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Plan-Yochan
• Automated Planning

– Foundations of automated 
planning

– Heuristics for scaling up a 
wide spectrum of plan 
synthesis problems

– Applications to 
manufacturing, biological 
pathway discovery, web 
services, autonomic 
computing

Db-Yochan
• Information Integration

– Mediator frameworks that 
are adaptive to the sources 
and users. 

– Applications to Bio-
informatics, Archaelogical
informatics

– Systems: QUIC, QPIAD, 
AIMQ, BibFinder

• VLDB 07; CIDR 07; ICDE 
06…



A: A  Unified Brand-name-Free Introduction to Planning Subbarao Kambhampati

Planning Involves Deciding a Course of 
Action to achieve a desired state of affairs

Environment

Goals

(Static vs. Dynamic)

(Observable vs.
Partially Observable)

(perfect vs. 
Imperfect)

(Deterministic vs. 
Stochastic)

What action next?  

(Instantaneous vs. 
Durative)

(Full vs. 
Partial satisfaction)
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Applications—sublime and mundane

Mission planning (for rovers, telescopes)

Military planning/scheduling

Web-service/Work-flow composition

Paper-routing in copiers

Gene regulatory network intervention



Blocks world

State variables:
Ontable(x) On(x,y)  Clear(x)  hand-empty  holding(x)

Stack(x,y)
Prec:  holding(x), clear(y)
eff:   on(x,y), ~cl(y), ~holding(x), hand-empty

Unstack(x,y)
Prec:  on(x,y),hand-empty,cl(x)
eff:    holding(x),~clear(x),clear(y),~hand-empty

Pickup(x)
Prec:  hand-empty,clear(x),ontable(x)
eff:   holding(x),~ontable(x),~hand-empty,~Clear(x)

Putdown(x)
Prec:  holding(x)
eff: Ontable(x), hand-empty,clear(x),~holding(x)

Initial state:
Complete specification of T/F values to state variables

--By convention, variables with F values are omitted

Goal state:
A partial specification of the desired state variable/value combinations

--desired values can be both positive and negative 

Init: 
Ontable(A),Ontable(B),
Clear(A), Clear(B), hand-empty

Goal:
~clear(B), hand-empty

Ontable(A)

Ontable(B),

Clear(A)

Clear(B)

hand-empty

holding(A)

~Clear(A)

~Ontable(A)

Ontable(B),

Clear(B)

~handempty

Pickup(A)

Pickup(B)

holding(B)

~Clear(B)

~Ontable(B)

Ontable(A),

Clear(A)

~handempty

P-Space Complete

Domain-Independent Planning



We have figured out how to scale synthesis..

Before, planning 
algorithms could 
synthesize about 6 
– 10 action plans in 
minutes
Significant scale-
up in the last 6-7 
years

Now, we can 
synthesize 100 
action plans in 
seconds.

Realistic encodings 
of Munich airport!

The primary revolution in planning in the recent years has been 
methods to scale up plan synthesis

Problem is Search Control!!!

Scalability was the big bottle-neck…



hset-difference
hC hP

h*h0

Cost of computing
the heuristic

Cost of searching
with the heuristic

Total cost
incurred in search

Not always clear where the total minimum 
occurs
• Old wisdom was that the global min was 
closer to cheaper heuristics
• Current insights are that it may well be far 
from the cheaper heuristics for many problems

• E.g. Pattern databases for 8-puzzle 
• Plan graph heuristics for planning

Scalability came from sophisticated
reachability heuristics based on 
planning graphs..

..and not from any hand-coded
domain-specific 

control knoweldge

“Optimistic projection of achievability”



• Envelope of Progression 
Tree (Relaxed 
Progression)
– Proposition lists: Union 

of states at kth level
– Mutex: Subsets of 

literals that cannot be 
part of any legal state 

• Lowerbound
reachability information

[Blum&Furst, 1995] [ECP, 1997][AI Mag, 2007]
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Planning Graphs can be used as the basis for
heuristics! 
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Underlying System Dynamics
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What are we doing next? 
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Static Deterministic Observable Instantaneous Propositional

“Classical Planning”
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..and we play{ed/ing} a significant role 

