding

behavior evolves before, during and after an event, and how this behavior changes

with respect to different topics of the events (Hu et al., 2012a). In addition, inspired

by prior theoretical constructs that bridge social science, linguistics, and computer

mediated communication, we identify and exploit multiple important factors that

could potentially affect a person’s presence and degree of Twitter engagement with

various real-world events (Hu and Farnham, 2014).

Before going into the details of the technical and scientific contributions of this

dissertation, next, we describe a motivating use-case scenario for EventRadar in order

to provide a concrete context for the functionalities that EventRadar will support.

Although this particular scenario focuses on a disaster event, EventRadar can be

easily adapted to handle other kinds of events as well.
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Task 1: Event 
characterization

Task 2: Event 
recognition

DeMa for 
detecting 

trending events 
from Twitter

ET-LDA and SocSent for 
learning event topics, 
crowds’ responding 
behavior, sentiment 

CrowdX for 
gathering 

additional event 
context

Task 3: Event 
enrichment

EventRadar

Figure 1.1: The Architecture of EventRadar

1.1 Motivating Use-case Scenario for EventRadar

Consider the recent 2014 Hong Kong protest when activists in Hong Kong protested

outside the Hong Kong Government headquarters and occupied several major city

intersections. In such fluid scenario, a journalist would benefit significantly from a

system that is able to monitor, detect, and analyze social media responses in order

to provide up-to-date information relevant to the event. We will use this scenario to

illustrate the contributions of the various components of our EventRadar toolbox.

EventRadar consistently monitors social media streams on Twitter (since Twitter

is a major platform used to spread event information (Kwak et al., 2010)) posted from

and/or about Hong Kong. Hence, right after the event starts trending on Twitter (i.e.,

many people suddenly start to talk about the event on Twitter – see the definition of

“trending” in Chapter 5), the “trending signal” is immediately recognized and captured

by the DeMa event detection algorithm. DeMa also fetches all event-related tweets
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and summarizes them using a standard text summarization algorithm. Last, DeMa

computes a novelty score for this event based on how interesting it is compared to

previously detected trending events from the Hong Kong metropolitan area.

Once the novelty score passes a pre-defined threshold, an alert is issued to the jour-

nalist. He then starts to review the summarization of the detected event to determine

whether it is news worthy. he realizes that the event is high news worthy. Therefore,

he decides to conduct further investigation himself before writing his report. More

interestingly, he finds the event (protest) is happening at multiple spots in Hong Kong

at the same time

Unfortunately, the journalist is at one event spot which is far away from the

other event spots’ locations. It is also very likely that the event at those spots will

be over before the journalist arrives (note that the event will be much less worthy of

coverage once it ends). Therefore, he decides to use the CrowdX system to handle

his journalistic investigation. As a result, he sends a task request to CrowdX with his

budget limit, the descriptions of the event spots and the task (e.g., take photos and

videos at each event spot), and time constraints for finishing the task. CrowdX then

automatically outsources his request (with monetary incentives) to a group of workers

who are close to the event spots and have availability, interests, time, and skills to

finish their assigned task. After the workers finish their assignments, the collected

event information is sent back to the journalist.

With the additional information collected from both Twitter and the event spots,

the journalist can do several in-depth event analyses and use the mined insights to

support his report on the Hong Kong protest. For example, in order to learn how

the topics (of people’s responses to the event) evolved over the event’s timeline and

how people responded to the event, he uses ET-LDA which automatically segments the

entire event progress and aligns the event-related tweets to different segments based on
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their topical associations. Moreover, the journalist is also interested in characterizing

people’s sentiment regarding the event, especially during different developments of the

event. Therefore, he uses SocSent to automatically learn the latent sentiment of

people based on their tweets regarding the entire event, or the different parts of the

event.

Finally, based on the event detected by DeMa, the additional first-hand infor-

mation returned by CrowdX and the mined knowledge from ET-LDA and SocSent,

the journalist obtains enough relevant material and is confident that he can write an

insightful report about the event.

1.2 Technical Contributions

Our contribution in this dissertation is to realize scenarios such as the above,

by developing tools that target Event Recognition, Enrichment, Characterization,

and Sensemaking. These tools are: (i) ET-LDA, an effective method for aligning

an event and its social media responses, (ii) SocSent, a tool for aggregating public

receptions on social media regarding the topics/segments of the event, (iii) DeMa,

an effective event detector which detects trending events on Twitter, (iv) CrowdX, a

spatial crowdsourcing platform for gathering first hand event information. Next, we

briefly review these tools below.

1.2.1 Detecting Trending Events with DeMa

As mentioned in the scenario, we need an approach to detect unspecified (i.e.,

unplanned) trending events (since journalists normally are aware of planned large

events quite well), and their associated Twitter responses when they break out on

social media. Besides, the approach needs to handle any events that are trending,

rather than focusing on a particular type of event as in previous research, e.g., earth-
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quakes (Sakaki et al., 2010). In this dissertation, we propose and develop DeMa, an

unsupervised online event detector which identifies each trending event – and its asso-

ciated Twitter responses, from a stream of noisy Twitter messages (Hu et al., 2013b).

DeMa takes a two-step approach: First, it identifies trending features (terms) from

Twitter posts using a trends indicator; later, it clusters the topically-related trend-

ing features to form event-related clusters (each cluster represents a trending event).

More specifically, in order to identify trending features from a substantial volume of

Twitter posts, we are inspired by the definition of “trending” from the literature of

computational finance (Taylor and Allen, 1992; Blume et al., 1994) and apply it to

the Twitter context. By this definition, we develop our trends indicator using EMA

(exponential moving average), MACD (Moving Average Convergence Divergence),

and MACD histograms to characterize the time series of every feature in a Twitter

stream and capture the trending features. Since not every trending feature is novel

(e.g., “good morning” will be trending between 8:00 AM to 10:00 AM but everyday),

we compute a novelty score for each feature based on the normalized difference be-

tween the feature’s current time series and the the feature’s past time series. After

that, we group those novel trending features into topically-related event-clusters us-

ing the shared nearest neighborhood (SNN) clustering algorithm, where the distance

between two neighbors is defined based on their topical similarities. With the help

of the DeMa algorithm, regular social media users and journalists can easily learn

about any trending events (and their associated tweets) on Twitter within any given

time period.

1.2.2 Gathering Event Information with CrowdX

Next, in order to help the journalists collect more event information from the

field (we call it the Event Enrichment task), we consider the crowdsourcing approach.
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Unlike traditional crowdsourcing schemes which focus mostly on online tasks, we

require our crowdsourcing approach to handle spatial tasks (i.e., tasks associated

with locations). Moreover, the crowdsourcing system should take into account the

cost of hiring workers, the dynamic utility of the tasks and the uncertainty of the

workers accepting and finishing their assignments. To this end, we propose and

develop CrowdX (Hu et al., 2014). It harnesses programmatic access to workers

like traditional crowdsourcing. More importantly, it constructs 1) a model to assess

the non-uniform utility of each task assignment, 2) a model to estimate the expected

cost of each worker, and 3) a probabilistic model to quantify the worker’s uncertainty.

More specifically, we develop a utility-theoretic approach which considers workers and

event spots jointly and selects worker-spot assignments that simultaneously maximize

the overall utility, and achieve low cost within the given budget. The utility of

each worker-spot assignment is assessed based on two properties: representativeness

(an ideal event spot should cover the most representative and diverse aspects of the

event at the same time) and quality (an ideal worker should complete her task with

high quality). Moreover, we develop a Bayesian model to quantify each worker’s

uncertainty by predicting the likelihood of her accepting a task request and finishing

the task, based on several features. Based on this, we also develop a cost function that

takes into account different cost metrics and estimates the expected cost for each work-

spot assignment. Finally, balancing utility of user-spot selection and assignment with

the need to achieve a probabilistic budget-aware cost efficiently can be formalized as a

discrete optimization problem. Exploiting the concept of submodularity, we develop

a greedy algorithm which is guaranteed to provide a near-optimal solution for this

hard problem. With the help of the CrowdX system, the journalists can easily gather

rich and first-hand event information from the field by hiring a group of workers with

a (controllable) hiring cost.
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1.2.3 Joint Event-Tweets Analysis with ET-LDA

Next, a key challenge in the in-depth event analysis (i.e., the Event Characteriz-

ing task) is to establish the alignment between an event and its associated Twitter

responses. To address this problem, we propose and develop ET-LDA (joint Event

and Tweets LDA) (Hu et al., 2012a,c, 2011), a hierarchical Bayesian model. It aligns

an event and its associated Twitter messages (tweets) through joint modeling of the

inter-dependency, i.e., topical influences between them. In order to characterize such

influences, we first propose that rather than enforcing tweets to be correlated only

with the topics of the event that occur within time-windows around the tweets’s

timestamps, they should correlate to any topic in the event. Next, we assume that

that a tweet can be composed in multiple ways to respond to the event, depending

on the topic influences from the event. For example, a person may comment directly

on a specific topic/part of the event, so, her tweets would be deeply influenced by

that topic. In contrast, she could comment broadly about the event. In this case, the

tweets would be more influenced by the general topics/themes of the event. ET-LDA

models exactly these two distinct tweeting behaviors of the crowd in a generative

process. We deem the tweets specific tweets if they are generated in the first way,

since their content refers to the specific topics of the event. To determine what these

topics are about and which topic a tweet refers to, ET-LDA splits the event into sev-

eral sequential segments in which a particular set of topics is covered. On the other

hand, we deem the tweets general tweets if they are generated in the second way,

because their topics stay steady on the general topics across the event rather than

being affected by its varying context. Learning in ET-LDA is proven to be intractable

(Griffiths and Steyvers, 2004). To resolve this, we derive an approximate inference

procedure and estimate parameters using collapsed Gibbs sampling. Enabled by ET-
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LDA, the journalists are able to conduct complex in-depth analysis such as learning

the topic transitions about the event and inferring people’s responding behavior over

the event’s timeline.

1.2.4 Aggregated Twitter Sentiment Analysis with SocSent

Once we have the alignment in place, we would like to support aggregate in-depth

sentiment analysis to characterize the events. In particular, we are interested in how

different segments of an event have been received by social media in terms of the

sentiment of the crowd in response to various parts and topics of the event. To

this end, we propose and develop SocSent, a flexible factorization framework, that

learns aggregated sentiments of both (a) segments and (b) topics of an event they

elicited on Twitter (Hu et al., 2013c). SocSent advances the state-of-the-art senti-

ment analysis approaches in several aspects: (1) SocSent requires very little or no

manually-labeled tweet sentiment as training data, (2) SocSent has the ability to

relate Twitter sentiments to segments and topics of the event, and (3) SocSent has

domain knowledge about contextual cues in the tweets. Specifically, SocSent seeks

a new representation of the Twitter sentiment and its correlations to the event by fac-

torizing an input tweet-term matrix into four factors corresponding to tweets-segment,

segment-topic, topic-sentiment and sentiment-words. The ET-LDA alignment can be

seen as providing the initial information (“prior knowledge”) on the tweet-segment

and segment-topic factors. Similarly, the availability of labeled tweets can be used to

constrain the product of tweet-segment, segment-topic and topic-sentiment matrices.

Finally, the sentiment lexicon is used to regulate the sentiment-words matrix. We

pose this factorization as an optimization problem where, in addition to minimizing

the reconstruction error, we also require that the factors respect the prior knowledge

to the extent as much as possible. We derive a set of multiplicative update rules
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that efficiently solve this optimization problem. As a result of this factorization, the

journalists can readily determine whether people appreciate the segments or topics of

the event or dislike them.

1.3 Scientific Contributions

1.3.1 Understanding Tweeting Behavior w.r.t Event Progress

Enabled by the ET-LDA tool, we are able to gain deep insights into how people

respond to the event (that they are engaged in) over the event’s timeline. Our results

reveal several key insights regarding people’s behavior: (1) We discover that the

crowd’s tweeting behavior varies significantly with the timeline of the event. Often,

more specific tweets are witnessed during the event and less are found before or after

the event. This indicates that the crowd’s responses tend to be general and steady

before the event and after the event, while during the event, they are more specific

and episodic since the crowd is more engaged in the specific topics of the event. (2)

We also discover that people show different levels of engagement in different kinds of

events. For example, we find a greater level of engagement (the total number of tweets

and the percentage of specific tweets) in domestic events as opposed to international

issues. (3) Our final finding is that the topical context of the tweets does not always

correlate with the timeline of the event. We have seen that a segment in the event can

be referred to by specific and episodic tweets at any time irrespective of whether that

segment has already occurred, or is occurring currently or will occur later on. This

finding is significant in light of the fact that current approaches such as (Shamma

et al., 2009) focus on correlating tweets to the event based on their timestamps.
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1.3.2 Understanding People’s Twitter Engagement in Events

We are also interested in understanding of factors that affect a person’s engage-

ment with real-world events on Twitter (Hu and Farnham, 2014). To address this

question, we operationalize a person’s event-related engagement on Twitter using

three specific user behaviors: 1) posting, 2) retweeting and 3) replying to a tweet

about a real-world event. Inspired by prior theoretical constructs that bridge social

science, linguistics, and computer mediated communication, we collect factors that

could potentially affect the person’s Twitter engagement in a real-world event from

five broad categories: (i) Twitter activities, (ii) Tweets’ topics, (iii) Twitter user

types, (iv) Geolocation, and (v) Social network structure. We map these dimensions

into 17 numeric predictive variables manifested on Twitter, spanning the volume of

tweets produced, burstiness of tweets, frequency of retweets and so on. We construct

statistical models to assess the relative contributions of these variables towards pre-

dicting the presence of a person’s Twitter engagement and the degree of that Twitter

engagement in the real-wold events. As a result, we discover that 1) People engage in

an event because they are interested in the topics pertaining to that event, 2) People

tend to engage more in an event due to their friends (following list) are also posting

tweets about it, and 3) The event locations do not affect people’s engagement.

1.4 Broader Impact of this work

In addition to the main contributions described above, techniques presented in

this dissertation also have some broader impacts to various other areas. Below, we

highlight some of those impacts.

Event Analytics on Social Media and Applications in Journalism

Technology is rapidly shifting the ways in which information about news and events is
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gathered, processed, and disseminated. Computational Journalism is the application

of computing to the activities of journalism including information gathering, organiza-

tion and sensemaking, communication and presentation, and dissemination and public

response to news information, all while upholding the core values of journalism such

as accuracy and verifiability (Diakopoulos et al., 2010; Cohen et al., 2011b; Anderson,

2013). In recent years, some of the core areas of computing such as databases, infor-

mation retrieval, and information visualization, are already playing important roles

in driving many changes as news organizations re-adjust to the digital era (Cohen

et al., 2011a; Diakopoulos et al., 2012; Flaounas et al., 2013). While Computational

Journalism is unlikely to replace real journalists, it does enable and augment human

journalists through computing. Therefore, we believe that the transfer and use of

computing technology in news and journalism can be accelerated, and our work pre-

sented here can have a direct impact regarding computational journalism, especially

on information gathering, organization and sensemaking.

As we mentioned earlier, the first step in Journalism is to gather relevant infor-

mation about news and events. Thus far, this has been done mainly based on tips

(for breaking events) and/or journalistic investigation. While such ways still work

quite well, social networking systems (e.g. Facebook), social awareness streams (e.g.

Twitter), location-based social networks (e.g., Foursquare) have explicitly connected

the “what”, the “who”, the “where”, and the “when” of reporting. Besides, with the

ubiquity and immediacy of social media, news events often are reported on Twitter or

Facebook ahead of traditional news media. In addition, social media has also become

one of the few sources of local news – and life-saving information – where traditional

media is sometimes censored by governments or even criminal organizations. These

advantages make social media an ideal information source for journalists to gather

more information to learn new stories and/or augment their stories.
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However, social media is known to be noisy, chaotic, and overwhelming; hence

leveraging it for information gathering for journalists is never easy. Our EventRadar

toolbox readily handles these challenges. For example, DeMa automatically discov-

ers, extracts, and summarizes relevant information about trending events on Twitter.

On the other hand, the adoption of cheap and ubiquitous devices (e.g., smart-

phones) with photo and video capability has already had a substantial impact on

how stories are reported, both in the mainstream media and through citizen jour-

nalism (see examples in (Gilbert et al., 2010; Das et al., 2010)). The existing way

of gathering this kind of information (e.g., photos, videos) requires 1) people up-

load information voluntarily to the new outlets’ websites (e.g., CNN has a website

“http://ireport.cnn.com/” for grassroots to upload information about an event/story),

or 2) journalists have to spend a lot of time scanning social media sites to gather rel-

evant information. Despite its effectiveness, such an information gathering process

is passive and time consuming which will be a concern when events are fast-paced

and dynamic. The CrowdX system of EventRadar addresses this common problem

in journalism in terms of fast and proactive outsourcing the information gathering

tasks to a group of people with monetary rewards.

Next, for information organization and sensemaking, there is already a field where

computers have already had a significant impact, namely though Computer Assisted

Reporting (CAR) (Reavy, 2001; Garrison, 1998). CAR tools are usually generic

in the sense that they are widely applicable to different stories with tools that are

designed to interact with geographic data, temporal data, or network data. While

many CAR tools succeed in enabling journalists to organize their information, not

much effort has been spent on to information sensemaking. However, given massive

amounts of information gathered about the event, it is important to convert it into

human-readable knowledge. Indeed, there has been recent interest in making sense of
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social media, however, as we mentioned earlier that the most existing work is either

human-based or primitive. Our EventRadar toolbox can helps journalists in the sense

that both ET-LDA and SocSent tools are able to convert signals about the world

(extracted from Twitter messages) into aggregate and derivative insights (e.g. the

sentiment, topics, human behavior with respect to an event).

The work that will be presented in the next few chapters has resulted in several

publications at top conferences (see References). The DeMa work also won a best

paper nomination at ACM CHI 2013. Besides, the work has been featured in various

press including ABC news, 2 PBS, 3 The Seattle Times, 4 FastCompany 5 Computer

Magazine, 6 Neowin, 7 ASU news, 8 and so on.

1.5 Dissertation Overview

Next, I will first present event categorization and illustrate specific challenges

EventRadar needs to address in Chapter 2. After that, we present technical details

for solving the Event Recognition task in Chapter 5. In Chapter 6, I will describe the

CrowdX system for handling the Event Enrichment task with the help from a group

of workers. Next, for addressing the Event Characterization task, I will discuss the

connection between the event and its Twitter responses for modeling the event topics

and people’s tweeting behavior in Chapter 3 and for inferring the event sentiment in

2http://abcnews.go.com/Lifestyle/instagram-vast-favorite-themes-surprisingly-study-
shows/story?id=26551891

3http://www.azpbs.org/video/horizon.php?vidId=2331

4http://blogs.seattletimes.com/microsoftpri0/2013/08/22/microsoft-launches-whooly-localized-
twitter-project/

5http://www.fastcoexist.com/3017494/a-hyperlocal-twitter-filter-that-gets-neighbors-talking-to-
each-other

6http://computermagazine.com/2013/08/22/microsoft-research-launches-whooly-localized-
twitter-project/

7http://www.neowin.net/news/microsoft-research-launches-beta-of-twitter-aggregator-whooly

8https://asunews.asu.edu/20130920-kambhampati-twitter-analysis/
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Chapter 4. Last, in Chapter 7, I will investigate various factors that affect people’s

engagement in different types of events for handling the Event Sensemaking task.

Finally, I will summarize this work and discuss future research on event analytics

using social media in Chapter 8. Readers unfamiliar with probability theory, or belief

networks may wish to review Appendix A to understand better Chapters 3 and 4.
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Chapter 2

BACKGROUND

To understand events that exist on social media and guide the development of the

EventRadar toolbox more properly, in this chapter we define and categorize a large

set of events on the social media platform Twitter based on several key distinguishing

features. After that, we highlight the challenges EventRadar toolbox has to address

in order to realize the motivating scenario mentioned in Chapter 1.

2.1 Event Definition and Categorization

The definition of event has received substantial attention across various academic

areas, from philosophy (Zalta and Abramsky, 2003) to psychology (Zacks and Tver-

sky, 2001), over the years. An event is often defined as an abstract concept (Zalta

and Abramsky, 2003), or with respect to its manifestation in a specific domain (e.g.,

textual news (Allan, 2002), video and audio clips (Westermann and Jain, 2007), so-

cial media (Becker et al., 2011)). However, even within a specific domain, researchers

often debate over what an event really is (Gerner et al., 1994), or agree on (and use)

a definition that is admittedly problematic and incomplete (Makkonen, 2003). In this

dissertation, instead of providing yet another definition of an event, we define spe-

cific type of events in the context of Twitter (note that events on other social media

platforms can be defined in a similar way), based on the traditional event definition

(Troncy et al., 2010; Xie et al., 2008; Yang et al., 1998; Allan, 2002). We provide the

following definitions:

Definition 1 (Event on Twitter): An event E is a real-world occurrence with (1)

an associated time period TE , and (2) a stream of corresponding Twitter messages
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ME about E and published during TE .

Next, following the event categorization in (Becker et al., 2011), we classify the

events in Twitter into two categories – planned events and unplanned events – de-

pending on whether the context of an event (e.g., topic or hashtags on Twitter, time,

location) is available to our toolbox.

Definition 2 (Planned event): A planned event PE is an event in Twitter with pre-

known corresponding event context information consisting both (a) topic or hashtags

of the event, and (b) time, at which PE is planned to occur.

Based on this, we further define:

Definition 2.1 (Planned transcribable event): A planned transcribable event

PE+ is an event in Twitter with pre-known corresponding event context information

consisting at least of (a) topic or hashtags, (b) time, at which PE+ is planned to

occur, and (c) transcripts or captions of PE+.

The main motivation here is that the transcribable events are often associated

with external documents (e.g., transcripts) which can be leveraged to provide addi-

tional fine-grained event analysis. Next, in contrast to the planned event, we have no

information about the unplanned events in the Twitter stream. To characterize and

define such events, we have to rely on other signals that could indicate their presence

in Twitter. To this end, we focus on a class of events that we refer to as trending

events, which are events that exhibit temporal burst patterns (see Chapter 5 for more

definitions on trending).

Definition 3 (Unplanned trending event): An unplanned trending event UE

is an event in Twitter with one or more features (e.g., terms) of the corresponding

Twitter messages MUE exhibiting bursty patterns during the event’s time period TUE .

In addition to the event definition and categorization (See Table 2.1 for event

examples), it is worth noting that in this dissertation, we consider all Twitter messages
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M that are relevant to an event E as being corresponding to (or associated with) E ,

regardless of whetherM was posted before, during or after the event. In other words,

the time period T covers the actual start and end time of E .

Types Events

Planned Non-transcribable Event Occupy wall street in New York City

2012 Homecoming party at Arizona State University

Planned transcribable Event 2012 U.S Presidential debate

2013 Superbowl

Unplanned trending event 2013 Boston Bombings

Shootings in downtown Seattle on May 23, 2013

Table 2.1: Examples Of Different Types Of Events.

2.2 Limitations of Existing Work and Challenges

Next, we illustrate specific challenges that our toolbox EventRadar needs to ad-

dress in order to perform three tasks: Event Recognition, Event Enrichment and

Event Characterization. As we will see later, although some tasks are relatively easy

to solve for certain types of events based on their context (Section 2.1), most tasks

across all types of events raise several technical challenges.

First, for the unplanned trending events we have no information about whether

or not they will happen, when they will happen and what the associated Twitter

responses will be about if they happen. Therefore, rather than focusing on the tasks,

the most critical task for our toolbox for this type of events is Event Recognition,

i.e., for from a stream of Twitter messages. And once the event content is identified,

the other tasks can be addressed by using similar techniques that are designed for
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planned events. It is well known that social media like Twitter tends to be noisy,

chaotic and overwhelming, and in the meantime most unplanned trending events go

viral very fast on social media. Therefore, we need effective approaches to address

challenges such as how to indicate the presence of an unplanned trending events UE

and associated Twitter responses MUE in real-time from a noisy Twitter messages.

Next, for planned events such as the 2012 U.S Presidential debate and the Oc-

cupy wall street in New York City, the Event Recognition task can be performed in a

straightforward way due to the fact that these events’s context – topics, hashtags and

time are often readily available (e.g., the MSNBC news posted both the event’s start

and end time and official hashtages for the first 2012 U.S Presidential debate nearly

2 week prior to the event). Therefore, the main focus of EventRadar for this type

of events is on the rest two tasks: Event Enrichment and Event Characterization.

Developing automated analytical approaches here however involves overcoming sig-

nificant technical challenges. Specifically, given a planned transcribable event PE+,

its associated Twitter responsesMPE+ and an event transcript DPE+, for the task of

Event Characterization, we need approaches to address challenges like how to segment

PE+ (based on DPE+) into smaller yet meaningful parts where each part covers a set

of topics. How to align the event PE+ (based on DPE+) with Twitter messagesMPE+

and infer which parts of the event the responses refer to. Furthermore, based on this

alignment, how to characterize and classify the aggregate sentiments of segments and

topics of MPE+ that elicited on MPE+. Besides, how to capture and model the effect

and influence of PE+ on its Twitter responses MPE+, and how to infer whether or

not a Twitter message is deeply influenced by a particular segment of PE+.

Last, we are interested in enriching the event context for planned (or detected)

events by gathering first-hand texts, photos and videos from the field. To conduct

this Event Enrichment task, EventRadar relies on a crowdsourced solution via calling
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a group of people near/on the event spots. However, developing this crowdsourcing

scheme is non trivial and it involves in solving several challenges like given a limit

budget, how to select a group of people (workers) and assign them to a set of event

spots, how to define and assess the utility of each task assignment, how to estimate

the expected cost of each worker, and how to quantify the workers’ uncertainty.

While the tasks of Event Recognition, Event Enrichment and Event Characteriza-

tion have received considerable attention in recent years from different communities

such as information retrieval (Allan, 2002), data mining (Ritter et al., 2012), social

computing (Weng and Lee, 2011), natural language processing (Tanev et al., 2008),

directly applying these existing solutions to address aforementioned challenges have

several major drawbacks. Specifically, for Event Characterization, most existing solu-

tions (such as (Diakopoulos and Shamma, 2010a)) ignore the influence of an event on

its Twitter responses and treat them in isolation (which obviously are interdependent

as discussed in Chapter 3). Indeed, some recent approaches (Shamma et al., 2010)

tend to model them jointly but rely on strong assumptions. For instance, they assume

Twitter messages to be correlated only with the topics of the event that occur within

time-windows around the messages’s timestamps, which is not valid based on our

preliminary studies (Chapter 3). Next, for Event Recognition, most state-of-the-art

algorithms (Kleinberg, 2003; He and Parker, 2010) focus on very specific types of

events (e.g., sport events (Nichols et al., 2012)), since they need to be trained using

domain-specific features. Although there have been some exceptions, e.g., unsuper-

vised approaches that work cross domains (e.g., (Nichols et al., 2012; Weng and Lee,

2011)), they can neither identify when the detected event started trending nor infer

the novelty the event is. Last, for Event Enrichment, the retrieval of rich information

about an event using crowdsourcing brings up issues of both spatial task assignment

and quality assurance. There has been some work on spatial crowdsoucring lately
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(Kazemi and Shahabi, 2012; Kazemi et al., 2013; Alt et al., 2010; Väätäjä et al.,

2011). However, most existing solutions are inapplicable to our scenario due to three

reasons. First, they can work only with self-incentivised workers. Second, they as-

sume the crowdsourced task has a uniform utility regardless of its location or the

dispatched worker. Last, these studies assume that workers will always accept and

complete the task requests which however is unlikely in reality. Next,

The weaknesses discussed in the foregoing paragraphs motivated the need for an

automated, in-depth event analytics toolbox to support 1) event detecting a trending

event from a stream of noisy tweets (Event Recognition), 2) crowdsourcing spatial

tasks to a group people to cover the event (Event Enrichment), and 3) segmenting

and aligning the event and its responses, and inferring sentiment of the event and

event segments (Event Characterization). In the rest of this dissertation, we present

more details about our toolbox.
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Chapter 3

JOINT MODELING OF EVENTS AND TWEETS FOR EVENT

CHARACTERIZATION

As mentioned in the introduction, social media platforms such as Twitter have

become the de facto platform for crowds to share perspectives and commentaries dur-

ing various events such as the Superbowl, the U.S. Presidential and Primary debates,

the last episode of a TV drama series, etc. Such burst of social media information,

on the one hand, enriches the user experience for the live event. On the other hand,

it poses tremendous challenges for attempts to analyze and extract sense from the

tweets, which is critical to applications for computational advertising, community de-

tection, journalistic investigation, storytelling, playback of events, etc. How can we

identify what these tweets were about? And did these tweets refer to specific parts of

the event and if so, what parts? Furthermore, what was the nature and magnitude of

the influence of the event over the tweeting behavior of the crowd?

In this chapter, we answer these questions by devising a computational method

geared toward extracting sense from the crowd’s tweets in the context of the public

events that they are in response to. Therefore, the focus in this chapter is quite

different from the literature of sensemaking of tweets in that the existing techniques

tend to focus on either tweets in isolation from the context of the event or their

usage patterns, e.g., volumes of tweets, networks of audience members and their tag

relations, etc (see Section 3.1 for more discussions on the related works).

More specifically, given an event and an associated large-scale collection of tweets,

here we focus on two fundamental problems in analyzing and making sense of them,

namely, extracting the topics covered in the event and tweets, and segmenting the
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event into topically coherent segments. While both topical modeling and event seg-

mentation have received considerable attention in recent years, they have been mainly

viewed as separate problems and studied in isolation. For example, there have been

significant efforts on developing Bayesian models to discover the patterns that reflect

the underlying topics from the document (Blei et al., 2003; Griffiths et al., 2004;

Wang and McCallum, 2006; Titov and McDonald, 2008). Similarly, there is also a

rich body of work devoted to segmentation of events/discourses/meetings via heuris-

tics, machine learning, etc. (Hearst, 1993; Boykin and Merlino, 2000; Galley et al.,

2003; Dielmann and Renals, 2004).

Directly applying these current solutions to analyze the event and its associated

tweets however has a major drawback: they treat event and tweets independently,

thus ignoring the topical influences of the event on its associated tweets. In reality

they are obviously inter-dependent. For example, in practice, when tweets are gener-

ated by the crowds to express their interests in the event, their content is essentially

influenced by the topics covered in the event in some way. Based on such dependen-

cies, i.e., topical influences, a person can respond to the event in a variety of ways.

For example, she may choose to comment directly on a specific topic in the event

which is of concern and/or interest to her. So, her tweets would be deeply influenced

by that specific topic. In another situation, she could also comment broadly about

the event. Therefore, the tweets would be less influenced by the specific topics but

more by the general topics of the event.

In this chapter, we are interested in jointly characterizing the topics of the event

and its associated tweets, as well as segmenting the event in one unified model. Our

work is motivated by the observation that the topical influences from the event on its

associated tweets are not only used for indicating the topics mentioned in the event

but also indicating the content and topics in tweets and the tweeting behaviors of the
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crowd. Besides, by accounting for such influences on tweets, we can obtain a richer

context about the evolution of topics and the topical boundaries in the event which

is critical to the event segmentation, as mentioned in (Shamma et al., 2009).

We build our joint Bayesian model ET-LDA (event tweet LDA). In our model,

an event may consist of many paragraphs, each of which discusses a particular set of

topics. These topics evolve over the timeline of the event. We assume that whether

the topic mixture of a paragraph changes from the one in its preceding paragraph

follows a binomial distribution parameterized by the similarity between their topic

distributions. With some probability, the two paragraphs are merged to form a seg-

ment; otherwise, a new segment is created. Additionally, we assume the event (in

fact the segments) can impose topical influences on the associated tweets. Intuitively,

since tweets are generated by the crowd to express their interest in the event, they

are essentially influenced by the topics covered in the event in some way. In order to

characterize such influences, we first propose that rather than enforcing tweets to be

correlated only with the topics of the event that occur within time-windows around

the tweets’ timestamps (a common approach in the literature, e.g., (Shamma et al.,

2009)), they should correlate to any topic in the event. Next, we claim that a person

can compose her tweets in a variety of ways to respond to the event. To take an

example, she may choose to comment directly on a specific topic in the event which

is concerning and/or interesting to her. So, her tweets would be deeply influenced by

that topic. In another situation, she could comment broadly about the event. In con-

sequence, the tweets would be less influenced by the specific topics but more by the

general themes of the event. Our approach models exactly these two distinct tweeting

behaviors of the crowd, and the words in the tweets can belong to two distinct types

of topics: general topics, which are high-level and constant across the entire event,

and specific topics, which are detailed and relate to specific segments of the event.
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We define a tweet in which most words belong to general topics as a “general tweet”,

indicating a weak topical influence from the event, whereas a tweet with more words

about the specific topics is defined as a “specific tweet”, indicating a strong topical

influence from one segment of the event. Similar to the event segmentation, whether

the event has strong or weak influence on tweets depends on a binomial distribution.

To learn our model, we derive inference and estimate parameters using Gibbs sam-

pling. In the update equations, we can observe how the tweets help regularize the

topic modeling process via topical influences and vice versa.

