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Effectively Mining and Using Coverage and
Overlap Statistics for Data Integration

Zaiging Nie, Subbarao Kambhampati, and Ullas Nambiar

Abstract—Recent work in data integration has shown the importance of statistical information about the coverage and overlap of
sources for efficient query processing. Despite this recognition, there are no effective approaches for learning the needed statistics.
The key challenge in learning such statistics is keeping the number of needed statistics low enough to have the storage and learning
costs manageable. In this paper, we present a set of connected techniques that estimate the coverage and overlap statistics,while
keeping the needed statistics tightly under control. Our approach uses a hierarchical classification of the queries and threshold-based
variants of familiar data mining techniques to dynamically decide the level of resolution at which to learn the statistics. We describe the
details of our method,and present experimental results demonstrating the efficiency of the learning algorithms and the effectiveness of
the learned statistics over both controlled data sources and in the context of BibFinder with autonomous online sources.

Index Terms—Query optimization for data integration, coverage and overlap statistics, association rule mining.

1 INTRODUCTION

AN increasing number of autonomous information
sources are becoming accessible to users on the
Internet today. Consequently, data integration systems [6],
[16], [1], [15], [24] are being developed to provide a uniform
interface to a multitude of information sources, query the
relevant sources automatically, and restructure the informa-
tion from different sources. In a data integration scenario, a
user interacts with a mediator system via a mediated
schema [15], [8]. A mediated schema is a set of virtual
relations which are effectively stored across multiple and
potentially overlapping data sources, each of which only
contains a partial extension of the relation. Early work on
query optimization in data integration [10], [18], [9] thus
focused on techniques for figuring out what sources are
relevant to the given query, with the assumption that they
will all be accessed.

Calling all potentially relevant sources is an untenable
strategy in the long run as it increases network traffic, and
leads to higher source access and processing costs to the
mediator. We thus assume that the users are likely to be
willing to sacrifice the completeness of their answers for
efficiency. Consider, for example, a situation where the
mediator is trying to reduce the costs by calling just k of the
N available and potentially relevant data sources. The
question is how does the mediator efficiently pick these
k sources. We argue that to do an effective job of source
selection, the query optimizer needs to access statistics
about the coverage of the individual sources with respect to
the given query, as well as the degree to which the answers
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they export overlap. The main contribution of this paper is
the development and evaluation of a framework for
gathering and using such statistics. We start by illustrating
the need for these statistics with an example scenario.

1.1 Motivating Scenario

Consider BibFinder (http://rakaposhi.eas.asu.edu/bibfin
der), a publicly available computer science bibliography
mediator that we have been developing. BibFinder integrates
several online Computer Science bibliography sources. It
currently covers CSB, DBLP, Network Bibliography, ACM
Digital Library, ACM Guide, ScienceDirect, IEEExplore, and
CiteSeer. Since its unveiling in December 2002, BibFinder has
been getting around 200 queries a day.

BibFinder differs in multiple ways from other bibliogra-
phy search engines like CiteSeer [7]. The primary difference
is its use of an online integration approach (rather than a
data warehouse one) where user queries are sent directly to
the underlying Web sources and the results integrated on
the fly to answer a query. This obviates the need to store
and maintain the paper information locally. Moreover, the
sources integrated by BibFinder are autonomous and
partially overlapping. By combining the sources, BibFinder
can present a unified and more complete view to the user.
However, it also brings some interesting optimization
challenges. Let us assume that the global schema exported
by BibFinder is the relation: paper(title, author, conference/
journal, year). Each individual source exports only a subset
of the global relation. For example, Network Bibliography
only contains publications in Networks, DBLP gives more
emphasis on Database related publications, while Science
Direct has only archival journal publications, etc. To
efficiently answer users’ queries, we need to find and
access the most relevant subset of the sources for the given
query.

Suppose, the user asks a selection query:

Q(title,author) :- paper(title, author, conference/journal,

year), conference="AAAI".

Published by the IEEE Computer Society
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Fig. 1. StatMiner architecture.

To answer this query efficiently, BibFinder needs to know
the coverage of each source S with respect to the query Q,
ie., P(S|Q), the probability that a random answer tuple for
query @ belongs to source S. Given this information, we can
rank all the sources in descending order of P(S|Q). The first
source in the ranking is the one that BibFinder should access
first while answering query Q. Although ranking seems to
provide the complete order in which to access the sources,
this is, unfortunately, not true in general. It is quite possible
that the two sources with the highest coverage with respect
to @ happen to mirror each others” contents. Clearly, calling
both sources is not going to give any more information than
calling just one source. Therefore, after we access the
source S’ with the maximum coverage P(5'|Q), we need to
access, as the second source, the source S” that has the
highest residual coverage (i.e., provides the maximum
number of those answers that are not provided by the first
source S). Specifically, we need to pick the source S” that
has next best rank to S’ in terms of P(S|Q), but has minimal
overlap (common tuples) with 5.

1.2 The StatMiner Approach

In this paper, we address the problem of learning the
coverage and overlap statistics for sources with respect to
user queries. A naive approach may involve learning the
coverages and overlaps of all sources with respect to all
queries. This will necessitate N, x 2Ns different statistics,
where N, is the number of different queries that the
mediator needs to handle and Ng is the number of data
sources that are integrated by the mediator. An important
challenge is to keep the number of statistics under control,
while still retaining their advantages.

In this paper, we present StatMiner (see Fig. 1), a statistics
mining module for Web-based data integration being
developed as part of the Havasu data integration project at
Arizona State University. StatMiner is comprised of a set of
connected techniques that help a mediator estimate the
coverage and overlap of a set of sources with respect to a
user given query while keeping the amount of needed
statistics tightly under control. Since the number of potential
user queries can be quite high, StatMiner aims to learn the

required statistics for query classes, i.e., groups of queries. A
query class is an instantiated subset of the global relation and
contains only the attributes for which a hierarchical
classification of instances (values) can be generated.

The coverage statistics learning is done using the LCS
algorithm and the overlap statistics are learned using a
variant of the Apriori algorithm [3]. The LCS algorithm
does two things: it identifies the query classes which have
large enough support and it computes the coverages of the
individual sources with respect to these identified large
classes. Specifically, StatMiner probes the Web sources
exporting the mediator relation. Using LCS, we then classify
the results obtained into the query classes and dynamically
identify “large” classes for which the number of results
mapped are above the specified threshold. We learn and
store statistics only with regard to these identified large
classes. When the mediator encounters a new user query, it
maps the query to one of the query classes for which
statistics are available. Since we use thresholds to control
the set of query classes for which statistics are maintained, it
is possible that there is no query class that exactly matches
the user query. In this case, we map the query to the nearest
abstract query class that has available statistics. The loss of
accuracy in statistics entailed by this step should be seen as
the cost we pay for keeping the amount of stored statistics
low. Once the query class corresponding to the user query
is determined, the mediator uses the learned coverage and
overlap statistics to rank the data sources that are most
relevant to answering the query.