A
I M

agazine
S

pring 2007

A
I Journal; 2007

1001 ways to skin a planning graph 
for heuristic fun & profit

– Classical planning
– AltAlt (AAAI 2000; AIJ 2002); RePOP (IJCAI 2001); AltAltp (JAIR 

2003)
• Serial vs. Parallel graphs; Level and Adjusted heuristics; 

Partial expansion
– Metric Temporal Planning

– Sapa (ECP 2001; AIPS 2002; JAIR 2003); SapaMps (IJCAI 2005)
• Propagation of cost functions; Phased relaxation

– Nondeterministic Conformant/Conditional Planning
– CAltAlt (ICAPS 2004); POND (AAAI 2005; JAIR 2006)

• Multiple graphs; Labelled uncertainty graphs; State-agnostic 
graphs

– Stochastic planning
– Monte Carlo Labelled uncertainty graphs [ICAPS 2006; AIJ 2007]

• Labelled graphs capturing “particles”
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Any (feasible) Plan

Shortest plan

Cheapest plan

Highest net-benefit

Multi-objective

[AAAI 2004; ICAPS 2005
IJCAI 2005; IJCAI 2007]
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[AAAI 2007, IJCAI 2007,
ICAC 2005 etc.]



Classical vs. Part ial Satisfact ion 
Planning (PSP)

Classical Planning
• Initial state
• Set of goals
• Actions

Find a plan that achieves all goals

(prefer plans with fewer actions)

Partial Satisfaction Planning
• Initial state
• Goals with differing utilities
• Actions with differing costs

Find a plan with highest net benefit
(cumulative utility – cumulative cost)

(best plan may not achieve all the goals)

1/19



Partial Satisfaction/Over-Subscription Planning

Traditional planning problems
Find the (lowest cost) plan that satisfies all the given goals

PSP Planning
Find the highest utility plan given the resource constraints

Goals have utilities and actions have costs

…arises naturally in many real world planning scenarios
MARS rovers attempting to maximize scientific return, given resource 
constraints
UAVs attempting to maximize reconnaisance returns, given fuel etc 
constraints

Logistics problems resource constraints

…due to a variety of reasons
Constraints on agent’s resources

Conflicting goals
With complex inter-dependencies between goal utilities

Soft constraints
Limited time

[AAAI 2004; ICAPS 2005; IJCAI 2005; IJCAI 2007; 
ICAPS 2007; CP 2007]



Supporting PSP planning

PSP planning changes planning from a “satisficing” to an “optimizing”
problem

It is trivial to find a plan; hard to find a good one!
Rich connections to OR(IP)/MDP 

Requires selecting “objectives” in addition to “actions”
Which subset of goals to achieve
At what degree to satisfy individual goals

E.g. Collect as much soil sample as possible; get done as close to 2pm as possible

Currently, the objective selection is left to humans
Leads to highly suboptimal plans since objective selection cannot be done 
independent of planning 

Need for scalable methods for synthesizing plans in such over-
subscribed scenarios



Formulation

PSP Net benefit:
Given a planning problem P = (F, A, I, G), and for each action a 
“cost” ca ≥ 0, and for each goal fluent f ∈ G a “utility” uf ≥ 0, and a 
positive number k. Is there a finite sequence of actions ∆ = (a1, a2, 
…, an) that starting from I leads to a state S that has net benefit 
∑f∈(S∩G) uf – ∑a∈∆ ca ≥ k.

PLAN EXISTENCE

PLAN LENGTH

PSP GOAL LENGTH

PSP GOAL

PLAN COST PSP UTILITY

PSP UTILITY COST

PSP NET BENEFIT

Maximize the Net Benefit

Actions have execution costs, 
goals have utilities, and the 
objective is to find the plan that 
has the highest net benefit.

easy enough to extend to 
mixture of soft and hard goals



Challenge: Goal Dependencies

cost dependencies
Actions achieving different goals interact
positively or negatively

Goals may complement or substitute
each other

utility dependencies

goal interactions exist as two distinct types

a

• Modeling goal cost/utility dependencies
• Doing planning in the presence of utility (and 

cost) dependencies

Cost: 10
Util: 20

Cost: 100
Util: 50

Cost: 110
Util: 300

Cost: 500
Util: 1000

Cost: 500
Util: 0
Cost: 500
Util: 0



PSPUD
Partial Satisfaction Planning with Utility Dependency

cost: 150
cost: 1

(at plane loc2)
(in person 

plane)

