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Abstract

Current work in planning with preferences assumes that pesfierences are completely
specified, and aims to search for a single solution plan tsfgahese. In many real world
planning scenarios, however, the user may provide no kriyel®r at best partial knowledge
of her preferences with respect to a desired plan. In sudatsins, rather than presenting a
single plan as the solution, the planner must instead peoaiget of planscontaining one or
more plans that are similar to the one that the user realligmeln this paper, we first propose
the usage of different measures to capture the quality dii plen sets. These are domain-
independent distance measures based on plan elementsaéactions, states, or causal links)
if no knowledge of the user preferences is given, or Ititegrated Convex PreferendéCP)
measure in case incomplete knowledge of such preferenqgesvided. We then investigate
various heuristic approaches to generate sets of plansordence with these measures, and
present empirical results that demonstrate the promisarahethods.
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1. Introduction

In many real world planning scenarios, user preferencedansre either unknown or at best
partially specified (c.f. Kambhampati (2007)). In such saske planner’s task changes from
finding asingleoptimal plan to finding &etof representative solutions or options. The user must
then be presented with this set in the hope that she will findlest one of the constituent plans
desirable and in accordance with her preferences. Most ina@itomated planning ignores this

1This work is an extension of the work presented in Srivastaval. (2007) and Nguyen et al. (2009).
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reality, and assumes instead that user preferences (wipeassed) will be provided in terms of
a completely specified objective function.

In this article, we study the problem of generatinged of plansusing partial knowledge of
the user preferences. This set is generated in the hopéathaser will find at least one desirable
according to her preferences. Specifically, we considemmatitatively distinct scenarios:

e The planner is aware that the user has some preferences saltitien plan, but it is not
provided with any knowledge on those preferences.

e The planner is provided with incomplete knowledge of ther yweferences in the form
of planattributes(such as the duration or cost of a flight, or the importanceatifering
all priority packages on time in a logistics problem). Ea¢hhese plan attributes has a
different and unknown degree of importance, representeddightsor trade-offvalues.
In general, users find it hard to indicate the exact value td@et-off, but are more likely to
indicate that one attribute is more (or less) important gnasther. For instance, a business
executive may consider the duration of a flight as a more itaporfactor than its cost.
Incompletely specified preferences such as these can bdedosith a probability distri-
bution on weight value$,and can therefore be assumed as input to the planner (togethe
with the attributes themselves).

In both of the cases above, our focus is on returning a seofsplin principle, a larger plan
set implies that the user has a better chance of finding thretb&t she desires; however, there
are two problems—one computational, and the other compeédeal. Plan synthesis, even for
a single plan, is costly in terms of computational resouusesl; for a large set of plans, this cost
only increases. The comprehensional problem, moreovtiratst is unclear if the user will be
able to completely inspect a set of plans in order to find tlam ghe prefers. What is clearly
needed, therefore, is the ability to generate a set of pléhgke highest chance of including the
user’s preferred plan among all setdofindedsmall) number of plans. An immediate challenge
in this direction is formalizing what it means fomaeaningfuket of plans—in other words, we
want to define @uality measurdor plan sets given an incomplete preference specification.

We propose different quality measures for the two scendistexd above. In the extreme
case where the user is unable to provide any knowledge ofrearpnces, we define a spectrum
of distance measures between two plans based on their Sgritstures in order to define the
diversitymeasure of plan sets. These measures can be used regafdhessiger preferences,
and by maximizing the diversity of a plan set we increase ti@nce that the set is uniformly
distributed in the unknown preference space. This make®itrikely that the set contains a
plan that is close to the one desired by the user.

The quality measure can be refined further when some knowlefithe user preferences is
provided. We assume that it is specified as a convex combmatithe plan attributes mentioned
above, and incomplete in the sense that a distribution detaff weights, not their exact val-
ues, is available. The complete set of best plans (plansthétihest value function) can then be
pictured as the lower convex-hull of the Pareto set on thiébate space. To measure the qual-
ity of any (bounded) set of plans on the complete optimalwetadapt the idea dhtegrated
Preference FunctiofiPF) (Carlyle et al., 2003), and in particular its speciade, théntegrated

2|f there is no prior information about this probability disution, one option is to initialize it with the uniform
distribution and gradually improve it based on interactigth the user.
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Convex PreferencdCP). This measure was developed in the Operations Résé@ie) com-
munity in the context of multi-criteria scheduling, and ldeto associate a robust measure of
representativeness with any set of solution schedulesléfaival., 2005).

Armed with these quality measures, we can formulate thelgnolof planning with partial
user preferences as finding a bounded set of the plans th#ténagest quality value. Our next
contribution therefore is to investigate effective apptues for using quality measures to search
for a high quality plan set efficiently. For the first scenariwhen the preference specification
is not provided—two representative planning approachesansidered. The first, GP-CSP (Do
and Kambhampati, 2001), typifies the issues involved in gaimgy diverse plans in bounded
horizon compilation approaches; while the second, LPG €@er et al., 2003), typifies the
issues involved in modifying the heuristic search planne@air investigations with GP-CSP
allow us to compare the relative difficulties of enforcingetsity with each of the three different
distance measures defined in the forthcoming sections. MR, we find that the proposed
quality measure makes it more effective in generating péds ever large problem instances.
For the second case—when part of the user preferences iglpdevwe also present a spectrum
of approaches that can solve this problem efficiently. Welémgnt these approaches on top of
Metric-LPG (Gerevini et al., 2008). Our empirical evaloaticompares these approaches both
among themselves as well as against the methods for gengedaterse plans ignoring the partial
preference information, and the results demonstrate tmaise of our proposed solutions.

The paper is organized as follows. We first discuss relatett imdhe next section. Section 3
describes fundamental concepts in preferences and footations. In Section 4, we formalize
quality measures of plan set in the two scenarios discudsedea Sections 5 and 6 discuss
our various heuristic approaches to generate plan setsthxgwith the experimental results.
Section 7 gives the discussion including the limitationewfwork. We finish the paper with the
conclusion and future work in Section 8.

2. Related Work

There are currently very few research efforts in the plagliterature that explicitly consider in-
completely specified user preferences during planning.nitwt common approach for handling
multiple objectives is to assume that a specific way of coingithe objectives is available (Re-
fanidis and Vlahavas, 2003; Do and Kambhampati, 2003), hed search for an optimal plan
with respect to this function. In a sense, such work can bsidered as assuming a complete
specification of user preferences. Other relevant workihes (Bryce et al., 2007), in which the
authors devise a variant of the LAO* algorithm to search faoaditional plan with multiple
execution options for each observation branch, such tiudt ethese options is non-dominated
with respect to objectives like probability and cost to fetwe goal.

Our work can be seen as complementing the current reseaptarining with preferences.
Under the umbrella of planning with preferences, most curveork in planning focuses on
synthesizing either a single solution plan under the astiomthat the user has no preferences,
or a single best solution assuming that a complete knowletitfee preferences is given to the
planner. We, on the other hand, address the problem of ssinthg a set of plans when the
knowledge of user preferences is either completely unkrbampartially specified.

3Note that not knowing anything about the user’s prefereigéifferent from assuming that the user has no prefer-
ences.
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In the context of decision-theoretic planning, some work bansidered Markov Decision
Processes witimprecisereward functions, which are used to represent user prefesson the
visited states during execution. These methods howevaneasthat the true reward function is
revealed only during the execution of policies, whereadiinsetting the incomplete knowledge
about user preferences is resolved after the synthesisan§ filut before plan execution (with
some required effort from the user). Many different notioheptimality for policies have been
defined with respect to the incomplete reward function, #edaim is to search for an optimal
policy. Theminimax regretcriterion (Regan and Boutilier, 2009, 2010; Xu and Mann®Q%2
has been defined for the quality of policies when tihee reward function is deterministic but
unknown in a given set of functions. This criterion seeks ptineal policy that minimizes
the loss (in terms of the expected discounted reward) asguthe presence of an adversary
who selects a reward function, among all possible ones, tdmize the loss should a policy
be chosen. Another criterion, calledaximin maximizes the worst-case expected reward also
assuming an adversary acting optimally against the agecitidhan et al., 2003).

Incomplete knowledge of user preferences can also be exbsalith some effort from the
userduring plan generation. This idea unfortunately has not been dersil in previous work
on automated planning with preferences; there is howeweeswsork in two related areas, de-
cision theory and preference elicitation. In (Chajewskal 2000), the user is provided with a
sequence of queries, one at a time, until an optimal stratétyrespect to the refined prefer-
ence model meets a stopping criterion, which is then outpthe user. That work ignores the
user’s difficulty in answering questions that are posted,iaatead emphasizes the construction
of those which will give the best value of information at guetep. This issue is overcome by
(Boutilier, 2002) which takes into account the cost of angwgefuture elicitation questions in or-
der to reduce the user’s effort. Boutilier et al. (2010) édesthe preference elicitation problem
in which the incompleteness in user preferences is spedafidabth the set of features and the
utility function. In systems implementing the exampletiguing interaction mechanism (e.qg.,
Viappiani et al. (2006), Linden et al. (1997)), a user ctitg examples or options presented by
the system, and this information is then used to revise tefepgnce model. The process contin-
ues until the user can pick a final choice from thexamples presented. There is one important
difference between these methods and ours: the “outcomésbofigurations” in these scenar-
ios are considered given upfront (or can be obtained withdost), whereas a feasible solution
in many planning domains is computationally expensive tafsgsize. As a result, an interactive
method in whicha sequence of plans or sets of plareeds to be generated for critiquing may
not be suitable for our applications. Our approach, whigsents a set of plans to the user to
select, requires less effort from the user and at the sanmeeaumids presenting a single optimal
plan according to pessimistic or optimistic assumptionshsas those used in the minimax regret
and maximin criteria.

The problem of reasoning with partially specified prefeembas also long been studied
in multi-attribute utility theory, though this work is alstifferent from ours when ignoring the
computation cost of “alternatives”. Given prior prefereratatements on how the user com-
pares two alternatives, Hazen (1986) considers additidenautiplicative utility functions with
unknown scaling coefficients, which represents the useigbgreferences, and proposes al-
gorithms for the consistency problem (i.e., if there exéstomplete utility function consistent
with the prior preferences), the dominance problem (i.&gtver the prior information implies
that one alternative is preferred to another), and the piatesptimality problem (i.e., if there
exists a complete utility function consistent with the pioeferences under which a particular
alternative is preference optimal). Ha and Haddawy (1988ljessed the last two problems for

4



O©CO~NOOOTA~AWNPE

multi-linear utility functions with unknown coefficient3hese efforts are similar to ours in how
the user preferences are partially represented. Howewglasto the example-critiquing work
mentioned above, they assume that the user is able to prozideise comparison between alter-
natives, which is then used to further constrain the set offtete utility functions representing
user preferences.

Our approach to generating diverse plan sets to cope witnjrig scenarios without knowl-
edge of user preferences is in the same spirit as (Tate 408B) and (Myers, 2006; Myers and
Lee, 1999), though for different purposes. Myers, in pattic presents an approach to generate
diverse plans in the context of an HTN planner by requirirg teta-theory of the domain to
be available and by using bias on the meta-theoretic elemerontrol search (Myers and Lee,
1999). The metatheory of the domain is defined in terms oeféred attributes and their pos-
sible values covering roles, features and measures. Ow affers from this in two respects.
First, we focus on domain-independent distance measueesndl, we consider the computation
of diverse plans in the context of domain independent plemne

The problem of finding multiple busimilar plans has been considered in the context of
replanning (Fox et al., 2006). Our work focuses on the probdé finding diverseplans by
a variety of measures when the user preferences exist bugithex completely unknown or
partially specified.

Outside the planning literature, our closest connectidirss to the work by Gelain et al.
(2010), who considesoft constraint satisfaction problems (CSPs) with incompletfgrences.
These are the problems where quantitative values of sonsraints that represent their prefer-
ences are unspecified. Given such incomplete preferereeauthors are interested in finding
a single solution that is “necessarily” optimal (possiblghasome effort from the user), i.e. an
assignment of variables that is optimal in all possible widngd the currently unspecified pref-
erences can be revealed. In a sense, this notion of optynislitery similar to the maximin
criterion when seeking a solution that is optimal even whith ‘tworst” selection of the unspeci-
fied preferences. Hebrard et al. (2005) use a model closerrtatioat focuses on the problem of
finding similar/dissimilar solutions for CSPs, assumingtth domain-specific distance measure
between two solutions is already defined. It is instructsedte that unlike CSPs with finite vari-
able domains, where the number of potential solutions itefif@lbeit exponential), the number
of distinct plans for a given problem can be infinite. Thu$geefve approaches for generating a
good quality set of plans are even more critical.

The challenges in finding set of interrelated plans also beare tangential similarities to
the work in other research areas and applications. In irddion retrieval, Zhang et al. (2002)
describe how to return relevant as well as novel (non-redot)dlocuments from a stream of
documents; their approach is to first find relevant docs ard find non-redundant ones. In
adaptive web services composition, the causal dependeaieng some web services might
change at the execution time, and as a result the web sengimeawants to have a set of diverse
plans/compositions such that if there is a failure whileceimg one composition, an alternative
may be used which is less likely to be failing simultaneoy€liafle et al., 2006). However, if
a user is helping in selecting the compositions, the planoeld be first asked for a set of plans
that may take into account the user’s trust in some parti@darces and when she selects one
of them, it is next asked to find plans that are similar to tHected one. Another example of
the use of diverse plans can be found in (Memon et al., 200&}hich test cases for graphical
user interfaces (GUIs) are generated as a set of distines péach corresponding to a sequence
of actions that a user could perform, given the user’s unknpreferences on how to interact
with the GUI to achieve her goals. The capability of synthiegj multiple plans would also have
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Figure 1: The planning problem with unknowA)(and partially known B) user preferences can be reformulated as the
problem of synthesizing plan-sets with complete prefezsraver plan-setgd).

potential application in case-based planning (e.g., 8g0910)) where it is important to have
a plan set satisfying a case instance. These plans can beediffin terms of criteria such as
resources, makespan and cost that can only be specifiedriettleval phase.