1.3 Challenges and Organization

In order to make this approach practical, we need to
carefully control three types of costs: 1) the cost of getting
the training data from the sources (i.e., “probing costs”),
2) the cost of processing the data to compute coverage and
overlap statistics (i.e., “mining costs”), and 3) the online cost
of using the coverage and overlap statistics to rank sources.
In the rest of the paper, we shall explain how we control
these costs. Briefly, the probing costs are controlled through
sampling techniques. The “mining costs” are controlled
with the help of support and overlap thresholds. The
“usage costs” are controlled with the help of an efficient
algorithm for computing the residual coverage. We demon-
strate the effectiveness of these mechanisms through
empirical studies. We also empirically demonstrate that
the statistics we learn and use for ranking and selecting
sources significantly improve the precision and coverage of
the top-K source query plans.

The rest of the paper is organized as follows: In the next
section, Section 2, we give an overview of StatMiner.
Section 3 describes the methodology used for extracting
and processing training data from autonomous Web
sources. Section 4 describes the details of learning AV
hierarchies. In Section 5, we give the algorithms for learning
coverage and overlap statistics. Then, in Section 6, we
discuss how to efficiently use the learned statistics to rank
the sources for a given query. This is followed, in Section 7,
by a detailed description of our experimental setup and, in
Section 8, by the results we obtained demonstrating the
efficiency of our learning algorithms and the effectiveness
of the learned statistics. In Section 9, we discuss the related
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work. Section 10 contains a discussion of some practical
issues regarding the realization of the StatMiner approach.
We present our conclusions in Section 11.

2 MODELING COVERAGE AND OVERLAP WITH
REGARD TO QUERY CLASSES
2.1 Classifying Mediator Queries
In this paper, we will limit our attention to selection
queries." Our approach consists of grouping queries into
abstract classes. Since we focus on selection queries in this
paper, the values for some attributes would be bound for a
typical query. We classify the queries in terms of the
selected attributes and their values. To abstract the classes
further, we assume that the mediator has access to the so-
called “attribute value hierarchies” for a subset of the
attributes of each mediated relation.

2.1.1 Attribute Value Hierarchies

An AV hierarchy (or attribute value hierarchy) over an
attribute A is a hierarchical classification of the values of the
attribute A. The leaf nodes of the hierarchy correspond to
specific concrete values of A (note that, for numerical
attributes, we can take value ranges as leaf nodes), while the
nonleaf nodes are abstract values that correspond to the
union of values below them. Fig. 2 shows the AV hierarchies
for the “conference” and “year” attributes of the “paper”
relation. It is instructive to note that AV hierarchies can
exist for both categorical and quantitative (numerical)
attributes. In the case of the latter, the abstract values in
the hierarchy may correspond to ranges of attribute values.
Hierarchies do not have to exist for every attribute, but
rather only for those attributes over which queries are
classified. We call these attributes the classificatory
attributes.

The selection of the classificatory attributes may either be
done by the mediator designer or using automated
techniques such as decision tree learning techniques [13]
to rank attributes in terms of their information gain in

1. See Section 10 for a discussion on how our techniques can be extended
to handle join queries.

classifying the sources. Once the classificatory attributes are
selected, the AV hierarchies for those attributes can either
be provided by the mediator designer (using existing
domain ontologies, c.f. [26]) or be automatically generated
through clustering techniques (see Section 4).

2.1.2 Query Classes

Since we focus on selection queries, a typical query will
have values of some set of attributes bound. We group such
queries into query classes using the AV hierarchies of the
classificatory attributes that are bound by the query. To
classify queries that do not bind any classificatory attribute,
we would have to learn simple associations” between the
values of the nonclassificatory and classificatory attributes.
A query class feature is defined as the assignment of a
specific value to a classificatory attribute from its
AV hierarchy. A feature is “abstract” if the attribute is
assigned an abstract (nonleaf) value from its AV hierarchy.
Sets of features are used to define query classes. Specifi-
cally, a query class is a set of (selection) queries sharing a
particular set of features. A query class having no abstract
features is called a leaf class; similarly, a query having
concrete features for all the classificatory attributes is called
a leaf query. The space of query classes over which we learn
the coverage and overlap statistics is just the Cartesian
product of the AV hierarchies of all the classificatory
attributes. Specifically, let H; be the set of features derived
from the AV hierarchy of the ith classificatory attribute.
Then, the set of all query classes (called classSet) is simply
Hy x Hy X ...x Hn.

2.2 Coverage and Overlap with Regard to Query
Classes

The coverage of a data source S with respect to a query @,
denoted by P(S5|Q), is the probability that a random answer
tuple of query @ is present in source S. The overlap among a
set S of sources with respect to a query @, denoted by
P(8]Q), is the probability that a random answer tuple of the

2. A simple association would be Author = J.Ullman — Con ference

= Databases, where Author is nonclassificatory, while Conference is a
classifcatory attribute.
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query @ is present in each source S € S. The overlap (or

coverage when Sisa singleton) statistics with regard toa
()

NQ ’

where NQ(S) is the number of answer tuples of () that are in

query @ are computed using the formula P(S Q) =

all sources of S, Ng is the total number of answer tuples for
Q. We assume that the union of the contents of the available
sources within the system covers 100 percent of the answers
of the query. In other words, coverage and overlap are
measured relative to the available sources.

We also define coverage and overlap with respect to a
query class C rather than a smgle query Q. The overlap of a
source set S (or coverage when S is a singleton) with regard
to a query class C, P(S|C), is just the weight sum of all the
statistics for leaf queries subsumed by C:

pEie) = NoB) _ RowseccNau  P8IQu)
- NC B NC
= Z (ermf X P(§|Ql(uf))
szf€c

Here, Qoy denotes a leaf query, Ny, , is the number
of answer tuples for Q.y, Nleaf(g) is the number of

answer tuples of Q.. that are in all sources of §, NC(§)

equals ZQW%CNQW(S), N¢ equals chh,,,ecNQwr and

w equals Q’”’f
Qear €4 .

2.2.1 Class-Source Association Rules

A class-source association rule represents strong associations
between a query class and a source set (which is some subset
of sources available to the mediator). Specifically, we are
interested in the association rules of the form C' — §, where C
is a query class and Sis a source set (possibly singleton). The

support of the class C (denoted by P(C')) refers to the class

probability of the class C and the overlap (or coverage when S

is a singleton) statistic P( 5 (S|C) is simply the confidence of such
P(CNS)
P(0)

of such association rules include: AAAI — S, AI — 5,
AI&2001 — S1, and 2001 — S; A Ss.

an association rule (denoted by P(S5|C) = )- Examples

2.3 Controlling the Amount of Stored Statistics

2.3.1 Limiting Statistics to “Large” Classes

As we discussed in Section 1, it may be prohibitively
expensive to learn and store the coverage and overlap
statistics for every possible query class. In order to keep the
number of association rules low, we would like to prune
“small” classes. We use a threshold on the support of a class
(i.e., percentage of the base data that falls into that class),
called 7, to identify large classes. Coverage and overlap
statistics are learned only with respect to these large classes.
In this paper, we present an algorithm to efficiently
dlscover the large classes by using the antimonotone
property® ([13]).