3.0.1 Our Contributions.

Enabled by this model, people would gain much deeper insights about the event

(e.g., which topic was most interesting to the crowd) and the tweets around it (e.g.,

what they were about). In addition, the model also sheds light on the nature of

the crowd’s tweeting behaviors in the following ways: (1) Reveals the topical context

of the tweets, and (2) Shows how the tweets evolve over the event’s timeline. Such

work, to our knowledge, has not been investigated before and is not feasible with

other alternative methods. For example, manual coding of the tweets is prohibitively

expensive, and pure topic modeling (such as LDA (Blei et al., 2003)) does not easily

enable the segmentation of the event and distinguishing between two types of tweets.

3.0.2 Our Results.

We perform quantitative studies of the proposed model over two large sets of

tweets in response to President Obama’s speech on the Middle East in May 2011

and a Republican Primary debate in Sept. 2011. Our results reveal several key

insights into how people responded to the event: (1) We find the crowd’s tweeting

behavior varies with the timeline of the event. More episodic tweets were witnessed
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during the event and less were found before or after the event (the percentages on

average are 55%/35%/38%). (2) We also discover that people showed a greater level

of engagement (the total number of tweets and the percentage of episodic tweets) in

the Republican debate which centered around national issues as opposed to President

Obama’s Middle East speech. (3) We find that, as the event evolved, the crowd

tended to comment on any topic in the event – that topic could have been discussed

before, was being discussed currently, or was expected to be discussed later on.

We also address the issue of evaluating results in the absence of ground truth.

This is accomplished with a user study with 31 active Twitter users in a univer-

sity. We evaluate the goodness of sampled topics and episodic tweets by different

methods based on the participants’ perception of their quality. From the participant

responses in the user study, we observe that our approach yields better quality, with

improvements in the range of 18%–41% over the state-of-the-art.

The rest of the chapter is organized as follows. In Section 3.1 we discuss related

work. Section 3.5.1 presents our observation of the crowd’s tweeting patterns to an

event. In Section 3.2 we present our approach. Section 3.4 and 3.5.4 present quan-

titative studies and subjective evaluations, followed by a discussion of their results.

Section 7.6 concludes the chapter.

3.1 Related Work

In this section, we introduce relevant prior work with respect to understand, an-

alyze and make sense of events and their Twitter responses. In specific, we provide

a detailed overview of the realm of prior work corresponding to: (a) analyzing and

sensemaking of tweets and events; (b) topic modeling of textual documents; and (c)

the segmentation of documents and events.

Analyzing and Sensemaking of Tweets and Events: While the topic of
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analyzing and making sense of a crowd’s responses to a media event is relatively new,

there have been some recent attempts to characterize events based on the tweets

contributed around them. Previous work includes: inferring structures and dynamics

of events based on the usage patterns of Twitter (e.g., volumes of tweets over an

event’s timeline), the textual content of tweets (e.g., keywords) and Twitter users’

social networks (e.g., followings/followees, relationships between hashtags) (Shamma

et al., 2009, 2010); detecting/reporting either planned events or breaking events from

tweets (Weng and Lee, 2011; Petrović et al., 2010; Becker et al., 2011; Sakaki et al.,

2010); summarizing events using tweets (Chakrabarti and Punera, 2011); sentimental

analysis of tweets to understand the events (Diakopoulos and Shamma, 2010a). A

slightly different angle to characterize events is through exploring types of Twitter

users that posted messages about them. For example, in (Starbird et al., 2010; Vieweg

et al., 2010; De Choudhury et al., 2012) the authors studied events by the classification

of Twitter audience types and categories.

There is also a rich body of work that investigates tweets outside the context of

events. This includes studies of why people tweet (Java et al., 2007; Zhao and Rosson,

2009), representations of tweet content using a labeled topic model (Ramage et al.,

2010), characterizations of individuals’ activity on Twitter through a content-based

categorization of the type of their tweets (Naaman et al., 2010) or through network

analysis (Wu et al., 2011; Kwak et al., 2010), and also predictions of social influence

on Twitter and other social media (Cui et al., 2011; Bakshy et al., 2011).

Topic Modeling: Our work is also informed by prior work on topic modeling

methods such as Latent Dirichlet Allocation (Blei et al., 2003). Such methods have

achieved great success in discovering underlying topics from text documents. Re-

cently, there has been increasing interest in developing better and sophisticated topic

modeling schemes for various scenarios. One line of such research is to extend topic
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models on networked documents or short documents, e.g., research publications,

blogs, social networks, etc. For example, PHITS (Hofmann, 2001) models the docu-

ments and their inter-connectivity based on topic-specific distributions; RTM (Chang

and Blei, 2009) also studies document networks but is based on a hierarchical rela-

tional model; (Dietz et al., 2007) models the influences in a citation networks built

over publications; similarly, LinkPLSA-LDA characterizes topics and influences of

blogs (Nallapati et al., 2008); (Ramage et al., 2010) proposes a labeled LDA model

specifically for tweets. In addition to these work which assumes the learnt topic dis-

tribution is static in document collections, some other work considers the dynamics

of topics where each topic distribution keeps evolving over a timeline. This includes

the dynamic topic model (Blei and Lafferty, 2006) and the topic over time (TOT)

model (Wang and McCallum, 2006). Also note that these topic models require to set

the number of topics in advance. Therefore, various nonparametric topic models have

been proposed to tackle this limitation such as (Blei et al., 2010; Teh et al., 2006).

Event Segmentation: In parallel, there is a rich body of related work on auto-

matic topic segmentation of events, texts, and meetings. Many approaches have been

developed based on ideas from information retrieval, natural language processing, and

recently machine learning. For example, in (Hearst, 1993) the authors use a measure

of lexical cohesion between adjoining paragraphs for segmenting texts. LCSeg (Gal-

ley et al., 2003) uses a similar approach on both text and meeting transcripts and

gains better performance than that achieved by applying text/monologue-based tech-

niques. In addition to lexical approaches, machine learning methods have also been

considered. (Beeferman et al., 1999) combines a variety of features such as statistical

language modeling, cue phrases, discourse information to segment broadcast news.

Similarly, (Maskey and Hirschberg, 2003) use entirely non-lexical features. Recent

advances have considered using generative models (Barzilay and Lee, 2004; Purver
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et al., 2006). These methods enable the segmentation of topics through a generative

process of building lexical models of the topics.

Limitation of Previous Work: The focus of most of the above work is either

to model topics in documents (where documents are assumed to be the homogenous,

e.g, tweets, research papers) or segment the events alone. However, they do not know

provide insights into how to characterize one source of text (tweets) in response to

another (event). A key distinct difference in our work is that, our method considers

the event and the associated tweets to be heterogenous : the topics in a tweet may be

sampled from different types of topic mixtures (general or specific). Additionally, the

topic mixtures in an event evolve over its timeline. Besides, previous work only focuses

on better understanding of events, or isolated analysis of tweets. Thus, they do not

provide insights into how to extract sense from the tweets around the events. As a

result, another distinct difference in our work is that we provide a comprehensive and

in-depth analysis of the event and its associated tweets based on its topical influences

(Hu et al., 2011, 2012b,c).

3.2 Modeling Topical Influences

The observations mentioned above highlight the importance of developing models

that can characterize the crowd’s involvement with the event. Since such involvement

(tweeting) is topically influenced by the event which itself is topically evolving, we

model this complexity by a hierarchical Bayesian model based on Latent Dirichlet

Allocation (LDA). With this model, the topic modeling of the event/tweets and event

segmentation can be achieved concurrently. In next sections, we first introduce a

conceptualized view of our model. We then describe the mathematical representations

of the model in detail.
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3.2.1 Conceptual Model

Our proposed model is called the joint Event and Tweets LDA (ET-LDA), which

generalizes LDA (Blei et al., 2003) by jointly modeling the topic segmentation of

an event and two distinct types of topics within associated tweets. The conceptual

model of ET-LDA is shown in Figure 3.1. ET-LDA assumes that: (1) An event is

formed by discrete sequentially-ordered segments, each of which discusses a particular

set of topics. A segment consists of one or many coherent paragraphs available from

the transcript of the event 1 . Creating these segments follows a generative process

in ET-LDA: First, we treat each paragraph in an event as being generated from a

particular distribution of topics, where each topic is a probability distribution over a

vocabulary. Next, we apply the Markov assumption on the distribution over topics

covered in the event: with some probability, the topic distribution for paragraph s is

the same as the previous paragraph s − 1; otherwise, a new distribution is sampled

over topics for s. This pattern of dependency is produced by associating a binary

variable with each paragraph, indicating whether its topic is the same as that of the

previous paragraph or different. If the topic remains the same, these paragraphs are

merged to form one segment.

Furthermore, ET-LDA assumes that: (2) A tweet consists of words which can be-

long to two distinct types of topics: general topics, which are high-level and constant

across the entire event, and specific topics, which are concrete and relate to specific

segments of the event. A tweet in which most words belong to general topics is de-

fined as a steady tweet, indicating a weak topical influence from the event, whereas a

tweet with more words from specific topics is defined as an episodic tweet, indicating

1For many public televised events, transcripts are readily published by news services like the
New York Times, etc. Paragraph outlines in the transcripts are usually determined through human
interpretation and may not necessarily correspond to topic changes in the event.
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Figure 3.1: Conceptual Model Of ET-LDA

a strong topical influence from a segment of the event. In other words, an episodic

tweet refers to a segment of the event. Similar to the event segmentation, composing

tweets also follows a generative process in ET-LDA. To begin with, we assume that

the distribution of general topics is fixed for a tweet since it is a response tagged with

the official hashtag of the event (hence it should be related to the event). On the

contrary, the distribution of specific topics keeps varying with respect to the evolution

of the event, because it is a more directed and intended response. So, when a person

wants to compose a tweet to comment on the on-going event, she has two choices on

picking the appropriate words: with some probability, a word w is sampled from the

mixture of general topics about the event, otherwise, it is sampled from the mixture

of specific topics which occurs “locally” in the parts of the event that w refers to.

The hypothesis behind the second case is that, the audience may be influenced by a

set of topics that are covered by a particular part (i.e., a segment) of the event. As a

result, when she picks a word to respond to that part of the event, its topic is likely

to be among the topics that specifically appeared in that segment. For example,

consider a tweet which was posted at the beginning of President Obama’s Middle
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East speech: “Sec Clinton introducing President Obama on #Mideast #StateDept

#MESpeech”. It can be viewed as a mixture of general topics “Middle East” that

was shared across the entire tweets corpus (words: “#Mideast” and “#MESpeech”),

and specific topic “Foreign policy”, sensitive to the part of the event when the Sec-

retary of State, Hillary Clinton was introducing President Obama (words: “Sec”,

“Clinton” and “#StateDept”). Note that this specific topic only occurred in the

tweets that were posted at beginning of the event. Similar to the segmentation of the

event, the preference of specific topics versus general topics is controlled by a binary

variable associated with each word of a tweet.

3.2.2 Graphical Model

The graphical model representation of ET-LDA is shown in Figure 3.2. It has

two major components with each capturing one perspective of our targets: the left

part captures the event’s topics and their evolution (event segmentation), whereas the

right part captures the associated tweets’ topics and the crowd’s tweeting behaviors.

Both parts have the LDA-like model and are connected by the link which defines the

topical influences from the event on its Twitter feeds. Table 3.1 lists the notation

used in this model. We have the generative process in ET-LDA in Algorithm 1.

Mathematically, in the event part, we assume an event’s transcript S consists of

many paragraphs. Each paragraph s (s ∈ S) is associated with a particular distri-

bution of topics θ(s) which assigns each word in s of a topic zis. Note that θ(s) is a

multinomial distribution over K topics, determined by a binary variable c(s) under

the governance of a binomial distribution δ(s). This distribution is then parameter-

ized by a symmetric beta prior αδ. To model the topic evolutions in the event, we

apply the Markov assumption on θ(s): when c(s) = 0, θ(s) is the same as the distribu-

tion of topics of previous paragraph s − 1, i.e., θ(s) = θ(s−1), measured by the delta
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Table 3.1: Mathematical Notation in ET-LDA

Notation Description

S a set of paragraphs in the event’s transcript

Ns the number of words in paragraph s

T a set of tweets associated with the event

Mt the number of words in tweet t

θ(s) topic mixture of the specific topics from

a paragraph s of the event

ψ(t) topic mixture of the general topics from

tweets corpus

δ(s) parameter for choosing to draw topics

in paragraph s from θ(s) or θ(s−1)

c(s) indicates whether the topic of a paragraph

is drawn from current or previous segment’s topics.

λ(t) parameter for choosing to draw topics

in t from θ or ψ

c(t) indicates whether the topic of a tweet

is drawn from specific or general topics

s(t) a referred segment, to which a specific topic

in a tweet is associated

ws, wt words in event’s transcript, tweets, respectively

zs, zt topic assignments of words in event,

tweets, respectively.

α, β Dirichlet/beta parameters of the

Multinomial/Bernoulli distributions
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function δ(θ(s−1), θ(s)). As a result, s and its preceding paragraph s − 1 are merged

into a segment. Otherwise, when c(s) = 1, θ(s) is drawn for s from a Dirichlet prior

with parameter αθ for creating a new segment. Therefore, c(s) can be viewed as an

segmentation indicator of whether a paragraph should be merged into the previous

paragraph or not.
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Figure 3.2: Graph Model of Et-LDA. S(T ) Is a Set of Paragraphs (Tweets). Zs (Zt) Is

the Topic for Paragraph s (Tweet t), Which Can Be Drawn Either from Topic Mixture

θ(s) of the Event or Topic Mixture ψ(t) of the Tweets Corpus. Shaded Variables W i
s

and W i
t Are the ith Word in s and t and Are Observed in the Dataset.

In the tweets part, the topic for a word in a tweet can be sampled from a mixture of

specific topics θ(s) or a mixture of general topics ψ(t) over K topics given a distribution

c(t) defining the preference. c(t) is sampled from a binomial distribution λ(t). In

the first case, θ(s) is from a referring segment s of the event, where s is chosen

according to a categorical distribution s(t). Although c(t) and c(s) share almost the

same functionality, c(t) is controlled by an asymmetrical beta prior, which sets the

36



preference parameter αλγ (for specific topics) and αλψ (for general topics) accordingly.

Besides, an important property of the categorical distribution s(t) is to allow choosing

any segment. This reflects the fact that a person may compose a tweet on topics

discussed in a segment that (1) was in the past (2) is currently occurring, or (3) will

occur after the tweet is posted (usually when she expects certain topics to be discussed

in the event). Last, φ is the word distribution over a vocabulary with corresponding

parameter β.

3.3 Inference in the Model via Gibbs Sampling

The extract inference of the posterior distribution of the hidden variables zs, zt,

cs, ct and st in ET-LDA is intractable because of the coupling between the hyperpa-

rameters. Therefore, we utilize approximate methods like collapsed Gibbs sampling

algorithm (Griffiths et al., 2004) for parameter estimation. Note that Gibbs sampling

allows the learning of a model by iteratively updating each latent variable given the

remaining variables. More details of the Gibbs sampling rules and how we derive

these rules can be found in Appendix A.

In specific, we want to estimate the posterior distribution of the following hidden

variables: (i) zs, evaluated for each word in every paragraph s in the event transcript

and then used to infer θ(s); (ii) zt, evaluated for each word in each tweet t written

by the Twitter users and then used the results to infer ψ(t); (iii) ct, evaluated for

the topic types in tweet t; (iv) st, evaluated for selecting segments from the event’s

transcript for t; and (v) cs, evaluated for each paragraph to indicate segmentation of

the event.

Following the Gibbs sampling scheme, we begin with the joint distribution of all

tweets and paragraphs of the event in ET-LDA as P (zt, zs,ws,wt, cs, ct, st|z′t, z′s,ws,wt, c′s, c
′
t, s
′
t),

where z′t, z
′
s, c
′
s, c
′
t, s
′
t are vectors of assignments of topics, segment indicators, topic
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Algorithm 1: Generation Process in ET-LDA

1 foreach paragraph s ∈ S do

2 draw a segment choice indicator c(s) ∼ Bernoulli(δ(s))

3 if c(s) = 1 then

4 draw a topic mixture θ(s) ∼ Dirichlet(αθ)

5 else

6 draw a topic mixture θ(s) ∼ δ(θ(s−1), θ(s))

7 foreach word wis ∈ s do

8 draw a topic zis ∼Multinomial(θ(s))

9 draw a word wis ∼ φzis

10 foreach tweet t ∈ T do

11 foreach word wit ∈ t do

12 draw a topic changing indicator c(t) ∼ Bernoulli(λ(t))

13 if c(t) = 1 then

14 draw a topic mixture ψ(t) ∼ Dirichlet(αψ)

15 draw a general topic zit ∼Multinomial(ψ(t))

16 else

17 draw a paragraph s ∼ Categorical(γ(t))

18 draw a specific topic zit ∼Multinomial(θ(s))

19 draw a word from its associated topic wit ∼ φzit
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switching indicators and segment choice indicators for all words in the collection ex-

cept for the one at position i in a tweet or in a paragraph of the event’s transcript.

Then, by using the chain rule and integrating out the parameters φ, γ(t), θ(s), ψ(t), δ(s), λ(t)

(because the model only uses conjugate priors (Bishop et al., 2006)), we can obtain

the posterior probability of aforementioned hidden variables. Below, we give a brief

overview of how these probabilities are inferred. Please refer to Appendix A for

detailed derivation.

For parameter estimation in (i), we have the estimation of the topic distribution

zs for each word in paragraph s as:

P (zs,i|z−(s,i), zt,ws,wt, cs, ct, st) =
nksw + nktw + β − 1

nks(.) + nkt(.) +Wβ − 1
× nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1

(3.1)

where S is a set of segments of the event’s transcript. Each element (Si) in this set

contains multiple paragraphs. nSik is the number of times topic k assigned to words

in segment Si. ntSik is the number of times topic k appears in tweets, where these

tweets are direct response to the sentences in segment Si (i.e., ct = 0). W is the size

of the vocabulary and K is the number of topics.

For parameter estimation in (ii), we consider a two-step Gibbs sampling since the

topic distribution zt for each word in tweet t have two cases based on whether zt is a

specific topic (ct = 0) or a general topic (ct = 1):

P (zt,i|z−(t,i), zs,ws,wt, cs, ct, st) =



nksw + nktw + β − 1

nks(.) + nkt(.) +Wβ − 1
×

nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
ct = 0

(3.2)

nksw + nktw + β − 1

nks(.) + nkt(.) +Wβ − 1
× nik + αψ − 1

ni(.) +Kαψ − 1
ct = 1

(3.3)
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where nik is the number of times topic k appears in tweet t, where t is about a general

topics sampled from ψ(t). ni(.) =
∑K

k=1 n
i
k is the total number of times all topics 1...k

appear in t.

Similarly, for parameter estimation in (iii), we also have two cases for the posterior

distribution of the topic switching indicator ct:

P (c(t,i)|c−(t,i), cs,ws,wt, zs, zt, st) =



M0
t + αλλ − 1

Mt + αλγ + αλψ − 1
×

nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
ct = 0

(3.4)

M1
t + αλψ − 1

Mt + αλγ + αλψ − 1
× nik + αψ − 1

ni(.) +Kαψ − 1
ct = 1

(3.5)

where M0
t is the number of words in tweet t whose topics are specific topics. On the

other hand, M1
t is the number of words in tweet t whose topics are general topics.

Mt = M0
t +M1

t is the number of words in t.

Next, for parameter estimation of segment choice indicator st in (iv), we have:

P (st|s−(t,i), ct, cs,ws,wt, zs, zt) =
nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
× nis + αγ − 1

ni(.) + Sαγ − 1
(3.6)

where S is the set of segments in the event’s transcript. s ∈ S is the segment that

tweet t refers to. nis is the number of times segment s is refereed by words in t.

Last, we present Gibbs update rules for the estimation of segmentation indicator cs

in (v). Since this variable is sampled from a Binomial distribution, it has two possible

values that control whether a paragraph s should have the same topic distribution as

its preceding paragraph s−1 (when cs = 0) or have a new topic distribution sampled

from a Multinomial (when cs = 1). Thus, we have the following update rules:

40



P (cs|c−(s,i), ct,ws,wt, zs, zt, st) ∝



S0
t + αδ − 1

S + 2αδ − 1
×
∏K
k=1 Γ(nSik + ntSik + αθ)

Γ(nSi(.) + ntSi(.) +Kαθ)
, cs = 0

(3.7)

S1
t + αδ − 1

S + 2αδ − 1
× Γ(Kαθ)

Γ(θ)K
×
∏K
k=1 Γ(n

S(s−1)

k + nt
S(s−1)

k + αθ)

Γ(n
S(s−1)

(.) + nt
S(s−1)

(.) +Kαθ)

×
∏K
k=1 Γ(n

S(s)
k + nt

S(s)
k + αθ)

Γ(n
S(s)
(.) + nt

S(s)
(.) +Kαθ)

, cs = 1

(3.8)

where S1
s is the number of times paragraph’s topic changes (i.e., cs = 1). S = S0

s +S1
s

is the number of paragraphs in an event’s transcript. Note that excluding c(s,i) = 1

from the sequence cs makes a segment Si split into two small segments: S(i−1), which

contains paragraphs from the beginning of original segment Si to the one (i.e., s− 1)

right before s; and Si which contains sentences from s to the end of Si. In contrast,

excluding c(s,i) = 0 from the sequence will only cause the segment S(i) missing the

count for paragraph s.

During the parameter estimation, our inference algorithm keeps track of a W ×K

(words by topics) count matrix for both event and tweets, a S × 2 (paragraphs by

coin) count matrix for indicating segments in the event, a T×2 (tweets by coin) count

matrix for indicating topic switch in tweets, and a vector of T length for keeping the

choice of segment. Given these matrices, we can estimate the probabilities of θ(s),

ψ(s), δ(s), λ(t), and γ(t).

3.4 Experiments

In this section, we present the performance of ET-LDA model based on quantita-

tive studies and subjective evaluations. Our study is mainly comprised of two parts.

In the first part, we evaluate the effectiveness of ET-LDA against other baselines. Four

main tasks are undertaken: (1) the topics extracted from the whole corpus (tweets
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and transcripts of events) are compared with those separately extracted from LDA

model, (2) the alignment between events and their associated tweets is compared

with those separately aligned by the LDA model, (3) the capability of predicting

topical influences of the events on unseen tweets in the test set is compared with

LDA, and (4) the quality of event segmentation is compared with LCSeg – a popular

HMM-based segmenting tool in the literature (Galley et al., 2003).

In the second part, we apply ET-LDA to gain insights into two public televised

events and their associated tweets. We first present our conjectures about Twitter

users’ posting behavior in responding to the event. Then we show more insights

about the tweeting behavior in terms of how people responded to the event over its

timeline, and how the segments of the events were referred to by the episodic tweets.

As a result, we present (5) the evolution of episodic tweets over the event’s timeline,

and (6) the distribution of segments of the events as they were referred to by the

episodic tweets. Through these results, we confirm our conjectures in a discussion

section.

3.4.1 Experimental Setup

3.4.1.1 Data collection

To perform the experiments, we crawled tweets for two events using the Twitter API.

The first event is President Obama’s speech on the Middle East, where we obtained

the tweets tagged with “#MESpeech”. The second is the Republican Primary debate,

where the tweets were tagged with “#ReaganDebate”. Note that we only consider

tweets with these hashtags, officially posted by the White House and NBC News,

respectively, before the events. We obtained the transcripts of both events from
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the New York Times 2 3 . We preprocessed both datasets and the transcripts by

removing non-English tweets, retweets, punctuation and stopwords and stemming all

terms. Table 3.2 summarizes the properties of these datasets after preprocessing. We

use the hashtags to refer to these events in the rest of this work.

Table 3.2: Properties of Datasets Used in Our Experiments

Events MESpeech ReaganDebate

Event Air Time
05/19/2011 09/07/2011

12:14PM-1:10PM 8:00PM-10:00PM

Time span of tweets 05/18 - 05/25 09/06 - 09/13

Total #Tweets 11,988 112,414

#Tweets before event 1,916 42,561

#Tweets during event 4,629 46,672

#Tweets after event 5,443 23,181

3.4.1.2 Expanding tweets

It is known that topic modeling methods behave badly when applied to short doc-

uments such as tweets. To remedy this, we need to expand the tweets in some way

to augment their context. Current efforts include using Wikipedia to enrich tweets

(Hu et al., 2009), grouping tweets by same authors (Zhao et al., 2011), etc. Inspired

by (Sahami and Heilman, 2006), our approach here treats tweet t as a query and

sends it to a search engine. After generating a set of top-n query snippets d1, ...dn,

we compute the TF-IDF term vector vi for each di. Finally, we pick the top-m terms

2http://www.nytimes.com/2011/05/20/world/middleeast/20prexy-text.html

3http://www.nytimes.com/2011/09/08/us/politics/08republican-debate-text.html
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from vi and concatenate them to t to form an expanded tweet. In the experiments, we

used the Google search engine 4 for retrieving snippets and set n = 5 and m = 10.

3.4.1.3 Model settings

We used the Gibbs sampling algorithm for training ET-LDA on the tweets datasets

with the transcript. The sampler was run for 2000 iterations for both datasets.

Coarse parameter tuning for the prior distributions was performed. We varied the

number of topics K in ET-LDA and chose the one which maximizes the log-likehood

P (ws,wt|K), a standard approach in Bayesian statistics (Griffiths and Steyvers,

2004). As a result, we set K = 20. In addition, we set model hyperparameter

αδ = 0.1, αθ = 0.1, αγ = 0.1, αλγ = αλψ = 0.5, αψ = 0.1, and β = 0.01.

3.4.2 Effectiveness Evaluation of the ET-LDA

In following four sections, we show the evaluations of (1) extracted topics, (2)

alignment, (3) model prediction, (4) event segmention by ET-LDA against several

baseline models.

3.4.2.1 Topics from the ET-LDA Model

We first study the topics discovered from the two datasets by our proposed model

ET-LDA. Table 3.3 and Table 3.5 present the highest probability words from two

distinct types of topics – in the rest of this work, we refer to them as top words. The

topics extracted by baseline LDA model (which was trained on the event transcripts

and tweet datasets separately with K = 20) are presented in Table 3.4 and Table

3.6. For the specific topics (under the column Specific), we directly pick the top 2

from the distribution of topics for each segment of the event. The topics that are

4http://www.google.com/cse/
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ubiquitously and consistently mentioned in the entire tweets dataset are considered

as the general topics (under the column General) because their distributions are

fixed for the event (recall Section 3.2). Note that all of the topics have been manually

labeled for identification (e.g. “Arab Spring”) to reflect our interpretation of their

meaning from their top words. These settings are also applied to the results by LDA.

For MESpeech (see Table 3.3), all specific topics in 7 segments seem to correlate

well with the event from a reading of the transcript. Furthermore, it is clear that these

topics are sensitive to the event’s context and keep evolving as the event progresses

(in the sense that topics from most segments are different). The only exceptions are

“Human rights” and “Foreign policy”, which occur in two segments (S1 and S7). This

can be explained by the fact that these two segments serve as the opening and ending

of the event. Usually, the content of these two parts tends to be similar since they

are either related to the outline or the summarization of the event. On the other

hand, general topics and their top words capture the overall themes of the event well.

But unlike specific topics, these general topics are repeatedly used across the entire

event by the crowd, in particular when expressing their views on the themes of the

event (e.g., “Arab spring”) or even on some popular issues that are neither related

nor discussed in the event (e.g., “Obama”).

For ReaganDebate (see Table 3.5), we show a sample of 7 (out of 14) segments. All

specific topics and their top words from these segments look well related to the event.

However, compared to MESpeech where the specific topics were discussed in sequence

(except for segments (S1 and S7) which we discussed above), we discover that here

the specific topics are rather disordered and occur repeatedly. For example, “Health-

care” is mentioned in both segments S3 and S10, and “Immigration” is mentioned in

segments S6 and S13, etc. This interesting observation is mainly due to the structure

of the debate. Note that ReaganDebate is a multi-way conversation. Although it was
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Table 3.3: Top Words from Topics of Mespeech. Top 2 Specific Topics per Segment

(S1–s7). Top 3 General Topics from the Entire Tweet Corpus.

S Specific Top Words

S1
Human rights Rights Transition People Power

Foreign policy Secure Mideast Arab Clinton State

S2
Terrorism Bin Laden Mass Murderer Cry

People Dignity Power Street Square people

S3
Arab democracy Democracy Yemen Syrian Bahrain

Egypt revolution Mubarak Resign Policy Reform

S4
Youth Promote Untapped Arab talent youth

Free speech Open Internet Mind Access Paper

S5
Economics Aid Trade Debt Billion Dollar

Reform Egypt Reform Support Resource

S6
Border problem Israel Palestine Borders State Jordan

Peace treaty Palestine Peace Jewish Agreed treaty

S7
Human rights Rights Transition People Power

Foreign policy Secure Mideast Arab Clinton State

General Top Words

Arab spring
Arabia Bahrain Iran Mosques

Syrian Leader Government Stepped

Israel & Palestine
Israel Palestine Borders Lines Hamas

Negotiate Permanent Occupation

Obama
President Job Tough Critique

Jews Policies Attacking Weakness

led by two anchors, sometimes a presidential candidate also expounded his claims and

attacked the other candidates’ records on some topics, resulting in rebuttals among
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Table 3.4: Top Words from Topics of Mespeech by the Baseline Lda Model (3 out of

a Total of 20 Topics Are Shown Here)

Topics Top words

LDA on event

“MiddleEast/Arab” Young People Deny Country

Democracy Women Violent Cairo

“Security/Terrorism” Many Home Transition State

Security Conflict Blood Al Qaeda

“Israel Palestine issues” Palestinian Israel Know Between

Leader resolve Issue Boarder

LDA on tweets

“Obama” Wonderful Obama Job Approval

GOP Talking Economics

“Arab Spring” Obama Town Assad Month Syria

Libya Leave Must Jews

“Security/Peace” Iran Bin Laden Dead Oil

War Murder Iraq Risk Nuclear

the candidates. Besides, the event partnered with an online medium (Politico.com)

through which readers wrote down their questions to the candidates which were then

selected by the anchors. Therefore, common concerns such as “Healthcare”, “Eco-

nomics”, and “Immigration” were discussed back and forth heavily throughout the

entire debate, producing many more segments than MESpeech (14 vs. 7) and the

reoccurrence of the specific topics.

It is clear that all specific and general topics from the ET-LDA model are very

reasonable from a reading of the transcripts. Furthermore, we observe that the specific

topics are sensitive to the event’s context and keep evolving as the event progresses.
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Table 3.5: Top Words from Topics of Reagandebate. Top 2 Specific Topics per

Segment. Top 3 General Topics from the Entire Tweet Corpus.

Specific Top Words

S1
Campaign Tonight Republicans Campaign Leadership

Candidates Perry Romney Michele Huntsman Governor

S2
Job market Job Payroll Market Crisis Monstrous

Taxes Income Tax Pledges Taxpayer Committed

S3
Healthcare Obamacare Wrong Unconstitutional Deal

Economics Debt Fence Economics Commitment Cured

S6
Candidates Perry Romney Michele Huntsman Governor

Immigration Legal Mexico Immigrants citizen Solution

S9
Debts Government Financially Failure China

Regulations Fed Up Wrong Funding Expenditures

S10
Social Sec. Social Security Benefits Ponzi Scheme

Healthcare Obamacare Wrong Unconstitutional Deal

S13
Immigration Legal Mexico Immigrants citizens Solution

Economics Debt Fence Economics Commitment Cured

General Top Words

Social security
Perry Social Security Ponzi scheme Check

Constitutional Lowest Wage Vote Wrong

Economics
Private Sector Obama Conservative Budget

Amendment Growth Employment Taxes Job

Health Care
Legislative Legal Solution Homelessness

Obamacare Jeopardizes Medicare Doctor
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Table 3.6: Top Words from Topics of Reagandebate by the Baseline LDA Model (3

out of a Total of 20 Topics Are Shown Here

Topics Top words

LDA on event

“Social Sec.” Constitution Law Government Wrong

Federal Funding Monstrous Financially

“Regulations” Fed Funding Expenditures Devastating

Economy Policies Hurt President

“Health care” Romney Cheaper Free Mandate

Individual Obamacare Question Better

LDA on tweets

“Social Sec.” Perry Ridiculous Ponzi Exaggerated

Provocative Tcot Investment Reformed

“Obama” Warfare Job Creation Obamacare

Approval Poll Troop Withdraw Vote

“Economics” Monster Stupid Bloody Obama Jobs

Lost Sided Down Blasting Hopeless

On the other hand, general topics and their top words capture the overall themes of

the event well. But unlike specific topics, these are repeatedly used across the entire

event by the crowd in their tweets, in particular when expressing their views on the

themes of the event (e.g., “Arab spring”, “Immigration”) or even on some popular

issues that are neither related nor explicitly discussed in the event (e.g., “Obama” in

MESpeech, “Conservative” in ReaganDebate).

The results of LDA seem less reasonable by comparison. Although LDA may

extract general topics like “Israel Palestine issues” just like ET-LDA, since these

topics remain constant throughout the document, LDA cannot extract specific topics
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for the event. In fact, “Israel Palestine issues” shows the advantage of ET-LDA:

it is the top general topic for entire tweet collection (which is very relevant to and

influenced by the event) whereas LDA fails to identify that (its top topic is ‘Obama’

which is less relevant). The data showed that people tweeted about this issue a lot.