The primary focus of our paper are scenarios where the emdsuis¢erested in single plans,
but her preferences on that single plan are either unknoywanially known to the planner. Our
work shows that an effective technique for handling thes@arios is to generate a set of diverse
plans and present them to the user (so she can select the piaglshe is most interested in).
While we came to sets of plans asiatermediate stefor handling lack of preference knowledge
about single plans, there are also applications where thaiser is in fact interested wets of
plans(a.k.a “plan-sets”), and has preferences over these glsn-sechniques for handling this
latter problem do overlap with the techniques we develoghis paper, but it is important to
remember their distinct motivations. Figure 1 makes théstindtions clear by considering two
orthogonal dimensions. The X-axis is concerned with witiheend user is interested in single
plans or plan-sets. The Y-axis is concerned with the dedriednowledge of user preferences.

In this space, traditional planning with preferences cgpomnds to<i ngl e- pl an, ful | -
know edge). The problems we are considering in this papersiragl e- pl an, no- know edge)
and i ngl e-pl an,parti al - know edge), respectively. A contribution of our work is to show
that these two latter problems can be reformulate@iasi(- set , f ul | - knowl edge), where the
quality of plan-sets is evaluated by the internal diversitgasures we will develop. There are
also compelling motivations to study thpl @n- set, ful | - know edge) problem in its own
right if the end user is explicitly interested in plan-sefhis is the case, for example, in appli-
cations such as intrusion detection (Boddy et al., 2005grevithe objective is to come up with
a set of plans that can inhibit system breaches, or optioargéinn in mission planning, where
the commander wants a set of options not to immediately cortongine of them, but rather to
study their trade-offs.

The techniques we develop in this paper are related but novagnt to the techniques
and inputs for solving that plan-set generation problempdrticular, when the end users are
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interested in plan sets, they may have preferences on ptanr®t on single plarfsThis means
that (i) we need a language support for expressing prefesame plan sets such as the work on
DD-PREF language (desJardins and Wagstaff, 2005), anduiiplanner has to take as input
and support a wide variety of plan-set preferences (in eshto our current system where the
plan-set preference is decided internally—in terms ofagise measures for unknown (single
plan) preference case, and in terms of IPF measure for [hakieown preference cases).

3. Background and Notation

Given a planning problem with the set of solution pl&hs user preferenaaodelis a transitive,
reflexive relation inS x S, which defines an ordering between two pla@gdp’ in S. Intuitively,

p = p’ means that the user prefersat least as much g¢. Note that this ordering can be
either partial (i.e. it is possible that neither< p’ norp’ < p holds—in other words, they are
incomparable), or total (i.e. eithgr< p’ or p’ < p holds). A plarp is considered (strictly) more
preferred than a plagf, denoted by < o/, if p < p’, p’ £ p, and they are equally preferred if
p = p' andp’ < p. A planp is an optimal (i.e., most preferred) plarpif< p’ for any other plan
p’. A plan setP C S is considered more preferred theéh C S, denoted byP < P/, if p < p’
for anyp € P andp’ € P’, and they are incomparable if there exists P andp’ € P’ such
thatp andp’ are incomparable.

The ordering=< implies a partition ofS into disjoint plan sets (oclasse¥ S, S1, ... (So U
SiU...=S8,8nS; = 0)such that plans in the same set are equally preferred, arahfo
setS;, S, eitherS,; < S5, S; < §;, or they are incomparable. The partial ordering between
these sets can be represented as a Hasse diagram (Birkdwsf, Where the sets are vertices,
and there is an (upward) edge fraéfnto S; if S; < S; and there is not angy, in the partition
such thatS; < S, < S;. We denoté(S;) as the “layer” of the sef; in the diagram, assuming
that the most preferred sets are placed at the layer O (&hyl = [(S;) + 1 if there is an edge
fromS; to S;. Aplan in a set at a layer of smaller value, in general, issgithore preferred than
or incomparable with ones at layers of higher valfigggure 2 shows two examples of Hasse
diagrams representing a total and partial preference ioglbetween plans. We will use this
representation of plan sets in Section 4 to justify the desfgur quality measures for plan sets
when no knowledge of user preferences is available.

4This is akin to a college having explicit preferences onrigsiiman classes—such as student body diversity—over
and above their preferences on individual students.

5As an analogy, partial order planning was originally ineghto speed up plan generation in classical planning—
where the end solutions are all action sequences. Of catesechniqueof partial order planning is also useful when
the end user is interested not in action sequencesdndurrent plans In this case however, we need a preference
language that allows the user to express preferences oveunrent plans, and we will also have to relax some specific
simplifications in normal partial order planners—such aglsi contributor causal link semantics. Another interesti
analogy is between MDP with discrete state space which besé®MDPS in the context of partial observability. The
POMDPS can be handled by compiling them back to MDPs but vattiicuous state spaces (specifically, MDPs in the
space of belief states). It is also possible for an end usee faterested in (fully observable) MDPs in continuousestat
spaces. While this problem is related to the problem of sgfFBOMDPs as MDPs in belief-space, it also has important
differences. In particular, the reward function in the @mmbus MDP will be in terms of continuous states, while in
the case of POMDPs is still in terms of the underlying disergtates. Further, some of the efficiency tricks that the
techniques for POMDPs employ based on the fact that the Yahation has to be convex in the belief-space—will no
longer hold in general continuous MDPs.

8if < is a total ordering, then plans at a layer of smaller valuestiietly more preferred than ones at a layer of higher
value.
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Figure 2: The Hasse diagrams and layers of plan sets impliesvd preference models. In (af1 < S2 < Ss,
and any two plans are comparable. In (b), on the other handg Sz < S84, S1 K S3, and each plan i3 is
incomparable with plans i§2 andSy.

The preference model of a user can be explicitly specifieddrating the set of plans and

providing the ordering between any two of them, and in thisecanswering queries such as
comparing two plans, finding a most preferred (optimal) gl@comes an easy task. This is,
however, practically infeasible since synthesizing a jeitself is hard, and the solution space
of a planning problem can be infinite. Many preferelaeguagestherefore, have been proposed
to represent the relatiofi in a more compact way, and serve as starting pointalfpsrithmsto
answer queries. Most preference languages fall into thefolg two categories:

¢ Quantitative languages defin@alue functionl : S — R which assigns a real number to
each plan, with a precise interpretation thak p’ <= V(p) < V(p’). Although this
function is defined differently in many languages, at a hagtel it combines the user pref-
erences on various aspects of plan that can be measuredafixaly. For instance, in the
context of decision-theoretic planning (Boutilier et 4999), the value function of a pol-
icy is defined as the expected rewards of states that aredvisiten the policy executes. In
partial satisfaction (over-subscription) planning (PEBhith, 2004; Van Den Briel et al.,
2004), the quality of plans is defined as its total rewardsoff goals achieved minus
its total action costs. In PDDL2.1 (Fox and Long, 2003), thtug function is an arith-
metic function of numerical fluents such as plan makespae$ysed etc., and in PDDL3
(Gerevini et al., 2009) it is enhanced with individual prefece specifications over state
trajectory constraints, defined as formulae with modal ajpes having their semantics
consistent with that used for modal operators in linear @mldogic (Pnueli, 1977) and
other modal temporal logics.

¢ Qualitative languages provide qualitative statementisateamore intuitive for lay users to
specify. A commonly used language of this typeCiB-networkgBoutilier et al., 2004),
where the user can specify her preference statements agsvafiplan attributes, possibly
given specification of others (for instance, “Among tickeith the same prices, | prefer
airline A to airline B.”). Another example iEPP (Bienvenu et al., 2006) in which the
statements can be specified using LTL formulae, and podsiihg aggregated in different
ways.

8
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mm

Figure 3: The metamodel (Brafman and Domshlak, 2009). Tlkee meference model is compactly represented by a
preference language, on which algorithms perform taskesivaring queries.

Figure 3 shows the conceptual relation of preference moldglguages and algorithms. We
refer the reader to the work by Brafman and Domshlak (2009afmore detailed discussion
on this metamodel, and by Baier and Mcllraith (2009) for aereiew of different preference
languages used in planning with preferences.

From the modeling point of view, in order to design a suitdhtegguage capturing the user
preference model, the modeler should be provided with somogvledge of the user’s interest
that affects the way she evaluates plans (for instancet fligration and ticket cost in a travel
planning scenario). Such knowledge in many cases, howearnot be completely specified.
Our purpose therefore is to present a bounded set of plaf®etaser in the hope that it will
increase the chance that she can find a desired plan. In theewion, we formalize the quality
measures for plan sets in two situations where either no laume of the user preferences or
only part of them is given.

4. Quality Measures for Plan Sets

4.1. Syntactic Distance Measures for Unknown Preferense€a

We first consider the situation in which the user has somespeates for solution plans, but the
planner is not provided with any knowledge of such prefeesntt is therefore impossible for the
planner to assume any particular form of preference langteggresenting the hidden preference
model. There are two issues that need to be considered imhaing a quality measure for plan
sets:

e What are the elements of plans that can be involved in a guabasure?

e How should a quality measure be defined using those elements?

For the first question, we observe that even though usersaareatly interested in some
high levelfeatures of plans that are relevant to them, many of thoseriesacan be considered as
“functions” of base leveklements of plans. For instance, the set of actions in threddtermines
the makespan of a (sequential) plan, and the sequencees sthen the plan executes gives the
total reward of goals achieved. We consider the followingéhtypes of base level features of
plans which could be used in defining quality measure, indégetly of the domain semantics:

e Actions that are present in planshich define various high level features of the plans such
as its makespan, execution cost etc. that are of interdsétoser whose preference model
could be represented with preference languages such a®iamSPDDL2.1.

9
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Basis Pros Cons

Actions Does not require No problem information
problem information is used

States Not dependent on any specificNeeds an execution
plan representation simulator to identify state$

Causal links| Considers causal proximity | Requires domain theory
of state transitions (action)
rather than positional
(physical) proximity

Table 1: The pros and cons of different base level elemenitaaof

e Sequence of states that the agent goes through, which esghe behaviors resulting from
the execution of plangn many preference languages defined using high level fesinfr
plans such as the reward of goals collected (e.g., PSP) eoivtiole state (e.g., MDP),
or the temporal relation between propositions occur irestét.g. PDDL3PP (Son and
Pontelli, 2006) and. PP (Fritz and Mcllraith, 2006)), the sequence of states caecathe
quality of plan evaluated by the user.

e The causal links representing how actions contribute togbals being achieved, which
measures the causal structures of pldnhese plan elements can affect the quality of
plans with respect to the languages mentioned above, astisaldinks capture both the
actions appearing in a plan and the temporal relation betaetons and variables.

A similar conceptual separation of features has also beesidered recently in the context
of case-based planning by Serina (2010), in which planninglpms were assumed to be well
classified, in terms of costs to adapt plans of one problenolicesanother, in somanknown
high level feature space. The similarity between problemihé space was implicitly defined
using kernel functions of their domain-independent graggresentations. In our situation, we
aim to approximate quality of plan sets on the space of featilmat the user is interested in using
distance between plans with respect to base level featfipdares mentioned above (see below).

Table 1 gives the pros and cons of using the different basg édements of plan. We note
that if actions in the plans are used in defining quality memsfiplan sets, no additional problem
or domain theory information is needed. If plan behavioeswsed as base level elements, the
representation of the plans that bring about state transiiecomes irrelevant since only the
actual states that an execution of the plan will go throughcansidered. Hence, we can now
compare plans of different representations, e.g., fourgehere the first is a deterministic plan,
the second is a contingent plan, the third is a hierarchieal @nd the fourth is a policy encoding
probabilistic behavior. If causal links are used, then thasal proximity among actions is now
considered rather than just physical proximity in the plan.

Given those base level elements, the next question is hoefiweda quality measure of plan
sets using them. Recall that without any knowledge of the peeferences, there is no way
for the planner to assume any particular preference larggusgrause of which the motivation
behind the choice of quality measure should come from thadmidiser preference model. Given

A causal linka; — p — a records that a propositionis produced by:; and consumed bys.
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a Hasse diagram induced from the user preference modeplan set that will be presented to
the user can be considered to be randomly selected fromalyeasin. The probability of having
one plan in the set classified in a class at the optimal laythheoHasse diagram would increase
when the individual plans are more likely to be at differeaytdrs, and this chance in turn will
increase if they are less likely to be equally preferred teyube On the other hand, the effect
of base level elements of a plan on high level features ratewathe user suggests thalans
similar with respect to base level features are more likelp¢ close to each other on the high
level feature space determining the user preference model.

In order to define a quality measure using base level featfrpkans, we proceed with the
following assumption:plans that are different from each other with respect to thseblevel
features are less likely to be equally preferred by the usasther words they are more likely to
be at different layers of the Hasse diagrawiith the purpose of increasing the chance of having
a plan that the user prefers, we propose the quality mea$ptarosets as itdiversitymeasure,
defined using the distance between two plans in the set vaffet to a base level element. More
formally, the quality measur¢ : 2° — R of a plan sefP can be defined as either the minimal,
maximal, or average distance between plans:

e Minimal distance:

. — ] /
Gmin(P) = min_ o(p,p) (1)
e Maximal distance:
_ /
Cmaw (P) - p{?ﬁag%d(pvp ) (2)
e Average distance:
Caug(P) = ('7")1 < 3 8 p) @)
avg 9 9
p,p'€P

whered : S x § — [0, 1] is the distance measures between two plans.

