

IPAM Machine Reasoning Workshops 3&4

Audio and pptx versions available at http://rakaposhi.eas.asu.edu/tmp/onr-ipam

Incomplete Domain Models, Uncertain Users, Unending Planning & Open Worlds Model-Lite Planning for Autonomy in the presence of Humans

Subbarao Kambhampati

Arizona State University

Funding from

ONR Model-lite Planning (PM: Behzad Kamgar-Parsi) ONR Information Integration (PM: Don Wagner) ONR MURI (PM: Tom McKenna)

The "Boxers" or "Briefs" Qn of this workshop...

Bio-inspired folks

- Pro-human folks
- Mechano-philes

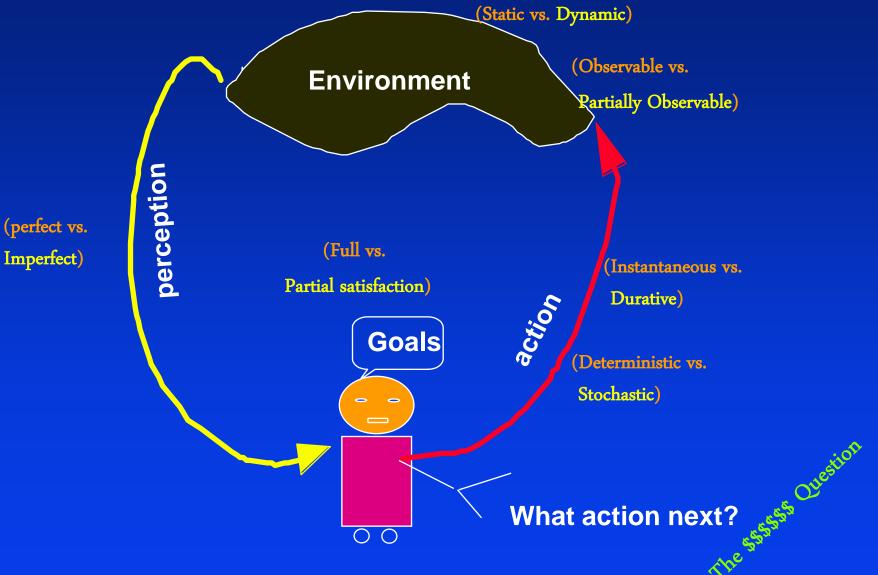
When there is an elephant in the room, *introduce* it...

-Randy Pausch

Irritated/Resigned Mechano-phile? Bio-Inspired?

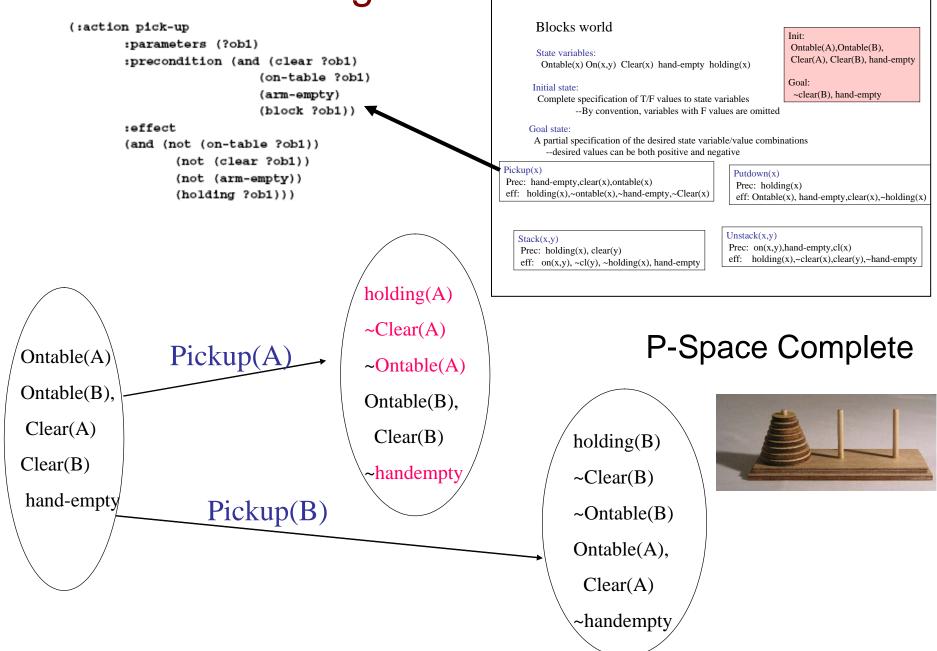
- Don't like ants, spiders or other bugs...
 - Not sure they can teach me much about high-level planning
- Not crazy about humans either..
- ..am stuck with humans in the loop
 - So, a Buddhist middle way

