A Formal Analysis of Required Cooperation in Multi-agent Planning

Yu Zhang, Sarath Sreedharan and Subbarao Kambhampati
School of Computing, Informatics, and Decision Systems Engineering
Arizona State University
{yzhan442, ssreedh3, rao@asu.edu}

Abstract

It is well understood that, through cooperation, multiple
agents can achieve tasks that are unachievable by a single
agent. However, there are no formal characterizations of sit-
uations where cooperation is required to achieve a goal, thus
warranting the application of multiple agents. In this paper,
we provide such a formal characterization for multi-agent
planning problems with sequential action execution. We first
show that determining whether there is required cooperation
(RC) is in general intractable even in this limited setting. As
a result, we start our analysis with a subset of more restric-
tive problems where agents are homogeneous. For such prob-
lems, we identify two conditions that can cause RC. We es-
tablish that when none of these conditions hold, the prob-
lem is single-agent solvable; otherwise, we provide upper
bounds on the minimum number of agents required. For the
remaining problems with heterogeneous agents, we further
divide them into two subsets. For one of the subsets, we pro-
pose the concept of transformer agent to reduce the number
of agents to be considered which is used to improve plan-
ning performance. We implemented a planner using our the-
oretical results and compared it with one of the best IPC
CoDMAP planners in the centralized track. Results show that
our planner provides significantly improved performance on
IPC CoDMAP domains.

Introduction

Despite the increased interest in multi-agent planning, one
question has remained largely unaddressed: “under what
conditions are multiple agents actually needed to solve a
planning problem?” This question is of fundamental impor-
tance as it clearly demarcates two distinct uses of multiple
agents in a given planning problem: (i) the situations where
multiple agents are used because there is no single agent
plan for the problem, and (ii) those situations where multiple
agents are used to improve execution efficiency, even though
a single agent plan is in fact feasible. This latter class of
problems can arguably be viewed as an easier form of multi-
agent planning problems, in as much as they can be solved
by first generating a single-agent plan, and then using a post-
processing step to optimize the execution cost by deploying
multiple agents. Without keeping such demarcation in mind
when designing benchmark domains, it can be misleading

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Room2 Rooml
Switch to & | Security
open door Door

Figure 1: Burglary problem — The goal of this problem is
to steal a diamond (diamondl) from room1, in which the
diamond is secured, and place it in 7oom2. The diamond is
protected by a security system. If the diamond is taken, the
system locks the door (door1) of room1, so that the insiders
cannot exit. There is a switch (switchl) to manually open
doorl but it is located in room?2. The domain and problem
are presented in Fig. 2. A solution is illustrated in the figure.

to compare and evaluate multi-agent planners — in the ex-
treme case, very fast planners can be designed to solve only
problems that do not require cooperation. Unfortunately, we
shall see that most of the domains used in CoODMAP, a proto
multi-agent planning competition at ICAPS 2015, need mul-
tiple agents only for plan efficiency rather than feasibility.
The aim of this paper is precisely to shed light on this
central question of when multiple agents need to be in-
volved in the plan to solve a problem.' In particular, we hope
to address the following: 1) Given a multi-agent plan-
ning (MAP) problem to solve, what are the conditions that
make cooperation between multiple agents required; ()2)
How do these conditions affect planning for MAP problems;
@3) Can we determine the minimum number of agents re-
quired for a MAP problem. The answer to the first ques-
tion separates multi-agent planning problems from single-
agent planning (SAP) problems in a fundamental way. The
answer to the second question can inform the design of fu-
ture multi-agent planning competitions (e.g., CODMAP in
ICAPS 2015) so that MAP problems that require coopera-
tion can be deliberately introduced to obtain a clearer under-

'Our focus in this paper is on the number of agents involved
in the plan, rather than the planning process by which the plan is
made; see related work for details.

Initial State:

location(agentl) rooml
location(agent2) room1
location(diamondl) rooml
door Locked(rooml) false
location(switchl) room?2

Goal State:

location(diamondl) room?2

Operators:
W alkT hrough(agent, door, fromRoom,toRoom):

prv: door Locked(door) false
pre: location(agent) fromRoom
post: location(agent) toRoom

Steal(agent, diamond, room, door):

prv: location(agent) room
pre: location(diamond) room
post: door Locked(door) true
post: location(diamond) agent

Switch(agent, switch, room, door):

pru: location(switch) room
prv: location(agent) room
post: door Locked(door) false

Place(agent, diamond, room):

prv: location(agent) room
pre: location(diamond) agent
post: location(diamond) room

Figure 2: The problem and domain descriptions of the Bur-
glary problem in Fig. 1 using SAS™ in which the value is
immediately specified after each variable.

standing of the capabilities of the competing planners. The
answer to the third question has real-world applications, e.g.,
determining the minimum number of agents to be assigned.

However, as we shall see shortly, determining whether a
MAP problem requires cooperation is in general no easier
than finding a plan for the problem itself, which is PSPACE-
complete. Hence, instead of providing exact answers to
questions Q1 — @3 above, we provide answers in restric-
tive settings (i.e., for subsets of MAP problems). First of all,
given that the most obvious reason for a MAP problem to
require cooperation is when capabilities of different agents
are needed, we divide MAP problems into two classes: the
class of problems where agents have the same capabilities
(i.e., homogeneous agents) and the class where agents have
different capabilities (i.e., heterogeneous agents).