Besides, some top words for LDA topics are not so related to the event. This lack of

correspondence is more pronounced for LDA when it is applied to the tweet datasets,

e.g., GOP Job Approval in topic “Obama” of the tweets corpus by LDA. This is mainly

because ET-LDA successfully characterizes the topical influences from the event on

its Twitter feeds such that the content/topics of tweets are regularized, whereas the

LDA method ignores these influences and thus gives less reasonable results.

Since the evaluation of topics extracted by topic models often lacks of ground

truth, we depend on a user study to further evaluate the quality of these topics. We

recruited 31 participants who are graduate students from the engineering school of

the first author’s university. As a part of our selection criteria, they were required to

follow the news closely and tweet at least three times per week (same participants for

other user study tasks in this work, which are described in next sections). Median age

of participants was 26 years (range: 21-37 years). The procedure of our user study

is the following: each participant was provided (i) 5 samples of segments per event

(recall MESpeech has 7 and ReaganDebate has 14 segments), together with short

summaries for both events. For the comparison of the quality of topics, participants

were provided with top 3 specific topics per segment and top 5 general topics of the

event extracted by ET-LDA and top 2 topics extracted from the segment (determined

by ET-LDA in advance) by a traditional LDA model (K = 20). After each sample,

the participant was asked to rate the quality of topics, on a Likert scale of 1 to 5

rating. The duration of the study was 10-20 minutes.

After that, we compare the performance of our proposed method against the
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Table 3.7: Performance of Methods on the Quality of Topics (T) for Each Sampled

Segment (S1-s5) Based on Likert Scale. The Higher Values Are Better.

MESpeech

S1 S2 S3 S4 S5

T
ET-LDA 0.51 0.45 0.55 0.62 0.68

LDA 0.43 0.41 0.47 0.44 0.51

ReaganDebate

S1 S2 S3 S4 S5

T
ET-LDA 0.51 0.61 0.69 0.67 0.68

LDA 0.48 0.51 0.52 0.54 0.57

baseline method (LDA) using the qualitative responses obtained in the user study.

In Table 3.7, we show the measure of the Likert scale for the results of two methods,

averaged over the value diversity. We observe that the best ratings are obtained by our

proposed method ET-LDA (on an average 22% improvement over the baseline LDA

method). We also study the statistical significance of ET-LDA with respect to LDA.

We performed a paired t-test on the participant ratings obtained from the user study.

We find that the comparisons of ET-LDA to LDA yield low p-values. For MESpeech,

we get p = 0.0163 and for ReaganDebate we have p = 0.0092. This indicats that

the improvement in the performance of ET-LDA is statistically significant (against

significance level of 0.05).

3.4.2.2 Alignment of Event and Tweets

Next, we evaluate the performance of event-tweets alignment. Basically, we want to

evaluate whether the episodic tweets (i.e., tweets that are strongly influenced by the

51



events) are correctly identified for each segment. Determining whether a response is

an episodic tweet depends on its associated preference parameter c(t). As defined in

ET-LDA, a response is an episodic tweet only if the sampled probability P (c(t)) > 0.5,

meaning that the majority of its topics are specific topics, influenced by the content

of the segment it refers to.

Due to the lack of ground truth, we again rely on the user study. We give each

participant a different questionnaire, which contained 3 parts: (i) 5 samples of seg-

ments per event (recall MESpeech has 7 and ReaganDebate has 14 segments), to-

gether with short summaries for both events. (ii) 5 samples of episodic tweets of

each segment. (iii) 5 samples of steady tweets to the event. All topics and segments

were generated by ET-LDA during the training time and the ordering of the samples

was randomized. For the comparison of the soundness of episodic tweets and the

alignment, participants were provided with top 5 tweets per segment measured by

the distance (Jensen-Shannon divergence) of their topics to the ones of the referred

segment. The JS divergence was calculated as DJS = 1
2
DKL(P ||R) + 1

2
DKL(Q||R),

where R = (1
2
P + 1

2
Q), P is a mixture of topics for tweets and Q is a mixture of topics

for the referred segment, both are found by the LDA. Note these tweets are neither

episodic nor steady, they are only similar/relevant to the segment of the event. After

each sample, the participant was asked to rate the soundness of the alignment as

compared to the ones described in (iii), on a Likert scale of 1 to 5 rating.

In Table 3.8, we show the measure of the Likert scale for the results of two meth-

ods, averaged over the value diversity. Again, our proposed method ET-LDA improves

the baseline LDA method on an average 18%-41%. Besides, the difference between

the methods is more obvious in ReaganDebate rather than MESpeech, because the

crowd was topically influenced by ReaganDebate more (describe later) and only our

proposed model can characterize such a relationship (while LDA ignores such influ-
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ences). Besides, we study the statistical significance of ET-LDA with respect to LDA.

As expected, ET-LDA yield low p-values to LDA (p = 0.0408 for MESpeech and

p = 0.0291 for ReaganDebate), indicating that the improvement in performance of

ET-LDA is statistically significant (against significance level of 0.05), particularly for

the quality of topics in ReaganDebate. This is in conformity with our observations

that ET-LDA outperforms LDA more if there exists a strong influence from the event

on the crowd’s responses.

Table 3.8: Performance of Methods on the Soundness of Event-Tweet Alignment (Al)

Based on Likert Scale. The Higher Values Are Better.

MESpeech

S1 S2 S3 S4 S5

AL
ET-LDA 0.49 0.51 0.56 0.58 0.63

LDA 0.48 0.49 0.54 0.51 0.57

ReaganDebate

S1 S2 S3 S4 S5

AL
ET-LDA 0.51 0.52 0.57 0.62 0.61

LDA 0.48 0.49 0.51 0.51 0.58

3.4.2.3 Prediction Performance

Next, we study the prediction performance of ET-LDA. Specifically, we are inter-

ested in the prediction of topical influences from the event on the unseen tweets in

our test set (20% of total tweets). Thus, we first run the Gibbs sampling algorithm,

described in previous section, on the training set for each event/tweet dataset. Then

we extend the sampler state with samples from the test set. For comparison, we used
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LDA as our baseline approach. However, since LDA treats the event and tweets in-

dividually, we measure the topical influences by the distance of topic mixtures of the

unseen tweets to the ones of the segments of the event (as determined by ET-LDA in

advance). Similarly to evaluation of LDA in event-tweets alignment, we measure this

distance by the Jensen-Shannon divergence.
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Figure 3.3: Predictive Performance of ET-LDA Compared with LDA Model on 5

Randomly Sampled Segments.

To evaluate the “goodness” of prediction results by our proposed model, we again

depend on users feedback. We asked our 31 participants to manually label the quality

and strength of the predicted topical influences from events on the unseen tweet

datasets on a Likert scale of 1 to 5 rating. We then averaged these ratings over the

value diversity (i.e., normalization). In Fig. 3.3a and 3.3b, we present the results of

the two methods on 5 randomly sampled segments.

In light of the observed differences in Fig. 3.3a and 3.3b, we study the statistical

significance of ET-LDA with respect to LDA in terms of their predicting performance.

We computed paired-t-tests for models with a significance level of α = 0.05 and we
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obtained p = 0.0161 for MESpeech and p = 0.0029 for ReaganDebate. This

reveals that the improvement in prediction performance of ET-LDA is statistically

significant.

3.4.2.4 Event Segmentation

Finally, we study the quality and effectiveness of ET-LDA on the segmentation

of the two events based on their transcripts. The results of the event segmentation

(obtained using K = 20 in ET-LDA) are shown in Fig. 6.2b and 3.4b. To evaluate

our model, we compare its results with the ones from a popular HMM-based tool

LCSeg (trained on 15-state HMM) on the Pk measure (Beeferman et al., 1999). Note

that this measure is the probability that a randomly chosen pair of words from the

event will be incorrectly separated by a hypothesized segment boundary. Therefore,

the lower Pk indicates better agreement with the human-annotated segmentation

results, i.e., better performance. In practice, we first ask four graduate students in

our department to annotate the segments of the events based on their transcripts

(two for each event) and later ask another graduate student to judge, for one event,

which human annotation is better. We pick the better one of each event and treat

it as the hypothesized segmentation. Then, we compute the Pk value. The results of

two methods are shown in Table. 3.9.

Table 3.9: Comparisons of Segmentation Results on Two Events

MESpeech ReaganDebate

ET-LDA LCSeg ET-LDA LCSeg

Pk 0.295 0.361 0.31 0.397

The results show that our model significantly outperforms the LCSeg – as the
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Figure 3.4: Segmentation of the Event by ET-LDA

latter cannot merge topic mixtures in paragraphs according to their similarity, and

thus places a lot of segmentation boundaries (i.e., over-segmented), resulting in poor

performance.

3.5 Insights from the Application of ET-LDA: Sensemaking of Events and Tweets

Our previous evaluations prove the effectiveness of our proposed ET-LDA model in

topics extraction, event-tweets alignment, prediction of topical influences, and event

segmenting. Now, we apply ET-LDA to the two events and their associated tweets to

make sense of them. In the next sections, we first propose several conjectures about

the crowd’s tweeting behavior in responding to an event based on our manual inspec-

tion on a small sample of data. Next, we present two key insights about the tweeting

behavior gained from ET-LDA analysis. Finally, we confirm our conjunctures through

these insights.

3.5.1 Understanding Tweeting Behavior

We first present a preliminary understanding of a crowd’s response to an event

they are interested in. As an example, Figure 3.5 shows how the crowd interacted

over the timeline of the Republican Primary debate, namely, before, during and after
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the event. The total number of tweets we collected for this event was over 110,000.
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Time Window) During 09/07/2011 15:00 – 09/08/2011 3:00. The Debate Was During

09/07/2011 20:00 – 22:00. All Tweets Were Tagged #reagandebate.

Based on the graph, we make three observations: (1) The swell of conversation

occurred mostly within 1 hour right before the debate started, indicating that a large

number of people began to pay attention to it then. Since the debate had not started

yet, we conjecture their responses were mostly tangential (e.g., posted for presence) or

commentaries about the general themes of the debate (which were known in advance).

(2) The volume of tweets fluctuated during the debate, indicating different levels of

involvement of the crowd with the evolving debate. We conjecture these changes were

due to the fact that an event is made up of segments in sequence. Each segment covers

a set of topics which may be uniquely interesting to the crowd and may influence their

responses to be very specific to the content of the event. (3) A much smaller volume of

tweets was witnessed right after the debate ended, indicating that most people quickly

lost interest. We conjecture these tweets were of a different nature (e.g. slightly more

specific to the content of the event) from the ones posted before the event, as the

crowd had just listened to or experienced the event.

In addition to the above observations as reflected by the Twitter volume, we can
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further understand the crowd’s responses from a different angle by analyzing their

content. As mentioned earlier, this is nontrivial due to the vast amount of tweets.

Hence, we first analyzed a small sample of tweets through manual inspection. We

find that a tweet’s content can be either weakly or strongly influenced by the debate’s

content. Tweets with weak correlations used words that were mostly about the general

topics of the debate. So they seemed to be steady and less affected by the debate’s

progress. On the other hand, the words used in tweets with strong correlations were

mostly related to specific topics, particularly influenced by the part of the debate that

they responded to. Consequently, they seemed to be more episodic. Moreover, we

find the pattern of steady versus episodic complies with the timeline of the debate.

Before (and after) debate, most tweets were steady, while the episodic tweets were

seen more frequently during the debate. According to these findings, our conjectures

(which are mentioned earlier in this section) seem to be verified although the sample

is limited.

3.5.2 Evolution of Episodic Tweets over the Event’s Timeline

Next, to confirm these conjunctures, we study the crowd’s responses that are

strongly influenced by the event. Specifically, we are interested in how these responses

evolve over the event’s timeline. Determining whether a response is an episodic tweet

depends on its associated preference parameter c(t). As defined in ET-LDA, a response

is an episodic tweet only if the sampled probability P (c(t)) > 0.5, meaning that the

majority of its topics are specific topics, influenced by the content of the segment it

refers to. Figure 3.6 and Figure 3.7 plot the percentage of those episodic tweets, split

by 3 periods of the events. The tweets are presented in buckets, and the percentage

of the episodic tweets refers to the proportion in a bucket. Note that the tweets in

both figures were ordered by their time.
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For MESpeech (see Figure 3.6), only 18% responses were episodic tweets initially,

indicating that most responses at the time were either tangential or about the high-

level themes of the event. This is because the responses (first 100 to 200 tweets)

were contributed almost as early as 1 day before the event started. Then, a rapid

increase of episodic tweets (from 18% to 39%) was witnessed just before the event,

suggesting that people had gathered more information about it. We observe that

interesting changes occur both when the event begins and as it is ending. In both

cases, the percentage of episodic tweets rises up sharply (beginning: from 39% to

52%; ending: from 43% to 50%) and then drops down quickly. We believe this makes

sense since people are often very excited when the event starts and ends. Under such

circumstances, they tend to respond strongly to both parts. For example, a large

number of the responses like “Obama starts talking”, ”Here we go, Obama finally

showed up” were witnessed in response to the opening of MESpeech, and responses

such as ”Obama’s speech was finally over” were seen mostly from the ending of the

event. In fact, the beginning (the ending) part is usually determined by ET-LDA

as the first (last) segment. More surprising to us was the fact that the percentage

of episodic tweets remained mostly stable during the event. This might be because

the most audience members had lower interest levels about specific topics about the

Middle East, so their responses tended to be general even as the event was airing.

For ReaganDebate (see Figure 3.7), the graph for the percentage of episodic tweets

shows a similar behavior to the one in MESpeech. However, we also discovered three

key differences through the comparison. First, the responses are much more strongly

influenced by the specific topics of the debate when compared to MESpeech, (33%

vs. 18% in terms of the lowest percentage). We believe this is because ReaganDebate

was about domestic issues that interested more people. Therefore, they tended to

follow the debate closely and their responses were more episodic. Second and more
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Figure 3.6: The Percentage of Episodic Tweets to Mespeech over Its Timeline. Tweets

Were Ordered by Their Time.

interestingly, the crowd was less excited during the opening and ending of the debate.

We attribute this to two reasons: (1) MESpeech was significantly delayed by 40

minutes. Therefore, responses were stronger when the event finally began, and (2)

before ReaganDebate, there had been 4 Republican Primary debates already, so the

crowd might have been less excited at the start. Lastly, we find the percentage of

episodic tweets rises significantly during the debate (see the percentage rise around

the 66,000th tweet). While looking through the content of the segments that these

tweets referred to, we find topics like “Healthcare” and “Economics” were discussed.

We conjecture that, since these topics are controversial and are a strong concern in

the Primaries, the responses from the audience were pronounced.

3.5.3 Distribution of Segments Referred to by Episodic tweets

We now study how segments in the events were referred to by episodic tweets from

the crowd. As defined in ET-LDA, an episodic tweet may refer to any segment of an

event based on its associated categorical distribution governed by parameter s(t). We

sample the highest probability segment from the distribution and deem it the referred

segment. Figure 3.8 plots the results for both events, where each data point denotes
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Figure 3.7: The Percentage of Episodic Tweets to Reagandebate over Its Timeline.

Tweets Were Ordered by Their Time.

a tweet (which is an episodic tweet). Again, all tweets in both figures were ordered

by their time.

For MESpeech, we first show how segments were referred to during the event. The

results are shown in Figure 3.8c. As expected, we find the data points are quite dense

for all segments, indicating that the crowd were following the event closely. Next, in

Figure 3.8a we show how tweets talked about the event before it really started. Not

surprisingly, the data points to all segments were pretty sparse. Among the segments,

Segments 1 and 2 were referred to slightly more by the episodic tweets, since their

focused topics (see Table 3.3) were mostly general (e.g., “Human rights”) or popular

(e.g., “Terrorism”) so that people could respond specifically without knowing any

content of the event. Based on the patterns of the data points in these figures, we

make two key observations here: (1) Looking horizontally, we find that the crowd’s

attention tended to shift from one segment to the next as the event progressed. Our

observation is based on the fact that the density of the data points of segments evolved

over the event’s timeline (see Segments 4-6 in Figure 3.8c). Initially, a segment starts

out sparse since most people may still be focusing on other segments. Gradually, it

becomes dense and stays dense (as more episodic tweets were contributed) during
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Figure 3.8: The Distribution of Referred Segments by Episodic Tweets. Each Dot

Presents a Tweet. All Tweets Were Ordered by Their Posted Time.

the time that the segment was occurring in the event. Afterwards, the density of

the segment turns back to sparse because the audience may have lost interest in

these topics. (2) More interestingly, when we look vertically in the graphs, we find

the episodic tweets not only refer to the segments whose covered topics had been

discussed before or were being discussed currently, but also refer to the segments
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whose topics are expected to be discussed later on in the event. We believe this is

possible as long as the person has a high interest level, and expectation that these

topics will be discussed. Lastly in Figure 3.8e, we see that the level of overall density

of the segments lies between the ones in Figure 3.8a and Figure 3.8c. We believe this

is because people had gained more information after the event (so they responded

more specifically than before the event), but also they lost some interest in the event

(so their responses were less specific than during the event).

For ReaganDebate, we observe two major differences from the results in MESpeech.

First, there were significantly more episodic tweets regardless of the progress of the

event (in Fig. 3.8b, 3.8d, 3.8f, the data points of every segment are much denser

than the ones in Fig. 3.8a, 3.8c, 3.8e). Second, nearly all segments drew the crowd’s

attention (episodic tweets) consistently during and after the event as the segments

are continuously dense, as opposed to the ones that have evolved over the timeline of

MESpeech (graphically, every line has short periods of high density in Figure 3.8a,

3.8c, 3.8e). We attribute this to the fact that the crowd had a better background in

domestic issues and was familiar with the topics covered in the event.

3.5.4 Summary of Insights

We now summarize the central findings of our case studies. The first finding is

that the crowd’s responses tended to be general and steady before the event and after

the event, while during the event, they were more specific and episodic. Such findings

confirm our conjectures in Section 3.5.1.

Secondly, the crowd showed different levels of engagement in different kinds of

events. We attribute this to the reason that people may have greater interest levels

about the general topics of certain events (e.g., topics in ReaganDebate). Our final

finding is that the topical context of the tweets did not always correlate with the
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timeline of the event. We have seen that a segment in the event can be referred to by

episodic tweets at any time irrespective of whether the segment has already occurred

or is occurring currently or will occur later on. This finding is significant in light of

the fact that current approaches such as (Shamma et al., 2009) focus on correlating

tweets to the event based on their timestamps, however our models enable a richer

perspective.

3.6 Summary of Chapter

In this chapter, we have described a joint statistical model ET-LDA for aligning,

analyzing and sensemaking of public events and their Twitter feeds. ET-LDA is

developed based on the characterization of topical influences between an event and the

tweets around it. Depending on such influences, tweets are labeled steady or episodic.

Our model enables the topic modeling of the event/tweets and the segmentation of

the event in one joint unified framework. We provided systematic evaluation of the

effectiveness of ET-LDA against several baseline methods on two large sets of tweets

in responses to two public events. Through both quantitative studies and subjective

evaluations, our model showed significant improvements over the baseline methods.

Furthermore, the application of ET-LDA on the two events also revealed interesting

patterns on how users respond to events. Such patterns have not been investigated

before as the needed analysis was not feasible with other alternative methods.

We believe ET-LDA presents the first step towards understanding complex inter-

actions between events and social media feedback. In fact, beyond the transcripts of

publicly televised events that we used in this chapter, ET-LDA can also handle other

forms of text sources that describe an event. For example, by applying our model

both to the news articles and the social media feedback about an event, we can not

only explore how people respond to an event, but also how the social media responses
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differ from the journalists’ responses in the mainstream media. We also believe that

this chapter reveals a perspective that is useful for tools in event playback and the

extraction of a variety of further dimensions such as sentiment and polarity. For ex-

ample, one can examine how the crowd’s mood is affected by the event based on the

topical influences.
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Chapter 4

EVENT CHARACTERIZATION VIA SENTIMENT ANALYSIS

In the previous chapter we introduced ET-LDA, a powerful Bayesian model to

characterize events and their associated Twitter responses by analyzing the topics of

the events and their evolutions and the crowd’s event-related responding behaviors,

based on event/tweet alignment and event segmentation. This chapter furthers these

analyses by exploring other signals to make sense of events. In particular, we focus

on the sentiment embedded in the crowd’s event-related tweets.

It is known that given the ubiquity and immediacy of social media, individuals

often express their opinions on Twitter and Facebook, in particular during live or

breaking public events such as the U.S. Presidential debate and Apple products press

conference. While viewers can see opinions one by one when watching, the collection

of these posts provides an opportunity to understand the overall sentiment of people

during the event. Gleaning insights from those posts is of increasing importance to

many businesses. Recent studies have revealed that a massive number of people,

news media, companies and political campaigns turn to social media to collect views

about products and political candidates during and after the event. This guides their

choices, decision-making, voting, and even stock market investments (Bollen et al.,

2011; Pak and Paroubek, 2010; Liu et al., 2012; Jiang et al., 2011).

In this chapter, we are interested in making sense of events by automatically char-

acterizing segments and topics of that event in terms of the aggregate sentiments

(positive [+] v.s. negative [-]) they elicited on Twitter (see Fig. 4.1). Classifying the

sentiment behind textual content has received considerable attention during recent

years. A standard approach would be to manually label comments (e.g., tweets) with
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Figure 4.1: Problem Setup

their sentiment orientation and then apply off-the-shelf text classification techniques

(Pang et al., 2002). However, such a solution is inapplicable to our problem due to

three reasons. First, manually annotating the sentiment of a vast amount of tweets

is time consuming and error-prone, presenting a bottleneck in learning high quality

models. Besides, sentiment is always conveyed with highly domain-specific contex-

tual cues, and the idiosyncratic expressions in tweets may rapidly evolve over time,

especially when tweets are posted live in response to the event. It can cause models

to potentially lose performance and become stale. Last and most importantly, this

approach is unable to relate aggregated Twitter sentiment to segments and topics

of the event. One may consider enforcing tweets’ correlation with the segment and

topics from the event that occur within fixed time-windows around the tweets’ times-

tamps (O’Connor et al., 2010a) and classify the sentiment based on that. However, as

pointed by the previous chapter and our recent work (Hu et al., 2012a), this assump-

tion is often not valid: a segment of the event can actually be referred to by tweets

at any time irrespective of whether the segment has already occurred or is occurring
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currently or will occur later on.

The weaknesses discussed in the foregoing motivate the need for a fully automated

framework to analyze events via aggregated twitter sentiment, with (1) little or no

manual labeling of tweet sentiment, (2) ability to align tweets to the event, and (3)

ability to handle the dynamics of tweets. While such a framework does not exist, the

literature does provide partial solutions. For example, ET-LDA (Hu et al., 2012c)

provides an effective unsupervised framework for aligning tweets and events by jointly

modeling both the tweets and events in a latent topic space. Similarly, while manual

annotation of all tweets is infeasible, it is often possible to get sentiment labeling for

small sets of tweets. Finally, there also exist domain-independent sentiment lexicons

such as MPQA corpus (Wilson et al., 2009).

We propose a flexible framework, named SocSent, for event analytics via Twitter

sentiment that leverages these partial solutions. Specifically, our framework seeks low-

rank representations of the Twitter sentiment and its correlations to the event by fac-

torizing an input tweet-term matrix into four factors corresponding to tweets-segment,

segment-topic, topic-sentiment and sentiment-words. The ET-LDA approach can be

seen as providing the initial information (“prior knowledge”) on the tweet-segment

and segment-topic factors. Similarly, the availability of labeled tweets can be used to

constrain the product of tweet-segment, segment-topic and topic-sentiment matrices.

Finally, the sentiment lexicon is used to regulate the sentiment-words matrix. We

pose this factorization as an optimization problem where, in addition to minimizing

the reconstruction error, we also require that the factors respect the prior knowledge

to the extent possible. We derive a set of multiplicative update rules that efficiently

produce this factorization, and provide empirical comparisons with several competing

methodologies on two real datasets, covering one recent U.S. presidential candidates

debates in 2012 and one press conference. We examine the results both quantitatively
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and qualitatively to demonstrate that our method improves significantly over baseline

approaches. In following sections, we describe SocSent in more details.

4.1 Related Work

Sentiment analysis has achieved great success in determining sentiment from un-

derlaying text corpus like newspaper articles (Pang et al., 2002) and product reviews

(Hu and Liu, 2004). Various approaches, mostly learning-based, have been proposed,

which include classification using sentiment lexicons (Wilson et al., 2009), topic sen-

timent mixture model (Mei et al., 2007), and nonnegative matrix factorization (Li

et al., 2009). Recently, there has been increasing interest in applying sentiment anal-

ysis to social media data like tweets such as (Bollen et al., 2011; O’Connor et al.,

2010a). Some works also consider incorporating external social network information

to improve the classification performance ((Tan et al., 2011; Hu et al., 2013a)).

Our work is also inspired by the research in characterizing events by the tweets

around them. These works include inferring structures of events using Twitter usage

patterns (Shamma et al., 2009), exploring events by the classification of audience

types on Twitter (Vieweg et al., 2010), sentiment analysis of tweets to understand

the events (Diakopoulos and Shamma, 2010b) and modeling the behavioral patterns

between events and tweets (Hu et al., 2012a).

The focus of the above work is mostly classifying sentiments of document sources

or processing the tweets around the event. However, they do not provide insights into

how to characterize the event’s segments and topics through the aggregated Twitter

sentiment, which is the main contribution of this work. Perhaps the closest work to

us is (Diakopoulos and Shamma, 2010b). However, it depends on completely manual

coding (via Amazon Mechanical Turk) to determine the sentiment. In contrast, we
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provide a fully automated and principled solution which can be used to handle the

vast amount of tweets posted around an event.

4.2 SocSent Framework

In this section, we first present the basics of SocSent. We then describe how to

obtain and leverage prior knowledge. Table 4.1 lists the notation. Note that although

the primary sentiment we focus on is binary, our model can be easily extended to

handle multiple types of sentiment.

Notation Size Description

X nt ×N Tweet-Term matrix

G nt × ns Tweet-Segment matrix

T ns ×K Segment-Topic matrix

S K × 2 Topic-Sentiment matrix

F N × 2 Term-Sentiment matrix

G0 nt × ns Prior knowledge on Tweet-Segment

F0 N × 2 Prior knowledge on Term-Sentiment

R0 nt × 2 Prior knowledge on Tweet-Sentiment

Table 4.1: Notation in SocSent

4.2.1 Basic Framework

Let a public event be partitioned into ns sequentially ordered segments, each of

which discusses a particular set of topics. A segment consists of one or more coherent

paragraphs available from the transcript of the event (I will discuss the segmentation

in Section 4.2.2.3). There are also nt tweets posted by the audience in response
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to the event, contributing to a vocabulary of N terms. As mentioned earlier, our

goal is to identify segment and topics of the event that gained praise or criticism,

according to how people reacted and appreciated them on Twitter. Accordingly, our

basic framework takes those nt tweets in terms of tweet-vocabulary matrix X as input

and decomposes into four factors that specify soft membership of tweets and terms

in three latent dimensions: segment, topic, and sentiment. In other words, our basic

model tries to solve the following optimization problem:

minG,S,F

∥∥X−GTSF>
∥∥2

F

s.t. G > 0,T > 0,S > 0,F > 0 (4.1)

where G ∈ Rnt×ns indicates the assignment of each tweet to the event segments based

on the strength of their topic associations. That is, the I-th row of G corresponds to

the posterior probability of tweet I referring to each of the ns segments of the event.

Similarly, T ∈ Rns×K indicates the posterior probability of a segment s belonging

to the K topic clusters. Also, S ∈ RK×2 encodes the sentiment distribution of each

topic k. Finally, F ∈ RN×2 represents the binary sentiment for each term in the

vocabulary of tweets. Note that the non-negativity makes the factorized factors easy

to interpret. As a result of this factorization, we can readily determine whether

people appreciate the segments or topics of the event or dislike them. For example,

from topic-sentiment matrix S I can directly obtain the crowd’s opinion on each

topic covered in the event. In addition, from segment-sentiment matrix Q (where

Q = T×S), we can distill sentiment regarding each segment of the event. Finally, it

is also feasible to characterize the sentiment for each tweet, through the new tweet-

sentiment matrix R where R = G×T× S.
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4.2.2 Constructing Prior Knowledge

So far, our basic matrix factorization framework provides potential solutions to

infer the aggregated Twitter sentiment regarding the segment and topics of the event.

However, it largely ignores a lot of prior knowledge on the learned factors. Previous

literature (see (Pang et al., 2002)) shows that leveraging such knowledge can help

regulate the learning process and enhance the framework’s performance (which is

empirically verified in Section 4.3). Accordingly, we first show how to construct three

types of prior knowledge: (a) sentiment lexicons of terms, (b) sentiment labels of

tweets, and (c) alignment of tweets to the segment of the event. We then incorporate

them into our framework in Section 4.2.3.

4.2.2.1 Sentiment Lexicon

Our first prior knowledge is from a sentiment lexicon, which is publicly available as a

part of the MPQA corpus 1 . It contains 7,504 representative words that have been

human-labeled as expressing positive or negative sentiment. In total, there are 2,721

positive (e.g., “awesome”) and 4,783 negative (e.g., “sad”) unique terms. It should

be noted, that this list was constructed without any specific domain in mind; this is

further motivation for using training examples and unlabeled data to learn domain

specific connotations. To overcome the irregular English usage and out-of-vocabulary

words in Twitter, we apply a lexicon normalization technique (Han and Baldwin,

2011) for the terms in our sentiment lexicon. This involves detecting ill-formed words

and generates correction candidates based on morphophonemic similarity. As a re-

sult, “happppppppppy” is seen as a correct variant of “happy” thus sharing the same

sentiment. We use those candidates to expand the original lexicon, making it adaptive

1http://mpqa.cs.pitt.edu/

72



to Twitter-related linguistic styles. Besides, we also add popular abbreviations and

acronyms on Twitter such as “smh” (shake our head, negative) and “lol” (positive)

to the lexicon. Eventually, we have 5,267 positive and 8,701 negative unique terms in

the lexicon. We encode it in a term-sentiment matrix F0, where F0(I, 1) = 1 if the a

word I has positive sentiment, and F0(I, 2) = 1 for negative sentiment.

4.2.2.2 Sentiment Label of Tweets

In addition to the lexicon, our second prior knowledge comes from human effort.

We ask people to label the sentiment for a few tweets (e.g., less than 1000) for

the purposes of capturing some domain-specific connotations, which later leads to

a more domain-adapted model. The partial labels on documents can be described

using a tweet-sentiment matrix R0 where R0(I, 1) = 1 if the tweet expresses positive

sentiment, and R0(I, 2) = 1 for negative sentiment. One can use soft sentiment

labeling for tweets, though our experiments are conducted with hard assignments.

4.2.2.3 Alignment of Tweets to the Event Segments

Our last prior knowledge focuses on the alignment between the event and the tweets

which were posted in response to it. Like the sentiment label of tweets, this prior also

tries making the model more domain-specific. To overcome the inherent drawbacks

of the fixed time-window approach, we apply the ET-LDA model from our previous

work (Hu et al., 2012c). ET-LDA is a hierarchical Bayesian model based on Latent

Dirichlet Allocation (LDA) (Blei et al., 2003). It aims to model: (1) the event’s

topics and their evolution (event segmentation), as well as (2) the associated tweets’

topics and the crowd’s tweeting behaviors. The model has two major components

with each capturing one perspective of the goals. Both parts have the LDA-like

model, and are connected by the link which captures the topical influences from the
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event on its Twitter feeds. In practice, ET-LDA takes an event’s transcript and all

the event-related tweets and then concurrently partitions the speech into a number of

homogeneous segments and aligns each tweet to event segments based on the strength

of their topical associations. We encode the alignment results in a tweet-segment

matrix G0 where its rows represent nt tweets and its columns represent ns segments

of the event. As the content of G0 is the posterior probability of a tweet referring to

the segments, we have
∑

1≤j≤ns G0(I, j) = 1 for each tweet I.

4.2.3 Incorporating Prior Knowledge into the Framework

After defining and constructing the three types of prior knowledge, we can incor-

porate them into our basic factorization framework as supervision (see Eq. A.2). I

later demonstrate in Section 4.3 that such supervision provides better regularization

to the learned factors and significantly enhances the model’s performance.

minF,T,G J =
∥∥∥X−GTSF>

∥∥∥2

F

+αTr
(

(F− F0)>Λ(F− F0)
)

+βTr
(

(GTS−R0)>Θ(GTS−R0)
)

+γTr
(

(G−G0)>Γ(G−G0)
)

s.t. F > 0,T > 0,G > 0,S > 0 (4.2)

where α > 0, β > 0, and γ > 0 are parameters which determine the extent to which

I enforce F ≈ F0, G ≈ G0 and the multiplication G×T× S ≈ R0, respectively.

Λ ∈ RN×N , Θ ∈ Rnt×nt and Γ ∈ Rnt×nt are diagonal matrices, indicating the entries

of F0, G0 and R0 that correspond to labeled entities. The squared loss terms ensure

that the solution for F, G, T, and S, in the otherwise unsupervised learning problem,

be close to the prior knowledge F0, G0 and R0.
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It is worth noting the benefit of coupling G, T, and S in Eq. A.2. One may

consider applying regularization to each of them. However, this will add additional

computational cost during the model inference since the model gets more complex.

