
Cryptography & Cryptanalysis
Soumya C. Kambhampati
Science
Period 5
12/17/09

! As long as we have been able to communicate, there has been a need for

secrecy and encryption. It started simple with shift ciphers, moved on to Vigenère

ciphers, and reached the modern-day Public/Private cryptography. Throughout time,

there has always been a long never-ending battle between cryptographers and

cryptanalysts. In this project, I hope to better understand how this works, how one can

write, “The quick brown fox jumps over the lazy dog,” and end up with an unintelligible

stream of gibberish: “WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ”, and

have it converted it back into the former. I would also like to implement different

ciphers in Javascript. I got my information from the site “Crypto Club: Cryptography,

the mathematics of secret codes: The Project for Children” [1], a project sponsored by

National Science Foundation, and “Codes, Ciphers, & Codebreaking” [2]. I am also

reading “The Code Book: The Science of Secrecy from Ancient Egypt to Quantum

Cryptography” [3] to get additional details. Please note that I have not learned about all

of the ciphers: the ones I have a complete understanding of are in this paper.

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

Ciphers!& How to Decode Them

The example above is, actually one of the

easier ciphers, known as the shift cipher. To

encode, one simply moves each letter down

fixed positions in the alphabet, as shown in

the figure on the right. This can also be

expressed algebraically using modular

arithmetic. If you think of A-Z in terms

of their positions 0-25, and s is the

shift, then the code for a plain text

letter x will simply be (x + s) mod 26.

Here u mod v is just the remainder

when you divide u by v. To decipher

ciphertext y, you do (y - s) mod 26.

! To the crack the cipher, you do

something called frequency analysis. Some letters in the alphabet are used more than

others in text, as is shown on the left. For example the vowel “E” and the consonant

“T” are used more frequently in English than “J”. The cryptanalyst will match this with

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://en.wikipedia.org/wiki/File:Caesar3.svg

http://en.wikipedia.org/wiki/File:English-slf.png

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya
http://en.wikipedia.org/wiki/File:Caesar3.svg
http://en.wikipedia.org/wiki/File:Caesar3.svg
http://en.wikipedia.org/wiki/File:English-slf.png
http://en.wikipedia.org/wiki/File:English-slf.png

the frequency of letters in the message and attempt to fill in obvious letters. Then, the

cryptanalyst will guess letters that will make the code into plausible plaintext.

! The Vigenère cipher is a more complex version of shift cipher. It uses two things

to encode plaintext: a keyword, and a Vigenère square, like the one on the left. It takes

26 alphabets, each one moving one to the left. To encode, you take a keyword and

repeat it until it is matching in length with the plaintext. Assuming once again that

letters A-Z are numbers 0-25, the code Ci for

each plain text letter Pi with the corresponding

keyword letter Ki is simply Ci = (Pi+Ki) mod

26.

 This modulus addition can also be done in

terms of the Vigenère square shown on the

right. For each letter, you find the row with the

letter in your keyword and the column with the

plaintext letter. On the letter on which the row and

column intersect is the ciphertext. For example,

suppose you want to encrypt the word “HI” with the keyword “MOM”. For the first letter,

“H”, you would get the first letter in the keyword, “M”, and find the “M” row. Then, you

would find the column for “H”. The encrypted letter would be “T”. The entire ciphertext

would be “TW”.

 ! Cracking the Vigenère cipher is much harder than a simple shift cipher, because

it is polysyllabic. That means that the same letters in plaintext can be represented by

different letters in ciphertext. So, this renders frequency analysis useless, earning it the

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://en.wikipedia.org/wiki/
File:Vigenère_square.svg

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya
http://en.wikipedia.org/wiki/File:Vigen
http://en.wikipedia.org/wiki/File:Vigen
http://en.wikipedia.org/wiki/File:Vigen
http://en.wikipedia.org/wiki/File:Vigen

nickname “le chiffre indéchiffrable”, (French for “the unbreakable cipher”). But, there is

one inherent flaw in the Vigenère cipher: if the keyword is guessed, you can quickly

unravel the plaintext message. The problem is that it is nearly impossible to guess a

keyword. So, one must us the Kasiski test to crack the cipher. The test relies upon

the plaintext having repeated words, like “An” that have been encrypted with the same

part of the keyword. If they are, you should find repeated segments of ciphertext.

Measure the letter distance between the beginning of one segment and the letter before

the beginning of the other segment. Find all of the factors of the distance. These are

the possible key lengths. Then, repeat this process on other repeated segments of

ciphertext. Continue doing this until you narrow the key length down to one number.

