Anytime Heuristic Search
for Partial Satisfaction Planning

J. Bentort, Minh Do", and Subbarao Kambhampati
& Arizona State University, Department of Computer SciemckEngineering
Brickyard Suite 501, 699 South Mill Avenue, Tempe, AZ 85281

> Embedded Reasoning Area, Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304, USA

Abstract

We present a heuristic search approach to solve partiafaaion planning (PSP) prob-
lems. In these problems, goals are modeled as soft cortstxaithn utility values, and ac-
tions have costs. Goal utility represents the value of eacth @ the user and action cost
represents the total resource cost (e.g., time, fuel cestjled to execute each action. The
objective is to find the plan that maximizes the trade-offrestn the total achieved utility
and the total incurred cost; we call this problem PSEreNEFIT. Previous approaches
to solving this problem heuristically convert PSEENBENEFIT into STRIPS planning
with action cost by pre-selecting a subset of goals. In eshtwe provide a novel anytime
search algorithm that handles soft goals directly. Our reavah algorithm has an anytime
property that keeps returning better quality solutionsl gim¢ termination criteria are met.
We have implemented this search algorithm, along with ezlg¥dan heuristics adapted to
PSP NeT BENEFIT problems, in a forward state-space planner caSapds . An adap-
tation of Sap&® , called Yocharf'® , received a “distinguished performance” award in the
“simple preferences” track of thg” International Planning Competition.

Key words: Planning, Heuristics, Partial Satisfaction, Search

1 Introduction

In classical planning, the aim is to find a sequence of actibas transforms a
given initial stateZ to some state satisfying goals whereG = g1 Aga A ... A g,
is a conjunctive list of goal fluents. Plan success for thdaening problems is
measured in terms of whether or not all the conjunct§ imre achieved. In many
real world scenarios, however, the best plan for the ageptanly satisfy a subset
of the goals. The need for such partial satisfaction plagpnight arise in some
cases because the set of goal conjuncts may contain lggecadflicting fluents, or

Preprint submitted to Atrtificial Intelligence 5 November030

there may not be enough time or resources to achieve all @jaghkbconjuncts, or
achieving all goals may prove to be too costly.

Despite their ubiquity, PSP problems have only recentingaad attention. Effec-
tive handling of PSP problems poses several challengdsiding an added em-
phasis on the need to differentiate between feasible anchalplans. Indeed, for
many classes of PSP problems, a trivially feasible, butdielty non-optimal so-
lution would be the “null” plan. In this paper, we focus on aféhe more general
PSP problems, called PSPENBENEFIT. In this problem, each goal conjunct has
a fixed utility and each ground action has a fixed cost. All gdéities and action
costs are independent of one anothéfhe objective is to find a plan with the best
“net benefit” (i.e., cumulative utility minus cumulativest). Hence the name PSP
NET BENEFIT.

One obvious way of solving the PSPEN BENEFIT problem is to model it as a
deterministic Markov Decision Process (MDP) with actiorstcand goal reward
(9). Each state that achieves one or more of the goal flueat$aeminal state in
which the reward equals the sum of the utilities of the goalthat state. The op-
timal solution of the PSP KT BENEFIT problem can be obtained by extracting
a plan from the optimal policy for the corresponding MDP. Hwoer, our earlier
work (44) showed that the resultant approaches are oftemédiicient (even with
state-of-the-art MDP solvers). Consequently, we inveséigan approach of mod-
eling PSP in terms of heuristic search with cost-sensitaehability heuristics. In
this paper, we introduc8apd® , an extension of the forward state-space planner
Sapd13), to solve PSP KT BENEFIT problems Sap&® adapts powerful relaxed
plan-based heuristic search techniques, which are conynuged to find satisfic-
ing plans for classical planning problems (31), to PSEreNEFIT. Expanding
heuristic search to find such plans poses several challefigssown:

e The planning search termination criteria must change lsecgoals are now soft
constraints (i.e., disjunctive goal sets).

e Heuristics guiding planners to achieve a fixed set of goalk wniform action
costs need to be adjusted to actions with non-uniform casgaals with differ-

1 Smith (40) first introduced the term Over-Subscription Rlag (OSP), and later van den
Briel et al. (44) used the term Partial Satisfaction Plagr{iASP) to describe the type of
planning problem where goals are modeled as soft condraird the planner aims to find
a good quality plan achieving only a subset of goals. Whitegloblem definition is the
same, OSP and PSP have different perspectives: OSP engshtdsizresource limitations
as the root of partial goal satisfaction (i.e., planeannotachieve all goals), and PSP
concentrates on the tradeoff between goal achievemerdg eost overall achieved goal
utility (i.e., even when possible, achievement of all gaalsot the best solution). We will
use the term PSP throughout this paper because our plargimgttam is targeted to find
the plan with the best tradeoff between goal utility andaactost.

2 In (12), we discuss the problem definition and solving apgnea for a variation of PSP
NET BENEFIT where there are dependencies between goal utilities.

ent utilities.

Sap&° develops and uses a variation of an anytitiesearch algorithm in which
the most beneficial subset of godls and the lowest cost plaf achieving them
are estimated for each search node. The trade-off betweetotidl utility of S
and the total cost aP is then used as the heuristic to guide the search. The anytime
aspect of theSapd® search algorithm comes naturally with the switch from goals
as hard constraints in classical planning to goals as sofitcaints in PSP KT
BENEFIT. In classical planning, there are differences betweern\yadins leading

to states satisfying all goals and invalid plans leadingtées where at least one
goal is not satisfied. Therefore, the path from the initiatesf to any node gen-
erated during the heuristic search process before a goal isodsited cannot be
returned as a valid plan. In contrast, when goals are softtcaints, a path frond

to any node in PSP INr BENEFIT represents a valid plan and plans are only dif-
ferentiated by their qualities (i.e., net benefit). Therefahe search algorithm can
take advantage of that distinction by continually retugnetter quality plans as it
explores the search space, until the optimal plan (if an ssiivle heuristic is used)

is found or the planner runs out of time or memory. This is thpraach taken in
the Sap&° search algorithm: starting from the empty plan, whenevesach node
representing a better quality plan is visited, it is recdrds the current best plan
found and returned to the user when the algorithm terminates

The organizers of the" International Planning Competition (IPC-5), also realiz-
ing the importance of soft goals, introduced soft constsawith violation cost into
PDDL3.0 (23). Although this model is syntactically diffatdrom PSP N-T BEN-
EFIT, we derive a novel compilation technique to transform “dergeferences” in
PDDL3.0 to PSP MT BENEFIT. The result of the conversion is then solved by our
search framework in an adaptation®#p&° called Yocharf’® , which received a
“distinguished performance” award in the IPC-5 “simplefprences” track.

In addition to describing our algorithms and their perfontgin the competition,
we also provide critical analysis on two important desigaisiens:

e Does it make sense to compile the simple preference probtén?ODL3.0
into PSP NET BENEFIT problems (rather than compile them to cost-sensitive
classical planning problems as is done by some competingagpipes, such as
(18; 33))?

e Does it make sense to solve PSBTMBENEFIT problems with anytime heuristic
search (rather than by selecting objectives up-front, asaated by approaches
such as (44; 40))?

3 Note that the anytime behavior is dependent on the PSP prnobiehand. If we have
many goals that are achievable with low costs, then we wi#llyi observe the anytime
behavior as plans with increasing quality are found. Howef/there are only a few goals
and they are difficult to achieve or mostly unbeneficial (iteo costly), then we will not
likely see many incrementally better solutions.

To analyze the first we have comparngatharf® with a version calledochary©57,
which compiles the PDDL3.0 simple preference problems jiie cost-sensitive
planning problems. Our comparison shows tfiatharf’S is superior tovochart’ 07
on the competition benchmarks.

Regarding the second point, in contrasSapd® (and Yocharf®), several other
systems (e.gAltAlt 7S (44) and the orienteering planner (40)) solve PSP problems
by first selecting objectives (goals) that the planner sthawdrk on, and then sim-
ply supporting them with the cheapest plan. While such amaggh can be quite
convenient, a complication is that objective selection, damhe worst case, be as
hard as the overall planning problem. To begin with, helarigp-front selection
of objectives automatically removes any guarantees ofragtiy of the resulting
solution. Second, and perhaps more important, the goastsdlmay be infeasible
together thus making it impossible to find evesaisficingsolution. To be sure,
there has been work done to make the objective selection semigtive to mutual
exclusions between the goals. An example of such woAdti&/It (38) which aims
to improve the objective selection phaseAdfAlt 7S with some limited mutual ex-
clusion analysis. We shall show, however, that this is notuigh to capture the type
of n-ary mutual exclusions that result when competitiondbemark problems are
compiled into PSP ET BENEFIT problems.

In summary, our main contributions in this paper are:

¢ Introducing and analyzing an anytime search algorithm @visg PSP NeT
BENEFIT problems. Specifically we analyze the algorithm propertiesnina-
tion criteria and how to manage the search space.

e An approach to adapt the relaxed plan heuristic in clasplaahing to PSP ET
BENEFIT; this involves taking into account action costs and softl gty in
extracting the relaxed plan from the planning graph.

e A novel approach to convert “simple preferences” in PDDL&OPSP NeT
BENEFIT, how to generate new goals and actions and how to use themgduri
the search process.

The rest of this paper is organized into three main parts. 8giny we discuss
background information on heuristic search for planningaiselaxed plan based
heuristics in Section 2. Next, we discu8apd® in Section 3. This section includes
descriptions of the anytime algorithm and the heuristiding Sapd® . In Sec-
tion 4, we show how to compile PDDL3.0 “simple preferencesPSP NeT BEN-
EFIT in Yocharf® . In Section 5, we show the performance¥afcharf® against
other state-of-the-art planners in the IPC-5 (22). We fithelpaper with the related
work in Section 6, and our conclusions and future work in fect .

Ugy =100 l

Fig. 1. A logistics example.

2 Background
2.1 PSP Net Benefit Problem

In partial satisfaction planning with net benefit (PSBTNBENEFIT) (40; 44), each
goalg € G has a utility value:, > 0, representing how much each goal is worth to
a user; each actiane A has an associated execution agst 0, representing how
costly it is to execute each action (e.g., the amount of tinresources consumed).
All goals aresoft-constraintsn the sense that any plan achieving a subset of goals
(even the empty set) is a valid plan. LIBtbe the set of all valid plans and let
Gp C G be the set of goals achieved by a plBne P. The objective is to find

a plan P that maximizes the difference between total achievedytiliGp) and
total cost of all actions € P:

argmax Y ug— » ¢, (2)

pPeP geGp acP

Example: In Figure 1, we introduce a logistics example that we will thseughout
the paper. In this example, there is a truck loaded with theskages that initially
resides at locationl. The (soft) goals are to deliver one package each to the other
four locations:B, C, D, andE. The respective goal utilities are shown in Figure 1.
For exampley, = HavePackage(B) andu,, = 50. To simplify the problem, we
assume that there is a sindlove(X, Y') action that moves the truck from location
X tolocationY'. The truck will always drop a packagenif there is no package at
Y already. Thus, if there is a package in the truck, it will ditogt Y. If there is no
package in the truck, but one &t then the truck will pick it up and drop it off at
when executing/ove(X,Y"). The costs of moving between different locations are
also shown in Figure 1. For example, with = Move(A, B), ¢,, = 40 (note that

CMove(X,Y) = CMove(Y,X))- 1he objective function is to find a plan that gives the best
trade-off between the achieved total goal utility and mgwost. In this example,
the optimal plan is? = {Move(A, C), Move(C, D), Move(D, E)} that achieves
the last three goals, gs, g4 and ignores the first gogl = HavePackage(B).

We call this utility and cost trade-off value “net benefit”dathus this class of
PSP problem PSP &N BENEFIT. As investigated in (44), though it is considered
harder due to the additional complicationsoftgoals with utility and action costs,
PSP NeT BENEFIT still falls into the same complexity class as classical piag
(PSPACE). However, existing search techniques typicallyaot handle soft goals
directly and instead either choose a subset of goals up-drarompile all soft goals
into hard goals (44; 32; 18; 33). These approaches haveadelisadvantages. For
instance, when selecting goals up-front, one runs the fisihoosing goals that
cannot be achieved together because they are mutuallyséxldn our example,
the set of all four goalsf g1, g2, g3, g4} are mutual exclusive because we only have
three packages to be delivered to four locations. Any platire does not recog-
nize this, and selects all four goals and converts them td haals is doomed to
fail. Compiling to hard goals increases the number of asttorbe handled and can
fail to allow easy changes in goal selection (e.g., in cadesrgv/soft goals do not
remain true after achievement such as in our example wheed\eeied package
may need to be picked up again and delivered to another ¢togatinstead, the
two progression planneiSapd® and Yocharf® discussed in this paper handle
soft goals directly by heuristically selecting differertay sets for different search
nodes. Those planners extend the relaxed plan heuristidmsiee Sapgplanner to
the PSP T BENEFIT setting.

