A Formal Framework for Studying Interaction in Human-Robot Societies

Tathagata Chakraborti!

Department of Computer Science!
Arizona State University
Tempe, AZ 85281, USA
{tchakra2, yzhan442, rao}@asu.edu

Abstract

As robots evolve into an integral part of the human
ecosystem, humans and robots will be involved in a
multitude of collaborative tasks that require complex
coordination and cooperation. Indeed there has been
extensive work in the robotics, planning as well as
the human-robot interaction communities to understand
and facilitate such seamless teaming. However, it has
been argued that their increased participation as inde-
pendent autonomous agents in hitherto human-habited
environments has introduced many new challenges to
the view of traditional human-robot teaming. When
robots are deployed with independent and often self-
sufficient tasks in a shared workspace, teams are often
not formed explicitly and multiple teams cohabiting an
environment interact more like colleagues rather than
teammates. In this paper, we formalize these differences
and analyze metrics to characterize autonomous behav-
ior in such human-robot cohabitation settings.

Robots are increasingly becoming capable of performing
daily tasks with accuracy and reliability, and are thus get-
ting integrated into different fields of work that were un-
til now traditionally limited to humans only. This has made
the dream of human-robot cohabitation a not so distant real-
ity. We are now witnessing the development of autonomous
agents that are especially designed to operate in predomi-
nantly human-inhabited environments often with completely
independent tasks and goals. Examples of such agents in-
clude robotic security guards like Knightscope, virtual pres-
ence platforms like Double and iRobot Ava, and even au-
tonomous assistance in hospitals such as Aethon TUG. Of
particular fame are the CoBots (Rosenthal, Biswas, and
Veloso 2010) that can ask for help from unknown humans,
and thus interact with agents not directly involved in its plan.
Indeed there has been a lot of work recently in the context
of “human-aware” planning, both from a point of view of
path planning (Sisbot et al. 2007; Kuderer et al. 2012) and
task planning (Koeckemann, Pecora, and Karlsson 2014;
Cirillo, Karlsson, and Saffiotti 2010), with the intention of
making the robot’s plans socially acceptable, e.g. resolv-
ing conflicts with the plans of fellow humans. Even though
all of these scenarios involve significantly different levels
of autonomy from the robotic agent, the underlying theme
of autonomy in such settings involves the robot achieving
some sense of independence of purpose in so much as its
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existence is not just defined by the goals of the humans
around it but is rather contingent on tasks it is supposed to
be achieving on its own. Thus the robots in a way become
colleagues rather than teammates. This becomes even more
prominent when we consider interactions between multi-
ple independent teams in a human-robot cohabited environ-
ment. We thus postulate that the notions of coordination
and cooperation between the humans and their robotic col-
leagues is inherently different from those investigated in ex-
isting literature on interaction in human-robot teams, and
should rather reflect the kind of interaction we have come
to expect from human colleagues themselves. Indeed recent
work (Chakraborti et al. 2015a; Chakraborti et al. 2015b;
Talamadupula et al. 2014) hints at these distinctions, but has
neither made any attempt at formalizing these ideas, nor pro-
vided methods to quantify behavior is such settings. To this
end, we propose a formal framework for studying inter-team
and intra-team interactions in human-robot societies, show
how existing metrics are grounded in this framework and
propose newer metrics that are useful for evaluating perfor-
mance of autonomous agents in such environments.

1 Human Robot Cohabitation

At some abstracted level, agents in any environment can be
seen as part of a team achieving a high level goal. Con-
sider, for example, your university or organization. At a mi-
cro level, it consists of many individual labs or groups that
work independently on their specific tasks. But when taken
as a whole, the entire institute is a team trying to achieve
some higher order tasks like increasing its relative standing
among its peers or competitors. So in the discussion that fol-
lows, we talk about environments, and teams or colleagues
acting within it, in the context of the goals they achieve.

1.1 Goal-oriented Environments

Definition 1.0 A goal-oriented environment is defined as
atuple £ = (F,0,®,G, A), where F is a set of first order
predicates that describes the environment, and O is a set
of objects in the environment, ® C Q is the set of agents,
G = {9 | g C Fo} is the set of goals that these agents
are tasked with, and A C Q is the set of resources that are
required by the agents to achieve their goals. Each goal has



a reward R(g) € RT associated with it.!

