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Abstract

We present a heuristic search approach to solve partial satisfaction planning (PSP) prob-
lems. In these problems, goals are modeled as soft constraints with utility values, and ac-
tions have costs. Goal utility represents the value of each goal to the user and action cost
represents the total resource cost (e.g., time, fuel cost) needed to execute each action. The
objective is to find the plan that maximizes the trade-off between the total achieved utility
and the total incurred cost; we call this problem PSP NET BENEFIT. Previous approaches
to solving this problem heuristically convert PSP NET BENEFIT into STRIPS planning
with action cost by pre-selecting a subset of goals. In contrast, we provide a novel anytime
search algorithm that handles soft goals directly. Our new search algorithm has an anytime
property that keeps returning better quality solutions until the termination criteria are met.
We have implemented this search algorithm, along with relaxed plan heuristics adapted to
PSP NET BENEFIT problems, in a forward state-space planner calledSapaPS . An adap-
tation ofSapaPS , calledYochanPS , received a “distinguished performance” award in the
“simple preferences” track of the5th International Planning Competition.
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1 Introduction

In classical planning, the aim is to find a sequence of actionsthat transforms a
given initial stateI to some state satisfying goalsG, whereG = g1 ∧ g2 ∧ ... ∧ gn

is a conjunctive list of goal fluents. Plan success for these planning problems is
measured in terms of whether or not all the conjuncts inG are achieved. In many
real world scenarios, however, the best plan for the agent may only satisfy a subset
of the goals. The need for such partial satisfaction planning might arise in some
cases because the set of goal conjuncts may contain logically conflicting fluents, or
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there may not be enough time or resources to achieve all of thegoal conjuncts, or
achieving all goals may prove to be too costly.1

Despite their ubiquity, PSP problems have only recently garnered attention. Effec-
tive handling of PSP problems poses several challenges, including an added em-
phasis on the need to differentiate between feasible and optimal plans. Indeed, for
many classes of PSP problems, a trivially feasible, but decidedly non-optimal so-
lution would be the “null” plan. In this paper, we focus on oneof the more general
PSP problems, called PSP NET BENEFIT. In this problem, each goal conjunct has
a fixed utility and each ground action has a fixed cost. All goalutilities and action
costs are independent of one another.2 The objective is to find a plan with the best
“net benefit” (i.e., cumulative utility minus cumulative cost). Hence the name PSP
NET BENEFIT.

One obvious way of solving the PSP NET BENEFIT problem is to model it as a
deterministic Markov Decision Process (MDP) with action cost and goal reward
(9). Each state that achieves one or more of the goal fluents isa terminal state in
which the reward equals the sum of the utilities of the goals in that state. The op-
timal solution of the PSP NET BENEFIT problem can be obtained by extracting
a plan from the optimal policy for the corresponding MDP. However, our earlier
work (44) showed that the resultant approaches are often tooinefficient (even with
state-of-the-art MDP solvers). Consequently, we investigate an approach of mod-
eling PSP in terms of heuristic search with cost-sensitive reachability heuristics. In
this paper, we introduceSapaPS , an extension of the forward state-space planner
Sapa(13), to solve PSP NET BENEFIT problems.SapaPS adapts powerful relaxed
plan-based heuristic search techniques, which are commonly used to find satisfic-
ing plans for classical planning problems (31), to PSP NET BENEFIT. Expanding
heuristic search to find such plans poses several challengesof its own:

• The planning search termination criteria must change because goals are now soft
constraints (i.e., disjunctive goal sets).

• Heuristics guiding planners to achieve a fixed set of goals with uniform action
costs need to be adjusted to actions with non-uniform cost and goals with differ-

1 Smith (40) first introduced the term Over-Subscription Planning (OSP), and later van den
Briel et al. (44) used the term Partial Satisfaction Planning (PSP) to describe the type of
planning problem where goals are modeled as soft constraints and the planner aims to find
a good quality plan achieving only a subset of goals. While the problem definition is the
same, OSP and PSP have different perspectives: OSP emphasizes the resource limitations
as the root of partial goal satisfaction (i.e., plannercannot achieve all goals), and PSP
concentrates on the tradeoff between goal achievement costs and overall achieved goal
utility (i.e., even when possible, achievement of all goalsis not the best solution). We will
use the term PSP throughout this paper because our planning algorithm is targeted to find
the plan with the best tradeoff between goal utility and action cost.
2 In (12), we discuss the problem definition and solving approaches for a variation of PSP
NET BENEFIT where there are dependencies between goal utilities.
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ent utilities.

SapaPS develops and uses a variation of an anytimeA∗ search algorithm in which
the most beneficial subset of goalsSG and the lowest cost planP achieving them
are estimated for each search node. The trade-off between the total utility of SG

and the total cost ofP is then used as the heuristic to guide the search. The anytime
aspect of theSapaPS search algorithm comes naturally with the switch from goals
as hard constraints in classical planning to goals as soft constraints in PSP NET

BENEFIT. In classical planning, there are differences between valid plans leading
to states satisfying all goals and invalid plans leading to states where at least one
goal is not satisfied. Therefore, the path from the initial stateI to any node gen-
erated during the heuristic search process before a goal node is visited cannot be
returned as a valid plan. In contrast, when goals are soft constraints, a path fromI
to any node in PSP NET BENEFIT represents a valid plan and plans are only dif-
ferentiated by their qualities (i.e., net benefit). Therefore, the search algorithm can
take advantage of that distinction by continually returning better quality plans as it
explores the search space, until the optimal plan (if an admissible heuristic is used)
is found or the planner runs out of time or memory. This is the approach taken in
theSapaPS search algorithm: starting from the empty plan, whenever a search node
representing a better quality plan is visited, it is recorded as the current best plan
found and returned to the user when the algorithm terminates. 3

The organizers of the5th International Planning Competition (IPC-5), also realiz-
ing the importance of soft goals, introduced soft constraints with violation cost into
PDDL3.0 (23). Although this model is syntactically different from PSP NET BEN-
EFIT, we derive a novel compilation technique to transform “simple preferences” in
PDDL3.0 to PSP NET BENEFIT. The result of the conversion is then solved by our
search framework in an adaptation ofSapaPS calledYochanPS , which received a
“distinguished performance” award in the IPC-5 “simple preferences” track.

In addition to describing our algorithms and their performance in the competition,
we also provide critical analysis on two important design decisions:

• Does it make sense to compile the simple preference problemsof PDDL3.0
into PSP NET BENEFIT problems (rather than compile them to cost-sensitive
classical planning problems as is done by some competing approaches, such as
(18; 33))?

• Does it make sense to solve PSP NET BENEFIT problems with anytime heuristic
search (rather than by selecting objectives up-front, as advocated by approaches
such as (44; 40))?

3 Note that the anytime behavior is dependent on the PSP problem at hand. If we have
many goals that are achievable with low costs, then we will likely observe the anytime
behavior as plans with increasing quality are found. However, if there are only a few goals
and they are difficult to achieve or mostly unbeneficial (i.e., too costly), then we will not
likely see many incrementally better solutions.
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To analyze the first we have comparedYochanPS with a version calledYochanCOST ,
which compiles the PDDL3.0 simple preference problems intopure cost-sensitive
planning problems. Our comparison shows thatYochanPS is superior toYochanCOST

on the competition benchmarks.

Regarding the second point, in contrast toSapaPS (andYochanPS ), several other
systems (e.g.,AltAlt PS (44) and the orienteering planner (40)) solve PSP problems
by first selecting objectives (goals) that the planner should work on, and then sim-
ply supporting them with the cheapest plan. While such an approach can be quite
convenient, a complication is that objective selection can, in the worst case, be as
hard as the overall planning problem. To begin with, heuristic up-front selection
of objectives automatically removes any guarantees of optimality of the resulting
solution. Second, and perhaps more important, the goals selected may be infeasible
together thus making it impossible to find even asatisficingsolution. To be sure,
there has been work done to make the objective selection moresensitive to mutual
exclusions between the goals. An example of such work isAltWlt (38) which aims
to improve the objective selection phase ofAltAlt PS with some limited mutual ex-
clusion analysis. We shall show, however, that this is not enough to capture the type
of n-ary mutual exclusions that result when competition benchmark problems are
compiled into PSP NET BENEFIT problems.

In summary, our main contributions in this paper are:

• Introducing and analyzing an anytime search algorithm for solving PSP NET

BENEFIT problems. Specifically we analyze the algorithm properties, termina-
tion criteria and how to manage the search space.

• An approach to adapt the relaxed plan heuristic in classicalplanning to PSP NET

BENEFIT; this involves taking into account action costs and soft goal utility in
extracting the relaxed plan from the planning graph.

• A novel approach to convert “simple preferences” in PDDL3.0to PSP NET

BENEFIT; how to generate new goals and actions and how to use them during
the search process.

The rest of this paper is organized into three main parts. To begin, we discuss
background information on heuristic search for planning using relaxed plan based
heuristics in Section 2. Next, we discussSapaPS in Section 3. This section includes
descriptions of the anytime algorithm and the heuristic guiding SapaPS . In Sec-
tion 4, we show how to compile PDDL3.0 “simple preferences” to PSP NET BEN-
EFIT in YochanPS . In Section 5, we show the performance ofYochanPS against
other state-of-the-art planners in the IPC-5 (22). We finishthe paper with the related
work in Section 6, and our conclusions and future work in Section 7.
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Fig. 1. A logistics example.

2 Background

2.1 PSP Net Benefit Problem

In partial satisfaction planning with net benefit (PSP NET BENEFIT) (40; 44), each
goalg ∈ G has a utility valueug ≥ 0, representing how much each goal is worth to
a user; each actiona ∈ A has an associated execution costca ≥ 0, representing how
costly it is to execute each action (e.g., the amount of time or resources consumed).
All goals aresoft-constraintsin the sense that any plan achieving a subset of goals
(even the empty set) is a valid plan. LetP be the set of all valid plans and let
GP ⊆ G be the set of goals achieved by a planP ∈ P. The objective is to find
a planP that maximizes the difference between total achieved utility u(GP ) and
total cost of all actionsa ∈ P :

argmax
P∈P

∑

g∈GP

ug −
∑

a∈P

ca (1)

Example: In Figure 1, we introduce a logistics example that we will usethroughout
the paper. In this example, there is a truck loaded with threepackages that initially
resides at locationA. The (soft) goals are to deliver one package each to the other
four locations:B, C, D, andE. The respective goal utilities are shown in Figure 1.
For example:g1 = HavePackage(B) andug1

= 50. To simplify the problem, we
assume that there is a singleMove(X, Y ) action that moves the truck from location
X to locationY . The truck will always drop a package inY if there is no package at
Y already. Thus, if there is a package in the truck, it will dropit at Y . If there is no
package in the truck, but one atX, then the truck will pick it up and drop it off atY
when executingMove(X, Y ). The costs of moving between different locations are
also shown in Figure 1. For example, witha1 = Move(A, B), ca1

= 40 (note that
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cMove(X,Y ) = cMove(Y,X)). The objective function is to find a plan that gives the best
trade-off between the achieved total goal utility and moving cost. In this example,
the optimal plan isP = {Move(A, C), Move(C, D), Move(D, E)} that achieves
the last three goalsg2, g3, g4 and ignores the first goalg1 = HavePackage(B).

We call this utility and cost trade-off value “net benefit” and thus this class of
PSP problem PSP NET BENEFIT. As investigated in (44), though it is considered
harder due to the additional complications ofsoftgoals with utility and action costs,
PSP NET BENEFIT still falls into the same complexity class as classical planning
(PSPACE). However, existing search techniques typically do not handle soft goals
directly and instead either choose a subset of goals up-front or compile all soft goals
into hard goals (44; 32; 18; 33). These approaches have several disadvantages. For
instance, when selecting goals up-front, one runs the risk of choosing goals that
cannot be achieved together because they are mutually exclusive. In our example,
the set of all four goals:{g1, g2, g3, g4} are mutual exclusive because we only have
three packages to be delivered to four locations. Any planner that does not recog-
nize this, and selects all four goals and converts them to hard goals is doomed to
fail. Compiling to hard goals increases the number of actions to be handled and can
fail to allow easy changes in goal selection (e.g., in cases where soft goals do not
remain true after achievement such as in our example where a delivered package
may need to be picked up again and delivered to another location). Instead, the
two progression plannersSapaPS andYochanPS discussed in this paper handle
soft goals directly by heuristically selecting different goal sets for different search
nodes. Those planners extend the relaxed plan heuristic used in theSapaplanner to
the PSP NET BENEFIT setting.

2.2 Relaxed Plan Heuristics

Before exploring the details of this approach, we give an overview of solving clas-
sical planning problems with forward state-space search using relaxed plan based
heuristics. This is the same approach used in our planners.

Forward state space search is used by many state-of-the-artplanners such as HSP (7),
FF (31), and Fast Downward (29). They build plans incrementally by adding one ac-
tion at a time to the plan prefix starting from the initial stateI until reaching a state
containing all goals. An actiona is applicable (executable) in states if Pre(a) ⊆ s
and applyinga to s results in a new states′ = (s \ Delete(a)) ∪ Add(a). States
is a goal node (satisfies all goals) if:G ⊆ s. Algorithm 1 depicts the basic steps of
this forward state space search algorithm. At each search step, letAs be the set of
actions applicable ins. Different search algorithms choose to apply one or more ac-
tionsa ∈ As to generate new search nodes. For example, the enforced hill-climbing
search algorithm in the FF planner chooses one successor node while the best-first
search algorithm used inSapa(13) and HSP (7) applies all actions inAs to gener-
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Algorithm 1 : Forward state space planning search algorithm

Input: A planning problem:〈F, I, G, A〉;1

Output : A valid plan;2

begin3

OPEN ← {I};4

while OPEN 6= ∅ do5

s ← argmin
x∈OPEN

f(x);
6

OPEN ← OPEN \ {s};7

if s |= G then8

return plan leading tos andstop search;9

else10

foreacha applicable ins do11

OPEN ← OPEN ∪ {Apply(a, s)}12

end13

end14

end15

end16

ate new search nodes. Generated states are stored in the search queue and the most
common sorting function (Line 6) is in the decreasing order of f(s) = g(s)+w·h(s)
values whereg(s) is the distance fromI to s, h(s) is the expected distance froms
to the goal stateG, andw is a “weight” factor. The search stops when the first node
taken from the queue satisfies all the pre-defined conjunctive goals.