4.1.1. Distance measures between plans

There are various choices on how to define the distance me&gup’) between two plans using
plan actions, sequence of states or causal links, and eachamshave different impact on the
diversity of plan set on the Hasse diagram. In the followiwg,propose distance measures in
which a plan is considered as (i) a set of actions and cauda, lor (ii) sequence of states the
agent goes through, which could be used independently ofrelaresentation (e.g. total order,
partial order plans).

8To see this, consider a diagram wifh = {p1,p2} at layer 0,S2 = {p3} andS3 = {p4} at layer 1, and
Ss4 = {ps} at layer 2. Assuming that we randomly select a set of 2 plathose plans are known to be at the same
layer, then the chance of having one plan at layer §.i9-|owever, if they are forced to be at different layers, them t

probability will be 2.

11
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e Plan as a set of actions or causal linkgiven a planp, let A(p) andC(p) be the set of
actions or causal links gf. The distance between two plgmandp’ can be defined as the
ratio of the number of actions (causal links) that do not apje both plans to the total
number of actions (causal links) appearing in one of them:

|A(p) N A(p')]

ba(p,p) =1— TA(p) UAQ)| (4)
N lC)NnCP)]
5cz(p7p)—1—m )

¢ Plan as a sequence of statggven two sequence of states), s1, ..., sy) and(sg, s, ..., sj/)
resulting from executing two plansandp’, and assume thatf < k. Since the two se-
guences of states may have different lengths, there aeugoptions in defining distance
measure betweemandp’, and we consider here two options. In the first one, it can be
defined as the average of the distances between statd pairg (0 < i < k'), and each
statesy/1,... S iS considered to contribute maximally (i.e., one unit) ittie difference
between two plans:

y
X [Y Alsi, ) + k= K] (6)

i=1

os(p,p') =

| =

On the other hand, we can assume that the agent continueg/tatghe goal state/, in
the next(k — k') time steps after executing, and the measure can be defined as follows:

ol

5s(p,p') =

K’ k
XD Alsisi)+ Y Alsiysiy)] (7)
=1

i=k'+1

The distance measuri(s, s’) between two states, s’ used in those two measures is
defined as

[sN s’

As,s') =1
(5:5) [s U s

(8)

These distance metrics would consider long plans to berdifitam short plans. In the ab-

sence of information about user preferences, we cannobuilte possibility that the unknown
preference might actually favor longer plans (e.g., it isgible that a longer plan has cheaper
actions, making it attractive for the user). In the impletadgion of a system for computing di-
verse plans, while these distance measures affect whitlofiire (partial plan) search space a
planner tends to focus on, in general the length of resufilags especially depends on whether
the search strategy of the planner attempts to minimizenibur experiments, we will use two
types of planners employing exhaustive search and locatisesespectively. For the second,
which does not attempt to minimize plan length, we will intuee additional constraints into the
search mechanism that, by balancing the differences inghergted diverse plans, also attempts
to control the relative size of resulting plans.

12
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Figure 4: Example illustrating plans with base-level elatsea; anda denote dummy actions producing the initial
state and consuming the goal propositions, respectively téxt for more details).

Example: Figure 4 shows three plans, p> andps for a planning problem where the initial
state is{r; } and the goal propositions afes,r4}. The specification of actions are shown in
the table. The action sets of the first two plafié( a2, as} and{a1, as, as}) are quite similar
(0a(p1,p2) = 0.5), but the causal links which involvwe; (a2 — rs — as, a3 — r4 — ag) anday
(ar — r —aa, as — r4 — ag) Make their difference more significant with respect to adlink
based distanc@ (p1, p2) = %). Two other plang; andps, on the other hand, are very different
in terms of action sets (and therefore the sets of causa)tink(p1, ps) = 1, but they are closer
in term of state-based distanck (as defined in Equation 6, arid if defined in Equation 7).

4.2. Integrated Preference Function (IPF) for Partial Peefnce Cases

We now discuss a quality measure for plan sets in the case tukarser preference is partially
expressed. In particular, we consider scenarios in whiehptieference model can be repre-
sented by some quantitative language with an incomplepalgifed value function of high level
features. As an example, the quality of plans in PDDL2.1 (&od Long, 2003) and PDDL3
(Gerevini et al., 2009) are represented by a metric funa@mbining metric fluents and prefer-
ence statements on state trajectory with parameters eyiieg their relative importance. While
providing a convenient way to represent preference modets) parameterized value functions
present an issue of obtaining reasonable values for thévelmportance of the features. A
common approach to model this type of incomplete knowledde consider those parameters
as a vector of random variables, whose values are assumeditaln from a distribution. This
is the representation that we will follow.

To measure the quality of plan sets, we propose the usdgéegfrated Preference Function
(IPF) (Carlyle et al., 2003), which has been used to meabkerquality of a solution set in a wide
range of multi-objective optimization problems. The IPFasre assumes that the user prefer-
ence model can be represented by two factors: (1) a protyahigitribution2(«) of parameter
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vector«, whose domain is denoted by, such thatfaeA h(a)da = 1 (in the absence of any
special information about the distributiola(«) can be assumed to be uniform), and (2) a value
functionV(p,a) : S x A — R combines different objective functions into a single realied
quality measure for plap. We assume that such objective functions represent aspiegtans
that have to be minimized, such as makespan and executitnTdas incomplete specification
of the value function represents a set of candidate prederemodels, for each of which the user
will select a different plan, the one with the best valuenira given plan seP C S. The IPF
value of solution seP is defined as:

[PF(P) = / )V (pa, a) do ©)
aEN
with p, = argmin V' (p, «), i.e., the best solution i? according toV (p, «) for each givenx
peEP

value. Letp, ! be a range ofv values for whichp is an optimal solution according #(p, o),
i.e.,V(p,a) <V(p,a)foralla c p;t,p € P\ {p}.
As p,, is piecewise constant, the? F'(P) value can be computed as:

IPF(P)=>_ [ /a - h(a)V (p, a) da} : (10)

pEP

LetP* = {p € P: p;' # 0}; then we have:
IPF(P) = IPF(P) = ¥ [ / h)V (p, ) da] . (11)
pEP* acpg’

SinceP* is the set of plans that are optimal for some specific paramwetor, I PF(P)
now can be interpreted as the expected value that the useyetdny selecting the best plan in
P. Therefore, the sgP* of solutions (known atower convex hulbf P) with the minimal IPF
value is most likely to contain the desired solutions that diser wants, and in essence it is a
good representative of the plan g&t

The requirement fof PF(P) to exist is that the functioh(«)V (p, «) needs to be integrable
over thep- ! domains’ The complication in computing theP F'(P) value is in deriving a par-
tition of A, the domain ofy, into the rangeg_, ! for p € P*, and the computation of integration
over those ranges of the parameter vector. As we will desctite computational effort to ob-
tain /PF(P) is negligible in our work with two objectives. Although it eyond the scope of
this article, we refer the readers to (Kim et al., 2006) far dalculation of the measure when
the value function is a convex combination of high numberltgéotives, and to (Bozkurt et al.,
2010) for the weighted Tchebycheff value function with twaahree criteria.

In this work, in order to make our discussion on generatiag gets concrete, we will con-
centrate on metric temporal planning where each aetianA has a duratiod, and an execution
coste,. The planner needs to find a plar= (a1, . .., a,), which is a sequence of actions that is
executable and achieves all goals. The two most common pialitygmeasures arenakespan

9Although value function can take any form satisfying axicshsut preferences, the user preferences in many real-
world scenarios can be represented or approximated wildditive value functiofRussell and Norvig, 2010), including
the setting in our application, which is integrable over plagameter domain. Sindg«) is integrable, so is the product
h(a)V (p, @) in those situations.
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which is the total execution time @f andplan cost which is the total execution cost of all ac-
tions inp—both of them are high level features that can be affectetiéwttions in the plan. In
most real-world applications, these two criteria compeith wach other: shorter plans usually
have higher cost and vice versa. We use the following assangpt

e The desired objective function involves minimizing bothmquonentstime(p) measures
the makespan of the planandcost(p) measures its execution cost.

e The quality of a plarp is a convex combination¥ (p, w) = w X time(p) + (1 — w) X
cost(p), where weightw € [0,1] represents the trade-off between the two competing
objective functions.

e The belief distribution ofv over the rangé0, 1] is known. If the user does not provide any
information or we have not learnt anything about the prefeeeon the trade-off between
timeandcostof the plan, then the planner can assume a uniform distabénd improve
it later using techniques such as preference elicitation).

Given that the exact value af is unknown, our purpose is to find a bounded representative
set of non-dominatéd plans minimizing the expected value d{p, w) with regard to the given
distribution ofw over|[0, 1].

IPF for Metric Temporal Planning: The user preference model in our target domain of tempo-
ral planning is represented by a convex combination otithe andcostquality measures, and
the IPF measure now is calléategrated Convex Preferen€kCP). Given a set of planB*, let

t, = time(p) andc, = cost(p) be the makespan and total execution cost of planP*, the

ICP value ofP* with regard to the objective functidri(p, w) = w x ¢, + (1 — w) X ¢, and the
parameter vectar = (w, 1 —w) (w € [0, 1]) is defined as:

ko w,
0Py =Y / hw)(w % ty, + (1 — w) X ¢p,)dw (12)
i=1"YWi-1
wherewy = 0, wxy, = 1 andV(p;,w) < V(p,w) for all p € P*\ {p;} and everyw €
[wi—1,w;]. In other words, we dividg0, 1] into k£ non-overlapping regions such that in each
region(w;_1, w;) there is an optimal solutiop; € P* according to the value function.

We select the IPF/ICP measure to evaluate our solution sdtédollowing reasons:

e From the perspective alfecision theorypresenting a plan sét C S to the user, among alll
possible subsets &, can be considered as an “action” with possible “outcomes” P
that can occur (i.e., being selected by the user) with priﬁt;agfaepgl h(a) da. Since the
IPF(P) measures the expected utilityBf presenting a set of plans with an optimal IPF
value is a rational action consistent with the current krealgk of the user preferences.

e If P; dominatesP, in the set Pareto dominancsense, thed PF(P;) < IPF(Ps) for
any type of weight density function(«) (Carlyle et al., 2003), and this property also holds
with any scaling of the objective values for ICP measure (Eoet al., 2005). Intuitively,
this means that if we “merge” those two plan sets, all nondateid plans “extracted” from
the resulting set are those .

10A plan p; is dominated by if time(p1) > time(p2) andcost(p1) > cost(p2) and at least one of the inequali-
ties is strict.
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Figure 5: Solid dots represent plans in the paretosgtiz, p3, ps, p7). Connected dots represent plans in the lower
convex hull p1, p3, p7) giving optimal ICP value for any distribution on trade-bfftweencostandtime

e The value ofl PF(P) is monotonically nonincreasing over increasing sequeatsslu-
tion sets, and the set of plans optimal according to thetyfilinction V' (p, «), i.e., the
efficient frontier, has the minimdIP F" value (Carlyle et al., 2003). Thus, the measure can
be used as an indicator for the quality of a plan set during#aech towards the efficient
frontier.

Empirically, extensive results on scheduling problemsHav(ler et al., 2005) have shown
that ICP measur&valuates the solution quality of approximation robudilg., similar to visual
comparison results) while other alternative measures cegjuaige the solution quality”

Example: Figure 5 shows our running example in which there are a tdt@lgans with their
time(p) andcost(p) values as followsp, = {4,25},p2 = {6,22},p3 = {7,15}, ps = {8, 20},

ps = {10,12}, ps = {11,14}, andp; = {12,5}. Among these 7 plans, 5 of them belong to
a pareto optimal set of non-dominated pla®s; = {p1, p2,ps, ps,p7}. The other two plans
are dominated by some plans#): p4 is dominated bys andpg is dominated bys. Plans

in P, are depicted in solid dots, and the set of pld#ts = {p1,ps,pr} that are optimal for
some specific value ab is highlighted by connected dots. In particulay, is optimal when

w € [wg = 0,wy = %] wherew, = % can be derived from the satisfaction of the constraints
V(p7,w) < V(p,w),p € {p1,p3}. Similarly, p; andp, are respectively optimal favr € [w; =
2wy = 19 andw € [wy = 13, w3 = 1]. Assuming that(w) is a uniform distribution, the
value of/C P(P) can therefore be computed as follows:
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h(w)V(pg,w)dw—i—/ h(w)V (p1, w)dw

10

win

10
3

h(w)v(p7,w)dw+/g‘

PP = /O

&
I5

- / [12w + 5(1 — w)]dw + / [7w + 15(1 — w)]dw +
0 2

3

w0

+ /1 [dw + 25(1 — w)]dw

10

13

~  7.32.

In the next two Sections 5 and 6, we investigate the problegenérating high quality plan
sets for two cases mentioned: when no knowledge about th@references is given, and when
part of it is given as input to the planner.

5. Generating Diverse Plan Set in the Absence of Preferencendwledge

In this section, we describe approaches to searching for af siverse plans with respect to a
measure defined with base level elements of plans as distustde previous section. In partic-
ular, we consider the quality measure of plan set as the nairpair-wise distance between any
two plans, and generate a set of plans contaikiptans with the quality of at least a predefined
thresholdd. As discussed earlier, by diversifying the set of plans @engppace of base level fea-
tures, it is likely that plans in the set would cover a widegaof space of unknown high level
features, increasing the possibility that the user carcsalplan close to the one that she prefers.
The problem is formally defined as follows:

dDISTANTKSET : FindP with P C S, | P | = k and((P) = min 8(p,q) > d

p,q€P

where any distance measure between two plans formalizeddtiof 4.1.1 can be used to im-
plements(p, p’).

