SMARTINT: A System for Answering Queries over
Web Databases Using Attribute Dependencies

Ravi Gummadi

!, Anupam Khulbe 2, Aravind Kalavagattu *, Sanil Salvi *, Subbarao Kambhampati °

Department of Computer Science, Arizona State University
Tempe, AZ, USA

lgummadi@asu.edu Zakhulbe@asu.edu

Abstract—Many web databases can be seen as providing
partial and overlapping information about entities in the world.
To answer queries effectively, we need to integrate the in-
formation about the individual entities that are fragmented
over multiple sources. At first blush this is just the inverse of
traditional database normalization problem - rather than go from
a universal relation to normalized tables, we want to reconstruct
the universal relation given the tables (sources). The standard
way of reconstructing the entities will involve joining the tables.
Unfortunately, because of the autonomous and decentralized
way in which the sources are populated, they often do not
have Primary Key - Foreign Key relations. While tables do
share attributes, naive joins over these shared attributes can
result in reconstruction of many spurious entities thus seriously
compromising precision. Our system, SMARTINT is aimed at
addressing the problem of data integration in such scenarios.
Given a query, our system uses the Approximate Functional
Dependencies(AFDs) to piece together a tree of relevant tables
and schemas for joining them. The result tuples produced by our
system are able to strike a favorable balance between precision
and recall.

I. INTRODUCTION

With the advent of web, data available online is rapidly
increasing, and an increasing portion of that data corresponds
to large number of web databases populated by web users. Web
databases can be viewed as providing partial but overlapping
information about entities in the world. Conceptually, each
entity can be seen as being fully described by a universal
relation comprising of all its attributes. Individual sources can
be seen as exporting parts of this universal relation. This pic-
ture looks very similar to the traditional database set-up. The
database administrator (who ensures lossless normalization) is
replaced by independent data providers, and specialized users
(who are aware of database querying language) are replaced
by lay users. These changes have two important implications:

e Ad hoc Normalization by providers: Primary key-
Foreign key (PK-FK) relationships that are crucial for
reconstructing the universal relation are often missing
from the tables. This is in part because partial information
about the entities are independently entered by data
providers into different tables, and synthetic keys (such as
vehicle ids, model ids, employee ids) are simply ignored.'

« Imprecise queries by lay users: Most users accessing
these tables are lay users and are not often aware of all
the attributes of the universal relation. Thus their queries
may be “imprecise” [1] in that they may miss requesting
some of the relevant attributes about the entities under
consideration.

In some cases, such as public data sources about people, the tables may
even be explicitly forced to avoid keeping such key information.

3aravindk@asu.edu

SraoRasu.edu

‘sdsalvi@asu.edu

Car Reviewers

where smart car buyevs starts

Fig. 1.

Overlapping tables in the database

Thus a core part of the source integration on the web can
be cast as the problem of reconstructing the universal relation
in the absence of primary key-foreign key relations, and in
the presence of lay users. (In practice, this reconstruction
problem is buried under the more immediate problem of
schema heterogeneity, as in addition to the loss of PK-FK
information, different tables tend to rename their columns.
Thus, a more accurate generative model for web data sources
is that they are the result of an ad hoc normalization followed
by the attribute name change. However, many reasonable
solutions, such as SIMIFLOOD [2], do exist for computing
attribute mappings to handle the name change problem. Rather
than revisit that problem, in this paper we will simply assume
that attribute name change problem has been addressed by
one of those methods. This allows us to focus on the central
problem of reconstruction of universal relation in the absence
of primary key-foreign key relationships.)

Our aim is to provide a fully automated solution to this
problem. Traditional data integration techniques (such as
GAV/LAV) that rely on manually constructed schema map-
pings are not practical both because of the difficulty of finding
experts able to construct such mappings, and the difficulty of
constructing sound and complete mappings in the absence of
PK-FK relationships.

Motivating Example: As a motivating scenario, let us con-
sider a set of tables (with different schemas) populated in a
Vehicle domain (Figure 1). The universal schema of entity
“Vehicle’ can be described as follows: Vehicle (VIN, vehicle-
type, location, year, door-count, model, make, review, airbags,
brakes, year, condition, price, color, engine, cylinders, capac-

ity, power, dealer, dealer-address)

Let us assume that the database has the following tables:
Table I with Schema S1 - populated by normal web users who
sell and buy cars, Table II with Schema S2 - populated by
crawling reviews of different vehicles from websites, Table 111
with Schema S3 - populated by engine manufacturers/vendors
with specific details about vehicle engines and Table IV with
Schema S4. The following shows the schema for these tables
and the corresponding schema mappings among them: S/
- (make, model_name, year, condition, color, mileage, price,
location, phone), S2 - (model, year, vehicle-type, body-style,
door-count, airbags, brakes, review, dealer), S3 - (engine, mdl,
cylinders, capacity, power) and S4 - (dealer, dealer-address,
car-models)

The following attribute mappings are present among the
schemas: (S1: model_name = S2: model = S3: mdl, S2: dealer
= S4: dealer) The italicized attribute MID (Model ID) refers
to a synthetic primary key which would have been present if
the users shared understanding about the entity which they are
populating. If it is present, entity completion becomes trivial
because you can simply use that attribute to join the tables,
but there can be a variety of reasons why that attribute is not
available:

« In autonomous databases, users populating the data are
not aware of all the attributes and may end up missing
the ‘key’ information.

