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ABSTRACT

Incompleteness due to missing attribute values (aka “raliles”) is very
common in autonomous web databases, on which user accessesially
supported through mediators. Traditional query procgs&nhniques that
focus on the strict soundness of answer tuples often igipied with crit-
ical missing attributes, even if they wind up being relevan& user query.
Ideally we would like the mediator to retrieve such possieswers and
gauge their relevance by accessing their likelihood of dgiartinent an-
swers to the query. The autonomous nature of web databases peveral
challenges in realizing this objective. Such challengebige the restricted
access privileges imposed on the data, the limited suppoguiery patterns,
and the bounded pool of database and network resources wethenvi-
ronment. We introduce a novel query rewriting and optiniiraframework
QPIAD that tackles these challenges. Our technique ingaleformulating
the user query based on mined correlations among the dataltabutes.
The reformulated queries are aimed at retrieving the ratepassible an-
swers in addition to the certain answers. QPIAD is able tggahe rel-
evance of such queries allowing tradeoffs in reducing trescof database
query processing and answer transmission. To supportrémsefvork, we
develop methods for miningttribute correlations(in terms of Approxi-
mate Functional Dependenciesglue distributions(in the form of Naive
Bayes Classifiers), angklectivity estimatesWe present empirical studies
to demonstrate that our approach is able to effectivelyesatrelevant pos-
sible answers with high precision, high recall, and manblgezost.

1. INTRODUCTION

query interface as a global schema of the underlying daggbas
Queries on the global schema are then rewritten as quer&s ov
autonomous databases through their web interfaces. G unehi-
ator systems [20, 15] only return to the usertain answerghat
exactly satisfy all the user query predicates. For examiple
used car trading application, if a user is interested in nade by
Honda all the returned answers will have the value “Honda” for at-
tribute Make Thus, arAccordwhich has anissingvalue forMake
will not be returned by such systems. Unfortunately, suclamn
proach is both inflexible and inadequate for querying automas
web databases which are inherently incomplete. As an exarhg

ble 1 shows statistics on the percentage of incomplete 2ipden
several autonomous web databases. The statistics wereutsanp
from a randomly probed sample. The table also gives stist
the percentage of missing values for Bedy StyleandEngineat-
tributes.

Website # of Total Incomplete Body Engine
Attributes | Tuples Tuples % Style % %
www.AutoTrader.com 13 25127 33.67% 3.6% 8.1%
www.CarsDirect.com 14 32564 98.74% 55.7% 55.8%
Google Base 203+ 580993 100% 83.36% | 91.98%

Table 1: Statistics on missing values in web databases

Such incompleteness in autonomous databases should ngtbe s
prising as it can arise for a variety of reasons, including:

Data integration in autonomous web database scenarios hadlcomplete Entry: Web databases are often populated by lay indi-
drawn much attention in recent years, as more and more data beviduals without any central curation. For example, webssttech

comes accessible via web servers which are supported by bac
end databases. In these scenarios, a mediator providedieduni
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kasCars.comandYahoo! Autosobtain information from individual

car owners who may not fully specify complete informatiomato
their cars, thus leaving such databases scattered withngigal-

ues (aka “null” values). Consider a car owner who leavedthke

attribute blank, assuming that it is obvious as ihedel of the car
she is selling i;Accord

Inaccurate Extraction: Many web databases are being populated
using automated information extraction techniques. Assaltef
the inherent imperfection of these extractions, many webldses
may contain missing values. Examples of this include imgaerf
tions in web page segmentation (as described in [10]) or ifape
tions in scanning and converting handwritten forms (as ritest

in [2]).

Heterogenous SchemasGlobal schemas provided by mediator
systems may often contain attributes that do not appear iof al
the local schemas. For example, a global schema for the ased c
trading domain has an attribute callddy Style which is sup-
ported byCars.com but not byYahoo! Autos Given a query on



the global schema for cars haviBgdy Styleequal toCoupe me-
diators which only return the certain answers are not ablagke
use of information from th&ahoo! Autoslatabase thereby failing
to return a possibly large portion of the relevant tuples.

User-defined SchemasAnother type of incompleteness occurs in
the context of applications like Google Base [22] whichallssers
significant freedom to define and list their own attributesisbften
leads to redundant attributes (e.g. MalseManufacturer), as well
as proliferation of null values (e.g. a tuple that gives augdior
Make is unlikely to give a value for Manufacturer and vicessr

Although there has been work on handling incompleteness in
databases (see Section 2), much of it has been focused da sing
databases on which the query processor has complete coftel
approaches developed—such as the “imputation methods’atha
tempt to modify the database directly by replacing null ealwith
likely values—are not applicable for autonomous databagese
the mediator often has restricted access to the data so@oase-
quently, when faced incomplete databases, current mesliatdy
provide the certain answers thereby sacrificing recalls Ehartic-
ularly problematic when the data sources have a significaotibn
of incomplete tuples, and/or the user requires high recatigider,
for example, a law-enforcement scenario, where a potgntile-
vant criminal is not identified due to fortuitous missingdrrhation
or a scenario where a sum or count aggregation is being pestr

To improve recall in these systems, one naive approachdszul
to return, in addition to all the certain answers, all thdeaith
missing values on the constrained attribute(spassibleanswers
to the query. For example, given a selection query for cadema
by “Honda”, a mediator could return not only those tuples sého
Makevalues are “Honda” but also the ones whdakevalues are
missing(null). This approach, referred to asLARETURNED, has
an obvious drawback, in that many of the tuples with missialg v
ues on constrained attributes @relevantto the query. Intuitively,
not every tuple that has a missing value fdake corresponds to
a car made bydondd Thus, while improving recall, the AL RE-
TURNED approach can lead to drastically lower precision.

In an attempt to improve precision, a more plausible satutio
could start by first retrieving all the tuples wittull values on the
constrained attributes, predicting their missing valaesl then de-
ciding the set of relevant query answers to show to the udeis T
approach, that we will call ALRANKED, has better precision than
ALLRETURNED. However, most of the web-accessible database in-
terfaces we've found, such &8hoo AutosCars.comRealtor.com
etc, do not allow the mediator to directly retrieve tuples withinu
values on specific attributesIn other words, we cannot issue
queries like “list all the cars that have a missing value Bady
Styleattribute”. Even if the sources do support bindinghafl val-
ues, retrieving and additionally ranking all the tupleshaitissing
values involves high processing and transmission costs.

Our Approach: In this paper, we present QPIADa system for
mediating over incomplete autonomous databases. To make-th
trieval of possible answers feasible, QPIAD bypasses thealue
binding restriction by generatingwritten queries according to a
set of mined attribute correlation rules. These rewritteerigs are

'Moreover, an attribute may not appear in a schema interiljona
as the database manager may suppress the values of ceftain
tributes. For example, the travel reservation welBiieeline.com
suppresses the airline/hotel name when booking tickethated.

2QPIAD is an acronym for Qery Rocessing overricomplete

Autonomous Btabases. A 3-page poster description of QPIAD
first appeared in [18].

designed such that there are no query predicates on adisilfort
which we would like to retrieve missing values. Thus, QPIAD
is able to retrieve possible answers without binding nulliea or
modifying underlying autonomous databases. To achieve [rig-
cision and recall, QPIAD learns Approximate Functional Brep
dencies (AFDs) for attribute correlations, Naive Bayesidassi-
fiers (NBC) for value distributions, and query selectivigtimates
from a database sample obtained off-line. These data setatis-
tics are then used to provide a ranking scheme to gauge the rel
vance of a possible answer to the original user query. Fumites,
instead of ranking possible answers directly, QPIAD ordbes
rewritten queries in the order of the number of relevant amshey
are expected to bring as determined by the attribute vaktelali-
tions and selectivity estimations. The rewritten queriesssued in
this order, and the returned tuples are ranked in accordaitic¢he
query that retrieved them. By ordering the rewritten queraher
than ranking the entire set of possible answers, QPIAD is &bl
optimize both precision and recall while maintaining effiicy. We
extend this general approach to handle selection, agjwagatd
join queries, as well as supporting multiple correlatedrsest .