These agents and goals are, of course, related to each
other by their tasks, and these relationships determine the
nature of their interactions in the environment, i.e. in the
form of teams or colleagues. Before we formalize such rela-
tions, however, we would look at the way the agent models
are defined. We use PDDL (Mcdermott et al. 1998) models
for the rest of the discussion, as described below, but most of
the discussion easily generalizes to other modes of represen-
tation. The domain model Dy of an agent ¢ € @ is defined
as Dy = (Fg, Ag), where A is a set of operators available
to the agent. The action models a € A, are represented as
a = (C,,P,,E,) where C,, is the cost of the action, P, C
Fg is the list of pre-conditions that must hold for the action
a to be applicable in a particular state S C Fg of the envi-
ronment; and E, = (effT(a),eff~(a)), ef f*(a) C Fo
is a tuple that contains the add and delete effects of applying
the action to a state. The transition function §(-) determines
the next state after the application of action « in state .S as
§(a,S) = (S\eff (a))Uefft(a)if P, C S; L otherwise.

A planning problem for the agent ¢ is given by the tuple
II, = (F,0,Dy,14,Gy), where Iy C Fp is the initial state
of the world and G4 C Fg is the goal state. The solution to
the planning problem is an ordered sequence of actions or
plan given by 74 = (a1, as, ... ,a‘,r(m, a; € Ag such that
d(mg,Ls) = G4, where the cumulative transition function is
given by (7, 5) = 0((az,as,...,ax),d(a1,s)). The cost
of the plan is given by C(my) = Zaem C,.

We will now introduce the concept of a super-agent
transformation on a set of agents that combines the capa-
bilities of one or more agents to perform complex tasks
that a single agent might not be able to do. This will help
us later to formalize the nature of interactions among agents.

Definition 1.1a A super-agent is a tuple © = (6, Dy)
where 6 C ® is a set of agents in the environment £, and Dy
is the transformation from the individual domain models to
a composite domain model given by Do = (Fo, g Ao)-

Note that this does not preclude joint actions among
agents, because some actions that need that need more than
one agent (as required in the preconditions) will only be
doable in the composite domain.

Definition 1.1b  The planning problem of a super-agent ©
is similarly given by llg = (F,Q, Dy, 1y, Gy) where the
composite initial and goal states are given by Iy = U¢>69 Ly
and Gy = |J b0 G respectively. The solution to the plan-
ning problem is a composite plan w9 = (1, fi2, - - -, fljmg|)
where pi; = {ay, ..., a9}, (@) =a € Ay Vu € g such
that §' (I, wg) |= G, where the modified transition function
6'(1,8) = (8 \ Ugep eff (@) UlUue, eff " (a). We denote
the set of all such plans as Te.

The cost of a composite planis C(mg) = 3 ., > 4c, Ca
and 7 is optimal if ¢’ (I, 79) = Gy == C(m};) < C(my).
The composite plan can thus be viewed as a union of plans
contributed by each agent ¢ € 0 so that ¢’s component can
be written as mg(p) = (a1, as,...,an), a; = u;(P) V y; €

'Sp is S C F instantiated or grounded with objects from Q.

mo. Now we will define the relations among the components
of the environment £ in terms of these agent models.

Definition 1.2 At any given state S C TFg of the
environment &, a goal-agent correspondence is de-
fined as the relation 7 : G — P(®); G, & € &, that
induces a set of super-agents 7(g) = {0 | Illg =
(F,Q, Dy, S, g) has a solution, i.e. 37 s.t. §(m, S) E g}.

In other words, 7(g) gives a list of sets of agents in the en-
vironment that are capable of performing a specific task g.
We will see in the next section how the notions of teammates
and colleagues are derived from it.

1.2 Teams and Colleagues

Definition 2.0 A team T, w.rt. a goal g € G is defined as
any super-agent © = (0, Dp) € 7(g) iff Ao € 0 such that
@/ = <9 \ ¢,D9\¢> andﬂ'@ =Te!.