For the first and more restrictive class with homogeneous
agents, it may appear that cooperation is only required when
joint actions are present (which are actions that must be ex-
ecuted by multiple agents at the same time). This intuition,
however, is falsified by a simple problem with only sequen-
tial actions as shown in Fig. 1, which is referred to as the
Burglary problem in the later part of this paper. We show
that, in this class of problems, RC can be caused by the
“traversability” or the “causal loops” in the causal graph of
the agent state variables. Our main theorem shows that these
two causes are exhaustive when agents are homogeneous:

if the causal graph of agents is traversable and contains no
causal loops, a single agent alone is sufficient for the prob-
lem (Q1). However, none of them individually represent a
sufficient or necessary condition for RC. When these two
causes are present in a problem, we show that upper bounds
of the number of agents required can be provided (Q)3).

For the second class where agents can have different ca-
pabilities, the analysis becomes more complex. Hence, we
further divide the problems in the second class into two sub-
classes: the subclass of problems where the causes of RC
in the first class do not appear, and the subclass of the re-
maining problems. For the first subclass, one observation is
that the number of agents that are required can often be sig-
nificantly reduced if agents are simply made to be “trans-
formable” (()3). Although this does not necessarily lead to
the reduction of agents in the final plan for these problems,
we show that the planning performance can be significantly
improved (()2). The second subclass corresponds to the
most difficult setting and an analysis needs to be provided
in future work. Finally, as a practical contribution of our in-
vestigation we develop a planner called RCPLAN, based on
the idea of transformable agents above to efficiently solve
MAP problems. We show that RCPLAN outperforms one of
the best performers in the IPC CoDMAP competition.

Related Work

The term “multi-agent planning” has traditionally been quite
loosely defined as “planning in the presence of multiple
agents” (c.f. (Jonsson and Rovatsos 2011)). This defini-
tion blurs multi-agent plans and distributed planning by
confounding two distinct types of agents: agents that are
involved in the planning process (“planning agents”) and
agents involved in plan execution (“execution agents”).

A multi-agent plan is one that involves multiple execution
agents; whereas distributed planning involves using multi-
ple planning agents, which, normally, also happen to be the
execution agents. However, these two types of agents have
orthogonal properties: it is possible to have multiple plan-
ning agents working together make a plan involving a single
execution agent, just as it is possible to have a single plan-
ning agent make a plan involving multiple execution agents
(aka “centralized multi-agent planning”).

When we refer to “multi-agent planning” problems in
this paper, our focus is on the plans of these problems for
execution agents, regardless of how many planning agents
were involved in the planning process. Such plans may be
the result of centralized (Kvarnstrom 2011; Muise, Lipovet-
zky, and Ramirez 2015) or distributed planning (Durfee and
Lesser 1991; Decker and Lesser 1992; Nissim and Brafman
2012; Torreno, Onaindia, and Sapena 2012).

Our analysis of required cooperation in multi-agent plans
is similar in spirit to Cushing et. al.’s analysis of temporal
planning (Cushing et al. 2007a; 2007b). Just as concurrency
is sometimes seen as a way to improve the running time
of the plan, execution agents are someimes viewed as “re-
sources” that can be added to the plan to improve its effi-
ciency (Pape 1990). While Cushing et. al. focus on charac-
terizing conditions where concurrency is required to solve a
planning problem, we focus on conditions where coopera-

tion between multiple execution agents is required to solve
a planning problem.

Our analysis of required cooperation uses SAS™ for-
malism (Backstrom and Nebel 1996) with causal graphs
(Knoblock 1994; Helmert 2006), which are often discussed
in the context of factored planning (Bacchus and Yang 1993;
Amir and Engelhardt 2003; Brafman 2006; Brafman and
Domshlak 2013). A causal graph captures the interactions
between state variables; intuitively, it can also capture the
interactions between agents since they affect each other
through these variables (Brafman and Domshlak 2013).

Multi-agent Planning (M AP) Problem

In this paper, we focus on required cooperation (RC) in sce-
narios with instantaneous actions and sequential execution.
The possibility of RC can only increase when we extend the
model to the temporal domains in which concurrent or syn-
chronous actions must be considered. We develop our anal-
ysis of RC based on SAS™ (Backstrom and Nebel 1996).

Definition 1. A SAS™ problem is given by a tuple P =

(V, A, I,G), where:

o V = {w} is a set of state variables. Each variable v is
associated with its domain D(v).

o A = {a} is a set of actions (i.e., ground operators). Each
action a is a tuple (pre(a),post(a),prv(a)), in which
prv(a) denotes prevail conditions which are precondi-
tions that persist through a.

o [and G denote initial and goal state, respectively.

A plan in SAS™ is often defined to be a total-order plan,
which is a sequence of actions. For details of SAS™, see
(Backstrom and Nebel 1996). To extend the SAST formal-
ism to MAP, we minimally modify the definitions.

Definition 2. A SAST™ MAP problem is given by a tuple P =
(V,®,1,G) (|®| > 1), where & = {¢} is the set of agents;
each agent ¢ is associated with a set of actions A(p).
Definition 3. A plan wp;4p in MAP is a sequence of agent-
action pairs tyap = ((a1,é(a1)), ..., (ar,d(ar))), in
which ¢(a;) represents the agent executing the action a; and
L is the length of the plan.

We assume that the reference of the executing agent is en-
coded and appears as the first argument in an action, similar
to the operators (ungrounded actions) in Fig. 2.

Required Cooperation for MAP Problems

Next, we formally define the notion of required cooperation
and a few other terms used. We assume throughout the paper
that more than one agent is considered (i.e., |®| > 1).

Definition 4 (k-agent Solvable). Given a MAP problem
P={(V,®,I,G)(|®| > k), the problem is k-agent solvable
if 30y, C ® (|Py| = k), such that (V, Py, I, G) is solvable.
Definition 5 (Required Cooperation (RC)). Given a MAP
problem P = (V,®, 1, G), there is required cooperation if
P is solvable but not 1-agent solvable.

In other words, given a MAP problem that satisfies RC,
any plan must involve more than one agent. Note also that to
satisfy RC, a MAP problem must first be solvable.