Planning Involves Deciding a Course of Action to achieve a desired state of affairs



Subbarao Kambhampati

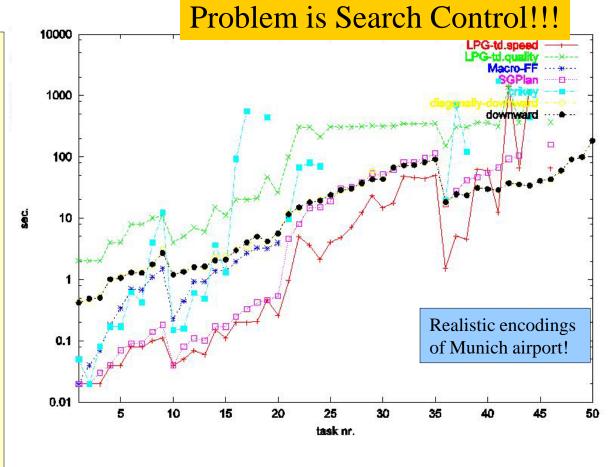
"Classical" Planning



Scalability was the big bottle-neck... We have figured out how to scale synthesis..

- Before, planning algorithms could synthesize about 6

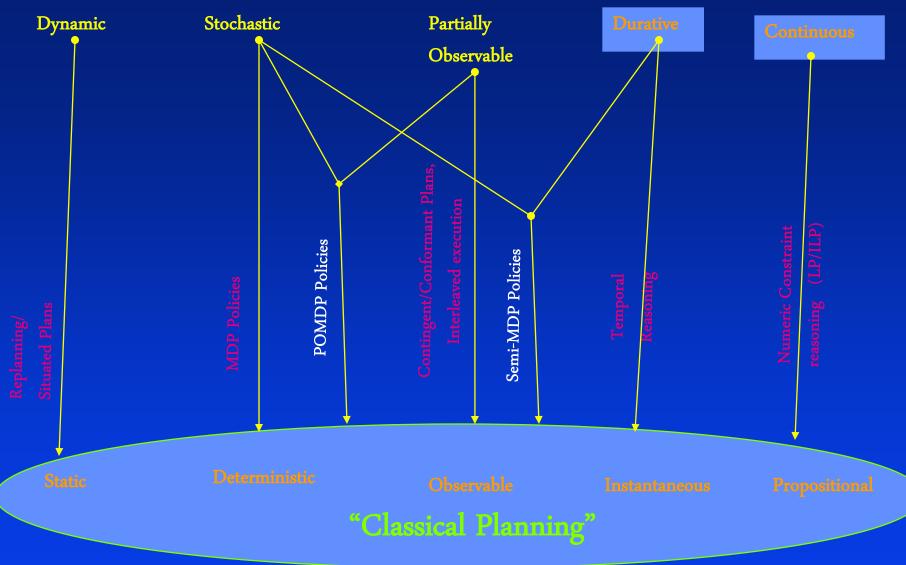
 10 action plans in minutes
- Significant scaleup in the last decade
 - Now, we can synthesize 100 action plans in seconds.



The primary revolution in planning in the recent years has been methods to scale up plan synthesis

..and we have done our fair bit...

So, what next?



Assumption: Complete Models

→ Complete Action Descriptions (fallible domain writers)

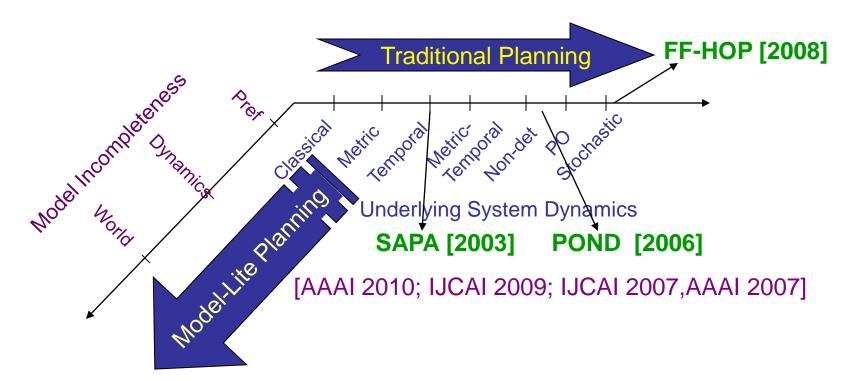
→Fully Specified Preferences (uncertain users)

 \rightarrow All objects in the world known up front (open worlds)

 \rightarrow One-shot planning (continual revision)

Planning is no longer a pure inference problem 🛞

 $\overline{\ensuremath{ \ \ \ \ \ \ }}$ But humans in the loop can ruin a really a perfect day $\overline{\ensuremath{ \ \ \ \ \ \ }}$



Effective ways to handle the more expressive planning problems by exploiting the deterministic planning technology

Learning is not the (sole) answer..

