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ABSTRACT
Incompleteness due to missing attribute values (aka “null values”) is very
common in autonomous web databases, on which user accesses are usually
supported through mediators. Traditional query processing techniques that
focus on the strict soundness of answer tuples often ignore tuples with crit-
ical missing attributes, even if they wind up being relevantto a user query.
Ideally we would like the mediator to retrieve such possibleanswers and
gauge their relevance by accessing their likelihood of being pertinent an-
swers to the query. The autonomous nature of web databases poses several
challenges in realizing this objective. Such challenges include the restricted
access privileges imposed on the data, the limited support for query patterns,
and the bounded pool of database and network resources in theweb envi-
ronment. We introduce a novel query rewriting and optimization framework
QPIAD that tackles these challenges. Our technique involves reformulating
the user query based on mined correlations among the database attributes.
The reformulated queries are aimed at retrieving the relevant possible an-
swers in addition to the certain answers. QPIAD is able to gauge the rel-
evance of such queries allowing tradeoffs in reducing the costs of database
query processing and answer transmission. To support this framework, we
develop methods for miningattribute correlations(in terms of Approxi-
mate Functional Dependencies),value distributions(in the form of Naı̈ve
Bayes Classifiers), andselectivity estimates. We present empirical studies
to demonstrate that our approach is able to effectively retrieve relevant pos-
sible answers with high precision, high recall, and manageable cost.

1. INTRODUCTION
Data integration in autonomous web database scenarios has

drawn much attention in recent years, as more and more data be-
comes accessible via web servers which are supported by back-
end databases. In these scenarios, a mediator provides a unified
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query interface as a global schema of the underlying databases.
Queries on the global schema are then rewritten as queries over
autonomous databases through their web interfaces. Current medi-
ator systems [20, 15] only return to the usercertain answersthat
exactly satisfy all the user query predicates. For example,in a
used car trading application, if a user is interested in carsmade by
Honda, all the returned answers will have the value “Honda” for at-
tributeMake. Thus, anAccordwhich has amissingvalue forMake
will not be returned by such systems. Unfortunately, such anap-
proach is both inflexible and inadequate for querying autonomous
web databases which are inherently incomplete. As an example, Ta-
ble 1 shows statistics on the percentage of incomplete tuples from
several autonomous web databases. The statistics were computed
from a randomly probed sample. The table also gives statistics on
the percentage of missing values for theBody StyleandEngineat-
tributes.

Website # of Total Incomplete Body Engine
Attributes Tuples Tuples % Style % %

www.AutoTrader.com 13 25127 33.67% 3.6% 8.1%
www.CarsDirect.com 14 32564 98.74% 55.7% 55.8%

Google Base 203+ 580993 100% 83.36% 91.98%

Table 1: Statistics on missing values in web databases

Such incompleteness in autonomous databases should not be sur-
prising as it can arise for a variety of reasons, including:

Incomplete Entry: Web databases are often populated by lay indi-
viduals without any central curation. For example, web sites such
asCars.comandYahoo! Autos, obtain information from individual
car owners who may not fully specify complete information about
their cars, thus leaving such databases scattered with missing val-
ues (aka “null” values). Consider a car owner who leaves theMake
attribute blank, assuming that it is obvious as theModelof the car
she is selling isAccord.

Inaccurate Extraction: Many web databases are being populated
using automated information extraction techniques. As a result of
the inherent imperfection of these extractions, many web databases
may contain missing values. Examples of this include imperfec-
tions in web page segmentation (as described in [10]) or imperfec-
tions in scanning and converting handwritten forms (as described
in [2]).

Heterogenous Schemas:Global schemas provided by mediator
systems may often contain attributes that do not appear in all of
the local schemas. For example, a global schema for the used car
trading domain has an attribute calledBody Style, which is sup-
ported byCars.com, but not byYahoo! Autos. Given a query on



the global schema for cars havingBody Styleequal toCoupe, me-
diators which only return the certain answers are not able tomake
use of information from theYahoo! Autosdatabase thereby failing
to return a possibly large portion of the relevant tuples.1

User-defined Schemas:Another type of incompleteness occurs in
the context of applications like Google Base [22] which allow users
significant freedom to define and list their own attributes. This often
leads to redundant attributes (e.g. Makevs. Manufacturer), as well
as proliferation of null values (e.g. a tuple that gives a value for
Make is unlikely to give a value for Manufacturer and vice versa).

Although there has been work on handling incompleteness in
databases (see Section 2), much of it has been focused on single
databases on which the query processor has complete control. The
approaches developed–such as the “imputation methods” that at-
tempt to modify the database directly by replacing null values with
likely values–are not applicable for autonomous databaseswhere
the mediator often has restricted access to the data sources. Conse-
quently, when faced incomplete databases, current mediators only
provide the certain answers thereby sacrificing recall. This is partic-
ularly problematic when the data sources have a significant fraction
of incomplete tuples, and/or the user requires high recall (consider,
for example, a law-enforcement scenario, where a potentially rele-
vant criminal is not identified due to fortuitous missing information
or a scenario where a sum or count aggregation is being performed).

To improve recall in these systems, one naı̈ve approach would be
to return, in addition to all the certain answers, all the tuples with
missing values on the constrained attribute(s) aspossibleanswers
to the query. For example, given a selection query for cars made
by “Honda”, a mediator could return not only those tuples whose
Makevalues are “Honda” but also the ones whoseMakevalues are
missing(null). This approach, referred to as ALL RETURNED, has
an obvious drawback, in that many of the tuples with missing val-
ues on constrained attributes areirrelevant to the query. Intuitively,
not every tuple that has a missing value forMakecorresponds to
a car made byHonda! Thus, while improving recall, the ALL RE-
TURNED approach can lead to drastically lower precision.

In an attempt to improve precision, a more plausible solution
could start by first retrieving all the tuples withnull values on the
constrained attributes, predicting their missing values,and then de-
ciding the set of relevant query answers to show to the user. This
approach, that we will call ALL RANKED, has better precision than
ALL RETURNED. However, most of the web-accessible database in-
terfaces we’ve found, such asYahoo Autos, Cars.com, Realtor.com,
etc, do not allow the mediator to directly retrieve tuples with null
values on specific attributes. In other words, we cannot issue
queries like “list all the cars that have a missing value forBody
Styleattribute”. Even if the sources do support binding ofnull val-
ues, retrieving and additionally ranking all the tuples with missing
values involves high processing and transmission costs.

Our Approach: In this paper, we present QPIAD,2 a system for
mediating over incomplete autonomous databases. To make the re-
trieval of possible answers feasible, QPIAD bypasses the null value
binding restriction by generatingrewritten queries according to a
set of mined attribute correlation rules. These rewritten queries are

1Moreover, an attribute may not appear in a schema intentionally
as the database manager may suppress the values of certain at-
tributes. For example, the travel reservation websitePriceline.com
suppresses the airline/hotel name when booking tickets andhotel.
2QPIAD is an acronym for Query Processing over Incomplete
Autonomous Databases. A 3-page poster description of QPIAD
first appeared in [18].

designed such that there are no query predicates on attributes for
which we would like to retrieve missing values. Thus, QPIAD
is able to retrieve possible answers without binding null values or
modifying underlying autonomous databases. To achieve high pre-
cision and recall, QPIAD learns Approximate Functional Depen-
dencies (AFDs) for attribute correlations, Naı̈ve Bayesian Classi-
fiers (NBC) for value distributions, and query selectivity estimates
from a database sample obtained off-line. These data sourcestatis-
tics are then used to provide a ranking scheme to gauge the rele-
vance of a possible answer to the original user query. Furthermore,
instead of ranking possible answers directly, QPIAD ordersthe
rewritten queries in the order of the number of relevant answers they
are expected to bring as determined by the attribute value distribu-
tions and selectivity estimations. The rewritten queries are issued in
this order, and the returned tuples are ranked in accordancewith the
query that retrieved them. By ordering the rewritten queries rather
than ranking the entire set of possible answers, QPIAD is able to
optimize both precision and recall while maintaining efficiency. We
extend this general approach to handle selection, aggregation and
join queries, as well as supporting multiple correlated sources. .