3. If a set cannot pass a test, all of its supersets will fail the same test as
well.

2.3.2 Limiting Coverage and Overlap Statistics

Another way to control the number of statistics is to
remember coverage and overlap statistics only when they
are above threshold parameters, 7, and 7,, respectively.
While the thresholds 7. and 7, reduce the number of stored
statistics, they also introduce complications when the
mediator is using the stored statistics to rank sources with
respect to a query. Briefly, when a query @ belonging to a
class C'is posed to the mediator and there are no statistics for
C (because C' was not identified as a large class), the
mediator has to make do with statistics from a generalization
of C that has statistics. Similarly, when a source set S has no
overlap statistics with respect to a class C, the mediator has
to assume that the sources in set S are, in effect, disjoint with
respect to that query class. In Section 6, we describe how
these assumptions are used in ranking the sources with
respect to a user query. Before doing so, we first give the
specifics of base data generation, AV hierarchy generation,
discovering large classes, and computing their statistics.

3 GATHERING BASE DATA

In order to use association rule mining approach to learn the
coverage and overlap statistics, we need to first collect a
representative sample of the data stored in the sources. Since
the sources in the data integration scenario are autonomous,
this will involve “probing” the sources with a representative
set of “probing queries.” The results of the probing queries
need to be organized into a form suitable for statistics
mining. We discuss both these issues in this section.

3.1 Probing Queries

There are two possible ways of generating “representative”
probing queries over a mediator: 1) Pick the sample of
queries from a set of “spanning queries,” i.e., queries which
together cover all the tuples stored in the data sources, or
2) pick the sample from the set of actual queries that are
directed at the mediator over a period of time. In this paper,
we assume that the probing queries are selected from a set
of spanning queries (the second approach can still be used
for “refining” the statistics later, see [20]).

Spanning queries can be generated by considering a
Cartesian product of the leaf node features of all the
classificatory attributes (for which AV hierarchies are
available) and generating selection queries that bind
attributes using the corresponding values of the members
of the Cartesian product. Every member in the Cartesian
product is a “least general query” that we can generate
using the classificatory attributes and their AV-hierarchies.
Given multiple classificatory attributes, such queries will
bind more than one attribute and, hence, we believe they
would satisfy the “binding restrictions” imposed by most
autonomous Web sources.

Once we decide the space from which the probing
queries are selected (in our case, a set of spanning queries),
the next question is how to pick a representative sample of
these queries since sending all potential queries to the
sources is too costly. We use two well-known sampling
techniques, Simple Random Sampling and Stratified Random
Sampling [5], for keeping the number of probing queries
under control. Simple random sampling gives equal
probability of being selected to each query in the collection
of sample queries. Stratified random sampling requires that
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CID Source Count
1 (S2,57) 79
CID | Conference | Year | Count 2 | (81,5, 8s) 38
1 ICDE 2002 | 79 2 (S1,5%) 20
2 ICDE 2001 67 2 S3 9

(@) (b)

Fig. 3. classinfo and sourcelnfo. (a) Tuples in the table classinfo.
(b) Tuples in the table sourcelnfo.

the sample population be divisible into several subgroups.
Then, for each subgroup, a simple random sampling is done
to derive the samples. If the strata are selected intelligently,
stratified sampling gives statistics with higher precision
than simple random sampling. We evaluate both these
approaches experimentally to study the effect of sampling
on our learning approach.

3.2 Efficiently Managing Results of Probing

Once we decide on a set of sample probing queries, these
queries are submitted to all the data sources. The results
returned by the sources are then organized in a form
suitable for generating AV hierarchies and mining large
classes and their statistics. Specifically, the result data set
consists of two tables, classInfo(CID, A, ,..., A, , Count)
and sourcelnfo(CID, Source, Count), where A, refers to the
jth classificatory attribute. The leaf classes with at least one
tuple in the sources are given a class identifier, CID. The
total number of distinct tuples for each leaf class are entered
into classInfo and a separate table sourceInfo keeps track of
which tuples come from which sources. If multiple sources
have the same tuples in a leaf class, then we just need to
remember the total number of common tuples for that
overlapped source set. An entry in the table sourcelnfo for a
class C and sourceset S keeps track of the number of objects
that are not reported for any superset of S. In the worst case,
we have to keep the counts for all the possible subsets for
each class (2" of them, where n is the number of sources
which have answers for the query).*

In the table classInfo (see Fig. 3a), we use attribute CID
to keep the id of the class, attributes “conference” and
“year” to keep the classificatory attribute values, and
attribute Count to keep the total number of distinct tuples
of the class. In the table sourceInfo (see Fig. 3b), we use
attribute CID to keep the id of the class, attribute Source to
keep the overlap sources in the class, and attribute Count to
keep the number of overlapped tuples of the sources. For
example, in the leaf class with class CID = 2, we have three
subsets of overlapped sources which disjointly export a
total of 67 tuples. As we can see, all the sources in the set
(S1, 52, S3) export 38 tuples in common, all the sources in
the set (51, S2) export another 20 tuples in common, and the
single source S itself exports another nine tuples.

4. Although, in practice, the worst case is not likely to happen, if the
results are too many to remember, we can do one of the following: Use a
single scan mining algorithm, then we can count query by query during
probing, in this way, we just need to remember the results for the current
query; just remember the counts for the higher level abstract classes; or just
remember overlap counts for up to k-sources, where k is a predefined value
(k<mn).
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4 AcQUIRING AV HIERARCHIES

As we mentioned earlier, AV hierarchies can either be
provided by the user or generated automatically. While it’s
often possible to manually generate AV hierarchies, in some
cases, manually generating high quality hierarchies may be
very time consuming, even with domain experts” help. In
this section, we discuss how to automatically build
AV hierarchies based on the probing results gathered by
the mediator. We first define the distance function between
two attribute values. Next, we introduce a clustering
algorithm to automatically generate AV Hierarchies. Final-
ly, we discuss how to flatten our automatically generated
AV hierarchies.

4.1 Distance Function

The main idea of generating an AV hierarchy is to cluster
similar attribute values into classes in terms of the coverage
and overlap statistics of their corresponding selection
queries binding these values. The problem of finding
similar attribute values becomes the problem of finding
similar selection queries. In order to find similar queries, we
define a distance function to measure the distance between
a pair of selection queries (Q1,Q2):

d(Q1,Q2) = \/Z[P(@IQ]) ~ P(Si|Q2)),

where S, denotes the ith source set of all possible source sets
in the mediator. Although the number of all possible source
sets is exponential in terms of the number of available
sources, we only need to consider source sets with answers
for at least one of the two queries to compute d(Q1,Q>).”
Note that we are not measuring the similarity in the
answers of )1 and @, but rather the similarity of the way
their answer tuples are distributed over the sources. In this
sense, we may find that a selection query con ference =
"AAAI" and another query con ference = "SIGMOD" to be
similar in as much as the sources having tuples for the
former also have tuples for the latter. Similarly, we define a
distance function to measure the distance bewteen a pair of
query classes (C}, Cs):

d(Cr,Co) = \/Z[P(@co - P(&ICo)l.