- A tempting way to handle incompleteness is to say that we should wait until the full model is obtained
 - Either through learning
 - Or by the generosity of the domain writer..
- Problem: Waiting for complete model is often times not a feasible alternative
 - The model may never become complete...
 - We need to figure out a way of maintaining incomplete models, and planning with them (pending learning..)

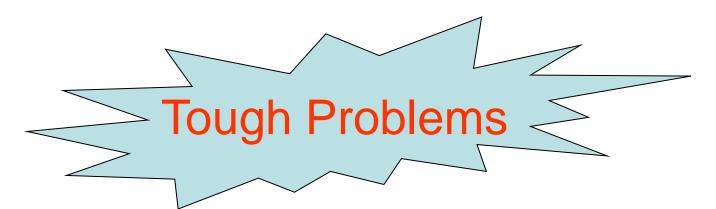
Challenges of Handling Incompleteness

- 1. Circumscribing the incompleteness
- 2. Developing the appropriate solution concepts
- 3. Developing planners capable of synthesizing them
- 4. Life-long Planning/Learning to reduce incompleteness
 Commitment-sensitive Replanning

There are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don't know. But there are also unknown unknowns; there are things we do not know we don't know.

Challenges of Human-in-the-Loop Planning

- 1. Circumscribing the incompleteness
- 2. Developing the appropriate solution concepts
- 3. Developing planners capable of synthesizing them
- 4. Life-long Planning/Learning to reduce incompleteness
 Commitment-sensitive Replanning



Our Contributions

- Preference incompleteness
 - Unknown Preferences [IJCAI 2007]
 - Partially known Preferences [IJCAI 2009]
- Model incompleteness
 - Robust plan generation [ICAPS Wkshp 2010]
- World/Object incompleteness

- OWQG [IROS 2009; BTAMP 2009; AAAI 2010]

Model-Lite Planning

Preferences in Planning – Traditional View

• Classical Model: "Closed world" assumption about user preferences.

• All preferences assumed to be fully specified/available

Full Knowledge of Preferences

Two possibilities

- If no preferences specified —then user is assumed to be *indifferent*. Any single feasible plan considered acceptable.
- If preferences/objectives are specified, find a plan that is optimal w.r.t. specified objectives.

Either way, solution is a *single* plan

Human in the Loop: Unknown & Partially Known Preferences

🜽 kambhampati - Google Search - Windows Internet Explo	rer		<u>- 8 ×</u>
🔄 😔 – 🔀 http://www.google.com/search?sourceid=navclient&ie=UTF-8&rlz	z=1T4GGLD_enUS330US330&q=kambhampati	🔽 🐓 🗙 Google	₽ •
Google kambhampati	💽 🔧 Search 🛯 🖗 🖗 🧔 * 🔊 🖕 * 🕅 * 🥥 🤹 🛛 Share * 📮 * 📼 * 🧭 Sidewiki	• ∛ Check • ੩ Translate • »	🔦 • 🔵 Sign In •
😭 🏟 🛃 kambhampati - Google Search		👌 🕶 🗟 👻 🖶 💌 🔂	
Web Images Videos Maps News Shopping Gmail more V		Search	settings Sign in 🔺
Google kambhampati	Search Advanced Search		
Web Show options	Results 1 - 10 of about 73,200 for kambhampati. (0.18 seconds)	

Subbarao Kambhampati

Subbarao (Rao) Kambhampati is a Professor at ASU with interests in AI, automated planning and information integration. rakaposhi.eas.asu.edu/ - <u>Cached</u> - <u>Similar</u>

 CSE 494
 Planning Graph Heuristics Tutorial

 CSE471
 Travel

 Yochan
 Planning List

 Havasu
 ICAPS Festivus

More results from asu.edu »

Recent papers from Yochan

Contact Subbarao Kambhampati by email if you have questions or need further ... Sungwook Yoon and Subbarao Kambhampati along with a good portion of the ... rakaposhi.eas.asu.edu/yochan.html/ - <u>Cached</u> - <u>Similar</u>

Dr. Ravindranath Kambhampati, MD, Plastic Surgery, located in ... Dr. Ravindranath Kambhampati, MD, Rochester Hills, Michigan, (MI), Plastic Surgery, Check Doctor reports, ratings, credentials, information, background, ... www.healthgrades.com/.../dr-ravindranath-kambhampati-md-4c425161 - Cached