(fly plane loc2) (debark person loc2)

(at plane loc1)
(in person 

plane)

(at plane loc2)
(at person 

loc2)

utility((at plane loc1) & (at person loc3)) = 10

cost: 150

(fly plane loc3)

(at plane loc3)
(at person loc2)

utility((at plane loc3)) = 1000 utility((at person loc2)) = 1000

util(S0): 0

S0

util(S1): 0

S1

util(S2): 1000

S2

util(S3): 1000+1000+10=2010

S3

sum cost: 150
sum cost: 151 sum cost: 251

net benefit(S0): 0-0=0 net benefit(S1): 0-150=-150 net benefit(S2): 1000-151=849 net benefit(S3): 2010-251=1759

Actions have cost Goal sets have utility
loc2loc1

loc3

100200

150

101

Maximize Net Benefit (utility - cost)

(Do, et al., IJCAI 2007)(Smith, ICAPS 2004; van den Briel, et al., AAAI 2004)



Action Cost/Goal Achievement 
Interaction

Plan Quality

Heuristic search for
SOFT GOALS

Relaxed Planning Graph 
Heuristics

Integer programming (IP)
LP-relaxation Heuristics

(Do & Kambhampati, KCBS 
2004; 

Do, et al., IJCAI 2007)

Cannot take all complex 
interactions into account

Current encodings don’t 
scale well, can only be 

optimal to some plan stepBBOP-LP



Use its LP relaxation for a
heuristic value

Build a network flow-based
IP encoding

Approach

Perform branch and bound
search

No time indices
Uses multi-valued variables

Gives a second relaxation on
the heuristic

Uses the LP solution to find a 
relaxed plan

(similar to YAHSP, Vidal 2004)



Building a Heuristic
A network flow model on variable transitions

Capture relevant transitions with 
multi-valued fluents
prevail constraints

initial states
goal states

cost on actions utility on goals

(no time indices)

loc2loc1

loc3

100200

150

101plane person

cost: 1

cost: 1

cost: 1

cost: 1

cost: 1

cost: 1

cost: 101

cost: 150

cost: 200

cost: 100

util: 1000

util: 10

util: 1000



Building a Heuristic
Constraints of this model

2. If a fact is deleted, then it must be added to re-achieve a value.
3. If a prevail condition is required, then it must be achieved.

1. If an action executes, then all of its effects and prevail conditions must also.

4. A goal utility dependency is achieved iff its goals are achieved.

plane person

cost: 1

cost: 1

cost: 1

cost: 1

cost: 1

cost: 1

cost: 101

cost: 150

cost: 200

cost: 100

util: 1000

util: 10

util: 1000



Building a Heuristic
Constraints of this model

1. If an action executes, then all of its effects and prevail conditions must also.

2. If a fact is deleted, then it must be added to re-achieve a value.

3. If a prevail condition is required, then it must be achieved.

4. A goal utility dependency is achieved iff its goals are achieved.

action(a)  =  Seffects of a in v effect(a,v,e) + Sprevails of a in v prevail(a,v,f)

1{if f ? s0[v]} + Seffects that add f effect(a,v,e)  =  Seffects that delete f effect(a,v,e) + endvalue(v,f)

1{if f ? s0[v]} + Seffects that add f effect(a,v,e)  = prevail(a,v,f) / M

goaldep(k) = Sf in dependency k endvalue(v,f)  – |Gk|  –
1 

goaldep(k) = endvalue(v,f) ? f in dependency kVariables
action(a) ? Z+ The number of times a ? A is executed

effect(a,v,e) ? Z+ The number of times a transition e in state variable v is caused by action a

prevail(a,v,f) ? Z+ The number of times a prevail condition f in state variable v is required by action a

endvalue(v,f) ? {0,1} Equal to 1 if value f is the end value in a state variable v