We compute a query class’ coverage and overlap statistics
P(§|C’) according to the definition of the overlap (or
coverage) with regard to a class given in Section 2.2. The
statistics P(S|Q) for a specific query @ are computed using
the statistics from the probing results gathered by the
mediator.

4.2 Generating AV Hierarchies

For now, we will assume that all classificatory attributes
have a discrete set of values, and we will also assume that
the corresponding coverage and overlap statistics are
available. We now introduce GAVH (Generating AV

5. For example, suppose query Q; gets tuples form only sourcses S; and
S5 and @, gets tuples from S; and S7, we will only consider source sets
{51}, {S5}, {51,855}, {S7}, and {Ss,S7}. We will not consider {Si,S7},
{51, S5, 57}, {S2}, and many other source sets without any answer for either
of the queries.
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Algorithm GAVH()
for (each attribute value)
generate a cluster node C

—
feature vector C.fv = (P(5]Q), No);
children C.children = null,
put cluster node C into AVQueue;
end for
while (AVQueue has more than two clusters)
find the most similar pair of clusters C; and Cs;
/¥ d(Ch, Cy) is the minimum of all d(C;, C;) */
generate a new cluster C;
C.fv = (NC1 xP(S|01)+ch xP(S|02)
Ng,+Ng,
C'.children = (C1, Cs);
put cluster C' into AVQueue;

,Ne, + Ngy)s

remove cluster C; and Co from AVQueue;
end while
End GAVH,

Fig. 4. The GAVH algorithm.

Hierarchy, see Fig. 4), an agglomerative hierarchical
clustering algorithm, to automatically generate an AV
hierarchy for an attribute.

The GAVH algorithm will build an AV Hierarchy tree,
where each node in the tree has a feature vector summariz-
ing the information that we maintain about an attribute
value cluster. The feature vector is defined as:

(P(S]C), Ne),
where

—

P(S|C)

is the coverage and overlap statistics vector of the cluster C
for all the source sets and N¢ is the number of answer
tuples for the queries in cluster C. Feature vectors are only
used during the construction of AV hierarchies and can be
removed afterward. As we can see from Fig. 8, we can
incrementally compute a new cluster’s coverage and over-
lap statistics vector

P(5]0)
by using the feature vectors of its children clusters C, Ca:
— —
P(S|C’)> _ Ne, x P(S|§2 I xz X P(S|C’2).

4.3 Flattening Attribute Value Hierarchies
Since the nodes of the AV Hierarchies generated using our
GAVH algorithm contain only two children each, we may
get a hierarchy with a large number of layers. One potential
problem with such kinds of AV Hierarchies is that the level
of abstraction may not actually increase when we go up the
hierarchy.

In order to prune these unnecessary clusters, we use
another algorithm, called FAVH Flattening AV Hierarchy,
see Fig. 5). FAVH starts the flattening procedure from the

Algorithm FAVH(clusterNode C') //Starting from root;
if(C has children)
for (each child node C\p 14 in C)
put Cepiig into Children_Queue
for (each node C.,;1q in Children_Queue)
if (d(Cenirg, C) < m)
put (Cepira).children into Children_-Queue;
remove Cepirg from Children_Queue;
end if
for (each children node C.p;14 in Children_Queue)
FAVH(Cpi1a);
end if
End FAVH;

Fig. 5. The FAVH algorithm.

root of the AV Hierarchy, then recursively checks and
flattens the entire hierarchy. To determine whether a cluster
Cenita should be preserved in the hierarchy, we compute the
tightness of the cluster, which measures the accuracy of its
statistics. We consider that a cluster is tight if all the queries
subsumed by the cluster (especially, frequently asked ones)
are close to its center. The tightness t(C) of a class C is
computed as following;:

1
MO =S g < d(Q,C)

where d(Q, C) is the distance between the query () and the
class center and wg is the weight of the query. If the
distance, d(Cepiig, C'), between a cluster and its parent
cluster C' is not larger than ﬁ, then we consider the
cluster unnecessary and put all of its children directly into
its parent cluster.

5 ALGORITHMS FOR LEARNING COVERAGE AND
OVERLAP

In terms of the mining algorithms used, we already noted
that the source overlap information is learned using a
variant of the Apriori algorithm [3]. The source coverage, as
well as the large class identification, is done simultaneously
using the LCS algorithm which we developed. Although the
LCS algorithm shares some commonalities with multilevel
association rule mining approaches, it differs in two
important ways. The multilevel association rule mining
approaches typically assume that there is only one
hierarchy and mine strong associations between the items
within that hierarchy. In contrast, the LCS algorithm
assumes that there are multiple hierarchies and discovers
large query classes with one attribute value from each
hierarchy. It also mines associations between the discovered
large classes and the sources.

5.1 The LCS Algorithm

The LCS algorithm (see Fig. 6) requires the data set: classInfo
and sourcelnfo, the AV hierarchies, and the minimum
support as inputs. LCS makes multiple passes over the
data. Specifically, we first find all the large classes with just
one feature, then we find all the large classes with two
features using the previous results and the antimonotone



644 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

tory attributes)
classSet = {}, ruleSet = {};
for(k = 1;k <=n;k++)
Let classSety = {};

for(each class c € Cy.)
if(c ¢ classSety,)

for (each source S € lc)

end for
end for
end for

end for
for(each rule r._.s € ruleSet)
do r._,s.con fidence = %;
return ruleSet;
End LCS;

Algorithm LCS(classInfo; sourcelnfo; 1. : minimum support; n : # of classifica-

for(each leaf class lc € classInfo)
Cic = genClassSet(k, lc, ...);

then classSety, = classSety, U {c};
c.count = c.count + lc.Count;

if (rule rc—.s ¢ ruleSet)
then ruleSet = ruleSet U {r.—s};
Temg.cOUNE = Te—ys.cOUNt+

# of tuples from source S and in class Ic;

classSety, = {c € classSety|c.count >= 1.};
remove rules with low support classes from ruleSet;
classSet = classSet U classSety;

Fig. 6. Learning Coverage Statistics algorithm.

property to efficiently prune classes before we start
counting, and so on. We continue until we get all the large
classes with all the n features. For each tuple in the kth pass,
we find the set of k feature classes it falls in, increase the
count support(C') for each class C in the set, and increase the
count support(r.—,) for each source S with this tuple. We
prune the classes with a total support count less than the
minimum support count. After identifying the large classes,
we can easily compute the coverage of each source S for
every large class C' as follows:

_ Support(re_s)
confidence(r._s) = W

In the genClassSet algorithm (see Fig. 7), we find all the
candidate ancestor classes with k features for a leaf class lc
using procedure genClassSet. The procedure prunes small
classes using the large class set classSet found in the
previous (k — 1) passes. In order to improve the efficiency
of the algorithm, we dynamically prune small classes
during the Cartesian product procedure.