2.2 Relaxed Plan Heuristics

Before exploring the details of this approach, we give amadew of solving clas-
sical planning problems with forward state-space seartiguslaxed plan based
heuristics. This is the same approach used in our planners.

Forward state space search is used by many state-of-thkvanters such as HSP (7),
FF (31), and Fast Downward (29). They build plans incremritgt adding one ac-
tion at a time to the plan prefix starting from the initial statuntil reaching a state
containing all goals. An actiomis applicable (executable) in statéf Pre(a) C s
and applying: to s results in a new stat€ = (s \ Delete(a)) U Add(a). States

is a goal node (satisfies all goals)d: C s. Algorithm 1 depicts the basic steps of
this forward state space search algorithm. At each seagphlst A, be the set of
actions applicable in. Different search algorithms choose to apply one or more ac-
tionsa € A, to generate new search nodes. For example, the enforcedimbing
search algorithm in the FF planner chooses one successemwtuolt the best-first
search algorithm used iBapa(13) and HSP (7) applies all actions.i) to gener-

1
2

g b~ W

© 00 N O

10
11
12
13
14
15
16

Algorithm 1: Forward state space planning search algorithm
Input: A planning problem{F, I, G, A);
Output: A valid plan;

begin
OPEN — {I};
while OPEN # () do
s «— argmin f(z);
zeOPEN
OPEN «— OPEN \ {s};
if s = G then
\ return plan leading tos andstop search
else
foreach a applicable ins do
| OPEN — OPEN U {Apply(a,s)}
end
end
end
end

ate new search nodes. Generated states are stored in ttie geane and the most
common sorting function (Line 6) is in the decreasing ordef(®) = g(s)+w-h(s)
values whergy(s) is the distance fronf to s, i(s) is the expected distance from

to the goal staté;, andw is a “weight” factor. The search stops when the first node
taken from the queue satisfies all the pre-defined conjungials.

For forward planners using a best-first search algorithingbids nodes according
tothef = g + w - h value, the “informedness” of the heuristic vallués critical to

the planner’s performance. Theandg values are measured according to the user’s
objective function. LetP;_., be the partial plan leading from the initial stdt¢éo a
states and P,_. be a plan leading from a statdo a goal staté&-. If the objective
function is to minimize the number of actions in the final pldreng measures the
number of actions iP;_, andh measures the expected number of actions in the
shortestP,_, .

Measuringg is easy because by reachingve already knowP;_,,. However, mea-
suringh exactly (i.e.,h*) is as hard as solving the remaining problem of finding a
plan froms to G. Therefore, finding a good approximation/ofin a short time is
critical. In recent years, many of the most effective doriagependent planners
such as FF (31), LPG (25), a8hpd13) have used the relaxed plan to approximate
h. For the rest of this section, we will briefly describe a gahapproach of extract-
ing the relaxed plan to approximate the shortest length lan least number of
actions) for achieving the goals.

One way torelax a planning problem is to ignore all of the negative effects of
actions. A solutionP* to a relaxed planning proble(#, A*, I, G), whereA™ is

A,(C=90)
[92,93]

g3 (U:300)

A4(C=120)
[94]

g4 (U:100)

Fig. 2. The relaxed planning graph.

built from A by removing all negative effect®elete(a) from all actionsa € A,
can be found in polynomial time in terms of the number of axtiand factsP™ is
called a “relaxed plan”. The common approach to extrattinvolves two steps:

(1) Build the relaxed planning graphG* usingA* forward from1.
(2) Extract the relaxed plaR+ from PG™* backward fron(.

In the first step, action and fact levels are interleavedistafrom I = F; as the
first fact level. The" action and fact leveld, andF; are built iteratively using the
following rules:

A; = H{a: Pre(a) C Fi_1}
Fi=F, U (J Add(a))

acA;

The expansion stops whern C F;. In the second step, we start with the subgoal
setSG = @G at the last level where the expansion stopped and the relaxed plan
P* = (). For eachy; € SG (i.e., goalg at leveli) we select a supporting actian
(i.e., actiona at leveli) such that:g € Effect(a) and updateP™ — Pt U {a;},

SG — SGU{p;_1: p € Pre(a)}. Note that subgoaj; can also be supported by
anoopaction at level if g appears in the graph at leviel- 1. In this case, we just
replacey; in SG by g;_;. We repeat the procedure unfiG C F;,.* The details of

the original relaxed plan finding algorithm can be found e description of the FF
planner (31). Note also that the relaxed plan greedily ei¢rhas described above
is not optimal.

4 In our implementation, besides the level at which each actfipears, we also record the
causal linkse % o if a is selected (at the lower level) to support the preconditiaf o’
at the later level. These causal links in effect repregenias a partial-order plan.

Figure 2 shows the relaxed planning graph for our ongoingng@. The first fact
level represents the initial state in which onf§(A) is true. The first action level
contains actions applicable in the initial state, whichfaxg M ove actions from
A to the other four locations. The second fact level contaffeces of actions in
the first level. The second action level contains actionk ptieconditions satisfied
by the second fact level and thus contains all actions inghablem? One ex-
ample of a relaxed plan extracted from this graph (highéghh Figure 2) would
be P = {Move(A, B), Move(A,C), Move(A, E), Move(C, D)}. We can see
that this relaxed plan is not consistent due to the mutuausian relation be-
tweenMove(A, C), Move(A, B), and Move(A, E). However, it can be used as
an estimate for a real consistent plan. Thus, if the objedtwction is to find the
minimum cost plan, then the estimated cost based on theectlpban extracted
in Figure 2 for the initial state i8(1) = carove(4,B) + CMove(4,0) + Chove(A,E) +
ChMove(c,p) = 40 + 90 4+ 120 + 200 = 450. If the objective function is to find the
shortest length plan the@®*| = 4 can be used as the heuristic value.

3 Sapd” : Forward State-Space Heuristic Planner for PSP

In this section, we will discuss our approach for extendhegyforward state space
search framework to handle PSR NBENEFIT problems. Our search and heuristic
techniques have been implemented in a planner c8mo&S . We start in Sec-
tion 3.1 by introducing a variation of the best-first seariggoathm that solves the
PSP NeT BENEFIT problem. We then move on to the relaxed plan based heuristic
for PSP NET BENEFIT in Section 3.2.

3.1 Anytime Best-First Search Algorithm for PSP

One of the most popular methods for solving planning prokléento cast them as
the problem of searching for a minimum cost path in a grapdm thse a heuristic
search to find a solution. Many of the most successful heuptinners (7; 31; 13;
37; 41) employ this approach and use variations of best¢gnaph search (BFS)
algorithms to find plans. We also use this approach to solV@ RSt BENEFIT
problems. In particular, we use a variation4fwith modifications to handle some
special properties of PSPEN BENEFIT (e.g., any state can be a goal state). For the
remainder of this section, we will outline them and discusssearch algorithm in
detail.

Standard shortest-path graph search algorithms seardh finimum-cost path

> We exclude actions that have already appeared in the fiest l@s well as severaove
actions fromD and E to simplify the figure.

from a start node to a goal node. Forward state space searsblfting classical
planning problems can be cast as a graph search probleniagso]l) each search
noden represents a complete planning stat€?) if applying actiona to a states
leads to another statéthen actior represents a directed edge- s = s’ from s
to s’ with the edge cost, = ¢, ; (3) the start node represents the initial stgt@l) a
goal node is any statg; satisfying all goalg € G. In our ongoing example, at the
initial state/ = {at(A)}, there are four applicable actioas= Move(A, B), ay =
Move(A,C), a3 = Move(A, D), anday, = Move(A, F) that lead to four states
s1 = {at(B), g1}, s2 = {at(C), g2}, s3 = {at(D), g3}, ands, = {at(E), g4}
The edge costs will represent action costs in this planniaiggransition graph
and the shortest path in this graph represents the lowesplems Compared to the
classical planning problem, the PSR NBENEFIT problem differs in the following
ways:

¢ Not all goals need to be accomplished in the final plan. In #reegal case where
all goals aresoft, any executable sequence of actions is a candidate plaratiye
node can be a valid goal node).

e Goals are not uniform and have different utility values. Tien quality is not
measured by the total action cost but by the difference betvtlee cumulative
utility of the goals achieved and the cumulative cost of tboas used. Thus,
the objective function shifts frorminimizingtotal action cost tanaximizingnet
benefit.

To cast PSP HT BENEFIT as a graph search problem, we need to make some
modifications to (1) the edge weight representing the chamgaan benefit by
going from a search node to its successors and (2) the aritarierminating the
search process. We will first discuss the modifications, firesent a variation of
the A* search algorithm for solving the graph search problem fd?. H8 simplify

the discussion and to facilitate proofs of certain propertif this algorithm, we will
make the following assumptions: (1) all goals are soft aansts; (2) the heuristic

is admissible. Later, we will provide discussions on relgxone or more of those
assumptions.

g value: A* uses the valug(s) = g(s) + h(s) to rank generated stategor ex-
pansion withg representing the “value” of the (known) path leading frora $tart
statel to s, andh estimating the (unknown) path leading fromno a goal node that
will optimize a given objective function. In PSPEN BENEFIT, g represents the
additional benefit gained by traveling the path frérto s. For a given stata, let
G4 C G be the set of goals accomplishedsirthen:

9(s) = (U(s) = U(I)) = C(Pr-s) (2)

6 In the simplest case where actions have no cost and the ivbjéaction is to minimize
the number of actions in the plan, we can consider all actiangng uniform positive cost.

10

whereU(s) = X u, andU(l) = Y u, are the total utility of goals satisfied
g€l geGy

insandl.C(P;_s) = Y. ¢, is the total cost of actions if;_. ;. For example:
a€EPr_,¢

Ul(sz) = ug, = 100, andC(P;_,) = ¢4, = 90 and thusy(s,) = 100 — 90 = 10.

In other words,g(s) as defined in Equation 2 represents the additional benefit
gained when plarP;_., is executed in/ to reachs. To facilitate the later discus-
sion, we will introduce a new notation to represent the béeoéf planP leading
from a states to another state’:

B(Pls) = (U(s") = U(s)) = 3_ ¢a ®3)

a€P

Thus, we have(s) = B(P;_s|I).

h value:In graph search, the heuristic valtiés) estimates the path fromto the
“best” goal node. In PSP ir BENEFIT, the “best” goal node is the nodg such
that traveling froms to s, will give the most additional benefit. In general, the
closer thath estimates the real optimal value, the better in terms of the amount
of search effort. Therefore, we will first provide the defimit of 7*.

Best beneficial plan:For a given states, a best beneficial pla®? is a plan ex-
ecutable ins and there is no other pla® executable ins such that: B(P|s) >
B(P7s).

Notice that an empty pla#) containing no actions is applicable in all states and
B(Py|s) = 0. Therefore,B(PZ|s) > 0 for any states. The optimal additional
achievable benefit of a given statés calculated as follows:

I*(s) = B(P|s) (4)

In our ongoing example, from statg the most beneficial plan B2 = {Move(C, D),
Move(D, E)}, andh*(ss) = B(PJ|s2) = U({g3, 92, 94})~U({g2}) — (carove(c,0) +
CMove(D,E)) = ((300 4100+ 100) — 100) — (200 4 50) = 400 — 250 = 150. Com-
puting »* directly is impractical as we need to search fof in the space of all
potential plans and this is as hard as solving the P&P BENEFIT problem for
the current search state. Therefore, a good approximatibhis needed to effec-
tively guide the heuristic search algorithm. In the nextisec we will discuss a
heuristic approach to approximatifif using a relaxed plan.