This means that any super-agent belonging to a particular
goal-agent correspondence defines a team w.r.t that specific
goal when every agent that forms the super-agent plays
some part in the plans that achieves the task described
by g, i.e. the super-agent cannot use the same plans to
achieve ¢ if an agent is removed from its composition.
This, then, leads to the concept of strong, weak, or op-
timal teams, depending on if the composition of the
super-agent is necessary, sufficient or optimal respectively
(note that an optimal team may or may not be a strong team).

Definition 2.0a A team T; = (0, Dy) € 7(g) w.r:t a goal

g € G is strong iff Ap € 0 such that (0 \ ¢, Dg\4) € T(9).
A team Té“’ is weak otherwise.

Definition 2.0b A team T = (0, Do) € 7(g) w.r:t a goal
g € G is optimal iff VO' € 1(g),C(m5) < C(m}).

This has close ties with concepts of required coopera-
tion and capabilities of teams to solve general planning
problems, introduced in (Zhang and Kambhampati
2014), and work on team formation mechanisms and
properties of teams (Shoham and Tennenholtz 1992;
Tambe 1997). In this paper, we are more concerned about
the consequences of such team formations on teaming met-
rics. So, with these different types of teams we have seen
thus far, the question we ask is: What is the relation among
the rest of the agents in the environment? How do these
different teams interact among and between themselves?

Definition 2.1 The set of teams in &€ are defined by the
relation k : G — R(7); G € &, where k(g) € T(g) denotes
the team assigned to the goal g, Vg € G.

This, then, gives rise to the idea of collegiality among
agents, due to both inter-team and intra-team interactions.
Note that how useful or necessary such interactions are
will depend on whether the colleagues can contribute to
each other’s goals, or to what extent they influence their
respective plans, which leads us to the following two
definitions of colleagues based on the concept of teams.

Definition 2.2a Let k(g) = (61, Dy, ), k(g9’) = (02, Dy,)
be two teams in £. An agent ¢1 € 04 is a type-1 colleague
10 an agent ¢ € O when r/'(g) = (61 U ¢1, Do g, ) is a
weak team w.r.t. the goal g.



Definition 2.2b Agents ¢1, p2 € @ are type-2 colleagues
when Vi(g) = (0, Dp) s.t. {¢1,92} N0 # &, {1, 2} &
ONE (g) =(0U{d1, 02}, Dgu{¢1’¢2}> is a weak team.
Thus type-1 colleagues can potentially contribute to the
plans of their colleagues, while type-2 colleagues cannot.
Plans of type-2 colleagues can, however, influence each
other (for example due to conflicts on usage of shared re-
sources), while typel-colleagues are capable of becoming
teammates dynamically during plan execution.

Humans in the loop. Instead of a general set of agents, we
define the set of agents 6 in a super-agent as composition of
humans and robots § = h(0)Ur(6) so that the domain model
of the super-agent is also a composition of the human and
robot capabilities Dy = Uyepn9) Uper(o) Ao = h(Do) U
r(Dg). We denote the communication actions of the super-
agent as the subset ¢(Dy) C Dy.

2 Metrics for Human Robot Interaction
2.1 Maetrics for Human Robot Teams

We will now ground popular (Olsen Jr. and Goodrich 2003;
Steinfeld et al. 2006; Hoffman and Breazeal 2007,
Hoffman 2013) metrics for human-robot teams in our
current formulation.

Task Effectiveness These are the metrics that measure

the effectiveness of a team in completing its tasks.

o Cost-based Metrics - This simply measures the cost
> gen-1(0) C(mg) of all the (optimal) plans a specific
team executes (for all the goals it has been assigned to).

o Net Benefit Based Metrics - This is based on both
plan costs as well as the value of goals and is given by
deﬂ—l(@) R(g) — C(Wé)-

e Coverage Metrics - Coverage metrics for a particular
team determine the diversity of its capabilities in terms of
the number of goals it can achieve [k~ 1(0)].