DBLP: Subbarao Kambhampati

Subbarao Kambhampati: Model-lite Planning for the Web Age Masses: The Challenges of Planning with Incomplete and Evolving Domain Models. AAAI 2007: 1601- ... www.informatik.uni-trier.de/.../Kambhampati:Subbarao.html - <u>Cached</u> - <u>Similar</u>

Krishna Kambhampati | Facebook

Friends: Morlie Patel, Ankit Patel, Tarak Rambhatla, Neal Patel, Alessia Starovoytova Krishna **Kambhampati** is on Facebook. Join Facebook to connect with Krishna **Kambhampati** and others you may know. Facebook gives people the power to share and ... www.facebook.com/krishna.kambhampati - <u>Cached</u> - <u>Similar</u>

Uma Sarada Kambhampati at IDEAS

Uma Kambhampati: current contact information and listing of economic research of this author provided by RePEc/IDEAS. ideas.repec.org/e/pka195.html - <u>Cached</u>

Phaneswar Kambhampati - LinkedIn

Greater Atlanta Area - Team Lead - Intenet Solutions at IBM Internet Security Systems View Phaneswar **Kambhampati's** professional profile on LinkedIn. LinkedIn is the world's largest business network, helping professionals like Phaneswar ... www.linkedin.com/in/phaneswark - <u>Cached</u>

ASU Directory Profile: Subbarao Kambhampati

Danial Paras Subharas Kambhampati and David E. Smith Coquantial Monto Cade in

Google-inspired?

Unknown preferences occur in search engine queries →How do they handle them?

Diversify the results...! --Return answers that are closest to the query, and are farthest from each other --Distance Metrics

Handling Unknown & Partially Known Preferences

• Unknown preferences

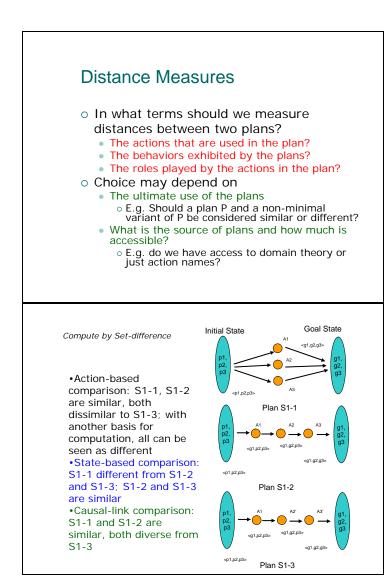
- For all we know, user may care about every thing -- the flight carrier, the arrival and departure times, the type of flight, the airport, time of travel and cost of travel...
- Best choice is to return a *diverse* set of plans [IJCAI 2007]
 - Distance measures between plans

Generating Diverse Plans

- Formalized notions of bases for plan distance measures
- Proposed adaptation to existing representative, state-of-the-art, planning algorithms to search for diverse plans
 - Showed that using actionbased distance results in plans that are likely to be also diverse with respect to behavior and causal structure
 - LPG can scale-up well to large problems with the proposed changes

[IJCAI 2007]

- *d*DISTANT*k*SET
 - Given a distance measure δ(.,.), and a parameter k, find k plans for solving the problem that have guaranteed minimum pair-wise distance d among them in terms of δ(.,.)



Generating Diverse Plans with Local Search

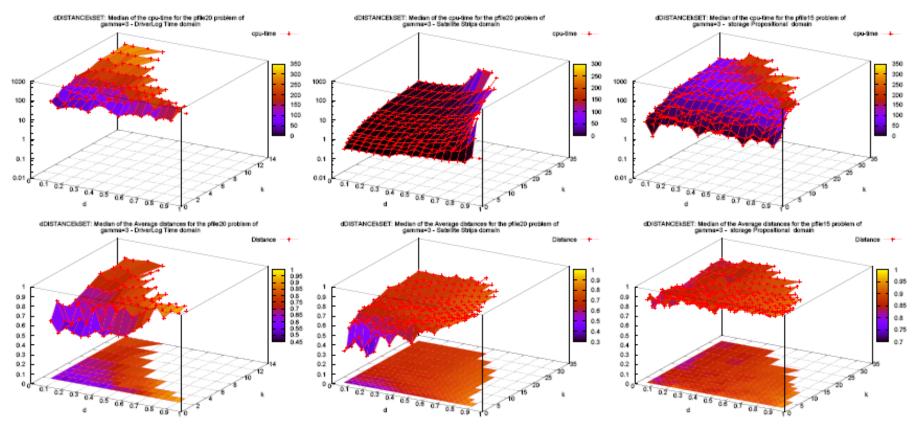


Figure 2: Performance of LPG-d (CPU-time and plan distance) for there problems in DriverLog-Time, Satellite-Strips and Storage-Propositional.