Lemma 1. Given a solvable MAP problem P =
(V,®, I, G), determining whether it satisfies RC is PSPACE-
complete.

Proof. First, it is not difficult to show that the RC deci-
sion problem belongs to PSPACE, since we only need to
verify that P = (V, ¢, I, G) is unsolvable for all ¢ € P,
given that the initial problem is known to be solvable. Then,
we complete the proof by reducing from the PLANSAT
problem, which is PSPACE-complete in general (Bylander
1991). Given a PLANSAT problem (with a single agent), the
idea is that we can introduce a second agent with only one
action. This action directly achieves the goal but requires an
action of the initial agent (with all preconditions satisfied
in the initial state) to provide a precondition that is not ini-
tially satisfied. We know that this constructed MAP problem
is solvable. If the algorithm for the RC decision problem
returns that cooperation is required for this MAP problem,
we know that the original PLANSAT problem is unsolvable;
otherwise, it is solvable. O

Definition 6 (Minimally k-agent Solvable). Given a MAP
problem P = (V. ®,1,G) (|®| > k), P is minimally k-
agent solvable if it is k-agent solvable, and not (k—1)-agent
solvable.

Corollary 1. Given a solvable MAP problem P =
(V,®, I, G), determining the minimally solvable k (k < |®|)
is PSPACE-complete.

Hence, directly querying for RC is intractable even when
the problem is known to be solvable. Instead, we aim to iden-
tify conditions that can potentially cause RC. First, note that
although actions (or ground operators) are unique for each
agent, they may be identical except for the executing agent.

Definition 7 (Action Signature (AS)). An action signature is
an action with the reference of the executing agent replaced
by a global AGgx symbol.

For example, an action signature in the IPC logistics do-
main is drive(AGgx , pgh-poT, pgh-airport). As a result,
different agents can share the same action signatures. We
denote the set of action signatures for any ¢ € ® as AS(¢).

Definition 8 (Agent Variable (Agent Fluent)). A variable
(fluent) is an agent variable (fluent) if it is associated with
the reference of an agent.

Agent variables are used to specify agent state. For exam-
ple, location(truck-pgh) is an agent variable since it is as-
sociated with an agent truck-pgh. We use V, C V' to denote
the set of agent variables that are associated with an agent ¢
(i.e., variables that are present in the initial state or actions
of ¢), and V, to denote the set of non-agent variables. Fur-
thermore, we assume that agents can only interact with each
other through non-agent variables (i.e., V,).> This assump-
tion implies that agent variables are associated with one and

Mt is possible to compile away exceptions by breaking an agent
variable (with more than one reference of agent) into multiple agent
variables and introducing non-agent variables to correlate them.
Given that this compilation only increases the problem size lin-
early (in the number of agents) for each such agent variable, it does
not influence our later discussions.

/ MAP

MAP with Heterogeneous Agents MAP with Homogeneous Agents
having Traversable and Loop Free RC

Causal Graphs R/C

~ B.1 DVCRC
~ / /\

~
"B Type-LRC_ | A Twetre A
~—

B.2 Mixed cause region / B.1.DVCRC B.2

(RC caused by only DVC)

/ ' B.1.1 B.1.2
(Connected DVC RC)
/ Transformer-agent solvable

Figure 3: Division of MAP problems into MAP with hetero-
geneous and homogeneous agents. Consequently, RC prob-
lems are also divided into two classes: Type-1 RC involves
problems with homogeneous agents (A) and Type-2 RC in-
volves problems with heterogeneous agents (3). Type-1 RC
is only caused when the causal graph is non-traversable
or contains loops. Type-2 RC problems are further divided
into DVC RC problems (B.1) where RC is caused only by
the heterogeneity of agents, and RC problems with mixed
causes (B.2). B.1.1 and B.1.2 represent DVC RC problems
with and without connected state spaces, respectively.

only one reference of an agent. Thus, we have VNV = 0)
(¢ # ¢").

Definition 9 (Variable (Fluent) Signature (VS)). Given an
agent variable (fluent), its signature is the variable (fluent)
with the reference of agent replaced by AGgx.

For example, location(truck-pgh) is an agent variable
for truck-pgh and its signature is location(AGgx). We de-
note the set of variable signatures for Vi as V.S(¢), and use
V'S as an operator such that V'S(v) returns the signature of
a variable v (it returns any non-agent variable unchanged).

Classes of Required Cooperation (RC)

In this paper, we focus on MAP problems with goals that do
not involve agent variables (i.e., G N Vy = () (because hav-
ing agent variables in goals forces RC in a trivial way). We
divide MAP problems into two classes to facilitate the anal-
ysis of RC. The division of MAP problems (the rectangle
shaped region) as shown in Fig. 3 correspondingly also di-
vides RC problems (the oval shaped region) into two classes
based on the heterogeneity of the agents:

Agent Heterogeneity: Given a MAP problem P =
(V,®,I,G), the heterogeneity of the agents can be charac-
terized by these conditions: 1) Domain Heterogeneity (DH):
Jv € Vg and D(V') \ D(v) # 0, in which V' = {o'|[v/ €
Ve (¢' # ¢) and VS(v) = V.S(')}. 2) Variable Hetero-
geneity (VH): 3¢ € &, VS(D\ ¢) \ VS(¢) # 0. 3) Capa-
bility Heterogeneity (CH): 3¢ € ®, AS(®\ o)\ AS(¢) # 0.
D(V') above denotes the joint domain of all v € V.

We define heterogeneous agents as a set of agents in
which DH, VH or CH is satisfied for any agent. This con-
dition is also referred to as the heterogeneity condition. In
contrast, we define homogeneous agents as a set of agents

(o)

o
/\

Figure 4: Example of a causal graph.

in which neither DH, VH nor CH is satisfied for any agent.
This allows us to divide RC problems into:

Definition 10 (Type-1 (Homogeneous) RC). An RC prob-
lem belongs to type-1 RC if the heterogeneity condition is
not satisfied (i.e., agents are homogeneous).