Contributions: QPIAD’s query rewriting and ranking strategies
allow it to efficiently retrieve relevant possible answemsnfi au-
tonomous databases given mediator’'s query-only cagabilénd
limited query access patterns to these databases. To theflmes
knowledge, the QPIAD framework is the first that retrievelere
vant possible answers with missing values on constrainetes
without modifying underlying databases. Consequentlig #uit-
able for querying incomplete autonomous databases. Tlzedfle
using learned attribute correlations, value distribugicand query
selectivity to rewrite and rank queries, which considernhaural
tension between precision and recall, is also a novel daritdn
of our work. In addition, our framework can leverage atttécor-
relations among data sources in order to retrieve relevasgiple
answers from data sources not supporting the query agrifgug.
local schemas which do not support the entire set of glolfersa
attributes). Our experimental evaluation over selectaggrega-
tion, and join queries shows that QPIAD retrieves most aiev
possible answers while maintaining low query processirgsco

Assumptions: In this paper we assume that tuples contain-
ing more than one null over the set of query constrained at-
tributes are less relevant to the user. Therefore, such tu-
ples are not ranked but simply output after the ranked tuples
containing zero or a single null over the set of query con-
strained attributes.  For example, assume the user poses a
query Q: 0 Model=AccordA Price=10000AY ear=2001 ON the relation
R(Make, Model, Price, Mileage,Y ear, BodyStyle). In this
case, a tuple; (Honda, null, 10000, 30000, null, Coupe) would

be placed below ranked tuples because it has missing vahiego

of its constrained attributes, namelyodel andY ear. However,

we assume a tuplé; (Honda, null, 10000, null, 2001, Coupe)
would be ranked as it only contains a null on one constrairted a
tribute, namelyM odel. The second missing value is @dileage,
which is not a constrained attribute.

Organization: The rest of the paper is organized as follows. In
the next section we discuss related work on handling incetapl

a?ata. Next, we cover some preliminaries and an overview of ou
r

amework in Section 3. Section 4 proposes online queryitegr
and ranking techniques to retrieve relevant possible arssfrem
incomplete autonomous databases in the context of satec@®
gregation, and join queries, as well as retrieving possibievers
from data sources which do not support the query attributeair



local schemas. Section 5 provides the details of learnitngpate
correlations, value distributions, and query selectiviggd in our
query rewriting phase. A comprehensive empirical evatuatf
our approach is presented in Section 6. We conclude the jpaper
Section 7.

2. RELATED WORK

Querying Incomplete Databases:Traditionally, incompleteness
in databases has been handled by one of two broad approdttees.
first-which we callpossible world approached4, 21, 2]-tracks
the completions of all incomplete tuples. All feasible cdetions
are considered equally likely and the aim of query processiio
return certain vs. possible answers without making anyndisons
among the possible answers. To help track all possible waorlidl
values are typically represented using one of three diffemeeth-
ods, each of increasing generality: (i) Codd Tables whdréhal
null values are treated equally; (ii) V-tables which allow maify d
ferentnull values marked by variables; and (iii) Conditional tables
which are V-tables with additional attributes for conditso

The second type of approaches for handling incomplete
databases—which we cabirobabilistic approacheq[6, 3, 31])—
attempt to quantify the distribution over the completiofiso in-
complete tuple, and use this information to distinguistwieen the
likelihood of various possible answers. Our work falls irsthec-
ond category. The critical novelty of our work is that our eggeh
learns the distribution automatically, and also avoids ifiyoty the
original database in any way. It is therefore suitable foergu

ing incomplete autonomous databases, where a mediatortis no

able to store the estimation of missing values in sourcelshdb-

dles incompleteness for aggregate queries in the conteQt 8P

databases, by relaxing the original queries using the tuieical

OLAP structure. Whereas our work learns attribute cori@tat

value distributions and query selectivity estimates toegate and
rank rewritten queries.

Querying Inconsistent DatabasesWork on handling inconsistent
databases also has some connections. While most apprdaches
handling inconsistent databases are more similar to thssiplke
worlds approaches” used for handling incompleteness (B,
some recent work (e.g. [1]) uses probabilistic approacbekdn-
dling inconsistent data.

Querying Probabilistic Databases:Incomplete databases are sim-
ilar to probabilistic databases (c.f. [29, 7, 28, 30]) onte prob-
abilities for missing values are assessed. [29] gives arvieve
of querying probabilistic databases where each tuple iscéeted
with an additional attribute describing the probabilityitsf exis-

with missing values on constrained attributes. Towards, thur
rewritten queries modify constrained attributes as wethag val-
ues.

Ranked Joins: The part of our query processing framework which
handles join queries over autonomous sources is similarotdx w
onranked join§l3]. However, we use predicted values learnt from
the data itself to perform joins without modifying the ungerg
databases.

Learning Missing Values: There has been a large body of work on
missing values imputation [8, 26, 27, 31, 3]. Common impatat
approaches include substituting missing data values bynien,
the most common value, default value of the attribute in tioes

or using k-Nearest Neighbor [3], association rules [31¢, eAn-
other approach used to estimate missing valugmiameter esti-
mation Maximum likelihood procedures that use variants of the
Expectation-Maximization algorithm [8, 26] can be used $ti-e
mate the parameters of a model defined for the complete data. |
this paper, we are interested not in the standard imputgtiob-
lem but a variant that can be used in the context of query tiegri

In this context, it is important to have schema level depeoids
between attributes as well as distribution informationrawnéssing
values.

3. PRELIMINARIES AND ARCHITEC-
TURE OF QPIAD

We will start with formal definitions of certain answers arasp
sible answers with respect to selection queries.

DEFINITION1 (COMPLETE/INCOMPLETETUPLES). Let
R(A1, Az, -+, Ay) be a database relation. A tuptec R is said
to be complete if it has non-null values for each of the atitiis
Aj;; otherwise it is considered incomplete. A complete tupie
considered to belong to the set of completions of an incample
tuplet (denoted’(%)), if ¢ and# agree on all the non-null attribute
values.

Now consider a selection querQ: ca,,—»,, Over relation
R(Ay,---,Ay) where(l1 <m < n).

DEFINITION 2 (CERTAIN/POSSIBLEANSWERS. A tuplet;
is said to be a certain answer for the que§y: ca,,=v,, If
ti.Am=vm. t; is said to be an possible answer fap if
t;.Am=null, wheret;.A,, is the value of attributed,,, in ¢;.

Notice an incomplete tuple is a certain answer to a querts ifull
values are not on the attributes constrained in the query.

tence. Some recent work on the TRIO [28, 30] system deals with  There are several key functionalities that QPIAD needs iteor

handling uncertainty over probabilistic relational datsds. In such
systems, the notion of incompleteness is closely relatachter-
tainty: an incomplete tuple can be seen as a disjunctiors fas-

sible completions. However, we go a step further and view the

incomplete tuple as probability distributionover its completions.
The distribution can be interpreted as giving a quantiéegistimate
of the probability that the incomplete tuple corresponds specific
completion in the real world. Furthermore we address thelpro
of retrieving incomplete tuples from autonomous databadesre
the mediator does not have capabilities to modify the uited
databases.

Query Reformulation & Relaxation: Our work has some rela-
tions to both query reformulation and query relaxation 24, ap-
proaches. An important difference is our focus on retrig\irples

to retrieve and rank possible answers to a user queryediping
attribute correlationsto generate rewritten queries, (Assessing
the value probability distributionsf incomplete tuples to provide

a ranking scheme for possible answers, @sfimating query se-
lectivity to estimate the recall and determine how many rewritten
queries to issue, and based on the above didering rewritten
queriesto retrieve possible tuples that have a high degree of rel-
evance to the query.