Algorithm 2 describes the anytime variation of tHé algorithm that we used to

11

1
2
3

© 0o N o g b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Algorithm 2: Anytime A* search algorithm for finding maximum beneficidap
for PSP (without duplicate detection)

Input: A PSP problem{F, I,G, A);

Output: A valid plan Pg;

begin

g(I) — X ug;

gel
fI) = g(I)+ h(I);
Bp — g(I);
Pg — 0;
OPEN « {I};
while OPEN # () and not interrupteddo

s « argmax f(z);
2€OPEN

OPEN — OPEN \ {s};
if h(s) = 0then
| stop search;
else
foreach s’ € Successors(s) do
if g(s') > Bp then
Pp « plan leading fron to ¢’;
Bp « g(s');
OPEN «— OPEN \ {s; : f(si) < Bgp};
end
if f(s') > Bpthen
| OPEN «— OPEN U{s'}
end
end
end
end
Return Pg;
end

solve the PSP NT BENEFIT problems. LikeA*, this algorithm uses the value
f = g + h to rank nodes to expand, with the successors generatoy and &
values described above. We assume that the heuristic ugédnissible Because
we try to find a plan that maximize®t benefitadmissibility means over-estimating
additional achievable benefits; thugs) > h*(s) with h*(s) defined above. Like
other anytime algorithms, we keep one incumbent vélydo indicate the quality
of the best found solution at any given moment (i.e., highesbenefit)’

7 Algorithm 2, as implemented in our planners, does not inelddplicate detection (i.e.,
no CLOSEDIist). However, it is quite straightforward to add duplieatetection to the base
algorithm similar to the wafZLOSEDIist is used inA*.

12

The search algorithm starts with the initial stdteand keeps expanding the most
promising nodes (i.e., one with highesf value) picked from th©PENIist (Line

7). If h(s) = 0 (i.e., the heuristic estimate indicates that there is natieal ben-

efit gained by expanding) then we stop the search. This is true for the termination
criteria of theA* algorithm (i.e., where the goal node givies) = 0). If i(s) > 0,
then we expand by applying applicable actionsto s to generate all successots.

If the newly generated nodé has a bettey(s’) value than the best node visited
so far (i.e.,g(s’) > Bg), then we record’, leading tos’ as the new best found
plan. Finally, if f(s') < Bg (i.e., the heuristic estimate indicates that expanding
s’ will never achieve as much additional benefit to improve tingent best found
solution), we will discard’ from future consideration. Otherwiséis added to the
OPEN list. Whenever a better solution is found (i.e., the valué&gfincreases),
we will also remove all nodes € OPEN such thatf(s;) < Bg. When the algo-
rithm is interrupted (either by reaching the time or memamyit) before the node
with i (s) = 0 is expanded, it will return the best pldt; recorded so far (the alter-
native approach is to return a new best planwhenever the best benefit valipg

is improved). Thus, compared t, this variation is an “anytime” algorithm and
always returns some solution plan regardless of the timesmnony limit.

Like any search algorithm, one desired property is presgreptimality. We will
show that if the heuristic is admissible, then the algorithith find an optimal
solution if given enough time and memoty.

Proposition 1: If is admissible and bounded, then Algorithm 2 always termemat
and the returned solution is optimal.

Proof: Given that all actiona have constant cost, > 0, there is a finite number
of sequences of actions (planB)such that}" ¢, < Ugs. Any states generated by

a€EP
plan P such that}" ¢, > 2 x Ugs will be discarded and will not be put in t@PEN
acP

list becausef(s) < 0 < Bg. Given that there is a finite number of states that can
be generated and put in tI@PEN list, the algorithm will exhaust th©PEN list
given enough time. Thus, it will terminate.

8 Note that with the assumption &fs) being admissible, we have(s) > 0 because it
overestimates3 (P2|s) > 0.

9 Given that there are both positive and negative edge beirefits state transition graph,
it is desirable to show that there is no positive cycle (amynphvolving positive cycles will
have infinite achievable benefit value). Positive cycles oibexist in our state transition
graph because traversing over any cycle does not achievadalityonal utility but always
incurs positive cost. This is because the utility of a searoties is calculated based on
the world state encoded in(hot what accumulated along the plan trajectory leading to
which does not change when going through a cyclelowever, the total cost of visiting
s is calculated based on the sum of action costs of the plaectoay leading tas, which
increases when traversirgTherefore, all cycles have non-positive net benefit (ytdbst
trade-off).

13

Algorithm 2 terminates when either tH@PEN list is empty or a node with
h(s) = 0 is picked from theOPEN list for expansion. We will first prove that
if the algorithm terminates whe@ PEN = (), then the plan returned is the opti-
mal solution. If f(s) overestimates the real maximum achievable benefit, then the
discarded nodes due to the cutoff comparisofi(s) < Bp cannot lead to nodes
with higher benefit value than the current best found satutepresented by .
Therefore, our algorithm does not discard any node thateaahtio an optimal so-
lution. For any nodes that is picked from th€@OPEN list for expansion, we also
haveg(s) < Bp because3p always represents the highgstalue of all nodes that
have ever been generated. Combining the fact that no exgarutke represents a
better solution than the lateBl; with the fact that no node that was discarded from
expansion (i.e., not put in or filtered out from tB¥EN list) may lead to a better
solution thanB g, we can conclude that if the algorithm terminates with an tgmp
OPEN!Iist then the finalBg value represents the optimal solution.

If Algorithm 2 does not terminate wheQ PEN = (), then it terminates when
a nodes with h(s) = 0 was picked from théOPEN list. We prove thats rep-
resents the optimal solution and the plan leading teas the last one output by
the algorithm. Whers with i(s) = 0 is picked from theOPEN list, given that
Vs € OPEN : f(s) = g(s) > f(s'), all nodes in th@®OPEN ist cannot lead to a
solution with higher benefit value thaiis). Moreover, lets represent the state for
which the plan leading tep was last output by the algorithm; thil; = g(spg). If
sp was generated befosgthen becausé(s) = g(s) < g(sg), s should have been
discarded and was not added to @BEN list, which is a contradiction. Ifz was
generated aftet, then becausg(sz) > g(s) = f(s), s should have been discarded
from the OPEN list when sz was added to th©PEN list and thuss should not
have been picked for expansion. Given thatas not discarded, we hayve= sp
and thusP; represents the last solution output by the algorithm. Asvshabove,
none of the discarded nodes or nodes still in@REN list whens is picked can
lead to better solution tha¢) wheres represents the optimal solutidn.

Discussion: Proposition 1 assumes that the heuristic estinkate bounded and

this can always be done. For any given stgt&quation 4 indicates that*(s) =

B(PB|s) = (U(s)=U(s)— ¥ c<U(s) = X u, < ¥ u, = Ug. Therefore,
a€PB ges’ geG

we can safely assume that any heuristic estimate can be edsodhat/s : h(s) <

Uc.

To simplify the discussion of the search algorithm desctileove, we made sev-
eral assumptions at the beginning of this section: all gas¢ssoft, the heuris-
tic used is admissible, the planner is forward state spawt tlzere are no con-
straints beyond classical planning (e.g., no metric or mnalpconstraints). If any
of those assumptions is violated, then some adjustmentetmain search algo-
rithm are necessary or beneficial. First, if some goals aaed‘lgoals”, then only
nodes satisfying all hard goals can be termination nodestefbre, the condition

14

G1(U:50) @ G,(U:100)

A4(C=200)
[G3]

A,(C=90)
(626 ©

G4(U:300)

G4(U:100)

Fig. 3. The relaxed plan

for outputting the new best found plan needs to be changed §i(c’) > Bp to
(g9(s") > Bgp) A (G, € s) whereGy, is the set of all hard goals.

Second, if the heuristic is inadmissible, then the final Sotuis not guaranteed to
be optimal. To preserve optimality, we can place all gererabdes in the OPEN
list. The next section discusses this idea in more detafficgut to say that if the
h(s) value of a given node is guaranteed to be withinof the optimal solution,
then we can usél + ¢) x Bp as a cutoff bound and still preserve the optimal
solution.

Lastly, if there are constraints beyond classical plansingh as metric resources
or temporal constraints, then we only need to expand the stgatesentation, suc-
cessor generator, and goal check condition to include taddiional constraints.

3.2 Relaxed Plan Heuristics f&tSP NeT BENEFIT

Given a search node corresponding to a statthe heuristic needs to estimate
the net benefit-to-go of state In Section 2.2, we discussed a class of heuristics
for classical planning that estimate the “cost-to-go” ofisermediate state in the
search based on the idea of extracting relaxed plans. Irséaison, we will dis-
cuss our approach for adapting this class of heuristicseadPtBP NT BENEFIT
problem. Before getting into the details, it is instructieeunderstand the broad
challenges involved in such an adaptation.

Our broad approach will involve coming up with a (relaxe@mP* that solves the
relaxed version our PSP problem for the same goals, buingat states (recall
that the relaxed version of the problem is one where negatieeactions between
actions are ignored). We start by noting that in order to engloat the anytime
search finds the optimal solution, the estimate of the neg¢fiteio-go must be an
upperbound on the true net benefit-to-gosoffo ensure this, we will have to find
the “optimal” planP* for solving the relaxed version of the original problem from

15

states. This is going to be NP-hard, since even for classical plagyinding the
optimal relaxed plan is known to be NP-hard. So, we will Jaxriadmissibility of
the heuristic and focus instead on finding “good” relaxedhplia polynomial time.

For classical planning problems, the greedy backward sappmach described in
Section 2.2 has become the standard way to extract reasamddsted plans. This
approach does not, however, directly generalize to P&P BENEFIT problems
since we do not know which of the goals should be supportetiédyelaxed plan.
There are two general greedy approaches to handle thisgpnobl

Agglomerative Relaxed Plan Construction: In the agglomerative approach, we

compute the greedy relaxed plan by starting with a null ptard extending it
incrementally to support one additional goal at a time,lihé net benefit of the
relaxed plan starts to reduce. The critical issue is therdrderhich the goals
are considered. It is reasonable to select the first goal kingogoals in the
order of individual net benefit. To do this, for each ggat G, we compute the
“greedy” relaxed planP," to supportg (using the backward sweep approach in
Section 2.2). The estimated net benefit of this gdalthen given as, —C(P;").
In selecting the subsequent goals, however, we should ma@ccount the fact
that the actions already in the current relaxed plan willewitribute any more
cost. By doing this, we can capture the positive interastioetween the goals
(note that while there are no negative interactions in thexesl problem, there
still exist positive interactions). We investigated thgpeoach, and its variants
in (44; 38).

Pruned Relaxed Plan Construction: In the pruned approach, we first develop a
relaxed plan to suppodil the top level goals (using the backward sweep algo-
rithm). We then focus on pruning the relaxed plan by gettid@f non-beneficial
goals (and the actions that are solely used to support thazde)gWe note at the
outset that the problem of finding a subplan of a (relaxed) pla that has the
best net benefit is a generalization (to PSPTNBENEFIT) of the problem of
minimizing a (classical) plan by removing all redundaniats$ from it, and is
thus NP-hard in the worst case ((19)). However, our intenisonot to focus
on the optimal pruning of”*, but rather to improve its quality with a greedy
approach®’

Although we have investigated both agglomerative and mtuetaxed plan con-
struction approaches for PSRENBENEFIT, in this paper we focus on the details
of the pruned relaxed plan approach. The main reason is thdtave found in
our subsequent work ((12; 5)) that pruned relaxed plan auhes lend themselves
more easily to handling more general PSBTNBENEFIT problems where there
are dependencies between goal utilities (i.e., the utiitgchieving a set of goals
is not equal to the sum of the utilities of individual goals).

10 This makes sense as optimal pruning does not give any ofiyntalarantees on the
underlying search since we are starting with a greedy rdlglen supporting all goals.

16

Details of Pruned Relaxed Plan Generation irSapd™ Let us first formalize the
problem of finding an optimal subplan of a pl&(whether it is relaxed or not).

Definition: Proper Subplan Given a planP seen as a sequence of actions (strictly
speaking “steps” of type; : a; since a ground action can appear multiple times
in the plan)a; - - - a,, P’ is considered a proper subplan &fif: (1) P’ is a subse-
guence ofP (arrived at by removing some of the elementg*pfand (2) P’ is a
valid plan (can be executed).

Most-beneficial Proper SubplanA proper subplanP, of P is the most beneficial
subplan of a planP if there is no other proper subplafi’ of P that has a higher
benefit thanP,.

Proposition 2: Finding the most-beneficial Proper Subplan of a plan of a ptan
NP-hard.

Proof: The problem of minimizing a “classical” plan (i.e., remogiactions while
still keeping it correct) can be reduced to the problem ofifigdhe subplan with
the best net benefit. The former is NP-hard (ID).

While we do not intend to find the most-beneficial proper sabpit is nevertheless
instructive to understand how it can be done. Below, we i@\ criterion for
identifying and removing actions from a plahwithout reducing its net benefit.