Definition 11 (Type-2 (Heterogeneous) RC). An RC prob-
lem belongs to type-2 RC if 3¢ € ®, such that DH or VH or
CH is satisfied.

It is worth noting that when considering certain entities
(e.g., truck and plane in the logistics domain) as agents
rather than as resources (such as in CoODMAP competition
(Stolba, Komenda, and Kovacs 2015)), many problems in
the IPC domains have RC and belong to type-2.

Analysis of Type-1 (Homogeneous) RC

We start with type-1 RC which represents a class of more
restrictive problems and hence are easier to analyze.

Type-1 RC Caused by Traversability: One condition
that can cause RC in type-1 RC problems is the traversability
of the state space. One obvious example is related to non-
restorable resources such as energy. For example, a robot
may have all the capabilities to achieve the goal but insuffi-
cient amount of battery power. Since traversability is asso-
ciated with the evolution of variables and their values, we
analyze it using causal graphs.

Definition 12 (Causal Graph). Given a MAP problem P =
(V,®,I,G), the causal graph G is a graph with directed and
undirected edges over the nodes V. For two nodes v and v’
(v # '), a directed edge v — v' is introduced if there exists
an action that updates v' while having a prevail condition
associated with v. An undirected edge v — v’ is introduced if
there exists an action that updates both.

An example of a causal graph for an agent is in Fig. 4.
When we use agent variable signatures to replace agent vari-
ables in the graph, the causal graphs for all agents in type-1
problems are the same. We refer to any of these graphs as an
individual causal graph signature (ICGS). Next, we define
the notions of closures and locally traversable state space.

Definition 13 (IC and its OC). Given a causal graph, an
inner closure (IC) is any set of variables for which no other
variables are connected to them with undirected edges; an
outer closure (OC) of an IC is the set of nodes that have
directed edges going into nodes in the IC.

In Fig. 4, {v2,v3} and {v4} are examples of ICs. The OC
of {v2,v3} is {v1} and the OC of {vs} is {vs3}.

I ocaioniAGo) |

Steal, Place, Steal, Switch
WalkT!|

| tocation(diamond1) s doorL ocked(door1) |
Steal

location(switch1)

Figure 5: ICGS for the Burglary problem to illustrate causal
loops that cause RC in type-1 RC problems. Actions (with-
out arguments) are labeled along with their corresponding
edges. Variables in GG are shown as bold-box nodes and agent
variable signatures are shown as dashed-box nodes.

Definition 14 (Locally Traversable State Space). An inner
closure (IC) in a causal graph has a locally traversable state
space if and only if: given any two states of this IC, denoted
by s and s', there exists a plan that connects them, assuming
that the state of the outer closure (OC) of this IC can be
changed freely within its state space.

In other words, an IC has a locally traversable state space
if its traversal is only dependent on the variables in its OC.
This also means that when the OC of an IC is empty, the state
of the IC can change freely. In the case of non-restorable
resources, the ICs that include variables for these resources
would not satisfy this requirement (hence non-restorable).
When all the ICs in the causal graph of an agent satisfy this,
the causal graph is referred to as being traversable.

Type-1 RC Caused by Causal Loops: A problem with

a traversable causal graph, however, may still require RC.
Let us revisit the Burglary problem in Fig. 1. We construct
the individual causal graph signature (ICGS) for this type-1
RC example in Fig. 5. It is not difficult to verify that this
ICGS is traversable, given that location(diamondl) and
door Locked(door1) form an IC with the other two vari-
ables as its OC. More specifically, when assuming that the
agent location can change freely, we can also update the lo-
cation of the diamond as well as the status of the door to arbi-
trary values. One key observation is that a single agent can-
not address this problem due to the fact that WalkT hrough
with the diamond to room?2 requires door Locked(doorl) =
false, which is violated by the Steal action to obtain the di-
amond in the first place. This is clearly related to the causal
loop in Fig. 5:
Definition 15 (Causal Loop). A causal loop in a causal
graph is a directed loop that contains at least one directed
edge (undirected edges are considered as edges in both di-
rections when checking for loops).

When Cooperation Is Not Required

The following theorem establishes that the two causes dis-
cussed above are exhaustive — when none of them are present
in a solvable MAP problem with homogeneous agents, it can
be solved by a single agent.

Theorem 1. Given a solvable MAP problem with homo-
geneous agents, and for which the individual causal graph

signatures (ICGSs) are traversable and contain no causal
loops, any single agent can also achieve the goal.

Proof. Given no causal loops, the directed edges in the
ICGS divide the variables into stratified levels, in which: 1)
variables at each level do not appear in other levels; 2) higher
level variables are connected to lower level variables with
only directed edges going from higher levels to lower levels;
3) variables within each level are either not connected, or
connected with undirected edges. For example, the variables
in Fig. 4 are divided into the following levels (from high to
low): {Ul}, {’UQ, Ug}, {04}, {’U5, U7}, {’Uﬁ, ’Ug}. Note that this
division is not unique.

The intuition is to show that there exists a single agent
plan that can lead to any goal state given an initial state. We
prove the result by induction on the level. Suppose that the
ICGS has k levels and the following holds: given any tra-
jectory of states for all variables, there exists a plan whose
execution traces of states include this trajectory in the cor-
rect order.

