
Supporting Queries with Imprecise Constraints

Ullas Nambiar
Dept. of Computer Science

University of California, Davis

Subbarao Kambhampati
Dept. of Computer Science
Arizona State University

Abstract

In this paper, we motivate the need for and challenges in-
volved in supporting imprecise queries over Web databases.
Then we briefly explain our solution, AIMQ - a domain inde-
pendent approach for answering imprecise queries that auto-
matically learns query relaxation order by using approximate
functional dependencies. We also describe our approach for
learning similarity between values of categorical attributes.
Finally, we present experimental results demonstrating the ro-
bustness, efficiency and effectiveness of AIMQ.

Introduction
The rapid expansion of the World Wide Web has made a
variety of autonomous databases like bibliographies, scien-
tific databases, vendor databases etc. accessible to a large
number of lay external users. The increased visibility of
theseWeb databases1 has brought about a drastic change
in their average user profile from tech-savvy, highly trained
professionals to lay users demanding “instant gratification”.
However, database query processing models have always as-
sumed that theuser knows what she wantsand is able to for-
mulate a query that accurately expresses her needs. Hence,
to obtain a satisfactory answer from a Web database, the user
must formulate a query that accurately captures her infor-
mation need; often a difficult endeavor. Although users may
not know how to phrase their queries, they can often tell
which tuples are of interest to them when presented with a
mixed set of results having varying degrees of relevance to
the query. Supporting a ranked query answering model re-
quires database query processing models to embrace the IR
systems’ notion thatuser only has vague ideas of what she
wants, is unable to formulate queries capturing her needs
and would prefer getting a ranked set of answers. This shift
in paradigm would necessitate supportingimprecise queries-
queries that only require the answer tuples to match the con-
straints closely and not exactly.

We use the following example to motivate the need for
supporting imprecise queries over databases.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1We use the term “Web database” to refer to a non-local au-
tonomous database that is accessible only via a Web (form) based
interface.

Example: Suppose a user wishes to search forsedanspriced
around$10000 in a used car database,CarDB(Make, Model,
Year, Price, Location). Based on the database schema the
user may issue the following query:

Q:- CarDB(Model = Camry, Price< 10000)
On receiving the query, CarDB will provide a list ofCamrys
that are priced below$10000. However, given thatAccord
is a similar car, the user may also be interested in viewing
all Accordspriced around$10000. The user may also be
interested in aCamrypriced$10500. 2

In the example above, the query processing model used by
CarDB would not suggest theAccordsor the slightly higher
pricedCamryas possible answers of interest as the user did
not specifically ask for them in her query. This will force the
user to enter the tedious cycle of iteratively issuing queries
for all “similar” models before she can obtain a satisfactory
answer. One way to automate this is to provide the query
processor information about similar models (e.g. to tell it
that Accordsare 0.9 similar to Camrys). While such ap-
proaches have been tried, their Achilles heel has been the
acquisition of the domain specific similarity metrics–a prob-
lem that will only be exacerbated as the publicly accessible
databases increase in number.

The motivation behind developing the imprecise query
answering system AIMQ (Nambiar & Kambhampati. 2006)
is not to take the human being out of the loop, but to con-
siderably reduce the amount of input she has to provide to
get a satisfactory answer. Specifically, we want to testhow
far we can go (in terms of satisfying users) by using only
the information contained in the database: How closely can
we model the user’s notion of relevance by using only the
information available in the database?Therefore, in AIMQ
we are interested in ranking an answer tuplet for a query
Q using therelevancethe userU would assign to the tu-
ple. Ideally, our problem can be solved if we have access
to therelevance functionR(t|Q,U). Since such a function
is not readily available, past research has looked at either
eliciting relevance models through user interactions; or re-
quiring hard-coding relevance functions (e.g. through ex-
pert specified attribute weights). Since both are intrusiveand
hence conflicting with our desire to minimize user input, we
developed techniques for assessing the relevance in anon-
intrusivemanner. In this paper, we describe two techniques
for measuringR(t|Q,U) - one where the relevance function
is assessed from a sample of the database and another where

it is assessed with the help of query logs.
While the primary challenge we face is that of measur-

ing R(t|Q,U), for our solution to be practical given that the
target databases are autonomous and on the Web, we also
need to efficiently retrieve tuples that are likely to have high
relevance scores given a query. This necessitates a query re-
laxation to identify possible high relevance neighbourhood
of the query. A high level view of our solution is given on
the righthand side of Figure 1. Specifically, AIMQ mines
two types of information from a sample of the databases–
Approximate Functional Dependencies (AFDs), andsuper-
tuples(see below). AFDs are used to do query relaxation,
while AFDs and supertuples are used in conjunction to de-
velop a relevance measure. Below we illustrate our proposed
solution and highlight the challenges raised by it. Continu-
ing with the example given above, let the user’s intended
query be:

Q:- CarDB(Model like Camry, Price like10000)
Note that for simplicity, we have used the relationlike
to represent all similarity relationships such aslike,
around, contains etc. We begin by assuming that
the tuples satisfying some specialization ofQ – called the
base queryQpr, areindicativeof the answers of interest to
the user. For example, it is logical to assume that a user look-
ing for cars likeCamrywould be happy if shown aCamry
that satisfies most of her constraints. Hence, we deriveQpr

by tightening the constraints from“likeliness” to “equal-
ity” :

Qpr:- CarDB(Model = Camry, Price =10000)
Our task then is to start with the answer tuples forQpr –
called thebase set2, (1) find other tuples similar to tuples
in the base set and (2) rank them in terms of similarity to
Q. Our idea is to consider each tuple in the base set as a
(fully bound) selection query, and issue relaxations of these
selection queries to the database to find additional similar
tuples.
Challenges: Given the above solution, our first challenge is:
Which relaxations will produce more similar tuples?Once
we handle this and decide on the relaxation queries, we can
issue them to the database and get additional tuples that are
similar to the tuples in the base set. However, unlike the base
tuples, these tuples may have varying levels of relevance to
the user. They thus need to berankedbefore being presented
to the user. This leads to our second challenge:How to com-
pute the similarity between the query and an answer tuple?
Our problem is complicated by our interest in making this
similarity judgement not depend on user-supplied distance
metrics.

The AIMQ Approach
In response to the above challenges, we developed the query
processing framework AIMQ. Below we briefly explain how
we learn attribute importance and value similarity measures
from the database. Details of our solution are in (Nambiar
& Kambhampati. 2006). The AIMQ system architecture is

2We assume a non-null resultset forQpr or one of its general-
izations. The attribute ordering heuristic we describe later in this
paper is useful in relaxingQpr also.

illustrated in the left half of Figure 1. TheData Collector
probes the databases to extract sample subsets of the data-
bases.Dependency Minermines approximate dependencies
from the probed data and uses them to determine a depen-
dence based importance ordering among the attributes. The
Similarity Mineruses an association based similarity estima-
tion approach to approximate similarity between categorical
values.

Finding Relevant Answers

Given an imprecise query, AIMQ begins by deriving a pre-
cise query (called base query) that is a specialization of the
imprecise query. Then to extract other relevant tuples from
the database it derives a set of precise queries by considering
each answer tuple of the base query asa relaxable selection
query.3 Relaxation involves extracting tuples by identifying
and executing new queries obtained by reducing the con-
straints on an existing query - a tuplet that is an answer to
base query. In theory the tuples most similar tot will have
differences only in the least important attribute. Therefore
the first attribute to be relaxed must be theleast important
attribute - an attribute whose binding value, when changed,
has minimal effect on values binding other attributes.
Estimating Attribute Importance: Identifying the least
important attribute necessitates an ordering of the attributes
in terms of their dependence on each other. A simple solu-
tion is to make a dependence graph between attributes and
perform a topological sort over the graph. Functional depen-
dencies can be used to derive the attribute dependence graph
that we need. But, full functional dependencies (i.e. with
100% support) between all pairs of attributes (or sets encom-
passing all attributes) are often not available. Thereforewe
use approximate functional dependencies (AFDs) between
attributes to develop the attribute dependence graph with at-
tributes as nodes and the relations between them as weighted
directed edges. However, the graph so developed often is
strongly connected and hence contains cycles thereby mak-
ing it impossible to do a topological sort over it. Construct-
ing a DAG by removing all edges forming a cycle will result
in much loss of information.

We therefore propose an alternate approach to break the
cycle. We partition the attribute set intodependentandde-
ciding sets, with the criteria being each member of a given
group either depends or decides at least one member of the
other group. A topological sort of members in each subset
can be done by estimating how dependent/deciding they are
with respect to other attributes. Then by relaxing all mem-
bers in the dependent group ahead of those in the deciding
group we can ensure that the least important attribute is re-
laxed first. We use the approximate key with highest sup-
port to partition the attribute set. All attributes formingthe
approximate key become members of thedeciding setwhile
the remaining attributes form thedependent set.

3The technique we use is similar to the pseudo-relevance feed-
back technique used in IR systems.Pseudo-relevance feedback
(also known as local feedback or blind feedback) involves using
topk retrieved documents to form a new query to extract more rel-
evant results.