The system architecture of the QPIAD system is presented in
Figure 1. A user accesses autonomous databases by issuiagya q
to the mediator. The query reformulator first directs thegtethe
autonomous databases and retrieves the set of all certaivesn
(called thebase result s¢t In order to retrieve highly relevant pos-
sible answers in ranked order, the mediator dynamicallegeas
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rewritten queries based on the original query, the basdtrest
and attribute correlations in terms of Approximate FunwicDe-

ID | Make [ Model | Year | Body Style |

1 Audi A4 2001 Convt
2 BMW Z4 2002 Convt
3 | Porsche| Boxster | 2005 Convt
4 BMW Z4 2003 null
5 Honda | Civic | 2004 null
6 | Toyota | Camry | 2002 Sedan

Table 2: Fragment of a Car Database

is sent to the database to retrieve the certain answers arédhen
returned to the user. Next, a group of rewritten queries ratedlii
gently generated, ordered, and sent to the database. Tduegsr
is done such that the query patterns are likely to be suppbdaye
the web databases, and only the most relevant possible enaree
retrieved by the mediator in the first place.

Generating Rewritten Queries: The goal of the query rewriting
is to generate a set of rewritten queries to retrieve retepassi-
ble answers. Let's consider the same user qugsking for all
convertible cars. We use the fragment of the Car databasensho
in Table 2 to explain our approach. First, we issue the qagty
the autonomous database to retrieve all the certain answech

pendencies(AFDs) learned from a database sample. The foal ocorrespond to tuples;, t> and¢; from Table 2. These certain

these new queries is to return extended result sevhich consists
of highly relevant possible answers to the original queigc& not
all rewritten queries are equally good in terms of retrigviele-
vant possible answers, they are ordered before being posée t
databases. The ordering of the rewritten queries is basebein

answers form thévase result sebf Q). Consider the first tuple
t1=(Audi, A4,2001, Convt) in the base result set. If there is a
tuple ¢; in the database with the same value fdiodel ast; but
missing value fotBody Style, thent;. Body Style is likely to be
Convt. We capture this intuition by mining attribute correlations

expected--Measurewhich considers the estimated selectivity and from the data itself.

the value distributions for the missing attributes.

QPIAD mines attribute correlations, value distributiorssd
query selectivity using a small portion of data sampled fthenau-
tonomous database using random probing queries. The kdge/le

One obvious type of attribute correlation iufictional depen-
dencie&. For example, the functional dependentfodel — M ake
often holds in automobile data records. There are two prnablia
adopting the method directly based on functional deperidsn()

mining module learns AFDs and AFD-enhanced Naive Bayesian often there are not enough functional dependencies in tiae aiad

Classifiers (where the AFDs play a feature selection rolether
classification task) from the samples. Then the knowledge mi
ing module estimates the selectivity of rewritten queridgsmed
with the AFDs, the corresponding classifiers, and the Seigces-
timates, the query reformulator is able to retrieve theveie pos-
sible answers from autonomous databases by rewriting thmak
user query and then ordering the set of rewritten queriels that
the possible answers are retrieved in the order of theiringnik
precision.

4. RETRIEVING RELEVANT POSSIBLE
ANSWERS

In this section, we describe the QPIAD query rewriting apgto
for effectively and efficiently retrieving relevant podeilanswers

from incomplete autonomous databases. We support queries i

volving selections, aggregations and joinghis query rewriting
framework can also retrieve relevant answers from datacesurot
supporting the entire set of query constrained attributes.

4.1 Handling Selection Queries

To efficiently retrieve possible answers in their order cdqdr
sion, QPIAD follows a two-step approach. First, the origjzery

%In QPIAD we assume a projection over the entire set of attetfu
In cases where users may wish to project a subset of theuaétsip
QPIAD can project all the attributes and then simply retarthe
user only those attributes contained in the subset

(i) autonomous databases are unlikely to advertise thetifumal
dependencies. The answer to both these problems invieaes-

ing approximate functional dependencies from a (probed) sampl
of the database.

DEFINITION 3 (APPROXIMATE FUNCTIONAL DEPENDENCY).
X~A over relation R is anapproximate functional depen-
dency(AFD)if it holds on all but a small fraction of the tuples. The
set of attributesX is called thedetermining sebf A denoted by
dirSet(A).

For example, an AFDM odel~ Body Style may be mined,
which indicates that the value of a caf$odel attributesometimes
(but not always) determines the value of Bady Style attribute.
According to this AFD and tuple;, we issue a rewritten query
Q' : Tarodel—a4 With constraints on theetermining seof the at-
tribute Body Style, to retrieve tuples that have the sath&del
ast; and therefore are likely to b€onuvt in Body Style. Simi-
larly, we issue querie§s: oarodei=z4 aNAQ5: T rrodel=Bowster
to retrieve other relevant possible answers.

Ordering Rewritten Queries: In the query rewriting step of
QPIAD, we generate new queries according to the distinateval
combinations among the base set’s determining attribubes f
each of the constrained attributes. In the example above, we
used the three certain answers to the user qugryo gener-
ate three new queriesQ’: oarodei=a4, Q5: Trrodei=z4 and
Q5 0Model=Bowster- Although each of these three queries retrieve



possible answers that are likely to be more relevaf) than a ran-
dom tuple with missing value faBody Style, they may not all be
equally good in terms of retrieving relevant possible answe
Thus, an important issue in query rewriting is the order irclvh
to pose the rewritten queries to the database. This ordeepgnds
on two orthogonal measures: thepected precisionf the query—
which is equal to the probability that the tuples returnedttare
answers to the original query, and g&ectivityof the query—which
is equal to the number of tuples that the query is likely todpiin.
As we shall show in Section 5, both the precision and selggtiv
can be estimated by mining a probed sample of the database.

For example, based on the value distributions in the sample@PpProach. LeR(A;, A, -

database, we may find that 44 model car is more likely to
be aConvertiblethan a car whose model i44. As we discuss

in Section 5.2, we build AFD-enhanced classifiers which give
the probability values P(Body Style=Convt|Model=A4),
P(Body Style=Convt|Model=24) and
P(Body Style=Convt|Model=Bozxster). Similarly, the
selectivity of these queries can be different. For exampiemay
find that the number of tuples having odel=A4 is much larger
than that ofM odel=24.

Given that we can estimate precision and selectivity of the
queries, the only remaining issue is how to use them to otder t
queries. If we are allowed to send as many rewritten ques&gea
would like, then ranking of the queries can be done just imger
of the expected precision of the query. However, things iveco
more complex if there are limits on the number of queries we ca

pose to the autonomous source. Such limits may be imposed by

the network/processing resources of the autonomous dateesor
possibly the time that a user is willing to wait for answers.

Given the maximum number of queries that we can issue to a

database, we have to find a reasonable tradeoff betweendbie pr
sion and selectivity of the queries issued. Clearly, alé ddsing
equal, we will prefer high precision queries to low preaisimes
and high selectivity queries to low selectivity ones. Thekiy is-
sue is how to order a query with high selectivity and low psiri

in comparison to another with low selectivity and high psemn.
Since the tension here is similar to the precision vs. rdeal
sion in IR, we decided to use the well knoimMeasuremetric
for query ordering. In the IR literaturds-Measureis defined as
the weighted harmonic mean of the precisid? @nd recall R)
measurest-t2l-P<R e use the query precision f@t. We es-
timate the recall measur® of the query by first computing query
throughput, i.e., expected number of relevant answersneduby

the query (which is given by the product of the precision agd s
lectivity measures), and then normalizing it with respedthie ex-
pected cumulative throughput of all the rewritten queribigtice
that theF-Measurebased ordering reduces to precision-based or-
dering whenx = 0.