For forward planners using a best-first search algorithm that sorts nodes according
to thef = g + w · h value, the “informedness” of the heuristic valueh is critical to
the planner’s performance. Theh andg values are measured according to the user’s
objective function. LetPI→s be the partial plan leading from the initial stateI to a
states andPs→G be a plan leading from a states to a goal stateG. If the objective
function is to minimize the number of actions in the final plan, theng measures the
number of actions inPI→s andh measures the expected number of actions in the
shortestPs→G.

Measuringg is easy because by reachings we already knowPI→s. However, mea-
suringh exactly (i.e.,h∗) is as hard as solving the remaining problem of finding a
plan froms to G. Therefore, finding a good approximation ofh∗ in a short time is
critical. In recent years, many of the most effective domain-independent planners
such as FF (31), LPG (25), andSapa(13) have used the relaxed plan to approximate
h. For the rest of this section, we will briefly describe a general approach of extract-
ing the relaxed plan to approximate the shortest length plan(i.e., least number of
actions) for achieving the goals.

One way torelax a planning problem is to ignore all of the negative effects of
actions. A solutionP+ to a relaxed planning problem(F, A+, I, G), whereA+ is
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Fig. 2. The relaxed planning graph.

built from A by removing all negative effectsDelete(a) from all actionsa ∈ A,
can be found in polynomial time in terms of the number of actions and facts.P+ is
called a “relaxed plan”. The common approach to extractP+ involves two steps:

(1) Build the relaxed planning graphPG+ usingA+ forward fromI.
(2) Extract the relaxed planP+ from PG+ backward fromG.

In the first step, action and fact levels are interleaved starting from I = F0 as the
first fact level. Theith action and fact levelsAi andFi are built iteratively using the
following rules:

Ai =
⋃

{a : Pre(a) ⊆ Fi−1}

Fi = Fi−1 ∪ (
⋃

a∈Ai

Add(a))

The expansion stops whenG ⊆ Fi. In the second step, we start with the subgoal
setSG = G at the last leveli where the expansion stopped and the relaxed plan
P+ = ∅. For eachgi ∈ SG (i.e., goalg at leveli) we select a supporting actionai

(i.e., actiona at leveli) such that:g ∈ Effect(a) and updateP + ← P + ∪ {ai},
SG ← SG ∪ {pi−1 : p ∈ Pre(a)}. Note that subgoalgi can also be supported by
a noopaction at leveli if g appears in the graph at leveli − 1. In this case, we just
replacegi in SG by gi−1. We repeat the procedure untilSG ⊆ F0. 4 The details of
the original relaxed plan finding algorithm can be found in the description of the FF
planner (31). Note also that the relaxed plan greedily extracted as described above
is not optimal.

4 In our implementation, besides the level at which each action appears, we also record the
causal linksa

g
−→ a′ if a is selected (at the lower level) to support the preconditiong of a′

at the later level. These causal links in effect representP+ as a partial-order plan.
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Figure 2 shows the relaxed planning graph for our ongoing example. The first fact
level represents the initial state in which onlyat(A) is true. The first action level
contains actions applicable in the initial state, which arefour Move actions from
A to the other four locations. The second fact level contains effects of actions in
the first level. The second action level contains actions with preconditions satisfied
by the second fact level and thus contains all actions in thisproblem.5 One ex-
ample of a relaxed plan extracted from this graph (highlighted in Figure 2) would
be P+ = {Move(A, B), Move(A, C), Move(A, E), Move(C, D)}. We can see
that this relaxed plan is not consistent due to the mutual exclusion relation be-
tweenMove(A, C), Move(A, B), andMove(A, E). However, it can be used as
an estimate for a real consistent plan. Thus, if the objective function is to find the
minimum cost plan, then the estimated cost based on the relaxed plan extracted
in Figure 2 for the initial state ish(I) = cMove(A,B) + cMove(A,C) + cMove(A,E) +
cMove(C,D) = 40 + 90 + 120 + 200 = 450. If the objective function is to find the
shortest length plan then|P+| = 4 can be used as the heuristic value.

3 SapaPS : Forward State-Space Heuristic Planner for PSP

In this section, we will discuss our approach for extending the forward state space
search framework to handle PSP NET BENEFIT problems. Our search and heuristic
techniques have been implemented in a planner calledSapaPS . We start in Sec-
tion 3.1 by introducing a variation of the best-first search algorithm that solves the
PSP NET BENEFIT problem. We then move on to the relaxed plan based heuristic
for PSP NET BENEFIT in Section 3.2.

3.1 Anytime Best-First Search Algorithm for PSP

One of the most popular methods for solving planning problems is to cast them as
the problem of searching for a minimum cost path in a graph, then use a heuristic
search to find a solution. Many of the most successful heuristic planners (7; 31; 13;
37; 41) employ this approach and use variations of best-firstgraph search (BFS)
algorithms to find plans. We also use this approach to solve PSP NET BENEFIT

problems. In particular, we use a variation ofA∗ with modifications to handle some
special properties of PSP NET BENEFIT (e.g., any state can be a goal state). For the
remainder of this section, we will outline them and discuss our search algorithm in
detail.

Standard shortest-path graph search algorithms search fora minimum-cost path

5 We exclude actions that have already appeared in the first level, as well as severalMove
actions fromD andE to simplify the figure.
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from a start node to a goal node. Forward state space search for solving classical
planning problems can be cast as a graph search problem as follows: (1) each search
noden represents a complete planning states; (2) if applying actiona to a states
leads to another states′ then actiona represents a directed edgee = s

a
−→ s′ from s

to s′ with the edge costce = ca ; (3) the start node represents the initial stateI; (4) a
goal node is any statesG satisfying all goalsg ∈ G. In our ongoing example, at the
initial stateI = {at(A)}, there are four applicable actionsa1 = Move(A, B), a2 =
Move(A, C), a3 = Move(A, D), anda4 = Move(A, E) that lead to four states
s1 = {at(B), g1}, s2 = {at(C), g2}, s3 = {at(D), g3}, ands4 = {at(E), g4}.
The edge costs will represent action costs in this planning state-transition graph6

and the shortest path in this graph represents the lowest cost plan. Compared to the
classical planning problem, the PSP NET BENEFIT problem differs in the following
ways:

• Not all goals need to be accomplished in the final plan. In the general case where
all goals aresoft, any executable sequence of actions is a candidate plan (i.e., any
node can be a valid goal node).

• Goals are not uniform and have different utility values. Theplan quality is not
measured by the total action cost but by the difference between the cumulative
utility of the goals achieved and the cumulative cost of the actions used. Thus,
the objective function shifts fromminimizingtotal action cost tomaximizingnet
benefit.

To cast PSP NET BENEFIT as a graph search problem, we need to make some
modifications to (1) the edge weight representing the changein plan benefit by
going from a search node to its successors and (2) the criteria for terminating the
search process. We will first discuss the modifications, thenpresent a variation of
theA∗ search algorithm for solving the graph search problem for PSP. To simplify
the discussion and to facilitate proofs of certain properties of this algorithm, we will
make the following assumptions: (1) all goals are soft constraints; (2) the heuristic
is admissible. Later, we will provide discussions on relaxing one or more of those
assumptions.

g value:A∗ uses the valuef(s) = g(s) + h(s) to rank generated statess for ex-
pansion withg representing the “value” of the (known) path leading from the start
stateI to s, andh estimating the (unknown) path leading froms to a goal node that
will optimize a given objective function. In PSP NET BENEFIT, g represents the
additional benefit gained by traveling the path fromI to s. For a given states, let
Gs ⊆ G be the set of goals accomplished ins, then:

g(s) = (U(s) − U(I)) − C(PI→s) (2)

6 In the simplest case where actions have no cost and the objective function is to minimize
the number of actions in the plan, we can consider all actionshaving uniform positive cost.
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whereU(s) =
∑

g∈Gs

ug andU(I) =
∑

g∈GI

ug are the total utility of goals satisfied

in s andI. C(PI→s) =
∑

a∈PI→s

ca is the total cost of actions inPI→s. For example:

U(s2) = ug2
= 100, andC(PI→s2

) = ca2
= 90 and thusg(s2) = 100 − 90 = 10.

In other words,g(s) as defined in Equation 2 represents the additional benefit
gained when planPI→s is executed inI to reachs. To facilitate the later discus-
sion, we will introduce a new notation to represent the benefit of a planP leading
from a states to another states′:

B(P |s) = (U(s′) − U(s)) −
∑

a∈P

ca (3)

Thus, we haveg(s) = B(PI→s|I).

h value:In graph search, the heuristic valueh(s) estimates the path froms to the
“best” goal node. In PSP NET BENEFIT, the “best” goal node is the nodesg such
that traveling froms to sg will give the most additional benefit. In general, the
closer thath estimates the real optimalh∗ value, the better in terms of the amount
of search effort. Therefore, we will first provide the definition of h∗.

Best beneficial plan:For a given states, a best beneficial planP B
s is a plan ex-

ecutable ins and there is no other planP executable ins such that:B(P |s) >
B(P B

s |s).

Notice that an empty planP∅ containing no actions is applicable in all states and
B(P∅|s) = 0. Therefore,B(P B

s |s) ≥ 0 for any states. The optimal additional
achievable benefit of a given states is calculated as follows:

h∗(s) = B(P B
s |s) (4)

In our ongoing example, from states2, the most beneficial plan isP B
s2

= {Move(C, D),
Move(D, E)}, andh∗(s2) = B(P B

s2
|s2) = U({g3, g2, g4})−U({g2})−(cMove(C,D)+

cMove(D,E)) = ((300+ 100 + 100)− 100)− (200+ 50) = 400− 250 = 150. Com-
puting h∗ directly is impractical as we need to search forP B

s in the space of all
potential plans and this is as hard as solving the PSP NET BENEFIT problem for
the current search state. Therefore, a good approximation of h∗ is needed to effec-
tively guide the heuristic search algorithm. In the next section, we will discuss a
heuristic approach to approximatingP B

s using a relaxed plan.

Algorithm 2 describes the anytime variation of theA∗ algorithm that we used to
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Algorithm 2 : Anytime A* search algorithm for finding maximum beneficial plan
for PSP (without duplicate detection)

Input : A PSP problem:〈F, I, G, A〉;1

Output : A valid planPB;2

begin3

g(I) ←
∑

g∈I
ug;

4

f(I) ← g(I) + h(I);5

BB ← g(I);6

PB ← ∅;7

OPEN ← {I};8

while OPEN 6= ∅ and not interrupteddo9

s ← argmax
x∈OPEN

f(x);
10

OPEN ← OPEN \ {s};11

if h(s) = 0 then12

stop search;13

else14

foreachs′ ∈ Successors(s) do15

if g(s′) > BB then16

PB ← plan leading fromI to s′;17

BB ← g(s′);18

OPEN ← OPEN \ {si : f(si) ≤ BB};19

end20

if f(s′) > BB then21

OPEN ← OPEN ∪ {s′}22

end23

end24

end25

end26

Return PB;27

end28

solve the PSP NET BENEFIT problems. LikeA∗, this algorithm uses the value
f = g + h to rank nodes to expand, with the successors generator andg andh
values described above. We assume that the heuristic used isadmissible. Because
we try to find a plan that maximizesnet benefit, admissibility means over-estimating
additional achievable benefits; thus,h(s) ≥ h∗(s) with h∗(s) defined above. Like
other anytime algorithms, we keep one incumbent valueBB to indicate the quality
of the best found solution at any given moment (i.e., highestnet benefit).7

7 Algorithm 2, as implemented in our planners, does not include duplicate detection (i.e.,
noCLOSEDlist). However, it is quite straightforward to add duplicate detection to the base
algorithm similar to the wayCLOSEDlist is used inA∗.
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The search algorithm starts with the initial stateI and keeps expanding the most
promising nodes (i.e., one with highestf value) picked from theOPEN list (Line
7). If h(s) = 0 (i.e., the heuristic estimate indicates that there is no additional ben-
efit gained by expandings) then we stop the search. This is true for the termination
criteria of theA∗ algorithm (i.e., where the goal node givesh(s) = 0). If h(s) > 0,
then we expands by applying applicable actionsa to s to generate all successors.8

If the newly generated nodes′ has a betterg(s′) value than the best node visited
so far (i.e.,g(s′) > BB), then we recordPs′ leading tos′ as the new best found
plan. Finally, if f(s′) ≤ BB (i.e., the heuristic estimate indicates that expanding
s′ will never achieve as much additional benefit to improve the current best found
solution), we will discards′ from future consideration. Otherwises′ is added to the
OPEN list. Whenever a better solution is found (i.e., the value ofBB increases),
we will also remove all nodessi ∈ OPEN such thatf(si) ≤ BB. When the algo-
rithm is interrupted (either by reaching the time or memory limit) before the node
with h(s) = 0 is expanded, it will return the best planPB recorded so far (the alter-
native approach is to return a new best planPB whenever the best benefit valueBB

is improved). Thus, compared toA∗, this variation is an “anytime” algorithm and
always returns some solution plan regardless of the time or memory limit.

Like any search algorithm, one desired property is preserving optimality. We will
show that if the heuristic is admissible, then the algorithmwill find an optimal
solution if given enough time and memory.9

Proposition 1: If h is admissible and bounded, then Algorithm 2 always terminates
and the returned solution is optimal.

Proof: Given that all actionsa have constant costca > 0, there is a finite number
of sequences of actions (plans)P such that

∑

a∈P
ca ≤ UG. Any states generated by

planP such that
∑

a∈P
ca > 2×UG will be discarded and will not be put in theOPEN

list becausef(s) < 0 ≤ BB. Given that there is a finite number of states that can
be generated and put in theOPEN list, the algorithm will exhaust theOPEN list
given enough time. Thus, it will terminate.

8 Note that with the assumption ofh(s) being admissible, we haveh(s) ≥ 0 because it
overestimatesB(PB

s |s) ≥ 0.
9 Given that there are both positive and negative edge benefitsin the state transition graph,
it is desirable to show that there is no positive cycle (any plan involving positive cycles will
have infinite achievable benefit value). Positive cycles do not exist in our state transition
graph because traversing over any cycle does not achieve anyadditional utility but always
incurs positive cost. This is because the utility of a searchnodes is calculated based on
the world state encoded ins (not what accumulated along the plan trajectory leading tos),
which does not change when going through a cyclec. However, the total cost of visiting
s is calculated based on the sum of action costs of the plan trajectory leading tos, which
increases when traversingc. Therefore, all cycles have non-positive net benefit (utility/cost
trade-off).
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Algorithm 2 terminates when either theOPEN list is empty or a nodes with
h(s) = 0 is picked from theOPEN list for expansion. We will first prove that
if the algorithm terminates whenOPEN = ∅, then the plan returned is the opti-
mal solution. Iff(s) overestimates the real maximum achievable benefit, then the
discarded nodess due to the cutoff comparisonf(s) ≤ BB cannot lead to nodes
with higher benefit value than the current best found solution represented byBB.
Therefore, our algorithm does not discard any node that can lead to an optimal so-
lution. For any nodes that is picked from theOPEN list for expansion, we also
haveg(s) ≤ BB becauseBB always represents the highestg value of all nodes that
have ever been generated. Combining the fact that no expanded node represents a
better solution than the latestBB with the fact that no node that was discarded from
expansion (i.e., not put in or filtered out from theOPEN list) may lead to a better
solution thanBB, we can conclude that if the algorithm terminates with an empty
OPEN list then the finalBB value represents the optimal solution.