Sole-supporter Action Set:Let GGp be the goals achieved by, Ao C Pisa
sole-supporter action sef G’ C Gp if:

(1) The remaining plaP, = P\ Aq is a valid plan.

(2) P, achieves all goals id/p \ G'.

(3) P, does not achieve any goal (&

(4) There is no subset of actiofl C P, that can be removed frol. such that
P, \ A’is avalid plan achieving all goals itvp \ G'.

Note that there can be extra actionsHrthat do not contribute to the achievement
of any goal and those actions can be considered as the quperser for the empty
goal setG’ = (). The last condition above ensures that those actions aedlizat

in any supporter action set;: and thus the remaining plaf. is as beneficial as
possible. We define the unbeneficial goal set and supportingna as follows:

Unbeneficial Goal Set:For a given planP that achieves the goal sétp, the goal
setG’ C Gp is anunbeneficialgoal set if it has a sole-supporter action sét.
and the total action cost idls is higher than the total goal utility id-".

It is quite obvious that removing the unbeneficial goal@eand its sole-supporter

17

action setd, can only improve the total benefit of the plan. Thus?if= P\ Ag
then:

D UgT D= Y ug— D (5)

g€(Gp\G") a€ Py geGp a€P

Given the planP achieving goals7p, the best way to prune it is to remove the
most unbeneficial goal sét’ that can lead to the remaining plan with the highest
benefit. Thus, we want to find and remove the unbeneficial gadl’'sC G and

its sole-supporter action sdt;, such that:

G =argmin = Y ug— Y. ¢ (6)

Ge€GP geG, a€Ag,

Proposition 3: Given a planP, if G’ with its sole-supporter action set. is the
most unbeneficial goal set as specified by Equation 6, theplémeP’ = P\ Ag
is the most beneficial proper subplanef

Proof: Let P, subplan ofP with the most benefit, an®, B,, B’ be the net benefit
of P, P,, and P’ respectively. Given thab, is optimal, we haveB, > B'. LetG,

be the set of goals achieved By, we defined, = P\ P, andG, = G\G,. We want

to show that4, is the sole-supporter set 6f . Given thatP, is a valid plan that
achieves all goals if7, and none of the goals i@, the first three conditions for
A, to be the sole-supporter set@f are clearly satisfied. Given th#}, is the most
beneficial subplan oP, there should not be any subplan®fthat can achieve all
goals inGG,. Therefore, the fourth and last condition is also satisfiéus, A, is the
sole-supporter set @’ . Given thatG’ is the most unbeneficial goal set, Equation
6 indicates thatB, = > u, — > ¢, > By = Y u, — Y cq. Therefore,

geG’ a€Aq geG!) acA,
B’ = B+ By > B, = B + B,. Combining this withB, > B’ that we get above,
we haveB’ = B, and thusP”’ is the most beneficial subplan &% [J

We implemented in our planner an incremental algorithm fwreximate the iden-
tification and removal of the most unbeneficial goal set asdagisociated sole-
supporter action set from the relaxed plan. Because we dpplgrocedure to the
relaxed plan instead of the real plan, the only conditioh tieeds to be changed is
that the remaining pla®®’ = P \ Aq is still a valid relaxed plan (i.e., can execute
when ignoring the delete list).

This scan and filter process contains two main steps:

(1) Identification:Using the causal-structure of the relaxed plan, identié/gbt

18

1
2

w

© 0o N o g »

11

12
13
14
15
16

17

18
19
20
21
22
23

Algorithm 3: Algorithm to find the supported goals listS for all actions and
facts.
Input: A relaxed planP* achieving the goal s&¥ p;
Output: The supported goal set for each actioa P* and fact;
begin
Va € P: GS(a) < 0;
Vg € Gp: GS(g) < {9}
Vp & Gp: GS(p) « 0;
DONE « false
while notDONE do
DONE « true;
forall « € P* do
if GS(a) # U GS(p) then

pEEf fect(a)
GS(a)— U GS(p)

peEf fect(a)

DONE « false
end
end
forall propositionp do

if GS(p) £GS(p)U(U GS(a)) then

pEPrecond(a)

GS(p) = GS(p)U(U GS(a));

pEPrecond(a)

DONE « false
end

end

end

end

of top level goals that each action supports. This stepustilated by Algo-
rithm 3. w

(2) Incremental removalJsing the supported goal sets calculated in step 1, heuris-
tically remove actions and goals that are not beneficial $tep is illustrated
in Algorithm 4.

The first step uses treipported goaldist G'S that is defined for each actienand
factp as follows:

GS(a)= U GS(p) (7)

pEEf fect(a)

19

Algorithm 4 : Pruning the relaxed plan using the supported goal set fauAtho-
rithm 3.
1 Input: A relaxed planP* and parametei > 0;
2 Output: A relaxed planP’ C P* with higher or equal benefit comparedfo;
begin

w

4 DONE « false;
5 while not DONEdo
6 Use Algorithm 3 to compute all'S(a), GS(p) usingP™;
7 forall G' C Gp+ and|G’| < N do
‘ SAG)— U «
8 GS(a)CG’
9 end
G, — argmin (X u(g)— X c(a));
10 G'CGpy, |G'|<N geG aESA(G)
if (> ulg)— X c(a)) <0then
11 g€Gy a€SA(Gy)
12 ‘ Pt — (PT\ SA(G,));
13 else
14 ‘ DONE «+ true;
15 end
16 end
17 end

pU(U GS(a)if peG
GS(p) _ pEPrec(a) (8)
U GS(a) if pe G

pEPrec(a)

In our implementation, beginning wittu € P*,Vp ¢ G : GS(a) = GS(p) = 0
andVg € G : GS(g) = {g}, the two rules listed above are applied repeatedly
starting from the top-level goals until no change can be ntadgther theGGS(a)

or GS(p) set. Thus, for each action we know which goal it supports. Figure 3
shows the extracted relaxed pl&t = {a; : Move(A, B),as : Move(A,C), a3 :
Move(C,D),ay : Move(A, E)} along with the goals each action supports. By
going backward from the top level goals, actiensas, anda, support only goals
g1, g3, andg, so the goal support list for those actions will 6&(a;) = {¢1},
GS(a3) = {gs}, andGS(ay) = {gs4}. at(C), the precondition of the actiom;
would in turn contribute to goalgs, thus we haveGS(at(C)) = {gs}. Finally,
because, supports botly, andat(C'), we have(GS(as) = GS(g2)UGS(at(C)) =

{93, 92}

In the second step, using the supported goals sets of edoh,age can identify
the subseb A(G’) of actions that contributesnly to the goals in a given subset of
goalsG’ C G-

20

SAGY= | a)

GS(a)CG

If the total cost of actions i5' A(G’) exceeds the sum of utilities of goalsafi (i.e.,

> cla) > % u(g)), then we can remové’ and SA(G’) from the relaxed
a€SA(G geq’
plan(. Vi/e call those subgoal seisbeneficialIn our example, action, is the only
one that contributes to the achievementy@f Sincec(ay) > wu(g4) anday does
not contribute to any other goal, we can remay&ndg, from consideration. The
remaining three actions, a,, andas in P* and the goalg,, g», andgs all appear
beneficial. In general, it will be costly if we consider alfl possible subsets of
goals for potential removal. Therefore, in Algorithm 4, weyoconsider the subsets
G’ of goals such thatG’| < N, with N as the pre-defined value. If there is no
unbeneficial goal set’ with |G’| < N, then we terminate the pruning algorithm.
If there are beneficial goal sets, then we select the mostnaficeal oneG,, and
remove the actions that solely supp6ft from the current relaxed plaR*, then
start the pruning process again. In our current implemigmtatve only consider
N =0,N =1,andN = 2. However, as we discuss later, considering a¥ily= 0
andN = 1 is often sulfficient.

After removing unbeneficial goals and the actions (solalpp®rting them, the cost
of the remaining relaxed plan and the utility of the goald thachieves are used
to compute thé: value. Thus, in our ongoing examplel) = (u(gs) + u(gs) +
u(g1)) — (claz) + c(az) + ¢(a1)) = (100 + 300 + 50) — (90 + 200 + 40) = 120.
While this heuristic is effective, it is not guaranteed toduknissible because the
original relaxed plan was heuristically extracted and matyoe optimal. Moreover,
we only consider removing subsgt of goals such thatz’| < 2. Therefore, if we
use this heuristic in the algorithm discussed in the prevsrction (Algorithm 2),
then there is no guarantee that the plan returned is optifha.is because (i) a
pruned node may actually lead to an optimal plan (i.e., edphle to reach node
with g(s) > Bp); and (ii) the lastBz may not represent an optimal plan. To handle
the first issue, we made adjustments in the implementaticihaoeven though
weightw = 1 is used in equatiofi = g + w - h to sort nodes in the queue, another
valuew = 2 is used for pruning (unpromising) nodes with= g + w - h < Bp.
For the second issue, we continue the search for a betterafiena node with
h(s) = 0 is found until some resource limits are reached (e.g., we haached a
certain number of search nodes or a given planning time)limit

Using Relaxed Plans for Lookahead SearchHn addition to using the final pruned
relaxed plan for heuristic-computation purposes, we hisegeimplemented a rudi-
mentary lookahead technique that takes the relaxed plaas g us and simulates
their execution in the actual planning problem as much asiples(i.e., the planner
attempts each action, in the order defined by the causatsteuaf the relaxed plan,
and repeats this process until no actions can be executerkgghlting state is then
evaluated and placed into t¥PEN ist). This technique is inspired by the results

21

PDDL3.0
"simple preferences"

ittt ettt Rttt -~
|
| PS
1
 Yochan ,
1
! I
| 4 |
I . .
I s s e b e g Compilation to :
| P S ' PSP NET BENEFIT
: Sapa : :
1
! l
| Anytime Relaxed Plan : y |
| Search Heuristic PSP NET BENERIT I
| for
* |
: APSP PSP NET BENEFIT |
! I
J |
) |
L |
|
g |

Fig. 4. Relationship between techniques defined in thispape

of the planner YAHSP (45), which used a similar but more ssiptated lookahead
strategy. We found that this method helps to find better guplans in less time,
but also causes the search to reach a termination searchmudejuickly.

4 Handling PDDL3.0 Simple Preferences

The organizers of thé International Planning Competition (IPC-5) introduced
PDDL3.0 (23), which can express variations of partial $atison planning prob-
lems. One track named “simple preferences” (PDDL3-SP) hasteges analogous
to PSP NET BENEFIT.

In PDDL3-SP, each preferengeincludes a variable,, that counts the number of
timesp; is violated and:; representing the violation cost whenis not satisfied.
Preferences can be associated with more than one geoonditionor goal. Ad-
ditionally, they can include conjunctive and disjunctiverfiulas on fluents. The
objective function is:

miNimize ¢, - vy, + 3 - Vp, + ... 4 €y - Uy, (10)

where violation costs; € R are multiplied by the number of times is violated.

In this section we show a method of compiling PDDL3-SP protdénto PSP BT
BENEFIT problems. This involves converting the goal violation d@st, failing to
satisfy goal preferences) into goal utility (i.e., sucéekyg achieving goals) and
the action precondition violation cost into action costse Tompilation takes ad-

22

vantage of the similarities between the two problems, aadrhin challenge is in
handling the differences between PDDL3-SP and P&P BENEFIT. The compi-
lation is solved bySap&® , as shown in Figure 4, in an adaptation of that planner
called Yocharfs .

Other compilation methods for handling the constraintsidR3.0 were also in-
troduced in the IPC-5. For instance, the planner MIPS-XX8) (dsed a transfor-
mation from PDDL3.0 that involved a compilation into hardaggpand numeric
fluents. Yocharf® and other compilation approaches proved competitive in the
competition. In fact, botivochaf® and MIPS-XXL participated in the “simple
preferences” track and received a “distinguished perfooeaaward. However,
the compilation used by MIPS-XXL did not allow the plannedicectly handle the
soft goal preferences present in PDDL3.0. To assist in aeténg whether consid-
ering soft goals directly during the planning process ipfud] in this section we
also introduce a separate compilation from PDDL3.0 thatpletely eliminates
soft goals, resulting in a classical planning problem witian costs. The problem
is then solved by the anytim&* search variation implemented 8ap&© . We call
the resulting planneyochary©57.