Team Effectiveness These measure the effectiveness of
(particularly human-robot) teaming in terms of communica-
tion overhead and smoothness of coordination.

o Neglect Tolerance - This measures how long the
robots in a team © is able to perform well with-
out human intervention. We can measure this as
NT = max{|i — j| s.t. (Dg) 4o m5(P)]i : j] = 2}

e Interaction Time - This is given by IT =
S | e(Dg) N w§li] # @}, and measures the
time spent by a team O in communication.

e Robot Attention Demand - Measures how much atten-
tion the robot is demanding and is given by Hﬂj_%

e Secondary Task Time - This measures the “dis-
traction” to a team, and can be expressed as
time not spent on achieving a given goal g, i.e.
STT = |{i | w3l := & A 3/ (s,75) |- g}

e Free Time - F'T' =1 — RAD is a measure of the fraction
of time the humans are not interacting with the robot.

e Human Attention Demand - HAD = FT — h(STT)
where h(STT) = |{i | n§[i]Nh(Dg) := SN (s,78) =
g}|/|7& | is the time humans spend on the secondary task.

e Fan Out - This is a measure of the communication load
on the humans, and consequently the number of robots
that should participate in a human-robot team, and is
proportional to FO o |h(6)|/RAD.

e Interaction Time - Measures how quickly and effectively

interaction takes places as I'T = %

¢ Robot Idle Time - Captures inconsistency or irregularity
in coordination from the point of view of the robotic
agent, and can be measured as the amount of time the
robots are idle, i.e. RIT = |[{i | r(Dg) N w§[i] = 2|

e Concurrent Activity - We can talk of concurrency within
a team as the time that humans and robots are working
concurrently CA; = |[{i | 7(Dg) Nh(Dy) Nm§[i] # @}
and also across teams as the maximum time teams are
operating concurrently CA; = max{|{i | moli] #
I ANrwoli] £ T} VO,0 € R(k)}.

In measuring performance of agents in cohabitation, both
as teammates and colleagues, we would still like to reduce
interactions times and attentions demand, while simultane-
ously increasing neglect tolerance and concurrency. How-
ever, as we will see in Section 3, these metrics do not effec-
tively capture all the implications of the interactions desired
in human-robot cohabitation. So the purpose of the rest of
our paper is to establish metrics that can measure the ef-
fective behavior of human-robot colleagues, and to see to
what extent they can capture desired behaviors of robotic
colleagues suggested in existing literature.

2.2 Metrics for Human Robot Colleagues

We will now propose new metrics that are useful for
measuring collegial interactions, see how they differ from
teaming metrics discussed so far, and then relate them to
existing work on human-robot cohabitation.

Task Effectiveness The measures for task effectiveness
must take into account that agents are not necessarily
involved in their assigned team task only.

e Altruism - This is a measure of how useful it is for
a robotic agent r to showcase altruistic behavior in
assisting their human colleagues, and is given by the ratio
of the gain in utility by adding a robotic colleague to a
team O to the decrease in utility of plans of the teams 7 is
involved in |7 =7 (o, by, )|/ 26=(6,D4) s res A6 |-
For such a dynamic coalition to be useful, 7 must be a
type-1 colleague to the agents 6 € O.

e Lateral Coverage - This measures how deviating from
optimal team compositions can achieve global good in
terms of number of goals achieved by a team, LT =
Yty =n(gyvgeg UET Tl = (57 TN/~ T}
across all the teams that have been formed in £.

e Social Good - Many times, while planning with humans
in the loop, cost optimal plans are not necessarily the
optimal plans in the social context. This is useful to
measure particularly when agents are interacting outside
teams, and the compromise in team utility is compensated
by the gain in mutual utility of colleagues. This can be

expressed as deg{c<7rn(g)> - C<7rf*c(g)>}'



Interaction Effectiveness The team effectiveness mea-
sures need to be augmented with measures corresponding
to interactions among non-team members. While all these
metrics are relevant for robotic colleagues as well, they
become particularly important in human-robot interactions,
where information is often not readily sharable due to
higher cognitive mismatch, so as to reduce cognitive
demand/overload.

e Interaction Time - In addition to Interaction Time for
human-robot teams, and measures derived from it, we
propose two separate components of interaction time for
general human-robot cohabitation scenarios.

- External Interaction Time - This is the time spent by
agents interacting with type-1 colleagues (E1TY).