In contrast, the supervision from R0 on the joint of G, T, and S can achieve the

equivalent enforcement (while G is individually constrained). Besides, the above

model is generic and it allows flexibility. For example, in some cases, our prior

knowledge on F0 is not very accurate and I use smaller α so that the final results are

not dependent on F very much. In addition, the introduction of G0 and R0 allows

us to incorporate partial knowledge on tweet polarity and assignment information.

4.2.4 Model Inference

The coupling between G, T, S, F makes it difficult to find optimal solutions for

all factors simultaneously. In this work, we adopt an alternative optimization scheme

(Ding et al., 2006) for Eq. A.2, under which we update G, T, S, F alternatingly.

Blow, we show the inference process for obtaining the update rule for the tweets-

segment matrix G. Note that other factors can be inferred using the similar steps.

To infer the update rule for G in the framework, we first rewrite Eq. A.2 as:

J =Tr
(
X>X− 2X>GTSF> + FS>T>G>GTSF>

)
+ αTr

(
F>ΛF− 2F>ΛF0 + F>0 ΛF0

)
+ βTr

(
S>T>G>ΘGTS− 2S>T>G>ΘR0 + R>0 ΘR0

)
+ γTr

(
G>ΓG− 2G>ΓG0 + G>0 ΓG0

)
(4.3)

Next, in order to infer the updating rule G, we first construct the Lagrangian for

G as:
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L = J − ΓG> (4.4)

= Tr
(
X>X− 2X>GTSF> + FS>T>G>GTSF>

)
+βTr

(
S>T>G>ΘGTS− 2S>T>G>ΘR0 + R>0 ΘR0

)
+γTr

(
G>ΓG− 2G>ΓG0 + G>0 ΓG0

)
−ΨG> + C (4.5)

where the Lagrangian multipliers Ψ enforce the nonnegativity constraint on Gi,j, and

we use C to represent the terms that are irrelevant to G. Then, we compute the

first-order derivatives of L with respect to G as:

∂L
∂G

=− 2
(
XFS>T> + βΘR0S

>T> + γΓG0

)
+ 2

(
GTSF>FS>T> + βΘGTSS>T> + γΓG

)
(4.6)

From the complementary slackness condition Trefethen and Bau III (1997), we

can obtain:

(
−XFS>T> − βΘR0S

>T> − γΓG0 + GTSF>FS>T> + βΘGTSS>T> + γΓG
)
G = 0

(4.7)

This is the fixed point equation that the solution of G must satisfy at convergence.

So we have the update rule for the tweets-segment matrix G as:

Gij ←Gij

√√√√ [
XFS>T> + βΘR0S>T> + γΓG0

]
ij

[GTSF>FS>T> + βΘGTSS>T> + γΓG]ij
(4.8)
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which is equivalent to(
−XFS>T> − βΘR0S

>T> − γΓG0 + GTSF>FS>T> + βΘGTSS>T> + γΓG
)

G2 = 0

(4.9)

Next, for the tweets-segment matrix T, we have:

Tij ←Tij

√√√√ [
βG>ΘR0S> + G>XFS>

]
ij[

G>GTSF>FS> + βG>ΘGTSS>
]
ij

(4.10)

In addition, for the tweets-segment matrix S, we have:

Sij ←Stij

√
[T>G>XF]ij

[T>G>GTSF>F + T>G>ΘGTS]ij
(4.11)

Last, for the tweets-segment matrix F, we have:

Fij ←Fij

√
[X>GTS + αΛF0]ij

[FS>T>G>GTS + αΛF]ij
(4.12)

The learning algorithm consists of an iterative procedure using the above four

rules until convergence. The outline of the specific steps is shown below.

Computational complexity The tweet-term matrix X is typically very sparse

with z � nt×N non-zero entries. Also, K and ns are typically also much smaller than

nt and N . By using sparse matrix multiplications and avoiding dense intermediate

matrices, the updates can be very efficiently and easily implemented. In particular,

updating G, T, S and F each takes O(C2(nt+ns+N)+Cz) time per iteration which

scales linearly with the dimensions and density of the data matrix. C is a constant.

Empirically, the number of iterations before practical convergence is usually very

small (less than 350). Thus, our approach can scale to large datasets.
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Algorithm 2: Factorization with Prior Knowledge

input : α, β, γ

output: G, T, S, F

1 Initialize G > 0,T > 0,S > 0,F > 0

2 while Algorithm Not Converges do

3 Update G with Eq.(A.4) while fixing T,S,F

4 Update T with Eq.(A.5) while fixing G,S,F

5 Update S with Eq.(A.7) while fixing G,T,F

6 Update F with Eq.(A.6) while fixing G,T,S

4.3 Experiments

In this section, we examine the effectiveness of our proposed framework SocSent}

against other baselines. Three sentiment classification tasks are undertaken on: 1)

event segments, 2) event topics, and 3) tweets sentiment.

4.3.1 Datasets and Experimental Setup

I use two large scale tweet datasets associated with two events from different

domains: (1) the first U.S. Presidential debate on Oct 3, 2012 and (2) President

Obama’s Middle East speech on May 19, 2011. The first tweet dataset consists of

181,568 tweets tagged with DenverDebate and the second dataset consists of 25,921

tweets tagged with MEspeech. Both datasets were crawled via the Twitter API

using these two hashtags. In the rest of this chapter, we use the hashtags to refer to

these events. We obtained the transcripts of both events from the New York Times,

DenverDebate has 258 paragraphs and MESpeech has 73 paragraphs. Furthermore,

we split both tweet datasets into a 80-20 training and test sets. For ET-LDA, we use
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the implementation from (Hu et al., 2012c). Its parameters are set using the same

procedure described in (Hu et al., 2012c). Coarse parameter tuning for our framework

SocSent was also performed. We varied α, β and γ and chose the combination which

minimizes the reconstruction error in our training set. As a result, we set α = 2.8,

β = 1.5, γ = 1.15. All experimental results in this section are averaged over 20

independent runs.

Establishing Ground Truth: To quantitatively evaluate the performance of our

framework, we need the ground truth of the sentiment for event segments, event topics

and tweets. At first, we asked 14 graduate students in our school (but not affiliated

with our project or group) to manually label the sentiment (I.e., positive or negative)

of 1,500 randomly sampled tweets for each dataset. We then applied ET-LDA model

to segment two events and establish the alignment between the labeled tweets and

the event segments. So for each segment, we label its sentiment according to the

majority aggregated Twitter sentiment that correlated to it. For example, if 60 out

of 100 tweets that refer to segment S are positive, then S is considered to have received

positive sentiment since people showed their appreciation for it. In addition, the top-5

topics of S (these top topics were also learned by ET-LDA) are also labeled as having

positive sentiment. We aggregate this sentiment across all the event segments and

assign the majority sentiment to each topic of the event. Finally, we obtained 35

segments of DenverDebate, where 20 segments were labeled as negative. Also, 62%

labeled tweets and 12 out of 20 topics were negative. For MEspeech, we have 6 of 9

segments, 13 out of 20 topics, and 72% tweets marked as negative.

Baselines: To better understand the performance of SocSent, we implemented

some competitive baseline approaches: 1) LexRatio: This method (Wilson et al.,

2009) counts the ratio of sentiment words from OpinionFinder subjectivity lexicon 2

2http://mpqa.cs.pitt.edu/opinionfinder/
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in a tweet to determine its sentiment orientation. Due to its unsupervised setting,

we ignore the tweets which do not contain any sentiment words; 2) MinCuts : This

method (Pang and Lee, 2004) utilizes contextual information via the minimum-cut

framework to improve polarity-classification accuracy. 3) MFLK : This is a supervised

matrix factorization method which decomposes an input term-document matrix into

document-sentiment and sentiment-terms matrices. Supervision from a sentiment

lexicon is enforced (Li et al., 2009). I implemented it with our Twitter lexicon.

4.3.2 Classification Results

Classification of Sentiment of the Event Segment I first study the perfor-

mance of SocSent on classifying the segments’ sentiment for the two events via

aggregated Twitter responses against the baseline methods. Note these baselines

are inherently unable to relate their Twitter sentiment classification results to the

event segments. To remedy this, we take a two-step approach. First, we split the

whole event into several time windows (10-min. in our experiment). Then, we en-

force the segments’ sentiment to be correlated with the inferred tweet sentiment that

occur within the time-windows around the tweets’s timestamps. Figure 4.2 presents

the classification results where accuracy is measured based on the manually labeled

ground truth. It is clear that SocSentcan effectively utilize the partially available

knowledge on tweet/event alignment from ET-LDA to improve the quality of senti-

ment classification in both events. In particular, it improves other approaches in the

range of 7.3% to 18.8%.

Classification of Sentiment of the Event Topics Next, we study sentiment

classification of the topics covered in the event. The results are shown in Figure 4.3.

Similar to the last task, we again use time window approach to correlate the event

topics with the sentiment of tweets. Not surprisingly, SocSent improves the three
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Figure 4.2: Classification of Sentiment of the Event Segment.

baselines with a range of 6.5% to 17.3% for both datasets.
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Figure 4.3: Classification of Sentiment of the Event Topics.

Classifying the Sentiment of the Tweets In the third experiment, we evaluate

the prediction accuracy of Twitter sentiment. Figure 4.4 illustrates the results for

tweets posted in response to DenverDebate and MEspeech. As I can see, SocSent

greatly outperforms other baselines on both datasets. In fact, it achieves the largest

performance improvement margin (compared to results in Figure 4.2 and 4.3). I

believe this is because SocSentadopts the direct supervision from the pre-labeled

tweet sentiment. We also observe that all the methods have better performance on

DenverDebate than on MEspeech (see Figure 4.2, 4.3 and 4.4). This is mainly be-

cause DenverDebate attracted a significant larger number of tweets than MEspeech.

Therefore, the DenverDebate dataset is likely to be less sparse in the sense that more

words from the sentiment lexicon can also be found in the training set. As a result,
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the effect of sentiment lexicon is fully utilized thus producing better results than on

MEspeech.
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Figure 4.4: Classification of Sentiment of the Tweets.

4.3.2.1 Varying Training Data Size

In Table 4.2, we show the performance of classifying segments’ sentiment using various

methods with respect to different size of training data. Note that LexRatio is an

unsupervised approach so its performance is unchanged in this experiment. It is clear

that the other three methods achieve better performance when more training data

is supplied. Besides, on both DenverDebate and MEspeech datasets, we find that

SocSent is more stable over other methods with various sizes of training data from

10% to 100%. In other words, SocSent does not show dramatic changes when the

size of the training data changes. This demonstrates that our proposed method is

robust to training data sizes.

4.3.2.2 Effectiveness of Prior Knowledge

Finally, given the available three types of prior knowledge – sentiment lexicon, tweet

labels and tweet/event alignment by ET-LDA, it is interesting to explore their im-

pact on the performance of SocSent. Table 4.3 presents the evaluation results on
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Table 4.2: Classification Accuracy on Segment’s Sentiment Vs. Training Data Sizes.

Notations: LR Is for LexRatio, MC Is for MinCuts, MF for MFLK, and SS, for

Our Method SocSent.

DenverDebate

T10%(gain) T25%(gain) T50%(gain) T100%(gain)

LR 0.524 0.524 0.524 0.524

MC 0.538 (+2.7%) 0.563 (+7.4%) 0.568 (+8.4%) 0.574 (+9.5%)

MF 0.532 (+1.5%) 0.536 (+2.3%) 0.558 (+6.5%) 0.562 (+7.3%)

SS 0.588 (+12.2%) 0.595 (+13.5%) 0.613 (+17.0%) 0.621 (+18.5%)

MESpeech

T10%(gain) T25%(gain) T50%(gain) T100%(gain)

LR 0.487 0.487 0.487 0.487

MC 0.502 (+3.1%) 0.520 (+6.8%) 0.521 (+6.9%) 0.523 (+7.4%)

MF 0.488 (0.2%) 0.504 (+3.5%) 0.509 (+4.5%) 0.511 (+4.9%)

SS 0.541 (+11.1%) 0.549 (+12.7%) 0.558 (+14.6%) 0.561 (+15.2%)

two datasets, where we judge SocSent on three aforementioned classification tasks

with respect to different combinations of its prior knowledge. For each combina-

tion, we come up with separate update rules which have the similar form as Eq.

A.4-Eq. A.7. Besides, we find optimal parameters using the same procedure de-

scribed above in the setup of experiment. Several insights are gained here: First,

using single type of prior knowledge is less effective than combining them. Especially,

combining all three types of prior knowledge leads to the most significant improve-

ment (an average of 29.8% gain over the baseline N.A on two datasets). Second,

domain-specific knowledge (tweet labels, event/tweet alignment) is more effective
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than domain-independent knowledge (sentiment lexicon) in all three prediction tasks.

Last, domain-specific knowledge is particulary helpful in its corresponding task. For

example, having tweet/event alignment (denoted as G0 in Table 4.3) achieves more

accurate results in classifying the sentiment of the event segments than without having

it. For example, combinations with this prior knowledge such as F0 + G0 or R0 + G0

have better performance than F0 + R0 with 6.5% and 8.3% improvement, respec-

tively. These insights demonstrate the advantage of SocSent’s ability to seamlessly

incorporate prior knowledge.

4.4 Summary of Chapter

In this chapter, we have described a flexible factorization framework, SocSent

that characterizes the segment and topics of an event via aggregated Twitter senti-

ment. Our model leverages three types of prior knowledge: sentiment lexicon, manu-

ally labeled tweets and tweet/event alignment from ET-LDA, to regulate the learning

process. We evaluated our framework quantitatively and qualitatively through various

tasks. Based on the experimental results, our model shows significant improvements

over the baseline methods. We believe that our work presents the first step towards

understanding complex interactions between events and social media feedback and re-

veals a perspective that is useful for the extraction of a variety of further dimensions

such as polarity and influence prediction.
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Table 4.3: Combinations of Prior Knowledge Vs. Accuracy. Notations: F0 for Senti-

ment Lexicon, R0 for Tweets Labels, G0 for Prior Tweet/event Alignment Knowledge

from Et-LDA. N.A Refers to the Basic Framework Without Any Constraints.

DenverDebate

Segment (gain) Topics (gain) Tweets (gain)

N.A 0.486 0.502 0.498

F0 0.523 (+7.5%) 0.542 (+7.9%) 0.545 (+9.4%)

R0 0.532 (+9.5%) 0.548 (+9.2%) 0.578(+16.1 %)

G0 0.484 (-0.01%) 0.504 (+0.02%) 0.491 (-1.4 %)

F0+R0 0.572 (+17.7%) 0.564 (+12.4%) 0.735 (+47.8 %)

F0+G0 0.604 (+23.6%) 0.605 (+20.5%) 0.68(+36.5%)

R0+G0 0.612 (+25.7%) 0.612 (+21.9%) 0.687(+37.9%)

F0+R0+G0 0.618 (+27.2%) 0.628 (+25.1%) 0.768 (+54.2 %)

MEspeech

Segment (gain) Topics (gain) Tweets (gain)

N.A 0.472 0.498 0.512

F0 0.493 (+4.4%) 0.503 (+1.1%) 0.557 (+8.7%)

R0 0.502 (+6.3%) 0.512 (+2.8%) 0.566 (+10.5%)

G0 0.467 (-1.1%) 0.494 (-0.8%) 0.515 (+0.5%)

F0+R0 0.542 (+14.8%) 0.552 (+10.2%) 0.606 (+18.3%)

F0+G0 0.568 (+20.3%) 0.578 (+16.0%) 0.632 (+23.4%)

R0+G0 0.578 (+22.4%) 0.588 (+18.1%) 0.642 (+25.3%)

F0+R0+G0 0.588 (+24.5%) 0.598 (+20.1%) 0.652 (+27.3%)
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Chapter 5

TRENDING EVENT DETECTION IN SOCIAL MEDIA

In previous two chapters we introduced ET-LDA and SocSent, two powerful

tools for handling the Event Characterization task. This chapter mainly focuses on

the second task: Event Recognition. As we know that tweets can be seen as a dynamic

source of information enabling individuals, companies and government organizations

to stay informed about “what is happening right now”. Besides, various examples

have shown that events on social media are often reported earlier than by traditional

news outlets (Lotan, 2012). Therefore, it is important to detect events on social media

when they start trending, thereby facilitating better awareness for both regular social

media users and news outlets.

However, it is know that social media is chaotic, noisy and overwhelming. There-

fore, in order to develop our event detection algorithm we need to figure out how

to separate the noisy information from interesting real-world events. Moreover, the

event detection algorithm also requires to be highly scalable and efficient approaches

in order to handle and process large amounts of tweets (especially for real-time event

detection). In next sections, we provide our techniques to address these challenges.

5.1 Background of DeMa

Event detection has studied in the topic detection and tracking (TDT) com-

munity for a long period and recently in social community. In general, existing

event detection approaches on Twitter (the ones that are adapted from TDT liter-

ature) can be broadly classified into two categories: document-pivot methods and

feature-pivot methods, depending on whether they rely on document or temporal

86



features. The former detects events by clustering documents based on the semantics

distance between documents (Yang et al., 1998), while the latter studies the features

of words(Kleinberg, 2003) to make the event prediction. Although the document-

pivot approach achieved great success in several TDT tasks, it has several drawbacks

when applying to social media: First, measuring the distance between short doc-

uments like Twitter messages is a very challenge problem, and the state-of-the-art

approaches still lack performance (Becker et al., 2010). Second and more importantly,

the document-pivot clustering approach is not effective in handling the cases where

the events occur as bursts several times in a long time period. In other words, such

approach may result in many small clusters, and can make it difficult to find the

major events.

These weakness of document-pivot approaches give us the motivation for consid-

ering the feature-pivot approach (i.e., considering word distributions (assume each

word is a feature) rather than document distributions during clustering). There has

been a few work recently on feature-pivot methods for detecting trending events on

Twitter (Becker et al., 2010; Weng and Lee, 2011; Sakaki et al., 2010; Petrović et al.,

2010). These approaches typically detect events by exploiting the temporal patterns

or signal of Twitter streams. This is because, new and trending events often exhibit

a burst of features in Twitter streams yielding, for instance, a sudden increased use

of specific keywords. Bursty features that occur frequently together in tweets can

then be grouped into trends. However, these event detection approaches suffer from

two problems: (1) unable to locate the time periods when bursts happen, and (2)

unable to differentiate whether the detected new event is trivial/endogenous or not

(as mentioned in (Naaman et al., 2011), in addition to trending events, endogenous

or nonevent trends are also abundant on Twitter). Here, we present an effective

unsupervised event detector, DeMa, to remedy these problems when detecting un-
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planned trending and novel events on social media. The DeMa framework is outlined

in Figure 5.1. There are three major steps: (1) trending features identification, (2)

trending features ranking, and (3) trending features grouping. Details are given in

the following sections.

1 2

…

…

3

…

A steam of 
Twitter messages

Identify the 
trending features

Rank the 
trending features

Group the trending
features into events

Figure 5.1: The Overview of the DeMa Approach

5.2 The DeMa framework

5.2.1 Problem Definition

Before moving forward. We first need to define the problem of trending event

detection. Formally, given a stream of noisy Twitter messages (tweets), where each

tweet consists of a set of terms (we call them features in this chapter), F1, F2, . . . Fm

(e.g., gas, leak, danger, etc.), we define the problem of trending event detection as to

find a set of trending events, where each one of them consists of a set of topically-

related trending features, at a given time period. Furthermore, inspired by the model

of theoretical “bursts” in streams of topics (He and Parker, 2010; Kleinberg, 2003),

we define trending as a time interval over which the rate of change of momentum

(product of mass and velocity – in classical mechanics) is positive. We further define
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that mass is the current importance of the feature and the velocity is the feature’s

average frequency in Twitter posts, during a time period. Next, we explain how

the DeMa approach identifies these trending features from a substantial volume of

Twitter posts.

5.2.2 Identify Trending Features

Since it is hard to directly measure the momentum based on the definition of mass

and velocity in Twitter, we choose to use the trend analysis tools EMA (Exponential

Moving Average), MACD (Moving Average Convergence Divergence), and MACD

histogram from the quantitative finance literature (Murphy, 1999) to yield established

measures of momentum. Next, we explain how these tools work to identify trending

features from Twitter posts.

Given a feature F and its time series S = S(F ) = {f1, f2, . . . , fm}, fi denotes the

frequency that F is mentioned by the Twitter posts posted within the i-th period.

For example, the word “morning” can have a time series S = {248, 305, 154, 52, 24, 9}

from 8 a.m. to 2 p.m. of the day, in which it was mentioned 248 times by the

Twitter posts from 8 a.m. to 9 a.m., 305 times from 9 a.m. to 10 a.m., and so on.

Moving averages are commonly used with time series data to smooth out short-term

fluctuations and highlight longer-term trend. Here, we compute the n-hour EMA for

S(F ) as:

EMA(n)[S]i = α× fi + (1− α)× EMA(n− 1)[S](i−1) (5.1)

=
n∑
k=0

α(1− α)kSi−k (5.2)

where α = 2/(n+1) is a smoothing factor, n is a time lag, and 1 ≤ i ≤ m is the index

of time period. Essentially, the EMA smoothens out noises of F by averaging its time

series over a specific number of periods. Next, to spot changes in the momentum of
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F , we compute the MACD statistics, which is defined as the difference between the

n1- and n2- hour EMA for S(F ):

MACD(n1, n2) = EMA(n1) − EMA(n2) (5.3)

where n1 and n2 are time lags. Finally, to identify whether and when F is trending,

we need to quantify the rate of change of its momentum. Therefore, we calculate the

MACD histogram, defined as the difference between F ’s MACD and its signal line

(the n-day EMA of MACD):

signal(n1, n2, n3) = EMA(n3)[MACD(n1, n2)] (5.4)

histogram(n1, n2, n3) = MACD(n1, n2)− signal(n1, n2, n3) (5.5)

As this difference measures the rate of change, the result at a given time period can

be either positive (indicating F is trending up) or negative (indicating F is trending

down). Therefore, based on the calculation results of MACD histograms, DeMa can

easily locate the time periods when a trending event happens (i.e., MACD histogram

becomes positive at time T ).

5.2.3 Rank Trending Features

In some cases, the trending features may occur repeatedly. For example, “morn-

ing” can be trending from 8 a.m. to 11 a.m. every day. Such trending feature may be

trivial, less interesting and more predictable compared to the ones which are single

occurrences. To resolve this problem, we assign a “novelty” score to the identified

trending feature according to their deviation from their expected trend. More specifi-

cally, for a trending feature F , we denote R(h, d, w, F ) as its MACD histogram result

during hour h, day d, and week w. With this notation, we can compare F ’s trend in
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a specific day or hour in a given week to the same day or hour in other weeks (e.g.,

9 a.m. on Monday, Aug 6, 2012, vs. the trend on other Mondays at 9 a.m.). Let

Mean(h, d, F ) and SD(h, d, F ) denote the average trend and the standard deviation

of F on hour h and day d over week w1 to wn, respectively. Then, the novelty score

of feature F on hour h, day d, and week w is defined as:

Score(h, d, F ) =
R(h, d, w, F )−Mean(h, d, F )

SD(h, d, F )
(5.6)

Based on this score, we rank each feature to find the novel trending features.

In practice, to detect the daily trending events from social media, we first built a

dictionary of features from all the Twitter posts of one day. Then, we created a time

series for each feature by counting their frequencies in Twitter posts in every two

hours. As a result, we have a 12-hour-long time series for every feature. Then, we

applied the EMA, MACD, and MACD histogram over the time series data to identify

whether and when a feature is trending. Finally, for every two hours, we picked the

trending feature which (1) is least mentioned 20 times in the Twitter posts from that

time period, and (2) has a novelty score among the top 25 scores for all trending

features from that time period. Since these steps are computable in an online fashion

(He and Parker, 2010), our DeMa approach is highly efficient and is able to work on

identifying trending event features in real-time.

5.2.4 Trending Feature Clustering

Multiple events (and their associated features) can be trending within the same

time period. Therefore, we need a way to separate these features and group them into

topically-related event-clusters, respectively (i.e., each cluster represents one event).

Since Twitter messages are constantly evolving and new events get added to the

stream in real-time, we have no priori knowledge of the number of clusters that will be
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trending in a time period. To this end, we use the shared nearest neighborhood (SNN)

clustering algorithm Jarvis and Patrick (1973). We chose this algorithm because it is

scalable and does not require fixing the number of clusters in advance (as oppose to

most clustering schemes like k-means).

The SNN algorithm is executed as follows: each trending feature is a node of the

graph and each node is linked to another by an edge if it belongs to the k neighbor

list of the second object. Here, we define feature F1 is the neighbor of feature F2 only

if F1 and F2 are topically-related (e.g., “gas” can be a neighbor to “leak” but may not

be to “party”). To learn a feature’s topic, we use topic modeling (Blei et al., 2003),

a popular machine learning tool for getting topic distributions from text. In order

to measure the topical relationship between two features (i.e., neighbors), we use the

Jensen-Shannon divergence on their topic distributions. As a result, if the distance

is above a threshold, the two features are neighbors.

5.3 Experimental Results

We evaluate the DeMa approaches on a large dataset of Twitter data. Below, we

first describe the dataset and report the experimental settings, and then turn to the

results of our experiments.

5.3.1 Experimental Settings

Dataset: Our dataset consists of over 2,600 Twitter messages randomly sampled

from 2,585,000 Twitter messages posted during August 2012. Here, the sampling

process is needed because we need human annotators to establish the ground truth

in the evaluation. Besides, we collected these messages from the users who identified

their location as Seattle, WA. Our intention here is to make the event annotations on

collected Twitter messages more local-specific and hence it is more accurate.
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Annotations: We used three human annotators from Seattle who are local neigh-

borhood experts to label the tweets. In particular, we asked the annotators to label

whether a tweet is event-related or not. We also calculated the Cohen’s kappa to mea-

sure the inter-agreement (κ = 0.77 indicates the high quality of the annotation). As

a result of this step, our annotators indicated that 878 of the total Twitter messages

were event-related. Furthermore, for those tweets who are labeled as “event-related”,

we request the annotators to assign the importance of an event (0 = not important,

1 = important, 2 = very important).

Baselines: To evaluate the performance of DeMa, we implement some competitive

baseline approaches: 1) Fastest: it is an event thread selection approach proposed

by Petrovic et al. Petrović et al. (2010), which selects the fastest-growing threads

in a stream of Twitter messages, and 2) Random: it is a very naive baseline which

selects Twitter messages randomly as events.

5.3.2 Experimental Results

We begin by examining the performance of our DeMa against two baselines on

the Twitter dataset. Table 5.1 shows the accuracy of three approaches, where the

accuracy is measured based on the manually labeled ground truth. As we can see,

DeMa outperformed Fastest over 50%, showing that it is overall more effective in

identifying the trending events from social media. A deeper examination of our results

revealed a strong, significant correspondence (beta = 0.53, p < 0.001) of the DeMa’s

results by a logistic regression. The event detector also produced a score for the

importance to prioritize events, and this score was much higher for Twitter messages

the participants identified as events (t = 16.92, p < 0.001). The participants’ ratings

of the importance of an event was significantly correlated with the event detectors

(r = 0.31, p < 0.001).
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Tools Accuracy Events identified False positives

DeMa 0.78 684 17%

Fastest 0.52 456 35%

Random 0.24 211 85%

Table 5.1: Event Detection Accuracy of Various Approaches Against the Manually

Labeled Ground Truth

In addition, we also provide a sample of events identified by DeMa, and their

most frequent terms, are presented in Table 5.2.

Description of Events Terms

Westminster Dog Show westminster, dog, show, club

Gas leaked Gas, Leak, Pike, 10th, St, Pine, Blocked, Siren

Openning of Gluten-free kitchen Glueten, Free, Dedicated, Kitchen, Bar, Cap, Hill

Sea Toy Fair toyfairsea, starwars, hasbro, lego

Table 5.2: A Sample of Events Extracted by DeMa

5.4 Application of DeMa

In this section, we are interested in applying DeMa to facilitate information seek-

ing and improve civic engagement for hyperlocal community. More specifically, people

rely on multiple sources of information to learn about the communities they live in

(Rosenstiel et al., 2011), either for the purpose of community awareness or partic-

ipation (Newport and Jawahar, 2003). Hyperlocal information is comprised of the

news, people, and events that are set within a particular locality, and is of particular

interest primarily to the residents of that locality (Glaser, 2004). One of the most
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important sources of hyperlocal content is social media, such as blogs, microblogs,

and social networking sites. Social media has many advantages over traditional media

in assisting people’s quest for hyperlocal content such ubiquity and immediacy as we

discussed earlier in Chapter 1. Moreover, social media has emerged as a dominant

platform for communication and connection. As hyperlocal content is mostly gener-

ated by and for a community, seamless communication and networking (through one’s

social networks) can increase exposure to timely peer generated content, raise peo-

ple’s community awareness, and potentially foster their sense of community (Ellison

et al., 2007).

In spite of these benefits, social media tends to be noisy, chaotic, and overwhelm-

ing, posing challenges to users in seeking and distilling high quality content from

the noise. It should be no surprise that, regardless of the popularity of social media

as a source of hyperlocal information, people are still using television and newspa-

pers (among other traditional sources) as their main channels for local information

[28]. People need help leveraging social media as a source of information about their

hyperlocal communities. At one extreme are the fast-paced, uncurated social media

streams: chaotic and overwhelming. At the other extreme are the traditional, author-

itative, news sources: slow and less participatory than social media. In this paper,

we present Whoo.ly, a novel web service balanced between these two extremes.

Whoo.ly automatically discovers, extracts, and summarizes relevant hyperlocal

information contributed on Twitter to facilitate people’s neighborhood information-

seeking activities. Inspired by the core journalism questions (what, who, where,

and when), Whoo.ly provides four types of hyperlocal content in a simple webbased

interface (See Figure 1): (i) active events (events that are trending in the locality);

(ii) top topics (most frequently mentioned terms and phrases from recent Twitter

posts); (iii) popular places (most frequently checkedin/mentioned); and (iv) active
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people (Twitter users mentioned the most). It is important to note that it is not our

goal with Whoo.ly to replace traditional news media. Instead, we want to provide

hyperlocal information that is complementary to what both traditional news media

and social media have to offer.

The unique features of Whoo.ly are the novel event detection and summarization

based on DeMa we developed. Top neighborhood topics are inferred using a simple

yet effective weighting scheme that finds the most important words and phrases from

posts. To identify the most popular places in a neighborhood, we used both template-

based information extractors and learning-based information extractors. Finally, to

distill a ranked list of the active people in a community, we developed a ranking

scheme on the social graph of Twitter users based on their mentioning and posting

activities.

To evaluate Whoo.ly’s utility as a tool for finding neighborhood information, in-

cluding its user interface and our algorithms, we performed a user study with thir-

teen residents from three Seattle neighborhoods. Most of our participants believed

Whoo.ly provided them with useful neighborhood information, and rated it easier to

use than Twitter’s native tools.

5.4.1 Related Work of Whoo.ly

Using new technologies to promote community awareness and participation has

long been a research topic for the HCI community and (Wellman, 2005; Lewis and

Lewis, 2012). Webmediated communities such as Netville and the Blacksburg Elec-

tronic Village have demonstrated how the Internet can enhance spatial immediacy,

facilitate discussion, and quickly mobilize people around local issues (Hampton and

Wellman, 2003).

The prevalence of “Web 2.0” has provided new opportunities for technologies to
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facilitate better information seeking and communication about local communities.

In particular, social media tools have been used to report various activities includ-

ing breaking news (Kwak et al., 2010), public debates (Hu et al., 2012b), crises like

floods (Vieweg et al., 2010), earthquakes (Sakaki et al., 2010), or even during wartime

(Monroy-Hernández et al., 2012). Recently, leveraging social media resources for local

communities has drawn considerable attention in both research and industry. Such

efforts include Livehoods (Cranshaw et al., 2012). Among them, CiVicinity (Hoffman

et al., 2012) provides a hyperlocal community portal that integrates information from

Facebook, blogs, calendars, and other sources to promote civic awareness and partic-

ipation. Virtual Town Square (VTS) (Kavanaugh et al., 2014) also aggregates local

information from a predefined set of information sources (government, schools, and

news organizations) to improve community engagement. Our work uniquely builds

on this line of research by exploring automatic solutions to the detection, extraction

and summarization of neighborhood information from noisy Twitter posts.

The hyperlocal content in Whoo.ly is automatically mined from Twitter, which

presents unique challenges not directly addressed by related work. (1) Our method of

finding top topics was inspired by the TFIDF statistics that assign scores for terms

based on their mentioned frequency within and across documents. Even though

there are other efforts to find top topics from Twitter posts (O’Connor et al., 2010b),

such approaches often take a long time to run to discover meaningful topics, and

we seek to provide reasonably realtime results. (2) Information extraction has been

a longstanding research topic (Chang et al., 2006). In Whoo.ly, we use a hybrid

approach of both template-based and learning-based extractors to find popular places

in Twitter posts.
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5.4.2 Whoo.ly Overview and Design Process

In this section, we first provide an overview of Whoo.ly and its features. Then,

we highlight the motivations underlying the choices we made in the design process.