If Algorithm 2 does not terminate whenOPEN = ∅, then it terminates when
a nodes with h(s) = 0 was picked from theOPEN list. We prove thats rep-
resents the optimal solution and the plan leading tos was the last one output by
the algorithm. Whens with h(s) = 0 is picked from theOPEN list, given that
∀s′ ∈ OPEN : f(s) = g(s) ≥ f(s′), all nodes in theOPEN list cannot lead to a
solution with higher benefit value thang(s). Moreover, letsB represent the state for
which the plan leading tosB was last output by the algorithm; thusBB = g(sB). If
sB was generated befores, then becausef(s) = g(s) < g(sB), s should have been
discarded and was not added to theOPEN list, which is a contradiction. IfsB was
generated afters, then becauseg(sB) ≥ g(s) = f(s), s should have been discarded
from theOPEN list whensB was added to theOPEN list and thuss should not
have been picked for expansion. Given thats was not discarded, we haves = sB

and thusPs represents the last solution output by the algorithm. As shown above,
none of the discarded nodes or nodes still in theOPEN list whens is picked can
lead to better solution thans, wheres represents the optimal solution.¤

Discussion:Proposition 1 assumes that the heuristic estimateh is bounded and
this can always be done. For any given states, Equation 4 indicates thath∗(s) =
B(P B

s |s) = (U(s′)−U(s))−
∑

a∈P B
s

ca ≤ U(s′) =
∑

g∈s′
ug ≤

∑

g∈G
ug = UG. Therefore,

we can safely assume that any heuristic estimate can be bounded so that∀s : h(s) ≤
UG.

To simplify the discussion of the search algorithm described above, we made sev-
eral assumptions at the beginning of this section: all goalsare soft, the heuris-
tic used is admissible, the planner is forward state space, and there are no con-
straints beyond classical planning (e.g., no metric or temporal constraints). If any
of those assumptions is violated, then some adjustments to the main search algo-
rithm are necessary or beneficial. First, if some goals are “hard goals”, then only
nodes satisfying all hard goals can be termination nodes. Therefore, the condition
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Fig. 3. The relaxed plan

for outputting the new best found plan needs to be changed from g(s′) > BB to
(g(s′) > BB) ∧ (Gh ∈ s) whereGh is the set of all hard goals.

Second, if the heuristic is inadmissible, then the final solution is not guaranteed to
be optimal. To preserve optimality, we can place all generated nodes in the OPEN
list. The next section discusses this idea in more detail. Suffice it to say that if the
h(s) value of a given nodes is guaranteed to be withinǫ of the optimal solution,
then we can use(1 + ǫ) × BB as a cutoff bound and still preserve the optimal
solution.

Lastly, if there are constraints beyond classical planningsuch as metric resources
or temporal constraints, then we only need to expand the state representation, suc-
cessor generator, and goal check condition to include thoseadditional constraints.

3.2 Relaxed Plan Heuristics forPSP NET BENEFIT

Given a search node corresponding to a states, the heuristic needs to estimate
the net benefit-to-go of states. In Section 2.2, we discussed a class of heuristics
for classical planning that estimate the “cost-to-go” of anintermediate state in the
search based on the idea of extracting relaxed plans. In thissection, we will dis-
cuss our approach for adapting this class of heuristics to the PSP NET BENEFIT

problem. Before getting into the details, it is instructiveto understand the broad
challenges involved in such an adaptation.

Our broad approach will involve coming up with a (relaxed) planP+ that solves the
relaxed version our PSP problem for the same goals, but starting at states (recall
that the relaxed version of the problem is one where negativeinteractions between
actions are ignored). We start by noting that in order to ensure that the anytime
search finds the optimal solution, the estimate of the net benefit-to-go must be an
upperbound on the true net benefit-to-go ofs. To ensure this, we will have to find
the “optimal” planP+ for solving the relaxed version of the original problem from
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states. This is going to be NP-hard, since even for classical planning, finding the
optimal relaxed plan is known to be NP-hard. So, we will sacrifice admissibility of
the heuristic and focus instead on finding “good” relaxed plans in polynomial time.

For classical planning problems, the greedy backward sweepapproach described in
Section 2.2 has become the standard way to extract reasonable relaxed plans. This
approach does not, however, directly generalize to PSP NET BENEFIT problems
since we do not know which of the goals should be supported by the relaxed plan.
There are two general greedy approaches to handle this problem:

Agglomerative Relaxed Plan Construction: In the agglomerative approach, we
compute the greedy relaxed plan by starting with a null plan,and extending it
incrementally to support one additional goal at a time, until the net benefit of the
relaxed plan starts to reduce. The critical issue is the order in which the goals
are considered. It is reasonable to select the first goal by sorting goals in the
order of individual net benefit. To do this, for each goalg ∈ G, we compute the
“greedy” relaxed planP+

g to supportg (using the backward sweep approach in
Section 2.2). The estimated net benefit of this goalg is then given asug−C(P+

g ).
In selecting the subsequent goals, however, we should take into account the fact
that the actions already in the current relaxed plan will notcontribute any more
cost. By doing this, we can capture the positive interactions between the goals
(note that while there are no negative interactions in the relaxed problem, there
still exist positive interactions). We investigated this approach, and its variants
in (44; 38).

Pruned Relaxed Plan Construction: In the pruned approach, we first develop a
relaxed plan to supportall the top level goals (using the backward sweep algo-
rithm). We then focus on pruning the relaxed plan by getting rid of non-beneficial
goals (and the actions that are solely used to support those goals). We note at the
outset that the problem of finding a subplan of a (relaxed) plan P+ that has the
best net benefit is a generalization (to PSP NET BENEFIT) of the problem of
minimizing a (classical) plan by removing all redundant actions from it, and is
thus NP-hard in the worst case ((19)). However, our intention is not to focus
on the optimal pruning ofP+, but rather to improve its quality with a greedy
approach.10

Although we have investigated both agglomerative and pruned relaxed plan con-
struction approaches for PSP NET BENEFIT, in this paper we focus on the details
of the pruned relaxed plan approach. The main reason is that we have found in
our subsequent work ((12; 5)) that pruned relaxed plan approaches lend themselves
more easily to handling more general PSP NET BENEFIT problems where there
are dependencies between goal utilities (i.e., the utilityof achieving a set of goals
is not equal to the sum of the utilities of individual goals).

10 This makes sense as optimal pruning does not give any optimality guarantees on the
underlying search since we are starting with a greedy relaxed plan supporting all goals.
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Details of Pruned Relaxed Plan Generation inSapaPS Let us first formalize the
problem of finding an optimal subplan of a planP (whether it is relaxed or not).

Definition: Proper Subplan Given a planP seen as a sequence of actions (strictly
speaking “steps” of typesi : aj since a ground action can appear multiple times
in the plan)a1 · · ·an, P ′ is considered a proper subplan ofP if: (1) P ′ is a subse-
quence ofP (arrived at by removing some of the elements ofP ), and (2)P ′ is a
valid plan (can be executed).

Most-beneficial Proper SubplanA proper subplanPo of P is the most beneficial
subplan of a planP if there is no other proper subplanP ′ of P that has a higher
benefit thanPo.

Proposition 2: Finding the most-beneficial Proper Subplan of a plan of a planis
NP-hard.

Proof: The problem of minimizing a “classical” plan (i.e., removing actions while
still keeping it correct) can be reduced to the problem of finding the subplan with
the best net benefit. The former is NP-hard (19).¤

While we do not intend to find the most-beneficial proper subplan, it is nevertheless
instructive to understand how it can be done. Below, we provide a criterion for
identifying and removing actions from a planP without reducing its net benefit.

Sole-supporter Action Set:Let GP be the goals achieved byP , AG′ ⊆ P is a
sole-supporter action setof G′ ⊆ GP if:

(1) The remaining planPr = P \ AG′ is a valid plan.
(2) Pr achieves all goals inGP \ G′.
(3) Pr does not achieve any goal inG′.
(4) There is no subset of actionA′ ⊆ Pr that can be removed fromPr such that

Pr \ A′ is a valid plan achieving all goals inGP \ G′.

Note that there can be extra actions inP that do not contribute to the achievement
of any goal and those actions can be considered as the sole-supporter for the empty
goal setG′ = ∅. The last condition above ensures that those actions are included
in any supporter action setAG′ and thus the remaining planPr is as beneficial as
possible. We define the unbeneficial goal set and supporting actions as follows:

Unbeneficial Goal Set:For a given planP that achieves the goal setGP , the goal
setG′ ⊆ GP is an unbeneficialgoal set if it has a sole-supporter action setAG′

and the total action cost inAG′ is higher than the total goal utility inG′.

It is quite obvious that removing the unbeneficial goal setG′ and its sole-supporter
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action setAG′ can only improve the total benefit of the plan. Thus, ifPr = P \AG′

then:

∑

g∈(Gp\G′)

ug −
∑

a∈Pr

ca ≥
∑

g∈GP

ug −
∑

a∈P

ca (5)

Given the planP achieving goalsGP , the best way to prune it is to remove the
most unbeneficial goal setG′ that can lead to the remaining plan with the highest
benefit. Thus, we want to find and remove the unbeneficial goal set G′ ⊆ GP and
its sole-supporter action setAG′ such that:

G′ = argmin
Gx∈GP

∑

g∈Gx

ug −
∑

a∈AGx

ca (6)

Proposition 3: Given a planP , if G′ with its sole-supporter action setAG′ is the
most unbeneficial goal set as specified by Equation 6, then theplanP ′ = P \ AG′

is the most beneficial proper subplan ofP .

Proof: Let Po subplan ofP with the most benefit, andB, Bo, B′ be the net benefit
of P , Po, andP ′ respectively. Given thatPo is optimal, we have:Bo ≥ B′. Let Go

be the set of goals achieved byPo, we defineAo = P \Po andG′
o = G\Go. We want

to show thatAo is the sole-supporter set ofG′
o. Given thatPo is a valid plan that

achieves all goals inGo and none of the goals inG′
o, the first three conditions for

Ao to be the sole-supporter set ofG′
o are clearly satisfied. Given thatPo is the most

beneficial subplan ofP , there should not be any subplan ofPo that can achieve all
goals inGo. Therefore, the fourth and last condition is also satisfied.Thus,Ao is the
sole-supporter set ofG′

o. Given thatG′ is the most unbeneficial goal set, Equation
6 indicates thatB1 =

∑

g∈G′

ug −
∑

a∈AG′

ca ≥ B2 =
∑

g∈G′

o

ug −
∑

a∈Ao

ca. Therefore,

B′ = B + B1 ≥ Bo = B + B2. Combining this withBo ≥ B′ that we get above,
we haveB′ = Bo and thusP ′ is the most beneficial subplan ofP . ¤

We implemented in our planner an incremental algorithm to approximate the iden-
tification and removal of the most unbeneficial goal set and its associated sole-
supporter action set from the relaxed plan. Because we applythe procedure to the
relaxed plan instead of the real plan, the only condition that needs to be changed is
that the remaining planP ′ = PG \AG′ is still a valid relaxed plan (i.e., can execute
when ignoring the delete list).

This scan and filter process contains two main steps:

(1) Identification:Using the causal-structure of the relaxed plan, identify the set
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Algorithm 3 : Algorithm to find the supported goals listGS for all actions and
facts.
Input: A relaxed planP+ achieving the goal setGP ;1

Output : The supported goal set for each actiona ∈ P+ and fact;2

begin3

∀a ∈ P : GS(a) ← ∅;4

∀g ∈ GP : GS(g) ← {g};5

∀p /∈ GP : GS(p) ← ∅;6

DONE← false;7

while not DONE do8

DONE← true;9

forall a ∈ P+ do10

if GS(a) 6=
⋃

p∈Effect(a)
GS(p) then

11

GS(a) ←
⋃

p∈Effect(a)
GS(p);

12

DONE← false;13

end14

end15

forall propositionp do16

if GS(p) 6= GS(p) ∪ (
⋃

p∈Precond(a)
GS(a)) then

17

GS(p) ← GS(p) ∪ (
⋃

p∈Precond(a)
GS(a));

18

DONE← false;19

end20

end21

end22

end23

of top level goals that each action supports. This step is illustrated by Algo-
rithm 3. w

(2) Incremental removal:Using the supported goal sets calculated in step 1, heuris-
tically remove actions and goals that are not beneficial. This step is illustrated
in Algorithm 4.

The first step uses thesupported goalslist GS that is defined for each actiona and
factp as follows:

GS(a) =
⋃

p∈Effect(a)

GS(p) (7)
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Algorithm 4 : Pruning the relaxed plan using the supported goal set foundin Algo-
rithm 3.
Input: A relaxed planP+ and parameterN > 0;1

Output : A relaxed planP ′ ⊆ P+ with higher or equal benefit compared toP+;2

begin3

DONE ← false;4

while not DONE do5

Use Algorithm 3 to compute allGS(a), GS(p) usingP+;6

forall G′ ⊆ GP+ and |G′| ≤ N do7

SA(G′) ←
⋃

GS(a)⊆G′

a;
8

end9

Gx ← argmin
G′⊆G

P+ , |G′|≤N

(
∑

g∈G′

u(g) −
∑

a∈SA(G′)
c(a));

10

if (
∑

g∈Gx

u(g) −
∑

a∈SA(Gx)
c(a)) ≤ 0 then

11

P+ ← (P + \ SA(Gx));12

else13

DONE ← true;14

end15

end16

end17

GS(p) =



















p ∪ (
⋃

p∈Prec(a)
GS(a)) if p ∈ G

⋃

p∈Prec(a)
GS(a) if p 6∈ G

(8)

In our implementation, beginning with∀a ∈ P+, ∀p /∈ G : GS(a) = GS(p) = ∅
and∀g ∈ G : GS(g) = {g}, the two rules listed above are applied repeatedly
starting from the top-level goals until no change can be madeto either theGS(a)
or GS(p) set. Thus, for each actiona, we know which goal it supports. Figure 3
shows the extracted relaxed planP+ = {a1 : Move(A, B), a2 : Move(A, C), a3 :
Move(C, D), a4 : Move(A, E)} along with the goals each action supports. By
going backward from the top level goals, actionsa1, a3, anda4 support only goals
g1, g3, andg4 so the goal support list for those actions will beGS(a1) = {g1},
GS(a3) = {g3}, andGS(a4) = {g4}. at(C), the precondition of the actiona3

would in turn contribute to goalsg3, thus we have:GS(at(C)) = {g3}. Finally,
becausea2 supports bothg2 andat(C), we have:GS(a2) = GS(g2)∪GS(at(C)) =
{g3, g2}.