In summary, we use the F-measure ordering to sdletp
queries, wheré is the number of rewritten queries we are allowed
to issue to the database. Once thgueries are chosen, they are
posed in the order of their expected precision. This way éhe-r
vant possible answers retrieved by these rewritten queded not
be ranked again, as their rank — the probability that thdinmlue
corresponds to the selected attribute— is the same as tbisipre
of the retrieving query.

Note that the parameter in the F-measure as well as the pa-

to generate rewritten queries accordingly to satisfy tiverde re-
quirements. It allows the tradeoff between precision awdll¢o
be tuned by adjusting the parameter in it$--Measurebased or-
dering. Whena is set to be0, the rewritten queries are ordered
solely in terms of precision. Whem is set to bel, the precision
and recall are equally weighted. The limitations on theloasa and
network resources are taken into account by varyiathe number
of rewritten queries posed to the database.

4.2 Query Rewriting Algorithm

In this section, we describe the algorithmic details of tHel @D
, An) be a database relation. Suppose
dtrSet(An,) is the determining set of attributé,,, (1 < m < n),
according to the highest confidence AFD (to be discusseddn Se
tion 5.3). QPIAD processes a given selection queryo a
according to the following two steps.

1. Send? to the database and retrieve the base resulRS&t)) as the
certain answers af). ReturnRS(Q) to the user.

m=Um

2. Generate a set of new queri@s, order them, and send the most rel-

evant ones to the database to retrieve the extended resﬁi\Sséé))
as relevant possible answers@f This step contains the following
tasks.

(a) Generate rewritten queriesLet mg,get(4,,)(RS(Q)) be
the projection ofRS(Q) onto dtrSet(An, ). For each dis-
tinct tuple ¢; In a4 geea,,) (RS(Q)), create a selection
query Q’ in the following way. For each attributel. in
dtrSet(Anm ), create a selection predicate, =t;.v,. The se-
lection predicates of’, consist of the conjunction of all these
predicates.

Select rewritten queriesFor each rewritten querg)’, com-
pute the estimated precision and estimated recall usirggits
timated selectivity derived from the sample. Then order all
Q’s in order of theiF-Measurescores and choose the top-K
to issue to the database.

(b)

(c

~

Re-order selected top-K rewritten querieRe-order the se-
lected top-K set of rewritten queries according to theii-est
mated precision which is simply the conditional probapif
PQQ:P(Am:vm\ti) . I* By re-ordering the top-K queries
in order of their precision we ensure that each of the retdrne
tuples will have the same rank as the query that retrievet it.

Retrieve extended result set. Given the top-K queries
{Q1,Q5,--- ,Q%} issue them in the according to their
estimated precision-base orderings. Their result sets
RS(Q}), RS(Q%), - - , RS(Q’,) compose the extended re-
sult setRS(Q). /* All results returned for a single query are
ranked equally */

Post-filtering. If database does not allow binding of null val-
ues, (i.e. access to database is via a web fgrmamove from
I/%TS‘(Q) the tuples withA,, # null. Return the remaining
tuples inI/%TS‘(Q) as the relevant possible answer<hf

(d)

(e

~

Multi-attribute Selection Queries: Although we described the
above algorithm in the context of single attribute selettjaeries,

it can also be used for rewriting multi-attribute selectiquneries
by making a simple modification to Step 2(a). Consider a multi
attribute selection quer§) : o4, —v; Ads—vyA--.AA.—v.. TO gENET-
ate the set of rewritten queri€®’, the modification requires Step
2(a) to runc times, once for each constrained attribdtg 1 < ¢ <

c. In each iteration, the tuples fromy, sc.(a,) (RS(Q)) are used
to generate a set of rewritten queries by replacing thebat®iA;

rameterk (corresponding to the number of queries to be issued to with selection predicates of the form.=t;.v. for each attribute

the sources), can be chosen according to source quenctiests,
source response times, network/database resource longaand
user preferences. The unique feature of QPIAD is its flaxybil

A, € dtrSet(A;). For each attributel,, € dtrSet(A,,) whichis
not constrained in the original query, we add the consisantA.,,
to the rewritten query. As we have discussed in Section 1,e o



rank the tuples that contain zero or anél in the query constrained
attributes. If the user would like to retrieve tuples withnehan
one null, we output them at the end without ranking.

For example, consider the multi-attribute selection query
Q1 OModel=AccordA Price between 15000 and 20000 and the mined
AFDs {Make, Body Style} ~~ Model and{Y ear, Model} ~~
Price. The algorithm first generates a set of rewritten queries
by replacing the attribute constraif/ odel=Accord with se-
lection predicates for each attribute in the determining afe
Model using the attribute values from the tuples in the base set
TatrSet(Model) (RS(Q)).  After the first iteration, the algorithm
may have generated the following queries:

/

Ql ¢ OMake=HondaABody Style=SedanAPrice between 15000 and 20000,
/

Q2 ¢ OMake=HondaABody Style=CoupeA Price between 15000 and 20000

Similarly, the algorithm generates additional rewrittareges by
replacing Price with value combination of its determining set
from the base set while keeping the original query constrain
Model=Accord. After this second iteration, the following rewrit-
ten queries may have been generated:

QI,S: O Model=AccordA\Y ear=2002,

Qil: O Model=Accord\Y ear=20011

Qg: O Model=AccordA\Y ear=2003

After generating a set of rewritten queries for each coirstch
attribute, the sets are combined and the queries are orjlesteals
they were in Step 2(b). The remainder of the algorithm regguimo
modification to support multi-attribute selection queries

Base Set vs. Samplé/Vhen generating rewritten queries, one may
consider simply rewriting the original query using the séergs op-
posed to first retrieving the base set and then rewriting. évew
since the sample may not contain all answers to the originaityg
such an approach may not be able to generate all rewrittemegue
By utilizing the base set, QPIAD obtains the entire set okdet
mining set values that the source can offer, and therefdreees

a better recall.

4.3 Retrieving Relevant Answers from Data
Sources Not Supporting the Query At-
tributes

In information integration, the global schema exported Inyea
diator often contains attributes that are not supportedrmesof the
individual data sources. We adapt the query rewriting teghes
discussed above to retrieve relevant possible answers drdata
source not supporting the constrained attribute in theyqlr ex-
ample, consider a global sche@®scacars SUpported by the me-
diator over the sourceéhoo! AutogndCars.comas shown in Fig-
ure 2, whererahoo! Autosloesn't support queries dBody Style
attribute. Now consider a querQ: opody Styte=Convt ON the
global schema. The mediator that only returns certain arsswe
won't be able to query th&¥ahoo! Autogiatabase to retrieve cars
with Body Style Convt. None of the relevant cars froiYahoo!
Autoscan be shown to the user.

Mediator
Cars.com
Yahoo! Autos

GS(Make, Model, Y ear, Price, Mileage, Location, Body Style)
LS(Make, Model,Year, Price, Mileage, Location, Body Style)
LS(Make, Model, Year, Price, Mileage, Location)

Figure 2: Global schema and local schema of data sources

In order to retrieve relevant possible answers fiahoo! Autos
we apply the attribute correlation, value distributiond @electiv-
ity estimates learned on thi@ars.comdatabase to th¥ahoo! Au-

M odel~ Body Style from theCars.condatabase. To retrieve rel-
evant possible answers from tifahoo! Autoglatabase, the media-
tor issues rewritten queries ¥ahoo! Autosising the base set and
AFDs from theCars.comdatabase.

The algorithm that retrieves relevant tuples from a souceot
supporting the query attribute is similar to the QPIAD Aligom
presented in Section 4.2, except that the base result satisved
from thecorrelated sources. in Step 1.