Whoo.ly is a web service built on top of Twitter. Its goal is to provide people

with relevant and reliable hyperlocal news content. By browsing the website, people

immediately find what is happening in a specific neighborhood. Whoo.ly provides four

hyperlocal content types: active events, top topics, active people, and popular places

(See Figure 5.2). All of them are automatically extracted and summarized from

Twitter using various approaches we developed, such as statistical event detector,

graph-based ranking algorithm, and information extractors (see the System Design

section for more detail).

Early in the design process for Whoo.ly, we examined local newspapers, commu-

nity blogs, existing hyperlocal sites, and Twitter. The exploratory study revealed

several interesting results that we used to motivate the design of Whoo.ly: (1) The

majority of the people only consume information they do not produce it but only

read it; (2) People become more active in reporting and disseminating local breaking

events (e.g., shooting, water leak) on Twitter by reposting related tweets; (3) People

tend to follow neighborhood curators or bloggers who are dedicated to posting hyper-

local content; and (4) Local media and local news services effectively cover important

local topics. However, people further seek hyperlocal content generated by people in

their communities.

We performed an additional preliminary analysis of Twitter data to help inform

our design decisions, answering the following questions: (1) can we find a base of

local Twitter posts based on neighborhoods; (2) were there enough messages to seed

a neighborhood website; and (3) what do people care to talk about on Twitter re-
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garding their neighborhoods? We first queried for all Twitter messages from people

who claimed Seattle as their home town for the month of October of 2011. We then

performed a simple extraction of Twitter messages that mentioned one of 83 Seattle

neighborhoods. We found 50,609 unique Seattle users and produced 1.2 million mes-

sages (about 8% of total Seattle population), out of which 5% explicitly mentioned

Seattle, and another 2% mentioned a Seattle neighborhood. On average 132 people

posted per neighborhood over the month, averaging 1.8 messages each, which trans-

lates into about 8 messages per day per neighborhood. There was great variability

across neighborhoods, but we considered the above averages to be a promising start

and used them as the volume of neighborhood Twitter messages to expect.

To examine message content, we sampled 24% of the messages (424) from three

neighborhoods preselected for being diverse from each other. We first coded the

messages for whether they were erroneously assigned to the neighborhood. Surpris-

ing, only 21 messages (5%) were erroneously assigned, largely because of overlapping

neighborhood names and other place names (e.g., the area ”Mount Baker” and the

mountain “Mount Baker” it was named after). We then looked at how many were

personal in nature, of little interest to anyone aside from the author’s friends. We

found that 13% of messages were of this nature. Places checkins comprised another

55 messages (10%), which we expect might be interesting when aggregated but not at

the individual level. Six items were impossible to interpret and were left unclassified.

The remaining messages were 71% on topic, meaningfully pertaining to the neighbor-

hood. We further inspected and coded by message type and whether or not they were

about a current event. We defined a current event as a real world occurrence with an

associated time period such that if it is not observed, experienced, or attended in that

time period a person will not be able to do so later. Thus a crime, a fire, a festival,

or a Friday happy hour are current events. In contrast, a photo shared online, a news
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story link, a recommendation to try a restaurant, or a shout out of thanks are not.

We found that 55 % of the remaining Twitter messages were about an event.

All message types in our data sample were classified as depicted by Table 1. Topics

such as crime reports, Yelp like recommendations, and local news were not surprising.

The neighborhood affirmations and salutations were surprising, where people in the

community post messages talking about how much they love their neighborhood, or

community affirming, humorous messages reinforcing the neighborhood’s stereotypi-

cal traits.

Based on these findings, we decided to focus first on detecting events and then

to promote community enabling features such as a list of top users so that people

can know and follow each other. To prevent information overload, we also provided

top topics so that people can quickly learn the common neighborhood topics in the

Twitter posts (tweets).

5.4.3 Data Collection of Whoo.ly

Whoo.ly is built on Twitter. We utilized the Twitter Firehose that is made avail-

able to us via our company’s contract with Twitter. Since we are interested in dis-

covering hyperlocal content for local communities in various geographic regions, we

needed to obtain a set of Twitter posts from each region. Twitter offers two possible

ways to infer a tweet’s location: GPS coordinates associated with a tweet or the user’s

location in their profile. In this work we used the location information derived from

the user profile since the number of Twitter posts found by GPS coordinates is very

limited (about 0.6%). From our preliminary analysis using this method, we found a

reasonable quantity of on topic neighborhood messages.

We observed that most Twitter users prefer to mention only their city instead

of local community for the profile location, probably due to privacy concerns (Hecht
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et al., 2011). As a result, we first obtained Twitter posts from the Firehose, where

each associated user profile location matches one of the dictionary strings for a city,

e.g., ”Seattle” or ”Sea”. Next, we mapped these Twitter posts into different neigh-

borhood regions by matching their textual content against a list of neighborhoods.

Note that the neighborhood list for each city is created by domain experts who have

comprehensive experience with the neighborhood development and boundaries in that

city.

We used a dataset that included about 2.2 million Twitter posts in English from

about 120,000 unique users whose profile location indicated they are from Seattle,

over a three month period from June 1, 2012 to Aug 15, 2012. While we mainly used

this static dataset for developing our prototype, our methods may easily be extended

to handle realtime tweet streams

5.4.4 System Design of Whoo.ly

In this section we describe the system design of Whoo.ly (Figure 5.2), includ-

ing the interface design of its components and the technical design behind them.

Whoo.ly’s interface is implemented in HTML, CSS, and Ajax controls toolkits, served

by ASP.net on the cloud service Windows Azure. Whoo.ly first shows a start page,

where a user selects his or her country, city, and neighborhood through dropdown

lists. After selecting their location, users are taken to the results page (Figure 5.2),

which displays recent Twitter posts, top topics, popular places, and active people.

5.4.4.1 Recent Twitter Posts

Whoo.ly presents recent Twitter posts in a scrolling list on the right side of the

results page (Figure 5.2). Each row in this list contains a detailed Twitter profile for

a user on the top, and his or her recent posts at the bottom. The profile includes
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Figure 5.2: The Main Whoo.Ly Interface, with the Recent Twitter Posts and Sum-

maries of Events, Topics, Places, and People

standard elements retrieved from Twitter such as the user name, screen name, user’s

profile image, user’s profile location, and the posting time of the messages. Whoo.ly

only provides the most recent Twitter posts from a time window of 14 days mainly

because people are usually only interested in most recent Twitter posts. Nevertheless,

the length of the time span can be easily adjusted through a dropdown list at the

bottom of the results page.

5.4.4.2 Active Events

Whoo.ly presents an active events list calendar (Figure 1.2) on the upper left side

of the results page. Each entry shows the events organized by date. Every event

is summarized by a list of terms and, by clicking on its name, the user is taken to
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a page (Figure 5.5) containing all the posts that are about that event, ranked by

their relevance score using vector similarity (Manning et al., 2008). The events are

generated by the DeMa algorithm.

Figure 5.3: A Close-up View of the Active Events Pane. Events Are Organized by

Date and Are Represented by a List of Terms Most Associated with Each Event

5.4.4.3 Top Topics

Below the trending events section, Whoo.ly shows a list of top topics (with their

frequencies) that are being discussed in the recent Twitter posts (Figure 1.3). Clicking

a topic leads to a page showing all the Twitter posts about it. This component helps

people quickly understand and familiarize themselves with the most important topics

about the neighborhood appearing in Twitter posts. We design a fast approach by

applying normalized TFIDF statistics for each uni-, bi-, and tri-gram from the recent

Twitter posts. We then rank these grams to render this component.
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5.4.4.4 Popular Places

Beyond the event and topics, Whoo.ly shows a list of 15 most popular places (Fig-

ure 1.4) that people keep checking into and mentioning in Twitter posts. Similar to

other components, clicking a place leads to a page showing all Twitter posts about

this place. This component helps people discover interesting places in their neighbor-

hood and learn what is happening there. Extracting these places from Twitter posts

requires automated information extraction, which has been a longstanding research

topic in NLP and machine learning Mahmud et al. (2014). In the next sections, we

describe two types of extractors we use to build this component, namely a template-

based extractor and learningbased extractor.

Template-based Information Extractor Through our manual inspection of

the Twitter posts content (see the Overview section), we found there is a small per-

centage of Twitter posts (approximately 7%) that were posted by Foursquare check-

ins. Such Twitter posts have a specific template in their content: begin with the

phase ”I’m at”, followed by a place name (e.g., Space Needle), and followed by its ad-

dress (e.g., 400 Broad Street, Seattle, WA 98102). Given this structure, we designed

a templatebased extractor using regular expressions to distill the place information.

Learning-based Information Extractor For Twitter posts without explicit

format for location inference, we used a statistical information extractor. It is built

on top of an ngram language Markov model and previously trained on Wikipedia

pages, Tweets, and Yelp data (Wang et al., 2013). We apply it to analyze the Twitter

posts to extract entities for places, e.g., restaurants, parks, streets, stadiums, etc.
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5.4.4.5 Active People

Last, Whoo.ly displays a list of top 10 most active people (i.e., Twitter users) for

the corresponding neighborhood (Figure 1.5). Each record in the list combines a

user’s profile and the frequency this user posts or was recently mentioned by other

people. In addition, Whoo.ly also presents the profiles, latest Twitter posts, and

activities of all the users who have recently posted Twitter messages (by clicking

”All” on the up right corner of this division). With this component, one can easily

identify who are the active and influential people in the neighborhood and can decide

to follow their activity. To build this component, we developed a PageRank-like

algorithm to rank the Twitter users based on their mentioning and posting activities.

Specifically, a directed graph D(V,E) is formed with the users and the ”follower-

followee” relationships among them. V is the vertex set, containing all the users. E is

the edge set. There is an edge between two users if there is ”following” relationship

between them, and the edge is directed from follower to followee. Our algorithm

performs an activity-specific random walk on graph D to calculate the rank. It visits

each user with certain transition probability by following the appropriate edge in D.

The probability is proportional to a linear combination of the interactions between

two users (e.g., RT, mentioning, reply) and how many Twitter posts a user has posted

recently. The idea is that the more activities a user has, the higher this user’s rank

is.

5.4.5 User Study

We evaluated Whoo.ly as a tool for users to learn about what is happening in their

neighborhood using a within subjects comparison of Whoo.ly and Twitter, where

users completed a series of information seeking tasks for each platform and then
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provided feedback. For our user study, we focused only on three Seattle neighborhoods

for which we were able to recruit participants.

5.4.5.1 Participants

We introduced 13 Seattle residents into a private, pre-release version of Whoo.ly

through five focus group sessions, with two or three people per session. Participants

were recruited from a preexisting database of people who for the most part had

expressed interest in user studies. Potential participants in the database were first

filtered for address zip codes in our target neighborhoods. After receiving phone calls

to screen for whether they continued to live in the neighborhood and had a Twitter

account, they were scheduled to participate in one of five sessions. In exchange

for their participation they received their choice of a software gratuity or gift card.

Participants were on average 30 years of age (ranging from 23 to 48). 54% of them

were female and 46% were male. Ten participants were white, one Asian, one Native

American, and one had other ethnic identity. The majority of participants were

from the Capital Hill neighborhood (69%), with 23% from Wallingford and 8% from

Rainier Valley. These neighborhoods differed in density, SES, and level of existing

community infrastructure.

5.4.5.2 Procedure

During two hour user sessions participants first completed a preliminary question-

naire. They then briefly discussed their current communication practices for finding

and sharing neighborhood information in a semi-structured focused group. Partici-

pants then individually completed a series of tasks with both Whoo.ly and Twitter

using laptops with an Internet connection we provided. After a brief discussion of

participants’ experiences, we ended the session by having them rate a series of Twitter
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messages for neighborhood content.

Preliminary Questionnaire

Participants first completed a brief preliminary questionnaire to assess demographic

information, use of Internet, and social media, and measure of their current neigh-

borhood including psychological sense of community, neighborhood communication

efficacy, and civic engagement. We measured psychological sense of local commu-

nity (Sarason, 1974), or the feeling of connection, belonging, and loyalty to a local

community, with items such as ”I feel loyal to the people in my neighborhood,” ”I

really care about the fate of neighborhood,” and ”I feel like I belong in my neigh-

borhood.” Civic engagement was measured using items from the Civic Engagement

Questionnaire (Keeter et al., 2002), a standard measure asking how often respon-

dents had engaged in various civic activities such as ”Spending time participating

in any neighborhood community service or volunteer activity” and ”playing a lead-

ership role in my neighborhood (such as local government or leadership in a club).”

Neighborhood communication self-efficacy, including communication self-efficacy, was

measured with items adapted from the California Civic Index (Kahne et al., 2005)

that addressed communication, including ”I know how to collect information and be

informed about neighborhood issues,” and ”I know how to get in touch with mem-

bers of my neighborhood when I need to communicate with them.” For each measure,

items were rated on a Likert scale of 1 to 7, where 1 = not at all and 7 = extremely

so, and then items were averaged for analysis.

Focus Group

To further elucidate existing information seeking and communication practices, we

then had participants discuss their neighborhoods using a semi-structured group in-

terview. Participants first described the character of their neighborhoods, how long

they have been living there, and whether they had a sense of connection or community
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to their neighborhood. We then asked participants to discuss what kinds of informa-

tion they cared to learn about in their neighborhoods. Participants then described the

tools they currently use to seek out information or communicate with others around

neighborhood issues and where they would like to see changes or improvements in the

tools available.

5.4.6 Neighborhood Information Seeking Task

Following the focus group, participants individually completed a series of four

information seeking tasks, once in Whoo.ly, and once in Twitter. Each participant

completed the tasks separately on a laptop with an Internet connection following

instructions in a paper packet. The order of the tasks (Whoo.ly vs. Twitter) was

counterbalanced across sessions, ending with seven participants completing the Twit-

ter tasks first and six participants completing the Whoo.ly tasks first. Participants

were instructed, ”for this part of the study we will have you explore what’s hap-

pening in your neighborhood using [Twitter or Whoo.ly].” The four tasks were: 1)

find neighborhood events: ”try to find three interesting or significant events that hap-

pened in your neighborhood the past couple of weeks”; 2) find neighborhood reporters:

”imagine you wanted to try to follow three people to help you keep up to date with

what’s happening in your neighborhood try to find those three people you would fol-

low”; 3) find neighborhood topics: ”imagine you wanted to find out what kinds of

topics your neighborhood tends to care about try to find three of these topics”; and 4)

find neighborhood friends: ”imagine you wanted to get to know some people in your

neighborhood better find three people you might want to know more”.

Participants were instructed to spend only a few minutes on each task, to get a

sense for the experience in the system they were evaluating. After completing each

task participants rated the ease of the task to complete, how confident they felt about
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their answers, and how engaged they were by the task (that is, to what extent they

found it fun or interesting).

Following the completion of these tasks, participants rated the overall usefulness

and ease of each system (Twitter and Whoo.ly), the extent to which it provided a good

overview of what is happening in their neighborhood, the extent to which it provided

a sense of connection, and which system they would prefer to use for finding out what

is happening in their neighborhoods. Finally, participants were asked to rank their

preference for individual aspects of the Whoo.ly interface and provide opened ended

feedback to questions about what they liked, disliked, and possible improvements.

Tweet Rating Task In order evaluate the event detection algorithms, partici-

pants were asked to rate a randomly selected series of Twitter posts from the period

spanning two weeks prior to that of the current Whoo.ly system. For each tweet,

participants rated if it was a about a neighborhood event and if so, how significant

was the event to their neighborhood, where 1 = not at all, few people involved, and

7 = extremely so, entire neighborhood involved.

5.4.7 Results

In analyzing our results, we first examined our participants’ existing neighbor-

hood information seeking and communication practices to better shed light on their

experience of Whoo.ly and potential considerations for a real world deployment of

this system. We then assessed how well participants completed information seeking

tasks in Whoo.ly, providing a comparison to Twitter as a baseline tool for searching

and browsing Twitter messages. Finally, we further examined themes that emerged

from participant ratings and discussions that would meaningfully influence the design

of Whoo.ly and similar systems.
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5.4.8 Existing Practices

In our preliminary questionnaire participants rated themselves as having high lev-

els of overall Internet experience, with 39% categorizing themselves as intermediate,

45% as advanced, and 16% as expert. Seventy six percent of participants reported

spending four or more hours a day using the Internet. For communicating and sharing

with others, participants reported text messaging (M = 6.5, SD = 0.66) and email

(M = 6.6, SD = 0.65) to be extremely important, then social networking sites such

as Facebook (M = 5.9, SD = 1.00), blogs (M = 4.1, SD = 1.32), Twitter (M = 3.6,

SD = 1.90), and mailing lists less so (where 1 = not at all, and 7 = extremely so).

Most of the participants in our study cared very much about their neighborhoods,

reporting fairly high levels of psychological sense of community (M = 5.0, SD = 0.83).

The few exceptions made apparent from our interviews were individuals new to the

neighborhood, or one participant who felt his neighborhood was too transitional by

nature to become attached to it. However, the participants had lower levels of civic

engagement (3.0, 1.27) and communication self-efficacy (M = 3.8, SD = 1.8). When

asked to what extent they could collect information and be informed about neighbor-

hood issues, participants’ responses were on average moderate (M = 3.9, SD = 1.8).

An examination of the distribution of this variable suggests it is bimodal, for example

people either were low (45% at 2 or 3) or high (39% at 5 or higher) in their ability to

find information or communicate with their neighborhood. When participants were

asked how exactly they learned about what was happening in their neighborhoods,

resources were quite diverse, including local newspapers, local blogs, following busi-

ness on Twitter, local meetings, Facebook groups, coffee shops, and services such as

Reddit, Google, and Yelp. However, local blogs clearly played a prominent role and

word of mouth was frequently mentioned as a source of information. Several peo-
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ple mentioned Facebook or Facebook groups, but these were groups of people they

knew who were in their neighborhoods, rather than public Facebook groups for the

entire neighborhood. Further, it was clear that some neighborhoods had many more

resources available than others.

We further asked what kinds of neighborhood information participants wanted to

know about. Emerging themes were events such as local festivals and block parties,

crime, new restaurants and bars, building developments, people, and local business

promotions such as happy hours and coupons. Events and crime were most frequently

mentioned, particularly as they impacted the local community. One participant’s

response was, Community stuff like I heard about neighborhood night out but I

didn’t know about it, my street closed and people were out drinking and barbecuing

and I didn’t know about ityou know about the big things, but little community stuff,

that stuff you should know.

On average, participants were not confident they knew how to get in touch with

members of their neighborhood when they needed to communicate with them (M =

3.5, SD = 1.9). When participants were asked, if they needed to communicate with

members of their neighborhood community about neighborhood issues, how would

they do so, face-to-face was rated the most highly (M = 5.2, SD = 1.8), followed by

Facebook groups. During the interviews across sessions participants similarly exhib-

ited low confidence in how they would go about communicating with their neighbors,

and expected they would resort to walking down the street. One participant replied,

”old fashioned way, knock on door. Too many people in the neighborhood to have

phone numbers and emails.” More tech-savvy participants said they would contact

the local blog or access their neighbors’ email addresses.

We asked participants to discuss their Twitter usage in particular, given the focus

of Twitter as a source of public information in Whoo.ly. All participants had an
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account, but the majority used it primarily to consume information, either the news

or their friends’ posts. Only a few used Twitter to follow their neighborhood bloggers

or neighborhood businesses.

To summarize, we found that our participants were fairly tech-savvy and felt fairly

attached to their neighborhoods. While only a few were more civically engaged, most

reported they would want to be more so. However, the participants did not have a

strong sense for how to find out about what was happening in their neighborhoods

or how to get involved. Particularly, they were not sure how they would go about

communicating with others in their neighborhood about issues they cared about.

Participants were especially interested in learning about local community events and

crimes and relied heavily on one or two hyperlocal bloggers to do so.

5.4.9 Whoo.ly Evaluation

Participants completed four tasks exploring their neighborhood – find recent

events, find local neighborhood reporters, find neighborhood topics, and find potential

neighborhood friends using both Whoo.ly and Twitter. We performed an omnibus re-

peated measures ANOVA (technology X task X type of rating) to test for the impact

of type technology across measures of task ease, confidence in completing task, and

task engagement. Overall, we found a significant effect of technology (F(1,11) = 3.02,

p = 0.05 1tailed ), with participants showing preference for Whoo.ly. As can be seen

from Figure 3, people overall found Whoo.ly easy to use and found the tasks easier

to complete in Whoo.ly than in Twitter. We found neighborhood communication

self-efficacy to be a meaningful co-variate interacting with this effect (F(1,11) = 3.3,

p = 0.04, for interaction of technology X task X self-efficacy), meaning participants

with lower levels of self-efficacy were likely to favor Whoo.ly over Twitter, especially

for the find friends task.
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These results suggest that Whoo.ly is particularly easy for users to learn more

about their neighborhood if they do not already have effective tools to find information

and access people in their neighborhood.

Figure 5.4: Participants Generally Found It Easier to Complete Neighborhood Ex-

ploration Tasks Using Whoo.Ly (Where 1 = Not at All, and 7 = Extremely so.)

Participants also completed overall ratings of Whoo.ly and Twitter, and again

using an omnibus repeated measures ANOVA (technology X type of rating) we found

an effect of technology (F(1,11) = 3.09, p = 0.06), such that participants reported

it as more useful (F(1,11) = 2.24, p = 0.08) and easier to use (F(1,11) = 2.72, p

= 9.07), that it provided a better overview (F(1,11) = 2.74, p = 0.07, and that it

increased the sense of connection to their neighborhood community (F(1, 11) = 3.5,

p = 0.04), as shown in Figure 4. Again, neighborhood communication self-efficacy

had a marginally significant interaction such that people with lower levels self-efficacy

were more impacted by Whoo.ly in their ratings of sense of connection (F(1, 11) =

2.81, p = 0.09).
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To assess our event detector, we compared user ratings of 503 Twitter posts in our

participants’ neighborhoods to the event detectors. Users indicated that 170 of the

total Twitter messages were event-related. Among these, the detector also identified

78% of messages as event-related, relative to 17% false positives. A logistic regression

shows a strong, significant correspondence (beta = 0.53, p ¡ 0.001). The event detector

also produced a score for the importance to prioritize events in the user interface, and

this score was much higher for Twitter messages the participants identified as events

(t = 16.92, p ¡ 0.001). The participants’ ratings of the importance of an event was

significantly correlated with the event detectors (r = 0.31, p ¡ 0.001).

In order to compare the relative value of the types of summarization provided by

Whoo.ly, we asked participants to rank the five main sections by order of preference,

where 1 = most preferred and 5 = least preferred. We found that participants rated

recent events most highly (M = 1.6), followed by the Tweet stream (M = 2.8), the

top topics (M = 3.2), active people (M = 3.5), and popular places (M = 3.5). After

participants completed both sets of tasks, we asked them to choose which application

they would prefer to use to find out what is happening in their neighborhood. Eight

participants out of 13 preferred Whoo.ly. However, when asked to compare it to their

favorite neighborhood blog, eight out of 13 said they would prefer their neighborhood

blog. On average, participants indicated they were somewhat likely to actually use

Whoo.ly if it were made publicly available (M = 4.4, SD = 1.62 where 1 = not at

all, and 7 = extremely so). In order to shed light on some of our more quantitative

findings, each participant was asked to provide feedback in writing about what they

liked and disliked about Whoo.ly and how they would suggest improving it. Then,

participants were asked to briefly discuss their experiences. When asked what they

most liked about Whoo.ly, participants indicated the summarization and community

features. Some of participants’ answers were, ”Really liked it overall, definitely a lot
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easier to find stuff”, ”Whoo.ly was set up specifically with the community in mind.

It makes community news/events/issues/people etc. easily accessible”. When asked

what they disliked, a few participants noted that a lot of the content felt like spam,

such as the Craigslist postings, Foursquare checkins, or overly personal posts, which

interfered with participants’ ability to access meaningful content. One participant

said, ”Results. Mostly the furniture on craigslist. Need to filter out those, and be

able to differentiate between the spammy ’top users’ and the real top users.”

Figure 5.5: Whoo.Ly Was Found to Be More Useful, Easy to Use, With a Better

Overview of the Users Neighborhoods, and A Sense of Connection to Their Neigh-

borhood Communities.)

During the discussions, there were also several requests for further, personalized

filters, to focus on the kind of content they cared about. When asked why they pre-

ferred Whoo.ly over Twitter, again participants noted the filtering, summarization,

and community features. One participant’s answer was, ”Twitter isn’t set up for a

community. Whool.y functions amazingly for this.” Consistent with our more quanti-

115



tative findings, we found that participants who preferred Twitter over Whoo.ly did so

because they were already well-connected to their neighborhoods and already using

Twitter to follow neighborhood reporters. For example, a participant’s reply was, ”If

I didn’t know my neighborhood as well I would use both and compare data. Since I

am very embedded in my community Whoo.ly is just another aggregator.”

When asked why they would prefer their local blog over Whoo.ly, participants

noted blogs had more extensive features such as calendars and they benefitted from

social curation. When asked why they would prefer Whoo.ly, participants mentioned

its ease consumption and community feel. Some of the participants’ reasons were,

”like that it’s short messageseasier than if browsing full blog with full messages; easier

to figure what’s going on.” ”Whoo.ly offers not only news/events, but also connects

you with people. Like combining Twitter and a newspaper, I like it”.

5.4.10 Discussion

As shown above, the overall reaction to the information provided on Whoo.ly was

quite positive. The participants to our study found Whoo.ly easier to use than Twitter

and the majority said they would prefer it as a tool for exploring their neighborhoods.

As a prototype system, Whoo.ly has advanced the state of the art for information

seeking in hyperlocal communities, but many opportunities for improvement remain.

As people cross the line from consuming hyperlocal information to engaging with their

local community, they seek to know as much about the people as about the news.

Thus, from a hyperlocal community perspective, it is also important to recommend

potential similar friends such as ”people like me in my neighborhood” as a feature to

improve neighborhood connections. Besides, exploring the sentiments behind people’s

response/reactions to neighborhood issues can be useful (). Furthermore, it is inter-

esting to note the unique characteristic of consuming social media when embedded in
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a geographical location people could easily walk out their front doors and down the

street to experience, for example, the local event they had just read about online.

It is worth noting that we deliberately placed the questionnaire and the focus

group prior to the information seeking user tasks to frame the tasks specifically on

neighborhood seeking behaviors. Our intention was to give users the opportunity

to have access to each other’s neighborhood seeking experiences in evaluating the

technology’s effectiveness. We recognized a discussion could have systematically and

artificially affected preferences towards or against Whoo.ly across all participants.

However, there is no indication that this is the case. To further assess potential

discussion confound, we tested for group size (2 vs. 3) on preference for Whoo.ly vs.

Twitter, and found no effect. Moreover, we also found there were no session and level

of Twitter usage effects.

5.5 Summary of Chapter

In this chapter we introduced DeMa, a novel event detection algorithm to discover

trending events from Twitter posts for any given time period. Moreover, we devel-

oped Whoo.ly, an application of DeMa. Whoo.ly is a web service that facilitates

information seeking in hyperlocal communities by finding and summarizing neigh-

borhood Twitter messages. We presented several computational approaches used in

Whoo.ly to discover hyperlocal content from noisy and overwhelming Twitter posts.

In particular, activity based ranking algorithms and information extractors provided

additional insights into the most active people and popular places in a local commu-

nity. We performed a user study to evaluate Whoo.ly, and we found that (1) our event

detector accurately identified events and (2) the local residents who participated in

our study found Whoo.ly to be an easier tool for finding hyperlocal information than

Twitter. Social media such as Twitter has altered society’s information and commu-
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nication fabric and will continue to be increasingly integrated in our daily lives. We

believe this paper presents a promising approach to leveraging Twitter messages to

better support hyperlocal community awareness and engagement.
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Chapter 6

SPATIAL CROWDSOUCING FOR ENRICHMENT OF EVENT CONTEXT

In this chapter, we focus on how to enrich an event context by gather first-hand

information (e.g., photos, videos) about that event from the field using a principled

crowdsourced approach. Research on crowdsourcing thus far has primarily concen-

trated on tasks that can be accomplished entirely online, such as image labeling

(Von Ahn, 2006), language translation (Shahaf and Horvitz, 2010) and visual recog-

nition (Bigham et al., 2010). Studies have also shown that workers can solve these

online tasks more effectively and accurately than a single expert or computer algo-

rithms (Snow et al., 2008). Here, we argue that the crowdsourcing paradigm is also

useful be applied to solve spatial tasks, i.e., tasks associated with locations such as

gather information about an event, in our scenario. More specifically, to collect data

about a trending event in a city, the requester (i.e., a journalist) can crowdsource

this task (with monetary incentives) to a group of workers who are near these spots

and have interests, time, and skills. Once they travel to their assigned spots and

complete their tasks there, the collected data (i.e., images, videos) are sent back to

the requester.

Spatial crowdsourcing has attracted increasing interests recently (Alt et al., 2010;

Kazemi and Shahabi, 2012; Benouaret et al., 2013; Sadilek et al., 2013; Kim et al.,

2014). However, most existing solutions are inapplicable to our scenarios due to three

reasons: First, they can work only with self-incentivised workers (i.e., volunteers in

(Burke et al., 2006; Krause et al., 2008)). The situations in which each worker requires

to be rewarded are largely ignored. Second, they assume the crowdsourced task has

a uniform utility regardless of its location or the dispatched worker. However, in
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reality, some locations can be more informative than the others and workers can

have different levels of skills. This will becomes a problem especially when we have

a limited budget, since only a subset of tasks can be selected and accomplished.

Last and most importantly, these studies assume that workers will always accept and

complete the task requests. In fact, a lot features can affect a work’s decision such as

time availability, the task’s location and the traveling cost. Therefore, such certainty

never exists.

This chapter proposes a generic spatial crowdsourcing framework, CrowdX (Hu

et al., 2014), for enrich an event context by collecting photos and videos about the

event from the field. It harnesses programmatic access to workers like traditional

crowdsourcing. More importantly, it avoids the weaknesses discussed in the foregoing

by constructing 1) a model to assess the non-uniform utility of each task assignment,

2) a model to estimate the expected cost of each worker, and 3) a probabilistic

model to quantify the worker’s uncertainty. Before going into details of these models,

let’s explore a very specific case study of CrowdX based on the motivating scenario

mentioned in Chapter 1: A requester (e.g., a journalist) wants to collect photos of a

protest parade from various spots in West Phoenix, under a limited budget. Instead of

traveling to each spot herself, she posts the task on CrowdX. Consequently, CrowdX

generates the requests separately for each potential worker. The request contains a

task description (e.g., take 5 photos), directions to the worker’s assigned spot S, and

an anticipated reward. Once the worker accepts and completes the task request at S,

the photos are sent back to the requester who will reward the worker subsequently. In

case a spot is miss-covered or new spots pop up, the request can post a new task on

CrowdX if the budget is still available, and so forth. There are several challenges in

realizing CrowdX. First, due to the limited budget, dispatching all workers to every

event spot is infeasible. So on what criteria should potential workers and spots be
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selected? Next, after selecting workers and spots, how to determine which worker

is to be assigned to which spot? Last, it is uncertain whether a worker will accept

and complete the request. Since such uncertainty largely affects the worker-spots

assignment and the cost estimation, how to quantify it?

We address the first two challenges by a utility-theoretic approach which considers

workers and event spots jointly and selects worker-spot assignments that simultane-

ously maximize the overall utility, and achieve low cost within the given budget. The

utility of each worker-spot assignment is assessed based on two properties: represen-

tativeness (an ideal spot should cover the most representative and diverse aspects

of the event at the same time) and quality (an ideal worker should complete her

task with high quality). In practice, we rely on both location information of the

event spots and personal information of the workers, and develop statistical mod-

els to measure these two properties and compute the utility. Next, to address the

third challenge, we develop a Bayesian model to quantify each worker’s uncertainty

by predicting the likelihood of her accepting a task request and finishing the task,

based on several features such as the distance between her present location and the

assigned spot’s location. Based on this, we also develop a cost function that takes

into account different cost metrics and estimates the expected cost for each work-spot

assignment. Finally, balancing utility of user-spot selection and assignment with the

need to achieve a probabilistic budget-aware cost efficiently can be formalized as a

discrete optimization problem. Exploiting the concept of submodularity, we develop

a greedy algorithm which is guaranteed to provide near-optimal solution for this hard

problem. We also provide extensive experimental validation of the proposed CrowdX

system to show its efficiency and effectiveness.
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6.1 Problem Formulation

In this section, we formally define the research problem of this paper using CrowdX’s

case study as a running example. We denote U = {u1, ..., um} as a ground set of work-

ers and S = {s1, ..., sn} as a ground set of event spots. W is a Cartesian product of

these two sets W = {wu1,s1 , ..., wum,sn}, where wui,sj indicates that ith worker ui is

assigned to jth spot sj. We also use WU (WS) to represent a union of the worker

(spots) of W . Now, let W ′ ⊆ W be a finite subset of all worker-spot assignments,

and so letWU ′ ⊆ WU andWS′ ⊆ WS . Any possible subset is associated with a utility

F (W ′) ≥ 0, and a cost C(W ′) ≥ 0, where functions F (·) and C(·) will be defined

next. Recall in the case study, our goal is to select the best subset of work-spot as-

signments so as to take photos of an emerging event, in strict accordance with budget

constraints on the cost. Accordingly, we model this as an optimization problem

max
W ′⊆W

F (W ′) subject to C(W ′) ≤ B (6.1)

from some budget B > 0. This optimization problem aims at finding the subset which

achieves the highest utility and subjects to a budget on the rewards.