Figure 1: AIMQ system architecture

Measuring Relevance of Answers
The tuples obtained after relaxation must be ranked in terms
of their relevance to the query. We measure the relevance of
a tuplet to queryQ as similarity between Q and an answer
tuplet. Thus,R(t|Q,U) = Sim(Q, t) and is measured as

Sim(Q, t) =

n
∑

i=1

Wimp(Ai) ×



















V Sim(Q.Ai, t.Ai)
if Domain(Ai) = Categorical

1 − Q.Ai−t.Ai

Q.Ai

if Domain(Ai) = Numerical

where n = Count(boundattributes(Q)), Wimp (
∑n

i=1

Wimp = 1) is the importance weight of each attribute, and
VSimmeasures the similarity between the categorical values
as explained below. If the numeric distances computed using
Q.Ai−t.Ai

Q.Ai

> 1, we assume the distance to be1 to maintain
a lowerbound of0 for numeric similarity.
Categorical Value Similarity Estimation: The similarity
between two values binding a categorical attribute,VSim,
is measured as the percentage of commonAttribute-Value
pairs(AV-pairs)that are associated to them. An AV-pair con-
sists of a distinct combination of a categorical attribute and a
value binding the attribute.Make=Ford is an example of an
AV-pair. An AV-pair can be visualized as a selection query
that binds only a single attribute. By issuing such a query
over a sample of the database we can identify a set of tu-
ples all containing the AV-pair. We represent the answerset
containing each AV-pair as a structure called thesupertuple.
The supertuple contains a bag of keywords for each attribute
in the relation not bound by the AV-pair.

We measure the similarity between two AV-pairs as the
similarity shown by their supertuples. We useJaccard Co-
efficient with bag semantics(Baeza-Yates & Ribiero-Neto.
1999) to determine the similarity between two supertuples.
However, all features (attributes of the relation) may not be
equally important for deciding the similarity between two
categorical values. For example, given two cars, their prices
may have more importance than their color in deciding the
similarity between them. Therefore we compute AV-pair
similarity as a weighted sum of the attribute bag similarities.
VSim(C1, C2) =

∑m

i=1
Wimp(Ai) × SimJ(C1.Ai, C2.Ai)

whereC1, C2 are supertuples withm attributes,Ai is the
bag corresponding to theith attribute,Wimp(Ai) is the im-
portance weight ofAi andSimJ is the Jaccard Coefficient
and is computed asSimJ(A,B)= |A∩B|

|A∪B| .

Evaluation
Advantages of the developed framework has been evaluated
by applying it in the context oftwo real-lifedatasets:(1) Ya-
hoo Autos and the (2) US Census Dataset from UCI Machine
Learning Repository.Below we provide few evaluation re-
sults. For details of AIMQ system, algorithms developed
and their evaluation please see (Nambiar & Kambhampati.
2006).

We designed two query relaxation algorithmsGuide-
dRelaxandRandomRelaxfor creating selection queries by
relaxing the tuples in the base set.GuidedRelaxmakes use
of the AFDs and approximate keys and decides a relaxation
scheme. TheRandomRelaxmimics the random process by
which users would relax queries by arbitrarily picking at-
tributes to relax. To compare the relevance of answers we
provide, we also set up another query answering system that
uses the ROCK (Guha, Rastogi, & Shim 1999). Figure 2
provides a graphical representation of the estimated similar-
ity between some of the values binding attributeMake.

In order to verify the correctness of the attribute and value
relationships we learn and use, we setup a user study over
the used car database CarDB. Figure 3 shows the average
Mean Reciprocal Rank (MRR) - the metric for relevance es-
timation used in TREC QA evaluations (Voorhees 1999))
ascribed to both the query relaxation approaches.Guid-
edRelaxhas higher MRR thanRandomRelaxand ROCK.
Thus, the attribute ordering heuristic used by AIMQ is able
to closely approximate the importance users ascribe to the
various attributes of the relation.

Exploiting Workloads to Estimate User
Interest

The AIMQ system’s primary intent was minimizing the in-
puts a user has to provide before she can get answers for
her imprecise query. However, in doing so, AIMQ fails to
include users’ interest while deciding the answers. A naive

Ford

Chevrolet

Toyota

Honda

Dodge

Nissan

B M W

0.25

0.16

0.11

0.15

0.12

0.22

Ford

Chevrolet

Toyota

Honda

Dodge

Nissan

B M W

0.25

0.16

0.11

0.15

0.12

0.22

Figure 2: Similarity Graph for Make=“Ford”

Figure 3: Average MRR over CarDB

solution would be to ask user to provide feedback about the
answers she receives. But doing so would negate the bene-
fits of AIMQ. Databaseworkloads - log of past user queries,
have been shown as being a good source for implicitly esti-
mating the user interest (Agrawalet al. 2003). In a way, this
may be viewed as a poor mans choice of relevance feedback
and collaborative filtering where a users final choice of rele-
vant tuples is not recorded. Despite its primitive nature, such
workload information can help determine the frequency with
which database attributes and values were often requested by
users and thus may be interesting to new users. Therefore,
we developed AIMQ-Log, a system that answers imprecise
queries by using queries previously issued over the system.