- Extraneous Interaction Time - This is the time spent
by agents interacting with type-2 colleagues (E175).

o Compliance - This refers to how much actions of an agent
disambiguate its intentions. Though relevant for both, this
becomes even more important in absence of teams, when
information pertaining to goals or plans are not necessar-
ily sharable. Thus the intention should be to maximize
the probability P(Gy = g | s = d(mg[1 : i],1p)), x(g) =
(0, Dy),Vg € G given any stage 4 of plan execution and
P(-) is a generic goal recognition algorithm. This can be
relevant both in terms of disambiguating goals (Keren,
Gal, and Karpas 2014) or explaining plans given a goal
(Zhang, Zhuo, and Kambhampati 2015).

e External Failure - This is the number of times optimal
plans fail when resources are contested among colleagues.

e Stability - Of course with continuous interactions, team
formations change, so this gives a measure of stability of
the system as a whole. If teams x(g) = (61, Dp,) and
k(g) = (02, Dy,) achieves a goal g € G at two different
instances, then stability S = 3 g |01 N 62[/]61]|02].

3 Discussion and Related Work

We will now investigate the usefulness of the proposed met-
rics in quantifying behavioral traits proposed in existing lit-
erature as desirable among cohabiting human and robots.

Human-Aware Planning. In (Koeckemann, Pecora, and
Karlsson 2014, Cirillo, Karlsson, and Saffiotti 2010) the au-
thors talk of adapting robot plans to suit social norms (e.g.
not to vacuum a room while a human is asleep). Clearly,
this involves the robots departing from their preferred plans
to conform to human preferences. In such cases, involving
assistive robots, measures of Altruism and Social Good be-
come particularly relevant, while it is also crucial to reduce
unwanted interactions (E 1T, + EIT5).

Planning with Resource Conflicts. In (Chakraborti et al.
2015b) the authors outline an approach for robots sharing
resources with humans to compute plans that minimize con-
flicts in resource usage. Thus, this line of work is aimed at
reducing External Failures, while simultaneously increasing
Social Good. Measures of Stability and Compliance become
relevant, to capture evolving beliefs and their consequences
on plans. Extraneous Interaction Time is also an important

measure, since additional communication is always a proxy
to minimizing coordination problems between colleagues.

Planning for Serendipity. In (Chakraborti et al. 2015a)
the authors propose a formulation for the robot to produce
positive exogenous events during the execution of the hu-
man’s plans, i.e. interventions which will be useful to the hu-
man regardless of whether he was expecting assistance from
the robot. This work particularly looks at planning for Altru-
ism. Increasing Compliance in agent behavior can provide
better performance in this regard. Further, External Inter-
action is crucial in such cases for forming such impromptu
coalitions among colleagues.

Relation to Metrics in Human Factor Studies It is useful
to see an example of how the general formulation of metrics
we discussed so far are actually grounded in human factors
studies (Zhang et al. 2015) of scenarios that display some as-
pects of collegial interaction. The environment studied was
a disaster response scenario, involving an autonomous robot
that may or may not chose to proactively help the human.
The authors used External Interaction Time or E1T; to mea-
sure the effectiveness of proactive support (how often the
proactive support resulted in further deliberation over goals),
while Lateral Coverage (in terms of number of people res-
cued) showed the effectiveness of proactive support. Further,
qualitative analysis on acceptance and usefulness of agents
that display proactive support are closely related to measures
such as Social Good and Altruism.

Work on Ad-hoc Coalition Formations Given the frame-
work we have discussed thus far, the question is then, apart
from measuring performance, how we can use it to facili-
tate collegial interactions among agents. Especially relevant
in such scenarios are work on ad-hoc coalition formation
among agents sharing an environment but not necessarily
goals (Stone et al. 2010). In (Chakraborti et al. 2016) we
show how this framework may be used to cut down on prior
coordination while forming coalitions.

4 Conclusion and Future Work

In conclusion, we discussed interaction in human-robot so-
cieties involving multiple teams of humans and robots in the
capacity of teammates or as colleagues, provided a formal
framework for talking about various modes of cooperation,
and reviewed existing metrics and proposed new ones that
can capture these different modalities of teaming or colle-
gial behavior. Finally we discussed how such metrics can be
useful in evaluating existing works in human-robot cohabi-
tation. One line of future inquiry would be to see how such
quantitative metrics are complemented by qualitative feed-
back from human factor studies, to establish what the de-
sired trade-offs are, in order to ensure well-informed design
of symbiotic systems involving humans and robots.
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