In the second step, using the supported goals sets of each action, we can identify
the subsetSA(G′) of actions that contributesonly to the goals in a given subset of
goalsG′ ⊆ G:
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SA(G′) =
⋃

GS(a)⊆G′

a (9)

If the total cost of actions inSA(G′) exceeds the sum of utilities of goals inG′ (i.e.,
∑

a∈SA(G′)
c(a) ≥

∑

g∈G′

u(g)), then we can removeG′ andSA(G′) from the relaxed

plan. We call those subgoal setsunbeneficial. In our example, actiona4 is the only
one that contributes to the achievement ofg4. Sincec(a4) ≥ u(g4) anda4 does
not contribute to any other goal, we can removea4 andg4 from consideration. The
remaining three actionsa1, a2, anda3 in P+ and the goalsg1, g2, andg3 all appear
beneficial. In general, it will be costly if we consider all2|G| possible subsets of
goals for potential removal. Therefore, in Algorithm 4, we only consider the subsets
G′ of goals such that|G′| ≤ N , with N as the pre-defined value. If there is no
unbeneficial goal setG′ with |G′| ≤ N , then we terminate the pruning algorithm.
If there are beneficial goal sets, then we select the most unbeneficial oneGx, and
remove the actions that solely supportGx from the current relaxed planP+, then
start the pruning process again. In our current implementation, we only consider
N = 0, N = 1, andN = 2. However, as we discuss later, considering onlyN = 0
andN = 1 is often sufficient.

After removing unbeneficial goals and the actions (solely) supporting them, the cost
of the remaining relaxed plan and the utility of the goals that it achieves are used
to compute theh value. Thus, in our ongoing example,h(I) = (u(g3) + u(g2) +
u(g1)) − (c(a2) + c(a3) + c(a1)) = (100 + 300 + 50) − (90 + 200 + 40) = 120.
While this heuristic is effective, it is not guaranteed to beadmissible because the
original relaxed plan was heuristically extracted and may not be optimal. Moreover,
we only consider removing subsetG′ of goals such that|G′| ≤ 2. Therefore, if we
use this heuristic in the algorithm discussed in the previous section (Algorithm 2),
then there is no guarantee that the plan returned is optimal.This is because (i) a
pruned node may actually lead to an optimal plan (i.e., expandable to reach nodes
with g(s) > BB); and (ii) the lastBB may not represent an optimal plan. To handle
the first issue, we made adjustments in the implementation sothat even though
weightw = 1 is used in equationf = g + w · h to sort nodes in the queue, another
valuew = 2 is used for pruning (unpromising) nodes withf = g + w · h ≤ BB.
For the second issue, we continue the search for a better planafter a node with
h(s) = 0 is found until some resource limits are reached (e.g., we have reached a
certain number of search nodes or a given planning time limit).

Using Relaxed Plans for Lookahead Search:In addition to using the final pruned
relaxed plan for heuristic-computation purposes, we have also implemented a rudi-
mentary lookahead technique that takes the relaxed plans given to us and simulates
their execution in the actual planning problem as much as possible (i.e., the planner
attempts each action, in the order defined by the causal structure of the relaxed plan,
and repeats this process until no actions can be executed; the resulting state is then
evaluated and placed into theOPEN list). This technique is inspired by the results
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Fig. 4. Relationship between techniques defined in this paper.

of the planner YAHSP (45), which used a similar but more sophisticated lookahead
strategy. We found that this method helps to find better quality plans in less time,
but also causes the search to reach a termination search nodemore quickly.

4 Handling PDDL3.0 Simple Preferences

The organizers of the5th International Planning Competition (IPC-5) introduced
PDDL3.0 (23), which can express variations of partial satisfaction planning prob-
lems. One track named “simple preferences” (PDDL3-SP) has qualities analogous
to PSP NET BENEFIT.

In PDDL3-SP, each preferencepi includes a variablevpi
that counts the number of

timespi is violated andci representing the violation cost whenpi is not satisfied.
Preferences can be associated with more than one actionpreconditionor goal. Ad-
ditionally, they can include conjunctive and disjunctive formulas on fluents. The
objective function is:

minimize c1 · vp1
+ c2 · vp2

+ ... + cn · vpn
(10)

where violation costsci ∈ R are multiplied by the number of timespi is violated.

In this section we show a method of compiling PDDL3-SP problems into PSP NET

BENEFIT problems. This involves converting the goal violation cost(i.e., failing to
satisfy goal preferences) into goal utility (i.e., successfully achieving goals) and
the action precondition violation cost into action costs. The compilation takes ad-
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vantage of the similarities between the two problems, and the main challenge is in
handling the differences between PDDL3-SP and PSP NET BENEFIT. The compi-
lation is solved bySapaPS , as shown in Figure 4, in an adaptation of that planner
calledYochanPS .

Other compilation methods for handling the constraints in PDDL3.0 were also in-
troduced in the IPC-5. For instance, the planner MIPS-XXL (18) used a transfor-
mation from PDDL3.0 that involved a compilation into hard goals and numeric
fluents.YochanPS and other compilation approaches proved competitive in the
competition. In fact, bothYochanPS and MIPS-XXL participated in the “simple
preferences” track and received a “distinguished performance” award. However,
the compilation used by MIPS-XXL did not allow the planner todirectly handle the
soft goal preferences present in PDDL3.0. To assist in determining whether consid-
ering soft goals directly during the planning process is helpful, in this section we
also introduce a separate compilation from PDDL3.0 that completely eliminates
soft goals, resulting in a classical planning problem with action costs. The problem
is then solved by the anytimeA∗ search variation implemented inSapaPS . We call
the resulting plannerYochanCOST .

4.1 YochanCOST : PDDL3-SP to Hard Goals

Recently, approaches to compiling planning problems withsoftgoals to those with
hard goals have been proposed (18). In fact, Keyder & Geffner (33)directly han-
dle PSP NET BENEFIT by compiling the problem into one with hard goals. While
we explicitly address soft goals inYochanPS , to evaluate the advantage of this
approach we explore the possibility of planning for PDDL3-SP by compiling to
problems with only hard goals. We call the planner that uses this compilation strat-
egyYochanCOST . It uses the anytimeA∗ search variation fromSapaPS but reverts
back to the original relaxed plan heuristic ofSapa(13).11

Algorithm 5 shows the algorithm for compiling PDDL3-SP goalpreferences into a
planning problem with hard goals and actions with cost. Precondition preferences
are compiled using the same approach as inYochanPS , which is discussed later.
The algorithm works by transforming a “simple preference” goal into an equivalent
hard goal with dummy actions that give that goal. Specifically, we compile a goal
preferencepref(G′) | G′ ⊆ G to two actions: actiona1 takesG′ as a condition
and actiona2 takes¬G′ as a condition (foregoing goal achievement). Actiona1

has costzeroand actiona2 has cost equal to the violation cost of not achievingG′.
Botha1 anda2 have a single dummy effect to achieve a newly created hard goal that
indicates we “have handled the preference”pref(G′). At least one of these actions,
a1 or a2, is always included in the final plan, and every other non-preference action

11 This is done so we may compare the compilation in our anytime framework.
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Algorithm 5 : PDDL3-SP goal preferences to hard goals.

Input: a PDDL3-SP problem;1

Output: a PDDL problem with new set of hard goals and an extended action set;2

B := ∅;3

forall pref(G′) | G′ ⊆ G do4

create two new actionsa1 anda2;5

pre(a1) := G′;6

gG′ := name(pref(G′));7

eff(a1) := gG′;8

C(a1) := 0;9

B := B ∪ {a1};10

G := (G ∪ {gG′}) \ {G′};11

12

pre(a2) := ¬G′;13

eff(a2) := gG′;14

C(a2) := c(pref(G′));15

B := B ∪ {a2};16

G := (G ∪ {gpref}) \ {G
′};17

end18

A := B ∪ A;19

deletes the new goal (thereby forcing the planner to again decide whether to re-
achieve the hard goal, and again include the necessary achievement actions). After
the compilation to hard goals, we will have actions with disjunctive preconditions.
We convert these into STRIPS with cost by calling Algorithm 7.

After the compilation, we can solve the problem using any planner capable of han-
dling hard goals and action costs. In our case, we useSapaPS with the heuristic
used in the non-PSP plannerSapato generateYochanCOST . We are nowminimizing
cost instead ofmaximizingnet benefit (and hence take the negative of the heuristic
for search). In this way, we are performing an anytime searchalgorithm to compare
with YochanPS . As inYochanPS , which we will explain in the next section, we as-
sign unit cost to all non-preference actions and increase preference cost by a factor
of 100. This serves two related purposes. First, the heuristic computation uses cost
propagation such that actions with zero cost will essentially look “free” in terms of
computational effort. Secondly, and similarly, actions that move the search toward
goals take some amount of computational effort which is leftuncounted when ac-
tion costs are zero. In other words, the search node evaluation completely neglects
tree depth when actions have zero cost.

Example: Consider an example taken from the IPC-5 TPP domain shown in Fig-
ure 5 and Figure 6. On the left side of these two figures we show examples of
PDDL3-SP action and goal preferences. On the right side, we show the newly cre-
ated actions and goals resulting from the compilation to classical planning (with
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(:goal (preference P0A
(stored goods1 level1)))

(a) Goal preferences in PDDL3-SP

(:action p0a-0
:parameters ()
:cost 0.0
:precondition (and (stored goods1 level1))
:effect (and (hasPref-p0a)))

(:action p0a-1
:parameters ()
:cost 500.0
:precondition (and

(not (stored goods1 level1)))
:effect (and (hasPref-p0a)))

With new goal: (hasPref-p0a)

(b) Actions with cost

Fig. 5. Compiling goal preferences from PDDL3-SP to cost-based planning.

action costs) using our approach described above.

In this example, the preferred goal(stored goods1 level1) has a violation
cost of5 (defined in Figure 6). We add a new goal(hasPref-p0a) and assign
the cost of achieving it with actionp0a-1 (i.e., not having the goal) to 500.

4.2 YochanPS : PDDL3-SP to PSP

When all soft goals in PDDL3-SP are compiled to hard goals, itis always easi-
est (in terms of search depth) to do nothing. That is, simply executing the higher
cost preference avoidance actions will achieve the goal of having “handled” the
preference. Consequentially, the relaxed plan based heuristic may be misleading
because it is uninformed of the mutual exclusion between thepreference evalua-
tion actions. That is, the heuristic may see what appears to be a “quick” path to
a goal, where in fact that path requires the undesirable consequence of violating
a preference. Instead, viewing preferences as goals that are desirable to achieve
(i.e., attaching reward to achieving them) allows the relaxed plan heuristic to be
directed to them. As such, we introduce a method of converting PDDL3-SP prob-
lems into PSP problems, which gives the preferences a rewardfor achievement
rather than a cost for violation, thus giving better direction for the relaxed planning
graph heuristic. There are two main differences between howPDDL3-SP and PSP
NET BENEFIT definesoftgoals. First, in PDDL3-SP, soft goal preferences are as-
sociated with a preference name which allows them to be givena violation cost.
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Algorithm 6 : Compiling goal preferences to PSP NET BENEFIT goals.

Input: A PDDL3-SP problem;1

Output: A PSP NET BENEFIT problem;2

B := ∅;3

forall pref(G′) | G′ ⊆ G do4

pre(a) := G′;5

gG′ := name(pref(G′));6

eff(a) := gG′;7

B := B ∪ {a};8

U(gG′) := c(pref(G′));9

G := (G ∪ {gG′}) \ {G′};10

forall b ∈ A do11

eff(b) := eff(b) ∪ ¬{gG′};12

end13

end14

A := B ∪ A;15

Second, goal preferences can consist of a disjunctive or conjunctive goal formula.
This is opposed to PSP NET BENEFIT problems where individual goals are given
utility. Despite these differences, the similarities are abundant:

• The violation costfor failing to achieve an individual goal in PDDL3-SP and
achievement utilityin PSP NET BENEFIT are semantically equivalent. Thus, if
there is a goalg with a violation cost ofc(g) for not achieving it in PDDL3-SP,
then it is equivalent to having this goal with utility ofug = c(g) for achieving it
in PSP.

• PDDL3-SP and PSP NET BENEFIT both have a notion of plan quality based on
a quantitative metric. PDDL3-SP bases a plan’s quality on how well it reduces
the goal preference violation cost. On the other hand, PSP NET BENEFIT views
cost as a monotonically increasing value that measures the resources consumed
by actions. In PDDL3-SP we have a plan metricρ and a planP1 has a higher
quality than a planP2 if and only if ρ(P1) < ρ(P2). A plan’s quality in PSP NET

BENEFIT deals with the trade-off between the utility of the goals achieved and
the cost of the actions to reach the goals. Therefore, a planP1 has a higher quality
than a planP2 in PSP NET BENEFIT if and only if U(P1) − C(P1) > U(P2) −
C(P2), whereU(P ) represents the utility of a planP andC(P ) represents the
cost of a planP .

• Preferences on action conditions in PDDL3-SP can be viewed as aconditional
costin PSP NET BENEFIT. The cost models on actions differ only in that PDDL3-
SP provides apreferencewhich acts as a condition for applying action cost. Like
violation costs for goal preferences, action condition violation cost is incurred if
a given action is applied to a state where that condition is not satisfied.
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As part of our compilation, we first transform “simple preference” goals to equiv-
alent goals with utility equal to the cost produced for not satisfying them in the
PDDL3-SP problem. Specifically, we can compile a goal preferencepref(G′) |
G′ ⊆ G to an action that takesG′ as a condition. The effect of the action is a newly
created goal representing the fact that we “have the preference” pref(G′).

Both PDDL3-SP and PSP NET BENEFIT have a notion of cost on actions, though
their view differs on how to define cost. PSP NET BENEFIT defines cost directly on
each action, while PDDL3-SP uses a less direct approach by defining the penalty for
not meeting an execution condition. Therefore, PDDL3-SP can be viewed as con-
sidering action cost as a conditional effect on an action where cost is incurred on the
preference condition’s negation. From this observation, we can compile PDDL3.0
“simple preferences” on actions in a manner that is similar to how conditional ef-
fects are compiled (21).