DEFINITION4 (CORRELATEDSOURCE). For any au-
tonomous data sourc§;, not supporting a query attributd;, we
define acorrelated sourcé. as any data source that satisfies the
following: (i) S. supports attributed; in its local schema, (ii)S.
has an AFD whered; is on the right hand side, (iiipx supports
the determining set of attributes in the AFD fdf mined froms..

From all the sources correlated with a given sousgewe use
the one for which the AFD ford; has the highest confidence.
Then using the AFDs, value distributions, and selectivitiyjreates
learned fromS.., ordered rewritten queries are generated and issued
in Step 2 to retrieve relevant possible answers for the useryg
from sourceSy.

4.4 Handling Aggregate Queries

As the percentage of incomplete tuples increases, aggegat
such asSumandCountneed to take the incomplete tuples into ac-
count to get accurate results. To support aggregate quesgefirst
retrieve the base set by issuing the user’s query to the iptaie
database. Besides computing the aggregate over the baserset
tain answers), we also use the base set to generate revgigeies
according to the QPIAD algorithm in Section 4.2. For example
consider the aggregate qu@y O Body Style=ConvtACount(*) over
the Car database fragment in Table 2. First, we would retribe
certain answers;, t2, andts for which we would compute their
certain aggregate valu@ount(x) = 3. As mentioned previously,
our first choice could be to simply return this certain ansteghe
user effectively ignoring any incomplete tuples. Howetlegre is a
better choice, and that is to generate rewritten queriesrdic to
the algorithm in Section 4.2 in an attempt to retrieve raf¢vaples
whoseBodyStyle attribute isnull.

When generating these rewritten queries, tupléfom the base
set would be used to form the rewritten queDs: oarodei=z4
based on the AFDVfodel ~~ Body Style. Before issuing the
query to the database we must first consider how to combineethe
tain and possible aggregate values. We combine the entiréten
query’s aggregate result with the certain aggregate bubdmby
for those queries in which the most likely value is equal tovhlue
of the constrained query attribute.

Using the approach above, we would find the probability dis-
tribution over all Body Style values given that theé\lodel is
known. Since the original quer§ was onBody Style=Conuvt
we check theBody Style distribution to find the value with
the highest probability. If the value with the highest prob-
ability happens to beConuvt then the entire aggregate from
the rewritten query combined with the certain aggregatehéf
highest probability is not for the valu€onwvt then the rewrit-
ten query's aggregate is discarded. Therefore, when cemnsid
ing the rewritten queryQb: oarodei—z4 from above, the final

4Another approach would have been to combine a fraction of the
rewritten query’s aggregate result with the certain agateghere

the fraction is equal to the query’s precision. Howeves thethod
tends to produce a less accurate final aggregate as it alles e

tos database. For example, suppose that we have mined an AFQuple, however irrelevant, to contribute to the final aggteg



resulting aggregate over the incomplete data source woald b
CountTotal(*):CountCer'tain(*)+CountPossible(*):3+1:4 as-
suming thatC'onut is the maximum predicted probability given that
Model=Z4. In Section 6, we present the results of our empirical
evaluation on aggregate query processing in the contexPaAQ.
The results show an improvement in the aggregate value amcur
when incomplete tuples are included in the calculations.

4.5 Handling Join Queries

To support joins over incomplete autonomous data sourhes, t
results are retrieved independently from each source aed th
joined by the mediatot. When retrieving possible answers, the
challenge comes in deciding which rewritten queries to€ssu
each of the sources and in what order.

We must consider both the precision and estimated selgctivi
when ordering the rewritten queries. Furthermore, we neesht
sure that the results of each of these queries agree on ¢ohet}
tribute values. Given that the mediator provides the glsbhema,

a join query posed to the mediator must be broken down as a pair

of queries, one over each autonomous relation. In gengrtm
rewritten queries, we know the precision and selectivitinestes
for each of the pieces, thus our goal is to combine each pair of
queries and compute a combined estimate of precision ard-sel
tivity. It is important to consider these estimates in temfhshe
query pair as a whole rather than simply considering thenesés
of the pair's component queries alone. For example, whefomas
ing a join on the results of two rewritten queries, it couldtwecase
that the top ranked rewritten query from each relation do¢bave
join attribute values in common. Therefore despite thejhhianks
at each of their local relations, the query pair could retiitie or
no answers. As a result, when retrieving both certain andiblas
answers to a query, the mediator needs to order and issusntie r
ten queries intelligently so as to maximize the precisierdt of the
joined results.

In processing such join queries over relatidR$ and R2, we
must consider the orderings of each pair of queries from ¢t s
Q1UQ1 andQ2UQ2’ whereQ1 andQ?2 are the complete queries
derived from the user’s original join query over the globetiema
andQ1’ andQ2’ are the sets of rewritten queries generated from
the bases sets retrieved frdii and R2 respectively. Given that the
queries must return tuples whose join attribute valuesteesame
in order for a tuple to be returned to the user, we now consider
adjusting thea parameter in ouF-Measurecalculation so as to
give more weight to recall without sacrificing too much psémn.
The details of the approach taken by QPIAD are as follbws:

1. Send complete queri€gl and Q2 to the databaseR1 and R2 to
retrieve the base result sd&S(Q1) and RS(Q2) respectively.

2. For each base set, generate a list of rewritten qué}igsand Q2’
using the QPIAD rewriting algorithm described in Sectio.4.

3. Compute the set of all query paiflsP by taking the Cartesian prod-
uct of each query from the set@1 U Q1’ and Q2 U Q2’. For
each pair, calculate the new estimated precision, seiyctand F-

Measurevalues.

(a) For each rewritten query iQ1’ andQ2’, use the NBC clas-
sifiers to determine the join attribute value distributiah®1
and J D2 given the determining set attribute values from the
base setskRS1 and RS2 respectively as discussed in Sec-
tion 5.2.

SAlthough we only discuss two-way joins, the techniques @mesd
are applicable to cases involving multi-way joins.

5The selectivity estimation steps are only performed forréverit-
ten queries because the true selectivity of the completdesuis
already known once the base set is retrieved.

(b) For each join attribute value;; andwv;s in JD1 and.JD2
respectively, compute its estimated selectivity as thelprb
of the rewritten query’s precision, selectivity, and théuea
probability distribution for eithe;; or v;z.

(c) For each query paifp € QP compute the estimated selectiv-
ity of the query pair to be
EstSel(qp)= >
Vi1 € JD1
vjo € JD2

EstSel(gp1, vj1)*EstSel(gpz2,vj2)

. For each query pair, compute RsMeasurescore using the new pre-
cision, estimated selectivity, and recall values. Nexgaédhe top-K
query pairs from the ordered set of all query pairs accortinthe
algorithm described in Section 4.2.

. For each selected query paj, if the component queriegp; and
gp2 have not previously been issued as part of another query pair
issue them to the relationB1 and R2 respectively to retrieve the

extended result seRST andRS2.

For each tuplé;; in RST andi,s in RS2 wherel;; .vj1 = f.vj0
create a possible joined tuple. In the case where e'tfh\e{)jl or

t;2.v42 is null, predict the missing value using the NBC classifiers
and create the possible join tuple. Finally, return the iesgoined
tuple to the user.

6.

LEARNING STATISTICS TO SUPPORT
RANKING AND REWRITING

As we have discussed, to retrieve possible answers in the or-
der of their relevance, QPIAD requires three types of infation:
(i) attribute correlations in order to generate rewrittereges (i)
value distributions in order to estimate the precision ef tiwrit-
ten queries, and (iii) selectivity estimates which combiith the
value distributions to order the rewritten queries. In théstion,
we present how each of these are learned. Our solution t®nsis
of three stages. First, the system mines the inherent atioes
among database attributes represented as AFDs. Then dsbuil
Naive Bayes Classifiers based on the features selected Dg AF
to compute probability distribution over the possible eswf the
missing attribute for a given tuple. Finally, it uses theedsampled
from the original database to produce estimates of eacly'gues-
lectivity. We exploit AFDs for feature selection in our chifger
as it has been shown that appropriate feature selectiomebeffas-
sification can improve learning accuracy[5]. For a more iptde
evaluation of our feature selection techniques we referahder to
[17].