We now consider two representative state-of-the-art pleghapproaches in generating di-
verse plan sets. The first one is GP-CSP (Do and Kambhampati) 2epresenting constraint-
based planning approaches, and the second one is LPG (@areal., 2003) that uses an effi-
cient local-search based approach. We use GP-CSP to complaei relation between different
distance measures in diversifying plan sets. On the othedt,lveith LPG we stick to the action-
based distance measure, which is shown experimentally thebmost difficult measure to en-
force diversity (see below), and investigate the scalghili heuristic approaches in generating
diverse plans.

5.1. Finding Diverse Plan Set with GP-CSP

The GP-CSP planner (Do and Kambhampati, 2001) convertslamaipg graph of Graphplan

(Blum and Furst, 1997) into a CSP encoding, and solves igusistandard CSP solver. A plan-

ning graph is a data structure consisting of alternatinglfewef proposition set and action set.

The set of propositions present in the initial state is thappsition set at the zero-th level of the

graph. Given &-level planning graph, all actions whose preconditiongxaesent in the propo-

sition set of the levek are introduced into the next levkl+ 1. In addition, one “noop” action
17
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Action set Proposition set Action set Proposition set
Level k-1 Level k-1 Level k Level k

Figure 6: An example of (a portion of) a planning graph. Athebavel, propositions presenting in a previous one and
noop actions are omitted, and at lekebnly the actions used to support the goals are shown for Hiogpion.

is also added for each proposition at lekelhich are both the precondition and effect of the
action. The set of propositions at the le¥el- 1 is then constructed by taking the union of addi-
tive effects of all actions at the same level. This expangioress also computes and propagates
a set of “mutex” (i.e., mutually exclusive) constraintsween pairs of propositions and actions
at each level. At the first level, the computation starts byking as mutex the actions that are
statically interfering with each other (i.e., their preddions and effects are inconsistent). The
mutex constraints are then propagated as follows: (i) &l levtwo propositions are mutually
exclusive if any action at levét achieving one of them is mutually exclusive with all actions
at the same level supporting the other one; (ii) two actidrieveel £ + 1 are mutex if they are
statically interfering or if one of the precondition of thesfiaction is mutually exclusive with
one of the precondition of the second action.

The planning graph construction stops at a |&vek which one of the following conditions is
satisfied: (i) all goal propositions are present in the psian set of levell” without any mutex
constraints between them, or (ii) two consecutive levethefyraph have the same sets of actions,
propositions and mutex constraints. In the first case, tlapgrlan algorithm searches this graph
backward (i.e., from level’) for a valid plan, and continuing the planning graph expambiefore
a new search if no solution exists. In the second condittom problem is provably unsolvable.
Figure 6, which is taken from (Do and Kambhampati, 2001)wshan example of two levels
of a planning graph. The top-level goals #&re, ..., G4 supported by actiond,, ..., A4 at the
same levek. Each of these actions has preconditions in the{$%t ..., P;} appearing at the
level £ — 1, which are in turn supported by actiods, ..., A;; at that level. The action pairs
{45, Ag}, {A7, A11} and{Ag, As} are mutually exclusive, however these mutex relations are
not enough to make any pair of propositions at ldvel 1 mutually exclusive.

The GP-CSP planner replaces the search algorithm in Graphplfirst converting the plan-
ning graph data structure into a constraint satisfactiablem, and then invoking a solver to
find an assignment of the encoding, which represents a vialitfpr the original planning prob-
lem. In the encoding, the CSP variables correspond to thdiqates that have to be achieved at
different levels in the planning graph (different plannsigps) and their possible values are the
actions that can support the predicates. For each CSP leargiyesenting a predicape there
are two special values: i) indicates that a predicate is not supported by any actidrisfalse
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Variables: Gi,....,Gq, P1, ..., P

Domains:

G1 : {Al,J_},GQ : {AQ,J_},Gg : {Ag,J.},G;; : {A4,J_}

P1 : {A5,J_},P2 : {A(;,All,J_},Pg : {A7,J_}

P4 : {Ag,Ag,J_},P5 : {Alo,J_},PG : {Alo,J_}
Constraints (Mutex):

P = A5 = P 7& Ag

P, = Ag = Py 7& Ag

Py=An = P3# Ar

Constraints (Activity):
G1:A1:>P175J_/\P2§éJ_/\P37éJ_
GQZAQ — P47éJ_
G3=A3 — P575J_
Gy=Ay = PI#L1LNPs# L

Initial state: Gi#LNGy#LANGs# LNGy# L

Figure 7: The CSP encoding for the example planning graph.

at a particular level/planning-step; ii) “noop”: indicatthat the predicate is true at a given level
1 because it was made true at some previous Igveli and no other action deletgsbetween

j andi. Constraints encode the relations between predicatesdiinthst 1) mutual exclusion
relations between predicates and actions; and 2) the cerlatibnships between actions and
their preconditions. Figure 7 shows the CSP encoding qooreding the portion of the planning
graph in Figure 6.

5.1.1. Adapting GP-CSP to Different Distance Metrics

When the above planning encoding is solved by any standaPdsGlser, it will return a solution
containing(var, valug of the form{(x1,v1),...(zn,yn)}. The collection ofz; wherey; # L
represents the facts that are made true at different tirps §péan trajectory) and can be used as a
basis for thestate-basedistance measuré;the set ofy; # L) A (y; # noop) represents the set
of actions in the plan and can be useddotion-basedlistance measure; lastly, the assignments
(x;,y:) themselves represent the causal relations and can be udbe éausal-basedlistance
measure.

However, there are some technical difficulties we need tocovee before a specific distance
measure between plans can be computed. First, the same eatide represented by different
values in the domains of different variables. Consider gpf#nexample in which there are two
factsp andq, both supported by two actiong andas. When setting up the CSP encoding,
we assume that the CSP variablgsandz, are used to represeptandq. The domains for
21 andxy are {vi1,v12} and {va1, v22}, both representing the two actiofs;,as} (in that
order). The assignmen{Sx1,v11), (x2,v21)} and{{x1,v12), (x2,v22)} have a distance of 2

1we implement the state-based distance between plans asdigfiEquation 6.
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in traditional CSP because different values are assigreedch variable:; andz,. However,
they both represent the same action{sat a} and thus lead to the plan distance of 0 if we use
the action-based distance in our plan comparison. Thergtee first need to translate the set
of values in all assignments back to the set of action ingtmbefore doing comparison using
action-based distance. The second complication arisebdéocausal-based distance. A causal
link a; — p — as between two actiong; anda, indicates that;; supports the precondition
p of ay. However, the CSP assignmept ;1) only provides the first half of each causal-link.
To complete the causal-link, we need to look at the valuestwrdCSP assignments to identify
actionas that occurs at the later level in the planning graph andphessits precondition. Note
that there may be multiple “valid” sets of causal-links fgulan, and in the implementation we
simply select causal-links based on the CSP assignments.

5.1.2. Making GP-CSP Return a Set of Plans
To make GP-CSP return a set of plans satisfyingdB6STANTKSET constraint using one of
the three distance measures, we add “global” constraingsi¢h original encoding to enforce
d-diversity between every pair of solutions. When each dlabastraint is called upon by the
normal forward checking and arc-consistency checkinggatores inside the default solver to
check if the distance between two plans is over a predefinke vawe first map each set of
assignments to an actual set of actions (action-basedjicptes that are true at different plan-
steps (state-based) or causal-links (causal-based) treinmethod discussed in the previous
section. This process is done by mapping(alir, value) CSP assignments into action sets
using a call to the planning graph, which is outside of the €8ker, but works closely with the
general purpose CSP solver in GP-CSP. The comparison isltirenwithin the implementation
of the global constraint to decide if two solutions are déeeenough.

We investigate two different ways to use the global constsai

1. Theparallel strategy to return the set éfplans all at once. In this approach, we create
one encoding that contaiisidentical copies of each original planning encoding creéate
using the GP-CSP planner. Theopies are connected together usifig— 1) /2 pair-wise
global constraints. Each global constraint betweenthand;*" copies ensures that two
plans represented by the solutions of those two copies wilitheast! distant from each
other. If each copy has variables, then this constraint involves variables.

2. Thegreedystrategy to return plans one after another. In this apprdhek copies are not
setup in parallel up-front, but sequentially. We add toitfiecopy one global constraint to
enforce that the solution of th&" copy should bel-diverse from any of the earligr— 1
solutions. The advantage of the greedy approach is that@aBtencoding is significantly
smaller in terms of the number of variables\(s. & x n), smaller in terms of the number
of global constraints (1 vsk(k — 1)/2), and each global constraint also contains lesser
number of variablesr{ vs. 2 x n).}2 Thus, each encoding in the greedy approach is
easier to solve. However, because each solution dependisopenaously found solutions,
the encoding can be unsolvable if the previously found smistcomprise a bad initial
solution set.

5.1.3. Empirical Evaluation
We implemented the parallel and greedy approaches distassker for the three distance mea-
sures and tested them with the benchmark set of Logistidd¢nts provided with the Blackbox

2However, each constraint is more complicated because ddes¢i — 1) previously found solutions.
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| || log-easy [ rocket-a | log-a [ log-b [ log-c [ log-d ]
da 0.087 7.648 1.021| 6.144 8.083 178.633
Os 0.077 9.354 1.845| 6.312 8.667 232.475
Ol 0.190 6.542 1.063 | 6.314 8.437 209.287

[Random[| 0.327 | 15.480 | 8.982] 88.040] 379.182] 6105.510]

Table 2: Average solving time (in seconds) to find a plan ugiegdy (first 3 rows) and by random (last row) approaches

| | log-easy | rocket-a | log-a [ logb | logc | log-d |
Oa 0.041/0.35| 0.067/0.65| 0.067/0.25| 0.131/0.1* | 0.126/0.15| 0.128/0.2
Os 0.035/0.4 0.05/0.8 0.096/0.5 0.147/0.4 0.140/0.5 | 0.101/0.5
det 0.158/0.8 | 0.136/0.95| 0.256/0.55| 0.459/0.15*| 0.346/0.3* | 0.349/0.45

Table 3: Comparison of the diversity in the plan sets retiimethe random and greedy approaches. Cases where random
approach is better than greedy approach are marked with *.

planner (Kautz and Selman, 1998). All experiments were rma &inux Pentium 4, 3Ghz ma-
chine with 512MB RAM. For each problem, we test with differénvalues ranging from 0.01
(1%) to 0.95 (95%) and k increases from 2 ta wheren is the maximum value for which
GP-CSP can still find solutions within plan horizon. The hori (parallel plan steps) limit is 30.

We found that the greedy approach outperformed the paegieloach and solved signifi-
cantly higher number of problems. Therefore, we focus orgtleedy approach hereafter. For
each combination of, k, and a given distance measure, we record the solving tim@uatpadit
the average/min/max pairwise distances of the solutic set

Baseline Comparison:As a baseline comparison, we have also implementatidomizedap-
proach. In this approach, we do not use global constrairitegrirandom value ordering in the
CSP solver to generatedifferent solutions without enforcing them to be pairwiséistance
apart. For each distaneg we continue running the random algorithm until we figg,.. solu-
tions wherek,, ... Is the maximum value of that we can solve for the greedy approach for that
particulard value. In general, we want to compare with our approach afgugiobal constraint

to see if the random approach can effectively generatesbvast of solutions by looking at: (1)
the average time to find a solution in the solution set; andh@)maximum/average pairwise
distances between > 2 randomly generated solutions.

Table 2 shows the comparison of average solving time to firel smiution in the greedy
and random approaches. The results show that on an avelhaganidom approach takes sig-
nificantly more time to find a single solution, regardlessha tlistance measure used by the
greedy approach. To assess the diversity in the solutien $able 3 shows the comparison of:
(1) the average pairwise minimum distance between theisnhiin sets returned by the random
approach; and (2) the maximudnfor which the greedy approach still can find a set of diverse
plans. The comparisons are done for all three distance mesasior example, the first cell
(0.041/0.35) in Table 3, implies that the minimum pairwise distance agedafor all solvable
k > 2 using the random approachds= 0.041 while it is 0.35 (i.e., 8x more diverse) for the
greedy approach using thg distance measure. Except for 3 cases, using global camsttai
enforce minimum pairwise distance between solutions h@IRsCSP return significantly more

BIncrements of 0.01 from 0.01 to 0.1 and of 0.05 thereafter.
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| d [ log-easy| rocket-a | log-a | log-b | log-c | log-d |
0.01 || 11,5,28 | 8,1812 9,818 | 3,45 | 4,68 | 8,7,7
0.03 || 6,324 8,139 7,712 | 243 | 46,6 | 4,7,6
0.05 || 5,318 6,119 5710 | 243 | 46,5 | 3,75
0.07 || 2,314 6,10,8 47,6 24,2 | 46,5 | 3,75
0.09 || 2,314 6,9,6 36,6 24,2 | 36,4 | 3,7,4
0.1 2,310 69,6 36,6 242 | 26,4 | 3,7,4
0.2 2,35 59,6 2,6,6 131 | 152 | 253
0.3 2,23 47,5 14,4 121|132 | 133
0.4 1,23 36,5 133 121 (121 | 1,23
0.5 1,13 2,45 122 - 121|121
0.6 1,12 2,34 - - - -

0.7 1,12 1,2,2 - - - -

0.8 1,12 1,2,2 - - - -

09 | - 112 - : - -

Table 4: For each gived value, each cell shows the largest solvablor each of the three distance measufgsds,
andd,; (in this order). The maximum values in cells are in bold.

diverse set of solutions. On average, the greedy approaatmset.25x, 7.31x, and 2.79x more
diverse solutions than the random approachifow, andd.;, respectively.