Contributions: QPIAD’s query rewriting and ranking strategies
allow it to efficiently retrieve relevant possible answers from au-
tonomous databases given mediator’s query-only capabilities and
limited query access patterns to these databases. To the best of our
knowledge, the QPIAD framework is the first that retrieves rele-
vant possible answers with missing values on constrained attributes
without modifying underlying databases. Consequently, itis suit-
able for querying incomplete autonomous databases. The idea of
using learned attribute correlations, value distributions, and query
selectivity to rewrite and rank queries, which consider thenatural
tension between precision and recall, is also a novel contribution
of our work. In addition, our framework can leverage attribute cor-
relations among data sources in order to retrieve relevant possible
answers from data sources not supporting the query attribute (e.g.
local schemas which do not support the entire set of global schema
attributes). Our experimental evaluation over selection,aggrega-
tion, and join queries shows that QPIAD retrieves most relevant
possible answers while maintaining low query processing costs.

Assumptions: In this paper we assume that tuples contain-
ing more than one null over the set of query constrained at-
tributes are less relevant to the user. Therefore, such tu-
ples are not ranked but simply output after the ranked tuples
containing zero or a single null over the set of query con-
strained attributes. For example, assume the user poses a
queryQ : σModel=Accord∧Price=10000∧Y ear=2001 on the relation
R(Make, Model, P rice, Mileage, Y ear, BodyStyle). In this
case, a tuplet1(Honda, null, 10000, 30000, null, Coupe) would
be placed below ranked tuples because it has missing values on two
of its constrained attributes, namelyModel andY ear. However,
we assume a tuplet2(Honda,null, 10000, null, 2001, Coupe)
would be ranked as it only contains a null on one constrained at-
tribute, namelyModel. The second missing value is onMileage,
which is not a constrained attribute.

Organization: The rest of the paper is organized as follows. In
the next section we discuss related work on handling incomplete
data. Next, we cover some preliminaries and an overview of our
framework in Section 3. Section 4 proposes online query rewriting
and ranking techniques to retrieve relevant possible answers from
incomplete autonomous databases in the context of selection, ag-
gregation, and join queries, as well as retrieving possibleanswers
from data sources which do not support the query attribute intheir



local schemas. Section 5 provides the details of learning attribute
correlations, value distributions, and query selectivityused in our
query rewriting phase. A comprehensive empirical evaluation of
our approach is presented in Section 6. We conclude the paperin
Section 7.

2. RELATED WORK
Querying Incomplete Databases:Traditionally, incompleteness
in databases has been handled by one of two broad approaches.The
first–which we callpossible world approaches[14, 21, 2]–tracks
the completions of all incomplete tuples. All feasible completions
are considered equally likely and the aim of query processing is to
return certain vs. possible answers without making any distinctions
among the possible answers. To help track all possible worlds,null
values are typically represented using one of three different meth-
ods, each of increasing generality: (i) Codd Tables where all the
null values are treated equally; (ii) V-tables which allow many dif-
ferentnull values marked by variables; and (iii) Conditional tables
which are V-tables with additional attributes for conditions.

The second type of approaches for handling incomplete
databases–which we callprobabilistic approaches([6, 3, 31])–
attempt to quantify the distribution over the completions of an in-
complete tuple, and use this information to distinguish between the
likelihood of various possible answers. Our work falls in this sec-
ond category. The critical novelty of our work is that our approach
learns the distribution automatically, and also avoids modifying the
original database in any way. It is therefore suitable for query-
ing incomplete autonomous databases, where a mediator is not
able to store the estimation of missing values in sources. [6] han-
dles incompleteness for aggregate queries in the context ofOLAP
databases, by relaxing the original queries using the hierarchical
OLAP structure. Whereas our work learns attribute correlations,
value distributions and query selectivity estimates to generate and
rank rewritten queries.

Querying Inconsistent Databases:Work on handling inconsistent
databases also has some connections. While most approachesfor
handling inconsistent databases are more similar to the “possible
worlds approaches” used for handling incompleteness (e.g.[4]),
some recent work (e.g. [1]) uses probabilistic approaches for han-
dling inconsistent data.

Querying Probabilistic Databases:Incomplete databases are sim-
ilar to probabilistic databases (c.f. [29, 7, 28, 30]) once the prob-
abilities for missing values are assessed. [29] gives an overview
of querying probabilistic databases where each tuple is associated
with an additional attribute describing the probability ofits exis-
tence. Some recent work on the TRIO [28, 30] system deals with
handling uncertainty over probabilistic relational databases. In such
systems, the notion of incompleteness is closely related touncer-
tainty: an incomplete tuple can be seen as a disjunction of its pos-
sible completions. However, we go a step further and view the
incomplete tuple as aprobability distributionover its completions.
The distribution can be interpreted as giving a quantitative estimate
of the probability that the incomplete tuple corresponds toa specific
completion in the real world. Furthermore we address the problem
of retrieving incomplete tuples from autonomous databaseswhere
the mediator does not have capabilities to modify the underlining
databases.

Query Reformulation & Relaxation: Our work has some rela-
tions to both query reformulation and query relaxation [25,24] ap-
proaches. An important difference is our focus on retrieving tuples

with missing values on constrained attributes. Towards this, our
rewritten queries modify constrained attributes as well astheir val-
ues.

Ranked Joins: The part of our query processing framework which
handles join queries over autonomous sources is similar to work
on ranked joins[13]. However, we use predicted values learnt from
the data itself to perform joins without modifying the underlying
databases.

Learning Missing Values: There has been a large body of work on
missing values imputation [8, 26, 27, 31, 3]. Common imputation
approaches include substituting missing data values by themean,
the most common value, default value of the attribute in question,
or using k-Nearest Neighbor [3], association rules [31], etc. An-
other approach used to estimate missing values isparameter esti-
mation. Maximum likelihood procedures that use variants of the
Expectation-Maximization algorithm [8, 26] can be used to esti-
mate the parameters of a model defined for the complete data. In
this paper, we are interested not in the standard imputationprob-
lem but a variant that can be used in the context of query rewriting.
In this context, it is important to have schema level dependencies
between attributes as well as distribution information over missing
values.

3. PRELIMINARIES AND ARCHITEC-
TURE OF QPIAD

We will start with formal definitions of certain answers and pos-
sible answers with respect to selection queries.

DEFINITION 1 (COMPLETE/INCOMPLETETUPLES). Let
R(A1, A2, · · · , An) be a database relation. A tuplet ∈ R is said
to be complete if it has non-null values for each of the attributes
Ai; otherwise it is considered incomplete. A complete tuplet is
considered to belong to the set of completions of an incomplete
tuplebt (denotedC(bt)), if t andbt agree on all the non-null attribute
values.

Now consider a selection queryQ : σAm=vm over relation
R(A1, · · · , An) where(1 ≤ m ≤ n).

DEFINITION 2 (CERTAIN/POSSIBLEANSWERS). A tuple ti

is said to be a certain answer for the queryQ : σAm=vm if
ti.Am=vm. ti is said to be an possible answer forQ if
ti.Am=null, whereti.Am is the value of attributeAm in ti.

Notice an incomplete tuple is a certain answer to a query, if its null
values are not on the attributes constrained in the query.