4.1 Yocha¥°5T: PDDL3-SP to Hard Goals

Recently, approaches to compiling planning problems watiigoals to those with
hard goals have been proposed (18). In fact, Keyder & Geffner @&ctly han-
dle PSP N:T BENEFIT by compiling the problem into one with hard goals. While
we explicitly address soft goals iocharf® , to evaluate the advantage of this
approach we explore the possibility of planning for PDDLB-By compiling to
problems with only hard goals. We call the planner that usisscompilation strat-
egy Yochat’©5T'| It uses the anytimel* search variation fronSap&® but reverts
back to the original relaxed plan heuristic8fpa13).!*

Algorithm 5 shows the algorithm for compiling PDDL3-SP gpatferences into a
planning problem with hard goals and actions with cost. &mndiion preferences
are compiled using the same approach a¥anharf® , which is discussed later.
The algorithm works by transforming a “simple preferencealgnto an equivalent
hard goal with dummy actions that give that goal. Specifjcalie compile a goal
preferencepref(G') | G' C G to two actions: actior; takesG’ as a condition
and actiona, takes—G’ as a condition (foregoing goal achievement). Actign
has costzeroand actiom, has cost equal to the violation cost of not achiewirig
Botha, anda, have a single dummy effect to achieve a newly created haidluta
indicates we “have handled the preferenge? f(G’). At least one of these actions,
ay Of as, IS always included in the final plan, and every other noriguesce action

' This is done so we may compare the compilation in our anytia@éwork.

23

1
2
3

N

© 0 N o O

11
12
13
14
15
16
17
18
19

Algorithm 5: PDDL3-SP goal preferences to hard goals.

Input: a PDDL3-SP problem;
Output: a PDDL problem with new set of hard goals and an extendedrasét
B :=0;

forall pref(G') | G' C G do

create two new actions, andas;
pre(ay) == G

gar = name(pref(G'));

ef flar) = ger;

C(ay) := 0;

B:=BU {CLl};

G = (GU{ge}) \{G'};

pre(as) = -G,

ef flaz) == gor;

Cl(az) := c(pref(G"));
B:=BU {CLQ};

G = (G U{gprer}) \{G'};
end

A:= BUA;

deletes the new goal (thereby forcing the planner to agatiddenhether to re-
achieve the hard goal, and again include the necessaryaomeat actions). After
the compilation to hard goals, we will have actions with aingtive preconditions.
We convert these into STRIPS with cost by calling Algorithm 7

After the compilation, we can solve the problem using anypéa capable of han-
dling hard goals and action costs. In our case, weSmed° with the heuristic
used in the non-PSP plann8apao generaterochary©>”. We are nowninimizing
cost instead omaximizingnet benefit (and hence take the negative of the heuristic
for search). In this way, we are performing an anytime sealgbrithm to compare
with Yocharf’® . As in Yocharf® , which we will explain in the next section, we as-
sign unit cost to all non-preference actions and increastefance cost by a factor
of 100. This serves two related purposes. First, the héudstmputation uses cost
propagation such that actions with zero cost will essdptiabk “free” in terms of
computational effort. Secondly, and similarly, actionattmove the search toward
goals take some amount of computational effort which isueftounted when ac-
tion costs are zero. In other words, the search node evatuedimpletely neglects
tree depth when actions have zero cost.

Example: Consider an example taken from the IPC-5 TPP domain showigin F
ure 5 and Figure 6. On the left side of these two figures we shamples of
PDDL3-SP action and goal preferences. On the right side hve $he newly cre-
ated actions and goals resulting from the compilation tesital planning (with

24

(:action p0Oa-0
‘parameters ()
:cost 0.0
:precondition (and (stored goods1 levell))
-effect (and (hasPref-p0a)))

(:action pOa-1
‘parameters ()
:cost 500.0
:precondition (and
(not (stored goods1 levell)))
-effect (and (hasPref-p0a)))
(:goal (preference POA
(stored goodsl levell))) With new goal: (hasPref-p0a)

(a) Goal preferences in PDDL3-SP (b) Actions with cost
Fig. 5. Compiling goal preferences from PDDL3-SP to costelolplanning.

action costs) using our approach described above.

In this example, the preferred gqadt or ed goodsl | evel 1) has aviolation
cost of5 (defined in Figure 6). We add a new gddlasPr ef - pOa) and assign
the cost of achieving it with actiopOa- 1 (i.e., not having the goal) to 500.

4.2 Yocharf® : PDDL3-SP to PSP

When all soft goals in PDDL3-SP are compiled to hard goals &lways easi-
est (in terms of search depth) to do nothing. That is, simpgceting the higher
cost preference avoidance actions will achieve the goakweing “handled” the
preference. Consequentially, the relaxed plan baseddtieumay be misleading
because it is uninformed of the mutual exclusion betweerpteéerence evalua-
tion actions. That is, the heuristic may see what appeare ta ‘tyuick” path to
a goal, where in fact that path requires the undesirableetprence of violating
a preference. Instead, viewing preferences as goals tbalemirable to achieve
(i.e., attaching reward to achieving them) allows the rethplan heuristic to be
directed to them. As such, we introduce a method of con\vggRIDDL3-SP prob-
lems into PSP problems, which gives the preferences a refsarachievement
rather than a cost for violation, thus giving better directior the relaxed planning
graph heuristic. There are two main differences betweenPIO®WL3-SP and PSP
NET BENEFIT definesoftgoals. First, in PDDL3-SP, soft goal preferences are as-
sociated with a preference name which allows them to be gaveiolation cost.

25

Algorithm 6 : Compiling goal preferences to PSREENBENEFIT goals.

1 Input: A PDDL3-SP problem;
2 Output: A PSP NeT BENEFIT problem;
3 B:=0;

N

© 0 N o O

11
12
13
14
15

forall pref(G') | G' C G do

pre(a) == G,
9o = name(pref(G"));
eff(a) = ge;
B:= BU{a};
Ulgar) := c(pref(G");
G = (GU{ga}) \{G"};
forall b € A do
| eff(b) :==eff(b)U—~{ge}:

end

end
A:=BUA;

Second, goal preferences can consist of a disjunctive quictive goal formula.
This is opposed to PSPHEY BENEFIT problems where individual goals are given
utility. Despite these differences, the similarities dperadant:

e Theviolation costfor failing to achieve an individual goal in PDDL3-SP and
achievement utilityn PSP NeT BENEFIT are semantically equivalent. Thus, if
there is a goay with a violation cost of:(g) for notachieving it in PDDL3-SP,
then it is equivalent to having this goal with utility of = ¢(g) for achieving it
in PSP.

e PDDL3-SP and PSP i BENEFIT both have a notion of plan quality based on
a quantitative metric. PDDL3-SP bases a plan’s quality am tvell it reduces
the goal preference violation cost. On the other hand, PEPBENEFIT views
cost as a monotonically increasing value that measuresfwirces consumed
by actions. In PDDL3-SP we have a plan meiand a planP; has a higher
quality than a plarP; if and only if p(P;) < p(P,). A plan’s quality in PSP NT
BENEFIT deals with the trade-off between the utility of the goalsieebd and
the cost of the actions to reach the goals. Therefore, afplaas a higher quality
than a plan?, in PSP NeT BENEFITifand only if U(P,) — C(Py) > U(P) —
C(P,), whereU(P) represents the utility of a plaR andC'(P) represents the
cost of a planP.

e Preferences on action conditions in PDDL3-SP can be viewettcanditional
costin PSP NeT BENEFIT. The cost models on actions differ only in that PDDL3-
SP provides areferencavhich acts as a condition for applying action cost. Like
violation costs for goal preferences, action conditiodation cost is incurred if
a given action is applied to a state where that condition isatsfied.

26

As part of our compilation, we first transform “simple prefece” goals to equiv-
alent goals with utility equal to the cost produced for ndisfging them in the
PDDL3-SP problem. Specifically, we can compile a goal pexfeepref(G’) |

G' C (G to an action that takeS’ as a condition. The effect of the action is a newly
created goal representing the fact that we “have the preteferef(G’).

Both PDDL3-SP and PSP EN BENEFIT have a notion of cost on actions, though
their view differs on how to define cost. PSREENBENEFIT defines cost directly on
each action, while PDDL3-SP uses a less direct approachfinyragthe penalty for
not meeting an execution condition. Therefore, PDDL3-SPlmaviewed as con-
sidering action cost as a conditional effect on an actiorrerhest is incurred on the
preference condition’s negation. From this observatiaancan compile PDDL3.0
“simple preferences” on actions in a manner that is simdardw conditional ef-
fects are compiled (21).

Goal Compilation: The goal compilation process converts goal preferences int
additional soft goals and actions achieving them in PSRortlgm 6 illustrates the
compilation of goals. We begin by creating a new actiofor every preference
pref(G') | G C G in the goals. The action hasG’ as a set of preconditions,
and a new effecy,,. We then addj to the original goal set7, and give it utility
equal to the cost(pref(G’)) of violating the preferencgre f(G’). We remove the
preferencerre f(G') from the resulting problem and also force every non-condpile
action that destroys:’ to removeg (by addinggs to the delete list of these
actions).

Action Compilation: To convert precondition action preferences, for each actio
a € A we generatd’(pref(a)) as the power set gfref(a) (i.e.,P(pref(a)) con-
taining all possible subsets pfef(a)). As Algorithm 7 shows, for each combi-
nation of preference € P(pref(a)), we create an actiom, derived froma. The
cost of the new actiom, equals the cost of failing to satisfy all preferences in
pref(a) \ s. We removea from the domain after all of its compiled actions
are created. Since some preferences contain disjunctiuses, we compile them
away using the method introduced in (21) for convertingutisfive preconditions
in ADL to STRIPS. Notice that because we use the power setefépnces, this
could potentially result in a large number of newly formeti@ts. Since this in-
crease is related to number of preferences, the numberiohadhat need to be
considered during search may seem unwieldy. However, wadfthat in practice
this increase is usually minimal. After completion of thanqming process, we ap-
ply Equation 11 to determine the PDDL3-SP total violatiostavaluation:

TOTALCOST= > ug— Y ugy+ Y cq (11)

geG g'eG’ acP

Action Selection: The compilation algorithm will generate a set of actiehdrom
an original actior: with |A,| = 2/Pr<f(@)I, Given that actions im, appear as sep-

27

© 00 N oo o A~ W N P

R e
— O

Algorithm 7 : Compiling preference preconditions to actions with cbkite that,
though not shown here, disjunctive preconditions are ctadpaway using the
method described in (21).

1:=0;

forall « € Ado

foreachprecSet € P(pref(a)) do

pre(a;) := pre(a) U precSet;

ef fa;) = ef f(a);

Cq; i= 100 X c(pref(a) \ precSet);

A:=AU {CLZ},

1:=1+1;

end

A= A\ {a};

end

arate operators to a planner, this can result in multiplemadhstances from¥,
being included in the plan. Therefore, a planner could pcedalans with superflu-
ous actions. One way to fix this issue is to explicitly add tiegs of the preference
conditions that are not included in the new action precaost(i.e., we can use a
negation of the precondition formula in the actions rathantremoving the whole
condition). This is similar to the approach taken by (21) wlvempiling away
conditional effects. This compilation approach, howewsy result in several dis-
junctive preconditions (from negating the original corgtive preference formula),
which will result in even more actions being included in tmelgem. To overcome
this, we use a simple criterion on the plan that removes tleel ne include the
negation of clauses in the disjunctive preferences. Givanall actions il4, have
the same effect, we enforce that for every action generated 4, only theleast
costapplicable actiom,; € A, can be included i at a given forward search step.
This criterion is already included iGapd* .

Example: Consider the examples found in Figures 6 and 7. Figure 6 shiosvs
compilation for the TPP domain actiodr i ve and Figure 7 shows a TPP domain
PDDL3-SP goal preference that has been compiled into PSPBYNEFIT.

For the action compilation, Figure 6 shows the prefergnogr i ve has a cost of

10 x 100 = 1000 for failing to have all goods ready to load at level O of a pautiar
location at the timealr i ve is executed. We translate this idea into one where we
either (1) have all goods ready to load at level O (as in the aetiondr i ve- 0

with cost100) or (2) do not have all goods ready to load at level 1 (as in e n
actiondr i ve- 1 with cost1000).