Analysis of the different distance-basesOverall, we were able to solve 1264, k) combi-
nations for three distance measudgsd,, 6., using the greedy approach. We were particularly
interested in investigating the following issues:

e Q1: Computational efficiency - Is it easy or difficult to find a set of diverse solutions
using different distance measures? Thus, (1) for the sharalk values, which distance
measure is more difficult (time consuming) to solve; and (@¢1y an encoding horizon
limit, how high is the value ofl andk for which we can still find a set of solutions for a
given problem using different distance measures.

e Q2: Solution diversity - What, if any, is the correlation/sensitivity between difint dis-
tance measures? Thus, how comparative diversity of soliti® when using different
distance measures.

RegardindgQ1, Table 4 shows the highest solvaklgalue for each distanetand basé,, J,
andé.;. For a given(d, k) pair, enforcing, appears to be the most difficult, thén andd,; is
the easiest. GP-CSP is able to solve 237, 462, and 565 cotiabinaf(d, k) respectively fod,,
0s andé.;. GP-CSP solvedDISTANTKSET problems more easily with, andd.; than withd,,
due to the fact that solutions with different action setsddie with regard té,) will likely cause
different trajectories and causal structures (diversé vagard tod, andé.;). Betweend, and
0.1, 9o Solves more problems for easier instances (log-easy, t@ciad log-a) but less for the
harder instances, as shown in Table 4. We conjecture thabfations with more actions (i.e.,
in bigger problems) there are more causal dependenciegbetactions and thus it is harder to
reorder actions to create a different causal-structure.

For running time comparisons, among 216 combination&iok) that were solved by all
three distance measures, GP-CSP takes the least amoumedbtid, in 84 combinations, for
ds in 70 combinations and in 62 fax,;. The first three lines of Table 2 show the average time
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| [oa [6: [da |
Sa || - 1.262 | 1.985
ds 0.485 | - 0.883
5e || 0461 0.938 -

Table 5: Cross-validation of distance measuigsis, andd,;.

to find one solution ini-diversek-set for each problem using, 6, andé.; (which we call¢,,

ts andt. respectively). In general,, is the smallest and, > ¢. in most problems. Thus, while
it is harder to enforcé, thand, andd.; (as indicated in Table 4), when the encodings for all
three distances can be solved for a giyénk), thenJ, takes less time to search for one plan
in the diverse plan set; this can be due to tighter consg@imore pruning power for the global
constraints) and simpler global constraint setting.

To testQ2, in Table 5, we show the cross-comparison between diffatistdnce measures
da, 05, andd,;. In this table, celkrow, column = (§’,¢”) indicates that over all combinations
of (d, k) solved for distancé’, the average valu¢’/d’ whered” andd’ are distance measured
according ta¥” andé’, respectively ¢ > d). For example{d,,d,) = 0.485 means that over
462 combinations ofd, k) solvable ford,, for eachd, the average distance betweenrolutions
measured by, is 0.485 x ds. The results indicate that when we enfodcior 6, we will likely
find even more diverse solution sets accordingst¢1.26 x d,) andé.; (1.98 x d,). However,
when we enforcé for eitherd, or ., we are not likely to find a more diverse set of solutions
measured by the other two distance measures. Nevertheld@sscingd usingd.; will likely
give comparable diverse degréédor §; (0.94 x d.) and vice versa. We also observe thatis
highly dependent on the difference between the parallgtlenof plans in the set. The distance
ds seems to be the smallest (i.é,, < d, < d.) when allk plans have the same/similar number
of time steps. This is consistent with the fact thatandd.; do not depend on the steps in the
plan execution trajectory whil& does.

5.2. Finding Diverse Plan Set with LPG

In this section, we consider the problem of generating diwset of plans using another planning
approach, in particular the LPG planner which is able toesaalto bigger problems, compared
to GP-CSP. We focus on the action-based distance measuredreplans, which has been shown
in the previous section to be the most difficult to enforceetity. LPG is a local-search-based
planner, that incrementally modifies a partial plan in adedor a plan that contains no flaws
(Gerevini et al., 2003). The behavior of LPG is controlleddmyevaluation function that is used
to select between different plan candidates in a neightmattymnerated for local search. At
each search step, the elements in the search neighborhdlogl cdirrent partial plam are the
alternative possible plans repairing a selected flaw.ifThe elements of the neighborhood are
evaluated according to action evaluation functiolr (Gerevini et al., 2003). This function is
used to estimate the cost of either adding or of removing &nranodea in the partial plarp
being generated.

5.2.1. Revised Evaluation Function for Diverse Plans

In order to managéDISTANCELSET problems, the functio’ has been extended to include an
additional evaluation term that has the purpose of pemajittie insertion and removal of actions
thatdecreasehe distance of the current partial plarunder adaptation from a reference plan
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po- In general £ consists of four weighted terms, evaluating four aspecth@fjuality of the
current plan that are affected by the additi@#{(¢)") or removal (a)") of a

i

E(a)' = ap - Execution_cost(a)’ + ar - Temporal cost(a)'+

+ as - Search_cost(a)’ + ap - |(po — p) N pk|

E(a)" = ag - Execution_cost(a)” + ar - Temporal_cost(a)"+

+ as - Search_cost(a)” + ap - |(po — p — a) N pg|-

The first three terms of the two forms & are unchanged from the standard behavior of
LPG. The fourth term, used only for computing diverse plamshe new term estimating how
the proposed plan modification will affect the distance fribva reference plap,. Each cost
term in E' is computed using a relaxed temporal ptan(Gerevini et al., 2003).

The pr plans are computed by an algorithm, calRelaxedPlan, formally described and
illustrated in (Gerevini et al., 2003). We have slightly nfadl this algorithm to penalize the
selection of actions decreasing the plan distance fromafezance plan. The specific change to
RelaxedPlan for computing diverse plans is very similar to the changesdesd in (Fox et al.,
2006), and it concerns the heuristic function for selectirgactions for achieving the subgoals
in the relaxed plans. In the modified function fRelaxedPlan, we have an extra 0/1 term that
penalizes an actiolfor pg, if its addition decreases the distancepof pr from pg (in the plan
repair context investigated in (Fox et al., 200B)s penalized if its additionncreasessuch a
distance).

The last term of the modified evaluation functidhis a measure of the decrease in plan
distance caused by adding or removing(po —p) Np%| or |(po—p—a) Np’s|, wherep, contains
the new action.. Thea-coefficients of theZ-terms are used to weigh their relative importattte.
The values of the first 3 terms are automatically derived fthenexpression defining the plan
metric for the problem (Gerevini et al., 2003). The coeffitior the fourth new term off (ap)
is automatically set during search to a value proportiomdl/v,(p, po), wherep is the current
partial plan under construction. The general idea is to dyoally increase the value afp
according to the number of plansthat have been generated so farz ifs much higher thatk,
the search process consists of finding many solutions witemough diversification, and hence
the importance of the lagt-term should increase.

5.2.2. Making LPG Return a Set of Plans

In order to compute a set &fd-distant plans solving @DISTANCELSET problem, we run LPG
multiple times, until the problem is solved, with the follimg two additional changes to the
standard version of LPG: (i) the preprocessing phase campnrutex relations and other reach-
ability information exploited during the relaxed plan ctastion is done only once for all runs;
(if) we maintain an incremental set of valid plans, and weatdyically select one of them as the
reference plamp, for the next search. Concerning (i), Bt= {p1, ..., p» } be the set of: valid
plans that have been computed so far, &Rlangp;) the subset o containing all plans that
have a distance greater than or equal foom a reference plap; € P.

14These coefficients are also normalized to a valuf@,n] using the method described in (Gerevini et al., 2003).
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The reference plap, used in the modified heuristic functidn is a planp,,., € P which
has a maximal set of diverse plansfni.e.,

Pmaz = argmax {|C' Plans(p;)|} . (13)
pi€EP

The planp,,.. is incrementally computed each time the local search findswagolution.
In addition to being used to identify the reference platiinp,,... is also used for defining the
initial state (partial plan) of the search process. Spetificwe initialize the search using a
(partial) plan obtained by randomly removing some actisomfa (randomly selected) plan in
the setCPlangp,az) U {Pmax |-

The process of generating diverse plans starting from ardigadly chosen reference plan
continues until at least plans that are ali-distant from each other have been produced. The
modified version of LPG to compute diverse plans is called PG

5.2.3. Experimental Analysis with LPG-d
Recall that the distance functiop, using set-difference, can be written as the sum of two terms

_ AW = Alpj)l | [Alp) — Alpi)]
|A(pi) U A(ps)| — [A(pi) U A(p))]
The first term represents the contribution of the actiong;ito the plan difference, while

the second term indicates the contributiorppto §,. We experimentally observed that in some

cases the differences between two diverse plans compuitegl d4sare mostly concentrated in
only one of thed, components. This asymmetry means that one of the two planisas&e many
more actions than the other one, which could imply that thaityuof one of the two plans is
much worse than the quality of the other plan. In order todthis problem, we can parametrize
0, by imposing the two extra constraints

54 > d/yands? > d/~

5a(pi7pj)

(14)

wheres? andd? are the first and second terms of the RHS of Equation 14, régglycand-y
is an integer parameter “balancing” the diversityppandp;.

In this section, we analyze the performance of LPG-d in foffexEnt benchmark domains:
DriverLog, Satellite, Storage and FloorTile from the 3rth &nd 7th IPC$> The main goals
of the experimental evaluation were (i) showing that LPGad efficiently solve a large set of
(d, k)-combinations, (ii) investigating the impact of thig v-constraints on performance, (iii)
comparing LPG-d and the standard LPG.

We tested LPG-d using both the default and parametrizedover®fd,, with v = 2 and
~ = 3. We give detailed results foy = 3 and a more general evaluation for= 2 and the
original 6,. We consider! that varies from).05 to 0.95, using0.05 increment step, and with
=2..5,6, 8, 10, 12, 14, 16, 20, 24, 28, 32 (overall, a total@f @/, k)-combinations). Since
LPG-d is a stochastic planner, we use the median of the CP&st{in seconds) and the median
of the average plan distances (over five runs). The averagedistance for a set df plans
solving a specifi¢d, k)-combination §*?) is the average of the plans distances between all pairs
of plans in the set. The tests were performed on an Intel(RNKEM) CPU 3.00 GHz, 3Gb
RAM. The CPU-time limit was 300 seconds.

15We have similar results for other domains: Rovers (IPC3?8)hways (IPC5), Logistics (IPC2), ZenoTravel (IPC3).
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dDISTANCEKSET: Median of the cpu-time for the pfile20 problem of
gamma=3 - DriverLog Time domain
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dDISTANCEKSET: Median of the Average distances for the pfile20 problem of
gamma=3 - DriverLog Time domain

Distance —+—

Figure 8: Performance of LPG-d (CPU-time and plan distafmethe problem pfile20 in the DriverLog-Time domain.

Figure 8 gives the results for the largest problem in the 81+4verLog-Time domain (fully-
automated track). LPG-d solvés§1 (d, k)-combinations, including combinatiods< 0.4 and
k = 20, andd = 0.95 andk = 2. The average CPU time (top plots)151.85 seconds. The
averaged® (bottom plots) is0.73, with §*? always greater thaf.57. With the originald,
function LPG-d solved68 (d, k)-combinations, the average CPU time i#).5 seconds, and the
average“? is 0.73; while with v = 2 LPG-d solved 39 combinations, the average CPU time is
144.2 seconds, and the averadf¢ is 0.72.

Figure 9 shows the results for the largest problem in the 3/8axellite-Strips domain. LPG-
d solves242 (k, d)-combinations;153 of them require less thatD seconds. The average CPU
time is5.46 seconds, and the averaff¢’ is 0.69. We observed similar results when using the
original §,, function or the parametrized), with v = 2 (in the second case, LPG-d solves 230
problems, while the average CPU time and the aveféfjare nearly the same as with= 3).

Figure 10 shows the results for a middle-size problem in B@-5 Storage-Propositional
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dDISTANCEKSET: Median of the cpu-time for the pfile20 problem of
gamma=3 - Satellite Strips domain
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Figure 9: Performance of LPG-d (CPU-time and plan distafmethe problem pfile20 in the Satellite-Strips domain.

domain. Withy = 3 LPG-d solve252 (k, d)-combinations58 of which require less than 10
seconds, whild 78 of them require less than 50 seconds. The average CPU tidheliseconds
and the averagé™ is 0.91. With the originald,, LPG-d solve257 (k, d)-combinations, the
average CPU time i$4.5 seconds, and the avera@® is 0.9; with v = 2, LPG-d solve01
combinations, the average CPU timeisseconds and the averagf¢’ is 0.93.

Figure 11 gives the results for the largest problem in the THRIoorTile-MetricTime domain.
LPG-d solve=210 (d, k)-combinationsi71 of them require less than 10 seconds. The average
CPU time is3.6 seconds, and the averadf¢’ is 0.7. We observed similar results when using the
original ¢, function or the parametrizeg), with v+ = 2 (in the second case, LPG-d solvEsl
problems, while the average CPU time and the avefé&gare nearly the same as with= 3).