Goal Compilation: The goal compilation process converts goal preferences into
additional soft goals and actions achieving them in PSP. Algorithm 6 illustrates the
compilation of goals. We begin by creating a new actiona for every preference
pref(G′) | G′ ⊆ G in the goals. The actiona hasG′ as a set of preconditions,
and a new effect,gG′ . We then addgG′ to the original goal setG, and give it utility
equal to the costc(pref(G′)) of violating the preferencepref(G′). We remove the
preferencepref(G′) from the resulting problem and also force every non-compiled
action that destroysG′ to removegG′ (by addinggG′ to the delete list of these
actions).

Action Compilation: To convert precondition action preferences, for each action
a ∈ A we generateP (pref(a)) as the power set ofpref(a) (i.e.,P (pref(a)) con-
taining all possible subsets ofpref(a)). As Algorithm 7 shows, for each combi-
nation of preferences ∈ P (pref(a)), we create an actionas derived froma. The
cost of the new actionas equals the cost of failing to satisfy all preferences in
pref(a) \ s. We removea from the domain after all of its compiled actionsas

are created. Since some preferences contain disjunctive clauses, we compile them
away using the method introduced in (21) for converting disjunctive preconditions
in ADL to STRIPS. Notice that because we use the power set of preferences, this
could potentially result in a large number of newly formed actions. Since this in-
crease is related to number of preferences, the number of actions that need to be
considered during search may seem unwieldy. However, we found that in practice
this increase is usually minimal. After completion of the planning process, we ap-
ply Equation 11 to determine the PDDL3-SP total violation cost evaluation:

TOTALCOST =
∑

g∈G

ug −
∑

g′∈G′

ug′ +
∑

a∈P

ca (11)

Action Selection:The compilation algorithm will generate a set of actionsAa from
an original actiona with |Aa| = 2|pref(a)|. Given that actions inAa appear as sep-
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Algorithm 7 : Compiling preference preconditions to actions with cost.Note that,
though not shown here, disjunctive preconditions are compiled away using the
method described in (21).

i := 0;1

forall a ∈ A do2

foreachprecSet ∈ P (pref(a)) do3

pre(ai) := pre(a) ∪ precSet;4

eff(ai) := eff(a);5

cai
:= 100 × c(pref(a) \ precSet);6

A := A ∪ {ai};7

i := i + 1;8

end9

A := A \ {a};10

end11

arate operators to a planner, this can result in multiple action instances fromAa

being included in the plan. Therefore, a planner could produce plans with superflu-
ous actions. One way to fix this issue is to explicitly add negations of the preference
conditions that are not included in the new action preconditions (i.e., we can use a
negation of the precondition formula in the actions rather than removing the whole
condition). This is similar to the approach taken by (21) when compiling away
conditional effects. This compilation approach, however,may result in several dis-
junctive preconditions (from negating the original conjunctive preference formula),
which will result in even more actions being included in the problem. To overcome
this, we use a simple criterion on the plan that removes the need to include the
negation of clauses in the disjunctive preferences. Given that all actions inAa have
the same effect, we enforce that for every action generated from a, only theleast
costapplicable actionai ∈ Aa can be included inP at a given forward search step.
This criterion is already included inSapaPS .

Example: Consider the examples found in Figures 6 and 7. Figure 6 showsthe
compilation for the TPP domain action:drive and Figure 7 shows a TPP domain
PDDL3-SP goal preference that has been compiled into PSP NET BENEFIT.

For the action compilation, Figure 6 shows the preferencep-drive has a cost of
10× 100 = 1000 for failing to have all goods ready to load at level 0 of a particular
location at the timedrive is executed. We translate this idea into one where we
either (1) have all goods ready to load at level 0 (as in the newactiondrive-0
with cost100) or (2) do not have all goods ready to load at level 1 (as in the new
actiondrive-1 with cost1000).

To convert the goal condition from PDDL3-SP into PSP NET BENEFIT we generate
a single action named for the preference, as shown in Figure 7. The new action
takes the preference goal as a precondition and we again introduce the new goal
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(:action drive
:parameters

(?t - truck ?from ?to - place)
:precondition

(and
(at ?t ?from)

(connected ?from ?to)
(preference p-drive

(and
(ready-to-load

goods1 ?from level0)
(ready-to-load

goods2 ?from level0)
(ready-to-load

goods3 ?from level0))))
:effect (and (not (at ?t ?from))

(at ?t ?to)))

Weight assigned to preferences:
(:metric

(+ (× 10 (is-violated p-drive) )
(× 5 (is-violated P0A) )))

(a) Action preferences in PDDL3-SP

(:action drive-0
:parameters

(?t - truck ?from ?to - place)
:cost 100
:precondition (and

(at ?t ?from) (connected
?from ?to)

(ready-to-load
goods1 ?from level0)

(ready-to-load
goods2 ?from level0)

(ready-to-load
goods3 ?from level0)))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

(:action drive-1
:parameters

(?t - truck ?from ?to - place)
:cost 1000
:precondition (and

(at ?t ?from) (connected
?from ?to))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

(b) Actions with cost

Fig. 6. Compiling action preferences from PDDL3-SP to cost-based planning.

(hasPref-p0a). However, with this compilation process we give it a utility
value of 5.0. This is the same as the cost for being unable to achieve(stored
goods1 level1).

As for implementation details,YochanPS multiplies the original preference costs
by 100 and uses that to direct the forward search. All actionsthat do not include
a preference are given a default unit cost. Again, we do this so the heuristic can
direct search toward short-length plans to reduce planningtime. An alternative to
this method of artificial scale-up would be to increase the preference cost based
on some function derived from the original problem. In our initial experiments,
we took the number of actions required in a relaxed plan to reach all the goals
at the initial state and used this value to generate a scale-up factor. However, our
preliminary observations using this approach yielded worse results in terms of plan
quality.
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(:goal (preference P0A (stored goods1
level1)))

(a) Goal preferences in PDDL3-SP

(:action p0a
:parameters ()
:cost 100
:precondition (and

(stored goods1 level1))
:effect (and (hasPref-p0a)))

With new goal: ((hasPref-p0a) 5.0)

(b) Action with cost in PSP

Fig. 7. Compiling goal preferences from PDDL3-SP to PSP.

After the compilation process is done,SapaPS is called to solve the new PSP NET

BENEFIT problem with the normal objective of maximizing the net benefit. When
a planP is found, newly introduced actions resulting from the compilations of goal
and action preferences are removed before returningP to the user.

5 Empirical Evaluation

Most of the problems in the “simple preferences” track of IPC-5 consist of groups
of preferred disjunctive goals. These goals involve various aspects of the problems
(e.g., a deadline to deliver a package in thetrucksdomain). TheYochanPS compilation
converts each preferencep into a series of actions that have the preference condi-
tion as a precondition and an effect that indicates thatp is satisfied. The utility of
a preferred goal is gained if we have obtained the preferenceat the end of the plan
(where the utility is based on the penalty cost of not satisfying the preference in
PDDL3-SP). In this way, the planner is more likely to try to achieve preferences
that have a higher penalty violation value.

In the competition,YochanPS was able to solve problems in five of the domains
in the “simple preferences” track. Unfortunately, many of the problems in several
domains were large andYochanPS ran out of memory due to its action grounding
process. This occurred in thepathways, TPP, storageand trucksdomains. Also,
some aspects of several domains (such as conditional effects and quantification)
could not be handled by our planner directly and needed to be compiled to STRIPS.
The competition organizers could not compile theopenstacksdomain to STRIPS,
and soYochanPS did not participate in solving it. Additionally, thepipesworld
domain did not provide a “simple preferences” category.YochanPS also handles
hard goals, which were present in some of the problems, by only outputting plans
when such goals are satisfied. TheSapaPS heuristic was also slightly modified
such that hard goals could never be removed from a relaxed plan (3).
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To test whether varying goal set sizes for the heuristic goalremoval process affects
our results, we compared running the planner with removing goal set sizes in each
iteration of at most 1 and at most 2. It turns out that in almostall of the problems
from the competition, there is no change in the quality of theplans found when
looking at individual goals (as against individual goals and pairs of goals) during
the goal removal process of the heuristic. Only in two problems in theroversdo-
main does there exist a minor difference in plan quality (onein favor of looking at
only single goals, and one in favor of looking at set sizes of one and two). There is
also an insignificant difference in the amount of time taken to find plans.

In conclusion,YochanPS entered the5th International Planning Competition (IPC-
5), where it performed competitively in several of the domains given by the organiz-
ers. Its performance was particularly good in “logistics” style domains. The quality
of the plans found byYochanPS earned it a “distinguished performance” award
in the “simple preferences” track. For comparison, we solved the IPC-5 problems
with YochanCOST and show that compiling directly to classical planning withac-
tion cost performs worse than compiling to a PSP NET BENEFIT problem in the
competition domains.

For the rest of this section we evaluate the performance ofYochanPS in each of the
five “simple preferences” domains for which the planner participated. For all prob-
lems, we show the results from the competition (which can also be found on the
competition website (24)). We focus our discussion on plan quality rather than solv-
ing time, as this was emphasized by the IPC-5 organizers. To compareYochanPS

andYochanCOST , we re-ran the results (with a small bug fix) using a 3.16 Ghz Intel
Core 2 Duo with 4 GB of RAM, 1.5 GB of which was allocated to the planners
using Java 1.5.

5.1 TheTrucksDomain

Thetrucksdomain consists of trucks that move packages to a variety of locations. It
is a logistics-type domain with the constraint that certainstorage areas of the trucks
must be free before loading can take place into other storageareas. In the “simple
preferences” version of this domain, packages must be delivered at or before a
certain time to avoid incurring a preference violation penalty.

Figure 8(a) shows the results for thetrucksdomain in the competition. Over all,
YochanPS performed well in this domain compared to the other plannersin the
competition. It scaled somewhat better than both MIPS-XXL (18) and MIPS-BDD (18),
though the competition winner, SGPlan (32) solved more problems, often with a
better or equal quality. Notably, in problems 7 through 9,YochanPS had diffi-
culty finding good quality plans. Examining the differencesbetween the generated
problems provides some insight into this behavior. In the first ten problems of this
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Fig. 8. IPC-5trucks“simple preferences”.

domain, the number of preferences (i.e., soft goals) increased as part of the increase
in problem size. These all included existential quantification to handle deadlines for
package delivery, where a package must be delivered before aparticular encoded
time step in the plan (time increases by one unit when drivingor delivering pack-
ages). For example,package1may need to be delivered sometime before a time
stept3. Because this criterion was defined using a predicate, this caused the num-
ber of grounded, soft disjunctive goal sets to increase.12 This in turn caused more
goals to be considered at each time step. The planning graph’s cost propagation and
goal selection processes would take more time in these circumstances. In contrast,

12 Recall that the compilation to PSP NET BENEFIT generates a new action for each clause
of a disjunctive goal formula.
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the second set of problems (problems 11 through 20) contained absolute package
delivery times on goal preferences (e.g.,package1must be delivered at exactly time
t5) thereby avoiding the need for disjunctive preferences. The planner solved four
instances of these harder problems.13

A seeming advantage toYochanCOST in this domain is that it is attempting to find
the least costlyway of achieving the goal set and does not rely on pruning away
goals asYochanPS does. Intrucks, the violation cost for failing to satisfy goal
preferences turns out to be low for many of the goals, and so the SapaPS heuristic
used byYochanPS may prune away some of the lower valued goals if the number
of actions required for achievement is deemed too high. However, this advantage
seems not to help the planner too much here. Also note thatYochanCOST has great
difficulty with problems 8 and 9. Again, this is largely due tocompilation of goals
to actions, as the large number of actions that were generated caused the planner’s
branching factor to increase such that many states with equal heuristic values were
generated. When large numbers of preferences existYochanCOST must “decide” to
ignore them by adding the appropriate actions.

5.2 ThePathwaysDomain

This domain has its roots in molecular biology. It models chemical reactions via ac-
tions and includes other actions that choose initial substrates. Goals in the “simple
preferences” track for this domain give a preference on the substances that must be
produced by a pathway.

Figure 9(a) shows thatYochanPS tends to scale poorly in this domain, though this
largely is due to the planner running out of memory during thegrounding process.
For instance, the number of objects declared in problem 5 caused our grounding
procedure to attempt to produce well over106 actions. On most of its solved prob-
lemsYochanPS provided equal quality in comparison to the other planners.Fig-
ure 9(b) shows that bothYochanPS andYochanCOST found plans of equal qual-
ity. Note that fixing a small search bug since the competitionin YochanPS and
YochanCOST caused the planners, in this domain, to fail to find a solutionin prob-
lem 4 on the new runs (thoughYochanPS was able to find a solution during the
competition and this is the only problem in whichYochanPS performs worse).

13 Note thatYochanPS solved more problems than in the competition on the new runs,as
the CPU was faster.
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Fig. 9. IPC-5pathways“simple preferences”

5.3 TheRoversDomain

The rovers domain initially was introduced at the Third InternationalPlanning
Competition (IPC-3). For the “simple preferences” versionused in IPC-5, we must
minimize the summed cost of actions in the plan while simultaneously minimizing
violation costs. Each action has a cost associated with it through a numeric vari-
able specified in the plan metric. The goals from IPC-3 of communicating rock
samples, soil samples and image data are made into preferences, each with vary-
ing violation cost. Interestingly, this version of the domain mimics the PSP NET

BENEFIT problem in the sense that the cost of moving from place to place causes a
numeric variable to increase monotonically. Each problem specifies this variable as
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Fig. 10. IPC-5rovers“simple preferences”

part of its problem metric, thereby allowing the variable toact as the cost of travers-
ing between locations. Note that the problems in this domainare not precisely the
PSP NET BENEFIT problem but are semantically equivalent. Additionally, none of
the preferences in the competition problems for this domaincontains disjunctive
clauses, so the number of additional actions generated by the compilation to PSP
NET BENEFIT is small.

As shown in Figure 10(a),YochanPS is able to solve each of the problems with
quality that is competitive with the other IPC-5 participants. YochanCOST gives
much worse quality plans on three problems and is comparableon the majority of
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the other problems. For this domain, the heuristic inYochanPS guides the search
well, as it is made to discriminate between goals based on thecost of the actions to
reach them. On the other hand, as shown in Figure 10(b),YochanCOST attempts to
satisfy the goals in the cheapest way possible and, in the harder problems, always
returns an empty plan and then fails to find a better one in the allotted time. Thus,
YochanCOST tends to find plans that trivially satisfy the newly introduced hard
goals.