There are several key functionalities that QPIAD needs in order
to retrieve and rank possible answers to a user query: (i)learning
attribute correlationsto generate rewritten queries, (ii)assessing
the value probability distributionsof incomplete tuples to provide
a ranking scheme for possible answers, (iii)estimating query se-
lectivity to estimate the recall and determine how many rewritten
queries to issue, and based on the above (iv)ordering rewritten
queriesto retrieve possible tuples that have a high degree of rel-
evance to the query.

The system architecture of the QPIAD system is presented in
Figure 1. A user accesses autonomous databases by issuing a query
to the mediator. The query reformulator first directs the query to the
autonomous databases and retrieves the set of all certain answers
(called thebase result set). In order to retrieve highly relevant pos-
sible answers in ranked order, the mediator dynamically generates



Figure 1: QPIAD System Architecture.

rewritten queries based on the original query, the base result set,
and attribute correlations in terms of Approximate Functional De-
pendencies(AFDs) learned from a database sample. The goal of
these new queries is to return anextended result set, which consists
of highly relevant possible answers to the original query. Since not
all rewritten queries are equally good in terms of retrieving rele-
vant possible answers, they are ordered before being posed to the
databases. The ordering of the rewritten queries is based ontheir
expectedF-Measurewhich considers the estimated selectivity and
the value distributions for the missing attributes.

QPIAD mines attribute correlations, value distributions,and
query selectivity using a small portion of data sampled fromthe au-
tonomous database using random probing queries. The knowledge
mining module learns AFDs and AFD-enhanced Naı̈ve Bayesian
Classifiers (where the AFDs play a feature selection role forthe
classification task) from the samples. Then the knowledge min-
ing module estimates the selectivity of rewritten queries.Armed
with the AFDs, the corresponding classifiers, and the selectivity es-
timates, the query reformulator is able to retrieve the relevant pos-
sible answers from autonomous databases by rewriting the original
user query and then ordering the set of rewritten queries such that
the possible answers are retrieved in the order of their ranking in
precision.

4. RETRIEVING RELEVANT POSSIBLE
ANSWERS

In this section, we describe the QPIAD query rewriting approach
for effectively and efficiently retrieving relevant possible answers
from incomplete autonomous databases. We support queries in-
volving selections, aggregations and joins.3 This query rewriting
framework can also retrieve relevant answers from data sources not
supporting the entire set of query constrained attributes.

4.1 Handling Selection Queries
To efficiently retrieve possible answers in their order of preci-

sion, QPIAD follows a two-step approach. First, the original query
3In QPIAD we assume a projection over the entire set of attributes.
In cases where users may wish to project a subset of the attributes,
QPIAD can project all the attributes and then simply return to the
user only those attributes contained in the subset

ID Make Model Year Body Style
1 Audi A4 2001 Convt
2 BMW Z4 2002 Convt
3 Porsche Boxster 2005 Convt
4 BMW Z4 2003 null
5 Honda Civic 2004 null
6 Toyota Camry 2002 Sedan

Table 2: Fragment of a Car Database

is sent to the database to retrieve the certain answers whichare then
returned to the user. Next, a group of rewritten queries are intelli-
gently generated, ordered, and sent to the database. This process
is done such that the query patterns are likely to be supported by
the web databases, and only the most relevant possible answers are
retrieved by the mediator in the first place.

Generating Rewritten Queries: The goal of the query rewriting
is to generate a set of rewritten queries to retrieve relevant possi-
ble answers. Let’s consider the same user queryQ asking for all
convertible cars. We use the fragment of the Car database shown
in Table 2 to explain our approach. First, we issue the queryQ to
the autonomous database to retrieve all the certain answerswhich
correspond to tuplest1, t2 and t3 from Table 2. These certain
answers form thebase result setof Q. Consider the first tuple
t1=〈Audi, A4, 2001, Convt〉 in the base result set. If there is a
tuple ti in the database with the same value forModel ast1 but
missing value forBody Style, thenti.Body Style is likely to be
Convt. Wecapture this intuition by mining attribute correlations
from the data itself.

One obvious type of attribute correlation is “functional depen-
dencies”. For example, the functional dependencyModel→Make

often holds in automobile data records. There are two problems in
adopting the method directly based on functional dependencies: (i)
often there are not enough functional dependencies in the data, and
(ii) autonomous databases are unlikely to advertise the functional
dependencies. The answer to both these problems involveslearn-
ing approximate functional dependencies from a (probed) sample
of the database.

DEFINITION 3 (APPROXIMATE FUNCTIONAL DEPENDENCY).
X A over relation R is anapproximate functional depen-
dency(AFD)if it holds on all but a small fraction of the tuples. The
set of attributesX is called thedetermining setof A denoted by
dtrSet(A).

For example, an AFDModel Body Style may be mined,
which indicates that the value of a car’sModel attributesometimes
(but not always) determines the value of itsBody Style attribute.
According to this AFD and tuplet1, we issue a rewritten query
Q′

1 : σModel=A4 with constraints on thedetermining setof the at-
tribute Body Style, to retrieve tuples that have the sameModel

ast1 and therefore are likely to beConvt in Body Style. Simi-
larly, we issue queriesQ′

2 : σModel=Z4 andQ′
3 : σModel=Boxster

to retrieve other relevant possible answers.

Ordering Rewritten Queries: In the query rewriting step of
QPIAD, we generate new queries according to the distinct value
combinations among the base set’s determining attributes for
each of the constrained attributes. In the example above, we
used the three certain answers to the user queryQ to gener-
ate three new queries:Q′

1 : σModel=A4, Q′
2 : σModel=Z4 and

Q′
3 : σModel=Boxster. Although each of these three queries retrieve



possible answers that are likely to be more relevant toQ than a ran-
dom tuple with missing value forBody Style, they may not all be
equally good in terms of retrieving relevant possible answers.

Thus, an important issue in query rewriting is the order in which
to pose the rewritten queries to the database. This orderingdepends
on two orthogonal measures: theexpected precisionof the query–
which is equal to the probability that the tuples returned byit are
answers to the original query, and theselectivityof the query–which
is equal to the number of tuples that the query is likely to bring in.
As we shall show in Section 5, both the precision and selectivity
can be estimated by mining a probed sample of the database.

For example, based on the value distributions in the sample
database, we may find that aZ4 model car is more likely to
be aConvertiblethan a car whose model isA4. As we discuss
in Section 5.2, we build AFD-enhanced classifiers which give
the probability valuesP (Body Style=Convt|Model=A4),
P (Body Style=Convt|Model=Z4) and
P (Body Style=Convt|Model=Boxster). Similarly, the
selectivity of these queries can be different. For example,we may
find that the number of tuples havingModel=A4 is much larger
than that ofModel=Z4.

Given that we can estimate precision and selectivity of the
queries, the only remaining issue is how to use them to order the
queries. If we are allowed to send as many rewritten queries as we
would like, then ranking of the queries can be done just in terms
of the expected precision of the query. However, things become
more complex if there are limits on the number of queries we can
pose to the autonomous source. Such limits may be imposed by
the network/processing resources of the autonomous data source or
possibly the time that a user is willing to wait for answers.

Given the maximum number of queries that we can issue to a
database, we have to find a reasonable tradeoff between the preci-
sion and selectivity of the queries issued. Clearly, all else being
equal, we will prefer high precision queries to low precision ones
and high selectivity queries to low selectivity ones. The tricky is-
sue is how to order a query with high selectivity and low precision
in comparison to another with low selectivity and high precision.
Since the tension here is similar to the precision vs. recallten-
sion in IR, we decided to use the well knownF-Measuremetric
for query ordering. In the IR literature,F-Measureis defined as
the weighted harmonic mean of the precision (P ) and recall (R)
measures:(1+α)∗P∗R

α∗P+R
. We use the query precision forP . We es-

timate the recall measureR of the query by first computing query
throughput, i.e., expected number of relevant answers returned by
the query (which is given by the product of the precision and se-
lectivity measures), and then normalizing it with respect to the ex-
pected cumulative throughput of all the rewritten queries.Notice
that theF-Measurebased ordering reduces to precision-based or-
dering whenα = 0.