The local search in LPG is randomized by a “noise” paramégris automatically set and
updated during search (Gerevini et al., 2003). This randatian is one of the techniques used
for escaping local minima, but it also can be useful for cotimgudiverse plans: if we run the
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dDISTANCEKSET: Median of the cpu-time for the pfile15 problem of
gamma=3 - Storage Propositional domain
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Figure 10: Performance of LPG-d (CPU-time and plan distafmethe problem pfilel5 in the Storage-Propositional
domain.

search multiple times, each search is likely to considdeifit portions of the search space,
which can lead to different solutions. It is then interegtin compare LPG-d and a method in
which we simply run the standard LPG untili-diverse plans are generated. An experimental
comparison of the two approaches show that in many casesif&sforms better. In particular,
the new evaluation functiof is especially useful for planning problems that are easpligesor

the standard LPG, and that admit many solutions. In thessct® originaFE function produces
many valid plans with not enough diversification. This peshlis significantly alleviated by the
new term inE. An example of domain where we observed this behavior isstimgi'®

16E g., LPG-d solved 76 instances for the lag problem 47 of them in less than CPU second and18 of them
in less thanl0 CPU seconds; the average CPU time Wa% seconds and the averag&’ was0.47. While using the
standard LPG, only07 instances were solve@y of them in less than CPU seconds and3 of them in less thai0
CPU seconds; the average CPU time Wwalst seconds and the averagé’ was0.33.
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dDISTANCEKSET: Median of the cpu-time for the pfile20 problem of
gamma=3 - Floortile MetricTime domain
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Figure 11: Performance of LPG-d (CPU-time and plan distpfmethe problem pfile20 in the FloorTile-MetricTime
domain.

6. Generating Plan Sets with Partial Preference Knowledge

In this section, we consider the problem of generating p&ta when the user preferences are
only partially expressed. In particular, we focus on metgimporal planning where the prefer-
ence model is assumed to be represented by an incompletefualttion specified by a convex
combination of two featuregplan makespamandexecution costwith the exact trade-off value
w drawn from a given distribution. The quality value of platsse measured by the ICP value,
as formalized in Equation 12. Our objective is to find a setlahpP? C S where|P| < k and
ICP(P) is the lowest.

Notice that we restrict the size of the solution set retuymed only for the comprehension
issue discussed earlier, but also for an important propdrtiye ICP measure: it is a monotoni-
cally non-increasing function of the solution set (spealfig given two solution set®; andP,
such that the latter is a superset of the former, it is easgedsatl C P(P3) < ICP(Py)).
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6.1. Sampling Weight Values

Given that the distribution of trade-off value is known, the straightforward way to find a set
of representative solutions is to first sample a set wélues forw: {w,ws, ..., wy} based on
the distributionh(w). For each valuev;, we can find an (optimal) plap; minimizing the value
of the overall value functioW (p, w;) = w; x t, + (1 — w;) x ¢,. The final set of solutions
P = {p1,p2, ....px } is then filtered to remove duplicates and dominated solstithus selecting
the plans making up the lower-convex hull. The final set cam the returned to the user. While
intuitive and easy to implement, this sampling-based aggvdhas several potential flaws that
can limit the quality of its resulting plan set.

First, given that solution plans are searched sequentially and indeperydsrghach other,
even if the plarp; found for eachw; is optimal, the final solution s&® = {p1, p2...px,} Mmay
not even be the optimal set &fsolutions with regard to the ICP measure. More specifically,
for a given set of solution®, some trade-off value, and two non-dominated plaps ¢ such
thatV(p,w) < V(q,w), it is possible thaf CP(P U {p}) > ICP(P U {q}). In our running
example (Figure 5), &P = {p2, p5} andw = 0.8 thenV (p;,w) = 0.8 x4+ 0.2 x 25 =8.2 <
V(p7,w) = 0.8 x 12+ 0.2 x 5 = 10.6. Thus, the planner will selegt; to add toP because
it looks locally better given the weight = 0.8. However,ICP({p1,p2,ps}) ~ 10.05 >
ICP({p2,ps,pr}) = 7.71 so indeed by taking previous set into consideration theis a much
better choice thap; .

Second, the values of the trade-off parametare sampled based on a given distribution, and
independently of the particular planning problem beingsdl As there is no relation between
the sampledv values and the solution space of a given planning problempkag approach
may return very few distinct solutions even if we sample geéanumber of weight values. In
our example, if alkv samples have values < 0.67 then the optimal solution returned for any of
them will always bep;. However, we know thaP* = {p1, ps, p7} is the optimal set according
to theIC' P measure. Indeed, ib < 0.769 then the sampling approach can only find the set
{p7} or{ps, pr} and still not be able to find the optimal set.

6.2. ICP Sequential Approach

Given the potential drawbacks of the sampling approachnmatlabove, we also pursued an
alternative approach that takes into account the ICP measore actively. Specifically, we
incrementally build the solution s@& by finding a solutiorp such thatP U {p} has the lowest
ICP value. We can start with an empty solution Bet= (), then at each step try to find a new
planp such thatP U {p} has the lowest ICP value.

While this approach directly takes the ICP measure intoidenation at each step of finding
a new plan and avoids the drawbacks of the sampling-basedaxqip it also has its own share
of potential flaws. Given that the set is built incrementdtg earlier steps where the first “seed”
solutions are found are very important. The closer the sekdigns are to the global lower
convex hull, the better the improvement in the ICP value.unexample (Figure 5), if the first
plan found isps then the subsequent plans found to best ex{endl can bep; and thus the final
set does not come close to the optimalBét= {p1, p3, p7}.

6.3. Hybrid Approach

In this approach, we aim to combine the strengths of both #imepting and ICP-sequential
approaches. Specifically, we use sampling to find severasmptimizing for different weights.
The plans are then used to seed the subsequent ICP-sefjneméia By seeding the hybrid
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Algorithm 1: Incrementally find solution sé?

1 Input: A planning problem with a solution spade maximum number of plans required
k; number of sampled trade-off valuks (0 < ko < k); time bound;

2 Output: A plan setP (|P| < k);

3 begin

4 W « samplek, values forw;

5 P « find good quality plans i for eachw € W,
6  while |P| < kandsearch_time < ¢ do

7 Search fop s.t. ICP(P U {p}) < ICP(P)

8 P« PU{p}

9 end

10 ReturnP

11 end

approach with good quality plan set scattered across tletgaptimal set, we hope to gradually
expand the initial set to a final set with a much better ové@ value. Algorithm 1 shows the
pseudo-code for the hybrid approach. We first independsatiyple the set of, values (with
ko pre-determined) ofv given the distribution onv (step 4). We then run a heuristic planner
multiple times to find an optimal (or good quality) soluticor each trade-off value (step 5).
We then collect the plans found and seed the subsequent herswe incrementally update the
initial plan set with plans that lower the overall ICP valsgeps 6-8). The algorithm terminates
and returns the latest plan set (step 9) flans are found or the time bound exceeds.

6.4. Making LPG Search Sensitive to ICP

We use a modified version of the Metric-LPG planner (Gerestiai., 2008) in implementing our
algorithms, introducing th&vtalcost numerical fluent into the domain to represent the plan cost
that we are interested ff. Not only is Metric-LPG equipped with a very flexible localaseh
framework that has been extended to handle various obgeftinctions, but it can also be made
to search for single or multiple solutions. Specifically, ite sampling-based approach, we first
sample thaw values based on a given distribution. For eactalue, we set the metric function
in the domain file toxw x makespan + (1 — w) X totalcost, and run the original LPG in the
guality mode to heuristically find the best solution withirettime limit for that metric function.
The final solution set is filtered to remove any duplicate Sohs, and returned to the user.

For the ICP-sequential and hybrid approach, we can not eseriginal LPG implementation
as is and need to modify the neighborhood evaluation funétid PG to take into account the
ICP measure and the current planBetor the rest of this section, we will explain this procedure
in detail.

Background: Metric-LPG uses local search to find plans within the spaceuaferical action
graphs(NA-graph). This leveled graph consists of a sequence efledved proposition and
action layers. The proposition layers consist of a set gfpsitional and numerical nodes, while
each action layer consists of at most one action node, anchhenof no-op links. An NA-graph

17Although we are interested in the plan cost as summationtafracosts, our implementation can also be extended
for planning problems where plan cost is an expression wimglnumerical fluents.
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G represents a valid plan if all actions’ preconditions anepguted by some actions appearing
in the earlier level inG. The search neighborhood for each local-search step isedifip a set
of graph modifications to fix some remaining inconsistenfi@supported preconditiong)at a
particular level. This can be done by either inserting a new acti®upportingp or removing
from the graph the actiomthatp is a precondition of (which can introduce new inconsistesi

Each local move creates a new NA-gragh which is evaluated as a weighted combination
of two factors:SearchCost(G') and ExecCost(G'). Here,SearchCost(G') is the amount of
search effort to resolve inconsistencies newly introdumeihserting or removing actiom; it is
measured by the number of actions in a relaxed ptaesolving all such inconsistencies. The
total costEzecCost(G’), which is a default function to measure plan quality, is niead by
the totalaction execution costsf all actions inR. The two weight adjustment valuesand 3
are used to steer the search toward either finding a solutiaoklyg (higher« value) or better
solution quality (highep value). Metric-LPG then selects the local move leading éostimallest
E(G") value.

Adjusting the evaluation function E(G’) for finding set of plans with low ICP measure:
To guide Metric-LPG towards optimizing our ICP-sensitiigiexrtive function instead of the
original minimizing cost objective function, we need to legge the default plan quality mea-
sure ExzecCost(G') with a new measuréCPEst(G'). Specifically, we adjust the function
for evaluating each new NA-graph generated by local movesel step to be a combination
of SearchCost(G') and ICPEst(G’). Given the set of found plar® = {p1,p2, ..., Pn}s
ICPEst(G") guides Metric-LPG'’s search toward a plamenerated fron@&’ such that the re-
sulting setP U {p} has a minimum ICP valugi = argmin ICP(P U{p}). Thus,ICPEst(G")

p
estimates the expected total ICP value if the best pleound by expanding-’ is added to the
current found plan s&®. Like the original Metric-LPGp is estimated byr = G’ |J R where
R is the relaxed plan resolving inconsistenciegihcaused by inserting or removing The
ICPESst(G') for a given NA-graptG’ is calculated asIC PEst(G') = ICP(PUpg) with the
ICP measure as described in Equation 12. Notice here théd ®hs the set of valid plangiy is
not. Itis an invalid plan represented by a NA-graph contajriome unsupported preconditions.
However, Equation 12 is still applicable as long as we cansuresthe time and cost dimensions
of pr. To measure the makespangf, we estimate the time points at which unsupported facts
in G’ would be supported ipr = G’ U R and propagate them over actionsGh to its last
level. We then take the earliest time point at which all fattthe last level appear to measure
the makespan qfz. For the cost measure, we just sum the individual costs afcibns inpg.

At each step of Metric-LPG’s local search framework, contigriwo measuresC PEst(G')
andSearchCost(G") gives us an evaluation function that fits right into the araiMetric-LPG
framework and prefers a NA-gragh in the neighborhood ofs that gives the best trade-off
between the estimated effort to repair and the estimatecdse in quality of the next resulting
plan set.

6.5. Experimental Results

We have implemented several approaches based on our higsritiscussed in the previous
sections: Sampling (Section 6.1), ICP-sequential (Sedi@) and Hybrid that combines both
(Section 6.3) with both the uniform and triangular disttibns. We consider two types of distri-
butions in which the most probable weight for plan makespar®& and 0.8, which we will call

“w02” and “w08" distributions respectively (Figure 12 shewhese distributions). We test all
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\/

(@

Figure 12: The distributions: (a) uniform, (b) w02, (c) wG&¢ text).

implementations against a set of 20 problems in each of aklslenchmark temporal planning
domains used in the previous International Planning Coitipres (IPC): ZenoTravel, Driver-
Log, and Depots. The only modification to the original benarkiset is the added action costs.
The descriptions of these domains can be found at the IPCitedlpx.icaps-conference.oyg
The experiments were conducted on an Intel Core2 Duo maetithe3.16GHz CPU and 4Gb
RAM. For all approaches, we search for a maximunk ef 10 plans within the 10-minute time
limit for each problem (i.e.t = 10 minutes), and the resulting plan set is used to compute the
ICP value. In the Sampling approach, we generate ten tréideloesw betweermakespamnd
plan costbased on the distribution, and for each one we search fomgppdabject to the value
functionV (p,w) = w x t, + (1 — w) x ¢p. In the Hybrid approach, on the other hand, the
first Sampling approach is used with = 3 generated trade-off values to find an initial plan set,
which is then improved by the ICP-Sequential runs. As Mdti is a stochastic local search
planner, we run it three times for each problem and averagectults. In 77% and 70% of 60
problems in the three tested domains for the Hybrid and Sampbproaches respectively, the
standard deviation of ICP values of plan sets are at most 8#eaverage values. This indicates
that ICP values of plan set in different runs are quite staBkethe Hybrid approach is an im-
proved version of ICP-sequential and gives better resulédrost all tested problems, we omit
the ICP-Sequential in discussions below. We now analyzesthidts in more detailed.

The utility of using the partial knowledge of user’s preferences: To evaluate the utility of
taking partial knowledge of user preferences into accouatfirst compare our results against
the naive approaches that generate a plan set without elyplaking into account the partial
knowledge. Specifically, we run the default LPG planner wditfierent random seeds to find
multiple non-dominated plans. The LPG planner was run witth speedsetting, which finds
plans quickly, andliversesetting, which takes longer time to find better set of diveiisms.
Figure 13 shows the comparison between quality of plan sttsrmed by Sampling and those
naive approaches when the distribution of the trade-offi?al betweenmakesparand plan
costis assumed to be uniform. Overall, among 20 tested problemsafch of the ZenoTravel,
DriverLog, and Depots domains, the Sampling approach igeb#ian LPG-speed in 19/20,
20/20 and 20/20 and is better than LPG-d in 18/20, 18/20, &f02problems respectively. We
observed similar results comparing Hybrid and those twa@gaghes: in particular, the Hybrid
approach is better than LPG-speed in all 60 problems andritbtin LPG-d in 19/20, 18/20,
and 20/20 problems respectively. These results supporhtuition that taking into account the
partial knowledge about user preferences (if it is avaiipbicreases the quality of plan set.