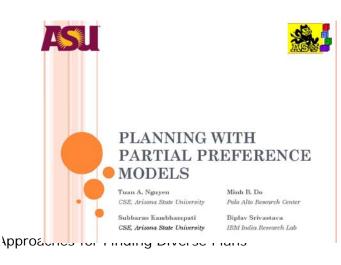
LPG-d solves 109 comb. Avg. time = 162.8 sec Avg. distance = 0.68Includes d<0.4,k=10; d=0.95,k=2 LPG-d solves 211 comb. Avg. time = 12.1 sec Avg. distance = 0.69

LPG-d solves 225 comb. Avg. time = 64.1 sec Avg. distance = 0.88

Unknown & Partially Known Preferences

• Partially known

- We may know that user cares only about makespan and cost. But we don't know how she combines them..
- Returning a diverse set of plans may not be enough
 - They may not differ on the attributes of relevance..
- Focus on spanning the pareto set..



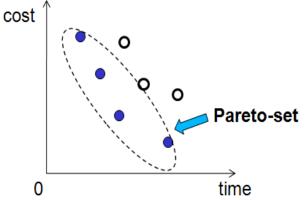
Modeling Partially Known Objectives

- The user is interested in minimizing two objectives (say makespan and execution cost of plan *p*: *time*(*p*), *cost*(*p*).)
- The quality of plan *p* is given by *cost function*:

 $f(p,w) = w \times time(p) + (1-w) \times \cos t(p) \ (w \in [0,1])$

• $w \in [0,1]$ represents the trade-off between two competing objectives.

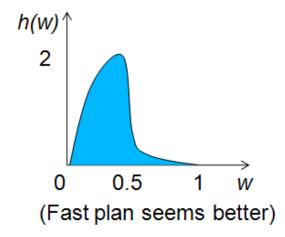
Handling Partially Known Preferences



• View it as a Multi-objective optimization

- Return the Pareto optimal set of plans (and let the user select from among them)
- Two problems
 - [Computational] Computing the full pareto set can be too costly
 - [Comprehensional] Lay users may suffer information overload when presented with a large set of plans to choose from
- Solution: Return *k* representative plans from the Pareto Set
 - Challenge 1: How to define "representative" robustly?
 - Challenge 2: How to generate representative set of plans efficiently?

Measuring Representativeness: ICP $f(p,w) = w \times time(p) + (1-w) \times \cos t(p) \quad (w \in [0,1])$ $ICP(\mathcal{P}) = \sum_{i=1}^{k} \int_{w_{i-1}}^{w_i} h(w)(w \times t_{p_i} + (1-w) \times c_{p_i})dw$ cost 3 representative plans 0 time 0



Handling Partial Preferences using ICP

Problem Statement:

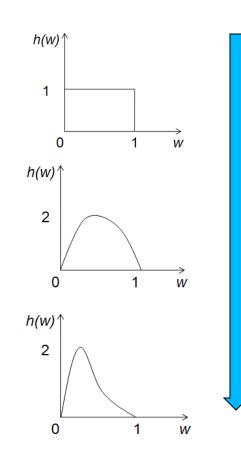
• Given

- the objectives O_i ,
- the vector w for convex combination of O_i
- the distribution h(w) of w,
- Return a set of *k* plans with the minimum ICP value.

- Solution Approaches:
 - Sampling: Sample *k* values of *w*, and approximate the optimal plan for each value.
 - ICP-Sequential: Drive the search to find plans that will improve ICP
 - Hybrid: Start with Sampling, and then improve the seed set with ICP-Sequential
 - [Baseline]: Find *k* diverse plans using the distance measures from [IJCAI 2007] paper; LPG-Speed.

Learning Planning Preferences

•We can learn to improve the preference model by revising the h(w) after every few iterations (through user interaction)

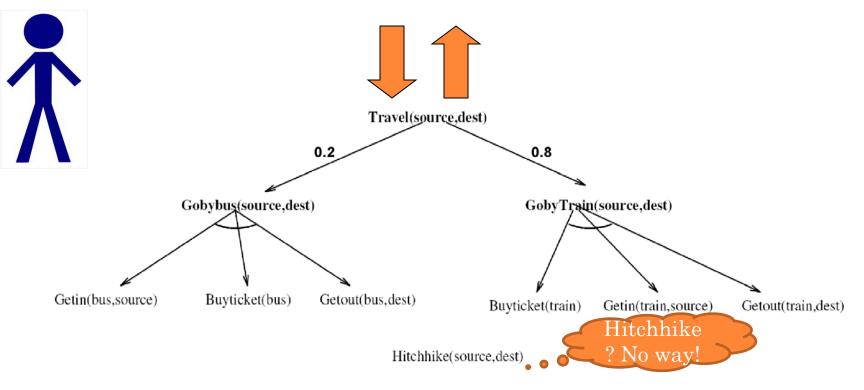


Revising distribution h(w) over iterations (Bayesian learning..)