5.1 Learning Attribute Correlations
Approximate  Functional
cies(AFDs)

In this section, we describe the method for mining AFDs from

a (probed) sample of database. We also present a brief plsieri

of our algorithm for pruning noisy AFDs in order to retain pithe

valuable ones for use in the query rewriting module. Red¢uit t

an AFD ¢ is a functional dependency that holds on all but a small

fraction of tuples. According to [19], we define thenfidenceof

an AFD ¢ on a relationR as: conf(¢) = 1 — gs(¢), wheregs is

the ratio of the minimum number of tuples that need to be readov

from R to make¢ a functional dependency oR. Similarly, we

define arapproximate key (AKeys a key which holds on all but a

small fraction of the tuples i®. We use the TANE[12] algorithm

to discover AFDs and AKeys whose confidence is above a thidtssho

0 to ensure that we do not miss any significant AFDs or AKeys.

by
Dependen-



Pruning Noisy AFDs: In most cases, AFDs with high confidence
are desirable for learning probability distributions foissing val-
ues. However, not all high confidence AFDs are useful foniieat
selection. The latter include those whose determining aatiains
high confidence AKeys. For example, consider a relatian{VIN,
Model, Make) After mining, we find tha/IN is an AKey (in fact,
a key) which determines all other attributes. Given a tuphéth
null value onModel its VIN is not helpful in estimating the missing
Modelvalue, since there are no other tuples shatis®/IN value.
Therefore, AFDs with a superset of AKey attributes in theedet
mining set are not useful features for classification andishbe
removed. For example, suppose we have an AFD, As}~ As
with confidence 0.97, and an AKe&yA, } with confidence 0.95.
Since most of{ A1, A2} value pairs would be distinct, this AFD
won't be useful in predicting the values fofs and needs to be
pruned. An AFD will be pruned if the difference between itsico

this approactybrid One-AFD We could also use aBnsemble

of classifierscorresponding to the set of AFDs for each attribute,
and then combine the probability distribution of each dfassby

a weighted average. At the other extreme, we could ignore fea
ture selection based on AFD completely but use all the atii

to learn probability distribution using NBC. Our experinile-
scribed in Section 6 show that Hybrid One-AFD approach has th
best classification accuracy among these choices.

5.4 Learning Selectivity Estimates

As discussed in Section 4, the F-measure ranking requires an
estimate of the selectivity of a rewritten query. This is poted as
SmplSel(Q)*SmplRatio( R)*PerInc(R), whereSmplSel(Q)
is the selectivity of the rewritten quexy when it is issued to the
sample.SmplRatio(R)s the ratio of the original database size over
the size of the sample. We send queries to both the originalbeae

fidence and the confidence of the corresponding AKey is below aand its sample off-line, and use the cardinalities of theltegts to

thresholds (currently set a0.3 based on experimentation).

5.2 Learning Value Distributions using Clas-
sifiers

Given a tuple with a null value, we now need to estimate the{pro
ability of each possible value of this null. We reduce thiskiem
to a classification problem using mined AFDs as selectedifest
A classifier is a functiory’ that maps a given attribute vectdrto
a confidence that the vector belongs to a class. The inputmof ou
classifier is a random sampfeof an autonomous databa&ewith
attributesA;, Az, --- , A, and the mined AFDs. For a given at-
tribute A,,, (1 < m < n), we compute the probabilities for all
possible class values of,,, given all possible values of its deter-
mining setdtrSet(A,,) in the corresponding AFDs.

We construct a Naive-Bayes Classifier(NB&Z),. Let a value
v; in the domain ofA,,, represent a possible class fdr,. LetZ
denote the values aftrSet(A.,) in a tuple with null on4,,. We
use Bayes theorem to estimate the probabilitiR$:A,,=v;|Z)
P@‘Am:;i(g““m:”” for all valuesv; in the domain. To im-
prove computation efficiency, NBC assumes that for a givass;l
the featuresXy, - - - , X,, are conditionally independent, and there-
fore we have: P (Z|Am=v;) = [[ P (zi|Am=v:). Despite this

strong simplification, NBC has been shown to be surprisirdly
fective[9]. In the actual implementation, we adopt the dtad
practice of using NBC with a variant of Laplacian smoothiadjex
m-estimates[23] to improve the accuracy.

5.3 Combining AFDs and Classifiers

estimate the ratio.Perinc(R)is the percentage of tuples that are
incomplete in the database. It can be estimated as the pageen
of incomplete tuples that we encountered while creatingémaple
database.

6. EMPIRICAL EVALUATION

In this section, we describe the implementation and an ecapir
evaluation of our system QPIAD for query processing oveoinec
plete autonomous databases.

6.1 Implementation and User Interface

The QPIAD system is implemented in Java and has a
web-form based interface through which the users issug thei
queries. A live demo of the QPIAD prototype is available at
http://rakaposhi. eas. asu. edu/ gpi ad. Given a user
query, the system returns each relevant possible answiee taser
along with aconfidencaneasure equal to the answer’s assessed de-
gree of relevance. Although the confidence estimate couloi-be
ased due to the imperfections of the learning methods,dtasion
can provide useful guidance to the users, over and abovettke r
ing.

In addition, QPIAD can optionally “explain” its relevancs-a
sessment by providing snippets of its reasoning as supplort.
particular, it justifies the confidence associated with aswam
by listing the AFD that was used in making the density assess-
ment. In the case of our running example, the possible answer
t4 for the query@’ will be justified by showing the learned AFD
Model~ Body Style.

So far we glossed over the fact that there may be more than one6-2 Experimental Settings

AFD associated with an attribute. In other words, one aitélmay
have multiple determining set with different confidenceelsv For
example, we have the AFD/ odel~ M ake with confidenced.99.

To evaluate the QPIAD system, we performed evaluations over
three data sets. The first datasegrs(year, make, model, price,
mileage, body style, certifiedy built by extracting around 55,000

We also see that certain types of cars are made in certain countuples from Cars.com Databases like this one are inherently

tries, so we might have an AFDountry~- Make with some con-
fidence value. As we use AFDs as a feature selection step fa,NB
we experimented with several alternative approaches fobatng
AFDs and classifiers to learn the probability distributiépossible
values for null. One method is to use the determining seteofAfRD
with the highest confidencerhich we call theBest-AFDmethod.
However, our experiments showed that this approach caradegr
the classification accuracy if its confidence is too low. Efiete we
ignore AFDs with confidence below a threshold (which is cotise

incomplete as described in Table 1. The second dat&st;
sus(age, workshop, education, marital-status, occupatilation-
ship, race, sex, capital-gain, capital-loss, hours-perek, native-
country) is theUnited States Censutatabase made up of 45,000
tuples which we obtained from the UCI data repository. Thedth
datasetComplaints(model, year, crash, fail date, fire, general eom
ponent, detailed component, country, ownership, car typat-
ket), is aConsumer Complaintdatabase which contains roughly
200,000 tuples collected from the NHSTA Office of Defect ke

set to be0.5 based on experimentation), and instead use all other gations repository and is used in conjunction with@ssdatabase

attributes to learn the probability distribution using NB@®e call

for evaluating join queries.
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TURNED and QPI

To evaluate the effectiveness of our algorithm, we need e ha
a “ground truth” in terms of the true values correspondinghi®
missing or null values. To this end, we create our experialent
datasets in two steps. First a “ground truth dataset” (GDjasated
by extracting a large number @bmpletetuples from the online
databases. Next, we create the experimental dataset (EE2nby
domly choosing 10% of the tuples from GD and making them in-
complete (by randomly selecting an attribute and makingatae
null). Given our experience with online databases (seeeTajl
10% incompleteness is fairly conservative.