You put the ciphertext in as many columns as letters in the keyword, with each column

corresponding to a letter in the keyword. This effectively breaks the Vigenère cipher

into a shift cipher, which can be solved using frequency analysis.

! One major shortcoming of both the Vigenère cipher and the Shift cipher was the

need for both parties (people who are transmitting encrypted messages) to know the

keyword for the message. If the keyword was intercepted, the eavesdropper would

know exactly what the message said. NSA and other government agencies used their

bottomless budget to deliver the keyword to the recipient via a trustworthy person. This

did not make much sense as this ʻtrustworthyʼ person might sell this keyword to the

highest bidder, and if he was trustworthy, it made no sense to send the message

separately. To solve this problem, NSA would send ʻpadsʼ of keywords which were to be

used in a certain order, but this meant that a single shady keyword deliverer could mean

a serious security breach. Additionally, normal companies could not use this method

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

because it was too expensive. There needed to be a cipher that could be used to

exchange messages without the recipient knowing the mailerʼs keyword.

! Public-key cryptography is an asymmetric algorithm, so it, unlike symmetrical

algorithms, does not require a secure initial exchange of keywords. It can be easily

described by this analogy; Bob wants to sent a

message to Alice, but does not want anyone to

read it, so Bob puts a padlock on the box that

contains the message, and sends it to Alice. Alice

puts her own padlock onto the box, and sends it

back to Bob. Bob uses his key to take off his

padlock, and sends it back to Alice. Alice simply

has to unlock the box with her key, and then can

read the message, without ever receiving a key

from Bob.

! This entire process is compressed into a single exchange of data. In public-key

cryptography, you have a public and private key. Your public key can be seen by

anyone, and your private key is secret; only you know can know it. If Bob wants to send

a message to Alice, his message with Aliceʼs public key using algorithms that are non-

reversible (1+x=2 is reversible because you can find what x is, 1) to prevent a malicious

eavesdropper, Eve, from cracking the message. Bob then sends the ciphertext to Alice.

Using her private key, Alice is able to decrypt the received message, and read it without

Eve being able to decode it.

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://en.wikipedia.org/wiki/
File:Public_key_encryption.svg

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya
http://en.wikipedia.org/wiki/File:Public_key_encryption.svg
http://en.wikipedia.org/wiki/File:Public_key_encryption.svg
http://en.wikipedia.org/wiki/File:Public_key_encryption.svg
http://en.wikipedia.org/wiki/File:Public_key_encryption.svg

! One issue with public-key cryptography is that Eve can create a public key in

Aliceʼs name, and if Bob uses that public key instead of Aliceʼs real public key, Alice will

be unable to read the message, and Eve will easily be able to decrypt the false public

key. To prevent this from happening, certification authorities (trusted 3rd parties) will

validate a single public key as Aliceʼs public key, so Eve cannot trick Bob into using a

false public key.

Need

On the web, encryption is used constantly to protect private and important data from

being read by 3rd parties. There needs to be a program that will easily protect private

data in a series of different ways depending on need (private data will be encoded with

harder encryptions than unimportant data).

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://en.wikipedia.org/wiki/
File:Public_key_signing.svg

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya
http://en.wikipedia.org/wiki/File:Public_key_signing.svg
http://en.wikipedia.org/wiki/File:Public_key_signing.svg
http://en.wikipedia.org/wiki/File:Public_key_signing.svg
http://en.wikipedia.org/wiki/File:Public_key_signing.svg

Design Criteria

I will create a website, either from scratch or by expanding my previous website. Inside

the website, I will create a program that encodes text using Vigenere, Shift, and Public-

Key encryption methods. My website will additionally explain what the program is doing,

so that the user understands the basics of what the ciphers are.

Information about the program

Design Criteria Now

Functionality

Capacity

UI

Customizability

Speed

Communicating
with misc
Programs

Error Handling

Programming
Language

Portability

Language Support

Encrypts text with
different methods

Encrypts and Decrypts text with
Vigenere, Shift, and RSA.

Can work with any
kind of text

Can work with any kind of text

Basic Basic

None Can edit source code if necessary

Fast Fast (8-224 kb size) (19-80 ms
download time) (Safari)

None Communicates with default mail
program

None Puts a NaN or Undefined when error
occurs.