Example 1. Assume we have a leaf class
le = {1,ICDE, 2001, 67}

and k = 2. We first extract the feature values {4, =
ICDE, A,, = 2001} from the leaf class. Then, for each
feature, we generate a feature set which includes all the
ancestors of the feature. Then, we will get two feature
sets: ftSet; = {ICDE,DB} and ftSet, = {2001}. Sup-
pose the class with the single feature “ICDE” is not a

large class in the previous results, then any class with the
feature “ICDE” cannot be a large class according to the
antimonotone property. We can prune the feature
“ICDE” from ftSet;, then we get the candidate 2-feature
class set for the leaf class Ic,

candidateSet = ftSety x ftSety = {DB&2001}.

In the LCS algorithm, we assume that the number of
classes will be high. In order to avoid considering a large
number of classes, we prune classes during counting. By
doing so, we have to scan the data set n times, where n is
the number of classificatory attributes. The number of
classes we can prune will depend on the threshold. A
very low threshold will not benefit too much from the
pruning. In the worst case, where the threshold is equal
to zero, we still have to keep all the classes ([, |Hil,
where H; is the ith AV hierarchy.).

5.2 Learning Overlap among Sources

Once we discover large classes in the mediator, we can
learn the overlap between sources for each large class using
the data sets classInfo and sourcelnfo. From the table
classInfo, we can classify the leaf classes into the large
classes we learned using LCS. A leaf class can be mapped
into multiple classes. For example, a leaf class about a
publication in Conference “AAAI” and Year “2001” can be
classified into the following classes: (AAALRT), (ALRT),
(RT,2001), (AAAL2001), (AL2001), and (RT,RT), provided
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covered large class set; AV hierarchies)
for (each feature f; € lc)

ftSeti = {fl},

end for
candidateSet={};

tempSet = ftSet;,;
for(i=1;i < k;i++)

end for

end for
return candidateSet;
End genClassSet;

Procedure genClassSet(k : number of features;lc : the leaf class; classSet : dis-

ftSet; = ftSet; U ({ancestor(f;)} — {root});

for (each k feature combination (ftSet;, , ..., ftSet;,))

remove any class C ¢ classSet; from tempSet;
tempSet = tempSet X ftSet;,, |;

remove any class C ¢ classSety_1 from tempSet;
candidateSet = candidateSet U tempSet;

Fig. 7. Ancestor class set generation procedure.

all these classes are determined to be large classes in the
mediator by LCS.

After we classify the leaf classes in classlnfo, for each
discovered large class C, we can get its descendent leaf
classes, which can be used to generate a new table
sourceln fo. by selecting relative tuples for its descendent
leaf classes from sourcelnfo. Next, we apply the Apriori ([3])
algorithm to find overlapping sources. In order to apply the
Apriori on our data in sourcelnfo., we do a minor change
to the algorithm. Usually, Apriori takes as input a list of
transactions, while, in our case, it is a list of source sets with
common tuple counts. So, every time an itemset appears in
a transaction, the count of the itemset is increased by 1,
while, in our case, every time we find a superset of a
sourceSet in sourcelnfo., the count of the sourceSet is
increased by the actual count of the superset.

The candidate source sets will include all the combina-
tions of the sources, with

Algorithm residualCoverage (s: source; §s: selected sources;
S.: constraint source set)
n = the number of sources in §S;
if (S.# 0) then p = the position of S’s last source in S;
else p=0;
Let resCoverage = 0;
if the overlap statistics for the source set S, U {s}
are present in the learned statistics;
//This means their overlap is > 7.
for i=p+1Li<mi++)
Let 5. = 8, U {the i source in 8,};
//keep order of sources in §,§ same as in S
resCoverage = resCoverage-residualCoverage(s, Ss, §é),
end for N
resCoverage = resCoverage + (—1)15loverlap;
end if
return resCoverage;

End residualCoverage;

Fig. 8. Algorithm for computing residual coverage.

1-sourceSets, 2-sourceSets, . .., n-sourceSets,

where n is the total number of sources. In order to use
Apriori, we have to decide a minimum support threshold,
which will be used to prune source sets with few
overlapping answers. Once the frequent source sets from
the table sourcelnfo. have been found, we can compute the
overlap probability of the sources {S1,5s,...,S;} in class C
by using the following formula:

(A t({S1,52,...,5
P((Sl/\SQ/\/\Sk”C):suppor coun ({ 1,02, ) k})

support_count(C')

Here, the support_count(C) is just the total number of tuples
in the table sourcelnfo..

6 USING THE LEARNED STATISTICS

In this section, we consider the question of how, given a
user query, we can rank the sources to be accessed, using
the learned statistics.

6.1 Mapping Users’ Queries to Abstract Classes
After we run the LCS algorithm, we will get a set of large
classes having parent-child relations between them. In
Fig. 2, solid frame lines are discovered large classes. As
we can see, some classes may have multiple ancestor
classes. For example, the class (ICDE,01) has both the class
(DB,01) and class (ICDE,RT) as it’s parent class. In order to
use the learned coverage and overlap statistics of the large
classes, we need to map a user’s query to a discovered large
class. The mapping is done as follows:

1. If classificatory attributes are bound in the query,
then find the lowest ancestor abstraction class with
statistics® for the features of the query.

2. If no classificatory attribute is bound in the query,
then we do one of the following,

6. If we have multiple ancestor classes, the lowest ancestor class with
statistics means the ancestor class with the lowest support counts among all
the discovered large classes.
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e Check if any association rules between the
nonclassificatory and classificatory attributes
have been mined.” If available, then use non-
classificatory attributes as features of the query
to get statistics, go to Step 1.

e Present the discovered classes to the user and
take the user’s feedback to select a class.

e Use the root of the hierarchy as the class of the
query.

6.2 Computing Residual Coverage

In order to find a plan with the top k sources, we start by
selecting the source with the highest coverage ([10]) as the
first source. We then use the overlap statistics to compute
the residual coverages of the rest of the sources to find the
second best, given the first, the third best, given the first and
second, and so on, until we get a plan with the desired
coverage. In particular, after selecting the first and second
best sources S; and S, for the class C, the residual coverage
of a third source S3 can be computed as:

P(S5 A =81 AS,|C) = P(S5|C) — P(S5 A S1|C)
— P(53 A SQ|C) + P(Sg A Sy A S1|C),

where P(S; A —S;) is the probability that a random tuple
belongs to S; but not to .S;. In the general case, after we had
already selected the best n sources S = {5,55,...,5,}, the
residual coverage of an additional source S can be
expressed as:

P(S A=S8|C) = P(S|C)

+ XL: (—1)*
k=1

where P(S A -8 |C) is shorthand for

P(SASHO) |,

>

~ N~

SKCSA|SH|=k

P(SA=Sy A=Sy A ... A=S,|C).