AIMQ-Log differs from AIMQ in the way it identifies the
set of precise queries that are used to extract answers from
the database. AIMQ-Log identifies the set of relevant pre-
cise queries from the set of frequent queries appearing in the
database workload. The idea is to use the collective knowl-
edge of the previous users to help the new user. For exam-
ple, an user looking for vacation rentalsaround LAwould
not know that a majority of such rentals are nearManhat-
tan Beach, a popular tourist destination. However, since it
is a popular destination, other experienced tourists may sub-
mit queries asking for vacation rentalsaround Manhattan
Beach, LA. Thus, by identifying the relevant set of queries
from the popular queries in the workload we are implic-
itly using user feedback. To determine the relevant queries,
we compute the similarity between the base query and the
popular queries in the workload. The similarity is deter-
mined as thesimilarity among the answersetsgenerated by
the queries. AIMQ-Log uses the same tuple ranking model
as that of AIMQ.

Advantages of AIMQ-Log has been evaluated by apply-
ing it in the context of theonline bibliographic data source,
BibFinder. Details of the approach and the evaluation study
are available in (Nambiar & Kambhampati. 2004).

Related Work
The problem of answering imprecise queries is related
to three other problems. They are (1)Empty answerset
problem- where the given query has no answers and needs
to the relaxed (Muslea 2004; Gasterland 1997). (2)Struc-
tured query relaxation- where a query is relaxed using only
the syntactical information about the query (S. Amer-Yahia
& Srivastava 2002). (3)Keyword queries in databases- Re-
cent research efforts (Adityaet al. 2002; Hristidis & Pa-
pakonstantinou. 2002) have looked at supporting keyword
search style querying over databases. The imprecise query
answering problem differs from the first problem in that we
are not interested in just returning some answers but those
that are likely to be relevant to the user. It differs from the
second and third problems as we consider the semantic re-
laxations rather than the purely syntactic ones. More de-
tailed evaluation of related research is available in (Nambiar
& Kambhampati. 2006).

Conclusion
In this paper we first motivated the need for supporting
imprecise queries over databases and presented a domain-
independent approach we developed, AIMQ, for answer-
ing such queries. The efficiency and effectiveness of our
system has been evaluated over two real-life databases, Ya-
hoo Autos and Census database. To the best of our knowl-
edge, AIMQ is the only domain independent system cur-
rently available for answering imprecise queries. It can be
(and has been) implemented without affecting the internals
of a database thereby showing that it could be easily imple-
mented over any autonomous Web database.

References
Aditya, B.; Bhalotia, G.; Chakrabarti, S.; Hulgeri, A.; Nakhe, C.;
Parag; and Sudarshan., S. 2002. BANKS: Browsing and Keyword
Searching in Relational Databases.In proceedings of VLDB.
Agrawal, S.; Chaudhuri, S.; Das, G.; and Gionis, A. 2003. Auto-
mated Ranking of Database Query Results.CIDR.
Baeza-Yates, R., and Ribiero-Neto., B. 1999.Modern Informa-
tion Retrieval.Addison Wesley Longman Publishing.
Gasterland, T. 1997. Cooperative Answering through Controlled
Query Relaxation.IEEE Expert.
Guha, S.; Rastogi, R.; and Shim, K. 1999. ROCK: A Robust
Clustering Algorithm for Categorical Attributes.In proceedings
of ICDE.
Hristidis, V., and Papakonstantinou., Y. 2002. Discover: Keyword
Search in Relational Databases.In proceedings of VLDB.
Muslea, I. 2004. Machine Learning for Online Query Relaxation.
KDD.
Nambiar, U., and Kambhampati., S. 2004. Providing Ranked
Relevant Results for Web Database Queries.In proceedings of
WWW (Alternate Track Papers & Poster).
Nambiar, U., and Kambhampati., S. 2006. Answering Impre-
cise Queries over Autonomous Web Databases.In proceedings of
ICDE.
S. Amer-Yahia, S. C., and Srivastava, D. 2002. Tree pattern
relaxation.EDBT.
Voorhees, E. 1999. The TREC-8 Question Answering Track Re-
port. TREC 8.