Javascript Javascript with other elements (CSS,
HTML) for the GUI

Works on all major
browsers

Works on all major browsers except IE,
with which there is limited compatibility

English alphabet
only

English alphabet only

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

Conclusions

In the website, I have added one modern cipher, RSA to my website. (Last year I had

implemented ancient ciphers, Shift and Vigenere.) I debugged my GUI code, making it

more lean and making it load faster (I did things such as fix tag placements and start/

end tags). I was unable to create text boxes to enter text like I was hoping for, and

instead used the same prompt boxes as before (entering text using boxes required the

text to be sent back to the server, and I was doing strictly client-side (the user does all of

the computations) programming). I was able to successfully do large computations in

very little time by using Fermatʼs Little Theorem (exponentiation by successive

squaring). I additionally changed my websiteʼs layout to make room for RSA. All in all, I

believe that this project was a success, as I successfully implemented RSA and

smoothly transitioned my website to have space for RSA.

Bibliography

[1] Crypto Club: Cryptography, the mathematics of secret codes: The project for

Children. University of Illinois, Chicago. http://cryptoclub.math.uic.edu/indexmain.html

[2] Codes, Ciphers, & Codebreaking. Greg Goebel. http://www.vectorsite.net/

ttcode.html

[3] The Code Book: The Science of Secrecy from Ancient Egypt to Quantum

Cryptography. Simon Singh. Anchor. 2000.

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://cryptoclub.math.uic.edu/indexmain.html
http://cryptoclub.math.uic.edu/indexmain.html
http://www.vectorsite.net/ttcode.html
http://www.vectorsite.net/ttcode.html
http://www.vectorsite.net/ttcode.html
http://www.vectorsite.net/ttcode.html
http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

JavaScript Code
(This contains some unnecessary code)

<script type="text/javascript">
var alphabet = new Array
("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s",
"t","u","v","w","x","y","z");

function num2let(num)
//converts a number into a letter
{
//document.write("num2let " + num);
return(alphabet[num%26]);
}

function let2num(let)
//converts a letter into a number
{
// document.write("let2num " + let);
 for (i=0; i<26; i++)
 {
 if (alphabet[i]==let)
return(i);
}
return(1000);
}
function shift(let,s)
/*this converts a letter into a number, adds the shift, and converts
it back*/
{
// document.write("shift " + let + " " + s);
 return(num2let(let2num(let)+s));

}

function vigenere()
{
 var ptext = prompt("Plaintext", "Type your plaintext here");
 var ktext = prompt("Keyword", "Type your keyword here");
 var ctext = "";

ij=0
for(ij=0;ij<ptext.length;ij++)
 {
 next=ptext.charAt(ij);
 if (let2num(next)==1000) //checking if next is a letter
 {ctext=ctext+next;}
 else
 {
 nextshift=ij%ktext.length; //corresponding position from keytext
 nextkeylet=ktext.charAt(nextshift);
 nextkeyshift=let2num(nextkeylet);
 ctext=ctext+shift(next,nextkeyshift);
 //ctext.write(shift(next,nextkeyshift));
}

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

}
confirm("The Ciphertext is "+ctext);
codemail(ctext);

!
}
function vigenere_decode()
{
 var ptext = prompt("Ciphertext", "Type your ciphertext here");
 var ktext = prompt("Keyword", "Type your keyword here");
 var ctext = "";

ij=0
for(ij=0;ij<ptext.length;ij++)
 {
 next=ptext.charAt(ij);
 if (let2num(next)==1000) //checking if next is a letter
 {ctext=ctext+next;}
 else
 {
 nextshift=ij%ktext.length; //corresponding position from keytext
 nextkeylet=ktext.charAt(nextshift);
 nextkeyshift=let2num(nextkeylet);
 nextkeyshift=26-nextkeyshift;
 ctext=ctext+shift(next,nextkeyshift);
 //ctext.write(shift(next,nextkeyshift));
}
}
confirm("The Plaintext is "+ctext);
codemail(ctext);

//document.write("
");
}

function vigenere_ktext_transfer()
{
 var ctext = prompt("Plaintext", "Type your plaintext here");
 var ktext = prompt("Keyword", "Type your keyword here");
 var ptext = "";
ij=0
for(ij=0;ij<ptext.length;ij++)

 {
 next=ptext.charAt(ij);
 if (let2num(next)==1000) //checking if next is a letter
 {ctext=ctext+next;}
 else
 {
 nextshift=ij%ktext.length; //corresponding position from keytext
 nextkeylet=ktext.charAt(nextshift);
 nextkeyshift=let2num(nextkeylet);
 ctext=ctext+shift(next,nextkeyshift);
 //ctext.write(shift(next,nextkeyshift));
}
{
confirm("The Ciphertext is "+ctext);
codemail(ctext);
parent.location.href='mailto:'+who+'?subject='+what+'&body='+message+'';