5.4 TheStorageDomain

Here a planner must discover how to move crates from containers to different de-
pots. Each depot has specific spatial characteristics that must be taken into account.
Several hoists exist to perform the moving, and goals involve preferences for stor-
ing compatible crates together in the same depot. Incompatible crates must not be
located adjacent to one another. Preferences also exist about where the hoists end
up.

In this domain, bothYochanPS andYochanCOST failed in their grounding process
beyond problem 5. Figure 11(a) shows that, of the problems solved, YochanPS

found solutions with better quality than MIPS-XXL. Figure 11(b) shows that both
YochanPS andYochanCOST solved versions ofstoragethat had universal and exis-
tential quantification compiled away from the goal preferences and produced plans
of equal quality. Of the problems solved by both planners, the longest plan found
in this domain by the two planners contain 11 actions (the same plan found by both
planners).

5.5 TheTPPDomain

This is the traveling purchaser problem (TPP), a generalization of the traveling
salesman problem. In this domain, several goods exist at various market locations.
The object of the planning problem is to purchase some amountof each product
while minimizing the cost of travel (i.e., driving a truck) and while also satisfying
goal preferences. TheTPPdomain is unique in that it is the only one in the “simple
preferences” track to have preference over action preconditions. When driving a
truck away from a market, we always prefer to have all of the goods emptied at
that market. Cost is added to the action if we fail to satisfy this condition. Like the
trucks domain, this is a logistics-like domain. Goal preferences typically involve
having a certain number of the various goods stored.

As we can see in Figure 12(a),YochanPS finds plans of competitive quality in the
problems that were solved. This domain has soft goals that are mutually exclusive
from one another (i.e., storing various amounts of goods). Though the heuristic
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Fig. 11. IPC-5storage“simple preferences”.

used inYochanPS does not identify this, it does focus on finding goals to achieve
that may be of the highest quality. It turns out that, inTPP, this is enough. As the
planner searches for a solution, it identifies this fact and looks for plans that can
achieve the highest quality. It is interesting to note thatYochanPS solves more
problems than MIPS-XXL and MIPS-BDD. Also, when both find solutions, plans
given byYochanPS are often of better quality.

As Figure 12(b) shows,YochanCOST has more difficulty finding solutions for this
domain thanYochanPS . It attempts to minimize actions as well as cost (as does
YochanPS ), but tends not to improve plan quality after finding a plan with a lower
level of goods (involving fewer actions).
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Fig. 12. IPC-5TPP“simple preferences” results.

Interestingly, a similarity exists between the anytime behavior of YochanPS and
YochanCOST . Typically, both planners discover initial plans at approximately the
same rate, and when possible find incrementally better plans. In fact, only when
YochanPS finds better solutions does the behavior significantly differ. And in these
cases,YochanPS “reaches further” for more solutions. We largely attributethis to
the heuristic. That is, by ignoring some of the goals in the relaxed plan, the plan-
ner essentially serializes the goals to focus on during search. At each search node
YochanPS re-evaluates the reachability of each goal in terms of cost versus benefit.
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In this way, a goal can look more appealing at greater depths of the search.14 This
is especially noticeable in theTPPdomain. In this domain, all of the higher-quality
plans thatYochanPS found were longer (in terms of number of actions) than those
of YochanCOST in terms of number of actions. This is likely because the relaxed
plan heuristic inYochanCOST believes preference goals are reachable when they
are not.

5.6 Other Tracks

While YochanPS participated in the IPC-5 as a partial satisfaction plannercapa-
ble of handling PDDL3.0, it is based onSapaand therefore is capable of handling a
wide variety of problem types. Because of this, the planner also participated in both
the “metrictime” and “propositional” tracks. In the “metrictime” track,YochanPS

performed quite well in terms of finding good quality (short makespan) plans,
achieving1st place in one domain (the “time” versions ofopenstacks) and2nd place
in three domains (the “time” version ofstorageandtrucksand the “metrictime” ver-
sion of rovers). The performance in these problems can be attributed to theaction
re-scheduling procedure ofSapa, which takes an original parallel, temporal plan
and attempts to re-order its actions to shorten the makespaneven more (14). This
especially holds for theopenstacksproblems, whose plans have a high amount of
parallelism.

Looking at the results ofYochanPS versus SGPlan for the temporalopenstacks
domain provides some further insight into this behavior. Even in the more difficult
problems thatYochanPS solves, the plans contained an equal or greater number of
actions. However,YochanPS parallelized them to make better use of time using its
action scheduling mechanism (which, again, was inherited from the plannerSapa).

Summary of IPC-5 Results

YochanPS performs competitively in many domains. In thetrucksdomainYochanPS

scaled better than MIPS-XXL and MIPS-BDD, but was outperformed overall in
terms of number of problems solved by SGPlan, the winner of the competition.15

There are several technical reasons forYochanPS ’s inability to solve large prob-

14 We also note evidence of this exists by the fact thatYochanPS tends to do better as
problems scale-up.
15 The organizers of IPC-6 have alleged that the version of SGPlan that was entered in that
competition seems to have code in it that could allow it to select among different planning
strategies based on the name of the domain and other characteristics of the domain (e.g.,
number of actions, number of actions’ preconditions, etc.). As of this writing, we do not
know if the SGPlan version that participated in IPC-5 also had such domain customization,
and how it might have affected the competition results.
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Fig. 13. IPC-5 Rovers, Problem 19 anytime search behavior.

lems in many of the domains:YochanPS ’s parsing and grounding routine was quite
slow and takes most if not all of the allocated 30 minutes timeto parse large prob-
lems in many domains.

In several domains (trucks, TPP, androvers), YochanPS predominately gave better
quality plans thanYochanCOST . From the search behavior, in many cases the com-
pilation to hard goals caused the planner to quickly choose naı̈ve solutions (i.e.,
trivially achieving the hard goals without achieving the preference) despite the ad-
ditional cost associated with doing so. This is attributed to the fact that the heuristic
also minimizes the number of actions in the plan while minimizing cost (since the
heuristic counts all non-preference actions with a cost 1).While this same quality
exists in the heuristic used byYochanPS , handlingsoft goals directly helps the
planner by allowing it to completely avoid considering achievement of goals. In
other words, the planner can focus on satisfying only those goals that it deems ben-
eficial and can satisfy some subset of them without selectingactions that “grant
permission” to waive their achievement.

A view into the behavior of the anytime search between the twoplanners helps
illustrate what’s happening. Figure 13 shows the search behavior on problem 19
of theroversdomain from the competition. We can see that, whileYochanPS and
YochanCOST find plans of similar quality initially,YochanCOST stops finding better
plans whileYochanPS continues. This is typical throughoutrovers, TPPand some
of thetrucksproblems. In these domains, as the problems scale in size,YochanCOST

typically exhibits this behavior. In both planners, it is very often the case that initial
solutions are quickly found, as single goals can often be quickly satisfied.16

Note that one issue withYochanCOST is that the number of “dummy” actions that
must be generated can effect its search. For every step, the actions to decide to

16 By “initial solution” we, of course, mean a plan other than the “null plan” when all goals
are soft.
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“not achieve the goal” can be applicable, and therefore mustbe considered (such
that a node is generated for each one). This can quickly clog the search space,
and therefore results in a disadvantage to the planner as thescale of the problems
increases.YochanPS , on the other hand, by directly handling soft goals, can avoid
inserting such search states into the space, thereby increasing its scalability over
YochanCOST .

5.7 Up-front Goal Selection in Competition Domains

While SapaPS , and by extensionYochanPS , performs goal re-selection during
search, one can also imagine dealing with soft goals by selecting them before the
planning process begins. Afterward, a planner can treat theselected goals ashard
and plan for them. The idea is that this two-step approach canreduce the com-
plexities involved with constantly re-evaluating the given goal set, but it requires
an adequate technique for the initial goal selection process. Of course, perform-
ing optimal goal selection is as difficult as finding an optimal plan to the original
PSP NET BENEFIT problem. However, one can imagine attempting to find a fea-
sible set of goals using heuristics to estimate how “good” a goal set is. But, again,
proving the satisfiability of goals requires solving the entire planning problem or
at least performing a provably complete analysis of the mutual exclusions between
the goals (which is as hard as solving the planning problem).

Given that hard goals must be non-mutex, one may believe thatin most domains
mutually exclusive soft goals would be rare. However, userscan quite easily specify
soft goals with complex mutexes lingering among them. For instance, consider a
blocks world-like domain in which the soft goals involve blocks stacked variously.
If we have three blocks (a, b, andc) with the soft goals(on a b), (on b c), and(on
c a), we have a ternary mutual exclusion and we can at best achieveonly two of
the goals at a time. For any number of blocks, listing every stacking possibility will
always generaten-ary mutexes, wheren can be as large as the number of blocks in
the problem.

Further, the IPC-5 “simple preferences” domains have manyn-ary mutual exclu-
sions between goals with sometimes complex interactions such that the satisfaction
of one set of goals may be negatively dependent upon the satisfaction of another set
of goals (i.e., some goal sets are mutex with other goal sets). It turns out that even
when binary mutexes are taken into account, as is done with the plannerAltWlt
(which is an extension of the plannerAltAlt PS ), these complex interactions cannot
be detected (38).

Specifically, the plannerAltWlt uses a relaxed planning graph structure to “penal-
ize” the selection of goals that appear to be binary mutuallyexclusive by solving for
each goal individually, then adding cost to relaxed plans that interfere with already-
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chosen goals. In other words, given a relaxed plan for a selected goalg calledrg,
and a relaxed plan for a candidate goalg′, rg′ , we have a penalty costc for the selec-
tion of g′ if any action inrg′ interferes with an action inr (i.e., the effects of actions
in rg′ delete the preconditions found inrg in actions at the same step). A separate
penalty is given if preconditions in the actions ofrg′ are binary and statically mutex
with preconditions in the actions ofrg and the maximum of the two penalties is
taken. This is then added to the cost propagated through the planning graph for the
goal.AltWlt then greedily selects goals by processing each relaxed planin turn,
and selects the one that looks most beneficial.

To see if this approach is adequate for the competition benchmarks, we converted
problems from each of the five domains into a format that can beread byAltWlt . We
found that instorage, TPP, trucks, andpathways, AltWlt selects goals but indicates
that there exists no solution for the set it selects. However, AltWlt found some
success inrovers, a PSP NET BENEFIT domain where mutual exclusion between
goals is minimum in the benchmark set. The planner was able tosolve 16 of the 20
problems, whileYochanPS was able to solve all 20. Of the onesAltWlt failed to
solve, it explicitly ran out of memory or gave errors. Figure14 shows the results. In
12 of the 16 problems,AltWlt is capable of finding better solutions thanYochanPS .
AltWlt also typically does this faster. As an extreme example, to find the eventual
final solution to problem 12 ofrovers, YochanPS took 172.53 seconds whileAltWlt
took 324 milliseconds.

We believe that the failure ofAltWlt on the other competition domains is not just a
bug, but rather a fundamental inability of its up-front objective selection approach
to handle goals with complex mutual exclusion relations. Tounderstand this, con-
sider a slightly simplified version of the simple preferences storagedomain from
the IPC-5. In this domain we have crates, storage areas, depots, load areas, contain-
ers and hoists. Depots act to group storage areas into a single category (i.e., there
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Fig. 15. An example of the “simple preferences” storage domain.

are several storage areas within a single depot). Hoists candeliver a crate to a stor-
age area adjacent to it. Additionally, hoists can move between storage areas within
a depot, and through load areas (which connect depots). Whena crate or hoist is
in a storage area or load area, then no other hoist or crate mayenter into the area.
Crates begin by being inside of a container in a load area (hence the load area is
initially passable, as no crates are actually inside of it).

Figure 15 shows the layout in our example (which is a simplified version of problem
1 from the competition). In the problem there exists a hoist,a crate, a container, two
depots (depot0 anddepot1) and two storage areas in each depot (sa0−0, sa0−1 in
depot0 andsa1−0, sa1−1 in depot1). The storage areas are connected to each other,
and one in each depot is connected to the loading area. The crate begins inside of the
container and the hoist begins at indepot1 at sa1−0. We have several preferences:
(1) the hoist and crate should end up in different depots (with a violation penalty of
1), (2) the crate should be indepot0 (violation penalty of 3), (3) the hoist should be
in sa0−0 or sa0−1 (violation penalty of 3), (4)sa1−0 should be clear (i.e., contains
neither the hoist nor the crate with a violation penalty of 2), and (5)sa0−1 should
be clear (violation penalty of 2).

The (shortest) optimal plan for this problem involves only moving the hoist. Specif-
ically, moving the hoist from its current location,sa1−0, to sa0−1 (using 3 moves).
This satisfies preference (1) because the crate is in no depot(hence it will always be
in a “different depot” than the hoist), (3) because the hoistis in sa0−1, (4) because
sa1−0 is clear and (5) becausesa0−1 is clear. It violates the soft goal (2) with a
penalty cost of 3. Of course, finding the optimal plan would benice, but we would
also be satisfied with a feasible plan. However, there is a heavy burden on the goal
selection process to find a satisfiable, conjunctive set. In this problem the “simple
preference” goals have complex, non-binary mutual exclusions.

Consider theAltWlt procedure for finding a set of goals for this domain.AltWlt
selects goals greedily in a non-deterministic way. But the important aspect ofAl-
tWlt here is how it defines its penalty costs for noticing mutual exclusion between
goals. Interference involves the effect of one action deleting the precondition of
another action. However, there are often several ways of satisfying a preference,
most of which do not interfere with satisfying another preference in the relaxed
setting. For instance, consider preference (1), that we should have the create and
hoist in different depots. A preference of this form essentially involves several dis-
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crete disjunctive clauses, (e.g., “do not have the hoist atsa1−1 or do not have the
crate indepot1”). Satisfying for one of these clauses is sufficient to believe that
the preference can be achieved. If we achieve one of these (e.g., “do not have the
hoist atsa1−1”), the clause is satisfied. Of course even in the relaxed problem, we
must satisfy each of the disjunctive clauses (e.g., we can have each of “do not have
the hoist atsax−y wherex, y ∈ {0, 1}” or “do not have the crate indepotx where
x ∈ {0, 1}”). It turns out that these are satisfiable in the initial state, so this is a
trivial feat. If we then choose goal preference (2), having the crate indepot0, we
can can find a relaxed plan that moves the hoist to the load area, removes the crate
from the container and places it insa0−0 (which is indepot0). Satisfying (3), having
the hoist atsa0−0 or sa0−1 looks statically mutex with (1), but the competing needs
or interference penalty costs apply only when a relaxed planexists. Since none ex-
ists for (1),AltWlt finds a relaxed plan that moves the hoist tosa0−1. 17 Satisfying
preference goal (4) requires that we move a single step–easily satisfiable, and shar-
ing an action with (2), and hence there exists no interference or competing needs.
Preference goal (5) is satisfied at the initial state.