A naive evaluation of this formula would require
2" accesses to the database of learned statistics, correspond-
ing to the overlap of each possible subset of the n sources
with source S. It is, however, possible to make this
computation more efficient by exploiting the structure of
the stored statistics. Specifically, recall that we only keep
overlap statistics for source sets with a sufficient number of
overlap tuples and assume that source sets without overlap
statistics are disjoint (thus, their probability of overlap is
zero). Furthermore, if the overlap is zero for a source set s,
we can ignore looking up the overlap statistics for supersets
of § since they will all be zero by the antimonotone property.

To illustrate the above, suppose S;, Ss, S3, and Sy are
sources exporting tuples for class C. Let P(S,|C), P(S:|C),
P(S3|C), and P(S,|C) be the learned coverage statistics, and
P(S1 A S5|C) and P(S; A S3|C) be the learned overlap
statistics. The expression for computing the residual cover-
age of Ss, given that S; and S, are already selected, is:

7. In order to simplify the problem, we did not discuss this kind of
association rule mining in this paper, but it is just a typical association rule
mining problem. A simple example would be to learn the rules like:
J.Ullman — Databases with high enough confidence and support.

MAY 2005

PS5 A =81 A —S|C) = P(S]C) — P(S5 A Si|C)
=0
— P(Sg A SQ|C) + P(Sg A ST A S2|C)
—_——
=0 since {S3,51}C{52,51,5}

We note that, once we know P(S3 A 51|C) is zero, we
can avoid looking up P(S5 A Sy A S3|C), since the latter set
is a superset of the former. Fig. 8 presents an algorithm
that uses this structure to evaluate the residual coverage
in an efficient fashion. In particular, this algorithm will cut
the number of statistics lookups from 2" to R + n, where
R is the total number of overlap statistics remembered for
class C and n is the total number of sources already
selected. This consequent efficiency is critical, in practice,
since computation of residual coverage forms the inner
loop of any query processing algorithm that considers
source coverage. The inputs to the algorithm in Fig. 8 are
the source s for which we are going to compute the
residual coverage, and the currently selected set of sources
S,. The auxiliary datastructure S, initially set to {), is used
to restrict the source overlaps considered by the residual
Coverage algorithm. In each invocation, tlle algorithm first
looks for the overlap statistics for {s} U S.. If this statistic
is among the learned (stored) statistics, the algorithm
recursively invokes itself on supersets of {s}US,. Other
wise, the recursion stops in that branch (eliminating all
the redundant superset lookups).

7 EXPERIMENTAL SETUP

We evaluated the efficiency and effectiveness of our
statistics learning system StatMiner using both controlled
data sets and BibFinder, a popular computer science
bibliography mediator that we developed. We will start
by describing the experimental setup for both scenarios.

7.1 Controlled Data Sets

To evaluate our techniques, we set up a set of “remote” data
sources accessible on the Internet. The sources were
populated with synthetic data generated using the data
generator from TPC-W benchmark [25] (see below). The
TPC sources support controlled experimentation as their
data distribution (and, consequently, the coverage and
overlap among Web sources) can be varied by us.

We designed 25 sources using 200,000 tuples for the
relation Books. We chose Books(Bookid, Pubyear, Subject,
Publisher, Cover) as the relation exported by our sources.
The decision to use Books as the sample schema was
motivated by the fact that multiple autonomous Internet
sources projecting this relation exist and, in the absence of
statistics about these sources, only naive mediation services
are currently provided. Pubyear, Subject, and Cover are
used as the classificatory attributes in the relation Books. To
evaluate the effect of the resolution of the hierarchy on
ranking accuracy, we designed two separate hierarchies for
Subject, containing 180 and 40 leaf nodes, respectively. Leaf
node values for Pubyear range from 1980 to 2001, while
Cover is relatively small with only five leaf nodes. The
Subject hierarchy was modeled from the classification of
books given by the online bookstore Amazon [2]. The
distribution of data in the sources was determined by
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controlling the values used to instantiate the classificatory
attributes Pubyear, Subject, and Cover.

7.2 BibFinder Testbed

We use BibFinder as a testbed to evaluate our ability to learn
an approximate data distribution from real Web data and
also to test the effect of various probing techniques we use.
Six structured Web bibliography data sources in BibFinder:
DBLP, CSB, ACM DL, ACM Guide, Science Direct, and
IEEExplore are used in our experimental evaluation. We
chose paper(title, author, conference/journal, year) as the
mediated relation. Conference/journal and Year are chosen
as the classificatory attributes. Since it’s difficult to get a
good AV hierarchy for the conference/journal attribute, we
use the GAVH and FAVH algorithms described in Section 4
to automatically learn the conference/journal hierarchy. We
gathered 604 conference and journal names from DBLP,
ACM DL, and Science Direct Web pages. These names are
used to generate probing queries and to generate
AV hierarchy for the conference/journal attribute. The
AV hierarchy Year consists of the years from 1954 to 2003.
The space of all the probing queries is the Cartesian product
of the 604 conference/journal names and the 50 years. We
used a set of 578 real queries asked by BibFinder users as the
test queries. At this time, we are assuming that only queries
binding both conference/journal and year will be consid-
ered “safe” by the Web sources.

7.2.1 Query Sampling

As mentioned in Section 3.1, we generate the set of sample
probing queries using both Simple Random Sampling and
Stratified Random Sampling. After generating the set of
spanning queries, we use the two sampling approaches to
extract a sample set of queries to probe the data sources.
Simple Random sampling picks the samples from the
complete set of queries, whereas, to employ the Stratified
Random sampling approach, we have to further classify the
queries into various strata. The strata is chosen as the
abstract feature of any one classificatory attribute. All the
queries that bind the attribute using leaf values subsumed
by a strata are mapped to that strata. Selecting root as the
strata will make Stratified Random Sampling equal to
Simple Random, where selecting the leaf nodes as strata
will be equal to issuing all the spanning queries.

7.3 Algorithms and Evaluation Metrics

To evaluate the accuracy of the statistics learned by
StatMiner, we tested them using two simple plan generation
algorithms. Our mediator implements the Simple Greedy
and Greedy Select algorithms described in [10] to generate
query plans using the source coverage and overlap statistics
learned by StatMiner. Given a query, Simple Greedy
generates a plan by assuming all sources are independent
and greedily selects the top k sources ranked according to
their coverages. On the other hand, Greedy Select generates
query plans by selecting sources with high residual
coverages calculated using both the coverage and overlap
statistics (see Section 6.2).