To convert the goal condition from PDDL3-SP into PSPTNBENEFIT we generate

a single action named for the preference, as shown in Figuidn@ new action
takes the preference goal as a precondition and we agaodutde the new goal

28

(:action drive
‘parameters
(?t - truck ?from ?to - place)
‘precondition
(and
(at ?t ?from)
(connected ?from ?to)
(preference p-drive
(and
(ready-to-load
goods1 ?from levelO)
(ready-to-load
goods2 ?from level0)
(ready-to-load
goods3 ?from level0))))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

Weight assigned to preferences:
(:metric
(+ (x 10 (is-violated p-drive))
(x 5 (is-violated POA))))

(a) Action preferences in PDDL3-SP

(:action drive-0
‘parameters
(?t - truck ?from ?to - place)
:cost 100
:precondition (and
(at ?t ?from) (connected
?from ?to)
(ready-to-load
goods1 ?from levelO)
(ready-to-load
goods2 ?from levelQ)
(ready-to-load
goods3 ?from level0)))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

(:action drive-1
‘parameters
(?t - truck ?from ?to - place)
:cost 1000
‘precondition (and
(at ?t ?from) (connected
?from ?to))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

(b) Actions with cost

Fig. 6. Compiling action preferences from PDDL3-SP to dmsded planning.

(hasPr ef - pOa) . However, with this compilation process we give it a utility
value of 5.0. This is the same as the cost for being unablehi@ee(st or ed

goodsl | evel 1).

As for implementation detailsyocharf® multiplies the original preference costs
by 100 and uses that to direct the forward search. All actibasdo not include
a preference are given a default unit cost. Again, we do thithe heuristic can
direct search toward short-length plans to reduce planting. An alternative to
this method of artificial scale-up would be to increase thefgsence cost based
on some function derived from the original problem. In outi@h experiments,
we took the number of actions required in a relaxed plan tohredl the goals
at the initial state and used this value to generate a sqgafaator. However, our
preliminary observations using this approach yielded woesults in terms of plan

quality.

29

(:action pOa
‘parameters ()
:cost 100
:precondition (and
(stored goodsl levell))
-effect (and (hasPref-p0a)))
(:goal (preference POA (stored goodsl
levell))) With new goal: ((hasPref-p0Oa) 5.0)

(a) Goal preferences in PDDL3-SP (b) Action with cost in PSP

Fig. 7. Compiling goal preferences from PDDL3-SP to PSP.

After the compilation process is dongapd* is called to solve the new PSPEN
BENEFIT problem with the normal objective of maximizing the net b@n&vhen
a planP is found, newly introduced actions resulting from the cdatmns of goal
and action preferences are removed before returRitgthe user.

5 Empirical Evaluation

Most of the problems in the “simple preferences” track of {®€onsist of groups

of preferred disjunctive goals. These goals involve vasiaspects of the problems
(e.g., adeadline to deliver a package intitueksdomain). TheYocharf’® compilation
converts each preferenganto a series of actions that have the preference condi-
tion as a precondition and an effect that indicates phiatsatisfied. The utility of

a preferred goal is gained if we have obtained the preferanttee end of the plan
(where the utility is based on the penalty cost of not satigfithe preference in
PDDL3-SP). In this way, the planner is more likely to try tdheave preferences
that have a higher penalty violation value.

In the competitionYochaf® was able to solve problems in five of the domains
in the “simple preferences” track. Unfortunately, many o problems in several
domains were large andocharf® ran out of memory due to its action grounding
process. This occurred in thmathways TPP, storageand trucksdomains. Also,
some aspects of several domains (such as conditional f@ct quantification)
could not be handled by our planner directly and needed tolmpited to STRIPS.
The competition organizers could not compile tpenstackslomain to STRIPS,
and soYocharf® did not participate in solving it. Additionally, thpipesworld
domain did not provide a “simple preferences” categdiycharf® also handles
hard goals, which were present in some of the problems, byautputting plans
when such goals are satisfied. TBapd® heuristic was also slightly modified
such that hard goals could never be removed from a relaxed ®)a

30

To test whether varying goal set sizes for the heuristic ggrabval process affects
our results, we compared running the planner with removioa get sizes in each
iteration of at most 1 and at most 2. It turns out that in alnadisbf the problems
from the competition, there is no change in the quality of plens found when
looking at individual goals (as against individual goalsl grairs of goals) during
the goal removal process of the heuristic. Only in two protden theroversdo-
main does there exist a minor difference in plan quality (onfavor of looking at
only single goals, and one in favor of looking at set sizesn& and two). There is
also an insignificant difference in the amount of time talefirtd plans.

In conclusion,Yocharf® entered thé!" International Planning Competition (IPC-
5), where it performed competitively in several of the domsagiven by the organiz-
ers. Its performance was particularly good in “logisticy/les domains. The quality
of the plans found byvocharf® earned it a “distinguished performance” award
in the “simple preferences” track. For comparison, we sbivee IPC-5 problems
with Yochart’©5T and show that compiling directly to classical planning wt
tion cost performs worse than compiling to a PSBTNBENEFIT problem in the
competition domains.

For the rest of this section we evaluate the performand@oharf® in each of the
five “simple preferences” domains for which the planneripgrated. For all prob-
lems, we show the results from the competition (which can bks found on the
competition website (24)). We focus our discussion on plaadity rather than solv-
ing time, as this was emphasized by the IPC-5 organizersoifgpareYocharf®
andYochary©>T, we re-ran the results (with a small bug fix) using a 3.16 Ghel In
Core 2 Duo with 4 GB of RAM, 1.5 GB of which was allocated to tHarmers
using Java 1.5.

5.1 TheTrucksDomain

Thetrucksdomain consists of trucks that move packages to a varietycations. It
is a logistics-type domain with the constraint that cerstorage areas of the trucks
must be free before loading can take place into other staegges. In the “simple
preferences” version of this domain, packages must beatelivat or before a
certain time to avoid incurring a preference violation ggna

Figure 8(a) shows the results for tlreicksdomain in the competition. Over all,
Yocharf® performed well in this domain compared to the other planiretse
competition. It scaled somewhat better than both MIPS-XX&) @nd MIPS-BDD (18),
though the competition winner, SGPIlan (32) solved more lprob, often with a
better or equal quality. Notably, in problems 7 throughY®chaf® had diffi-
culty finding good quality plans. Examining the differentetween the generated
problems provides some insight into this behavior. In tret fen problems of this

31

400
-=-YochanPS

350
300 / -x-SGPlan
- MIPS-XXL

250
-o-MIPS-BDD

200

Quality

150
100

50
x
0 H—Q—H-J' i R BV . BV

12 3 456 7 8 9 10111213 14 1516 17 18 19 20
Problem

(a) IPC-5 resultsYocharf® solved 13; MIPS-XXL solved 3;
MIPS-BDD solved 4; SGPIan solved 20

1800

1600
-A-YochanPS
1400
-#-YochanCOST
1200
1000
- 800
p=
T 600
=}
g 400
A
200 a Py -
0| A ~ A A
1 6 11 16

Problem
(b) Yocharf’® vs. Yochart'©>T. Yocharf® solved 14;Yochary°*" solved 12
Fig. 8. IPC-5trucks“simple preferences”.

domain, the number of preferences (i.e., soft goals) iser@as part of the increase
in problem size. These all included existential quantifteato handle deadlines for
package delivery, where a package must be delivered befpagtiaular encoded
time step in the plan (time increases by one unit when drigindelivering pack-
ages). For examplgackagelmay need to be delivered sometime before a time
stepts. Because this criterion was defined using a predicate, shised the num-
ber of grounded, soft disjunctive goal sets to incre&s&his in turn caused more
goals to be considered at each time step. The planning grapst propagation and
goal selection processes would take more time in thesemastances. In contrast,

12 Recall that the compilation to PSPEN BENEFIT generates a new action for each clause
of a disjunctive goal formula.

32

the second set of problems (problems 11 through 20) comtabeolute package
delivery times on goal preferences (egackageInust be delivered at exactly time
t5) thereby avoiding the need for disjunctive preference® planner solved four

instances of these harder problefis.

A seeming advantage teochary©>T in this domain is that it is attempting to find
the least costlyway of achieving the goal set and does not rely on pruning away
goals asYocharf® does. Intrucks the violation cost for failing to satisfy goal
preferences turns out to be low for many of the goals, andesS4p&d° heuristic
used byYocharf® may prune away some of the lower valued goals if the number
of actions required for achievement is deemed too high. Mewehis advantage
seems not to help the planner too much here. Also notevihetiary > has great
difficulty with problems 8 and 9. Again, this is largely duecmmpilation of goals

to actions, as the large number of actions that were gemecatesed the planner’s
branching factor to increase such that many states withl dguiaistic values were
generated. When large numbers of preferences &aishtary©>” must “decide” to
ignore them by adding the appropriate actions.

5.2 ThePathwaydDomain

This domain has its roots in molecular biology. It modelsrolwal reactions via ac-

tions and includes other actions that choose initial sabstr Goals in the “simple
preferences” track for this domain give a preference ontibstances that must be
produced by a pathway.

Figure 9(a) shows thatocharf’® tends to scale poorly in this domain, though this
largely is due to the planner running out of memory duringgreinding process.
For instance, the number of objects declared in problem Sezhour grounding
procedure to attempt to produce well ouéf actions. On most of its solved prob-
lems Yocharf® provided equal quality in comparison to the other plannEig-
ure 9(b) shows that botMocharf® and Yochary®*" found plans of equal qual-
ity. Note that fixing a small search bug since the competitioryocharf® and
Yochart'©5T caused the planners, in this domain, to fail to find a soluitiqorob-
lem 4 on the new runs (thougYocharf® was able to find a solution during the
competition and this is the only problem in whidbcharf’® performs worse).

13 Note thatYocharf® solved more problems than in the competition on the new rams,
the CPU was faster.

33

35

-=-YochanPS
30

—+-SGPlan
25
. ~&-MIPS-XXL P e
£ +« MIPS-BDD A\ oo TN
S 1 -8 1 » / »
g 15 i 4
e g2 AN,
4 R7°\ ¥
10 i A
I:;,x » \‘
5 ,"-.K\IL
g

0 T T
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Problem

(a) IPC-5 resultsYocharf® solved 4; MIPS-XXL solved 15;
MIPS-BDD solved 10; SGPlan solved 30

-%-YochanPS

3 —A-YochanCOST ; i
2

Quality

1 2 3
Problem

(b) Yocharf® vs. Yochar¥©5T. Yocharf® solved 3;Yochary©5T solved 3
Fig. 9. IPC-5pathways'simple preferences”

5.3 TheRoversDomain

The rovers domain initially was introduced at the Third InternatiorRlnning
Competition (IPC-3). For the “simple preferences” versiged in IPC-5, we must
minimize the summed cost of actions in the plan while simmdtaisly minimizing
violation costs. Each action has a cost associated withrautth a numeric vari-
able specified in the plan metric. The goals from IPC-3 of camicating rock
samples, soil samples and image data are made into predésrezech with vary-
ing violation cost. Interestingly, this version of the damenimics the PSP NT
BENEFIT problem in the sense that the cost of moving from place toeptacises a
numeric variable to increase monotonically. Each problpeatsies this variable as

34

4500
4000 -=YochanPS

3500 -%-SGPlan
3000 +—
2500

-o-MIPS-XXL

2000

Quality

1500

1000

500

123 456 7 8 91011121314 151617 18 19 20
Problem

(a) IPC-5 resultsYocharf$ solves 20; MIPS-XXL solves 15;
SGPlan solves 20

6000

—+-YochanPS .
5000
-a-YochanCOST ¥’|
\
4000 \
1
- \
Z 3000 i
© 1
>
S 2000 !
1000
0

5 10 15 20
Problem

(b) Yocharf® vs. YocharY©5T. Yocharf' solves 20;Yochary©5T solves 20

Fig. 10. IPC-5overs“simple preferences”

part of its problem metric, thereby allowing the variabl@abb as the cost of travers-
ing between locations. Note that the problems in this doraeemot precisely the
PSP NeT BENEFIT problem but are semantically equivalent. Additionallynamf

the preferences in the competition problems for this doncaimtains disjunctive
clauses, so the number of additional actions generatedebgaimpilation to PSP

NET BENEFIT is small.

As shown in Figure 10(a)Yocharf® is able to solve each of the problems with
quality that is competitive with the other IPC-5 participgnyochar?©°T gives
much worse quality plans on three problems and is compacabtee majority of

35

the other problems. For this domain, the heuristidvathaf® guides the search
well, as it is made to discriminate between goals based oodsteof the actions to
reach them. On the other hand, as shown in Figure 10tmhar’?°? attempts to
satisfy the goals in the cheapest way possible and, in treeharoblems, always
returns an empty plan and then fails to find a better one inltbted time. Thus,
Yochat'©T tends to find plans that trivially satisfy the newly introedchard
goals.

5.4 TheStorageDomain

Here a planner must discover how to move crates from contatoalifferent de-

pots. Each depot has specific spatial characteristics thsttlne taken into account.
Several hoists exist to perform the moving, and goals irevpireferences for stor-
ing compatible crates together in the same depot. Incobilpairates must not be
located adjacent to one another. Preferences also exist albere the hoists end

up.