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

confirm("When you have sent the mail, wait until the person replies, then
press OK");
}
}
{
var ptext1 = prompt("Ciphertext", "Type your new ciphertext here");
 var ktext1 = prompt("Keyword", "Type your keyword here");
 var ctext1 = "";
{
 next=ptext1.charAt(ij);
 if (let2num(next)==1000) //checking if next is a letter
 {ctext1=ctext1+next;}
 else
 {
 nextshift=ij%ktext.length; //corresponding position from keytext
 nextkeylet=ktext1.charAt(nextshift);
 nextkeyshift=let2num(nextkeylet);
 nextkeyshift=26-nextkeyshift;
 ctext=ctext+shift(next,nextkeyshift);
 //ctext.write(shift(next,nextkeyshift));
}
}
confirm("The Plaintext is "+ctext1);
codemail(ctext1);
confirm("Once you have sent the mail, you have completed your in the keyword
transfer process! Good Job!")
}
}

function shift_cipher()
{
 var ptext = prompt("Plaintext", "Type your plaintext here");
 var s = prompt("Shift", "Type your shift number here");
 var ctext="";

s=parseInt(s);
//document.write("The Ciphertext is ");

ij=0;
for(ij=0;ij<ptext.length;ij++)
 {
 next=ptext.charAt(ij);
 if(let2num(next)==1000)
{
 {ctext=ctext+next;}
}
else
{
ctext=ctext+shift(next,s);
}
}
confirm("The Ciphertext is "+ctext);
codemail(ctext);
}

function shift_cipher_decode()

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

{
 var ptext = prompt("Ciphertext", "Type your ciphertext here");
 var s = prompt("Shift", "Type your shift key here");
 var ctext="";

s=parseInt(s);
s=26-s
//document.write("The Plaintext is ");

ij=0;
for(ij=0;ij<ptext.length;ij++)
 {
 next=ptext.charAt(ij);
 if (let2num(next)==1000) //checking if next is a letter
 {ctext=ctext+next;}
 else
 {ctext=ctext+shift(next,s);}
}

confirm("The Plaintext is "+ctext);
}

function shift_cipher_crack()
{
 var ptext = prompt("Ciphertext", "Type your ciphertext here");
 var ctext="";

for (s=0;s<26;s++)
{
 ij=0;
 ctext="";
 for(ij=0;ij<ptext.length;ij++)
 {
 next=ptext.charAt(ij);
 if (let2num(next)==1000) //checking if next is a letter
 {ctext=ctext+next;}
 else
 {ctext=ctext+shift(next,s);}
 }
{
document.write(ctext+"<p>");
}
}}

function implement_mod_x()
{
! var b = prompt("Enter the base");
! var x = prompt("Enter the exponent");
! var m = prompt("Enter the mod");
! alert(mod_exp(b, x, m));
}

function fact(n)
{
! if (n == 0)
! {
! ! return 1
! }

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

! else
! {
! ! return n * fact(n-1)
! }
}

function choose(n, m)
{
! return fact(n) / (fact(m) * fact(n-m));
}

function implement_choose()
{
! var n = prompt("Number of things you have");
! var m = prompt("Number of things you want to choose");
! alert("You can do it " + choose(n, m) + " ways");
}

function fib(n)
{
! if (n == 1 || n == 2)
! {
! ! return 1;
! }
! else
! {
! ! return fib(n - 1) + fib(n - 2);
! }
}

function fib_whole(n)
{
! var a = 0;
! var b = 1;
! while (b < n)
! {
! ! return b;
! ! a, b = b, a + b;
! }
}

function implement_fib()
{
! var n = prompt("Enter a number");
! alert("The "+ n + "the fibbonaci number is " + fib(n) + ". The golden
ratio is " + (fib(n) / fib(n-1)));
! alert("The fibonnaci series up to " + n + " will the displayed now");
! document.write(fib_whole(n));
}

function mod_exp(base, exp, mod)
{
! // Square by bases
! if (exp == 1)
! {
! ! return base % mod;
! }
! else if (exp % 2 == 0)