In summary, we use the F-measure ordering to selectk top
queries, wherek is the number of rewritten queries we are allowed
to issue to the database. Once thek queries are chosen, they are
posed in the order of their expected precision. This way the rele-
vant possible answers retrieved by these rewritten queriesneed not
be ranked again, as their rank – the probability that their null value
corresponds to the selected attribute– is the same as the precision
of the retrieving query.

Note that the parameterα in the F-measure, as well as the pa-
rameterk (corresponding to the number of queries to be issued to
the sources), can be chosen according to source query restrictions,
source response times, network/database resource limitations, and
user preferences. The unique feature of QPIAD is its flexibility

to generate rewritten queries accordingly to satisfy the diverse re-
quirements. It allows the tradeoff between precision and recall to
be tuned by adjusting theα parameter in itsF-Measurebased or-
dering. Whenα is set to be0, the rewritten queries are ordered
solely in terms of precision. Whenα is set to be1, the precision
and recall are equally weighted. The limitations on the database and
network resources are taken into account by varyingk–the number
of rewritten queries posed to the database.

4.2 Query Rewriting Algorithm
In this section, we describe the algorithmic details of the QPIAD

approach. LetR(A1, A2, · · · , An) be a database relation. Suppose
dtrSet(Am) is the determining set of attributeAm (1 ≤ m ≤ n),
according to the highest confidence AFD (to be discussed in Sec-
tion 5.3). QPIAD processes a given selection queryQ : σAm=vm

according to the following two steps.

1. SendQ to the database and retrieve the base result setRS(Q) as the
certain answers ofQ. ReturnRS(Q) to the user.

2. Generate a set of new queriesQ′, order them, and send the most rel-
evant ones to the database to retrieve the extended result set cRS(Q)
as relevant possible answers ofQ. This step contains the following
tasks.

(a) Generate rewritten queries.Let πdtrSet(Am)(RS(Q)) be
the projection ofRS(Q) onto dtrSet(Am). For each dis-
tinct tuple ti in πdtrSet(Am)(RS(Q)), create a selection
query Q′

i in the following way. For each attributeAx in
dtrSet(Am), create a selection predicateAx=ti.vx. The se-
lection predicates ofQ′

i consist of the conjunction of all these
predicates.

(b) Select rewritten queries.For each rewritten queryQ′
i, com-

pute the estimated precision and estimated recall using itses-
timated selectivity derived from the sample. Then order all
Q′

is in order of theirF-Measurescores and choose the top-K
to issue to the database.

(c) Re-order selected top-K rewritten queries.Re-order the se-
lected top-K set of rewritten queries according to their esti-
mated precision which is simply the conditional probability of
PQ′

i
=P (Am=vm|ti) . /* By re-ordering the top-K queries

in order of their precision we ensure that each of the returned
tuples will have the same rank as the query that retrieved it.*/

(d) Retrieve extended result set. Given the top-K queries
{Q′

1, Q′
2, · · · , Q′

K} issue them in the according to their
estimated precision-base orderings. Their result sets
RS(Q′

1), RS(Q′
2), · · · , RS(Q′

K) compose the extended re-

sult set cRS(Q). /* All results returned for a single query are
ranked equally */

(e) Post-filtering. If database does not allow binding of null val-
ues, (i.e. access to database is via a web form) remove from
cRS(Q) the tuples withAm 6= null. Return the remaining
tuples in cRS(Q) as the relevant possible answers ofQ.

Multi-attribute Selection Queries: Although we described the
above algorithm in the context of single attribute selection queries,
it can also be used for rewriting multi-attribute selectionqueries
by making a simple modification to Step 2(a). Consider a multi-
attribute selection queryQ : σA1=v1∧A2=v2∧···∧Ac=vc . To gener-
ate the set of rewritten queriesQ′, the modification requires Step
2(a) to runc times, once for each constrained attributeAi, 1 ≤ i ≤
c. In each iteration, the tuples fromπdtrSet(Ai)(RS(Q)) are used
to generate a set of rewritten queries by replacing the attributeAi

with selection predicates of the formAx=ti.vx for each attribute
Ax ∈ dtrSet(Ai). For each attributeAx ∈ dtrSet(Am) which is
not constrained in the original query, we add the constraints onAx

to the rewritten query. As we have discussed in Section 1, we only



rank the tuples that contain zero or onenull in the query constrained
attributes. If the user would like to retrieve tuples with more than
one null, we output them at the end without ranking.

For example, consider the multi-attribute selection query
Q : σModel=Accord∧Price between 15000 and 20000 and the mined
AFDs {Make, Body Style}  Model and{Y ear,Model}  
Price. The algorithm first generates a set of rewritten queries
by replacing the attribute constraintModel=Accord with se-
lection predicates for each attribute in the determining set of
Model using the attribute values from the tuples in the base set
πdtrSet(Model)(RS(Q)). After the first iteration, the algorithm
may have generated the following queries:
Q′

1 : σMake=Honda∧Body Style=Sedan∧Price between 15000 and 20000,
Q′

2 : σMake=Honda∧Body Style=Coupe∧Price between 15000 and 20000

Similarly, the algorithm generates additional rewritten queries by
replacing Price with value combination of its determining set
from the base set while keeping the original query constraint
Model=Accord. After this second iteration, the following rewrit-
ten queries may have been generated:

Q′
3 : σModel=Accord∧Y ear=2002,

Q′
4 : σModel=Accord∧Y ear=2001,

Q′
5 : σModel=Accord∧Y ear=2003

After generating a set of rewritten queries for each constrained
attribute, the sets are combined and the queries are orderedjust as
they were in Step 2(b). The remainder of the algorithm requires no
modification to support multi-attribute selection queries.

Base Set vs. Sample:When generating rewritten queries, one may
consider simply rewriting the original query using the sample as op-
posed to first retrieving the base set and then rewriting. However,
since the sample may not contain all answers to the original query,
such an approach may not be able to generate all rewritten queries.
By utilizing the base set, QPIAD obtains the entire set of deter-
mining set values that the source can offer, and therefore achieves
a better recall.

4.3 Retrieving Relevant Answers from Data
Sources Not Supporting the Query At-
tributes

In information integration, the global schema exported by ame-
diator often contains attributes that are not supported in some of the
individual data sources. We adapt the query rewriting techniques
discussed above to retrieve relevant possible answers froma data
source not supporting the constrained attribute in the query. For ex-
ample, consider a global schemaGSUsedCars supported by the me-
diator over the sourcesYahoo! AutosandCars.comas shown in Fig-
ure 2, whereYahoo! Autosdoesn’t support queries onBody Style

attribute. Now consider a queryQ : σBody Style=Convt on the
global schema. The mediator that only returns certain answers
won’t be able to query theYahoo! Autosdatabase to retrieve cars
with Body Style Convt. None of the relevant cars fromYahoo!
Autoscan be shown to the user.

Mediator GS(Make, Model, Y ear, Price, Mileage, Location, Body Style)

Cars.com LS(Make, Model, Y ear, P rice, Mileage, Location, Body Style)

Yahoo! Autos LS(Make, Model, Y ear, Price, Mileage, Location)

Figure 2: Global schema and local schema of data sources

In order to retrieve relevant possible answers fromYahoo! Autos,
we apply the attribute correlation, value distribution, and selectiv-
ity estimates learned on theCars.comdatabase to theYahoo! Au-
tos database. For example, suppose that we have mined an AFD

Model Body Style from theCars.comdatabase. To retrieve rel-
evant possible answers from theYahoo! Autosdatabase, the media-
tor issues rewritten queries toYahoo! Autosusing the base set and
AFDs from theCars.comdatabase.