When the ICGS has k + 1 levels: given any state s for all
variables from level 1 to k41, we know from the assumption
that the ICGS is traversable that there exists a plan that can
update the variables at the & 4 1 level from their current
states to the corresponding states in s. This plan, denoted
by 7, requires the freedom to change the states of variables
from level 1 to k. Given the induction assumption, we know
that we can update these variables to their required states
in the correct order to satisfy 7; furthermore, these updates
(at level k and above) do not influence the variables at the
k + 1 level (hence do not influence 7). Once the states of the
variables at the k+1 level are updated to match those in s, we
can then update variables at level 1 to k& to match their states
in s accordingly. Using this process, we can incrementally
build a plan whose execution traces of states contain any
trajectory of states for all the variables in the correct order.

Furthermore, the induction holds when there is only one
level given that ICGS is traversable. Hence, the induction
conclusion holds. The main conclusion directly follows. [

Note that Theorem 1 provides an answer for the inverse
of the first question (Q1) in the introduction: Theorem 1 is
used to determine when cooperation is not required instead
of when it is. More specifically, the conjunction of the con-
ditions (traversable ICGS and no causal loop) is a sufficient
condition for a MAP problem with homogeneous agents to
be single-agent solvable (i.e., no RC). However, the absence
of any of these conditions does not necessarily lead to RC.
Theorem 1 provides an insight into the separation of SAP
and MAP for problems with homogeneous agents.

Towards an Upper Bound for Type-1 RC

When the causal graph is not traversable or there are causal
loops in type-1 RC problems, we find that upper bounds on
the k£ in Def. 6 can be provided. We first investigate when
causal loops are present and show that the upper bound on
k is associated with how the causal loops containing agent
variable signatures (agent VSs) can be broken in the indi-
vidual causal graph signature (i.e., [CGS). The observation
is that certain edges in these loops can be removed when

[locationAcn) | | locatoniaces) |

[S

| location(diamond1) MdoorLocked(doorﬁl

location(switch1)

Figure 6: Causal loop breaking for the Burglary problem, in
which the loop is broken by removing the edge marked with
a triangle in Fig. 5. Two agent variable signatures (VSs) are
introduced to replace the original agent VS.

there is no need to update the associated agent VSs. In our
Burglary problem, when there are two agents in room1 and
room2, respectively, there is no need to WalkT hrough to
change locations (to access the switch after stealing the dia-
mond). Hence, the associated edges can be removed to break
the loops as shown in Fig. 6.

Lemma 2. Given a solvable MAP problem with homoge-
neous agents having traversable ICGSs, if all causal loops
contain agent VSs and all the edges going in and out of agent
VSs are directed, the minimum number of agents required is
upper bounded by I1,c c r(w)| D (v)| (| D(v)| denotes the size
of the domain for variable v) when assuming that the agents
can choose their initial states.

CR(®) is created by: 1) adding the set of agent VSs in the
causal loops to CR(®); 2) adding in any agent VS to C R(®)
if there is a directed edge going into it from any variable in
CR(®); 3) iterating 2 until no agent VSs can be added.

Proof. For each variable in CR(®), denoted by v, we intro-
duce a set of variables N = {vy,va, ..., v|p(v) } to replace
v. Any edges connecting v with other variables are dupli-
cated on all variables in IV, except for the directed edges
that go into v. Each variable v; € N has a domain with a
single value; this value for each variable in NV is different
and chosen from D(v). These new variables do not affect
the traversability of the ICGS and all loops are broken.

From Theorem 1, we know that a virtual agent ¢* that can
assume the joint state specified by C R(®) can achieve the
goal. We can simulate ¢ using IT,ccp(a)|D(v)| agents as
follows. We choose the agent initial states according to the
permutations of states for C R(®), while choosing the same
states for all the other agent VSs according to ¢ ™. Given a
plan for ¢T, we start from the first action. Given that any
permutations of states for C R(®) is assumed by an agent,
we can find an agent, denoted by ¢, that can execute this
action with the following three cases (we show that all three
cases can be simulated):

1) If this action updates an agent VS in CR(®), we do
not need to execute this action based on the following rea-
soning. Given that all edges going in and out of agent VSs
are directed, we know that this action does not update V.
(Otherwise, there must be an undirected edge connecting a
variable in V}, to this agent VS. Similarly, we also know that

this action does not update more than one agent VS.). As a
result, it does not influence the execution of the next action.

2) If this action updates an agent VS that is not in C R(®),
we know that this action cannot have variables in CR(®)
as preconditions or prevail conditions, since otherwise this
agent VS would be included in C'R(®) given its construction
process. Hence, all agents can execute the action to update
this agent VS, given that all the agent VSs outside of CR(®)
are always kept synchronized in the entire process (in order
to simulate ¢).

3) Otherwise, this action must be updating only V,, and
we can execute the action on ¢.

Following the above process for all the actions in ¢™’s
plan to achieve the goal. Hence, the conclusion holds. O

The requirement on the traversability of ICGS in Lem. 2
is further relaxed below:

Corollary 2. Given a solvable MAP problem with homoge-
neous agents, if all the edges going in and out of agent VSs
are directed in the causal graphs, the minimum number of
agents required is upper bounded by 11,cy g(x)|D(v)|, as-
suming that the agents can choose their initial states.

Proof. Given a valid plan mp;4p for the problem, we can
solve the problem using IT, ¢y s(a)| D (v)| agents as follows:
first, we choose the agent initial states according to the per-
mutations of state for V.S (®).

The process is similar to that in Lemma 2. We start from
the first action. Given that all permutations of V .S(®) are as-
sumed by an agent, we can find an agent, denoted by ¢, that
can execute this action: if this action updates some agent
VSsin V.S(®), we do not need to execute this action; other-
wise, the action must be updating only V,, and we can exe-
cute the action on ¢.

Following the above process for all the actions in a4 p
to achieve the goal. Hence, the conclusion holds. O

The bounds above are upper bounds. Nevertheless, for our
Burglary problem, the assumptions for both are satisfied and
the 2 is returned for both, which happens to be exactly the k
for which the problem is minimally k-agent solvable. In fu-
ture work, we plan to establish the tightness of these bounds.