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

! {
! ! var z = mod_exp(base, exp/2, mod);
! ! return z * z % mod;
! }
! else
! {
! ! return base * mod_exp(base, exp-1, mod) % mod;
! }
}

function gen_primes(max)
{
! // Make a global array
! primes = new Array();
! primes[0] = 1;
! primes[1] = 2;
!
! // Generate primes
! var i = 0;
! for (i = 3;i < max;i++)
! {
! ! if (check_prime(i) == 1)
! ! {
! ! ! primes.push(i);
! ! }
! }
}

function rand_prime()
{
! return primes[Math.floor(Math.random() * primes.length)]
}

function gen_priv_pub()
{
! gen_primes(1000); // Find all of the primes from 1-1000
! var p = rand_prime(); // Find a random prime from the array primes (2)
! var q = rand_prime();
! while (p == q)
! {
! ! q = rand_prime();
! }
! var n = p * q; // Compute the modulus
! var tot = (p - 1) * (q - 1); // Compute the totient
! var e = rand_prime() // Compute the public key exponent
! while (e >= tot)
! {
! ! e = rand_prime()
! }
! var d = solve_pvt_exp(tot, e);
! priv_pub = [p, q, n, e, d];
! alert(priv_pub.join(", "));
}

function set_key_cookie(array, c_name)
{
! document.cookie = c_name + "=" + escape(array);
}

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

function get_key_cookie(c_name)
{
! if (document.cookie.length>0)
 ! {
 ! ! c_start=document.cookie.indexOf(c_name + "=");
 ! ! if (c_start!=-1)
 !{!
 !! c_start=c_start + c_name.length + 1;
 !! c_end=document.cookie.indexOf(";",c_start);
 !! if (c_end==-1) c_end=document.cookie.length;
 !! return unescape(document.cookie.substring(c_start,c_end));
 !}
 ! }
return "";
}

function check_key_cookie()
{
! var keys = get_key_cookie(keys);
! if (keys != [] && keys != null && keys != "")
! {
! ! alert(keys.join(", "));
! }
! else
! {
! ! gen_priv_pub();
! ! set_key_cookie[priv_pub, keys];
! }
}

function encode_message()
{
! var ptext = prompt("Enter the plain text here");
! var i = 0;
! var enc = new Array();
! for (i = 0;i < (ptext.length);i++)
! {
! ! var let = ptext.charAt(i);
! ! if(let2num(let) !== 1000)
! ! {
! ! ! enc.push(encode_char(let2num(let)));
! ! }
! }
! alert("The encoded message (cipher text) is " + enc.join(";"));
! return enc;
}

function encode_char(message)
{
! while (message >= priv_pub[2])
! {
! ! message = message - 1;
! }
! pad = 5
! return mod_exp(message + pad, priv_pub[3], priv_pub[2]);
}

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

function decode_message()
{
! var ctext = prompt("Enter the cipher text here");
! var ctext_array = ctext.split(";");
! var i = 0;
! var dec = new Array();
! for (i = 0;i < (ctext_array.length);i++)
! {
! ! var num = ctext_array[i];
! ! dec.push(decode_char(num));
! }
! alert("The original message is " + dec.join());
! return dec;
}

function decode_char(message)
{
! var ptext = mod_exp(message, priv_pub[4], priv_pub[2]) - pad;
! return num2let(ptext);
}

function check_prime(j)
{
! var i = 0;
! for (i = 0;i < primes.length;i++)
! {
! ! if (j % primes[i + 1] == 0)
! ! {
 ! ! ! return 0; // not prime
! ! }
! }
 ! return 1; // prime
}

function gcd(a, b)
{
! if (a > b)
! {
! ! a, b = b, a;
! }
! if (a <= 0)
! {
! ! return null;
! }
! if (a == 1 || b - a == 0)
! {
! ! return a;
! }
!
! return gcd(b-a, a);
}

function solve_pvt_exp(tot, e) // Solve the private exponent (d) using a
given equation
{
! var k = 1
! while ((k * tot + 1) % e !== 0)
! {

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

! ! k++
! }
! return ((k * tot + 1) / e)
}

function gcd_implement()
{
! alert(gcd(3, 5));
}

function codemail(message)
{
 if (confirm("Do you want to mail it to a friend?")==true)
 {
 who=prompt("Enter a friend's email address: ","budugu2z@gmail.com");
! what=prompt("Enter the subject: ","I have a coded message for you!");

 if (confirm("Are you sure you want to mail "+who+" with the subject of
"+what+"?")==true)
 {
! ! parent.location.href='mailto:'+who+'?subject='+what+'&body='+message
+'';
}
}
}
</script>

Cryptography & Cryptanalysis - Soumya C. Kambhampati - http://rakaposhi.eas.asu.edu/soumya/

mailto:budugu2z@gmail.com
mailto:budugu2z@gmail.com
http://rakaposhi.eas.asu.edu/soumya
http://rakaposhi.eas.asu.edu/soumya