goaldep(k) Equal to 1 if a goal dependency is achieved

Parameters
cost(a) the cost of executing action a ? A

utility(v,f) the utility of achieving value f in state variable v

utility(k) the utility of achieving achieving goal dependency Gk



Variables
action(a) ? Z+ The number of times a ? A is executed

effect(a,v,e) ? Z+ The number of times a transition e in state variable v is caused by action a

prevail(a,v,f) ? Z+ The number of times a prevail condition f in state variable v is required by action a

endvalue(v,f) ? {0,1} Equal to 1 if value f is the end value in a state variable v

goaldep(k) Equal to 1 if a goal dependency is achieved

Parameters
cost(a) the cost of executing action a ? A

utility(v,f) the utility of achieving value f in state variable v

utility(k) the utility of achieving achieving goal dependency Gk

Objective Function
MAX Sv?V,f?Dv utility(v,f) endvalue(v,f)  + Sk?K utility(k) goaldep(k)  – Sa?A cost(a) action(a)

Maximize Net Benefit

2. If a fact is deleted, then it must be added to re-achieve a value.
1{if f ? s0[v]} + Seffects that add f effect(a,v,e)  =  Seffects that delete f effect(a,v,e) + endvalue(v,f)

3. If a prevail condition is required, then it must be achieved.
1{if f ? s0[v]} + Seffects that add f effect(a,v,e)  = prevail(a,v,f) / M

Updated
at each search node



Search
Branch and Bound

Branch and bound with time limit

Greedy lookahead strategy

All soft goals; all states are goal states

LP-solution guided relaxed plan 
extraction

Similar to YAHSP (Vidal, 2004)

Returns the best plan (i.e., best bound)

To quickly find good bounds

To add informedness



(at plane loc1) (at plane loc1)

(at plane loc3)

(at plane loc2) (at plane loc2)

(at plane loc1)

(at plane loc3)

(drop person loc2)

(fly loc2 loc3)

(fly loc1 loc2)

(fly loc3 loc2)

(fly loc1 loc2)

(fly loc1 loc3) (fly loc1 loc3)

(in person plane) (in person plane) (in person plane)

(at person loc2)

Getting a Relaxed Plan



Getting a Relaxed Plan
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Getting a Relaxed Plan
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Getting a Relaxed Plan
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Getting a Relaxed Plan
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Results

rovers satellite

zenotravel

optimal
solutions Found optimal solution in 

15 of 60 problems 

(higher net benefit is better)



Results



Drive(l2,l1) Load(p1,t1,l1) Drive(l1,l2) Unload(p1,t1,l2)

1,1

1,T

2,T

2,2

1,2

2,1

DTGTruck1 || Package1

LP solution

xDrive(l2,l1) = 1
xLoad(p1,t1,l1) = 1
xDrive(l1,l2) = 1
xUnload(p1,t1,l2) = 1

4

Drive(l1,l2)

Drive(l2,l1)

Load(p1,t1,l2)

Unload(p1,t1,l1)

Unload(p1,t1,l2)

Drive(l1,l2)

Drive(l2,l1)

Drive(l1,l2)Drive(l2,l1)

LP solution

xLoad(p1,t1,l1) = 1
xUnload(p1,t1,l2) = 1
xDrive(l2,l1) = 1/M

1

2

T

1

2

DTGPackage1

DTGTruck1

Load(p1,t1,l1)

Load(p1,t1,l2)

Unload(p1,t1,l1)

Unload(p1,t1,l2)

Drive(l1,l2) Drive(l2,l1)

Load(p1,t1,l1)
Unload(p1,t1,l1)

Load(p1,t1,l1)
Unload(p1,t1,l1)

2 + 1/M



• A version of 
BBOP-LP --
called 
Yochanps

took part in 
IPC 2006 
and did 
quite well.. 



MURI 2007: Effective Human-Robot Interaction 
under Time Pressure

Indiana Univ; ASU
Stanford, Notre Dame



• PSP problems are ubiquitous and foreground quality 
considerations

• Challenges include modeling and handling cost and 
utility interactions between objectives (goals)

• It is possible to combine the progress in planning graph 
heuristics, IP encodings and factored utility 
representations to attack the problem well

• Future directions
– Strengthening the IP encodings with valid inequalities derived 

from fluent merging
– Explaining why certain objectives are selected in mixed initiative 

scenarios..
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[AAAI 2004; ICAPS 2005
IJCAI 2005; IJCAI 2007]
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ICAC 2005 etc.]