Analysis of Type-2 (Heterogeneous) RC

For the class of problems with heterogeneous agents, the
most obvious cause for required cooperation (RC) in type-
2 RC problems is the requirement of capabilities from dif-
ferent agents (due to domain, variable and capability het-
erogeneity). In the logistics domain, for example, the do-
main of the location variable for a truck agent can be used
to force the agent from visiting certain locations in a city
(domain heterogeneity — DH). When there are packages
that must be transferred between different locations within
a city, at least one truck agent that can access each loca-
tion is required (hence RC). In the rover domain, a rover
that is equipped with a camera sensor would be associated
with the agent variable equipped_for_imaging(rover).
When we need both equipped_for_imaging(rover) and
equipped_for_rock_analysis(rover), and no rovers are

equipped with both sensors (variable heterogeneity — VH),
we have RC. In the logistics domain, given that the truck
cannot fly (capability heterogeneity — CH), when a package
must be delivered from a city to a non-airport location of
another city, at least a truck and a plane are required.

We note that 1) the presence of DH, VH or CH (i.e., the
heterogeneity condition) in a solvable MAP problem does
not always cause RC. In other words, a solvable MAP prob-
lem that satisfies the heterogeneity condition may not have
RC (e.g., when the problem does not need the different ca-
pabilities); 2) the presence of the heterogeneity condition in
a type-2 RC problem is not always the sole cause of RC. For
example, the conditions that cause RC in type-1 problems
may also cause RC in type-2 problems (see the mixed cause
region in Fig. 3).

Due to the complexities above, to continue the analy-
sis, we further divide MAP problems with heterogeneous
agents into two subsets as shown in Fig. 3, which in turn
divides type-2 RC problems into two subclasses — problems
in which RC can only be caused by the heterogeneity of the
agents (termed DVC RC), and the remaining problems. In
other words, no causes for type-1 (homogeneous) RC are
present in DVC RC problems. For DVC RC, we can improve
the planning performance using a simple compilation.

DVC RC in Type-2 RC

In particular, we show that the notion of transformer agent
allows us to significantly reduce the number of agents to be
considered in planning for DVC RC problems, which can
be solved first with a single or a small set of transformer
agents. The transformer-agent plans can then be expanded
to use agents in the original problems.

Definition 16 (DVC RC). A DVC RC problem is an RC
problem in which all agents have traversable causal graphs
with no causal loops.

DVC RC problems can be solved by the construction
of transformer agents (defined below), which are virtual
agents that combine all the domain values, variable sig-
natures and action signatures of the agents in the original
MAP problem (i.e.,). To ensure that this combination is
valid, we make the following assumption: agent variables
for different agents are positively (i.e., no negations in pre-
conditions or prevail conditions) and non-exclusively de-
fined. Exclusively defined variables can be compiled away.
Two variables are exclusively defined when associating
them with the same agent can introduce conflicts or lead
to undefined states. For example, using_gas(AGgx) and
using_kerosene(AGgx) can lead to undefined states, if an
agent can use either gas or kerosene but the state in which
both are used is undefined (i.e., the agent cannot be flying
and driving at the same time). This issue can be compiled
away, e.g., using(AGgx) = {gas, kerosene}, potentially
with a few complications to handle the transition between
the values. Given a MAP problem P = (V, ®, I, G),

Definition 17 (Transformer Agent). A transformer agent is
an agent ¢* that satisfies: 1) Vv € Vg, Jv* € Vs, D(v*) =
D(V), in which V = {v|v € Vg and VS(v*) = V.S(v)}.
2) VS(¢*) = VS(®). 3) AS(¢*) = AS(®).

An intuitive way to think about a transformer agent is that
it is a single agent that can “transform” into any agent in
the original MAP problem. A transformer agent can use any
other agent’s capabilities (but not simultaneously). Before
discussing how the initial states of these transformer agents
can be specified, we introduce a subset of DVC RC problems
that can be solved by efficiently.

Connected DVC RC: A subset of DVC RC problems, re-
ferred to as Connected DVC RC (B.1.1 in Fig. 3), can be
solved by a single transformer agent. To define Connected
DVC RC, we first define state space connectivity for agents.

Definition 18 (State Space Connectivity). Given two agents
¢ and ¢’ that have traversable causal graphs with no causal
loops, denote their state spaces as Sy and S;w respectively,
S¢ and S§ are connected if Is € Sy, 3s" € Sy, V.S(s) N
VS(s') # 0 AYv € s, VS(s)[v] = VS(s')[v], in which
sn = VS(s) N VS(s') and V S(s)[v] denotes the value of
variable v in state s.

Intuitively, when two agents have connected state spaces,
the transformer agent is allowed to transform from one agent
to the other agent and vice versa in the shared states (i.e., s
and s’ above). This is necessary to ensure that a single trans-
former agent can traverse the state spaces of both agents. For
example, the prerequisite for a truck-plane agent to be able
to deliver a package that is at the airport of a city to a non-
airport location in another city is that the truck and plane
agents in the original problem must be able to meet at the
destination airport to transfer the package.

Definition 19 (Connectivity Graph). In a DVC RC (or DVC
MAP) problem, a connectivity graph is an undirected graph
in which the nodes are the agents and any two nodes are
connected if they have connected state spaces.

Definition 20 (Connected DVC RC). A connected DVC RC
problem is a DVC RC problem in which the connectivity
graph is a single connected component .

The result of Theorem 1 can be extended below:

Lemma 3. Given a connected DVC RC problem, it is solv-
able by a single transformer agent for any specification of
its initial state.