From this analysis, we can see thatAltWlt selects each of the goals, as there exist no
penalties to make them look unappealing. It will subsequently fail when attempting
to find a solution for the goals–there exists no way to satisfyfor all of the pref-
erences. The complex mutual exclusions and disjunctive clauses causeAltWlt to
select goal sets that are impossible to achieve. From the point of view of the com-
petition,AltWlt suffers from similar issues in all but one of the “simple preference”
domains (namely, the “simple preferences” version ofrovers).

In summary, while up-front selection of objectives does make the PSP NET BENE-
FIT problem much easier to handle, as we have suspected, in complex domains the
objective selection cannot even guarantee satisficing plans.

6 Related Work

In the last few years, there has been consider work on planning with goals as soft
constraints or preferences. Problems tackled include those with either quantita-
tive or qualitative goal preferences. The solving methods also range from various
heuristic approaches to compilations for simplifying the soft goal constraints. In
this section, we will compareSapaPS andYochanPS with them as well as explore
the similarities and differences between our variation ofA∗ and other well-known
search algorithms. A further overview on planning and scheduling with preferences
and soft constraints can be found in (16).

17 Even if a relaxed plan were to exist for (1), the disjunctive clauses make interference
difficult to identify–i.e., we can be satisfying for “do not have the crate indepotx” which
is not mutex with preference (3).
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6.1 Planners Solving PSP and its close Variations

There are several planners that solve the same PSP and closely related problems.
Two recent heuristic planners that solve PSP NET BENEFIT are the orienteering-
planner (OP) (40) andAltAlt PS (44). Both OP andAltAlt PS use a two-step frame-
work. In step 1, they heuristically select the subsetS of soft goals. In step 2, they
convertS into hard goals and use a non-PSP planner to find the lowest cost plan
achievingS. For step 1, OP uses the solution of a simpler problem to select both
the subset of goals and the order to achieve them. The abstract problem is built by
first propagating the action costs on the planning graph and constructing theori-
enteeringproblem, which is a variation of the traveling salesman problem. Unlike
the orienteering-planner,AltAlt PS relies on the cost-sensitive planning graph and
uses a different technique to analyze the graph to heuristically select the most ben-
eficial subset of goals. After the goals are found,AltAlt PS uses a variation of the
regression search plannerAltAlt to search for a low cost plan.

The main advantage of the two-step approach used by OP andAltAlt PS is that
up-front goal selection enables the reduction to a planningproblem with hard goals
(and action costs) which can be solved by any planner capableof handling such
problems. The disadvantage of this approach is that if the heuristics in the first step
do not select the right set of goals then the planner may either find a poor quality
plan or can take a lot of time to discover that the problem is unsolvable before it
can switch to another goal set. Therefore, if the first step does not select theexact
optimal goal set, then the final plan is not guaranteed to be optimal. Moreover, if
there is an unachievable goal selected, then the planner will return failure before
trying to select another set of goals. Indeed, as shown in Section 5.7,AltAlt PS and
its improved versionAltWlt never try to solve more than a single (hard) goal set and
consistently select the set of goals containing non-obvious mutexes.18

SapaPS is different from those two planners in the sense that it doesnot rely on any
pre-defined subset of goals and lets theA∗ framework decide which goals are the
most beneficial for a given node during search. Therefore, itcan partially correct
the mistakes in heuristically selecting a particular subset of goals at each search
node as it goes deeper in the search tree.SapaPS also works in ananytimefashion
and keeps improving its solution quality given more search time. Nevertheless, the
two types of planners can complement each other. The heuristic framework used
in the orienting-planner andAltAlt PS can be employed inSapaPS to improve its
heuristic evaluation at each search node. However, it can bequite expensive to do
so for each search node.

As mentioned previously, Keyder & Geffner (33) introduced aheuristic planner that
is able to avoid the two-step solving approach inAltAlt PS and OP by compiling

18 However, the orienteering-planner has a strategy for avoiding this problem, by selecting
one goal at a time to achieve.
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all soft goals into hard goals. The newly introduced actionsand fluents guaran-
tee that the lowest cost plan in the new problem corresponds to the highest-benefit
plan in the original problem. This compilation approach shares a lot of similari-
ties withYochanCOST . However, the compilation approach inYochanCOST is more
complicated due to the more complex preference model in PDDL3.0, the existence
of disjunctions on preference formulas, and the potential necessity to delete and
re-achieve goals. As we have seen from our experiments,YochanCOST tends to fare
worse thanYochanPS . Because of this, we believe that handling soft goals directly
provides better heuristic guidance.

OptiPlan(44) extends an integer linear programming (ILP) encoding for bounded
parallel length classical planning to solve the PSP problemby adding action cost
and goal utility. It also relaxes the hard goal constraints by moving those goals sat-
isfying conditions into the ILP’s objective function. Thisway, goals can be treated
as soft constraints. The advantage ofOptiPlan’s approach is that off-the-shelf ILP
solvers can be used to find the final plan that is guaranteed to be optimal up to
a bounded parallel plan length. The disadvantage of this approach is that it does
not scale up well as compared with heuristic approaches (such as those used by
SapaPS andYochanPS ).

There have been some recent extensions to the basic PSP problem definition. SPUDS
and iPud (12), and BBOP-LP (5) have extendedSapaPS andOptiPlanto solve PSP
problems where there are utility-dependencies between goals. Thus, achieving a set
of goals may have a higher or lower utility than the sum of the utilities of individual
goals, depending on user-defined relations between them. The heuristics inSapaPS

and the objective function inOptiPlanhave been extended significantly in those
planners to accommodate the new constraints representing dependencies between
goals.

Bonet & Geffner (8) present a planner whose search is guided by several heuristics
approximating the optimal relaxed plan using the rank of d-DNNF theory. While
the search framework is very similar toSapaPS and the heuristic is also relaxed
plan-based, the problem tackled is a variation of PSP where goal utilities are not
associated with facts achieved at the end of the plan execution but achievedsome-
timeduring the plan execution. This way, it is a step in moving from the PSP def-
inition of traditional “at end” goals to a more expressive set of goal constraints on
the plan trajectory defined in PDDL3.0. While the heuristic estimate is likely to be
more accurate thanSapaPS , the heuristic computation is more expensive due to the
required step of compiling the problem to d-DNNF.

46



6.2 PDDL3.0 Planners

Several competing planners (besidesYochanPS ) were able to solve various sub-
sets of PDDL3.0 in the IPC-5, specifically SGPlan (32), MIPS-XXL (18), MIPS-
BDD (17) and HPlan-P (2). LikeYochanPS , these planners use a forward heuristic
search algorithm but none convert PDDL3-SP into PSP likeYochanPS . Besides
SGPlan, each planner compiles PDDL3.0 preferences into another planning repre-
sentation and then changes the heuristic approach to find good quality plans given
the costs associated with preferences defined in PDDL3.0.

Baier et al. (2) compile trajectory preferences into additional predicates and ac-
tions by first representing them as a non-deterministic finite state automata (NFA).
The heuristic is then adjusted to take into account that different preferences have
different values so that the planner is guided toward findingoverall good quality
plans. The planner is then extended in (1) to have a more sophisticated search algo-
rithm where conducting a planning search and monitoring theparametrized NFA
are done closely together. MIPS-XXL (18) and MIPS-BDD (17) both compile plan
trajectory preferences into Büchi automata and “simple preferences” into PDDL2.1
numerical fluents that are changed upon a preference violation. MIPS-XXL then
uses Metric-FF with its enforced hill-climbing algorithm to find the final solution.
On the other hand, MIPS-BDD stores the expanded search nodesin BDD form
and uses a bounded-length cost-optimal BFS search for BDDs to solve the com-
piled problems. While compiling to NFA seems to allow those planners to handle a
wider subset of PDDL3.0 preferences thanYochanPS , it is not clear if there is any
performance gain from doing so. SGPlan (32) uses partition techniques to solve
planning problems; it does not compile away the preferencesbut uses the costs as-
sociated with violating trajectory and simple preferencesto evaluate partial plans.

There are planners that solve planning problems with trajectory preferences in
PDDL3.0 by compiling them to satisfiability (SAT) (26) or ILP(43). The SAT com-
pilation can be done by first finding the maximally achievableplan quality valueC,
thenn = ⌈log2(C)+1⌉ ordered bitsb1, ..., bn are used to represent all possible plan
quality values within the range of 0 toC. A SAT solver with modified branching
rules over thosebi bits is then used to find a bounded-length plan with the maxi-
mum achievable plan quality value. Due to the limitation of SAT in only supporting
binary variables, the SAT-compilation approach is arguably awkward.

It is easier to support quantitative preferences in ILP due to its natural ability to
support real values and an objective function to optimize plan quality. van den Briel
et. al. (43) have shown various examples of how to compile trajectory preferences
into ILP constraints. The overall framework is to: (1) obtain the logical expression
of the preferences; (2) transform those expressions into CNF constraints in SAT;
(3) formulate the ILP constraints corresponding to the resulting SAT clauses; and
(4) set up the objective function based on the preference violation cost of those ILP
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constraints. Both the SAT and ILP compilation approaches donot scale up well
compared to the heuristic search approach used inSapaPS andYochanPS . The
advantage is that they can capitalize on state-of-the-art solvers in other fields to
solve complex planning problems.

6.3 Qualitative Preference Planners

There is another class of planners that also treats goals as soft constraints; however,
goals are not quantitatively differentiated by their utility values, but their prefer-
ences are instead qualitatively represented. Qualitativepreferences are normally
easier to elicit from users, but they are less expressive andthere can be many plans
that areincomparable. Brafman & Chernyavsky (10) use TCP-Nets to represent
the qualitative preferences between goals. Some examples are: (1)g1 ≻ g2 means
achievingg1 is preferred to achievingg2; (2) g1 ≻ ¬g1 means achievingg1 is bet-
ter than not achieving it. Using the goal preferences, planP1 is considered better
than planP2 if the goal set achieved byP1 is preferred to the goal set achieved by
P2 according to the pre-defined preferences. A Pareto optimal plan P is the plan
such that the goal set achieved byP is not dominated (i.e., preferred) by the goal
set achieved by any other plan. A CSP-based planner is used tofind the bounded-
length optimal plan. This is accomplished by changing the branching rules in the
CSP solver so that the most preferred goal and the most preferred value for each
goal are always selected first. Thus the planner first branches on the goal set or-
dering according to goal preferences before branching on actions making up the
plan. Like the extension from PSP to PDDL3.0 quantitative preference models on
plan trajectories, there have also been extensions from qualitative goal preferences
to qualitative plan trajectory preferences. Tran & Pontelli (42) introduced the PP
language that can specify qualitative preferences on plan trajectories such as prefer-
ences over the states visited by the plan or over actions executed at different states.
PP uses a nested subset of temporal logic (similar to PDDL3.0) to increase the set
of possible preferences over a plan trajectory. PP is later extended with quantifica-
tion and variables by Bienvenu et al. (6). Both logic-based (42) and heuristic search
based (6) planners have been used to solve planning with qualitative preferences
represented in PP by using weighting functions to convert qualitative preferences
to quantitative utility values. This is due to the fact that quantitative preferences
such as PSP and PDDL3.0 fit better with the heuristic search approach that relies
on a clear way to compute and compareg andh values. The weights are then used
to compute theg andh values guiding the search for an optimal or good quality
solution.
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6.4 Other PSP Work

The PYRRHUS planning system (46) considers an interesting variant of temporal
partial satisfaction planning where goals have deadlines.In PYRRHUS, the quality
of the plan is measured by the utilities of goals and the amount of resources con-
sumed. Goals have deadlines, and utilities of goals decrease if they are achieved
later than their deadlines. Unlike PSP and PDDL3.0 problems, all the logical goals
still need to be achieved by PYRRHUS for the plan to be valid. In other words,
the logical aspect of the goals (i.e., the atemporal aspect)are still hard constraints
while the goal deadline constraints (i.e., the temporal aspect) are soft constraints
and can be “partially satisfiable”. For solving this problem, PYRRHUS uses a par-
tial order planning framework guided by domain-dependent knowledge. Thus, it is
not a domain-independent planner as are the other planners discussed in this paper.

One way of solving PSP problems is to model them directly as deterministic MDPs
(30), where actions have different costs. Any stateS in which any of the goals hold
is a terminal state with the reward defined as the sum of the utilities of the goals
that hold inS. The optimal solution to the PSP problem can then be extracted from
the optimal policy of this MDP. Given this,SapaPS can be seen as an efficient way
of directly computing the plan without computing the entirepolicy (in fact,h∗(S)
can be viewed as the optimal value ofS). Our preliminary experiments with a
state-of-the-art MDP solver show that while direct MDP approaches can guarantee
optimality, they scale very poorly in practice and are unable to solve even small
problems.

Over-subscription issues have received more attention in the scheduling commu-
nity. Earlier work in over-subscription scheduling used “greedy” approaches, in
which tasks of higher priorities are scheduled first (34; 39). More recent efforts
have used stochastic greedy search algorithms on constraint-based intervals (20),
genetic algorithms (27), and iterative repairing techniques (35) to solve this prob-
lem more effectively. Some of those techniques can potentially help PSP planners
to find good solutions. For example, scheduling tasks with higher priorities shares
some similarity with the wayAltAltps builds the initial goal set, and iterative re-
pairing techniques may help local search planners such as LPG in solving PSP
problems.