• There are many scenarios where domain 
modeling is the biggest obstacle
– Web Service Composition

• Most services have very little formal models attached

– Workflow management
• Most workflows are provided with little information about 

underlying causal models

– Learning to plan from demonstrations
• We will have to contend with incomplete and evolving domain 

models..

• ..but our approaches assume complete and 
correct models..

Is the only way to get more applications is to tackle more and more expressive domains?



From 
“Any Time” to
“Any Model”

Planning

• ..“incomplete” “not enough domain 
knowledge to verify correctness/optimality”

• How incomplete is incomplete?

• Missing a couple of 
preconditions/effects 
or user preferences?

• Knowing no more 
than I/O types?





1. Planning support for shallow domain 
models [ICAC 2005]

2. Plan creation with approximate domain 
models [IJCAI 2007, ICAPS Wkshp 2007]

3. Learning to improve completeness of 
domain models [ICAPS Wkshp 2007]



• Provide planning support that exploits the shallow model 
available

• Idea: Explore wider variety of domain knowledge that 
can either be easily specified interactively or 
learned/mined. E.g. 

• I/O type specifications (e.g. Woogle)
• Task Dependencies (e.g. workflow specifications)

– Qn: Can these be compiled down to a common substrate?

• Types of planning support that can be provided with 
such knowledge
– Critiquing plans in mixed-initiative scenarios
– Detecting incorrectness (as against verifying correctness)



Planning in Autonomic Computing (AC)

The ‘P’ of the M-A-P-E loop in an Autonomic 
Manager
Planning provides the policy engine for goal-
type policies

Given expected system behavior (goals) , 
determine actions to satisfy them 

Synthesis, Analysis & Maintenance of plans of 
act ion is a vital aspect of Autonom ic Comput ing

Example 1: Taking high- level behavioral 
specifications from humans, and control the 
system behavior in such a way as to satisfy the 
specifications

Change requests (e.g., I NSTALL, UPDATE, REMOVE) 
from administrator in managing software on a 
machine (Solution Install scenarios)

Example 2: Managing/propagating changes 
caused by installations and component changes in 
a networked environment

Remediation in the presence of failure

Managed Element

ES

Monitor

Analyze

Execute

Plan

Knowledge

Autonomic Manager



• Support plan creation despite missing details 
in the model. The missing details may be (1) 
action models (2) cost/utility models

• Example: Generate robust “line” plans in the 
face of incompleteness of action description
– View model incompleteness as a form of 

uncertainty  (e.g. work by Amir et. al.)

• Example: Generate Diverse/Multi-option plans 
in the face of incompleteness of cost model
– Our IJCAI-2007 work can be viewed as being 

motivated this way..
Note: Model-lite planning aims to reduce the 
modeling burden; the planning itself may actually 
be harder



Form alized not ions of bases 
for plan distance m easures
Proposed adaptat ion to 
exist ing representat ive, 
state-of- the-art , planning 
algorithm s to search for 
diverse plans

Showed that using action-
based distance results in plans 
that are likely to be also 
diverse with respect to 
behavior and causal structure
LPG can scale-up well to large 
problems with the proposed 
changes 

[IJCAI 2007]

• Action-based 
comparison: S1-1, S1-2 
are similar, both 
dissimilar to S1-3; with 
another basis for 
computation, all can be 
seen as different 
• State-based comparison: 
S1-1 different from S1-2 
and S1-3; S1-2 and S1-3 
are similar
• Causal- link comparison: 
S1-1 and S1-2 are 
similar, both diverse from 
S1-3

Compute by Set-difference

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S1-2

p1,
p2,
p3

g1,
g2,
g3

A1

A2

A3
<p1,p2,p3>

<g1,g2,g3>

Plan S1-1

p1,
p2,
p3

g1,
g2,
g3

A1 A2’

<p1,p2,p3>

A3’

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S1-3

Initial State Goal State

dDISTANTkSET
Given a distance measure δ(.,.), and a 
parameter k, find k plans for solving the 
problem that have guaranteed minimum 
pair-wise distance d among them in 
terms of δ(.,.)