During the evaluation, the ED is further partitioned intootw
parts: a training set (i.e. the sample from which AFDs andsita
fiers are learned) and a test set. To simulate the relativedyl per-
centage of the training data available to the mediators, xperée
mented with training sets of different sizes, ranging ire$ipm3%
to 15% of the entire database, as will be discussed in Section 6.5.

To compare the effectiveness of retrieving relevant péssih-
swers, we consider two salient dimensions of the QPIAD ap-
proach, namelfRankingandRewriting which we evaluate in terms
of Quality and Efficiencyrespectively. For the experiments, we
randomly formulate single attribute and multi attributées@on
queries and retrieve possible answers from the test datsbas

We compare QPIAD with the ALRETURNED and ALL-
RANKED approaches. Recall that LARETURNED approach
presents all tuples containing missing values on the query c
strained attribute without ranking them. TheLlARANKED ap-
proach begins by retrieving all the certain and possiblevans
as in ALLRETURNED, then it ranks possible answers according to
the classification techniques described in Section 5. I faa-
ther approach is feasible as web databases are unlikelyptmeu
binding of null values in queries. In contrast, the QPIAD ageh
uses query rewriting techniques to retrieve only relevargsible
answers in a ranked order and fits for web applications. Evenw
bindings of null values are allowed, we show in this sectlat the
QPIAD approach provides better quality and efficiency.

In the rest of the evaluation, we focus on comparing the effec
tiveness of retrieving relevant possible answers. In otlads, all
the experiments presented in this section, except for thosag-
gregate queries, ignore the “certain” answers as all theoagpes
are expected to perform equally well over such tuples.

6.3 Evaluation of Quality

To evaluate the effectiveness of QPIAD ranking, we compiare i
against the ALRETURNEDapproach which simply returns to the
user all tuples with missing values on the query attribufegures

0.4

Figure 4: Comparison of ALL RE-

Q(C’ensus) * OFamilyRelation=0wnChild

0.2 0.4
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Figure 5: Effect of o on Precision
and Recall in QPIAD for Query

AD for Quer
Query Q(Cars): oprice=20000

3 and 4 show the precision and recall curves of a query oG tre
and Censugdatabases respectively. It shows that the QPIAD ap-
proach has significantly higher precision when compareditp-A
RETURNED.

To reflect the “density” of the relevant answers along thestim
line, we also plot the precision of each method at the timeninst
K(K=1,2,---,100) answers are retrieved as shown in Figures
6 and 7. Again QPIAD is much better thanLARETURNED in
retrieving relevant possible answers in the fiStresults, which is
critical in web scenarios.

Effect of Alpha Value on F-Measure: To show the effect of on
precision and recall, we've included Figure 5 which shovespte-
cision and recall of the querQ : oprice=20000 for different values
of a. Here we assume a 10 query limit on the number of rewritten
queries we are allowed to issue to the data source. This asisum
is reasonable in that we don’t want to waste resources byngsu
too many unnecessary queries. Moreover, many online sourag
themselves limit the number of queries they are willing teveer
in a given period of time (e.g. Google Base).

We can see that as the valuewfs increased from 0, QPIAD
gracefully trades precision for recall. The shape of thdsple
a combined affect of the value af (which sets the tradeoff be-
tween precision and recall) and the limit on the number ofitésn
queries (which is a resource limitation). For any given guinit,
for smaller values oy, queries with higher precision are used, even
if they may have lower throughput. This is shown by the faat th
the lowera curves are higher up in precision but don’t reach high
recall. Asa increases, we allow queries with lower precision so that
we can get a higher throughput, thus their curves are lowendo
but extend further to the right.

6.4 Evaluation of Efficiency

To evaluate the effectiveness of QPIAD'’s rewriting, we camnep
it against the AL RANKED approach which retrieves all the tuples
having missing values on the query constrained attributdgfzen
ranks all such tuples according to their relevance to theyquks
we mentioned earlier, we do not expect fie. RANKED approach
to be feasible at all for many real world autonomous sourcethay
do not allow direct retrieval of tuples with null values oresffic
attributes Nevertheless, these experiments are conducted to show
that QPIAD outperforms ALRANKED even when null value se-
lections are allowed. Figure 8 shows the number of tuplesattea
retrieved by the ALRANKED and QPIAD approaches respectively
in order to obtain a desired level of recall. As we can seentime-
ber of tuples retrieved by thelA RANKED approach is simply the
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While classifier accuracy is not the main focus of our work,
we did do some comparison studies to ensure that our classifie
hand, the QPIAD approach is able to achieve similar leveleof = was competitive. Specifically, we compared AFD-enhancedNB
call while only retrieving a small fraction of the tuplesnieted by classifier with two other approaches — one based on assatiati
ALLRANKED. The reason for this is that many of the tuples re- rules[31] and the other based on learning Bayesian netwiooks
trieved by ALL RANKED, while having missing values on the query the data [11]. For Bayes network learning, we experimentitd w
attributes, are not very likely to be the value the user isridted the WEKA Data Mining Software. We found that although the
in. QPIAD avoids retrieving irrelevant tuples and is therefvery AFD-enhanced classifiers were significantly cheaper tanldzan
efficient. Moreover, the ALRANKEDapproach must retrieve the  Bayes networks, their accuracy was competitive. To compare
entire set of tuples with missing values on constrainedbatts in approach against association-rule based classifiers, eeths al-
order to achieve even the lowest levels of recall. gorithm proposed in [31]. Our experiments showed that aasoc
tion rules perform poorly as they focus only on attributéiedevel
correlations and thus fail to learn from small samples. Intast
AFD-enhanced NBC classifiers can synergistically expldiesna-
level and value-level correlations. Details of these eatidins are
available [17].

Robustness w.r.t. Confidence Threshold on PrecisionQPIAD
presents ranked relevant possible answers to users altimg won-

total number of tuples with missing values on the query laitg,
hence it is independent of the desired level of recall. Orother

6.5 Evaluation of Learning Methods

Accuracy of Classifiers: Since we use AFDs as a basis for feature
selection when building our classifiers, we perform a basstudy

on their accuracy. For each tuple in the test set, we compate t
probability distribution of possible values of a null, clseathe one
with the maximum probability and compare it against the alctu

value. The classification accuracy is defined as the prapooiithe ~ fidence so that the users can use their own discretion to 6ifter
tuples in the test set that have their null values predicoegkctly. answers with low confidence. We conducted experiments to eva

Table 3 shows the average prediction accuracy of various-AFD Uate how pruning answers based on a confidence threshotdsaffe
enhanced classifiers introduced in Section 5.3. In thisraxgat, the precision of the results returned. Figure 9 shows theagee

we use a training set whose size is 10% of the database. Tée cla Precision obtained over 40 test queries on Cars databaseibing
sification accuracy is measured over 5 runs using diffensin-t answers based on different confidence thresholds. It shmtshe

ing set and test set for each run. Considering the large domai high confidence answers returned by QPIAD are most likelyeto b
sizes of attributes i€arsdatabase (varying fro(Certi fied) to relevant answers.
416(M odel)), the classification accuracy obtained is quite reason-

able, since a random guess would give much lower prediction-a 00 _—
racy. We can also see in Table 3 that the Hybrid One-AFD amproa S
performs the best and therefore is used in our query regritin g oo
plementatior. 2o

Database | Best All Hybrid *

AFD Attributes One-AFD 0‘4 05 06 07 08 09 1
Cars 68.82| 66.86 68.82
Census 72 70.51 72

Table 3: Null value prediction accuracy across different AMD-

enhanced classifiers

In Table 3 the Best-AFD and Hybrid One-AFD approaches are
equal because there were high confidence AFDs for all atédtin | - a > ! 4
the experimental set. When this is not the case, the Hybrieg-On AFDs, Naive Bayesian Classifiers and selectivity estisarned

AFD approach performs better than the Best-AFD approach. by the knowledge mining module. In data integration sc@sathe

Figure 9: Average Precision for various confidence thresh-

olds(Cars).