6.1.1 Modeling the Utility Function

We assert that the utility of W ′ should have two properties: representativeness

and quality. First, inspired by the classic MMR principle (Carbonell and Goldstein,

1998), we assess the representativeness of W ′ from two perspectives: First, it is a

function of the similarity of the subset spots WS′ of W ′ to the ground set of spots

WS of W , or as a function representing some form of “coverage” of WS by WS′ . For

example, given a ground set WS = {s1, s2, s3, s4}, we call WS′1 = {s1, s2} has better

coverage than WS′2 = {s3, s4} if Sim(WS′1 ,WS) > Sim(WS′2 ,WS). As a result, we
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only need to dispatch workers to spots s1 and s2 since what happens at these two

places are informative enough to cover the whole event. On the other hand, the

representativeness of W ′ is also related to the “diversity”. This is because an event

often has multiple aspects. For example, two nearby spots s1 and s3 represent one

aspect of the event and what happens at s2 alone represents another. Therefore, we

call WS′1 = {s1, s2} has better diversity than WS′2 = {s1, s3} since its event spots

capture more aspects of the event.

The second property of the utility of W ′ is its quality, or more specifically, the

quality of the workers’ accomplishments. Here, we make a reasonable assumption that

every worker will perform equally at all of their assigned spots. Then, the quality

of W ′ will only depend on two factors: 1) the quality of the worker herself and 2)

whether she will accept the request and complete the task. Since our case study is

about collecting photos of an event, we measure the first factor in terms of how skilled

the worker is at taking photos. So, for the same spot s1, the worker-spot assignment

W ′1 = {wu1,s1} can achieve higher utility thanW ′2 = {wu2,s1} if u1 is more skilled than

u2. Next, for the second factor, we will present a probabilistic model in Sec. 3.2 to

quantify the uncertainty of the worker’s actions.

Finally, merging the notations of representativeness and quality into one measure,

we define the utility of W ′ as:

F (W ′) = L(W ′) + αR(W ′) + βQ(W ′) (6.2)

where L(W ′) measures the coverage, R(W ′) rewards the diversity, and Q(W ′) quan-

tifies the quality of the workers, α ≥ 0 and β ≥ 0 are trade-off coefficients. Below,

we present the definitions for each term.
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6.1.1.1 Coverage function

As we discussed above, L(W ′) measures the similarity between the spots of W ′ and

the spots of W . So formally we have:

L(W ′) =
∑

i∈WS′ ,j∈WS

Sim(i, j) (6.3)

where Sim(, ) is the similarity function for spot i from the subset and j from the

ground set. There are many ways to measure this similarity. Here, we measure it

based on the distance between the spots (e.g., Manhattan distance). We say i is more

similar to j than another spot k if i and j are geographically closer. As a result,

i can cover j better than covering k. Of course, one can consider other similarity

measurements such as textual similarity for i and j based on their text descriptions

(e.g, tweets that mention i and j).

6.1.1.2 Diversity function

Next, we define the diversity function R(W ′) as:

R(W ′) =
∑
i∈WS′

K∑
j=1

Sim(i, Pj) (6.4)

where Pj, j = 1, ...K is a partition of the ground setWS into separate disjoint clusters.

We can apply any clustering algorithm (e.g., K -means) to generate those clusters on

a 2D map. Then, the similarity function Sim(i, Pj) is defined as the mean distance of

a spot i to every element of cluster Pj. So i and Pj are more similar if their distance

is shorter. Besides, R(W ′) rewards diversity in that there is usually more benefit to

selecting a spot from a cluster not yet having one of its elements already chosen. Also,

R(W ′) is distinct from L(W ′) in that R(W ′) might wish to include certain outlier

material that the coverage function L(W ′) could ignore.
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6.1.1.3 Quality function

Recall that our assumption that the quality of each worker-spot assignment in W ′

only depends on the quality of the worker herself and whether she will accept and

complete the task. So essentially, we have to compute the expected quality of the

assignment in Q(W ′) as:

Q(W ′) ≡ E[Q(W ′)] =
∑

wu,s∈W ′
Pu→s · q(u) (6.5)

where Pu→s is the probability that worker u will accept the request, travel to spot

the assigned spot s from her present location, and complete the task there (we will

define this probability in next section). Besides, q(u) represents the skill level u has

at taking photos. In our context, this is specified by the worker herself in CrowdX.

6.1.2 Modeling the Cost Function

Central to CrowdX is the coupling of maximizing the overall utility of assigning

worker to a set of event spots, with constraints defined by limited budgets on re-

warding these workers after they complete their tasks. We achieve this coupling by

introducing a cost function C which associates each worker-spot assignment wu,s with

a non-negative cost c(u, s). Note that the cost c(u, s) is incurred only if the worker u

accepts and completes the task request at s (since now the requester has to reward

u). As we mentioned earlier, however, these actions are uncertain. Therefore, we

have to compute the expected cost as:

C(W ′) ≡ E[C(W ′)] =
∑

wu,s∈W ′
Pu→s · c(u, s) (6.6)

Now, let’s define the nonnegative assignment cost c(u, s) under different situations.

Obviously, the simplest case is to consider the unit cost, i.e., c(u, s) = 1, then cost

125



C(W ′) =
∑

wu,s∈W ′ Pu→s is equal to the total probability of the workers accepting

the requests and completing the tasks. Of course, by defining more complex cost

functions, we can make our problem conform to more general, and expressive policies.

For example, we might limit a worker’s travel distances. So we can define c(u, s) ∝

cu ·exp(Dist(u, s)), i.e., the cost is exponentially proportional to the distance between

worker u’s present location and spot s. And cu can be seen as the base rate for u such

as “50 cents per mile”. As a result of this cost function, CrowdX aims to minimize

the incurred cost by assigning u to nearby spots if possible.

6.1.3 Quantifying the uncertainty

Next, the more interesting part is to define and estimate Pu→s, the probability

underlying user u accepting the request and completing the task subsequently at

spot s. Such uncertainty plays an important role in both the quality function (Eq. 5)

and the cost function (Eq. 6). Clearly, there are many features that can affect this

probability. For example, whether u will accept and complete the task request can

depend on the distance between her present location and s (i.e., how long she needs

to travel), time requirement of the task (e.g., u needs to visit s in 10 minutes) and

of course, the amount of rewards she will get (if she accepts and completes the task).

Taking these features into account, we model Pu→s as a conditional probability:

Pu→s = P (AC = 1|X ) (6.7)

where AC = 1 indicates u will accept the request and complete the task subsequently

at the assigned spot s (AC = 0 indicates otherwise), X is a set of features that may

affect the outcomes of AC. We can rewrite Eq. 7 as:

P (AC = 1|X ) =
P (X|AC = 1)P (AC = 1)∑

i=0,1

P (X|AC = i)P (AC = i)
(6.8)
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Next, we present our approaches to estimate the likelihood P (X|AC = 1) and the

prior P (AC = 1) of Eq. 8. Note that the counterparts P (X|AC = 0) and P (AC = 0)

can be estimated in the same way and thus are omitted due to the space limit. We

start with the likelihood P (X|AC = 1). As we discussed earlier, many features can

affect this likelihood. Here, we consider three typical ones in X , namely, Dist(u, s) –

the distance between u’s location and s; ∆t – the task’s time requirement and c(u, s)

– the anticipated reward. One can imagine that the closer the worker is to spot s,

the more time the assigned task permits, or the higher reward will lead to a higher

likelihood of u accepting the request. Based on an independence assumption between

travel distance, time, and reward, we further decompose the likelihood into two parts:

P (X|AC = 1) = P (Dist(u, s),∆t|AC = 1)

·P (c(u, s)|AC = 1) (6.9)

We begin with the estimation of the first term of Eq. 9, the likelihood of travel

distance under required time given the worker will accept and complete the task.

We say a worker u is likely to accept and complete the task as long as he can reach

spot s more or less in time. In other words, we wish Dist(u, s)/vu ≤ ∆t + ε, where

Dist(u, s)/vu is the travel time for u to reach s, vu is the worker u’s current travel

speed, and ε is a time buffer. So essentially, we can compute this likelihood as:

P (Dist(u, s),∆t|AC = 1) = P

(
vu ≥

Dist(u, s)

∆t+ ε

)
(6.10)

To estimate this probability, we follow the basic probability principles and com-

pute:

P

(
vu ≥

Dist(u, s)

∆t+ ε

)
=

∫ ∞
v∗

f(ṽ)dṽ (6.11)
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where v∗ = Dist(u,s)
∆t+ε

, f(v) is the probability density function (PDF) for the distribu-

tion of travel speed v. Extensive research in the transportation research community

(Rakha et al., 2010; Emam and Ai-Deek, 2006; Westgate et al., 2013; Wang et al.,

2012) has found that the traffic/vehicle speed typically follows a log-normal distribu-

tion. Given the cumulative distribution function (CDF) of a log-normal distribution

LN (x;µ, σ) is
∫
LN (x;µ, σ) = 1

2
+ 1

2
erf( lnx−µ√

2σ
), where erf() is the Gauss error function

(Abramowitz and Stegun, 1972), we can solve Eq 11. as:

∫ ∞
v∗

f(ṽ)dṽ =
1

2
·
(

1− erf

(
ln a− µ√

2σ

))
(6.12)

where a = ∆t+ ε. Next, to estimate the second term of Eq. 9 we simply define:

P (c(u, s)|AC = 1) =
#T (u,AC = 1∧ ≥ c(u, s))

#T (u,AC = 1)
(6.13)

Here #T (u,AC = 1) denotes the number of task requests that were accepted and

completed by u before, where #T (u,AC = 1∧ ≥ $) denotes the number of times u

accepted a request with its task reward greater or equal to the cost c(u, s).

Finally, we estimate the prior knowledge P (AC = 1) of user u accepting and

completing her task request without knowing the features:

P (AC = 1) =
#T (u,AC = 1)

#T (u, )
(6.14)

where #T (u, ) is the total number of tasks u received. In our context, all counts

#T (u) are learnt directly from the worker history in CrowdX.
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6.2 Algorithm and Workflow in CrowdX

We first present an algorithm for solving Eq. 1. Note that it is NP-hard and

the exact solution is intractable 1 . Fortunately, we can prove that Eq. 1 contains

a unique property which allows us to obtain provably near-optimal solutions. Recall

our goal behind Eq. 1 is to select a subset of worker-spot assignments to optimize

value of information subject to budget constraints. Intuitively, this selection problem

satisfies the following diminishing returns property: The higher the utility worker-

spot assignment already selected, the less the addition of a new assignment helping

us. This property can be formalized by the concept of submodularity. A set function f

defined on subsets of V is called submodular, if f(A∪{s})−f(A) ≥ f(B∪{s})−f(B)

for A ⊆ B ⊆ V and s ∈ V \ B. We can prove that the utility function F of Eq. 1 is

submodular: its coverage function L and diversity function R clearly are submodular

because they both have diminishing effects on additional worker-spot assignments.

Besides, we can prove the quality function Q is modular (i.e., Q(A ∪ {s})−Q(A) =

Q(B∪{s})−Q(B)). Since a sum of submodular/modular functions is also submodular

(Lovász, 1983), then F is submodular.

Exploiting the concept of submodularity, and inspired by (Khuller et al., 1999)

we propose Algorithm 1 to solve Eq. 1. This greedy algorithm (line 2-7) sequentially

finds a particular worker-spot assignment w∗ (w∗, w ∈ W) with the largest ratio of

utility function gain to the cost, i.e., F (G∪{w})−F (G)/c(w). If adding w increases

the utility while not violating the budget constraint, it is then selected. The most

important aspect of a greedy algorithm is the design of its greedy heuristic. As

discussed in (Khuller et al., 1999), the greedy heuristic in line 3 has an unbounded

approximation factor. For example, let V = {a, b}, F ({a}) = 1, F ({b}) = p, wa = 1,

1Eq.1 can be reduced to Budgeted Maximum Coverage problem which is known to be NP-hard
(Khuller et al., 1999)
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Algorithm 3: Greedy Algorithm

1 G← ∅, U ←W

2 while U 6= ∅ do

3 w∗ ← arg max F (G∪w)−F (G)
c(w)

4 if
∑

i∈G c(wi) + c(w∗) ≤ B then

5 G← G ∪ {w∗}

6 U ← U \ {w∗}

7 end while

8 v∗ ← arg maxv∈W,c(v)≤B f({v})

9 return Gf = arg maxS∈{v∗,G} F (S)

wb = p+ 1, and B = p+ 1. The solution obtained by the greedy heuristic is {a} with

objective function value 1, while the true optimal objective function value is p. The

approximation factor for this example is then p and thus unbounded. We address this

issue by adding line 8 and 9. So after the sequential selection, set G is compared to

the within-budget singleton with the largest utility value, and the larger of the two

becomes the final output, i.e., the cost-effective assignments that achieve the highest

utility. This step ensures that we can obtain a constant approximation factor (see

Theorem 1).

Theorem 1. Algorithm 1 achieves a (1-1/e)-approximation.

Proof. Omitted due to space limit. Please refer to (Khuller et al., 1999) for a similar

proof.

So Theorem 1 basically states the solution Gf found by Algorithm 1 can be at

least as good as (1 − 1/e) of the optimal solution even in the worst case. It is also

easy to prove the computational cost for Algorithm 1 is O(|W| log |W|), which is quite
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feasible for even for large datasets.

6.2.1 Workflow of CrowdX

Next, we describe the workflow in CrowdX for a requester collecting photos of a

breaking event. Here, the inputs are a set of event spots S, a set of workers U , and

a budget B. The output is a collection of event photo taken by the workers at their

assigned event spots.

Step 1 Given U , S and B, CrowdX finds the best worker-spot assignment W ′ using

Algorithm 1.

Step 2 For each assignment wu,s ∈ W ′, CrowdX sends u a task request. u is required

to respond (accept or reject) within a limited time t. After t, any unresponsive

request will be discarded. We denote U ′ ⊆ U as a set of workers who accept

and complete task requests.

Step 3 The requester will reward each u ∈ U ′ with reward c(u) once u’s photos are

received, and update the budget such that B = B − c(u). After that, in case

the requester wants to collect photos from a missing spot or new event spots

(which just popped up), CrowdX will first check if B > 0 (adding new budget

is also allowed). If so, CrowdX will then update U with new spots and S with

new worker information. Finally, with updated U , S and B, CrowdX will go

back to Step 1 and so forth.

6.3 Evaluation

In this section, we examine the performance of the greedy algorithm (Algorithm

1) of CrowdX, against other baselines. Two main tasks are undertaken: 1) scalability,

and 2) robustness w.r.t different task budgets, task’s requirements, and workers’ costs.
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6.3.0.1 Datasets and Experimental Setup

We use both real world data and synthetic data for our experiments. The real world

data is obtained from Gowalla (Gowalla, 2010), a popular location-based social net-

work, where users are able to check in to different spots. Each check-in record includes

a user’s check-in time and the location (GPS coordinates) of the spot. Here, we as-

sume Gowalla users are the workers of our CrowdX system, and we use the location

of the user’s last check-in of the day as her present location. In our experiment, we

randomly select workers (i.e., Gowalla users with their locations) of a random day

from a bounding box of 50 miles by 50 miles in the San Francisco area. Moreover, the

event spots (and their locations) are also randomly generated for the same bounding

box. Recall that the travel distance of a worker u to an event spot s plays a vital role

in estimating the worker’s uncertainly (Pu→s, see Eq. 7). To estimate this distance for

the real dataset, we call Google Directions API to retrieve the actual distance given

the origin (i.e., the worker’s GPS coordinates) and the destination (i.e., the spot’s

GPS coordinates). Finally, our real dataset has 200 workers, 200 spots, and 40,000

worker-spot assignments and their actual distances. 2 . On the other hand, we also

generate a cheaper and much larger scale synthetic dataset which has 20,000 workers

and 20,000 spots. The distance between a worker’s location to a spot’s location is

then measured by manhattan distance. For both datasets, we randomly generate a

worker’s task history in CrowdX, which includes the total number of task requests

the worker received, the number of tasks requests the worker accepted and completed,

and the rewards of these tasks. We then use this information to estimate the priors

for each worker (see Eq. 13 and 14). Last, we also simulate workers’ levels of skills

at taking high quality photos from 1 to 10 where 10 is most skilled.

2note that Google’s API quota limited us by making this dataset bigger, we remedy the size
problem in the synthetic dataset
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There are several parameters we need to setup. First, given that the transportation

research community has researched extensively on applying lognormal distribution

on the real world data to model traffic patterns and vehicle speeds (Jenelius and

Koutsopoulos, 2014; Westgate et al., 2013; Wang et al., 2012), we directly adopt their

results and set µ = 2 and σ = 1.5. Second, For α and β (trade-off coefficients, see

Eq. 2), coarse parameter tuning was performed. We vary α and β to normalize the

coverage, the diversity and the quality since they often have different scales. As a

result, we set up α = 1.87 and β = 6.15.

6.3.0.2 Baselines

To better understand the performance of our approach, we implemented some com-

petitive baselines:

• Random: Let U be the set of workers and S be the set of even spots in our

datasets, we first build a ground set of W as a Cartesian product U and S.

Then we randomly select a subset of W ′ ⊆ W such that the total cost of W ′ is

below the given budget. We calculate the cost using the cost function defined

in Eq. 6.

• Ignore uncertainty (IU): We use the same joint Cartesian product W as the

input here. The basic idea of this approach is that it assumes every worker will

accept and complete the task request (a common assumption in present spatial

crowdsourcing literature). Therefore, when computing the utility F (W), we

ignore the uncertainty and set Pu→s = 1 in Eq. 5 and Eq. 6.

• Nearest neighbor (NN): Instead of modeling workers U and spots S jointly, this

approach solves a similar optimization problem as Eq. 1 with redefined utility

and quality function for spots only: F (S ′) = L(S ′) + αR(S ′) + βQ(S ′) where
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the quality of each spot depends on its k-nearest workers Uks , i.e., Q(S ′) =∑
s∈S′

∑
u∈Uks

Pu→s · qu, where qu represents each worker’s quality/skills. Simi-

larly, we redefine the cost function as C(S ′) =
∑

s∈S′
∑

u∈Uks
Pu→s · cu, where cu

represents each worker’s cost.

6.3.1 Scalability

(a) Varying #tasks, when #user =

200

(b) Varying #workers, when

#task=50

Figure 6.1: Performance on the Real Dataset

We first evaluate the scalability of CrowdX by varying 1) the number of spatial

tasks (i.e., event spots), and 2) the number of workers, against three baselines using

both datasets. Note that, the total budget is proportional to number of tasks (we will

explore the effect of varying the budget later). The results are depicted in Fig 1–2.

Several observations can be made. First, for all baselines, the utility increases as the

number of tasks and the the number of workers grow. Second and more importantly, it

is also clear that our method performs better than baselines consistently, by gaining

20% to 45% for both datasets. It is worth noting that, among all the baselines,

NN performs better than IU and Random in most cases. This makes sense because

both CrowdX and NN take into account the worker’s uncertainty, whereas IU and
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Random largely ignore it. Besides, it is also interesting to highlight the reason behind

CrowdX’s superiority over NN. Note that NN only considers k-nearest neighbors Uk
s

for each spot s ∈ S ′. In other words, NN considers worker-spot assignment with size

k × |S|. However, since CrowdX consider jointly modeling worker-spot inherently,

it essentially models |U| × |S| combinations (where |U| � k) which results a much

larger search space than NN. Therefore, CrowdX can often outperform NN especially

when the neighbors of a spot are low quality.

(a) Varying #tasks, when #user =

1000

(b) Varying #workers, when #task

= 500

Figure 6.2: Performance on the Synthetic Dataset

6.3.2 Robustness

Next, we evaluate the robustness and effectiveness of our proposed Algorithm 1 by

exploring the impact of three important parameters: budget B, time requirement ∆t

and base cost rate cu on affecting the total information utility. Note that the following

experiments are conducted on the real data with #spot = 50 and #worker = 200.

Besides, we also set the time buffer ε = 10 minutes.
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6.3.2.1 Varying budget B

We first consider varying the budget B from $10 to $100 while fixing cu = 0.5 and

∆t = 30 minutes. Fig. 3 shows the results w.r.t the total utilty. Clearly, when the

requester has more budget, she can always get better results, i.e, the utility of the

results obtained by all approaches grows with the budget, with CrowdX again per-

forms of the best. Interestingly, we also observe that the utility of CrowdX increases

near exponentially after B > $50. One explanation could be: recall the cost function

for a given user u and a spot s is exponentially proportion to the distance u will

travel to complete her assigned task at s. Therefore, when B > 50, the worker can

visit the event spots which are very far away from her present location whose utilities

maybe significantly higher than the nearby spots that she has already visited (when

B ≤ 50).

Figure 6.3: Varying Budget B w.r.t Total Utility

6.3.2.2 Varying time requirement ∆t

Next, we vary the time requirement ∆t from 5 minutes to 90 minutes while fixing

cu = 0.5 and B = $100. The results are shown in Fig. 4. Again, we observe that

all approaches can achieve much higher utility when ∆t increases. This is because
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the travel likelihood P ((Dist(u, s),∆t|AC = 1) becomes much higher when worker u

has more time allowances (i.e., the time she can spend on her trip to spot s) given

a fixed travel distance Dist(u, s) (recall Eq. 10). As a result, the probability that

u will accept and complete the task will also become higher, implying more workers

are likely to accept and complete more tasks, which in turn will result a much higher

total utility.

Figure 6.4: Varying Time Requirement ∆t w.r.t Total Utility

6.3.2.3 Varying base cost rate cu

Finally, we explore the performance of all approaches w.r.t to increasing the base cost

rate (i.e., cost per mile, recall Eq. 6) while fixing ∆t = 30 minutes and B = $100.

The results are shown in Fig. 5. Interestingly, the total utility significantly decreases

when we raise c(u, s) (especially when cu ≥ 1). This can be seen as the “reverse”

result of varying budget in Fig. 3: due to the cost which is exponentially proportional

to the travel distance, a fixed budget can quickly “burn out”. As a result, one can

image only a few spots will be visited, resulting a low total utility.
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Figure 6.5: Varying Base Cost Rate cu w.r.t Total Utility

6.4 Summary of Chapter

In this chapter, we have described a spatial crowdsourcing system CrowdX for han-

dling the Event Enrichment task. To achieve the best utility of assigning a worker to

an event spot, CrowdX takes into account three features: 1) the coverage and diversity

of the spot, and the quality of the worker, 2) the expected cost of each assignment,

and 3) the uncertainty of the worker. We designed an efficient utility-theoretic ap-

proach that finds a set of user-spot assignments that simultaneously maximizes overall

utility, and achieves low cost in strict accordance with budget constraints. Based on

the experimental results, our model shows significant improvements over the baseline

methods. We believe that our work presents the first step towards building a generic

spatial crowdsourcing framework for solving spatial tasks. In the future, we want to

extend our framework by supporting more complex tasks and more quality control

mechanisms.

138



Chapter 7

MAKING SENSE OF PEOPLE’S ENGAGEMENT IN REAL-WORLD EVENTS

ON SOCIAL MEDIA

Previous chapters have aimed to develop tools for automatic event characteriza-

tion based on event topics and the crowd’s tweeting behaviors (Chapter 3) and based

on the sentiment analysis of the crowd’s tweet content (Chapter 4), real-time event

recognition of events from social media (Chapter 5), and sensing and gathering in-

formation to enrich events using the wisdom of crowds (Chapter 6). These tools, as

encapsulated in the EventRadar toolbox, provide various effective ways to analyze an

event using its social media responses. Enabled by the EventRadar toolbox, we are

able to conduct more in-depth event analysis and reveal deep insights into people’s

behavior when engaging with events and understand the motivation behind their be-

havior – the main focus of this chapter. Our discoveries contribute to the scientific

contributions of this dissertation.

As we have discussed earlier, recent years have witnessed a growing interest in

research and industry that aims to develop various computational tools for event

analysis. Unfortunately, little is understood thus far about the factors that affect

people’s engagement with real-world events on social media (e.g. posting or exchang-

ing event-related tweets). Does a person post tweets about an event because they are

interested in the topics pertaining to that event? Or are they instead engaged because

their friends are also posting tweets about it? Or is their engagement a reflection

of the fact that this is a local event happening in their neighborhood? Furthermore,

how and to what extent do the different topics of events affect the degree of a person’s

engagement? Answering these questions holds the key to developing a wide range
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of applications in marketing, political campaigns, and citizen journalism (Dahlgren,

2009; Gil de Zúñiga et al., 2012). Consider this: a personalized event recommendation

engine can automatically recommend a list of new events (as they are happening and

trending on Twitter) to a person, based on a prediction of that a person’s Twitter

engagement – this can help people learn about and engage with more such events.

In this chapter, we aim to answer the questions put forth previously by exploring

multiple predictive variables, and quantifying their potential influence on predicting

a person’s presence and degree of Twitter engagement with various real-world events.

Specifically, we operationalize a person’s Twitter engagement with a real-world event

as the posting of tweets about that event, including retweets and replies related

to the event. The presence of the person’s Twitter engagement in response to an

event can be defined as the existence of at least one tweet (or RT or mention) that

mentions that event. The degree of the person’s Twitter engagement is measured by

the number of tweets posted regarding that event; more such tweets indicate that the

person is more engaged. Next, inspired by prior theoretical constructs that bridge

social science, linguistics, and computer mediated communication, we collect factors

that could potentially affect the person’s Twitter engagement in a real-world event

from five broad categories. These are: (i) Twitter activities (i.e., her activities on

Twitter prior to her current engagement with the event), (ii) Tweets’ topics (i.e., the

topical interests extracted from her prior tweets), (iii) Twitter user types (i.e., the

Twitter user category she falls into), (iv) Geolocation (her geographical proximity to

the event), and (v) Social network structure (her Twitter followers, following, and

common neighbors).

We map these dimensions into 17 numeric predictive variables manifested on

Twitter, spanning the volume of tweets produced, burstiness of tweets, frequency

of retweets, usage of hashtags, communication mode (direct versus broadcast), topi-
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cal interest extracted from the person’s tweets and those of their following lists, her

approximate location and geographic proximity, and social network structure. We

construct two statistical models to assess the relative contributions of these variables

towards predicting the presence of a person’s Twitter engagement and the degree of

that Twitter engagement in 406 real-wold events.

Using our models, several insights about the factors and their influence on predict-

ing the presence and degree of people’s Twitter engagement in real-world events are

revealed. For example, in terms of the presence of engagement, we find that, among

all the predictive factors, a person’s prior Twitter activity and the person’s social net-

work most significantly impacts the presence of the person’s engagement with events.

For example, having posted more tweets in the past, or following Twitter accounts

that are dedicated to news leads to people’s engagement. Similarly, we also find that

measures of topical interest have strong and statistically significant levels of impact

on a person’s degree of engagement, especially during political events.

This chapter is organized as follows: we begin with a comprehensive survey of

related works that inspired this work. Next, we present the data collection policy,

followed by a detailed description of our statistical models. We present the results of

our models with a discussion at the end of this chapter.

7.1 Background

7.1.1 Twitter and Real-World Events

As social media has become prominent in daily life, the evolving ways in which

information is generated, viewed, shared, and exchanged have inevitably transformed

people’s activities when engaging with real-world events (Lenhart et al., 2010). Recent

years have witnessed a growing research interest in developing tools for real-time
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identification of real-world events and the tweets associated with those events (Sakaki

et al., 2010; Becker et al., 2011) (we also developed DeMa event detection algorithm

(Hu et al., 2013b) and presented it in Chapter 5. On the one hand, the vast number of

tweets posted around an event enrich the user experience of that live event. However,

that very same scale poses tremendous challenges for methods that attempt to extract

sense from those tweets. Various research efforts have thus focused on how to make

sense of tweets that are posted in response to real-world events, including inferring

the events’ structure of events from tweets volume (Shamma et al., 2009), visualizing

events using tweets (Diakopoulos et al., 2010), and sentiment analysis of tweets to

understand events (Diakopoulos and Shamma, 2010a).

7.1.2 Making Sense of Twitter Engagement in Real-World Events

To date, we are aware of little research that directly addresses the issue studied in

this chapter; however, there has been an extensive amount of literature on exploiting

predictive factors on social media for various other issues. For example, Golder et

al. (Golder and Yardi, 2010) and Kivran-Swaine et al. (Kivran-Swaine et al., 2011)

focused on factors that influenced tie formation/tie break-up; Gilbert and Karahalios

(Gilbert and Karahalios, 2009) focused on factors that affect tie strength. Moreover,

(Suh et al., 2010) examined factors that affect retweets; and Hong et al. (Hong et al.,

2011) explored factors that influence the popularity of tweets.

Our effort differs from the past work in that we are exploring factors that may af-

fect people’s Twitter engagement in response to real-world events. Below, we discuss

related work showing how a person’s prior Twitter activities (e.g., communicating

with others), her tweets’ content (e.g., topical interests, linguistic styles), her geo-

graphical location, and her social networks relate to her Twitter engagement with

real-world events. Inspired by these works, we collect corresponding predictive fac-
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tors and build statistical models upon those factors to assess their contributions to

predicting the presence and degree of a person’s event engagement on Twitter.

7.1.3 Social Capital and Event Engagement

Social capital has been identified as a collection of resources that either an individ-

ual or an organization gains through a set of communal norms, networks, and sanc-

tions (Bourdieu, 1986; Putnam, 1995; Wellman and Wortley, 1990). The relationship

between social capital and event engagement (as a special case of civic engagement)

has long been a research topic (Putnam, 1995; Gil de Zúñiga et al., 2012; Shah, 1998).

In particular, Putnan found that engaging in events (e.g., participating in events, dis-

cussing events with others) can be seen as a precursor to social capital, and that

it offers a forum for facilitating the growth of social capital (Putnam, 1995). Many

other researchers have shared similar views by claiming that social capital is created

when civic engagement is “excited” by events and directed toward a particular end or

purpose (Hyman, 2002). In addition, prior research has also identified several kinds

of social activities and behaviors that can affect social capital on social media. These

include directed communications with targeted individuals (e.g., Facebook private

messages; Twitter replies, mentions, and favorites), broadcast communications which

are not targeted at anyone in particular (e.g., Facebook wall updates or tweets with

no “@” in them), and passive consumption of content (Burke et al., 2011). Moreover,

the volume of social media posts (e.g., total number of tweets in a period) and the

posting rate have also been shown to influence social capital (Hutto et al., 2013).

However, following Putnan’s views on event engagement, we posit that instead of

affecting social capital directly, these activities may first affect people’s engagement in

events on social media. Such engagement will in turn affect social capital. Therefore,

such social activities and Twitter event engagement are closely related. Here, we
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empirically test whether a person’s prior Twitter activities help in predicting their

engagement with an event.

7.1.4 Tweet Topics and Event Engagement

The “endurability” theory (Read et al., 2002) shows that people are likely to

remember a good experience and are willing to repeat it. Application of this theory

to Twitter event engagement indicates that a person may be more likely to get engaged

in an event if the topics related to that event are the same as – or at least similar

to – the topic that the person is interested in on Twitter (which can be inferred

from their previous tweets). For example, assume that Sam is a sports fan and had

previously posted a large number of tweets in response to various sports-related events

(while they were live on the air). Subsequently, given a football game event and a

movie awards ceremony event, both of which are happening currently and trending

on Twitter, Sam is more likely to be engaged with the former rather than the latter.

Besides, a person’s topical interests can be inferred not just from their posted tweets,

but from other resources as well. The principle of homophily asserts that similarity

between individuals leads to a greater potential for interpersonal connections; when

establishing connections, people tend to build relationships with others who are like

them (McPherson et al., 2001). Sharing interests with another person is one form of

similarity (Feld, 1981) that can be used to build relationships; this can lead to the

follow relationship being established.

Based on these, we posit that a person’s topical interests can be inferred from the

people they are following. Returning to our running example – although Sam may

only have posted a few tweets about sports and/or football, the fact that Sam also

follows a number of Twitter accounts that are dedicated to football (e.g. NFL official

accounts, football analysts, etc.) makes an engagement with a football event more
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likely than one with a movie awards ceremony. Here, we empirically study how the

topical interests of a person (inferred both from their tweets as well as the users they

follow) affect their engagement with events on Twitter.

7.1.5 Twitter User Types and Event Engagement

Naaman et al. (Naaman et al., 2010) found that there are two basic categoriza-

tions of Twitter users: informers, who share informational content; and meformers,

who share tweets about themselves. One effective way to distinguish informers and

meformers is based on the linguistic styles of their tweets. Those who share informa-

tion or describe things tend to use more third person pronouns (She, He, It, They,

etc), while meformers, who post mostly about themselves tend to use first person

pronouns (I, We, Us, etc) more often.