27

LEARNING PLAN PREFERENCES From Observed Executions

- P_{bus}: Getin(bus, source), Buyticket(bus), Getout(bus, dest)
 - P_{train} : Buyticket(train), Getin(train, source), Getout(train, dest) 8
- P_{hike}: Hitchhike(source, dest)



[IJCAI 2009]

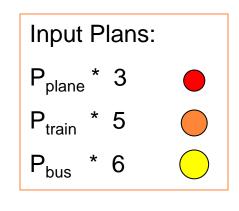
2

0

LEARNING USER PLAN PREFERENCES OBFUSCATED BY FEASIBILITY CONSTRAINTS

- Rescale observed plans
 - Undo the filtering caused by feasibility constraints
- Base learner
 - Acquires true user preferences based on adjusted plan frequencies

User Preference Model



[ICAPS 2009]

Our Contributions

Preference incompleteness

Unknown Preferences [IJCAI 2007] Partially known Preferences [IJCAI 2009]

Model incompleteness

Robust plan generation [ICAPS Wkshp 2010]

World/Object incompleteness

OWQG [IROS 2009; BTAMP 2009; AAAI 2010]

There are known knowns; there are things we know that we know. <u>There are known</u> <u>unknowns; that is to</u> say, there are things that we now know we <u>don't know</u>. But there are also unknown unknowns; there are things we do not know we don't know.

Planning with partial domain models: Motivation

- Planning, in traditional perspective, assumes a completely specified domain model
 - We know exactly the conditions and effects of action execution
 - Stochastic models also assume completeness ("known" probabilities)

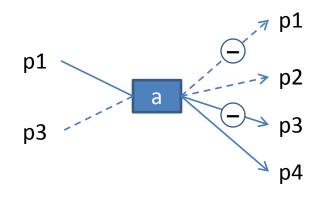
- Domain modeling is a laborious, error-prone task
 - So much so that there is a Knowledge Engineering track for ICP
- Action descriptions have to be seen as "nominal"
 - May have missing preconditions and effects...
- Sometimes, the domain modeler may be able to annotate the action with sources of incompleteness
 - Possible preconditions/effects

Can the planner exploit such partial knowledge?

Deterministic Partial Domain Models

- We consider planning with deterministic, but incompletely specified domain model
- Each action a is associated with *possible* precond and effects (in addition to the normal precond/eff):
 - PreP(a) [p]: set of propositions that a might depend on during execution
 - AddP(a) [p]: : set of propositions that a might add after execution
 - DelP(a) [p]: : set of propositions that a might delete after execution

Example: An action **a** that is known to depend on **p1**, add p4 and delete **p3**. In addition, it might have **p3** as its precondition, might add **p2** and might delete **p1** after execution.



Solution Concept: Robust Plans

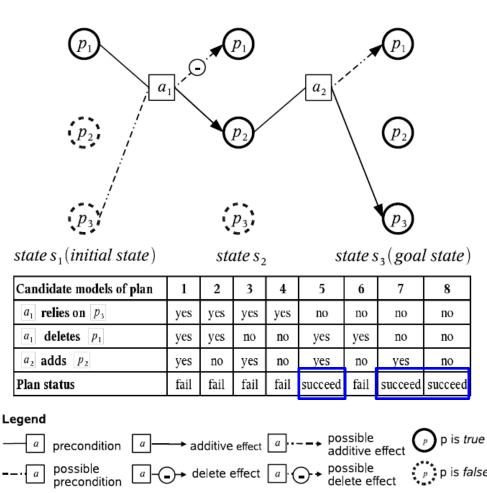
- Solution concept:
 - Robust plan
 - Plan is highly robust if executable in large number of most-likely candidate models
- Robustness measure
 - Set of candidate domain models S (consistent with the given deterministic partial domain model D)
 - A complete but unknown domain model **D***
 - Can be any model in S

$$R(\pi) = \frac{|\prod|}{2^K}$$

 $\left|\Pi\right|$ Number of candidate models with which the plan succeeds

$$K = \sum_{a} \operatorname{PreP}(a) + \operatorname{AddP}(a) + \operatorname{DelP}(a)$$