We evaluate the plans generated by both the planners for
various sets of statistics learned by StatMiner for differing
threshold values and AV hierarchies. We compare the

precision of plans generated by both the algorithms. We
define the plan precision to be the fraction of sources in the
estimated plan, which turn out to be the real top k sources
after we execute the query. Let TopK refer to the real top
k sources and Selected(p) refer to the k sources selected in
the plan p. Then, the precision of plan p is:

sion(p) |TopK N Selected(p)|
recision(p) =
b P |Selected(p)|

The average precision and number of answers returned by
executing the plan are used to estimate the accuracy of the
learned statistics.

8 EXPERIMENTAL RESULTS

8.1 Results over Controlled Data Sources

In this section, we present results of experiments conducted
to study the variation in pruning power and accuracy of our
algorithms for different class size thresholds 7.. In parti-
cular, given a set of sources and probing queries, our aim is
to show that we can trade time and space for accuracy by
increasing the threshold 7. Specifically, by increasing
threshold 7., the time (to identify large classes) and space
(number of large classes remembered) usage can be reduced
with a reduction in accuracy of the learned estimates. All
the experiments presented here were conducted on
500MHZ Sun-Blade-100 systems with 256MB main memory
running under Solaris 5.8. The sources in the mediator are
hosted on a Sun Ultra 5 Web server located on campus.

8.1.1 Effect of Hierarchies on Space and Time
To evaluate the performance of our statistics learner, we
varied 7, and measured the number of large classes and the
time utilized for learning source coverage statistics for these
large classes. Fig. 9a compares the time taken by LCS to
learn rules for different values of 7.. Fig. 9b compares the
number of pruned classes with the increase in value of ..
We represent 7. as a percentage of the total number of
tuples in the relation. The total tuples in the relation are
calculated as the number of unique tuples generated by the
probing queries. As can be seen from Fig. 9a, for lower
values of threshold 7., LCS takes more time to learn the
rules. For lower values of 7., LCS will prune a smaller
number of classes and, hence, for each class in ClassInfo,
LCS will generate large number of rules. This, in turn,
explains the increase in learning time for lower threshold
values.

In Fig. 9b, with an increase in the value of 7., the number
of small classes pruned increases and, hence, we see a
reduction in the number of large classes. For any value of 7,
greater than the support of the largest abstract class in the
classSet, LCS returns only the root as the class to remember.
Figs. 9a and 9b show LCS performing uniformly for both
Small and Large hierarchy. For both hierarchies, LCS
generates a large number of classes for small threshold
values and requires more learning time. From Figs. 9a and
9b, we can see that the amount of time used and classes
generated (space requirement) for the Large hierarchy is
considerably higher than for Small hierarchy.
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8.1.2 Accuracy of Estimated Coverages

To calculate the error in our coverage estimates, we used
the prototype implementations of the “Simple Greedy”
and “Greedy Select” algorithms and a subset of our
spanning queries as test queries. We compare the plans
generated by these algorithms with a naive plan
generated by Random Select. The random select algo-
rithm arbitrarily picks k sources without using any
statistics. The source rankings generated by all three
algorithms is compared with the “true ranking” deter-
mined by querying all the sources. Fig. 10b compares the
precision of plans generated by the three approaches with
respect to the true ranking of the sources.

As can be seen from Fig. 10a, for all values of 7., Greedy
Select gives the best plan, while Simple Greedy is a close
second, but the Random Select performs poorly. The results
are according to our expectations since Greedy Select
generates plans by calculating residual coverage of sources
and thereby takes into account the amount of overlap
among sources, while Simple Greedy calls sources with
high coverages, thereby ignoring the overlap statistics and,
hence, generating less number of tuples.

In Fig. 10b, we compare the precision of plans generated
by the three approaches. We define the precision of a plan
to be the fraction of sources in the estimated plan, which
turn out to be the real top k sources after we execute the
query. Fig. 10b shows the precision for the top five sources

in a plan. Again, we can see that Greedy Select comes out
the winner. The decrease in precision of plans generated for
higher values of threshold can be explained from Fig. 9b. As
can be seen, for larger values of threshold, more leaf classes
get pruned. A mediator query always maps to a particular
leaf class. But, for higher thresholds, the leaf classes are
pruned and, hence, queries get mapped to higher level
abstract classes. Therefore, the statistics used to generate
plans have lower accuracy and, in turn, generate plans with
lower precision.

Altogether the experiments on these controlled data sets
show that our LCS algorithm uses the association mining-
based approach effectively to control the number of
statistics required for data integration. An ideal threshold
for a mediator relation would depend on the number and
size of AV hierarchies. For our sample Books mediator, an
ideal threshold for LCS would be around 0.75 percent, for
both the hierarchies, where LCS effectively prunes a large
number of small classes and yet the precision of plans
generated is fairly high. We also bring forth the problems
involved in trying to scale up the algorithm to larger
hierarchies.

8.2 Results over BibFinder

Given that the cost of probing tends to dominate the
statistics gathering approach, we wanted to see how
accurate the learned statistics are with respect to the two
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probing strategies. We used BibFinder sources for evaluating
the probing strategies. The set of probing queries are
generated by taking a Cartesian product of the values of the
conference/journal attribute and year attribute. The total
number of queries generated is 30,200. For both the probing
strategies, we generated five query sets having different
number of probing queries: 60(0.2%), 302(1%), 604(2%),
3,020(10%), and 6,040(20%). Specifically, in the stratified
sampling, the first set of 60 probing queries is generated by
randomly selecting 60 conference/journal names without
replacement and, for each name, randomly selecting a year
from the 50 years; the second set of 302 queries is generated
by randomly selecting 60 conference/journal names and,
for each name, selecting five years (one year from each 10
year period); the third set of 602 queries is generated by
selecting all names and, for each name, randomly selecting
a year; the fourth set of 3,020 queries is generated by
selecting all names and for each names selecting five years
(one year from each 10 year period); the fifth set of
6,040 queries is generated by selecting all names and, for
each name, selecting 10 years (one year from each five year
period). In the random sampling strategies, we generate the
sets of queries by randomly selecting 60, 302, 604, 3,020, and
6,040 queries from all the 30,200 queries.

In order to be polite to the Web sources, we probe them
at the rate of three queries per minute. We generated
conference/journal hierarchies using the probing results.
Large query classes were discovered using the learned
conference/journal hierarchy and the year hierarchy.
Coverage and overlap statistics for each discovered large
class are extracted using the probed results. We use a set of
578 real user queries submitted to BibFinder to evaluate the
learned statistics.

In Fig. 11a, we observe the average precision of query
plans for the top three sources for different sampling
strategies and different numbers of probing queries. Here,
we fix the thresholds 7. = 0.1% and 7, = 1%. The query
plans are generated by the greedy select algorithm using the
learned coverage and overlap statistics. From the figure, we
can see that the stratified sampling is doing better than
random sampling when the number of probing queries is
small and the selection of strata is good, especially for the
set of 302 probing queries. For each conference/journal,

probing five years in each 10 year period is much better
than, for each conference/journal, randomly probing one
year in a 50 year period. This is because the large classes
discovered using five year probing results are more likely to
be important conferences/journals than those using one
year probing results. Learning the distribution over the
sources for important conferences/journals will improve
the precision, since users are more interested in these
conferences/journals and the statistics for these conferences
are more representative than those of random conferences/
journals. However, as the number of probing queries
increases, the difference between random and stratified
sampling becomes smaller (as is expected).