In this domain, bothvocharf® and Yochary'©°" failed in their grounding process
beyond problem 5. Figure 11(a) shows that, of the problerhs&dpYocharf®
found solutions with better quality than MIPS-XXL. Figur&(b) shows that both
Yocharf® andYochary’©S" solved versions adtoragethat had universal and exis-
tential quantification compiled away from the goal prefeesand produced plans
of equal quality. Of the problems solved by both planners,ltéimgest plan found
in this domain by the two planners contain 11 actions (theesalan found by both
planners).

5.5 TheTPPDomain

This is the traveling purchaser problem (TPP), a genetaizaof the traveling
salesman problem. In this domain, several goods exist etusamarket locations.
The object of the planning problem is to purchase some amufugdch product
while minimizing the cost of travel (i.e., driving a truckjéwhile also satisfying
goal preferences. THEPPdomain is unique in that it is the only one in the “simple
preferences” track to have preference over action pretiondi When driving a
truck away from a market, we always prefer to have all of thedgoemptied at
that market. Cost is added to the action if we fail to satibfg tondition. Like the
trucks domain, this is a logistics-like domain. Goal preferes typically involve
having a certain number of the various goods stored.

As we can see in Figure 12(apcharf® finds plans of competitive quality in the
problems that were solved. This domain has soft goals teatartually exclusive
from one another (i.e., storing various amounts of goodbpugh the heuristic

36

2000
1800
1600

1400 +——

1200
1000
800
600
400
200
0

Quality

-=-YochanPS

,
+—— %-SGPlan 1
[
-e-MIPS-XXL x !
1 n” !
- MIPS-BDD Y
* X
7
’
Ky x”
*/
>

i P
- ‘_ﬂ' E D 4

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Problem

(a) IPC-5 resultsYocharf® solves 5; MIPS-XXL solves 4;

160
140
120
100

80

Quality

60
40
20

(b) Yochart®

used inYocharfs

MIPS-BDD solves 4; SGPIlan solves 20

X-YochanPS
-&-YochanCOST

Problem

vs. Yocha¥©°T. YocharfS solves 5:Yochary 5T solves 5

Fig. 11. IPC-5storage“simple preferences”.

does not identify this, it does focus on finding goals to aghie
that may be of the highest quality. It turns out thatT#P, this is enough. As the
planner searches for a solution, it identifies this fact amak$ for plans that can
achieve the highest quality. It is interesting to note thatharf® solves more
problems than MIPS-XXL and MIPS-BDD. Also, when both findwans, plans

given by Yocharf® are often of better quality.

As Figure 12(b) showsYochar’’®S™ has more difficulty finding solutions for this
domain thanYocharf® . It attempts to minimize actions as well as cost (as does
Yocharf®), but tends not to improve plan quality after finding a plativé lower

level of goods (involving fewer actions).

37

2000
1800
1600 -

1400 +— --&-MIPS-XXL
1200 +— -+ MIPS-BDD

1000
800

Quality

-=-YochanPS .

__ —-SGPlan -~y

600

400

200

(O

123 45 6 7 8 9 101112 13 14 15 16 17 18 19 20
Problem

(a) IPC-5 resultsYochary©>T solves 12; MIPS-XXL solves 9;

700

600

500

400

Quality

300
200

100

(b) Yocharf® v

Interestingly, a s

Yocharf® finds b
cases,Yocharfs *

Yocharf® re-eva

MIPS-BDD solves 9; SGPIlan solves 20

-k&-YochanPS

-8-YochanCOST /\-

Problem

s. Yocha¥©5T. YocharfS solves 12:Yochary©°T solves 12

Fig. 12. IPC-5TPP“simple preferences” results.

imilarity exists between the anytimedwbr of Yocharf® and
Yochary©5T . Typically, both planners discover initial plans at appnoately the
same rate, and when possible find incrementally better plarfact, only when
etter solutions does the behavior significantly difiad in these
‘reaches further” for more solutions. We largely attribtlies to
the heuristic. That is, by ignoring some of the goals in tHaxed plan, the plan-
ner essentially serializes the goals to focus on duringchedt each search node
luates the reachability of each goal in terms of carsus benefit.

38

In this way, a goal can look more appealing at greater deffttiesearch* This

is especially noticeable in tRiEPPdomain. In this domain, all of the higher-quality
plans thatvocharf® found were longer (in terms of number of actions) than those
of Yochar¥®3T in terms of number of actions. This is likely because thexexda
plan heuristic inYochart©>T believes preference goals are reachable when they
are not.

5.6 Other Tracks

While Yocharf® participated in the IPC-5 as a partial satisfaction plaruaga-
ble of handling PDDL3.0, it is based @apaand therefore is capable of handling a
wide variety of problem types. Because of this, the plantser participated in both
the “metrictime” and “propositional” tracks. In the “mettime” track, Yocharf®
performed quite well in terms of finding good quality (shorakaespan) plans,
achievingl® place in one domain (the “time” versionsabenstacKsand2"? place

in three domains (the “time” version eforageandtrucksand the “metrictime” ver-
sion ofroverg. The performance in these problems can be attributed tadtien
re-scheduling procedure &apa which takes an original parallel, temporal plan
and attempts to re-order its actions to shorten the makesgammore (14). This
especially holds for thepenstackgroblems, whose plans have a high amount of
parallelism.

Looking at the results o¥ocharf® versus SGPlan for the tempormapenstacks
domain provides some further insight into this behavioerin the more difficult
problems thatvocharf® solves, the plans contained an equal or greater number of
actions. Howeveryocharf’ parallelized them to make better use of time using its
action scheduling mechanism (which, again, was inheritaa the planneSapa.

Summary of IPC-5 Results

Yocharf® performs competitively in many domains. In tinecksdomainYocharf®
scaled better than MIPS-XXL and MIPS-BDD, but was outperied overall in
terms of number of problems solved by SGPlan, the winnerettmpetition!®

There are several technical reasons Yocharf'® ’s inability to solve large prob-

14 \We also note evidence of this exists by the fact thatharf® tends to do better as
problems scale-up.

15 The organizers of IPC-6 have alleged that the version of 8Glat was entered in that
competition seems to have code in it that could allow it testehmong different planning
strategies based on the name of the domain and other chigticteof the domain (e.g.,
number of actions, number of actions’ preconditions, e#ss)of this writing, we do not
know if the SGPlan version that participated in IPC-5 alsth $iach domain customization,
and how it might have affected the competition results.

39

1400 --YochanPS

1200 -&-YochanCOST
1000 \
800

‘\
N
600 \Q -------------------------------

400 24 P °*

Quality

200

5.37 5.87 6.37 6.87
Time

Fig. 13. IPC-5 Rovers, Problem 19 anytime search behavior.

lems in many of the domaindbcharf® 's parsing and grounding routine was quite
slow and takes most if not all of the allocated 30 minutes tiongarse large prob-
lems in many domains.

In several domaingrucks TPP, androvers, Yocharf® predominately gave better
quality plans tharYochary©>T. From the search behavior, in many cases the com-
pilation to hard goals caused the planner to quickly cho@eensolutions (i.e.,
trivially achieving the hard goals without achieving thefg@rence) despite the ad-
ditional cost associated with doing so. This is attributethe fact that the heuristic
also minimizes the number of actions in the plan while mizimy cost (since the
heuristic counts all non-preference actions with a costM)ile this same quality
exists in the heuristic used byocharfs , handlingsoft goals directly helps the
planner by allowing it to completely avoid considering asl@ment of goals. In
other words, the planner can focus on satisfying only thasdsghat it deems ben-
eficial and can satisfy some subset of them without selecatipns that “grant
permission” to waive their achievement.

A view into the behavior of the anytime search between the plamners helps
illustrate what's happening. Figure 13 shows the searclasbehon problem 19
of theroversdomain from the competition. We can see that, whiteharf® and
Yochart’©5T find plans of similar quality initiallyyochar’®** stops finding better
plans whileYocharf® continues. This is typical throughoutvers TPPand some
of thetrucksproblems. In these domains, as the problems scale inzéary 0"
typically exhibits this behavior. In both planners, it isyeften the case that initial
solutions are quickly found, as single goals can often bekiysatisfied!

Note that one issue witiMochary’©S7 is that the number of “dummy” actions that
must be generated can effect its search. For every stepctions@to decide to

16 By “initial solution” we, of course, mean a plan other thaa thull plan” when all goals
are soft.

40

“not achieve the goal” can be applicable, and therefore mestonsidered (such
that a node is generated for each one). This can quickly ¢legsearch space,
and therefore results in a disadvantage to the planner acthe of the problems
increasesYocharf® , on the other hand, by directly handling soft goals, cancvoi
inserting such search states into the space, thereby siege#is scalability over
Yochary' 95T

5.7 Up-front Goal Selection in Competition Domains

While Sap&* , and by extensiorYocharf® , performs goal re-selection during
search, one can also imagine dealing with soft goals by tsedethem before the
planning process begins. Afterward, a planner can treagetexted goals asard
and plan for them. The idea is that this two-step approachreduce the com-
plexities involved with constantly re-evaluating the givgoal set, but it requires
an adequate technique for the initial goal selection pmc@$ course, perform-
ing optimal goal selection is as difficult as finding an optimlan to the original
PSP NeT BENEFIT problem. However, one can imagine attempting to find a fea-
sible set of goals using heuristics to estimate how “gooddal get is. But, again,
proving the satisfiability of goals requires solving theienplanning problem or
at least performing a provably complete analysis of the @lgxclusions between
the goals (which is as hard as solving the planning problem).

Given that hard goals must be non-mutex, one may believartihrabst domains
mutually exclusive soft goals would be rare. However, usansquite easily specify
soft goals with complex mutexes lingering among them. Fetaince, consider a
blocks world-like domain in which the soft goals involve tks stacked variously.

If we have three blocksa(b, andc) with the soft goalgon a b) (on b ¢) and(on

c a), we have a ternary mutual exclusion and we can at best acbidydwo of
the goals at a time. For any number of blocks, listing eveaglshg possibility will
always generate-ary mutexes, where can be as large as the number of blocks in
the problem.

Further, the IPC-5 “simple preferences” domains have maayy mutual exclu-
sions between goals with sometimes complex interactiocis $at the satisfaction
of one set of goals may be negatively dependent upon théesaitis of another set
of goals (i.e., some goal sets are mutex with other goal.déetsyns out that even
when binary mutexes are taken into account, as is done wétlpmnerAltWit
(which is an extension of the plann@ltAlt 7), these complex interactions cannot
be detected (38).

Specifically, the plannedltWIt uses a relaxed planning graph structure to “penal-

ize” the selection of goals that appear to be binary mutedtfusive by solving for
each goal individually, then adding cost to relaxed plaasititerfere with already-

41

1600
-&YochanPS

—A-AltWIt

1400 —

1200

Problem

Fig. 14. Comparison wit/tWit on IPC-5roversdomain

chosen goals. In other words, given a relaxed plan for a tselegoalg calledr,,
and a relaxed plan for a candidate ggat,, we have a penalty cosfor the selec-
tion of ¢’ if any action inr, interferes with an action in(i.e., the effects of actions
in v, delete the preconditions found g in actions at the same step). A separate
penalty is given if preconditions in the actionsigfare binary and statically mutex
with preconditions in the actions ef and the maximum of the two penalties is
taken. This is then added to the cost propagated througHahaipg graph for the
goal. AltWIt then greedily selects goals by processing each relaxediplamn,
and selects the one that looks most beneficial.

To see if this approach is adequate for the competition beadks, we converted
problems from each of the five domains into a format that cae&e byAltWit. We
found that instorage TPP, trucks andpathwaysAltWIt selects goals but indicates
that there exists no solution for the set it selects. Howe&&WVIt found some
success imovers a PSP T BENEFIT domain where mutual exclusion between
goals is minimum in the benchmark set. The planner was aldelte 16 of the 20
problems, whileYochar’® was able to solve all 20. Of the ondétWit failed to
solve, it explicitly ran out of memory or gave errors. Figlirleshows the results. In
12 of the 16 problemsAltWIt is capable of finding better solutions thedncharf> .
AltWit also typically does this faster. As an extreme example, tbtfie eventual
final solution to problem 12 abvers Yocharf® took 172.53 seconds whilltWit
took 324 milliseconds.