Easily generalized to consider model likelihood

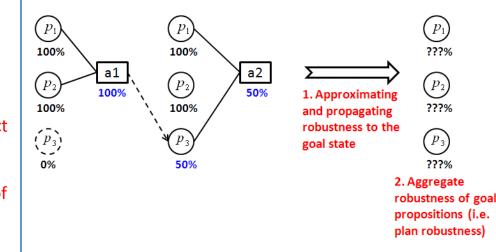


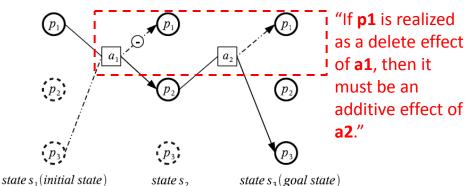
Robustness value: 3/8

Assessing Plan Robustness

- Number of candidate models: exponentially large. Computing robustness of a given plan is hard!!!
 - Exact and approximate assessment.
- Exact methods:
 - (Weighted) Model-counting approach:
 - Construct logical formulas representing causal-proof (Mali & Kambhampati 1999) for plan correctness
 - Invoke an exact model counting approach

- Invoke *approximate* model counting approach
- Approximate and propagate action robustness
 - Can be used in generating robust plans

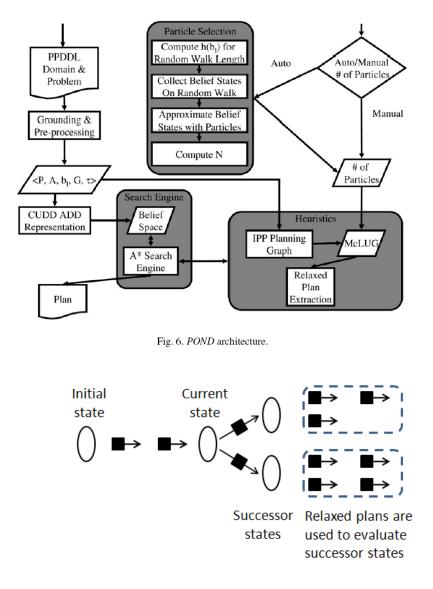




Generating Robust Plans

D. Bryce et al. / Artificial Intelligence 172 (2008) 685-715

- Compilation approach: Compile into a (Probabilistic) Conformant Planning problem
 - One "unobservable" variable per each possible effect/precondition
 - Significant initial state uncertainty
 - Can adapt a probabilistic conformant planner such as POND [JAIR, 2006; AIJ 2008]
- Direct approach: Bias a planner's search towards more robust plans
 - Heuristically assess the robustness of partial plans
 - Need to use the (approximate) robustness assessment procedures



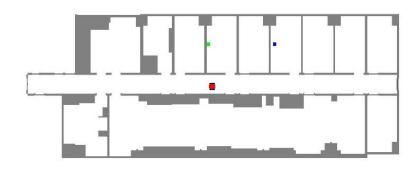
[ICAPS 2010 Wkshp on Planning under Uncertainty]

Our Contributions

- Preference incompleteness
 - Unknown Preferences [IJCAI 2007]
 - Partially known Preferences [IJCAI 2009]
- Model incompleteness
 - Robust plan generation [ICAPS Wkshp 2010]
- World/Object incompleteness

- OWQG [IROS 2009; BTAMP 2009; AAAI 2010]

Urban Search and Rescue



- Human-Robot team
- Robot starts the beginning of the hallway
- Human is giving higher level knowledge
- Hard Goal: Reach the end of the hallway
- Wounded people are in rooms
- Soft Goal: Report locations of wounded people

- Good News: Some aspects of existing planning technology are very relevant
 - Partial Satisfaction
 - Replanning & Execution Monitoring
- Bad News: Incomplete Model / Open World
 - Unknown objects
 - Don't know where injured people are
 - Goals specified in terms of them
 - If the robot finds an injured person, it should report their location ...

How do you make a deterministic closed-world planner believe in opportunities sans guarantees?

Open World Quantified Goals Partial Satisfaction Planning (PSP) Sensing and Replanning

Planner **CLOSED WORLD**

Under Sensing Closed World Model **Limited Sensing** Planner guides robot in a limited way

Robot OPEN WORLD

Over Sensing Robot senses its way through the world

Handling Open World

- Extreme Cases
 - If the robot assumes "closed world", it will just go to the end of the corridor.
 - If the robot insists on "closing" the model before doing planning, it will do over-sensing.
- Need a way of combining sensing and planning
 - Information on unknown objects
 - Goals conditioned on these objects

Open World Quantified Goals (OWQGs)