The algorithm that retrieves relevant tuples from a sourceSk not
supporting the query attribute is similar to the QPIAD Algorithm
presented in Section 4.2, except that the base result set is retrieved
from thecorrelated sourceSc in Step 1.

DEFINITION 4 (CORRELATEDSOURCE). For any au-
tonomous data sourceSk not supporting a query attributeAi, we
define acorrelated sourceSc as any data source that satisfies the
following: (i) Sc supports attributeAi in its local schema, (ii)Sc

has an AFD whereAi is on the right hand side, (iii)Sk supports
the determining set of attributes in the AFD forAi mined fromSc.

From all the sources correlated with a given sourceSk, we use
the one for which the AFD forAi has the highest confidence.
Then using the AFDs, value distributions, and selectivity estimates
learned fromSc, ordered rewritten queries are generated and issued
in Step 2 to retrieve relevant possible answers for the user query
from sourceSk.

4.4 Handling Aggregate Queries
As the percentage of incomplete tuples increases, aggregates

such asSumandCountneed to take the incomplete tuples into ac-
count to get accurate results. To support aggregate queries, we first
retrieve the base set by issuing the user’s query to the incomplete
database. Besides computing the aggregate over the base set(cer-
tain answers), we also use the base set to generate rewrittenqueries
according to the QPIAD algorithm in Section 4.2. For example,
consider the aggregate queryQ : σBody Style=Convt∧Count(∗) over
the Car database fragment in Table 2. First, we would retrieve the
certain answerst1, t2, andt3 for which we would compute their
certain aggregate valueCount(∗) = 3. As mentioned previously,
our first choice could be to simply return this certain answerto the
user effectively ignoring any incomplete tuples. However,there is a
better choice, and that is to generate rewritten queries according to
the algorithm in Section 4.2 in an attempt to retrieve relevant tuples
whoseBodyStyle attribute isnull.

When generating these rewritten queries, tuplet2 from the base
set would be used to form the rewritten queryQ′

2 : σModel=Z4

based on the AFDModel  Body Style. Before issuing the
query to the database we must first consider how to combine thecer-
tain and possible aggregate values. We combine the entire rewritten
query’s aggregate result with the certain aggregate but do so only
for those queries in which the most likely value is equal to the value
of the constrained query attribute.4

Using the approach above, we would find the probability dis-
tribution over all Body Style values given that theModel is
known. Since the original queryQ was onBody Style=Convt

we check theBody Style distribution to find the value with
the highest probability. If the value with the highest prob-
ability happens to beConvt then the entire aggregate from
the rewritten query combined with the certain aggregate, ifthe
highest probability is not for the valueConvt then the rewrit-
ten query’s aggregate is discarded. Therefore, when consider-
ing the rewritten queryQ′

2 : σModel=Z4 from above, the final
4Another approach would have been to combine a fraction of the
rewritten query’s aggregate result with the certain aggregate where
the fraction is equal to the query’s precision. However, this method
tends to produce a less accurate final aggregate as it allows each
tuple, however irrelevant, to contribute to the final aggregate.



resulting aggregate over the incomplete data source would be
CountTotal(∗)=CountCertain(∗)+CountPossible(∗)=3+1=4 as-
suming thatConvt is the maximum predicted probability given that
Model=Z4. In Section 6, we present the results of our empirical
evaluation on aggregate query processing in the context of QPIAD.
The results show an improvement in the aggregate value accuracy
when incomplete tuples are included in the calculations.

4.5 Handling Join Queries
To support joins over incomplete autonomous data sources, the

results are retrieved independently from each source and then
joined by the mediator.5 When retrieving possible answers, the
challenge comes in deciding which rewritten queries to issue to
each of the sources and in what order.

We must consider both the precision and estimated selectivity
when ordering the rewritten queries. Furthermore, we need to en-
sure that the results of each of these queries agree on their join at-
tribute values. Given that the mediator provides the globalschema,
a join query posed to the mediator must be broken down as a pair
of queries, one over each autonomous relation. In generating the
rewritten queries, we know the precision and selectivity estimates
for each of the pieces, thus our goal is to combine each pair of
queries and compute a combined estimate of precision and selec-
tivity. It is important to consider these estimates in termsof the
query pair as a whole rather than simply considering the estimates
of the pair’s component queries alone. For example, when perform-
ing a join on the results of two rewritten queries, it could bethe case
that the top ranked rewritten query from each relation does not have
join attribute values in common. Therefore despite their high ranks
at each of their local relations, the query pair could returnlittle or
no answers. As a result, when retrieving both certain and possible
answers to a query, the mediator needs to order and issue the rewrit-
ten queries intelligently so as to maximize the precision/recall of the
joined results.

In processing such join queries over relationsR1 and R2, we
must consider the orderings of each pair of queries from the sets
Q1∪Q1′ andQ2∪Q2′ whereQ1 andQ2 are the complete queries
derived from the user’s original join query over the global schema
andQ1′ andQ2′ are the sets of rewritten queries generated from
the bases sets retrieved fromR1 andR2 respectively. Given that the
queries must return tuples whose join attribute values are the same
in order for a tuple to be returned to the user, we now consider
adjusting theα parameter in ourF-Measurecalculation so as to
give more weight to recall without sacrificing too much precision.
The details of the approach taken by QPIAD are as follows:6

1. Send complete queriesQ1 andQ2 to the databasesR1 andR2 to
retrieve the base result setsRS(Q1) andRS(Q2) respectively.

2. For each base set, generate a list of rewritten queriesQ1′ andQ2′

using the QPIAD rewriting algorithm described in Section 4.2.

3. Compute the set of all query pairsQP by taking the Cartesian prod-
uct of each query from the setsQ1 ∪ Q1′ and Q2 ∪ Q2′. For
each pair, calculate the new estimated precision, selectivity, andF-
Measurevalues.

(a) For each rewritten query inQ1′ andQ2′, use the NBC clas-
sifiers to determine the join attribute value distributionsJD1
andJD2 given the determining set attribute values from the
base setsRS1 and RS2 respectively as discussed in Sec-
tion 5.2.

5Although we only discuss two-way joins, the techniques presented
are applicable to cases involving multi-way joins.
6The selectivity estimation steps are only performed for therewrit-
ten queries because the true selectivity of the complete queries is
already known once the base set is retrieved.

(b) For each join attribute valuevj1 andvj2 in JD1 andJD2
respectively, compute its estimated selectivity as the product
of the rewritten query’s precision, selectivity, and the value
probability distribution for eithervj1 or vj2.

(c) For each query pairqp ∈ QP compute the estimated selectiv-
ity of the query pair to be

EstSel(qp)=
P

vj1 ∈ JD1

vj2 ∈ JD2

EstSel(qp1, vj1)∗EstSel(qp2, vj2)

4. For each query pair, compute itsF-Measurescore using the new pre-
cision, estimated selectivity, and recall values. Next, select the top-K
query pairs from the ordered set of all query pairs accordingto the
algorithm described in Section 4.2.

5. For each selected query pairqp, if the component queriesqp1 and
qp2 have not previously been issued as part of another query pair,
issue them to the relationsR1 andR2 respectively to retrieve the

extended result setŝRS1 andR̂S2.

6. For each tuplecti1 in R̂S1 andcti2 in R̂S2 wherecti1.vj1 = cti2.vj2

create a possible joined tuple. In the case where eithercti1.vj1 or
cti2.vj2 is null, predict the missing value using the NBC classifiers
and create the possible join tuple. Finally, return the possible joined
tuple to the user.