In Fig. 11b, we observe the average number of answers
from BibFinder when executing query plans for three
sources for the 578 user queries. The figure illustrates
results for different probing strategies and different number
of probing queries. As we can see, the result is quite
consistent with the plan precision. It is interesting to note
that, when using the statistics learned from the stratified
probing results of 302 queries, BibFinder can actually
provide about 50 percent more answers than by randomly
querying three sources without using any statistics.

The above results are encouraging and show that our
approach of learning and using coverage and overlap
statistics in BibFinder is able to give good results, even for a
very small sample of all probing queries. They also show
that the stratified sampling does much better than random
sampling when a good stratification strategy is chosen, and
the number of probing queries is relatively small.

9 RELATED WORK

Researchers in data integration have long noted the
difficulty in obtaining relevant source statistics for use in
query optimization. There have broadly been two ap-
proaches for dealing with this difficulty. Some approaches,
such as those in [16], [8], [15] develop heuristic query
optimization methods that either do not use any statistics or
can get by with very coarse statistics about the sources.
Others, such as [18], [19], [9], develop optimization
approaches that are fully statistics (cost) based. While these
approaches assume a variety of coverage and response time
statistics, they do not, however, address the issue of
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learning the statistics in the first place—which is the main
focus of the current paper.

There has been some previous work on using probing
techniques to learn database statistics both in multidatabase
literature and data integration literature. Zhu and Larson
[28] describe techniques for developing regression cost
models for multidatabase systems by selective querying.
Adali et al. [1] discuss how keeping track of rudimentary
access statistics can help in doing cost-based optimizations.
More recently, the work by Gruser et al. [12] considers
mining response time statistics for sources in a data
integration scenario. Given that both coverage and response
time statistics are important for query optimization (c.f. [19],
[9]), our work can be seen as complementary to theirs.

The utility of quantitative coverage statistics in ranking
the sources is first explored by Florescu et al. [10] and, more
recently, by Doan and Halevy [9]. The primary aim of both
these efforts, however, was on the “use” of coverage
statistics and they do not discuss how such coverage
statistics could be learned. In contrast, our main aim in this
paper is to provide a framework for learning the required
statistics. We do share their goal of keeping the set of
statistics compact.

There has also been a lot of work on selecting text
collections in the domain of distributed information
retrieval (or metasearch engines). To calculate the relevance
of a text database to a keyword query, most of the work
([11], [271, [17], [4]) uses the statistics about the document
frequency of each single-word term in the query. The
document frequency statistics are similar to our coverage
statistics if we consider an answer tuple as a document. This
suggests that an approach based on coverage and overlap
statistics will also be beneficial in text databases. Indeed,
recent work in our research group [14] adapted the ideas of
StatMiner to the problem of text database (“collection”)
selection. The resulting approach has been shown to be
superior to the traditional collection selection approaches
such as CORI [4].

10 DiscussioN AND FUTURE DIRECTIONS

In this section, we will discuss some practical issues
regarding the realization of the StatMiner approach and
outline several future directions for this work.

10.1 Large versus Frequent Classes

As we mentioned in Section 2.3, ideally, we would like to
measure the importance of a class in terms of the frequency
of user queries to that class. This, however, requires that we
have access to the distribution of user queries. In the
absence of such information, we make the plausible
assumption that the frequency with which a query class is
accessed is correlated with the size of that query class.® Of
course, if we have access to the distribution of queries, we
could directly use them to learn coverage and overlap
statistics in terms of “frequent” rather than “large” classes.
In fact, in our more recent work [20], we present a

8. For example, in the BibFinder scenario, if the number of papers for a
conference is large, we assume the BibFinder users will be more interested in
this conference than some small conferences. The reason why good
conferences usually are large is that they usually exist longer. If a
conference has been held for 30 years, then the number of papers published
by the conference will usually be larger than that by a conference with only
several years of history.
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complementary approach that assumes that the mediator
will maintain a query list which records all the queries
submitted to it and use this real query distribution to
discover frequent query classes and to learn statistics with
respect to these classes.

10.2 Statistics for Handling Join Queries

In this paper, we focused on learning learn coverage and
overlap statistics of select and project queries. The techni-
ques described in this paper can, however, be extended to
join queries. Specifically, we consider the join queries with
the same subgoal relations together. For the join queries
with the same subgoal relations, we can classify them based
on their bound values and use similar techniques for
selection queries to learn statistics for frequent join query
classes. The primary difference here is in the methodology
used to identify the classificatory attributes. Instead of
selecting classificatory attributes from a single relation, we
will need to select attributes among all the relations in the
join query. Moreover, we can consider the join results as
one big relation and join query can be considered as a
select-project query over this join relation. Once we have the
classificatory attributes and the join result relation, we can
use the LCS algorithm to discover large classes.

10.3 Combining Coverage and Response-Time
Statistics

In the current paper, we assumed a simple coverage-based
cost model to rank the available sources for a query.
However, users may be interested in plans that are optimal
with regard to a variety of possible combinations of
different objectives. For example, some users may be
interested in fast execution with reasonable coverage, while
others may require high coverage even if with higher
execution cost. In [19], we present the Multi-R query
planning framework that uses the gathered coverage and
response time statistics to support multiobjective query
optimization in data integration. Our ongoing work on the
Havasu prototype data integration system combines the
Multi-R query planning framework and the StatMiner
statistics learning approach to provide a comprehensive
query processing methodology in the presence of Web
sources.

11 CONCLUSION

In this paper, we motivated the need for automatically
learning the coverage and overlap statistics of sources for
efficient query processing in a data integration scenario. We
then presented a set of connected techniques that estimate
the coverage and overlap statistics while keeping the
needed statistics tightly under control. Our specific con-
tributions include:

e a model for supporting a hierarchical classification
of the set of queries,

e an approach for estimating the coverage and overlap
statistics using association rule mining techniques,
and

e a threshold-based modification of the mining tech-
niques for dynamically controlling the resolution of
the learned statistics.



NIE ET AL.: EFFECTIVELY MINING AND USING COVERAGE AND OVERLAP STATISTICS FOR DATA INTEGRATION 651

We described the details and implementation of our
approach. We also presented an empirical evaluation of
the effectiveness of our approach in both controlled data
sources and in the context of BibFinder with real online
sources. Our experiments demonstrate that:

e We can systematically trade time and space con-
sumption of the statistics computation for accuracy
by varying the large class thresholds.

o The learned statistics provide tangible improve-
ments in the source ranking, which, in turn, leads
to improved plan precision in top-K source query
plans. The improvement is proportional to the type
(coverage alone versus coverage and accuracy) and
granularity of the learned statistics.
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