• Goals that allow for the specification of additional information

- To take advantage of opportunities

OWQGs as Conditional Rewards

Robot needs to sense wounded people before reporting them

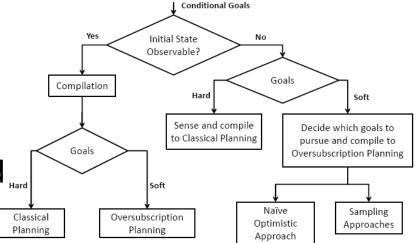
Planner has to deal with open world

Naïve idea: Ask Robot to look everywhere (high sensing cost)

Conditional Goals can be compiled down when the world model is complete

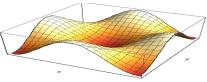
--Need to sense for those conditional goals whose antecedents are likely to hold

$$\hat{\mathcal{G}}_c = rg\max_{\hat{\mathcal{G}}_c^i \subseteq \mathcal{G}_c} \mathbf{E}_{\mathbf{P} \sim \Psi} \mathcal{B}(G_o \cup [\mathcal{G}_c^i \setminus \mathbf{P}]) - \mathcal{S}(\mathcal{G}_c^i)$$
[ACM TIST 2010; AAAI, 2010; IROS 2009; BTAMP 2009]



Planning with OWQGs

- Bias the planner's model
- Endow the planner with an optimistic view
 Assume existence of objects and facts that may lead to rewarding goals
 - e.g. the presence of an injured human in a room
 - Create runtime objects
 - Add to the planner's database of ground objects
- Plans are generated over this reconfigured **potential** search space



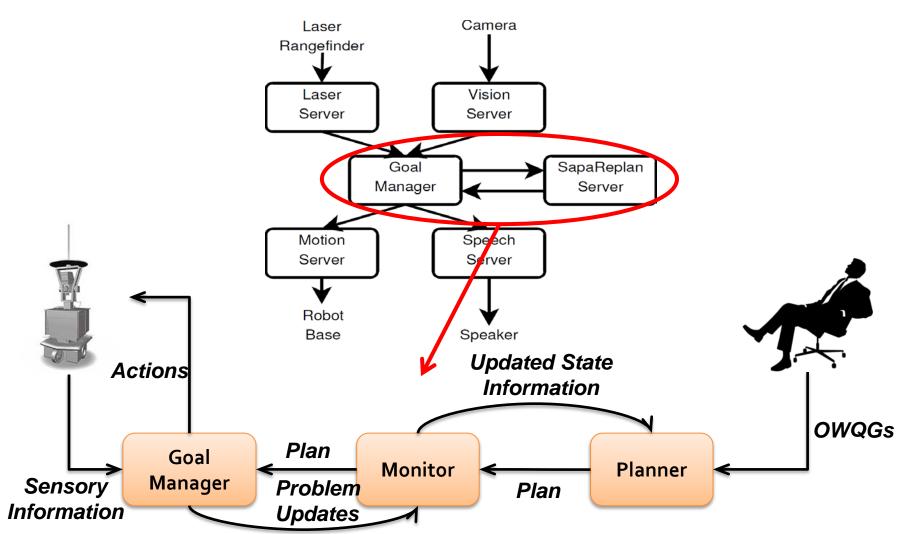
- Soft Goals
 - Allows planner to model "bonus" goals
- Quantification of Goals
 - Cannot possibly satisfy **all** possible groundings
 - Constrained by metric resources (time etc.)
- Net Benefit
 - Sensing is costly
 - Must be balanced with goal-achievement reward

Preferences and PSP in Planning Benton, Baier, Kambhampati (Tutorial)

Replanning and Execution Monitoring

- Sensing is expensive ...
 - Cannot be done at every step
- Planner needs to direct the architecture on:
 - when to sense
 - what to sense for
- Planning to sense in a goal-directed manner
 - Output all actions up to (and including) any action that results in "closing" the world
 - Obtaining information about unknown objects

Putting It All Together



Challenges of Human-in-the-Loop Planning

- 1. Circumscribing the incompleteness
- 2. Developing the appropriate solution concepts
- 3. Developing planners capable of synthesizing them
- 4. Life Long Planing/Learning to reduce incompleteness

Partial Solutions for Human-in-the-Loop Planni Can exploit

- 1. Circumscribing the incompleteness Planning technology
 - Preference components; possible precence components; possible precence components;
- 2. Developing the appropriate solution concepts
 - Diverse plans; Robust plans; Partial sensing plans
- 3. Developing planners capable of synthesizing them
 - Can adapt existing planners toward these solution concepts
- 4. Life Long Planning/Learning to reduce incompleteness
 - Learning preferences *h(.)* through interactions; learning model conditions through execution
 - [Tutorial on Learning in Planning AI MAG 2003; Learning preferences as HTNs IJCAI 2009; ICAPS 2009]

Model-Lite Planning: Planning is more than pure inference over completely specified models!