5. LEARNING STATISTICS TO SUPPORT
RANKING AND REWRITING

As we have discussed, to retrieve possible answers in the or-
der of their relevance, QPIAD requires three types of information:
(i) attribute correlations in order to generate rewritten queries (ii)
value distributions in order to estimate the precision of the rewrit-
ten queries, and (iii) selectivity estimates which combinewith the
value distributions to order the rewritten queries. In thissection,
we present how each of these are learned. Our solution consists
of three stages. First, the system mines the inherent correlations
among database attributes represented as AFDs. Then it builds
Naı̈ve Bayes Classifiers based on the features selected by AFDs
to compute probability distribution over the possible values of the
missing attribute for a given tuple. Finally, it uses the data sampled
from the original database to produce estimates of each query’s se-
lectivity. We exploit AFDs for feature selection in our classifier
as it has been shown that appropriate feature selection before clas-
sification can improve learning accuracy[5]. For a more in depth
evaluation of our feature selection techniques we refer thereader to
[17].

5.1 Learning Attribute Correlations by
Approximate Functional Dependen-
cies(AFDs)

In this section, we describe the method for mining AFDs from
a (probed) sample of database. We also present a brief description
of our algorithm for pruning noisy AFDs in order to retain only the
valuable ones for use in the query rewriting module. Recall that
an AFDφ is a functional dependency that holds on all but a small
fraction of tuples. According to [19], we define theconfidenceof
an AFDφ on a relationR as: conf(φ) = 1 − g3(φ), whereg3 is
the ratio of the minimum number of tuples that need to be removed
from R to makeφ a functional dependency onR. Similarly, we
define anapproximate key (AKey)as a key which holds on all but a
small fraction of the tuples inR. We use the TANE[12] algorithm
to discover AFDs and AKeys whose confidence is above a threshold
β to ensure that we do not miss any significant AFDs or AKeys.



Pruning Noisy AFDs: In most cases, AFDs with high confidence
are desirable for learning probability distributions for missing val-
ues. However, not all high confidence AFDs are useful for feature
selection. The latter include those whose determining set contains
high confidence AKeys. For example, consider a relationcar(VIN,
Model, Make). After mining, we find thatVIN is an AKey (in fact,
a key) which determines all other attributes. Given a tuplet with
null value onModel, itsVIN is not helpful in estimating the missing
Modelvalue, since there are no other tuples sharingt’s VIN value.
Therefore, AFDs with a superset of AKey attributes in the deter-
mining set are not useful features for classification and should be
removed. For example, suppose we have an AFD{A1, A2} A3

with confidence 0.97, and an AKey{A1} with confidence 0.95.
Since most of{A1, A2} value pairs would be distinct, this AFD
won’t be useful in predicting the values forA3 and needs to be
pruned. An AFD will be pruned if the difference between its con-
fidence and the confidence of the corresponding AKey is below a
thresholdδ (currently set at0.3 based on experimentation).

5.2 Learning Value Distributions using Clas-
sifiers

Given a tuple with a null value, we now need to estimate the prob-
ability of each possible value of this null. We reduce this problem
to a classification problem using mined AFDs as selected features.
A classifier is a functionf that maps a given attribute vector~x to
a confidence that the vector belongs to a class. The input of our
classifier is a random sampleS of an autonomous databaseR with
attributesA1, A2, · · · , An and the mined AFDs. For a given at-
tribute Am, (1 ≤ m ≤ n), we compute the probabilities for all
possible class values ofAm, given all possible values of its deter-
mining setdtrSet(Am) in the corresponding AFDs.

We construct a Naı̈ve-Bayes Classifier(NBC)Am. Let a value
vi in the domain ofAm represent a possible class forAm. Let ~x

denote the values ofdtrSet(Am) in a tuple with null onAm. We
use Bayes theorem to estimate the probabilities:P (Am=vi|~x) =
P (~x|Am=vi)P (Am=vi)

P (~x)
for all valuesvi in the domain. To im-

prove computation efficiency, NBC assumes that for a given class,
the featuresX1, · · · , Xn are conditionally independent, and there-
fore we have:P (~x|Am=vi) =

Q
i

P (xi|Am=vi). Despite this

strong simplification, NBC has been shown to be surprisinglyef-
fective[9]. In the actual implementation, we adopt the standard
practice of using NBC with a variant of Laplacian smoothing called
m-estimates[23] to improve the accuracy.

5.3 Combining AFDs and Classifiers
So far we glossed over the fact that there may be more than one

AFD associated with an attribute. In other words, one attribute may
have multiple determining set with different confidence levels. For
example, we have the AFDModel Make with confidence0.99.
We also see that certain types of cars are made in certain coun-
tries, so we might have an AFDCountry Make with some con-
fidence value. As we use AFDs as a feature selection step for NBC,
we experimented with several alternative approaches for combining
AFDs and classifiers to learn the probability distribution of possible
values for null. One method is to use the determining set of the AFD
with the highest confidencewhich we call theBest-AFDmethod.
However, our experiments showed that this approach can degrade
the classification accuracy if its confidence is too low. Therefore we
ignore AFDs with confidence below a threshold (which is currently
set to be0.5 based on experimentation), and instead use all other
attributes to learn the probability distribution using NBC. We call

this approachHybrid One-AFD. We could also use anEnsemble
of classifierscorresponding to the set of AFDs for each attribute,
and then combine the probability distribution of each classifier by
a weighted average. At the other extreme, we could ignore fea-
ture selection based on AFD completely but use all the attributes
to learn probability distribution using NBC. Our experiments de-
scribed in Section 6 show that Hybrid One-AFD approach has the
best classification accuracy among these choices.

5.4 Learning Selectivity Estimates
As discussed in Section 4, the F-measure ranking requires an

estimate of the selectivity of a rewritten query. This is computed as
SmplSel(Q)∗SmplRatio(R)∗PerInc(R), whereSmplSel(Q)
is the selectivity of the rewritten queryQ when it is issued to the
sample.SmplRatio(R)is the ratio of the original database size over
the size of the sample. We send queries to both the original database
and its sample off-line, and use the cardinalities of the result sets to
estimate the ratio.PerInc(R) is the percentage of tuples that are
incomplete in the database. It can be estimated as the percentage
of incomplete tuples that we encountered while creating thesample
database.

6. EMPIRICAL EVALUATION
In this section, we describe the implementation and an empirical

evaluation of our system QPIAD for query processing over incom-
plete autonomous databases.

6.1 Implementation and User Interface
The QPIAD system is implemented in Java and has a

web-form based interface through which the users issue their
queries. A live demo of the QPIAD prototype is available at
http://rakaposhi.eas.asu.edu/qpiad. Given a user
query, the system returns each relevant possible answer to the user
along with aconfidencemeasure equal to the answer’s assessed de-
gree of relevance. Although the confidence estimate could bebi-
ased due to the imperfections of the learning methods, its inclusion
can provide useful guidance to the users, over and above the rank-
ing.

In addition, QPIAD can optionally “explain” its relevance as-
sessment by providing snippets of its reasoning as support.In
particular, it justifies the confidence associated with an answer
by listing the AFD that was used in making the density assess-
ment. In the case of our running example, the possible answer
t4 for the queryQ′ will be justified by showing the learned AFD
Model Body Style.