Here, we posit that informers are more likely to engage in events through the

posting or sharing of information than meformers. We explore linguistic styles of

tweets and examine whether different types can predict a person’s event engagement

on Twitter.

7.1.6 Geolocation and Event Engagement

It is known that a person’s geographical location (geolocation) significantly af-

fects her social connections and activities in the offline world. Recent research has

also found evidence to show that offline geography has a significant impact on user

interactions, tie formation, and information diffusion on online social media like Twit-

ter (Kulshrestha et al., 2012). In particular, researchers have discovered that users

preferentially connect and exchange information with other users from their own

country, and lesser information is exchanged across national boundaries. However,

even such transnational links and interactions occur between users in geographically
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and linguistically proximal countries within their network. Similarly, researchers also

identified that geographical proximity plays a key role in trend/innovation adoption

(Toole et al., 2012). Based on these results, we conjecture that a person’s geolocation

may affect their engagement with real-world events on Twitter if that person’s loca-

tion is geographically proximate to the event’s location (e.g., a user may only care

the events that happen in her neighborhood).

7.1.7 Social Networks and Event Engagement

The correlation between social network influence (e.g., network size and social ties)

and user engagement has been studied extensively. For example, Zuniga et al. showed

that the relationship between online and offline network size and people’s engagement

with civic events is positive (de Zúñiga and Valenzuela, 2011). They further found

that network structure and social ties (especially weak ties) are determined to be

strong predictors of the engagement. There are many different ways to form ties on

Twitter (Golder and Yardi, 2010), and ties can be formed either directly or indirectly.

For example, following a person on Twitter can be seen as a direct tie. In such cases,

dyadic properties such as reciprocity play key roles in the process of tie formation.

On the other hand, ties can be formed indirectly such as through common network

neighbors (known as transitive ties). For example, consider the case where three

people form an undirected network: A and C are both friends of B, but A and C are

not friends. However, as the number of common neighbors (occurrences of B) between

A and C increases, the likelihood of an A-C tie being formed and the corresponding

tie strength also increase (Cartwright and Harary, 1956). In this paper we explore the

extent to which these network sizes and tie formations impact a person’s engagement

in real-world events as compared to the person’s Twitter activities, topical interests,

user types and geolocation information.
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7.2 Data Collection

In this section, we describe our data collection strategies. Note that in order to

show how people’s Twitter activities, their tweets’ topics, their Twitter user types,

their geolocations, and their social networks affect their Twitter engagement with

real-world events, we needed to collect: 1) a list of real-world events and their as-

sociated tweets, and 2) profiles of Twitter users (who post event-related tweets).

Moreover, since we want to evaluate the influence of people’s geolocations on their

event engagement, we needed to infer the geolocations of both Twitter users and

events.

7.2.1 Obtaining Real-world Events and Events’ Geolocations

To identify real-world events from tweets, one possible solution is to first obtain an

event list directly from newspapers (since reporters often tend to mention the location

of the event in their news articles about that event) and then fetch the corresponding

tweets. However, such an approach is not applicable for several reasons. First, not

every event reported by newspapers is popular/trending on Twitter. As Hong et

al. (Hong et al., 2011) pointed out, the popularity of tweets is affected by multiple

reasons aside from newsworthiness. Second and more importantly, such an approach

will be significantly biased towards larger, more broadly newsworthy events due to

the nature of newspapers, which could potentially misguide our analysis. To avoid

this, we follow a different approach: 1), by automatically detecting real-world events

from Twitter streams, and 2), manually inferring their geographical location, i.e.,

geolocations later.

To automatically detect real-world events from Twitter, we directly use the DeMa

event detection algorithm (more details on DeMa can be found in Chapter 5). Af-
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ter obtaining the real-word event clusters (each cluster refers to one event), we ask

annotators to individually read a sample tweet from each real-world event’s cluster

to gain an understanding of what the event is really about. Then the annotators are

asked to find the geolocation of the event cluster via search engines with their own

search keywords such as event-related hashtags, timestamps, based on their event

understanding. Our assumption here is that many real-world events will be covered

by news, blogs, and other media, and their geolocations will often be mentioned.

Surprisingly, this simple approach yields a very satisfying result.

7.2.2 Obtaining Twitter Users’ Geolocations

Inferring Twitter users’ geolocation based on their tweets has been an emerging

research topic in recent years (Cheng et al., 2010). In this work, we follow the methods

mentioned in (Mahmud et al., 2014) to infer the geolocations of Twitter users 1 .

Specifically, the location inference algorithm uses tweet contents, tweeting behavior

and other auxiliary information such as time zone to predict the home location of

Twitter users. We then verify the extracted location information with the diurnal

patterns of the user’s tweets (Naaman et al., 2012). For example, most people in New

York City will tweet about having dinner and the nightlife between 5:00PM EST

to 1:00AM EST. So if a person regularly posts tweets about lunch around 12:00AM

EST, they probably are not from the New York City area. Based on our preliminary

testing, we found this algorithm together with the diurnal pattern verification yield

a stable performance (78.4% for cities).

1One may consider to infer a Twitter user’s geolocation based on the information from her Twitter
profile, i.e., she may mention her location in her profile. However, this method may result unbiased
samples since those Twitter users who have relatively more complete profiles, i.e., location, might
also be more active in general and tend to have more friends.
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7.2.3 Constructing the dataset

In practice, we first obtained about 20 million tweets in English from the Twitter

firehose during June to September of 2014. We then used the automated event detec-

tion on these tweets to find real-world events. As we mentioned earlier, as the first

step in our event detection framework, we ran a hierarchical clustering algorithm to

cluster tweets into roughly 19,000 clusters. After that, we used a classifier to classify

these clusters into two classes: an event cluster and a non-event cluster. We used 30

human annotators to label both the training set (300 clusters sampled from the en-

tire clusters) and the testing set (478 clusters sampled from the entire clusters) in our

study (note that if there is any conflict between annotators, a third party judge will

step in to resolve conflicts, i.e., the Fleiss’ kappa κ = 1). After applying a sampling

to balance the class distribution (which was skewed towards the non-event class), we

trained and validated the classifier using 10-fold cross validation. We tested different

classifiers such as logistic regression, SVM, nearest-neighbor, and random forest; and

chose SVM because of its performance. As a result of event detection, we obtained

1014 event clusters.

Next, we needed to infer the geolocations of these 1014 event clusters. We asked

20 annotators to individually read a sample of 100 tweets from each real-world event’s

cluster and find the geolocation of the event cluster via search engines based on their

understanding of that the event. This simple approach yielded a very satisfying result:

our annotators were able to find the geolocations (on city level) for 40% of the event

clusters (N=406). Among these 406 event clusters with geolocations identified, the

majority (N=353) events happened in the U.S (e.g., New York City, NY, Beverly

Hills, CA, Ferguson, MO), and the rest were in Europe, Middle East and Asia.

Finally, based on 406 events used in this work, we obtained a total number of
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10,895 Twitter users who posted at least three tweet in response to one of these events.

We applied the location inference algorithm (see above) to predict the location (on

City level) of each user. Besides, in order to calculate the measures for the predictor

variables, we collected all the tweets posted by each user in the most recent six months

preceding their first ever event engagement in any of 406 events.

7.3 Methods

With 406 events obtained, in this section, we provide more details on the statistical

models that are used to predict the presence and magnitude of a person’s engagement

on Twitter with a given event. We first present the dependent variables used in our

predictive models, followed by a description of the predictor variables.

7.3.1 Dependent Variables

• Presence of a person’s Twitter engagement in a real-world event: This is a

binary measure that indicates whether or not a person posts, replies to, or

retweets tweets in relation to a particular event on Twitter (1: engaged; 0: not

engaged).

• Degree of a person’s Twitter engagement in a real-world event: This is a con-

tinuous measure that indicates the number of tweets that the person generates

(via post, reply to, or retweet) relating to the event.

7.3.2 Predictor Variables

The literature reviewed in the previous section pointed to five major kinds of

predictor variables: Twitter activities, tweets’ topics, Twitter user types, geolocation,

and social network structure. Using these categories as a guide, we collected 17

variables that are manifested on Twitter as potential predictors of a person’s Twitter
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engagement with a real-world event.

7.3.2.1 Variables related to Twitter activities

• Total number of tweets. The total number of tweets a person has posted.

These tweets include new posts, retweets, and replies.

• Maximum tweets per hour. The maximum rate of tweets per hour, which

captures the “burstiness” of a person’s activities.

• Average tweets per hour. The average rate of tweets per hour, which gives a

general idea of a person’s level of activity.

• Directed communications. The number of tweets with “@” (including both

@mentions and @replies) plus the number of favorite tweets divided by the total

number of tweets. This measure indicates interpersonal activities between the

person and other Twitter users.

• Broadcast communications. The ratio of tweets with no “@” at all in the

tweet to total number of tweets in a period.

• Ratio of retweets. The total number of times a person reposts other Twitter

users’ tweets, relative to the total number of tweets produced by the person in

a period. This measure complements the direct and broadcast communication

measures by indicating how often the person interacts with other Twitter users

and broadcast their tweets to their own social circle (i.e., their followers).

• Hashtag usage. This is defined as the ratio of tweets that contain at least one

hashtag to the total number of tweets from a person in a period.
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7.3.2.2 Variables related to tweets’ content

• Topical interests from tweets’ content. This measure is calculated as the

cosine similarity between two normalized TFIDF vectors: the first is computed

based on a person’s tweets in a period, while the second is computed based

on all the event-related tweets (from other users) posted prior to the person’s

engagement with that event. In practice, assume a person u has posted Tu tweets

in the past three months. Now, assume an event starts at 8:00PM and u gets

engaged in this event on Twitter (i.e., user u posts their first event-related tweet)

at 8:30PM. Additionally, between 8:00PM and 8:30PM, there are TQ event-

related tweets posted by a set of other users Q. We then compute the topical

interests measure as sim(TFIDF (Tu), TFIDF (TQ)). Note that computing the

dot product between two TFIDF vectors is a standard technique for measuring

topic relevance between text corpora in information retrieval (Manning et al.,

2008). Intuitively, higher similarly indicates that the person’s prior exhibited

topical interests (reflected from their prior tweets’ content) are closer to the

event’s topics (which are inferred from other people’s event-related tweets).

• Topical interests from the person’s following list. This measure is calculated

based on the topical similarity between the topics used by the users that a person

follows (following list), and the event’s topics. More specifically, the following

list’s topics are computed using methods mentioned in (Burgess et al., 2013):

first, given the following list of a person, we obtain the 200 most recent tweets

from each user on that list. Next, we distill topic distributions from these tweets

using topic models (Blei et al., 2003). On the other hand, as mentioned above,

we are also able to get TQ event-related tweets posted by other users prior

to the target person’s engagement in the event (i.e., their first event-related
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tweet). For the tweets TQ, we run topic models to obtain the same number

of topics as the vectors in the previous analysis, and the corresponding topical

distribution for each topic. We then compute the similarities between the two

topical distributions – one learned from the following list, and the other from the

event – using JensenShannon divergence. As with the cosine similarity measure,

higher similarity here indicates that the person’s topical interests (reflected from

the list of people that they follow) are closer to the event’s topics.

7.3.2.3 Variables related to Twitter user types

• Meformer. This is computed as the ratio of meformer tweets to the total

number of tweets by a person in a period. As mentioned earlier, we detected

meformer tweets based on linguistic styles. More specifically, if a tweet contains

any of the 24 self-referencing pronouns (e.g., words like “I”, “me”, “we”, “us”)

identified in LIWC, then it is classified as a meformer tweet.

• Informer. This is computed as the ratio of informer tweets to the total

number of tweets by a person in a period. We identified informer tweets as

those containing any of the 20 third-person pronouns (e.g., words like “He”,

“She”, “it”, “them”) defined in LIWC. In addition, if a tweet contains either a

URL, “RT”, “MT”, or “via”, we deem it an informer tweet as well.

7.3.2.4 Variables related to geolocation information

• Geographical proximity. The first measure considers the geographical prox-

imity between a person’s location and the event’s location. As indicated in

the previous section, the dataset used in this study only includes Twitter users

and events whose geolocations could be identified. Note that it is impracti-
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cal to model the proximity of two geolocations continuously in terms of their

physical distance in miles, because the effect of geographical proximity may not

be linearly proportional to physical distance. In fact, such an effect is more

likely to be exponential according to recent research (Kulshrestha et al., 2012).

Therefore, in practice, we only consider measuring the geographical proximity

in terms of two discrete bins: local (distance within ≤ 50 miles) and non-local

(distance > 50 miles).

7.3.2.5 Variables related to network structure

• Number of followings. The number of Twitter users that a person was fol-

lowing (prior to the person’s Twitter engagement in an event).

• Number of followers. The number of Twitter users who were following the

person (prior to the person’s Twitter engagement in an event).

• Followings posted prior. The number of a person’s followings who had already

posted event-related tweets before the person posted to that event. As discussed

earlier, since following (e.g., A follows B) forms a directed tie, it is possible that

the person will be influenced to post tweets when a lot of their followings post

about an event prior to their own engagement.

• Average common neighbor prior. This measure examines the overlaps between

the followings of a person a and the followings of user b, where a has already

engaged in the event on Twitter while b has not. In the context of Twitter,

a person’s followings often represents their interests. Therefore, the common

neighbor factor essentially measures the shared interests between two people.

According to triadic closure, such a measure also indicates the tie strength

between A and B (Wasserman, 1994). In practice, for the user a, we compute
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this feature as
∑

b∈B CommonNeighborhood(a, b)/|B|, where B is a set of users

who have already engaged in the event (a 6∈ B).

• Number of followings about news. This measure is defined as the total number

of a person’s followings who are deeply involved in news. To identify those news

related accounts, we first obtain Twitter profiles for all of the person’s friends.

We then look at each profile to check which ones contain news related keywords

such as “news”, “reporter”, “journalist”, “TV” and so on. We deem those users

news related accounts. One motivation for this measure is that news agencies

are often authorities and first-hand resources for reporting events. It is possible

that if a person followers a lot of news agency accounts, then they will likely be

interested in knowing about and engaging with real-world events.

7.4 Results

In the following section, we first provide descriptive statistics for the variables

used in our statistical models. Following this, we present the contribution of these

variables in predicting the presence and degree of people’s Twitter engagement with

real-world events.

7.4.1 Descriptive Statistics

Table 7.1 shows descriptive statistics (mean, standard deviation) for the number

of events that one person engages with, and the event-related tweets that person

posts – along with 17 predictor variables – based on the event data we collected in

June to September 2014 (see the ‘Data Collection’ section). For comparison, we also

generate statistics based on an event participant’s regular tweets six months prior the

the events (i.e., December 2013 to May 2014). We calculate the significance of the

difference between these two situations. Note that some of the predictor variables
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are compared pair-wise, such as topical interests, geographic proximity and so on.

Therefore, we only report the pair-wise statistics for the event data.

Also note that we excluded users that were extreme outliers (z-score > 4.0) with

respect to our metrics for activity levels and follower/following counts. As a result,

we had a total of 10,638 people (we removed 257 “outlier” users from a total of 10,895

users in our dataset, see Data Collection section) participate, by posting Twitter mes-

sages over the course of 406 events. Within these messages, 28% of the messages had

hashtags, 48% retweets, 27% direct replies, 33% links, and 68% mentions, indicating

that the event participants were highly interactive.

7.4.1.1 Twitter activities

On average, a user engaged in 12.1 events over a month, and they posted 2.33 tweets

per event. In terms of burstiness, users posted no more than 6.57 tweets within an

hour (average). This seems to indicate that over the course of an event, people tend

to post using a stable pace (as avg. tweet per hr is very different between tweets

from the event a person engaged in and norma tweets from the person’s prior tweets

history. The Broadcast Communication shows the average number of tweets that are

not directed to any specific person. During events, this rate is significantly higher.

Such changes are also reflected in directed communication. The ratios of retweets and

hashtag usage to the total number of tweets in a period are moderate for the majority

of users retweets comprised about 15% of users’ messages, and hashtags were used in

about 20% of tweets. Compared to these, we witness significant changes during events

– where the ratio of hashtags and retweets increases to 44% and 42% respectively.

Combining these discoveries, we conclude that people tend to communicate more with

others during an event that they are engaged in, thus showing a deeper involvement

and engagement with the topics related to that event.
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7.4.1.2 Tweet content

In general, users show a fairly diverse range of topics that they post in relation to,

which is reflected in and manifested as the relatively low topical similarity to actual

event topics. In particular, the topic similarity inferred from a user’s tweet content

is 0.5, while topic similarity inferred from their followings is 0.3.

7.4.1.3 Tweet user types

Besides, nearly half of users’ regular tweets are identified as “meformer” (41%), and

the “informer” category accounts for 24% of tweets. However, in the context of event

engagement, the percentage value of “informer” tweets witnessed a sharp increase

to 43%, and “meformer” tweets decreased to 29%. This indicates that people tend

to share more information (e.g., through retweets, third person comments about the

event) during the course of an event. However, people do also continue posting

information about their thoughts and their presence during the event.

7.4.1.4 Geolocation

In terms of the geographical proximity between the event participants’ location and

the event’s location, we found that most events were non-local to the event partici-

pants – this is reflected in that measure’s relatively high value (i.e., 418 miles between

the inferred event participants’ locations and the events’ locations), accompanied with

high standard deviation (189.8 miles).

7.4.1.5 Social network

The majority of users have an average of 387 followers, and 117 friends. About 4.33

event participants who joined in the event prior to the target user’s engagement are

the followings of that user. Moreover, for the people who posted prior to the target

157



user but are not part of the following set, it is seen that there are around 10 common

friends between those users and the target user. This indicates that one-hop weak

ties do exist between event participants. Later we will demonstrate the strength of

these predictors.

7.4.2 Prediction of presence

We now turn to the core question examined in this study: to what extent do the

17 variables used predict the presence, and degree, of a person’s Twitter engagement

with a real world event?

In order to examine the relative impact of these variables, we first standardized

the measures, and then examined whether they predicted a user’s participation /

engagement using a repeated measures (406 trials, or events) logistic regression. The

question of whether or not the user participated was modeled as a binary dependent

variable. Table 7.2 shows the results of this regression. An immediate insight that

can be gleaned is that the total tweets posted by a user prior to her event engage-

ment is a significant predictor of whether the user will take up or engage with an

event. Specifically, as far as communication oriented tweets are concerned, both di-

rected and broadcast communication are good indicators, albeit in opposite senses.

The coefficients for those variables seem to indicate respectively that lower directed

communication or higher broadcast communication correlate directly with higher en-

gagement. This is fairly intuitive, since directed communication tends to be among

a user’s friends and about non-event topics, and in most cases can only be seen by

the mentioned users; while broadcast communication is intended for a wider audience

consisting of all of the user’s followers. Finally, both the ratio of hashtags used and

the ratio of retweets are positive indicators of event engagement; this is easy to see

since RTs and hashtags respectively are two key ways in which a user can signal their
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active interest and affiliation with an event.

As far as the tweet content variables and Twitter user types variables are con-

cerned, we did not find evidence of the topical interests being good predictors of

engagement with events that display those same topics. However, we will show later

in our analysis that when the tweets are broken down by topic and not considered as

a single monolithic set, these topic-specific correlations become stronger predictors of

engagement. As regards meformer versus informer tweets, the meformer tweets are

not very good predictors of engagement, which is obvious since such tweets mostly

involve the user talking about things that are highly personalized and hyper-local to

their own lives. Informer tweets, on the other hand, display a positive correlation to

engagement; since such tweets are usually in the third person, this result combined

with the broadcast communication considered previously indicate that a user who

posts such tweets will usually engage with something that multiple other users are

also interested in (hence an event as against a personalized happening).

As concerns geolocation, we did not find any significant evidence – in contrast with

prior research (Kulshrestha et al., 2012) – that the geographical proximity has any

effect on a user’s engagement with an event. This would seem to indicate that users

will choose to engage with an event whether or not it is “local” (in their surrounding

vicinity) or non-local.

Finally, where the social network variables are concerned, we find that all of the

variables are predictors with at least some degree of significance (and some more so

than others). Interestingly, the only positive correlation is with the number of new

friends. Note here that the measure of news friends’ posts is strongly correlated to

the measure of how many friends posted tweets related to the event before the user

(i.e., Followings posted prior, r = 0.62, p < .001). This suggests that most of the

news friends’ posts are occurring before the user starts contributing messages and
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engaging with the event. This indicates that users are inspired and motivated to

engage with events when they see tweets relating to those events on their timelines.

However, this only goes so far – as the negatively correlated variables show, a large

number of friends/followers and neighbors may bring down awareness, engagement,

and subsequent participation (i.e., their coefficients are negative). We argue that this

can be possibly attributed to a variety of factors. Some of these may include cognitive

overload on the part of the target user, higher noise, posts being perceived as less

personal, and most importantly, a perception that the topic is already sufficiently

covered, e.g., posted by friends (thus reducing an “informer” user’s motivation in

engaging with it).

7.4.3 Prediction of Degree

To further explore the relative impact of these variables in predicting the degree of

prediction in new events, we performed a linear regression, using participation levels

in past events to predict the level of participation in a final, target event. The results

are shown in Table 7.3.

We find that the most significant predictors of the degree of a user’s engagement

happen to be the social network variables, followed by the twitter activity variables.

Specifically, the only social network variable that shows a significant positive correla-

tion is the number of posts from the user’s friends prior to the user’s engagement with

the event, which can be explained in terms of the activity that a user sees on their

timeline with regard to that event. However, as in the previous case, increases in the

user’s network size seem to dampen the degree of engagement somewhat (which can

be attributed to many of the same reasons described previously). The participant’s

own past tweet content seemed to have no significant effect on the predicted degree of

engagement, save for the total and broadcast tweets, which offer a historical window
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into how active the user was in general.

7.4.4 Prediction of Degree w.r.t Different Topics

Finally, we are interested in understanding how, and to what extent, the decompo-

sition of events into their constituent topics affects the performance of our predictors

(for predicting the degree of people’s engagement). To this end, the first task is to

infer topics from our event clusters. We obtained six event categories from a large

news agency: politics, technology & science, entertainment, sport, local, and odd

news. We then asked 30 coders to code the event clusters manually, and resolved

conflicts later Note that we only allow one label for a given event. Subsequent to

this, we ran the linear regression again – these results are displayed in Table 7.4.

Interestingly, we observe that some predictors do indeed change with respect to

different event topics. For example, we witness that for events related to politics,

the effect of social activities such as the max number of tweets per hour exhibits a

higher β value when contrasted with the findings from the general events in Table 4.

We also found that the effect of a person’s topic interest is stronger for politics and

sports events, but relatively lesser for entertainment events. These results suggest

that people who are devoted to politics and sports tend to be more recognizable and

explicit (e.g. political junkies, analysts, and followers; sports fans). However, enter-

tainment and science & tech events may consist of event topics – and subsequently

user engagement – that varies thick and fast. As regards news users and tweets,

following these becomes imperative for politics, tech & science, sports, and entertain-

ment; while friends usually tend to post before users engage with local events and odd

events. More generally, these results demonstrate the different pathways of informa-

tion within a social network structure such as Twitter’s. For news events, people first

learn about them (and thus engage with them) via information posted from news ac-
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counts; if they find the event and its topics interesting, they tend to intensify the level

of engagement. However, for local events and odd news, people tend to get engaged

more via their friends’ tweets, and thus the effect of information from friends is shown

as more important. Finally, one of the most interesting contrasts occurs with respect

to geolocation and geographic proximity – in Tables 3 and 4, geolocation information

rarely affects the presence and degree of event engagement. However, when we look

at the effect of geolocation with respect to the various event topics, it is shown to be

more important for sports and local events. This makes complete intuitive sense: an

overwhelming number of users tend to care, to a very large extent, about their own

local sports teams and about local events that they may directly affect them.

7.5 Discussion and Implications

At the beginning of this paper, we posed five important questions relating to

the engagement of users on social media with real-world events; and whether such

engagement (and its level) could be effectively and practically predicted based on

information available from that social media. In this section, we consider possible

answers to those questions that are suggested by the data and revisit the related

theories to examine our answers.

Does a person post tweets about an event because they are interested in the topics

pertaining to that event?

Our analysis confirms that this is indeed the case. To highlight this, we point the

reader to the analysis concerning prediction of presence, and the contrast with the

same prediction analysis given a breakdown of the events into different topics. In the

former case, there is no significant indicator of correlation from the content of a user’s

tweets to their engagement with an event. However, in the latter, there is a marked

increase in the significance of the correlation between the content of tweets related to

162



events in specific topics, and the user’s engagement with those events (particularly

for politics and entertainment). This is exactly what the “endurability” theory (Read

et al., 2002) proves: people are likely to remember a good experience and are willing

to repeat it. In other words, people like to repeatedly talk about the topics that they

are most familiar with/interested in. Therefore, they will show deeper engagement in

those specific topics, in contrast to boarder and more general topics.

Are they instead engaged because their friends are also posting tweets about it?

The answer to this is positive as well, conditioned on the type of event that the

user is engaging with. We have shown in the previous section that certain kinds of

events – local events, as well as odd news – users tend to engage more due to their

friends (following list) posting content relating to those events prior to the user’s own

engagement. This verifies the discoveries by Zuniga et al. (de Zúñiga and Valenzuela,

2011) network structure and social ties (especially weak ties) are determined to be

strong predictors of the civic engagement. We also extend their theory by discovering

the social network and time affects on the engagement with real-world events (indeed,

some events are about civic issues).

Perhaps they are just a very active user of Twitter?

The degree to which a user was active on Twitter (the number of tweets posted

by them) does indeed show a strong correlation across all cases to their predicted

engagement with an event. This correlation seems to be agnostic of the type of event

(as against the previous two questions, above), and hence it seems likely that more

active users are more likely to be interested and engaged in a new event, across the

board. This finding validates our earlier conjecture that these activities will first

directly affect people’s engagement in events on social media; such engagement will

later indirectly affect social capital. Our finding extends existing literatures on the

relationship between social media activities and social capital (Putnam, 1995; Burke
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et al., 2011; Hyman, 2002) by exploring the role of user engagement.

Is their engagement a reflection of the fact that this is a local event?

The answer to this question reverts to the pattern of dependence on the kind of

event observed in the answers to the first two questions. There are certain kinds of

events that can be classified as engaging to a user primarily due to their local nature

– as described in the previous section, these tend to be sports and local events. The

connection to local events is obvious and trivial; a user in New York City is unlikely

by and large to care about events that are happening in (say) far-off Tulsa, Oklahoma.

For sports, it is likely that users within a given geographical area are more likely to

care about teams that call that particular area home (although of course there will

always be outliers; however, our analysis is focused on the typical user).

How and to what extent do the different topics of events affect the degree of a

user’s engagement?

The answer to this question can be found in the aggregation of the answers to all

of the previous questions – it does certainly seem like the different genres of events

(even among the typical genres that we considered) affect the degree, and nature, of

a user’s engagement with an event. While engagement with political, entertainment,

and science & technology events seems to depend more on the content of past tweets

(both of the user as well as the people they follow), engagement with sports and local

events tends to correspond more closely with the user’s geolocation.

7.5.0.1 Limitations

Although the data that we use and the results produced from that data seem to

imply some rather strong conclusions, certain limitations of the study must also be

considered when going forward. The first of these is the categorization of events:

although the categories we use in this study are quite general, and capture a large
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portion of the posts on Twitter, arguments can certainly be made in support of finer-

grained categories that will support more nuanced analysis with respect to users’

potential engagement with events. Additionally, the event detection and classification

process that is currently used by us can be further improved – both to classify events

better, and to allot events across different categories (as against just a single category,

as is the case currently). Finally, in this study, we did not consider the fact that

there may exist different kinds of target users when engagement with events is under

consideration. While we did partition a target user’s following list coarsely (in terms

of friends, news accounts, etc.), the target users themselves may also be distributed

across various categories that exhibit some correlation (and hence predictive power)

with respect to event engagement.

7.6 Summary of Chapter

In this chapter, we developed statistical models to explore and understand people’s

Twitter engagement with real-world events. Categories of engagement predictors

were conceptually developed, operationalized, and assessed for their relative impact

on users’ engagement presence, and the degree of that engagement. We explored the

relative impact of multiple measures collected from five different user perspectives. In

particular, we found several key factors that predict the users’ presence in engagement

with real- world events, including total number of tweets, communication modes,

friends’ engagement in events, etc. We also examined the effects of these predictors

in predicting the degree of engagement. We also examined the effects of these factors

with respect to the different types of events predicated on their topics. We concluded

that users’ prior activities, as well as their social network structure, can be very good

predictors for both the presence and the degree of their engagement with real-world

events. Given a finer granularity of events (according to their topics), the content of
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tweets and the geographic proximity provide additional predictive power with respect

to various different event categories.
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Not engaged with events Engaged with events Difference

Measure Mean SD Mean SD p-value

Event engagement

Event count – – 12.1 7.78 –

Tweet count – – 2.33 .322 –

Twitter activity variables

Total tweets 278.2 167.2 28.2 5.82 ∗ ∗ ∗

Max tweets per hr 6.39 5.78 6.57 5.44 ns

Avg. tweets per hr 1.14 .004 1.74 1.23 ns

Directed
2.81 6.4 1.83 5.33 ∗ ∗ ∗

communications

Broadcast
.83 .22 1.48 1.11 ∗ ∗ ∗

communications

Hashtag ratio .2 0.24 .42 .006 ∗ ∗ ∗

RT ratio .15 .41 .44 .054 ∗ ∗ ∗

Twitter content variables

Topical interests
– – .05 .01 –

from tweets content

Topical interests
– – .03 .00 –

from following

Twitter user type variables

Meformer tweets .41 .14 .29 .219 ∗ ∗ ∗

Informer tweets .24 .23 .43 .31 ∗ ∗ ∗

Geolocation variable

Geographical
– – 318mi 189.8mi –

proximity

Social network variables

Num. followers 387 150.1 387 150.1 ns

Num. friends 117 109.78 117 109.78 ns

Followings
– – 4.33 5.00 –

posted prior

Average common
– – 10.33 10.42 –

neighbor prior

News friends 5.73 8.22 5.73 8.22 ns

Table 7.1: Mean and Sd Values for Twitter Users’ Event Engagement, Compared to

Averaged Values of These Twitter Users’ Non-event Tweeting Behavior, and Paired

Sample t-tests for the Difference. ∗ ∗ ∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05.
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β SE p-value

Twitter activity variables

Total tweets .37 .045 < .001∗∗∗

Max tweets per hr .01 .039 0.21

Avg. tweets per hr -.08 .033 0.11

Directed communications -.17 .071 < .001∗∗∗

Broadcast communications .04 .059 < .001∗∗∗

Hashtag ratio .09 .045 < .001∗∗∗

RT ratio .069 .039 < .001∗∗∗

Tweet content variables

Topical interests from tweets content .12 .039 .22

Topical interests from followings .07 .017 .17

Twitter user types variables

Meformer tweets .06 .013 .46

Informer tweets .02 .016 < .001∗∗∗

Geolocation variables

Geographical proximity .01 .032 0.59

Social network variables

Num. followers -.04 .023 < .001∗∗∗

Num. friends -.07 .016 < .001∗∗∗

Followings posted prior .22 .024 < .05∗

Average common neighbor prior -.22 .015 < .01∗∗

News friends .30 .022 < .001∗∗∗

Table 7.2: Prediction of Presence: Logistic Regression Coefficients for Standardized

Variables in Simultaneous Repeated Measures Logistic Regression Predicting Partic-

ipation in Events over 406 “Trials”. Adjusted R2 = 0.67, ∗∗∗ p < 0.001, ∗∗ p < 0.01,

∗ p < 0.05
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β SE p-value

Twitter activity variables

Total tweets .087 .055 < .001∗∗∗

Max tweets per hr .02 .043 .32

Avg. tweets per hr .11 .033 < .01∗∗

Directed communications -.17 .028 .24

Broadcast communications -.01 .076 < .001∗∗∗

Hashtag ratio .11 .045 < .01∗∗

RT ratio .49 .012 < .01∗∗

Tweet content variables

Topical interests from tweets content .11 .029 0.12

Topical interests from followings .06 .02 0.21

Twitter user type variables

Meformer tweets -.11 .014 .28

Informer tweets .21 .026 < .001∗∗∗

Geolocation variables

Geographical proximity .02 .032 .52

Social network variables

Num. followers -.04 .033 < .001∗∗

Num. friends -.11 .046 < .001∗∗

Followings posted prior .02 .024 < .001∗∗

Average common neighbor prior -.02 .015 < .001∗∗

News friends .13 .022 < .14

Table 7.3: Prediction of Degree: Linear Regression Coefficients for Standardized

Variables in Simultaneous Repeated Measures Logistic Regression Predicting Partic-

ipation in Events over 506 “Trials”. Adjusted R2 = 0.56, ∗∗∗ p < 0.001, ∗∗ p < 0.01,

∗ p < 0.05
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Chapter 8

CONCLUSION AND FUTURE WORKS

This chapter concludes the dissertation by summarizing the contributions of the

work, highlight the future directions and consider some of the broader implications

and impact resulting from of this work.