Distance Measures

In what terms should we measure 
distances between two plans?

The actions that are used in the plan?
The behaviors exhibited by the plans?
The roles played by the actions in the plan?

Choice may depend on
The ultimate use of the plans

E.g. Should a plan P and a non-minimal 
variant of P be considered similar or different?

What is the source of plans and how much is 
accessible? 

E.g. do we have access to domain theory or 
just action names?
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Fly(BOS,PVD)

Car(BOS,Prov.)

?

Train(MP, SFO)

Shuttle(MP, SFO)

Fly(SFO, BOS)

Fly(SFO, BOS)

Fly(BOS,PVD)

Car(BOS,Prov.)

Cab(PVD, Prov.)

Cab(PVD, Prov.)

O2

O2a

O1

O1a

Diversity through Pareto 
Front w/ High Spread

[ICAPS 2007 Execution Wkshp]
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Duration
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O2

O2a
O1a

Diversity



• In traditional “model-intensive” planning learning is 
mostly motivated for speedup
– ..and it has gradually become less and less important with the 

advent of fast heuristic planners
• In model-lite planning, learning (also) helps in model 

acquisition and model refinement. 
– Learning from a variety of sources 

• Textual descriptions; plan traces; expert demonstrations
– Learning in the presence of background knowledge

• The current model serves as background knowledge for additional 
refinements for learning

• Example efforts
– Much of DARPA IL program (including our LSP system); PLOW 

etc. 
– Stochastic Explanation-based Learning  (ICAPS 2007 wkhop)

Make planning Model-lite Make learning knowledge (model) rich



• Represent incomplete domain with 
(relational) probabilistic logic
– Weighted precondition axiom
– Weighted effect axiom
– Weighted static property axiom

• Address learning and planning 
problem
– Learning involves

• Updating the prior weights 
on the axioms

• Finding new axioms
– Planning involves

• Probabilistic planning in the 
presence of precondition 
uncertainty

• Consider using MaxSat to 
solve problems in the 
proposed formulation

Towards Model-lite Planning - Sungwook Yoon 

Domain Model - Blocksworld

• 0.9, Pickup (x) -> armempty()
• 1, Pickup (x) -> clear(x)
• 1, Pickup (x) -> ontable(x)
• 0.8, Pickup (x) –> holding(x)
• 0.8, Pickup (x) -> not armempty()
• 0.8, Pickup (x) -> not ontable(x)
• 1, Holding (x) -> not armempty()
• 1, Holding (x) -> not ontable(x)

Precondition Axiom:
Relates Actions with 
Current state facts

Effect Axiom:
Relates Actions with 
Next state facts

Static Property:
Relates Facts in a 
State

Towards Model-lite Planning - Sungwook Yoon 

A B
A
B

clear_a
clear_b
armempty
ontable_a
ontable_b

pickup_a
pickup_b

clear_a
clear_b
armempty
ontable_a
ontable_b
holding_a
holding_b

pickup_a
pickup_b
stack_a_b
stack_b_a

clear_a
clear_b
armempty
ontable_a
ontable_b
holding_a
holding_b
on_a_b
on_b_a

noop_clear_a
noop_clear_b
noop_armempty
noop_ontable_a
noop_ontable_b

noop_clear_a
noop_clear_b
noop_armempty
noop_ontable_a
noop_ontable_b
noop_holding_a
noop_holding_b

0.8

Can we view the probabilistic 
plangraph as Bayes net?

Evidence Variables

How we find a solution?
MPE (most probabilistic explanation)
There are some solvers out there

0.5

0.8

Domain Static Property
Can be asserted too, 0.9

Towards Model-lite Planning - Sungwook Yoon 
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Underlying System Dynamics
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P
S

P
 P

lanning

O
pt

im
iz

at
io

n 
M

et
ric

s

Any (feasible) Plan

Shortest plan

Cheapest plan

Highest net-benefit

Multi-objective

[AAAI 2004; ICAPS 2005
IJCAI 2005; IJCAI 2007]
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[AAAI 2007, IJCAI 2007,
ICAC 2005 etc.]

Google “Yochan” or “Kambhampati” for related papers
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