6.2 Experimental Settings
To evaluate the QPIAD system, we performed evaluations over

three data sets. The first dataset,Cars(year, make, model, price,
mileage, body style, certified), is built by extracting around 55,000
tuples from Cars.com. Databases like this one are inherently
incomplete as described in Table 1. The second dataset,Cen-
sus(age, workshop, education, marital-status, occupation, relation-
ship, race, sex, capital-gain, capital-loss, hours-per-week, native-
country), is theUnited States Censusdatabase made up of 45,000
tuples which we obtained from the UCI data repository. The third
dataset,Complaints(model, year, crash, fail date, fire, general com-
ponent, detailed component, country, ownership, car type,mar-
ket), is a Consumer Complaintsdatabase which contains roughly
200,000 tuples collected from the NHSTA Office of Defect Investi-
gations repository and is used in conjunction with theCarsdatabase
for evaluating join queries.
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To evaluate the effectiveness of our algorithm, we need to have
a “ground truth” in terms of the true values corresponding tothe
missing or null values. To this end, we create our experimental
datasets in two steps. First a “ground truth dataset” (GD) iscreated
by extracting a large number ofcompletetuples from the online
databases. Next, we create the experimental dataset (ED) byran-
domly choosing 10% of the tuples from GD and making them in-
complete (by randomly selecting an attribute and making itsvalue
null). Given our experience with online databases (see Table 1),
10% incompleteness is fairly conservative.

During the evaluation, the ED is further partitioned into two
parts: a training set (i.e. the sample from which AFDs and classi-
fiers are learned) and a test set. To simulate the relatively small per-
centage of the training data available to the mediators, we experi-
mented with training sets of different sizes, ranging in size from3%
to 15% of the entire database, as will be discussed in Section 6.5.

To compare the effectiveness of retrieving relevant possible an-
swers, we consider two salient dimensions of the QPIAD ap-
proach, namelyRankingandRewriting, which we evaluate in terms
of Quality and Efficiencyrespectively. For the experiments, we
randomly formulate single attribute and multi attribute selection
queries and retrieve possible answers from the test databases.

We compare QPIAD with the ALL RETURNED and ALL -
RANKED approaches. Recall that ALL RETURNED approach
presents all tuples containing missing values on the query con-
strained attribute without ranking them. The ALL RANKED ap-
proach begins by retrieving all the certain and possible answers,
as in ALL RETURNED, then it ranks possible answers according to
the classification techniques described in Section 5. In fact, nei-
ther approach is feasible as web databases are unlikely to support
binding of null values in queries. In contrast, the QPIAD approach
uses query rewriting techniques to retrieve only relevant possible
answers in a ranked order and fits for web applications. Even when
bindings of null values are allowed, we show in this section that the
QPIAD approach provides better quality and efficiency.

In the rest of the evaluation, we focus on comparing the effec-
tiveness of retrieving relevant possible answers. In otherwords, all
the experiments presented in this section, except for thoseon ag-
gregate queries, ignore the “certain” answers as all the approaches
are expected to perform equally well over such tuples.

6.3 Evaluation of Quality
To evaluate the effectiveness of QPIAD ranking, we compare it

against the ALL RETURNEDapproach which simply returns to the
user all tuples with missing values on the query attributes.Figures

3 and 4 show the precision and recall curves of a query on theCars
andCensusdatabases respectively. It shows that the QPIAD ap-
proach has significantly higher precision when compared to ALL -
RETURNED.

To reflect the “density” of the relevant answers along the time
line, we also plot the precision of each method at the time when first
K(K=1, 2, · · · , 100) answers are retrieved as shown in Figures
6 and 7. Again QPIAD is much better than ALL RETURNED in
retrieving relevant possible answers in the firstK results, which is
critical in web scenarios.

Effect of Alpha Value on F-Measure: To show the effect ofα on
precision and recall, we’ve included Figure 5 which shows the pre-
cision and recall of the queryQ : σPrice=20000 for different values
of α. Here we assume a 10 query limit on the number of rewritten
queries we are allowed to issue to the data source. This assumption
is reasonable in that we don’t want to waste resources by issuing
too many unnecessary queries. Moreover, many online sources may
themselves limit the number of queries they are willing to answer
in a given period of time (e.g. Google Base).

We can see that as the value ofα is increased from 0, QPIAD
gracefully trades precision for recall. The shape of the plots is
a combined affect of the value ofα (which sets the tradeoff be-
tween precision and recall) and the limit on the number of rewritten
queries (which is a resource limitation). For any given query limit,
for smaller values ofα, queries with higher precision are used, even
if they may have lower throughput. This is shown by the fact that
the lowerα curves are higher up in precision but don’t reach high
recall. Asα increases, we allow queries with lower precision so that
we can get a higher throughput, thus their curves are lower down
but extend further to the right.

6.4 Evaluation of Efficiency
To evaluate the effectiveness of QPIAD’s rewriting, we compare

it against the ALL RANKED approach which retrieves all the tuples
having missing values on the query constrained attributes and then
ranks all such tuples according to their relevance to the query. As
we mentioned earlier, we do not expect theALL RANKED approach
to be feasible at all for many real world autonomous sources as they
do not allow direct retrieval of tuples with null values on specific
attributes. Nevertheless, these experiments are conducted to show
that QPIAD outperforms ALL RANKED even when null value se-
lections are allowed. Figure 8 shows the number of tuples that are
retrieved by the ALL RANKED and QPIAD approaches respectively
in order to obtain a desired level of recall. As we can see, thenum-
ber of tuples retrieved by the ALL RANKED approach is simply the
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total number of tuples with missing values on the query attribute,
hence it is independent of the desired level of recall. On theother
hand, the QPIAD approach is able to achieve similar levels ofre-
call while only retrieving a small fraction of the tuples retrieved by
ALL RANKED. The reason for this is that many of the tuples re-
trieved by ALL RANKED, while having missing values on the query
attributes, are not very likely to be the value the user is interested
in. QPIAD avoids retrieving irrelevant tuples and is therefore very
efficient. Moreover, the ALL RANKEDapproach must retrieve the
entire set of tuples with missing values on constrained attributes in
order to achieve even the lowest levels of recall.

6.5 Evaluation of Learning Methods
Accuracy of Classifiers:Since we use AFDs as a basis for feature
selection when building our classifiers, we perform a baseline study
on their accuracy. For each tuple in the test set, we compute the
probability distribution of possible values of a null, choose the one
with the maximum probability and compare it against the actual
value. The classification accuracy is defined as the proportion of the
tuples in the test set that have their null values predicted correctly.

Table 3 shows the average prediction accuracy of various AFD-
enhanced classifiers introduced in Section 5.3. In this experiment,
we use a training set whose size is 10% of the database. The clas-
sification accuracy is measured over 5 runs using different train-
ing set and test set for each run. Considering the large domain
sizes of attributes inCarsdatabase (varying from2(Certified) to
416(Model)), the classification accuracy obtained is quite reason-
able, since a random guess would give much lower prediction accu-
racy. We can also see in Table 3 that the Hybrid One-AFD approach
performs the best and therefore is used in our query rewriting im-
plementation.7

Database Best All Hybrid
AFD Attributes One-AFD

Cars 68.82 66.86 68.82
Census 72 70.51 72

Table 3: Null value prediction accuracy across different AFD-
enhanced classifiers

7In Table 3 the Best-AFD and Hybrid One-AFD approaches are
equal because there were high confidence AFDs for all attributes in
the experimental set. When this is not the case, the Hybrid One-
AFD approach performs better than the Best-AFD approach.

While classifier accuracy is not the main focus of our work,
we did do some comparison studies to ensure that our classifier
was competitive. Specifically, we compared AFD-enhanced NBC
classifier with two other approaches — one based on association
rules[31] and the other based on learning Bayesian networksfrom
the data [11]. For Bayes network learning, we experimented with
the WEKA Data Mining Software. We found that although the
AFD-enhanced classifiers were significantly cheaper to learn than
Bayes networks, their accuracy was competitive. To compareour
approach against association-rule based classifiers, we used the al-
gorithm proposed in [31]. Our experiments showed that associa-
tion rules perform poorly as they focus only on attribute-value level
correlations and thus fail to learn from small samples. In contrast
AFD-enhanced NBC classifiers can synergistically exploit schema-
level and value-level correlations. Details of these evaluations are
available [17].