Comparing the Sampling and Hybrid approaches:We now compare the effectiveness of the
Sampling and Hybrid approaches in terms of the quality afrretd plan sets with the uniform,
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Figure 13: Results for the ZenoTravel, DriverLog and Demtdmains comparing the Sampling and baseline LPG
approaches on the overall ICP value (log scale) with theoamifdistribution.

w02 and w08 distributions.

ICP value We first compare the two approaches in terms of the ICP valfiplan sets returned
indicating their quality evaluated by the user. Table 6, & show the results in the three
domains. In general, Hybrid tends to be better than Samjtinigis criterion for most of the
domains and distributions. In particular, in the ZenoTtakemain it returns higher quality plan
sets in 15/20 problems when the distribution is uniform20Gnd 13/20 problems when it is w02
and w08 respectively (both approaches return plan setsagitial ICP values for two problems
with the w02 distribution and one problem with the w08 dtmsition). In the DriverLog domain,
Hybrid returns better plan sets for 11/20 problems with thigoum distribution (and for other
three problems the plan sets have equal ICP values), buewdtis the triangular distributions:
8/20 (another 2 equals) and 9/20 (another one equals) withanfl wO8. The improvement on
the quality of plan sets that Hybrid contributes is more Bigant in the Depots domain: it is
better than Sampling in 11/20 problems with the uniformribstion (and equal in 3 problems),
in 12/20 problems with the w02 and w08 distributions (with2nbth approaches return plan
sets with equal ICP values for 4 problems, and for 2 problemsnit is w08).

In many large problems of the ZenoTravel and DriverLog doraaithere Sampling performs
better than Hybrid, we notice that the first phase of the Hi/approach that searches for the first
3 initial plans normally takes most of the allocated timed #imerefore there is not much time
left for the second phase to improve the quality of plan see algo observe that among the
three settings of the trade-off distributions, the positffect of the second phase in Hybrid ap-
proach (which is to improve the quality of the initial plartsetends to be more stable across
different domains with uniform distribution, but less withe triangular, in particular Sampling
wins Hybrid in the DriverLog domain when the distributioni®2. Perhaps this is because with
the triangular distributions, the chance that LPG plantiext(s used in our Sampling approach)
returns the same plans even with different trade-off valuesld increase, especially when the
most probable value of makespan happens to be in a (wide¢ @vgeights in which one single
plan is optimal. This result agrees with the intuition thdtem the knowledge about user pref-
erences iglmostcomplete (i.e., the distribution of trade-off value is “g8athen the Sampling
approach with smaller number of generated weight valuestreaood enough (assuming that a
good planner optimizing a complete value function is atdda

Since the quality of a plan set depends on how the two featned®span and plan cost are
optimized, and how the plans “span” the space of time and e@stlso compare the Sampling
and Hybrid approaches in terms of those two criteria. Inipaler, we compare plan sets returned
by the two approaches in terms of (i) theedianvalues of makespan and cost, which represent
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[ Prob [ Sampling | Hybrid ][ Prob | Sampling | Hybrid || Prob | Sampling | Hybrid
1* 840.00 839.98 1 972.00 972.00 1 708.00 708.00
2% 2,661.43 2,661.25 2 3,067.20 3,067.20 2% 2,255.792 | 2,255.788
3* 1,807.84 | 1,805.95 3* 2,083.91 | 2,083.83 3* 1,535.54 | 1,535.32
4* 3,481.31 3,477.49 4* 4,052.75 | 4,026.92 4* 2,960.84 2,947.66
5* 3,007.97 | 2,743.85 5* 3,171.86 | 3,171.73 5* 2,782.16 | 2,326.94
6* 3,447.37 2,755.25 6* 4,288.00 3,188.61 6* 2,802.00 2,524.18
7* 4,006.38 | 3,793.44 7* 4,644.40 | 4,377.40 7* 3,546.95 | 3,235.63
8* 4,549.90 | 4,344.70 8* 5,060.81 | 5,044.43 8* 3,802.60 | 3,733.90
9* 6,397.32 5,875.13 9* 7,037.87 6,614.30 9* 5,469.24 5,040.88
10* 7,592.72 | 6,826.60 10* 9,064.40 | 7,472.37 10* 6,142.68 | 5,997.45
11* 5,307.04 | 5,050.07 11* 5,946.68 5,891.76 11* 4,578.09 | 4,408.36
12* 7,288.54 | 6,807.28 12* 7,954.74 | 7,586.28 12 5,483.19 | 5,756.89
13* 10,208.11 | 9,956.94 13* 11,847.13 | 11,414.88| 13* 8,515.74 8,479.09
14 11,939.22 | 13,730.87 14 14,474.00 | 15,739.19 14* 11,610.38| 11,369.46
15 9,334.68 13,541.28 15 16,125.70 | 16,147.28|| 15* 11,748.45| 11,418.59
16* 16,724.21 | 13,949.26 16 19,386.00 | 19,841.67 16 14,503.79 | 15,121.77
17* 27,085.57| 26,822.37 17 29,559.03| 32,175.66 17 21,354.78 | 22,297.65
18 23,610.71| 25,089.40 18 28,520.17 | 29,020.15 18 20,107.03 | 21,727.75
19 29,114.30| 29,276.09 19 34,224.02 | 36,496.40 19 23,721.90 | 25,222.24
20 34,939.27 | 37,166.29 20 39,443.66 | 42,790.97 20 28,178.45| 28,961.51

€] (b) (c)

Table 6: The ICP value of plan sets in the ZenoTravel domaurmed by the Sampling and Hybrid approaches with the
distributions (a) uniform, (b) w02 and (c) w08. The problewisere Hybrid returns plan sets with better quality than

Sampling are marked with *.

[ Prob [ Sampling | Hybrid

| Prob [ Sampling | Hybrid

|| Prob | Sampling | Hybrid |

Table 7: The ICP value of plan sets in the DriverLog domainrmegd by the Sampling and Hybrid approaches with the
distributions (a) uniform, (b) w02 and (c) w08. The problewisere Hybrid returns plan sets with better quality than

Sampling are marked with *.

35

1 212.00 212.00 1 235.99 236.00 1 188.00 188.00
2* 363.30 348.38 2% 450.07 398.46 2% 333.20 299.70
3 176.00 176.00 3 203.20 203.20 3 148.80 148.80
4* 282.00 278.45 4* 336.01 323.79 4* 238.20 233.20
5* 236.83 236.33 5 273.80 288.51 5* 200.80 199.52
6* 222.00 221.00 6 254.80 254.80 6* 187.47 187.20
7 176.50 176.50 ™ 226.20 203.80 7 149.20 149.20
8* 338.96 319.43 8 387.53 397.75 8 300.54 323.87
o* 369.18 301.72 9* 420.64 339.05 9* 316.80 263.92
10* | 178.38 170.55 10* | 196.44 195.11 10* | 158.18 146.12
11* | 289.04 232.65 11* | 334.13 253.09 11* | 245.38 211.60
12 711.48 727.65 12* | 824.17 809.93 12* | 605.86 588.82
13* | 469.50 460.99 13 519.92 521.05 13 388.80 397.67
14 457.04 512.11 14 524.56 565.94 14 409.02 410.53
15* | 606.81 591.41 15* | 699.49 643.72 15 552.79 574.95
16 4,432.21 | 4,490.17 16 4,902.34 | 6,328.07 16 3,580.32 | 4,297.47
17 1,310.83 | 1,427.70 17 1,632.86 | 1,659.46 17 1,062.03 | 1,146.68
18* | 1,800.49 | 1,768.17 18 1,992.32 | 2,183.13 18 1,448.36 | 1,549.09
19 3,941.08 | 4,278.67 19 4,614.13 | 7,978.00| 19* | 3,865.54 | 2,712.08
20 2,225.66 | 2,397.61 20 2,664.00 | 2,792.90 20 1,892.28 | 1,934.11
@ (b) (©
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[ Prob | Sampling | Hybrid ]| Prob [ Sampling [ Hybrid || Prob | Sampling [ Hybrid |

1 27.87 27.87 1 28.56 28.56 1* 28.50 27.85
2 39.22 39.22 2 41.12 41.12 2 38.26 38.26
3* 51.36 50.43 3* 54.44 52.82 3* 49.49 48.58
4 43.00 43.00 4 46.00 46.00 4* 40.87 40.00
5 80.36 81.01 5 82.93 84.45 5 75.96 78.99
6 99.40 111.11 6 102.58 110.98 6 94.79 98.40
* 38.50 38.49 * 40.53 40.40 7* 37.04 36.60
8* 59.08 58.41 8* 62.15 62.08 8* 55.89 54.67
9 95.29 103.85 9 100.59 106.00 9 87.93 95.05
10* | 52.04 50.00 10 52.40 52.40 10* | 47.86 47.60
11 101.43 107.66 11* | 110.18 108.07 11 97.56 99.06
12 123.09 129.34 12* | 144.67 135.80 12 124.58 128.01
13* | 57.37 57.22 13* | 60.83 60.72 13 54.66 54.66
14* | 62.75 62.33 14* | 70.32 69.87 14* | 65.20 62.02
15 116.82 117.86 15 113.15 124.28 15 101.09 124.43
16* | 50.77 49.36 16* | 54.98 54.12 16* | 47.04 46.35
17* | 38.38 37.77 17* | 42.86 41.50 17* | 37.56 36.92
18* | 88.28 85.55 18* | 94.53 90.02 18* | 76.73 75.29
19* | 82.60 82.08 19* | 94.21 89.28 19* | 74.73 72.45
20* | 137.13 133.47 20* | 150.80 135.93 20% | 122.43 120.31

@ (b) ©

Table 8: The ICP value of plan sets in the Depots domain retliby the Sampling and Hybrid approaches with the
distributions (a) uniform, (b) w02 and (c) w08. The problewisere Hybrid returns plan sets with better quality than
Sampling are marked with *.

how “close” the plan sets are to the origin of the space of sd&e and cost, and (i) their
standard deviatiof makespan and cost values, which indicate how the setsegmanfeature
axis.

Table 9 summarizes for each domain, distribution and featfoe number of problems in
which each approach (either Sampling or Hybrid) generdeesgets with better median of each
feature value (makespan and plan cost) than the other. Bnei@0 problems across 3 different
distributions, so in total, 180 cases for each feature. $agpnd Hybrid return plan sets with
better makespan in 40 and 62 cases, and with better planncb2tand 51 cases (respectively),
which indicates that Hybrid is slightly better than Samglan optimizing makespan but is pos-
sibly worse on optimizing plan cost. In ZenoTravel domaar, dll distributions Hybrid likely
returns better plan sets on the makespan than Sampling,aangli&g is better on the plan cost
feature. In the DriverLog domain, Sampling is better on thekespan feature with both non-
uniform distributions, but worse than Hybrid with the unifo. On the plan cost feature, Hybrid
returns plan sets with better median than Sampling on th®umiand w02 distributions, and
both approaches perform equally well with the w08 distiitrut In the Depots domain, Sam-
pling is better than Hybrid on both features with the unifadistribution, and only better than
Hybrid on the makespan with the distribution w08.

In terms of spanning plan sets, Hybrid performs much beti@m Sampling on both features
across three domains, as shown in Table 10. In particular, 80 cases for both makespan
and plan cost features, there are only 10 cases where Sgngpbduces plan sets with better
standard deviation than Hybrid on each feature. Hybrid henather hand, generates plan sets
with better standard deviation on makespan in 91 casesnaBtii¢ases on the plan cost.

These experimental results support our arguments in $egticabout the limits of sampling
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Table 9: Number of problems for each domain, distributiod #Eature where Sampling (Hybrid) returns plan sets with
better (i.e., smallerinedianof feature value than that of Hybrid (Sampling), denotechia table byS > H (H > S,
respectively). We mark bold the numbers of problems thatatd the outperformance of the corresponding approach.

Table 10: Number of problems for each domain, distributind gature where Sampling (Hybrid) returns plan sets with
better (i.e., largerytandard deviatiorof feature value than that of Hybrid (Sampling), denotechia table byS > H
(H > S, respectively). We mark bold the numbers of problems thditate the outperformance of the corresponding

approach.

Median of makespan

Median of cost

Domain Distribution | S > H H>S S>H | H>S
uniform 3 17 16 4
ZenoTravel w02 6 12 14 4
w08 6 13 13 6
uniform 6 11 7 11
DriverLog w02 10 8 8 10
w08 10 7 9 9
uniform 9 8 9 7
Depots w02 7 9 5 9
w08 11 7 7 11

SD of makespan SD of cost

Domain Distribution S>H | H>S | S>H | H>S
uniform 8 12 6 14
ZenoTravel w02 4 14 7 11
w08 6 13 8 11
uniform 5 11 6 10
DriverLog w02 7 10 7 9
w08 8 9 10 7
uniform 10 7 7 9
Depots w02 7 9 5 10
w08 5 13 7 11
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idea. Since one single plan could be optimal for a wide rarigeeight values, the search in
the Sampling approach with different trade-off values magus on looking for plans only at
the same region of the feature space (specified by the particalue of the weight), which can
reduce the chance of having plans with better value on somieydar feature. On the opposite
side, the Hybrid approach tends to be better in spanningggtato a larger region of the space,
as the set of plans that have been found is taken into accaungdhe search.