« Since each table is autonomously populated, though each
table has a key, it might not be a shared attribute.

o Because of the decentralized way the sources are pop-
ulated, it is hard for the sources to agree on “synthetic
keys” (that sometimes have to be generated during tradi-
tional normalization).

e The primary key may be intentionally masked, since
it describes sensitive information about the entity (e.g.
social security number).

TABLE I
Schema 1 - Cars(S1)

MID Make | Model.name | Price | Other Attrbs

HACC96 | Honda Accord 19000

HACV0S8 | Honda Civic 12000

TYCRY0S | Toyota Camry 14500
TYCRAO9 | Toyota Corolla 14500

TABLE 11
Schema 2 - Reviews (S2)
Model Review Vehicle-type | Dealer | Other Attrb
Corolla Excellent Midsize Frank v
Accord Good Fullsize Frank
Highlander Average N A% John
Camry Excellent Fullsize Steven
Civic Very Good Midsize Frank

Suppose the user is interested in the following query: Give
me ‘Make’, ‘Model’ of all vehicles whose price is less
than $15000 and which have a 4-cylinder engine.” The
above query would translate to the following SQL notation.

2We use this example throughout the paper to illustrate working of different
modules of the system

TABLE III
Schema 3 - Engine (S3)

MID Mdl Engine Cylinders | Other Attrb
HACC96 | Accord K24A4 6
TYCRAOS | Corolla F23A1 4
TYCRAO9 | Corolla 155 hp 4
TYCRY09 | Camry | 2AZ-FE 14 6
HACVO0S8 Civic F23A1 4
HACV07 Civic J27B1 4
TABLE 1V
Schema 4 - Dealer Info (S4)
Dealer Address Other Attrb
Frank | 1011 E Lemon St, Scottsdale, AZ
Steven 601 Apache Blvd, Glendale, AZ
John 900 10th Street, Tucson, AZ

SELECT make,model WHERE price < $15000
AND cylinders = ‘4’.

The query here is “partial” in that it does not specify the
exact tables over which the query is to be run. Part of the
challenge is to fill-in that information.

Limitations of join-based solutions: Let us examine two
obvious approaches to answer the query on this database:

e Answering from a single table: The first approach is
to answer the query from one table which conforms to
the most number of constraints mentioned in the query
and provides maximum number of attributes. In the given
query since ‘make’, ‘model’ and ‘price’ map onto Table I,
we can directly query that table by ignoring the constraint
on the ‘cylinders’. The resulting tuples are shown in Table
V. The second tuple related to ‘Camry’ has 6 cylinders
and is shown as an answer. Hence ignoring constraints
would lead to erroneous tuples in the final result set which
do not conform to the query constraints.

o Direct Join: The second and a seemingly more reason-
able approach is joining the tables using whatever shared
attribute(s) are available. The result of doing a direct join
based on the shared attribute(‘model’) is shown in Table
VLI If we look at the results, we can see that even though
there is only one ‘Civic’ in Table I, we have two Civics in
the final results. The same happens for ‘Corolla’ as well.
The absence of Primary Key - Foreign Key relationship
between these two tables has lead to spurious results.

Apart from the limitations discussed above, these ap-
proaches also fail to get other relevant attributes which de-
scribe the entity. In such a scenario, providing the complete
information about the entity to users requires:

o Linking attributes and propagating constraints spanning

across multiple tables, and retrieving precise results.

« Increasing the completeness of the individual results by
retrieving additional relevant attributes and their associ-
ated values from other overlapping tables not specified
in the query(thereby reconstructing the universal relation
from different local schemas).

Addressing these two needs poses serious challenges. In
the absence of information on how the tables overlap, it
is not possible to link the attributes across tables. We can
find the mappings between attributes using algorithms like
Similarity Flooding [2]. However, these alone would not be

TABLE V
Results of Query Q just from Table 73

Make | Model | Price
Honda Civic 12000
Toyota | Camry | 14500
Toyota | Corolla | 14500

TABLE VI

Results of Query Q using direct-join (71 > 7°3)

Make | Model Price | Cylinder | Engine | Other attrbs
Honda Civic 12000 4 F23A1
Honda | Civic 12000 4 J27B1
Toyota | Corolla | 14500 4 F23A1
Toyota | Corolla | 14500 4 155 hp

enough. Since attribute mappings between tables still leaves
the problem of absence of key information open, the usual
process of getting results through direct join would result in
very low precision. Moreover discovering additional attributes
related to those mentioned in the query requires the knowledge
of attribute dependencies, which are not apparent.