Proof. Given that the causal graphs are traversable and con-
tain no causal loops for all agents in DVC RC, the only con-
dition that can cause RC is the heterogeneity condition (i.e.,
DH, VH or CH). Given that the state spaces of agents are
connected, a transformer agent can traverse the state spaces
of all agents. Hence, the problem is solvable by this trans-
former agent based on Theorem 1. O

Corollary 3. A DVC RC problem in which all the goal vari-
ables lie in a single connected component in the connectivity
graph can be solved by a single transformer agent, given a
proper specification of the initial state.

The initial state of the transformer agent only needs to lie
within the connected component. We refer to problems that
can be solved by a single transformer agent as transformer-
agent solvable (B.1.1) in Fig. 3. Many problems in the IPC
domains belong to Connected DVC RC (e.g., logistics and
rover domains) and are transformer-agent solvable.

Lemma 4. Given a DVC RC problem P = (V,®,I,G) in
which all the goal variables lie in a single connected compo-
nent in the connectivity graph, the single transformer-agent
plan that solves this problem can be expanded to a multi-
agent plan using ®.

Proof. The proof is by construction. Given the initial state of
the transformer agent, from previous discussions, we know
that the transformer agent “is assuming the form” of an agent
in ® for which the transformer agent is executing an action
(i.e., the first action in the single transformer-agent plan).
Given that this agent has a traversable causal graph with no
causal loops, we can plan it to reach the current state of the
transformer agent while keeping the values of variables in
V,, and then let it execute the first action. The same process
continues until the last action of the transformer agent is ex-
ecuted, and the goal is achieved. O

For example, in the logistics domain, suppose that we
have a package to be delivered to a non-airport location in
city c. The package is initially at the airport in city b, the
plane agent is at the airport in city a, and the truck agent
is at a non-airport location in city c. We solve this problem
with a truck-plane agent initially at the airport in city b. This
transformer agent can fly to ¢ with the package, “transform”
to the truck agent, drive to the non-airport location to de-
liver. To create the plan for the original problem, we need to
first expand the single transformer-agent plan by sending the
plane agent from city a to b. We then follow the transformer-
agent plan until the package arrives at the airport in city c.
Next, we expand the plan again by sending the truck agent to
the airport in c to pick it up. The “transformation” forces the
plane agent to unload and the truck agent to load the package
at the airport. The plan then follows through.

Corollary 4. Given a DVC RC problem in which the con-
nectivity graph is separated into connected components, the
number of transformer agents to solve the problem is upper
bounded by the number of connected components (assuming
proper specifications of the initial states); the plan can be
expanded to use agents in the original problem.

For DVC RC problems with more than one connected
component in the connectivity graph (5.1.2 in Fig. 3), we
can similarly expand the multiple transformer-agent plans
into plans for ® in the original problem.

Hence, given a MAP problem with heterogeneous agents,
we can first construct the causal graphs for all agents and
execute algorithms to determine whether the causal graphs
are traversable and loop free. If the problem is not deter-
mined to belong to DVC MAP, we can use any single-agent
planner to solve the problem by considering agents as re-
sources. Otherwise, we first create the connectivity graph.
We do not need to construct the exact graph; a partial graph
(with a subset of the edges) only increases our estimation of
the number of transformer agents needed. When more time
is allowed, we can continue completing the graph. At any
time during this process, if the graph is determined to be
connected, we can stop immediately, in which case we know
that we have a connected DVC RC problem. When the up-
per bound is estimated from the graph, we can create a set

of transformer agents accordingly to solve the problem. If a
plan is not found, we know that the MAP problem is unsolv-
able; otherwise, we can then expand the plan into a plan for
the original problem. A similar process can be used to imple-
ment a planner with homogeneous agents in which case the
results from Lemma 2 and Corollary 2 can also be utilized.

Using the Transformer Agent Compilation

We now turn our attention to performance in practice.
Specifically, we show how the transformer agent compila-
tion can be used to improve the planning performance. We
compare with one of the best performing centralized plan-
ners, MAP-LAPKT (planner entry is SIW+-then-BFS(f))
(Stolba, Komenda, and Kovacs 2015; Muise, Lipovetzky,
and Ramirez 2015), in CoDMAP, MAP-LAPKT also uses
a compilation approach in which a MAP problem is con-
verted into a single-agent planing problem; an off-the-shelf
planner is then used to solve it. MAP-LAPKT’s performance
is very close to the best MA planner in CODMAP (which is
ADP). We could not compare against ADP since their ap-
proach does not use compilation and is incorporated as a
heuristic in the planning process.

We implemented a planner called RCPLAN. First, we de-
termine whether the problem belongs to connected DVC
MAP (e.g., whether the causal graph is traversable and con-
tains no causal loops, and whether the connectivity graph is
a single connected component, which are often determined
by the domain). If it is, we compile the problem into a prob-
lem with a single transformer agent based on Def. 17. We
then solve this new problem with an existing planner (i.e.,
FastDownward). Finally, we use Metric FF to expand the
tranformer-agent plan to a plan for the original problem as
explained in Lemma 4.

To remove the influence of the underlying planner, we re-
place the internal planner in MAP-LAPKT with our Fast-
Downward (without optimizations). For CoODMAP compe-
tition domains, we use 11 out of 12 domains, since the
Wireless domain does not satisfy our compilation criteria
(i.e., the goals contain agent variables). Due to the addi-
tional expansion process, we expect RCPLAN to improve
performance particularly over large problems (in terms of
number of agents). Hence, besides the CoODMAP domains,
we also generate larger problems for three CoDMAP do-
mains (i.e., Rover, Blocksworld and Zenotravel) using stan-
dard IPC generators.