8.1 Summary of Contributions

Social media platforms such as Twitter, Facebook, and blogs have emerged as valu-

able – in fact, the de facto – virtual town halls for people to discover, report, share

and communicate with others about various types of events. These events range from

widely-known events (e.g., the U.S Presidential debate) to smaller scale, local events

(e.g., a local Halloween block party). During these events, we often witness a large

amount of commentary contributed by crowds on social media. This burst of social

media information greatly enriches the user experience when interacting with the

event and also enriches people’s awareness of the event. This dissertation explored

ways to leverage social media as a source of information and analyze events based on

their social media responses collectively. The technical contributions of this work is

the development of EventRadar, an event analysis toolbox that is able to automat-

ically identify, enrich, and characterize events using the massive amounts of social

media responses. EventRadar contains four tools to handle three core event analysis

tasks. Specifically, for the Event Characterization task, we first developed ET-LDA, a

joint Bayesian statistical model that characterizes topical influences between an event

and its associated Twitter feeds (tweets). Our model enables the topic modeling of the

event/tweets and the segmentation of the event in one unified framework. Based on
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the alignment established by ET-LDA, we developed SocSent, a flexible factoriza-

tion framework that characterizes the segment and topics of an event via aggregated

Twitter sentiment. SocSent leverages three types of prior knowledge: sentiment lex-

icon, manually labeled tweets and tweet/event alignment from ET-LDA, to regulate

the learning process. Next, for the Event Recognition task, we developed DeMa, an

unsupervised event detection algorithm which detect trending events from a stream

of noisy social media posts based on time-series analysis and rank the trend events

based on their novelty score. Based on DeMa, we also developed Whoo.ly, a web

service that facilitates information seek-ing in hyperlocal communities by finding and

summarizing neighborhood Twitter messages. Whoo.ly uses several computational

approaches to discover hyperlocal content from noisy and overwhelming Twitter posts,

such as DeMa for detecting local trending events. In addition, we also developed

activity-based ranking algorithms and information extractors in Whoo.ly to provide

additional insights into the most active people and popular places in a local com-

munity. Last, for the Event Enrichment task, we developed a spatial crowdsourcing

system CrowdX for helping journalists gather more first-hand event information from

the field. To achieve the best utility of assigning a worker to an event spot, CrowdX

takes into account three features: 1) the coverage and diversity of the spot, and the

quality of the worker, 2) the expected cost of each assignment, and 3) the uncertainty

of the worker. We designed an efficient utility-theoretic approach that finds a set

of user-spot assignments that simultaneously maximizes over-all utility, and achieves

low cost in strict accordance with budget constraints.

Enabled by EventRadar, this dissertation also made scientific contributions by

uncovering insights that have not been explored previously and re-validating existing

social theories with new evidence. We found that the crowd’s tweeting behavior varies

significantly with the timeline of an event. Besides, we also discovered that people
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show different levels of engagement in different kinds of events. Furthermore, we

found the topical context of the tweets does not always correlate with the timeline of

the event. This dissertation also explored factors that affect people’s engagement in

the event. Based on the predictive analysis, we found that people engage in an event

because they are interested in the topics pertaining to that event. Also, people tend

to engage more in an event due to their friends (following list) are also posting tweets

about it. Last, features like event locations do not affect people’s engagement.

8.2 Future Work

This work can be extended in several promising directions. First, in ET-LDA

and SocSent, we primarily focused on modeling and characterization of the hid-

den effect and topical influences of an event on its audience via their social media

responses. We want to further investigate 1) the robustness, and 2) the predictive

power of these models. Therefore, the main future direction here is to extend ET-LDA

and SocSent to handle the online analysis and predictive analysis rather than the

“after-the-fact” analysis of the entire event and the associated tweets, retrospectively.

Besides, note that one limitation in ET-LDA and SocSent is that these models need

to have event transcripts. In reality, however, not every event has a transcript or a

document (to record its time). Therefore, our second line of future work involves

developing automated tools and extending EventRadar to handle the events that are

not transcribable. Last, we are interested in extending DeMa event detection to

detect events that are both trending and interesting. Based on that, we would like

to build a personalized event recommendation engine. The main motivation of this

is that, given a large volume of event trending on social media everyday, people need

a filtering tool that can help them decide which events on social media they should

pay attention to (given the information overload problems in social media).
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8.3 Broader Implications

In addition to our contributions that are related to a specific application (event

analysis on social media), techniques presented in this dissertation also have some

broader impacts to various other areas, especially in journalism and civic engagement.

As we mentioned earlier, technology is rapidly shifting the ways in which informa-

tion about news and events gathered, processed, and disseminated. Computational

Journalism is the application of computing to the activities of journalism including

information gathering, organization and sensemaking, communication and presenta-

tion, and dissemination and public response to news information, all while upholding

the core values of journalism such as accuracy and verifiability. Our EventRadar

toolbox can readily contribute to computational journalism realm with tools to han-

dle many challenges in computational journalism such as information gather (via

CrowdX), organization and sensemaking (via ET-LDA, SocSent, and DeMa).

On the other hand, social media such as Twitter has altered society’s informa-

tion and communication fabric and will continue to be increasingly integrated in our

daily lives. We also contribute to this direction by developing DeMa and its applica-

tion, Whoo.ly, which automatically extracts and summarizes hyperlocal information

about events, topics, people, and places from the Twitter posts. We believe this pa-

per presents a promising approach to leveraging Twitter messages to better support

hyperlocal community aware-ness and engagement.

Additionally, work that has been presented as part of this dissertation has resulted

in several publications at top conferences (see References). The DeMa work also won

a best paper nomination at ACM CHI 2013. Besides, the work has been featured in

various press including ABC news, PBS, The Seattle Times, FastCompany, Computer

Magazine, Neowin, ASU news
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APPENDIX A

APPROXIMATE INFERENCE IN ET-LDA VIA GIBBS SAMPLING

188



Since the exact inference of the hidden variables in the LDA family is intractable,
we utilize approximate methods like the collapsed Gibbs sampling algorithm Griffiths
et al. (2004) for parameter estimation. In specific, we want to evaluate the posterior
distribution of following hidden variables: (i) zs, evaluated for each word in every
paragraph s in the event transcript and then used to infer θ(s); (ii) zt, evaluated for
each word in each tweet t written by the Twitter users and then used the results to
infer ψ(t); (iii) cs, evaluated for each paragraph to indicate segmentation of the event;
(iv) ct, evaluated for the topic types in tweet t; and (v) st, evaluated for selecting
segments from the event’s transcript for t.

To begin with, we first write the joint distribution for ET-LDA based the gener-
ative process and the model’s graphical structure. Note that we could integrate out
the parameters φ, γ(t), θ(s), ψ(t), δ(s), λ(t) because the model only uses conjugate priors
Bishop et al. (2006). As a result, we have:

P (ws,wt, zs, zt, cs, ct, st|αδ, αθ, αγ, αλ, αψ, β)

=

∫
P (ws|zs, φ)P (wt|zt, φ)P (φ|β)dφ

∫
P (st|γ(t))P (γ(t)|αγ)dγ(t)∫

P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)

∫
P (zt|ψ(t), ct = 1)P (ψ(t)|αψ)dψ(t)∫

P (cs|δ(s))P (δ(s)|αδ)dδ(s)

∫
P (ct|λ(t))P (λ(t)|αλγ , αλψ)dλ(t) (A.1)

Inference of ZS

Gibbs sampling allows the learning of a model by iteratively updating each latent vari-
able given the remaining variables. So, instead of estimating the posterior distribution
P (zs|zt,ws,wt, cs, ct, st), we estimate the probably P (zs,i|z−(s,i), zt,ws,wt, cs, ct, st) us-
ing the Gibbs sampler. Note that z−(s,i) is a vector of assignments of topics, for all
words in the paragraph s in an event’s transcript except for the one at position i.
According to the Bayes rule, we can compute this conditional probability by dividing
the joint distribution (see Eq. A.1) by the joint with all variables but z(s,i) (denoted
by z−(s,i)). We further cancel factors in the faction that do not depend on z(s,i), as
follows:

P (zs,i|z−(s,i), zt,ws,wt, cs, ct, st) =
P (ws,wt, zs, zt, cs, ct, st)

P (z−(s,i), zt,ws,wt, cs, ct, st)

=

∫
P (ws|zs, φ)P (wt|zt, φ)P (φ|β)dφ∫

P (ws|z−(s,i), φ)P (wt|zt, φ)P (φ|β)dφ

·
∫
P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)∫

P (z−(s,i)|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)

(A.2)

We now derive the first fraction of Eq. A.2. As defined in the generative process,
a topic z(s,i) is generated from a Multinomial distribution whose prior φ is a Dirichlet.
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Because Dirichlet is the conjugate prior of Multinomial, we could solve the Dirichlet-
Multinomial integral in a straightforward way. Specifically, we have:∫

P (ws|zs, φ)P (wt|zt, φ)P (φ|β)dφ =

∫ K∏
k=1

1

∆(β)

W∏
w=1

φn
k
sw+nktw+β−1dφ

=

(
Γ(Wβ)

Γ(β)W

)K K∏
k=1

∏W
w=1 Γ(nksw + nktw + β)

Γ(nks(.) + nkt(.) +Wβ)

(A.3)

where ∆(β) = Γ(β)W

Γ(Wβ)
, W is the size of the vocabulary, Γ(·) is the gamma function,

nksw and nktw are the numbers of times topic k assigned to word w in the event and the
tweets. nks(.) and nkt(.) are the total number of words in the event and tweets assigned
to topic k.

To yield the first fraction of Eq. A.2, we apply the above equation twice, and
given the fact that Γ(x+ 1) = xΓ(x), we obtain the following equation:

∫
P (ws|zs, φ)P (wt|zt, φ)P (φ|β)dφ∫

P (ws|z−(s,i), φ)P (wt|zt, φ)P (φ|β)dφ
=

(
Γ(Wβ)
Γ(β)W

)K∏K
k=1

∏W
w=1 Γ(nksw+nktw+β)

Γ(nk
s(.)

+nk
t(.)

+Wβ)(
Γ(Wβ)
Γ(β)W

)K∏K
k=1

∏W
w=1 Γ(nk

−(s,i)
sw +nktw+β)

Γ(nk
−(s,i)

s(.)
+nk

t(.)
+Wβ)

=
nksw + nktw + β − 1

nks(.) + nkt(.) +Wβ − 1
(A.4)

where nksw is the number of times that topic k is assigned to word w. So nk
−(s,i)

sw is the
the number of times that topic k is assigned to word w, but with the i-th word in
paragraph s (which happens to be w) and its topic assignment (which happens to be k)

excluded. Therefore, nksw = nk
−(s,i)

sw +1. Similarly, nks(.) =
∑W

w=1 n
w
sk =

∑W
w=1 n

k−(d,i)

sw +1.
Next, we derive the second fraction of Eq. 2. As defined in the generative process,

zs and zt are both generated from Multinomial and share the same Dirichlet prior if
and only if ct = 0, meaning that the topic of a word in a tweet t is influenced by the
topic of the segment that t refers to. In such case, θ(t) = θ(s). Besides, according to
the Markov assumption on the event generation, the topic distribution θ(s) associated
with paragraph s is depended on the value of the binary segmenting indicator cs: it
can be drawn from a new Dirichlet (when cs = 1) or can be just as same as the one
in the preceding paragraph (when cs = 0). The distribution is thus:

P (θ(s)|cs, θ(s−1)) =

{
δ(θs, θs−1), if cs = 0, merge with preceding paragraph s− 1
Γ(Kα)
Γ(α)K

∏K
k=1(θ(s)n

k−1

), if cs = 1, a new segment starts

where δ(·, ·) is the Dirac delta function.
Based on these, we now expand and solve the integral (the numerator of the second
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fraction) as:∫
P (zs|θ(s))P (zt|θ(t), st, ct = 0)P (θ(s)|cs)dθ(s)

=

∫
P (zs1 , ...zsn|θ

(s)
1 , ...θ(s)

n )P (zt1 , ...ztm|θ
(t)
1 , ...θ(t)

m , st, ct = 0)P (θ
(s)
1 , ...θ(s)

n |cs1 , ...csn)dθ(s)

=

∫ n1∏
i=1

P (zi|θ(s)
i )

m1∏
j=1

P (zj|θ(t)
j , st, ct = 0)

n1∏
i=1

P (θ
(s)
i |csi)︸ ︷︷ ︸

first segment

×

...
ns∏
i=1

P (zi|θ(s)
i )

ms∏
j=1

P (zj|θ(t)
j , st, ct = 0)

ns∏
i=1

P (θ
(s)
i |cns1 )︸ ︷︷ ︸

last segment

dθ(s)

=

∫ S∏
s=1

ns∏
i=1

P (zi|θ(s)
i )

ms∏
j=1

P (zj|θ(t)
j , st, ct = 0)

ns∏
i=1

P (θ
(s)
i |cns1 )dθ(s)

=

∫ S∏
i=1

1

∆(αθ)

K∏
k=1

θn
Si
k +nt

Si
k +αθ−1dθ(s)

=

(
Γ(Kαθ)

Γ(αθ)K

)S S∏
i=1

∏K
k=1 Γ(nSik + ntSik + αθ)

Γ(nSi(.) + ntSi(.) +Kαθ)
(A.5)

where S is a set of segments of the event’s transcript. Each element (Si) in this set
contains multiple paragraphs. nSik is the number of times topic k assigned to words

in segment Si. ntSik is the number of times topic k appears in tweets, where these
tweets are direct response to the sentences in segment Si (i.e., ct = 0).

To yield the second fraction of Eq. A.2, we again apply the above equation twice
and we cancel most factors but only leave some certain factors with zd,i = k and
vd,i = w. Thus we have:

∫
P (zs|θ(s))P (zt|θ(t), st, ct = 0)P (θ(s)|cs)dθ(s)∫

P (z−(s,i)|θ(s))P (zt|θ(t), st, ct = 0)P (θ(s)|cs)dθ(s)
=

(
Γ(Kαθ)
Γ(αθ)K

)S∏S
i=1

∏K
k=1 Γ(n

Si
k +nt

Si
k +αθ)

Γ(n
Si
(.)

+nt
Si
(.)

+Kαθ)(
Γ(Kαθ)
Γ(αθ)K

)S∏S
i=1

∏K
k=1 Γ(n

Si−(s,i)

k +nt
Si
k +αθ)

Γ(n
Si−(s,i)

(.)
+nt

Si
(.)

+Kαθ)

=
nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
(A.6)

where k = z(s,i), Si is the segment that sentence s belongs to.
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So we have for:

P (zs,i|z−(s,i), zt,ws,wt, cs, ct, st) =
nksw + nktw + β − 1

nks(.) + nkt(.) +Wβ − 1
× nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1

(A.7)

Inference of Zt

Next, we examine P (zt|zs,ws,wt, cs, ct, st). Similar to the estimation of zs, we also
use the Gibbs sampling to compute the probability P (z(t,i)|z−(t,i), zs,ws,wt, cs, ct, st).
According to the generative process of ET-LDA, the topic distribution zt of a tweet
t can have two conditions: it can be either drawn from a Multinomial governed by
the Dirichlet prior θs for specific topics (when ct = 0) or drawn from a Multinomial
governed by the Dirichlet prior ψs for general topics (when ct = 1). Therefore,
the conditional probability P (z(t,i)|z−(t,i), zs,ws,wt, cs, ct, st) has two cases with each
capturing one condition. Using the Bayes rule and only consider factors that depend
on zt, we have for ct = 0:

P (zt,i|z−(t,i), zt,ws,wt, cs, ct = 0, st) =
P (ws,wt, zs, zt, cs, ct = 0, st)

P (z−(t,i), zs,ws,wt, cs, ct = 0, st)

=

∫
P (ws|zs, φ)P (wt|zt, φ)P (φ|β)dφ∫

P (ws|z, φ)P (wt|z−(t,i), φ)P (φ|β)dφ

·
∫
P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)∫

P (zs|θ(s))P (z−(t,i)|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)

(A.8)

And for ct = 1, we have:

P (zt,i|z−(t,i), zs,ws,wt, cs, ct = 1, st) =
P (ws,wt, zs, zt, cs, ct = 0, st)

P (z−(t,i), zs,ws,wt, cs, ct = 0, st)

=

∫
P (ws|zs, φ)P (wt|zt, φ)P (φ|β)dφ∫

P (ws|z, φ)P (wt|z−(t,i), φ)P (φ|β)dφ

·
∫
P (zt|ψ(t), ct = 1)P (ψ(t)|αψ)dψ(t)∫

P (z−(t,i)|ψ(t), ct = 1)P (ψ(t)|αψ)dψ(t)
(A.9)

Next, we describe how to derive Eq. A.8 and Eq. A.9. First, note that in both
Eq. A.8 and Eq. A.9 the first fraction is basically as same as the one in Eq. A.4.
Besides, the second fraction in Eq. A.8 is very similar to Eq. A.6 so that we can
derive it analogously. Therefore, we focus on how to compute the integrals in the
second fraction of Eq. A.9 in the rest part.

In specific, as P (zt|ψ(t), ct = 1) and P (ψ(t)|αψ) are conjugate pair of Multinomial-
Dirichlet, we could solve this integral as:

∫
P (zt|ψ(t), ct = 1)P (ψ(t)|αψ)dψ(t) =

∫ T∏
i=1

1

∆(αψ)

K∏
k=1

ψ(t)n
i
k+αψ−1

dψ(t)

=

(
Γ(Kαψ)

Γ(αψ)K

)T T∏
i=1

∏K
k=1 Γ(nik + αψ)

Γ(ni(.) +Kαψ)
(A.10)
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where nik is the number of times topic k appears in tweet t, where t is about a general

topics sampled from ψ(t). ni(.) =
∑K

k=1 n
i
k is the total number of times all topics 1...k

appear in t.
So, to yield the second fraction of Eq. A.9, we apply the above equation twice.

We obtain the following equation:

∫
P (zt|ψ(t), ct = 1)P (ψ(t)|αψ)dψ(t)∫

P (z(−t,i)|ψ(t), ct = 1)P (ψ(t)|αψ)dψ(t)
=

(
Γ(Kαψ)
Γ(αψ)K

)T ∏T
i=1

∏K
k=1 Γ(nik+αψ)

Γ(ni
(.)

+Kαψ)(
Γ(Kαψ)
Γ(αψ)K

)T ∏T
i=1

∏K
k=1 Γ(ni

−(t,i)

k +αψ)

Γ(ni
−(t,i)

(.)
+Kαψ)

=
nik + αψ − 1

ni(.) +Kαψ − 1
(A.11)

where c(t,i) = 1, i is the tweet t, z(t,i) = k
Finally, by combining the derivations in Eq.A.4, Eq.A.6 and Eq.A.11, we obtain

the Gibbs sampling update rules for P (zt|zs,ws,wt, cs, ct, st), which have two cases
based on whether zt is a specific topic (ct = 0) or a general topic (ct = 1):

P (zt,i|z−(t,i), zs,ws,wt, cs, ct, st) =



nksw + nktw + β − 1

nks(.) + nkt(.) +Wβ − 1
×

nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
ct = 0

(A.12)

nksw + nktw + β − 1

nks(.) + nkt(.) +Wβ − 1
× nik + αψ − 1

ni(.) +Kαψ − 1
ct = 1

(A.13)

Inference of Ct

Next, we examine P (ct|cs,ws,wt, zs, zt, st). Based on the generative process of ET-
LDA, ct is a Binomial distribution which controls whether a tweet t should have
general topic sampled from tweets corpus or specific topics sampled from a specific
segment of the event. It has a beta prior with asymmetric parameters αλγ and αλψ .
As a result, the estimation of ct can be two cases: (1) when ct = 0 (for specific
topics), and (2) when ct = 1 (for general topics). Similar to zs and zt, we have the
conditional probability P (ct,i|c−(t,i), zs, zt,ws,wt, cs, st). So when ct = 0 we have:

P (ct,i|c−(t,i), cs,ws,wt, zs, zt, st) =
P (ws,wt, zs, zt, cs, ct, st)

P (zs, zt,ws,wt, cs, c−(t,i), st)

=

∫
P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)∫

P (zs|θ(s))P (zt|θ(s), st, c−(t,i) = 0)P (θ(s)|αθ, cs)dθ(s)

·
∫
P (ct|λ(t))P (λ(t)|αλγ , αλψ )dλ(t)∫

P (c−(t,i)|λ(t))P (λ(t)|αλγ , αλψ )dλ(t)
(A.14)

And when ct = 1 we have:
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P (c(t,i)|c−(t,i), cs,ws,wt, zs, zt, st) =
P (ws,wt, zs, zt, cs, ct, st)

P (zs, zt,ws,wt, cs, c−(t,i), st)

=

∫
P (zt|ψ(t), ct = 1)P (ψ(t)|αψ)dψ(t)∫

P (zt|ψ(t), c−(t,i) = 1)P (ψ(t)|αψ)dψ(t)

·
∫
P (ct|λ(t))P (λ(t)|αλγ , αλψ )dλ(t)∫

P (c−(t,i)|λ(t))P (λ(t)|αλγ , αλψ )dλ(t)
(A.15)

Note that in Eq. A.14 the derivation of the first fraction is essentially as same as
Eq. A.6. Similarly, the first fraction in Eq. A.15 is as same as the one in Eq. A.11.
Therefore, next we focus on how to derive the second part of both Eq. A.14 and Eq.
A.15.

Given the fact P (ct|λ(t)) is a Binomial and P (λ(t)|αλγ , αλψ) is a Beta prior, we can
easily solve the integral as:

∫
P (ct|λ(t))P (λ(t)|αλγ , αλψ)dλ(t) =

∫ T∏
t=1

P (ct|λ(t))P (λ(t)|αλγ , αλψ)dλ(t)

=
∏
t∈T

[
Γ(αλγ + αλψ)

Γ(αλγ )Γ(αλψ)

Γ(M0
t + αλγ )Γ(M1

t + αλψ)

Γ(Mt + αλγ + αλψ)

]
(A.16)

where M0
t is the number of words in tweet t whose topics are specific topics. On the

other hand, M1
t is the number of words in tweet t whose topics are general topics.

Mt = M0
t +M1

t is the number of words in t.
As mentioned earlier, in order to yield the second fraction of Eq. A.14 using Gibbs

sampling, we need to consider the situation about the excluded variable. Here, since
the excluded variable is ct,i = 0, we can have M0

t = M0
t−(t,i)

+ 1 and Mt = Mt−(t,i)
+ 1.

Therefore, we can obtain the following equation for ct = 0:

∫
P (ct = 0|λ(t))P (λ(t)|αλγ , αλψ )dλ(t)∫

P (c−(t,i) = 0|λ(t))P (λ(t)|αλγ , αλψ )dλ(t)
=

∏
t∈T

[
Γ(αλγ+αλψ )

Γ(αλγ )Γ(αλψ )

Γ(M0
t +αλγ )Γ(M1

t +αλψ )

Γ(Mt+αλγ+αλψ )

]
∏
t∈T

[
Γ(αλγ+αλψ )

Γ(αλγ )Γ(αλψ )

Γ(M0
t−(t,i)

+αλγ )Γ(M1
t +αλψ )

Γ(Mt−(t,i)
+αλγ+αλψ )

]
=

M0
t + αλγ − 1

Mt + αλγ + αλψ − 1
(A.17)

Similarly, when ct = 1 we have M1
t = M1

t−(t,i)
+ 1 and also Mt = Mt−(t,i)

+ 1.

Therefore, we can obtain:
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∫
P (ct = 1|λ(t))P (λ(t)|αλγ , αλψ)dλ(t)∫

P (c−(t,i) = 1|λ(t))P (λ(t)|αλγ , αλψ)dλ(t)
=

∏
t∈T

[
Γ(αλγ+αλψ )

Γ(αλγ )Γ(αλψ )

Γ(M0
t +αλγ )Γ(M1

t +αλψ )

Γ(Mt+αλγ+αλψ )

]
∏

t∈T

[
Γ(αλγ+αλψ )

Γ(αλγ )Γ(αλψ )

Γ(M0
t +αλγ )Γ(M1

t−(t,i)
+αλψ )

Γ(Mt−(t,i)
+αλγ+αλψ )

]
=

M1
t + αλγ − 1

Mt + αλγ + αλψ − 1
(A.18)

Finally, by combining the derivations in Eq.A.6, Eq.A.11, Eq.A.17 and Eq.A.18,
we obtain the Gibbs sampling update rules for P (c(t,i)|c−(t,i), cs,ws,wt, zs, zt, st),
which have two cases based on whether ct draws a specific topic (ct = 1) or a general
topic (cs = 0):

P (c(t,i)|c−(t,i), cs,ws,wt, zs, zt, st) =



M0
t + αλλ − 1

Mt + αλγ + αλψ − 1
×

nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
ct = 0

(A.19)

M1
t + αλψ − 1

Mt + αλγ + αλψ − 1
× nik + αψ − 1

ni(.) +Kαψ − 1
ct = 1

(A.20)

Inference of St
Now, let’s look at P (st|ct, cs,ws,wt, zs, zt). Similar to other variables, we cancel the
factors that do not depend on st and write the conditional probability below. Note
that st is a categorical distribution deciding which segment s of the event should be
chosen for dawning the specific topics of tweet t. Therefore, the usage of st implies
ct = 0.

P (s(t,i)|s−(t,i), ct, cs,ws,wt, zs, zt) =
P (ws,wt, zs, zt, cs, ct, st)

P (zs, zt,ws,wt, cs, c, st−(t,i)
)

=

∫
P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)∫

P (z|θ(s))P (zt|θ(s), st−(t,i)
, ct = 0)P (θ(s)|αθ, cs)dθ(s)

·
∫
P (st|γ(t))P (γ(t)|αγ)dγ(t)∫

P (st−(t,i)
|γ(t))P (γ(t)|αγ)dγ(t)

(A.21)

For the first fraction in Eq. A.21, we solve it by following the same deriva-
tion procedure as Eq. A.6. Then for the second fraction, since it comprises of a
Multinomial-Dirichlet pair, we solve it by the same procedure described in Eq. A.10.
Thus, we have:

∫
P (st|γ(t))P (γ(t)|αγ)dγ(t) =

(
Γ(Kαγ)

Γ(αγ)K

)T T∏
i=1

∏S
s=1 Γ(nis + αγ)

Γ(ni(.) + Sαγ)
(A.22)
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where S is the set of segments in the event’s transcript. s ∈ S is the segment that
tweet t refers to. nis is the number of times segment s is refereed by words in t.

By applying the Eq. A.22, we obtain the following equation for the second fraction
of Eq. A.21:

∫
P (st|γ(t))P (γ(t)|αγ)dγ(t)∫

P (st−(t,i)
|γ(t))P (γ(t)|αγ)dγ(t)

=

(
Γ(Kαγ)
Γ(αγ)K

)T ∏T
i=1

∏S
s=1 Γ(nis+αγ)

Γ(ni
(.)

+Sαγ)(
Γ(Kαγ)
Γ(αγ)K

)T ∏T
i=1

∏S
s=1 Γ(nis(−t,i)

+αγ)

Γ(n
(.)i

(−t,i)
+Sαγ)

=

Γ(nis+αγ)
Γ(n(.)i+Sαγ)

Γ(nis(−t,i)
+αγ)

Γ(n
(.)i

(−t,i)
+Sαγ)

=
nis + αγ − 1

ni(.) + Sαγ − 1
(A.23)

Finally, by plugging Eq. A.6 and Eq. A.23 into Eq. A.21 we have the update rule
for the distribution of st as follows:

P (s(t,i)|s−(t,i), ct, cs,ws,wt, zs, zt) =
nSik + ntSik + αθ − 1

nSi(.) + ntSi(.) +Kαθ − 1
× nis + αγ − 1

ni(.) + Sαγ − 1
(A.24)

Inference of CS

Last, we examine P (cs|ct,ws,wt, zs, zt, st), which is the posterior distribution of the
binary event-segmentation indicator cs. Similar to other variables we derived above,
here we only consider the factors that depend on cs in the joint distribution Eq. A.1.
So we have:

P (c(s,i)|c−(s,i), ct,ws,wt, zs, zt, st) =
P (ws,wt, zs, zt, cs, ct, st)

P (zs, zt,ws,wt, ct, c−(s,i), st)

=

∫
P (cs|δ(s))P (δ(t)|αδ)dδ(s)∫

P (c(−s,i)|δ(s))P (δ(t)|αδ)dδ(s)

·
∫
P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)∫

P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, c(−s,i))dθ(s)

(A.25)

For the first fraction in Eq. 21, we solve the integrals by following the same
derivation procedure as Eq. A.16. The only difference is that in Eq. A.16 the
beta prior is parameterized by asymmetric hyperparameters but here the beta prior
P (δ(t)|αλδ) is symmetric. Thus we have:

∫
P (cs|δ(s))P (δ(t)|αδ)dδ(s) =

Γ(2αδ)

Γ(αδ)2

Γ(S0
s + αδ)Γ(S1

s + αδ)

Γ(S + 2αδ)
(A.26)
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where S1
s is the number of times paragraph’s topic changes (i.e., cs = 1). S = S0

s +S1
s

is the number of paragraphs in an event’s transcript.
We begin with deriving the first fraction in Eq. A.26. As defined in the generative

process, cs is a Binomial distribution which controls whether a paragraph s should
have the same topic distribution as its preceding paragraph s−1 (cs = 0) or have a new
topic distribution sampled from a Multinomial (cs = 1). Therefore, the estimation of
cs can have two cases: (1) cs = 0 (i.e., paragraph merges into old segment), and (2)
cs = 1 (starts a new segment).

Let us first consider the condition when cs = 1. Given c(−s,i) is the sequence
excluded cs, we can get S1

s = S1
−(s,i) − 1 and S = S−(s,i) − 1. So we have:

∫
P (cs|δ(s))P (δ(t)|αδ)dδ(s)∫

P (c(−s,i)|δ(s))P (δ(t)|αδ)dδ(s)
=

Γ(S0
s+αδ)Γ(S1

s+αδ)
Γ(S+2αδ)

Γ(S0
s+αδ)Γ(S1

(−s,i)+αδ)

Γ(S−(s,i)+2αδ)

=
S1
t + αδ − 1

S + 2αδ − 1
(A.27)

Similarly, when cs = 0. Given c(−s,i) is the sequence excluded cs, we can get
S0
s = S0

−(s,i) − 1 and S = S−(s,i) − 1. So we have:

∫
P (cs|δ(s))P (δ(t)|αδ)dδ(s)∫

P (c(−s,i)|δ(s))P (δ(t)|αδ)dδ(s)
=

Γ(S0
s+αδ)Γ(S1

s+αδ)
Γ(S+2αδ)

Γ(S0
(−s,i)+αδ)Γ(S1

s+αδ)

Γ(S−(s,i)+2αδ)

=
S0
t + αδ − 1

S + 2αδ − 1
(A.28)

Next, we calculate the second fraction in Eq. A.25. We first consider the situation
when c(s,i) = 0 and is excluded from the sequence cs. As a result, for a segment Si
which does not contain paragraph s, we have n

Si(−s,i)
k = nSik −n

(s,i)
k , where n

(s,i)
k is the

number of times top k appears in paragraph s. Thus, for the second fraction, based
on the same procedures illustrated in Eq. A.5 and Eq. A.6 we have:

∫
P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)∫

P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, c(−s,i))dθ(s)
∝
∏K

k=1 Γ(nSik + ntSik + αθ)

Γ(nSi(.) + ntSi(.) +Kαθ)

(A.29)

where Si is the segment that paragraph s belongs to.
Similarly, since excluding c(s,i) = 1 from the sequence cs makes a segment Si

split into two small segments: S(i−1), which contains paragraphs from the beginning
of original segment Si to the one (i.e., s − 1) right before s; and Si which contains
sentences from s to the end of Si. Given on this situation, based on the derivation
procedures in Eq. A.5 and Eq. A.6, we have:
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∫
P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, cs)dθ(s)∫

P (zs|θ(s))P (zt|θ(s), st, ct = 0)P (θ(s)|αθ, c(−s,i))dθ(s)

∝ Γ(Kαθ)

Γ(θ)K

∏K
k=1 Γ(n

S(s−1)

k + nt
S(s−1)

k + αθ)

Γ(n
S(i−1)

(.) + nt
S(i−1)

(.) +Kαθ)

∏K
k=1 Γ(n

S(i)
k + nt

S(i)
k + αθ)

Γ(n
S(i)
(.) + nt

S(i)
(.) +Kαθ)

(A.30)

Finally, we plug Eq. A.27, Eq. A.28, Eq. A.29 and Eq. A.30 into Eq. A.25 we
have the update rule for the distribution of cs:

P (cs|c−(s,i), ct,ws,wt, zs, zt, st) ∝



S0
t + αδ − 1

S + 2αδ − 1
×
∏K
k=1 Γ(nSik + ntSik + αθ)

Γ(nSi(.) + ntSi(.) +Kαθ)
, cs = 0

(A.31)

S1
t + αδ − 1

S + 2αδ − 1
× Γ(Kαθ)

Γ(θ)K
×
∏K
k=1 Γ(n

S(s−1)

k + nt
S(s−1)

k + αθ)

Γ(n
S(s−1)

(.) + nt
S(s−1)

(.) +Kαθ)

×
∏K
k=1 Γ(n

S(s)
k + nt

S(s)
k + αθ)

Γ(n
S(s)
(.) + nt

S(s)
(.) +Kαθ)

, cs = 1

(A.32)
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