Our Approach

Our approach for addressing these challenges involves
starting with a base table containing a subset of query-
relevant attributes, and attempting to “complete” the tuples
by predicting the values of the remaining relevant attributes.
Intuitively, the base table should contain important attributes
whose values cannot be predicted accurately, but which can
help in predicting the values of the other relevant attributes.
The prediction/completion of the tuples is made possible by
approximate functional dependencies (AFDs). As a simple
illustration of the idea, suppose the following simple AFDs[3]
are mined from our tables: (1) Sz : {model} — vehicle_type,
(2) Sz : {model} — review, (3) S5 : {model} — cylinders.
Rule 3 provides us information about the number of cylinders
which helps in conforming the results to the ‘4 cylinder’
constraint. Rules 1 & 2 provide information on vehicle type
and review for a given model, and hence provide more
information in response to the query. They allow us to expand
partial information about the car model into more complete
information about vehicle type, review and cylinders. The
results using attribute dependencies are shown in Table VII
and conform to the constraints and are more informative
compared to other approaches.

II. SMARTINT SYSTEM

In this section, we present our framework for query an-
swering and learning called SMARTINT. Conceptually, the
operation of SMARTINT can be understood in terms of (i) a
learning component, which mines AFDs and source statistics
from different sources and (ii) a query answering component
which actively uses the learned statistics to propagate con-
straints and retrieve attributes from other non-joinable tables.
Figure 2 shows the SMARTINT system architecture. In the next
few sections, we explain each module of SMARTINT in detail.

A. Query Answering

Query answering takes care of answering the queries by se-
lecting the most appropriate tables and subsequently operating
on those tables to get the final result set.

TABLE VII
Results of Query Q using attribute dependencies

[Make | Model | Price | Cylinders | Review | Dealer | Address |
Honda Civic 12000 4 Very Good Frank 101T E St
Toyota Corolla 14500 4 Excellent Frank 1011 E St
OTDODO0000000 N eTTTmso——— o= — - =

g LEARNING S

1

AFDMiner

<amcp

Tuple
Expansion

Statistics
Learner

mo»mam-+H4=Z—

Web
Database

Attribute
Mapping

Fig. 2. Architecture of SMARTINT System

Source Selector: The first step, after the user submits the
query, is to select most relevant tables from the potentially
large number of tables present in the database. Source selector
outputs a ‘tree of relevant tables’. In order to construct the
tree, it first picks the top n tables (where n is the maximum
size of the tree). Then it evaluates the relevance of all the
subgraphs of tables of size k and picks the most relevant
subgraph. It then picks the most relevant tree within that graph
and returns it. Estimating the relevance of tables with respect
to the query during query processing can be costly. SMARTINT
uses ‘Source Statistics’ learned beforehand to calculate the
degree of relevance of a table for a particular query.

Tuple Expander: The next step in the query answering phase
is to use the ‘tree of tables’ returned by the source selector to
construct the final result set. Tuple expander first constructs
the hierarchical schema from the table tree. It uses AFDs to
determine which attributes from the child table are appended
to the schema. Once the schema is constructed, it starts
populating the tuples corresponding to this schema. It first
queries the ‘root table’ from the ’table tree’ and then starts
appending the determined attributes using the stored values
from ‘Source Statistics’ module.

B. Learning

In the previous section, we have seen that query answer-
ing phase uses both AFDs and source statistics extensively.
Learning these is thus an integral part of SMARTINT system.
In this section we describe how attribute dependencies and
source statistics are learnt.

AFD Miner (Intra-table Learning): As we described

in Section I, we extensively use AFDs in ‘Tuple
Expansion’ phase. We define and mine AFDs as
condensed representations of association rules. For

example, an AFD (Model~~Make) is a condensation of
association rules like, (Model:Accord~~Make:Honda),
(Model:Camry~~Make:Toyota) etc. We define two metrics,
namely confidence and specificity analogous to the standard
metrics confidence and support used in association rules
respectively, to get high quality AFDs. AFDMiner

Enter query here

SmartIN

AWeb Database Integrator.....