6.5 Our variation ofA∗ vs. Other Closely Related Search Algorithms

For the rest of this section, we will discuss search algorithms closely related to our
search algorithm, which was discussed in Section 3.1.

vs. variations of anytimeA∗: The main difference between best-first heuristic search
algorithms such asA∗ and our algorithm is that one deals with minimizing path
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length in a graph with onlypositiveedge costs and the other works to maximize
thepath lengthin a graph with bothpositiveandnegativeedge benefits. The other
difference is that any node can be a goal node in PSP NET BENEFIT problems.
Nevertheless, only ones with higher net benefit than the initial state are interest-
ing and can potentially provide better solutions than the empty plan. Turning from
maximization to minimization can be done by negating the edge benefit to create
“edge cost”, resulting in a new graphG′. However, we cannot convertG′ into an
equivalent graph with only positive edges, which is a condition for A∗. Compare
this search to other anytime variations of theA∗ algorithm such as Anytime-WA∗

(28) orARA∗ (36). Both of these anytime variations are based on finding a non-
optimal solution first using aninadmissibleheuristic and later gradually improving
the solution quality by branch and bound or gradually lowering the weight in the
heuristic estimatef = g + w · h. Given that there are both positive and negative
edges in PSP NET BENEFIT, our algorithm may generate multiple solutions with
gradually improving quality before the optimal solution isfound regardless of the
admissibility of the heuristic. This is due to the fact that there are potentially many
solutions on the path to a better quality, or optimal solution. Perhaps the closest
work to our algorithm is by Dasgupta, et al. (11) which searches for the shortest
path in a directed acyclic graph with negative edges. However, in that case a sin-
gle goal node is still pre-defined. We also want to note that besides theOPEN list,
there is noCLOSEDlist used in Algorithm 2, which is popular in most shortest-
path graph search algorithms to facilitate duplicate detection. Our algorithm is im-
plemented in a metric temporal planner with a complicated state representation and
duplicate states are rarely generated. Therefore, we did not implement theCLOSED
list. However, one can be added to our algorithm similar to the way aCLOSEDlist
is used inA∗. Besides admissibility, another important property of theheuristic is
consistency(i.e., h(s) ≤ h(s′) + ce with s′ is a successor ofs), which allowsA∗

with duplicate detection to expand each node at most once in graph search. It can
be shown that our algorithm has a similar property. That is, if the heuristic is con-
sistent (i.e.,h(s) ≥ h(s′) + be), then our algorithm with duplicate detection will
also expand each node at most once.

vs. Bellman-Ford Algorithm:The Bellman-Ford algorithm solves the single-source
shortest path problem for a graph with both positive and negative edges (in a di-
graph). We can use this algorithm to solve PSP NET BENEFIT problems with the
edge weights defined by the negation of the edge benefit. However, this algorithm
requires enumerating through all plan states and can be verycostly for planning
problems which normally have a very large number of possiblestates. Moreover,
we only need to find a single optimal solution in a digraph withno negative cycle
and, thus, the additional benefit of the Bellman-Ford algorithm such as negative
cycle detection and shortest path to all states are not needed. However, given the
relations between theA∗ and Dijkstra algorithms that can be used to prove some
properties ofA∗ and the relations between the Dijkstra and Bellman-Ford algo-
rithms (generalization from an undirected graph to a digraph), we can potentially
prove similar properties of our algorithm by exploiting therelations between our
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algorithm and the Bellman-Ford algorithm.

vs. Branch and Bound:Many anytime algorithms share similarities with the branch
and bound search framework in the sense that at any given timeduring the search,
a best found solutions is kept and used as a bound to cutoff potential paths that
lead to solutions proved worse thans. Our algorithm is no exception, as it uses
the best found solution represented byBB to filter nodes from the OPEN list and
prevent newly generated nodes of lower quality from being added to the OPEN list
as shown in Algorithm 2.

7 Conclusion and Future Work

In this paper, we present a heuristic search approach to solve partial satisfaction
planning problems. In these problems, goals are modeled as soft constraints with
utility values, and actions have costs. Goal utility represents the value of each goal
to the user and action cost represents the total resource cost (e.g., time, fuel cost)
needed to execute each action. The objective is to find the plan that maximizes the
trade-off between the total achieved utility and the total incurred cost; we call this
problem PSP NET BENEFIT. Previous PSP planning approaches heuristically con-
vert PSP NET BENEFIT into STRIPS planning with action cost by pre-selecting
a subset of goals. In contrast, we provide a novel anytime search algorithm that
handles soft goals directly. Our new search algorithm has ananytime property that
keeps returning better quality solutions until the termination criteria are met. This
search algorithm, along with the relaxed plan heuristics adapted to PSP NET BEN-
EFIT problems, were implemented in the forward state-space plannerSapaPS .

BesidesSapaPS , we also presentedYochanPS , a planner that converts “simple
preferences” in the standard language PDDL3.0 into PSP NET BENEFIT and uses
SapaPS to find good quality solutions.YochanPS recognizes the similarities be-
tween (1) goal and action precondition preference violation costs in PDDL3-SP,
and (2) goal utility and action cost in PSP NET BENEFIT. It uses these similari-
ties to create new goals and actions in PSP NET BENEFIT with appropriate utility
and cost values to represent the original preferences.YochanPS participated in
the the5th International Planning Competition (IPC-5) and was competitive with
other planners that can handle PDDL3-SP, receiving a “distinguished performance”
award. While SGPlan, the winner of the competition, solves many more problems
thanYochanPS , our planner returns comparable quality solutions (which is the em-
phasis of the IPC) to SGPlan, in problems it can solve. There are several technical
reasons for our planner’s inability to solve many problems.YochanPS ’s parsing
and grounding routine was quite slow and took most if not all of the allocated 30
minutes time to parse big problems in many domains. WhenYochanPS can ground
the competition problems in a reasonable time, it typicallycan solve them.
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We also introduce another planner calledYochanCOST . Like YochanPS , it com-
piles away preferences in PDDL3-SP. However, the resultingproblem is not PSP
NET BENEFIT but a problem with hard goals and action costs. Our empiricalre-
sults show thatYochanPS performs better thanYochanCOST by handling soft goals
directly.

We want to further explore our current approach of solving PSP problems in several
directions. Even though we have used a forward planner, the anytime search algo-
rithm presented in this paper can be used for other types of heuristic search planners
such as regression or partial order causal link planners. Itwould be interesting to
compare which is a better-suited planning framework. We have also expanded the
basic PSP NET BENEFIT framework to include metric goals with variable goal util-
ity in the plannerSapaMPS (3), and logical goals with inter-dependent utilities in
the planner SPUDS (12). We are currently planning on extending it to handle goals
whose utilities depend on their achievement time.

Acknowledgments: This article is in part edited and extended from Do & Kamb-
hampati (15); Benton, Kambhampati & Do (4); and van den Briel, Sanchez, Do &
Kambhampati (44). We would like to thank Romeo Sanchez for help with his code
and the experiments, and Menkes van den Briel and Rong Zhou for their discus-
sions and helpful comments on this paper. We also greatly appreciate the assistance
of William Cushing for discussions and help with experiments. Additionally, we
express our gratitude to David Smith and Daniel Bryce for their suggestions and
discussions in the initial stages of this work. And of coursethanks go to Sylvie
Thiebaux and the anonymous reviewers, who gave valuable comments that helped
us to improve the article. This research is supported in partby the ONR grants
N000140610058 and N0001407-1-1049 (MURI subcontract fromIndiana Univer-
sity), a Lockheed Martin subcontract TT0687680 to ASU as part of the DARPA
Integrated Learning program, and the NSF grant IIS-308139.

References

[1] J. Baier, F. Bacchus, S. McIllraith, A heuristic search approach to planning
with temporally extended preferences, in: Proceedings of IJCAI-07, 2007.

[2] J. Baier, J. Hussell, F. Bacchus, S. McIllraith, Planning with temporally ex-
tended preferences by heuristic search, in: Proceedings ofthe ICAPS Booklet
on the Fifth International Planning Competition, 2006.

[3] J. Benton, M. B. Do, S. Kambhampati, Over-subscription planning with nu-
meric goals, in: Proceedings of IJCAI, 2005, pp. 1207–1213.

[4] J. Benton, S. Kambhampati, M. Do, YochanPS: PDDL3 simplepreferences
as partial satisfaction planning, in: Proceedings of the ICAPS Booklet on the
Fifth International Planning Competition, 2006.

[5] J. Benton, M. van den Briel, S. Kambhampati, A hybrid linear programming

52



and relaxed plan heuristic for partial satisfaction planning problems, in: Pro-
ceedings of ICAPS, 2007.

[6] M. Bienvenu, C. Fritz, S. McIlraith, Planning with qualitative temporal pref-
erences, in: Proceedings of KR-06, 2006.

[7] B. Bonet, L. G., H. Geffner, A robust and fast action selection mechanism for
planning, in: Proceedings of AAAI-97, 1997.

[8] B. Bonet, H. Geffner, Heuristics for planning with penalties and rewards using
compiled knowledge, in: Proceedings of KR-06, 2006.

[9] C. Boutilier, T. Dean, S. Hanks, Decision-theoretic planning: Structural as-
sumptions and computational leverage, Journal of Artificial Intelligence Re-
search 11 (1999) 1–91.

[10] R. I. Brafman, Y. Chernyavsky, Planning with goal preferences and con-
straints, in: Proceeding of ICAPS-05, 2005.

[11] P. Dasgupta, A. Sen, S. Nandy, B. Bhattacharya, Searching networks with un-
restricted edge costs, IEEE Transactions on Systems, Man, and Cybernetics.

[12] M. B. Do, J. Benton, S. Kambhampati, M. van den Briel, Heuristic planning
with utility dependencies, in: Proceedings of IJCAI-07, 2007.

[13] M. B. Do, S. Kambhampati, Sapa: a multi-objective metric temporal planer,
Journal of Artificial Intelligence Research 20 (2002) 155–194.

[14] M. B. Do, S. Kambhampati, Improving the temporal flexibility of position
constrained me tric temporal plans, in: Proc. of ICAPS-03, 2003.

[15] M. B. Do, S. Kambhampati, Partial satisfaction (over-subscription) planning
as heuristic search, in: Proceedings of KBCS-04, 2004.

[16] M. B. Do, T. Zimmerman, S. Kambhampati, Planning and scheduling with
over-subscribed resources, preferences, and soft constraints, in: Tutorial given
at AAAI-07, 2007.

[17] S. Edelkamp, Optimal symbolic pddl3 planning with mips-bdd, in: Proceed-
ings of the ICAPS Booklet on the Fifth International Planning Competition,
2006.

[18] S. Edelkamp, S. Jabbar, M. Nazih, Large-scale optimal pddl3 planning with
mips-xxl, in: Proceedings of the ICAPS Booklet on the Fifth International
Planning Competition, 2006.

[19] E. Fink, Q. Yang, A spectrum of plan justifications, in: Proceedings of the
AAAI 1993 Spring Symposium, 1993, pp. 23–33.

[20] J. Frank, A. Jonsson, R. Morris, D. Smith, Planning and scheduling for fleets
of earth observing satellites, in: Proceedings of Sixth Int. Symp. on Artificial
Intelligence, Robotics, Automation & Space, 2001.

[21] B. Gazen, C. Knoblock, Combining the expressiveness ofucpop with the ef-
ficiency of graphplan, in: Fourth European Conference on Planning, 1997.

[22] A. Gerevini, B. Bonet, B. Givan, Fifth international planning competition, in:
IPC06 Booklet, 2006.

[23] A. Gerevini, D. Long, Plan constraints and preferencesin PDDL3: The lan-
guage of the fifth international planning competition, Tech. rep., University of
Brescia, Italy (August 2005).

[24] A. Gerevini, D. Long, IPC-5 website, in: http://zeus.ing.unibs.it/ipc-5/, 2006.

53



[25] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search and
temporal action graphs in lpg, Journal of Artificial Intelligence Research 20
(2003) 239–290.

[26] E. Giunchiglia, M. Maratea, Planning as satisfiabilitywith preferences, in:
Proceedings of AAAI-07, 2007.

[27] A. Globus, J. Crawford, J. Lohn, A. Pryor, Scheduling earth observing sateli-
ites with evolutionary algorithms, in: Proceedings of Int.Conf. on Space Mis-
sion Challenges for Infor. Tech., 2003.

[28] E. Hansen, R. Zhou, Anytime heuristic search, Journal of Artificial Intelli-
gence Research 28 (2007) 267–297.

[29] M. Helmert, The Fast Downward planning system, Journalof Artificial Intel-
ligence Research (2006) 191–246.

[30] J. Hoey, R. St-Aubin, A. Hu, C. Boutilier, Spudd: Stochastic planning using
decision diagrams, in: Proceedings of UAI-99, 1999.

[31] J. Hoffmann, B. Nebel, The FF planning system: Fast plangeneration through
heuristic search, Journal of Artificial Intelligence Research 14 (2001) 253–
302.

[32] C.-W. Hsu, B. Wah, R. Huang, Y. Chen, New features in sgplan for handling
preferences and constraints in pddl3.0, in: Proceedings ofthe ICAPS Booklet
on the Fifth International Planning Competition, 2006.

[33] E. Keyder, H. Geffner, Set-additive and tsp heuristicsfor planning with ac-
tion costs and soft goals, in: Proceedings of the Workshop onHeuristics for
Domain-Independent Planning, ICAPS-07, 2007.

[34] L. Kramer, L. Giuliano, Reasoning about and schedulinglinked hst observa-
tions with spike, in: Proceedings of Int. Workshop on Planning and Schedul-
ing for Space, 1997.

[35] L. Kramer, S. Smith, Maximizing flexibility: A retraction heuristic for over-
subscribed scheduling problems, in: Proceedings of IJCAI-03, 2003.

[36] M. Likhachev, G. Gordon, S. Thrun, Ara*: Anytime a* withprovable bounds
on sub-optimality, in: Proceedings of NIPS-04, 2004.

[37] X. Nguyen, S. Kambhampati, R. S. Nigenda, Planning graph as the basis to
derive heuristics for plan synthesis by state space and csp search, Artificial
Intelligence 135 (1-2) (2002) 73–124.

[38] R. S. Nigenda, S. Kambhampati, Planning graph heuristics for selecting ob-
jectives in over-subscription planning problems, in: Proceedings of ICAPS-
05, 2005.

[39] W. Potter, J. Gasch, A photo album of earth: Scheduling landsat 7 mission
daily activities., in: Proceedings of SpaceOp, 1998.

[40] D. E. Smith, Choosing objectives in over-subscriptionplanning, in: Proceed-
ings of ICAPS-04, 2004.

[41] E. Stefan, Taming numbers and durations in the model checking integrated
planning system, Journal of Artificial Intelligence Research 40 (2003) 195–
238.

[42] S. Tran, E. Pontelli, Planning with preferences using logic programming, The-
ory and Practice of Logic Programming 6 (5) (2006) 559–608.

54



[43] M. van den Briel, S. Kambhampati, T. Vossen, Planning with preferences and
trajectory constraints by integer programming., in: Proceedings of Workshop
on Preferences and Soft Constraints at ICAPS-06, 2006.

[44] M. van den Briel, R. S. Nigenda, M. B. Do, S. Kambhampati,Effective ap-
proaches for partial satisfaction (over-subscription) planning, in: Proceedings
of AAAI-04, 2004.

[45] V. Vidal, A lookahead strategy for heuristic search planning, in: Proceedings
of ICAPS-04, 2004.

[46] M. Williamson, S. Hanks, Optimal planning with a goal-directed utility
model, in: Proceedings of AIPS-94, 1994.

55