Contribution to the lower convex hullThe comparison above between Sampling and Hybrid
considers the two features separately. We now examine kugorebetween plan sets returned
by those approaches on the joint space of both features,riitydar taking into account the
the dominance relation between plans in the two sets. Iir otbeds, we compare the relative
total number of plans in the lower convex-hull (LCH) found é&gch approach. Given that this
is the set that should be returned to the user (to select ong)fthe higher number tends to
give her a better expected utility value. To measure theivelperformance of both approaches
with respect to this criterion, we first create a Setombining the plans returned by them. We
then compute the se&.;, C S of plans in the lower convex hull among all plansdn Finally,
we measure the percentages of plansijp, that are actually returned by each of our tested
approaches. Figures 14, 15 and 16 show the contributioretb @H of plan sets returned by
Sampling and Hybrid in the ZenoTravel, DriverLog and Depltmains.

In general, we observe that the plan set returned by Hybdributes more into the LCH
than that of Sampling for most of the problems (except for esdenge problems) with most of
the distributions and domains. Specifically, in the Zenw&rdomain, Hybrid contributes more
plans to the LCH than Sampling in 15/20, 13/20 (and anothepuks), 13/20 (another 2 equals)
problems for the uniform, w02 and w08 distributions respety. In the DriverLog domain,
it is better than Sampling in 10/20 (another 6 equals), 1&2@ther 4 equals), 8/20 (another
5 equals) problems; and Hybrid is better in 11/20 (anotheguaks), 11/20 (another 4 equals)
and 11/20 (another 4 equals) for the uniform, w02 and wO8idigions in the Depots domain.
Again, similar to the ICP value, the Hybrid approach is |g&sotive on problems with large size
(except with the w08 distribution in the Depots domain) inieththe searching time is mostly
used for finding initial plan sets. We also note that a plarmgtit higher contribution to the
LCH is not guaranteed to have better quality, except for the extrerse wdnere one plan set
contributes 100% and completely dominates the other whicttributes 0% to the LCH. For
example, consider problem 14 in the ZenoTravel domain: évengh the plan sets returned by
Hybrid contribute more than those of Sampling in all threstréutions, it is only the w08 where
it has a better ICP value. The reason for this is that the |IQEev@depends also on the range of
the trade-off value (and its density) for which a plan in tHéH.is optimal, whereas the LCH
is constructed by simply comparing plans in terms of theikespan and cost separately (i.e.,
using the dominance relation), ignoring their relative artpnce.

The sensitivity of plan sets to the distributions: All analysis having been done so far is to

compare the effectiveness of approaches with respect toti@ypar distribution of the trade-

off value. In this part, we examine how sensitive the plars sg& with respect to different

distributions.

Optimizing high-priority featureWe first consider how plan sets are optimized on each feature

(makespan and plan cost) by each approach with respect tadwaniform distributions w02

and w08. Those are the distributions representing scenasfi@re the users have different pri-

ority on the features, and plan sets should be biased to @utignthe feature that has higher

priority (i.e., larger value of weight). In particular, pla generated using the w08 distribution
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Figure 14: The contribution into the common lower convex béiplan sets in the ZenoTravel domain with different
distributions.
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Figure 15: The contribution into the common lower convex lotiplan sets in the DriverLog domain with different
distributions.

should have better (i.esmalle) makespan values than those found with the w02 distribution
(since in the makespan has higher priority in w08 than it iw@2); on the other hand, plan set
returned with w02 should have better values of plan cost thase with w08.

Table 11 summarizes for each domain, approach and feaheejumber of problems in
which plan sets returned with one distribution (either w02v08) have bettemedianvalue
than with the other. We observe that for both features, tepgliag approach is very likely to
“push” plan sets to regions of the space of makespan and dbsbetter value of more interested
feature. On the other hand, the Hybrid approach tends to bbe semsitive to the distributions on
both the features in the ZenoTravel domain, and is more tdamsnly on the makespan feature
in the DriverLog and Depots domains. Those results geryeshfiw that our approaches can bias
the search towards optimizing features that are more aklsiréhe user.

Spanning plan sets on individual featurddext, we examine how plan sets span each feature,
depending on the degree of incompleteness of the distoibstti Specifically, we compare the
standard deviatiowf plan sets returned using the uniform distribution witbgt generated using
the w02 and w08 distributions. Intuitively, we expect that plan sets returned with the uniform
distribution will have higher standard deviation than #hasth the distributions w02 and w08.
Table 12 shows for each approach, domain and feature, théetuof problems generated
with the uniform distribution that have better standardia#éen on the feature than those found
with the distribution w02. We observe that with the makesfeature, both approaches return
plan sets that are more “spanned” on makespan in the Depwotaidpbut not with ZenoTravel
and DriverLog. With the plan cost feature, Hybrid shows dgsifive impact on all three domains,
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Median of makespan Median of cost

Approach Domain w02 > w08 | w08 > w02 || w02 > w08 | w8 > w02
ZenoTravel 5 13 11 8
Sampling | DriverLog 6 10 13 5
Depots 6 12 10 7
ZenoTravel 5 10 10 4
Hybrid DriverLog 4 10 6 9
Depots 8 10 4 11

Table 11: Number of problems for each approach, domain aatdrie where the plan sets returned with the w02 (w08)
distribution with better (i.e., smallefedianof feature value than that with w08 (w02), denoted in thegdyl w02 >
w08 (w08 > w02, respectively). For each approach, we mark bold the nunfbexdomains in which there are more
problems whose plan sets returned with w08 (w02) have betaespan (plan cost) median than those with w02 (w08,
respectively).

SD of makespan SD of cost

Approach Domain U>w02 | w02>U || U>w02 | w02>U
ZenoTravel 9 10 10 7
Sampling | DriverLog 6 8 7 8
Depots 9 6 8 7
ZenoTravel 9 10 12 7
Hybrid DriverLog 6 9 8 7
Depots 8 6 9 4

Table 12: Number of problems for each approach, domain ammrie where the plan sets returned with the uniform
(w02) distribution have better (i.e., highatandard deviatiorof the feature value than that with w02 (uniform), denoted
in the table byU > w02 (w02 > U, respectively). For each approach and feature, we mark thelshumbers for
domains in which there are more problems whose plan setegtwith the uniform distribution have better standard
deviation value of the feature than those with the w02 distion.

SD of makespan SD of cost

Approach Domain U>w08 | w08 >U || U > w08 | w08 >U
ZenoTravel 11 8 15 4
Sampling | DriverLog 5 10 5 9
Depots 12 7 12 6
ZenoTravel 10 9 15 4
Hybrid DriverLog 7 7 8 6
Depots 5 8 11 4

Table 13: Number of problems for each approach, domain astdirie where the plan sets returned with the uniform
(w08) distribution with better (i.e., highestandard deviatiorof feature value than that with w08 (uniform), denoted in
the table byU > w08 (w08 > U, respectively). For each approach and feature, we marktbeldumbers for domains
in which there are more problems whose plan sets returnédtietuniform distribution have better standard deviation
value of the feature than those with the w08 distribution.
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Figure 16: The contribution into the common lower conveX biéiblan sets in the Depots domain with different distri-
butions.

whereas Sampling shows it with the ZenoTravel and DepotsaittsnSimilarly, table 13 shows
the results comparing the uniform and w08 distributionsisTime, Sampling returns plan sets
with better standard deviation on both features in the Zesd and Depots domains, but not in
DriverLog. Hybrid also shows this in the ZenoTravel domaint,for the remaining two domains,
it tends to return plan sets with expected standard dewiatiothe plan cost feature only. From
all of these results, we observe that with the uniform distiion, both approaches likely generate
plan sets that span better than with non-uniform distrdngj especially on the plan cost feature.
In summary, the experimental results in this section sugherfollowing hypotheses:

¢ Instead of ignoring the user preferences which are parsalktcified, one should take them
into account while synthesizing plans, as plan sets retlwmaild have better quality.

¢ In generating plan sets sequentially to cope with the garsier preferences, the Sampling
approach that searches for plans separately and indepgnaoletme solution space tends
to return worse quality plan sets than the Hybrid approach.

e The resulting plan sets returned by the Hybrid approach ter more sensitive to the
user preferences than those found by the Sampling approach.

7. Discussion

To the best of our knowledge, this work is a first step in domadependent planning with
preferences when the user preferences are not completadified, in the same spirit ahodel-
lite planning (Kambhampati, 2007). Our “language” to represeatpartial preference model
assumes aompleteset of attributes of interest and a parameterized valugifumeith unknown
parameter values. Although in our work the unknown values@stricted in @ontinuousange,
they can also be represented by a set of posslisteretevalues. These two representations of
parameters’ incompleteness are also the ways imprecisengters are modeled in bounded-
parameter MDPs (Givan et al., 2000) and MDPs with impreaseard functions (Regan and
Boutilier, 2009, 2010; Xu and Mannor, 2009). Boutilier et §2010) consider the preference
elicitation problem with a more general framework wherehlibe set of attributes and the utility
function are incomplete.

Our current representation and plan synthesis approachwodome limitations:
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e The representation of the underlying complete preferencéemin our setting, i.e., the

convex combination of metric quantities, is a subset of tredguence language defined
by PDDL3 (Gerevini et al. (2009)), which has been commonkydu® represent prefer-
ences in planning domains. In PDDL3, preferences are aintgron the state trajectory
of plans with “penalty” values (or weights) of being violdteand a plan is more preferable
if it has lower total penalty value. While one can model litispecified “penalty” for
preferences in PDDL3 with a distribution over continuousga or set of discrete values,
it is unclear how to represent incompleteness for othertoocis of the language. Simi-
larly, it is an interesting question on how incompleteness lse extended for conditional
preferences (Boutilier et al., 2004).

Using a convex combination of attributes as a utility fuartin our setting assumes that
the criteria of interest arenutual preferential independencalthough each attribute is
important, it does not affect how the user trades off onerathgctives to the other. This
property may be violated, for instance when we want to exthiglsetting to include
preference statements in PDDL3 as attributes of interast.tftavel domain, for example,
a passenger might be more willing to accept a more experiskat for a non-stop flight
if she has to fly at night (i.e., the weight on the importanc&ost” is smaller).

Our current implementation ignores the fact that changirggdcale on objectives (e.g.
from “hours” to “minutes” in the makespan of plans) may chatige bias of the distribu-
tion of the Pareto set of plans on the objective axis. In otfads, the set may look more
uniform on the objective space using one scale than it is witlifferent scale (Branke,
2008). Although the ICP value agrees with the set Pareto niancie relation regardless of
the scaling mechanism used (Fowler et al., 2005), this efatintroduce a wrong evalu-
ation about the distribution of the entire Pareto set of piarthe objective space to a user
observing the representative set of plans (which may bedismsvards some region of an
axis due to the scaling mechanism used).

Given that IPF is a nonlinear function, it is a challenge tadificthe Metric-LPG planner
to efficiently search for a set of plans optimizing such a iguaheasure. We believe
that the current modification of Metric-LPG used for our esipents can be improved
by designing new specific heuristics that are more effeétiweptimizing the measure. In
addition, as observed by Kim et al. (2006), the computatioe for IPF measure increases
roughly exponentially with the number of objectives, andstiit is also challenging as to
how to effectively incorporate the measure into the seaochpfanning problems with a
high number of criteria.

8. Conclusion and Future Work

In this paper, we consider the planning problem with theiglanser preferences in two scenar-
ios where the knowledge about preference is completelyamkror only part of it is given. We
propose a general approach to this problem where a set of [Haresented to the user from
which she can select. For each situation of the incomplstenge define a different quality
measure for plan sets and investigate approaches to giegguken sets with respect to the qual-
ity measure. In the first scenario when the user is known te pasferences over plans, but the
details are completely unknown, we define the quality of glats as their diversity value, spec-
ified with syntactic features of plans (its action set, seqeeof states, and set of causal links).
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We then consider generating diverse set of plans using tate-sf-the-art planners, GP-CSP
and LPG. The approaches we developed for supporting thegeneof diverse plans in GP-
CSP are broadly applicable to other planners based on bdumtizon compilation approaches
for planning. Similarly, the techniques we developed fofd,Buch as biasing the relaxed plan
heuristics in terms of distance measures, could be apgiethier heuristic planners. The ex-
perimental results with GP-CSP explicate the relativedliffy of enforcing the various distance
measures, as well as the correlation among the individatdnite measures (as assessed in terms
of the sets of plans they find). The experiments with LPG destrate the potential of planning
using heuristic local search in producing large sets oflidiverse plans.

When part of the user preferences is given, in particulasttteof features that the user is
interested in and the distribution of weights representirair relative importance, we propose
the usage ofntegrated Preference Functipand its special cadategrated Convex Preference
function, to measure the quality of plan sets, and proposeus heuristic approaches based
on the Metric-LPG planner (Gerevini et al., 2008) to find a gjgtan set with respect to this
measure. We show empirically that taking partial knowledfjaser preferences into account
does improve the quality of plan set returned to the userbsttzat our proposed approaches are
sensitive to the degree of preference incompletenesssepted by the distribution.

While a planning agent may well start with some partial krexge of the user preference
model, in the long run, we would like the agent to be able torawp it through repeated in-
teractions with the user. In our context, at the beginningmvthe degree of incompleteness is
high, the learning will involve improving the estimate lof) based on the feedback about the
specific plan that the user selects from the set returneddygyhtem. This learning phase is
in principle well connected to the Bayesian parameter egion approach in the sense that the
whole distribution of parameter vectdr(«), is updated after receiving feedback from the user,
taking into account the current distribution of all modealta¢ting from a prior, for instance the
uniform distribution). Although such interactive leargiframework has been discussed previ-
ously, as in (Chajewska et al. (2001)), the set of user'ssitats in this work is assumed to be
given, whereas in planning scenarios the cost of plan sgigls@ould be incorporated into the
our interactive framework, and the problem of presentiramets to the user needs also to be
considered. Recent work by Li et al. (2009) considered iegraser preferences in planning,
but restricting to preference models that can be repredevith hierachical task networks.
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