Submit Query

The results using SmartInt

fattr_id_pklattr_price_typelatir_ door_countlattr - yeathttr_color fattr_modellattr_vehicle_typefattr_price
325528 new # 2007 |fire red sierra crew cab |30601 Dusd
325556 psed. d 2007 lred sierra crew cab

325554 new H# 2007 |summit white sicra erew cab |33681.0u5d
325553 used i3 2007 [bhue sierra crew cab

325575 new i3 2007 |summit white sierra erew cab 30621.0 usd
325572 a 2007 |summit white sierra lerew cab [29675.0 usd
325514 i3 2007 |summit white slar[a crawcab 39031 0 usd
57 ? = =

325503 |Z jsitver birch metallicsierra ,; 9031 Ousd
228346 | msed @ D007 |fompsblack | -IE (79950 usd

Legend (of background colors)
Correct values
RED: Incorrect vahies

Fig. 3.

efficiently mines high quality AFDs using efficient pruning
strategies. It performs a bottom-up search in the attribute
lattice to find all AFDs and FDs that fall within the given
confidence and specificity thresholds. Complete details can
be found in [4].

Stat Learner (Source Statistics): Source statistics are exten-
sively used in both ‘Source Selector’ and ‘Tuple Expander’.
It might seem that Stat Learner would require another scan
of the database to mine useful statistics. But since we mined
AFDs by rolling up association rules, and confidence of an
association rule is nothing but the conditional probability
of the attribute-value pairs involved, we store them during
the AFD mining process. Apart from these, we also store
information related to value distribution in each column to
calculate the extent of overlap between two tables. This helps
us in approximating the relevance measure during query time.

Inter-table Learning: We use the AFDs learnt within each
table along with the attribute mappings(which serve as anchor
points) to learn rules across tables. While combining AFDs
across tables, we multiply their confidence to get the confi-
dence of the final rule. When the tables are adjacent, learning
rules across tables is trivial. But when two tables are not
directly connected and can have multiple ways in which a
rule can be determined, we need to evaluate all the possible
rules possible and pick the best among them.

III. DEMONSTRATION

The demonstration of SMARTINT system will illustrate the
improvement in accuracy of results over standard approaches
like direct join and single table. The system searches a set of
tables related to vehicle domain crawled from Google Base.
The system would construct a tree of most relevant tables
with a designated base table and predicts the values of other
attributes from neighboring tables.

Scenario 1. User Experience: When SMARTINT operates on
a real web database, each value in the tuple has different con-
forming probability. Since showing the actual probabilities will
confuse the user, SMARTINT will color the values based on the
interval into which their probability falls (for example, green
for 90-100% confidence, red for less than 10% confidence).

Scenario 2. Evaluation: Just showing the result set with
confidence would not help in comparing SMARTINT with other

Screenshots of demo: A. Result Set using SMARTINT - B. Result Set using Direct Join

approaches. In order to give the user an intuitive sense of how
accurate results given by different approaches are, we compare
them with ground truth (or universal table) and highlight the
values which do not match in red. A comparison of the result
set between SMARTINT (Figure 3.A) and direct join (Figure
3.B), shows that SMARTINT generates more accurate results.

Scenario 3. Learning: Since learning in SMARTINT is done
offline before query processing, we will show the different
Approximate Functional Dependencies(AFDs) mined from
Web databases. This will help the users understand the kind of
attribute dependencies present in the data and how they help
in query processing.

Scenario 4. Source Selection: One important aspect of
SMARTINT is to pick a base table and then construct the
tree of tables. Since the final result set does not help the
user in inferring these steps, we clearly show how the source
selection step works by showing the most relevant graph and
tree selected from the available tables in the database.

Additional Details: A more comprehensive description and
evaluation of SMARTINT system can be found in [5].

Acknowledgements: We thank Pat Langley for helpful dis-
cussions and feedback. This research is supported in part by
the NSF grant I11S-0738317, the ONR grant N000140910032
and a Google research award.

REFERENCES

[1] U. Nambiar and S. Kambhampati, “Answering imprecise queries over
autonomous web databases,” in /CDE, 2006, p. 45

[2] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: a ver-
satile graph matching algorithm and its application to schema matching,”
in Data Engineering, 2002. Proceedings. 18th International Conference
on, 2002, pp. 117-128.

[3] Y. Huhtala, J. Kérkkédinen, P. Porkka, and H. Toivonen, “TANE: An
efficient algorithm for discovering functional and approximate dependen-
cies,” The Computer Journal, vol. 42, no. 2, pp. 100-111, 1999.

[4] A. K. Kalavagattu, “Mining approximate functional dependencies as
condensed representations of association rules,” Master’s thesis, Arizona
State University, 2008. [Online]. Available: http://rakaposhi.eas.asu.edu/
Aravind-MSThesis.pdf

[5] R. Gummadi, A. Khulbe, A. Kalavagattu, and S. Kambhampati,
“Improving retrieval accuracy in web databases by learning intra-table
and inter-table dependencies,” Department of Computer Science, Arizona
State University, Tempe, Arizona, Tech. Rep. TR-09-011, March
2009. [Online]. Available: http://sci.asu.edu/news/technical/TR_PDF/
TR-09-011.pdf