The results are listed in Table 1. Both RCPLAN and
MAP-LAPKT are given 30min to solve each problem. We
use the IPC Agile (for time) and IPC Sat (for plan qual-
ity) scores. > The experiments were run on a 3.0 GHz quad-
core linux machine with 7GB memory. We can see that RC-
PLAN performs better than MAP-LAPKT in time perfor-

3 . : : 1
For each problem: the IPC Agile score is o0 (T/T))

where T is the time taken by a given planner and 7™ is the time
taken by the fastest planner for that problem; similarly, the formula
for IPC Sat score is 5* where @ is the plan quality produced by a
given planner and Q™ is the highest quality produced for the prob-
lem. For most domains, we use the inverse of the plan length as the
quality. The final scores are the sum of scores for all problems.

Coverage

IPC Agile Score (Time Score) | IPC Sat Score (Quality Score)

Problem Type | ppr AN | MAP-LAPKT | RCPLAN | MAP-LAPKT | RCPLAN | MAP-LAPKT | 7 Domains | # Agents
CoDMAP Problems | 219 (98.6%) | 214 (964%) | 214.37 18673 | 18731 204.08 T 2-20
Large Problems | 51 (98.1%) | 41 (78.8%) 44.54 34.90 49.38 38.81 31 2-50

Table 1: Performance Comparison between RCPLAN and MAP-LAPKT

mance (i.e., [IPC Agile) consistently, although slightly worse
in IPC Sat for CODMAP problems. This performance im-
provement is mainly due to the reduction of instantiated ac-
tions in the compiled transformer agent problem. For ex-
ample, for one of the Zenotravel problem with 6 agents,
RCPLAN instantiated 9152 actions while the number of
agent actions used in MAP-LAPKT is 54912. Our planner
achieves a higher IPC Sat score for the larger problems due
to the coverage. We can always post-process plans to im-
prove quality (Nakhost and Mller 2010). Our results confirm
that many IPC domains (also chosen in CoODMAP as MAP
domains) are in fact (single) transformer-agent solvable!

Conclusions

In this paper, we introduced the notion of required coop-
eration (RC). First, we showed that directly querying for
RC is intractable. As a result, we started the analysis with
a class of more restrictive problems where agents are homo-
geneous. We identified an exhaustive set of causes of RC for
this class and provided bounds for the number of agents re-
quired in different problem settings. For the remaining prob-
lems where agents are heterogeneous, we showed that a sub-
class of problems in which RC is only caused by the hetero-
geneity of the agents (i.e., DH, VH or CH) can be solved
with a smaller number of transformer agents than with the
agents in the original problems.

This RC analysis makes theoretical contributions to the
understanding of multi-agent planning problems, informs
the design of future multi-agent planning competitions, and
presents practical applications, e.g., determining how many
agents to be assigned to each given task when agent re-
sources are limited. We implemented a planner using our
theoretical results and compared it with one of the best IPC
CoDMAP planners. Results show that our planner improved
performance on most IPC CoDMAP domains, which inci-
dentally implies that only a subset of MAP problems were
covered (i.e., Connected DVC RC) in this competition.
Acknowledgments This research is supported in part by
the ONR grants N00014-13-1-0176, N00014-13-1-0519 and
N00014-15-1-2027, and the ARO grant W911NF-13-1-
0023. The authors would also like to thank Sushovan De for
help in coming up with the Burglary problem.

References

Amir, E., and Engelhardt, B. 2003. Factored planning. In
1JCAI, 929-935.

Bacchus, F., and Yang, Q. 1993. Downward refinement and
the efficiency of hierarchical problem solving. AIJ 71:43—
100.

Backstrom, C., and Nebel, B. 1996. Complexity results for
sas+ planning. Computational Intelligence 11:625-655.

Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. A1J 198(0):52 —71.

Brafman, R. I. 2006. Factored planning: How, when, and
when not. In AAAI, 809-814.

Bylander, T. 1991. Complexity results for planning. In
1JCAI, volume 1, 274-279.

Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007a. When is temporal planning really temporal? In 1J-
CAI, 1852-1859.

Cushing, W.; Weld, D. S.; Kambhampati, S.; Mausam; and
Talamadupula, K. 2007b. Evaluating temporal planning do-
mains. In ICAPS.

Decker, K. S., and Lesser, V. R. 1992. Generalizing the
partial global planning algorithm. International Journal of
Cooperative Information Systems 1:319-346.

Durfee, E., and Lesser, V. R. 1991. Partial global planning:
A coordination framework for distributed hypothesis forma-

tion. IEEE Transactions on Systems, Man, and Cybernetics
21:1167-1183.

Helmert, M. 2006. The fast downward planning system.
JAIR 26:191-246.

Jonsson, A., and Rovatsos, M. 2011. Scaling Up Multiagent
Planning: A Best-Response Approach. In ICAPS, 114-121.

Knoblock, C. 1994. Automatically generating abstractions
for planning. AlJ 68:243-302.

Kvarnstrom, J. 2011. Planning for loosely coupled agents
using partial order forward-chaining. In ICAPS.

Muise, C.; Lipovetzky, N.; and Ramirez, M. 2015. Map-
lapkt: Omnipotent multi-agent planning via compilation to
classical planning. (CoDMAP-15) 14.

Nakhost, H., and Mller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In /ICAPS, 121-128.

Nissim, R., and Brafman, R. I. 2012. Multi-agent a* for par-
allel and distributed systems. In AAMAS, volume 3, 1265-
1266.

Pape, C. L. 1990. A combination of centralized and dis-
tributed methods for multi-agent planning and scheduling.
In ICRA.

Stolba, M.; Komenda, A.; and Kovacs, D. L. 2015.
Competition of distributed and multiagent planners
(CoDMAP). http://agents.fel.cvut.cz/
codmap/results-summer.

Torreno, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. In European Conference on Artificial Intelligence, vol-
ume 242, 762-767.