Robustness w.r.t. Sample SizeThe performance of QPIAD ap-
proach, in terms of precision and recall, relies on the tyafithe



availability of the sample training data from the autonosdata
sources is restrictive. Here we present the robustness Gy FHAD
approach in the face of limited size of sample data. Figurehtivs
the accumulated precision of a selection query on the Cabdag,
using various sizes of sample data as training set. We seéhtha
quality of the rewritten queries all fluctuate in a relatiwelarrow
range and there is no significant drop of precision with thergh
decrease of sample size froti% to 3%. We obtained a similar
result for the Census database [17].
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Figure 10: Accumulated precision curve with different sampe
sizes on Cars database.

6.6 Evaluation of Extensions

Effectiveness of using Correlation Between Data Sources:
We consider a mediator performing data integration oveeehr
data sourcesCars.com (www.cars.com), Yahoo!  Autos(au-
tos.yahoo.com) an@arsDirect(www.carsdirect.com). The global
schema supported by the mediator and the individual lo¢ersas
are shown in Figure 2. The schemaG#rsDirectandYahoo! Autos
do not supportBody Style attribute whileCars.comdoes support
queries on theBody Style. We use the AFDs and NBC classi-
fiers learned frontCars.comto retrieve cars fron¥ahoo! Autos

gate result. We compare the accuracy of our query rewritihy a
missing value prediction with the aggregate results froendbm-
plete oracular database and the aggregate results fromabmi
plete database where incomplete tuples are not considéfexit
we will outline the details of our experiments.

We performed the experiments over &ars database con-
sisting of 8 attributes. First, we created all distinct subsets
of attributes where the size of the subsets ranged fiono
7 (e.g. {make}, {make,model}, {make, model,year}, ...,
{model}, {model,year}, ..., etc.). Next, we issued a query to
the sample database and selected the distinct combinatforad-
ues for each of these subsets.

1 T T T 1
0.8 0.8

0.6 0.6

Fraction of Queries

| Query . | Query ‘e, A
04 Q:Sum(Price) ~ *., 0.4 Q:Count(*) e,
0.2 = No Prediction ssssss T 0.2 = No Prediction ssssss T
Prediction  me— Prediction  m—
0 | | | 0 1 | |
09 0925 0095 0.975 1 09 0925 0.95 0.975 1

Accuracy

(a) Q(CQTS) * OSum(Price)

Accuracy

(b) Q(CG//‘S)I O Count(x)

Figure 12: Accuracy of aggregate queries with and without
missing value prediction.

Using the distinct value combinations for each of these estishs
we created queries by binding the values to the correspgratin
tribute in the subsets. We then issued each query to the etenpl
database to find its true aggregate value. We also issueaithe s
query to the incomplete database and computed the aggregate
without considering incomplete tuples. Finally, we isstreglquery
to the incomplete database only this time we predicted tissing

andCarsDirectas possible relevant possible answers for queries on values and included the incomplete tuples as part of theeggte

Body Style, as discussed in Section 4.3.

To evaluate the precision, we check the actBally Style of
the retrieved car tuples to determine whether the tuple nadeseid
relevant to the original query. The average precision ferfitst K
tuples retrieved fronYahoo! AutosindCarsDirectover the 5 test
queries is quite high as shown in Figure 11. This shows thagus
the AFDs and value distributions learned from correlatastces,
QPIAD can retrieve relevant answers from data sources rpt su
porting query attribute.

! Yahoo! Autos 08
o /\\/\_A_/\'\

0 20 40 60 80 100
Kth Tuple

0o 5 10 15 20 25 30 3B 4

Kth Tuple

Figure 11: Precision curves for first K tuples retrieved using
correlated sourceCars.com.

Evaluation of Aggregate Queries: To evaluate our approach in
terms of supporting aggregate queries, we measured theaagcu
of aggregation queries in QPIAD where missing values inthe i
complete tuples are predicted and used to compute the figed-ag

result.

In Figure 12, we show the percentage of queries which achieve
different levels of accuracy with and without missing vapredic-
tion. The results are significant, for example, Figure 12f@ws
that when missing value prediction is used to computed tigeeag
gate result, roughly 10% more queries achieve 100% acctinacy
if the aggregate had only taken the certain tuples into atctlus
ignoring all incomplete ones.

Evaluation of Join Queries: To evaluate our approach in the con-
text of join queries we performed a set of experiments oraes
andComplaintdatabases. In the experiments, we join@zgsand
Complaintsrelations on thelfodel attribute. The experimental re-
sults shown in Figure 13 involve join queries where the lattes
from both the relations are constrained. We evaluate thioper
mance of our join algorithm in terms of precision and recathw
respect to a complete oracular database.

We present the results for a join querWodel =
Grand Cherokee N General Component = Engine and
Engine Cooling. We seta to 0, 0.5 and 2 to measure the effect of
giving different preferences to precision and recall. Iditdn, we
restricted the number of rewritten queries which could b# se
the database to 10 queries. Figure 13(a) shows the precisiai
curve for this query. We can see that fer= 0 high precision is
maintained but recall stops at 0.34. Fer= 0.5 the precision is
the same as whem = 0 up until recall reaches 0.31. At this point,
the precision decreases although, a higher recall, namég; &
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Figure 13: Precision-Recall Curves for

Cars Xnrodget Complaints

Queries

achieved. The precision when = 2 is similar to the case where
a = 0.5 but achieves 0.74 recall with only a small loss in preci-
sion near the tail of the curve. When looking at the top 10 itésvr
queries for each of these values we found that whem = 0, too
much weight is given to precision and thus incomplete tuples
never retrieved from th€ars database. This is due to our ability
to predict missing values which happens to be better orCthra-

plaints database and hence the top 10 rewritten queries tend to in-

clude the complete query from thears database paired with an
incomplete query from th€omplaintsdatabase. However, when
a = 0.5 or a = 2 incomplete tuples are retrieved from both the
databases because in this approach the ranking mechargsrtotr
combine both precision and recall. Similar results for therg

Q ‘Model=f150AGeneral Component=Electrical System are shown
in Figure 13(b).

7. CONCLUSION

Incompleteness is inevitable in autonomous web datab&ses.
trieving highly relevant possible answers from such daabas
challenging due to the restricted access privileges of atedilim-
ited query patterns supported by autonomous databasesensid
tivity of database and network workload in web environmeafie
developed a novel query rewriting technique that tacklesetthal-
lenges. Our approach involves rewriting the user querydasghe
knowledge of database attribute correlations. The reswrigueries
are then ranked by leveraging attribute value distribstiaacord-
ing to their likelihood of retrieving relevant possible amrss before
they are posed to the databases. We discussed rewritingdeels
for handling queries containing selection, joins and agaftiens.
To support such query rewriting techniques, we developetiods
to mine attribute correlations in the form of AFDs and theueadlis-
tributions of AFD-enhanced classifiers, as well as quergctigity
from a small sample of the database itself. Our comprehersiv
periments demonstrated the effectiveness of our queryepsitg
and knowledge mining techniques.

As we mentioned, part of the motivation for handling incom-
pleteness in autonomous databases is the increasing peesén
databases on the web. In this context, a related issue iditgnd
query imprecision—-most users of online databases tends® ipo
precise queries which admit answers with varying degreeslef
evance (c.f. [25]). In our ongoing work, we are investiggtthe
issues of simultaneously handling data incompletenessjaady
imprecision [16].
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