Robustness w.r.t. Confidence Threshold on Precision:QPIAD
presents ranked relevant possible answers to users along with a con-
fidence so that the users can use their own discretion to filteroff
answers with low confidence. We conducted experiments to eval-
uate how pruning answers based on a confidence threshold affects
the precision of the results returned. Figure 9 shows the average
precision obtained over 40 test queries on Cars database by pruning
answers based on different confidence thresholds. It shows that the
high confidence answers returned by QPIAD are most likely to be
relevant answers.
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Figure 9: Average Precision for various confidence thresh-
olds(Cars).

Robustness w.r.t. Sample Size:The performance of QPIAD ap-
proach, in terms of precision and recall, relies on the quality of the
AFDs, Naı̈ve Bayesian Classifiers and selectivity estimates learned
by the knowledge mining module. In data integration scenarios, the



availability of the sample training data from the autonomous data
sources is restrictive. Here we present the robustness of the QPIAD
approach in the face of limited size of sample data. Figure 10shows
the accumulated precision of a selection query on the Car database,
using various sizes of sample data as training set. We see that the
quality of the rewritten queries all fluctuate in a relatively narrow
range and there is no significant drop of precision with the sharp
decrease of sample size from15% to 3%. We obtained a similar
result for the Census database [17].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80

A
cc

um
ul

at
ed

 P
re

ci
si

on

Kth Query

Query
   Q:(Body=Convt)

3% Sample
5% Sample

10% Sample
15% Sample

Figure 10: Accumulated precision curve with different sample
sizes on Cars database.

6.6 Evaluation of Extensions
Effectiveness of using Correlation Between Data Sources:
We consider a mediator performing data integration over three
data sourcesCars.com (www.cars.com), Yahoo! Autos(au-
tos.yahoo.com) andCarsDirect(www.carsdirect.com). The global
schema supported by the mediator and the individual local schemas
are shown in Figure 2. The schema ofCarsDirectandYahoo! Autos
do not supportBody Style attribute whileCars.comdoes support
queries on theBody Style. We use the AFDs and NBC classi-
fiers learned fromCars.comto retrieve cars fromYahoo! Autos
andCarsDirectas possible relevant possible answers for queries on
Body Style, as discussed in Section 4.3.

To evaluate the precision, we check the actualBody Style of
the retrieved car tuples to determine whether the tuple was indeed
relevant to the original query. The average precision for the firstK
tuples retrieved fromYahoo! AutosandCarsDirectover the 5 test
queries is quite high as shown in Figure 11. This shows that using
the AFDs and value distributions learned from correlated sources,
QPIAD can retrieve relevant answers from data sources not sup-
porting query attribute.
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Figure 11: Precision curves for first K tuples retrieved using
correlated sourceCars.com.

Evaluation of Aggregate Queries: To evaluate our approach in
terms of supporting aggregate queries, we measured the accuracy
of aggregation queries in QPIAD where missing values in the in-
complete tuples are predicted and used to compute the final aggre-

gate result. We compare the accuracy of our query rewriting and
missing value prediction with the aggregate results from the com-
plete oracular database and the aggregate results from the incom-
plete database where incomplete tuples are not considered.Next
we will outline the details of our experiments.

We performed the experiments over anCars database con-
sisting of 8 attributes. First, we created all distinct subsets
of attributes where the size of the subsets ranged from1 to
7 (e.g. {make}, {make, model}, {make, model, year}, ...,

{model}, {model, year}, ..., etc.). Next, we issued a query to
the sample database and selected the distinct combinationsof val-
ues for each of these subsets.
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Figure 12: Accuracy of aggregate queries with and without
missing value prediction.

Using the distinct value combinations for each of these subsets,
we created queries by binding the values to the corresponding at-
tribute in the subsets. We then issued each query to the complete
database to find its true aggregate value. We also issued the same
query to the incomplete database and computed the aggregatevalue
without considering incomplete tuples. Finally, we issuedthe query
to the incomplete database only this time we predicted the missing
values and included the incomplete tuples as part of the aggregate
result.

In Figure 12, we show the percentage of queries which achieve
different levels of accuracy with and without missing valuepredic-
tion. The results are significant, for example, Figure 12(a)shows
that when missing value prediction is used to computed the aggre-
gate result, roughly 10% more queries achieve 100% accuracythan
if the aggregate had only taken the certain tuples into account, thus
ignoring all incomplete ones.

Evaluation of Join Queries: To evaluate our approach in the con-
text of join queries we performed a set of experiments on theCars
andComplaintsdatabases. In the experiments, we join theCarsand
Complaintsrelations on theModel attribute. The experimental re-
sults shown in Figure 13 involve join queries where the attributes
from both the relations are constrained. We evaluate the perfor-
mance of our join algorithm in terms of precision and recall with
respect to a complete oracular database.

We present the results for a join queryModel =
Grand Cherokee ∧ General Component = Engine and

Engine Cooling. We setα to 0, 0.5 and 2 to measure the effect of
giving different preferences to precision and recall. In addition, we
restricted the number of rewritten queries which could be sent to
the database to 10 queries. Figure 13(a) shows the precision-recall
curve for this query. We can see that forα = 0 high precision is
maintained but recall stops at 0.34. Forα = 0.5 the precision is
the same as whenα = 0 up until recall reaches 0.31. At this point,
the precision decreases although, a higher recall, namely 0.66, is
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Figure 13: Precision-Recall Curves for Queries on
Cars ⊲⊳Model Complaints

achieved. The precision whenα = 2 is similar to the case where
α = 0.5 but achieves 0.74 recall with only a small loss in preci-
sion near the tail of the curve. When looking at the top 10 rewritten
queries for each of theseα values we found that whenα = 0, too
much weight is given to precision and thus incomplete tuplesare
never retrieved from theCars database. This is due to our ability
to predict missing values which happens to be better on theCom-
plaints database and hence the top 10 rewritten queries tend to in-
clude the complete query from theCars database paired with an
incomplete query from theComplaintsdatabase. However, when
α = 0.5 or α = 2 incomplete tuples are retrieved from both the
databases because in this approach the ranking mechanism tries to
combine both precision and recall. Similar results for the query
Q :Model=f150∧General Component=Electrical System are shown
in Figure 13(b).

7. CONCLUSION
Incompleteness is inevitable in autonomous web databases.Re-

trieving highly relevant possible answers from such databases is
challenging due to the restricted access privileges of mediator, lim-
ited query patterns supported by autonomous databases, andsensi-
tivity of database and network workload in web environment.We
developed a novel query rewriting technique that tackles these chal-
lenges. Our approach involves rewriting the user query based on the
knowledge of database attribute correlations. The rewritten queries
are then ranked by leveraging attribute value distributions accord-
ing to their likelihood of retrieving relevant possible answers before
they are posed to the databases. We discussed rewriting techniques
for handling queries containing selection, joins and aggregations.
To support such query rewriting techniques, we developed methods
to mine attribute correlations in the form of AFDs and the value dis-
tributions of AFD-enhanced classifiers, as well as query selectivity
from a small sample of the database itself. Our comprehensive ex-
periments demonstrated the effectiveness of our query processing
and knowledge mining techniques.

As we mentioned, part of the motivation for handling incom-
pleteness in autonomous databases is the increasing presence of
databases on the web. In this context, a related issue is handling
query imprecision–most users of online databases tend to pose im-
precise queries which admit answers with varying degrees ofrel-
evance (c.f. [25]). In our ongoing work, we are investigating the
issues of simultaneously handling data incompleteness andquery
imprecision [16].
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