We believe that the failure AAltWIit on the other competition domains is not just a
bug, but rather a fundamental inability of its up-front atijee selection approach
to handle goals with complex mutual exclusion relationsuiderstand this, con-
sider a slightly simplified version of the simple preferemstoragedomain from
the IPC-5. In this domain we have crates, storage areastsjépad areas, contain-
ers and hoists. Depots act to group storage areas into & siatggory (i.e., there

42

Depot, Depot,

load area
sag; Sago sa;, sa;,

container
hoist

Fig. 15. An example of the “simple preferences” storage doma

are several storage areas within a single depot). Hoistdearer a crate to a stor-
age area adjacent to it. Additionally, hoists can move betwatorage areas within
a depot, and through load areas (which connect depots). \&Wleate or hoist is
in a storage area or load area, then no other hoist or crateentay into the area.
Crates begin by being inside of a container in a load areacéhtire load area is
initially passable, as no crates are actually inside of it).

Figure 15 shows the layout in our example (which is a simplifiersion of problem

1 from the competition). In the problem there exists a haistate, a container, two
depots {epot, anddepot,) and two storage areas in each depab (o, sap_q in
depoty andsa_q, sa;_1 in depot). The storage areas are connected to each other,
and one in each depot is connected to the loading area. Tiedoagins inside of the
container and the hoist begins atdepot; at sa;_y. We have several preferences:
(1) the hoist and crate should end up in different depotdh(witiolation penalty of
1), (2) the crate should be ifepot, (violation penalty of 3), (3) the hoist should be
in sag_o Or sap_1 (violation penalty of 3), (4ka;_o should be clear (i.e., contains
neither the hoist nor the crate with a violation penalty qofé)d (5)saq_; should
be clear (violation penalty of 2).

The (shortest) optimal plan for this problem involves onlguimg the hoist. Specif-
ically, moving the hoist from its current locatiosy_g, to sag_; (using 3 moves).
This satisfies preference (1) because the crate is in no ¢fegrate it will always be
in a “different depot” than the hoist), (3) because the hisigt say_, (4) because
saj_q is clear and (5) because,_; is clear. It violates the soft goal (2) with a
penalty cost of 3. Of course, finding the optimal plan wouldlx, but we would
also be satisfied with a feasible plan. However, there is ayhlearden on the goal
selection process to find a satisfiable, conjunctive setitgroblem the “simple
preference” goals have complex, non-binary mutual exchssi

Consider theAltWit procedure for finding a set of goals for this domaditWit
selects goals greedily in a non-deterministic way. But thpartant aspect ofl/-
tWit here is how it defines its penalty costs for noticing mutual@sion between
goals. Interference involves the effect of one action dajethe precondition of
another action. However, there are often several ways @ffwaly a preference,
most of which do not interfere with satisfying another prefee in the relaxed
setting. For instance, consider preference (1), that weldhwave the create and
hoist in different depots. A preference of this form essalytinvolves several dis-

43

crete disjunctive clauses, (e.g., “do not have the hoistiat; or do not have the
crate indepot,”). Satisfying for one of these clauses is sufficient to bali¢hat
the preference can be achieved. If we achieve one of thage @ not have the
hoist atsa;_1"), the clause is satisfied. Of course even in the relaxedlenojowe
must satisfy each of the disjunctive clauses (e.g., we caa &ach of “do not have
the hoist atsa,_, wherez,y € {0,1}” or “do not have the crate idepot,, where
x € {0,1}"). It turns out that these are satisfiable in the initial sfato this is a
trivial feat. If we then choose goal preference (2), havimg trate indepot,, we
can can find a relaxed plan that moves the hoist to the load @@aves the crate
from the container and placesitsn,_, (which is indepot,). Satisfying (3), having
the hoist atsag_q oOr sag_; looks statically mutex with (1), but the competing needs
or interference penalty costs apply only when a relaxed @kists. Since none ex-
ists for (1),AltWit finds a relaxed plan that moves the hoisttg_;.'” Satisfying
preference goal (4) requires that we move a single stepgysasisfiable, and shar-
ing an action with (2), and hence there exists no interfexemacompeting needs.
Preference goal (5) is satisfied at the initial state.

From this analysis, we can see tAdtWit selects each of the goals, as there exist no
penalties to make them look unappealing. It will subsedyéail when attempting

to find a solution for the goals—there exists no way to safisfyall of the pref-
erences. The complex mutual exclusions and disjunctivesels causél/tWit to
select goal sets that are impossible to achieve. From the pbview of the com-
petition, AltWIt suffers from similar issues in all but one of the “simple prehce”
domains (namely, the “simple preferences” versiorwoers.

In summary, while up-front selection of objectives does etle PSP HT BENE-
FIT problem much easier to handle, as we have suspected, in eoghpinains the
objective selection cannot even guarantee satisficingplan

6 Related Work

In the last few years, there has been consider work on plgrwithh goals as soft
constraints or preferences. Problems tackled includeethoth either quantita-
tive or qualitative goal preferences. The solving methddgs eange from various
heuristic approaches to compilations for simplifying tldt gjoal constraints. In
this section, we will compar8apd® and Yochar® with them as well as explore
the similarities and differences between our variatiomd&and other well-known
search algorithms. A further overview on planning and sahied with preferences
and soft constraints can be found in (16).

I7Even if a relaxed plan were to exist for (1), the disjuncti@uses make interference
difficult to identify—i.e., we can be satisfying for “do noae the crate irepot,” which
is not mutex with preference (3).

44

6.1 Planners Solving PSP and its close Variations

There are several planners that solve the same PSP andydlelseééd problems.
Two recent heuristic planners that solve PSPTNBENEFIT are the orienteering-
planner (OP) (40) andltAlt 7S (44). Both OP and\ltAlt 7S use a two-step frame-
work. In step 1, they heuristically select the subSetf soft goals. In step 2, they
convertS into hard goals and use a non-PSP planner to find the lowesplaos
achievingsS. For step 1, OP uses the solution of a simpler problem to sbgb
the subset of goals and the order to achieve them. The abgtaddem is built by
first propagating the action costs on the planning graph andtoucting theori-
enteeringproblem, which is a variation of the traveling salesman @b Unlike
the orienteering-planneAltAlt 7S relies on the cost-sensitive planning graph and
uses a different technique to analyze the graph to hewillstiselect the most ben-
eficial subset of goals. After the goals are fouA#Alt 7S uses a variation of the
regression search plann@iltAltto search for a low cost plan.

The main advantage of the two-step approach used by ORABAG 7S is that
up-front goal selection enables the reduction to a planpinglem with hard goals
(and action costs) which can be solved by any planner capdliiandling such
problems. The disadvantage of this approach is that if thei$tecs in the first step
do not select the right set of goals then the planner mayrefitie: a poor quality
plan or can take a lot of time to discover that the problem solwable before it
can switch to another goal set. Therefore, if the first stegsdwt select thexact
optimal goal set, then the final plan is not guaranteed to enap Moreover, if
there is an unachievable goal selected, then the planneretirn failure before
trying to select another set of goals. Indeed, as shown itid®es.7, AltAlt 7S and
its improved versioi\ItWIt never try to solve more than a single (hard) goal set and
consistently select the set of goals containing non-ols/inutexes'®

Sapd&® is different from those two planners in the sense that it coesely on any
pre-defined subset of goals and lets thieframework decide which goals are the
most beneficial for a given node during search. Thereforegrtpartially correct
the mistakes in heuristically selecting a particular stib$eyoals at each search
node as it goes deeper in the search tBapd® also works in aranytimefashion
and keeps improving its solution quality given more seairtie t Nevertheless, the
two types of planners can complement each other. The hieuriamework used
in the orienting-planner andltAlt 7¢ can be employed iSapd® to improve its
heuristic evaluation at each search node. However, it cajulte expensive to do
so for each search node.

As mentioned previously, Keyder & Geffner (33) introducdukaristic planner that
is able to avoid the two-step solving approachaidlt ”> and OP by compiling

18 However, the orienteering-planner has a strategy for awpithis problem, by selecting
one goal at a time to achieve.

45

all soft goals into hard goals. The newly introduced actiand fluents guaran-
tee that the lowest cost plan in the new problem correspantigethighest-benefit
plan in the original problem. This compilation approachrslaa lot of similari-
ties with Yochary'®*”. However, the compilation approach Yochary'©>" is more
complicated due to the more complex preference model in PDQlthe existence
of disjunctions on preference formulas, and the potengakessity to delete and
re-achieve goals. As we have seen from our experim&othary ©>7 tends to fare
worse thanYocharf’s . Because of this, we believe that handling soft goals direct
provides better heuristic guidance.

OptiPlan(44) extends an integer linear programming (ILP) encodorgobunded
parallel length classical planning to solve the PSP prolidgradding action cost
and goal utility. It also relaxes the hard goal constraigtaioving those goals sat-
isfying conditions into the ILP’s objective function. Thigy, goals can be treated
as soft constraints. The advantageQptiPlars approach is that off-the-shelf ILP
solvers can be used to find the final plan that is guarantee@ wpbmal up to
a bounded parallel plan length. The disadvantage of thisoagp is that it does
not scale up well as compared with heuristic approaches (asadhose used by
Sapd® andYocharfs).

There have been some recent extensions to the basic PSBrpmdinition. SPUDS
and iPud (12), and BBOP-LP (5) have exten@h&° andOptiPlanto solve PSP
problems where there are utility-dependencies betweds.gbiaus, achieving a set
of goals may have a higher or lower utility than the sum of ttilgies of individual
goals, depending on user-defined relations between thearhdilristics irSap&°

and the objective function i®ptiPlanhave been extended significantly in those
planners to accommodate the new constraints represergpendencies between
goals.

Bonet & Geffner (8) present a planner whose search is guigdegweral heuristics
approximating the optimal relaxed plan using the rank of NIND- theory. While

the search framework is very similar 8ap4° and the heuristic is also relaxed
plan-based, the problem tackled is a variation of PSP wheat \ilities are not
associated with facts achieved at the end of the plan exechtit achievedome-
timeduring the plan execution. This way, it is a step in movingrfrthe PSP def-
inition of traditional “at end” goals to a more expressiveéaiegoal constraints on
the plan trajectory defined in PDDL3.0. While the heuristtiraate is likely to be
more accurate thaBapd® , the heuristic computation is more expensive due to the
required step of compiling the problem to d-DNNF.

46

6.2 PDDL3.0 Planners

Several competing planners (besidéxharf) were able to solve various sub-
sets of PDDL3.0 in the IPC-5, specifically SGPIlan (32), MR&: (18), MIPS-
BDD (17) and HPlan-P (2). Lik&ocharf® , these planners use a forward heuristic
search algorithm but none convert PDDL3-SP into PSP Ykeharf® . Besides
SGPlan, each planner compiles PDDL3.0 preferences intihanplanning repre-
sentation and then changes the heuristic approach to findl geoality plans given
the costs associated with preferences defined in PDDL3.0.

Baier et al. (2) compile trajectory preferences into addail predicates and ac-
tions by first representing them as a non-deterministicefisiiate automata (NFA).
The heuristic is then adjusted to take into account thaewdfit preferences have
different values so that the planner is guided toward findingrall good quality
plans. The planner is then extended in (1) to have a more stigdted search algo-
rithm where conducting a planning search and monitoringotmametrized NFA
are done closely together. MIPS-XXL (18) and MIPS-BDD (1@)Hcompile plan
trajectory preferences into Biichi automata and “simpéégyences” into PDDL2.1
numerical fluents that are changed upon a preference anlaflIPS-XXL then
uses Metric-FF with its enforced hill-climbing algorithm find the final solution.
On the other hand, MIPS-BDD stores the expanded search mod&3D form
and uses a bounded-length cost-optimal BFS search for BDBslve the com-
piled problems. While compiling to NFA seems to allow thokenpers to handle a
wider subset of PDDL3.0 preferences thércharf® | it is not clear if there is any
performance gain from doing so. SGPlan (32) uses partigohrtiques to solve
planning problems; it does not compile away the prefereboesses the costs as-
sociated with violating trajectory and simple preferentesvaluate partial plans.

There are planners that solve planning problems with trajggoreferences in
PDDL3.0 by compiling them to satisfiability (SAT) (26) or I(R3). The SAT com-
pilation can be done by first finding the maximally achievaidén quality value”,
thenn = [log,(C') + 1] ordered bitdy, ..., b, are used to represent all possible plan
quality values within the range of 0 10. A SAT solver with modified branching
rules over those; bits is then used to find a bounded-length plan with the maxi-
mum achievable plan quality value. Due to the limitation AT$n only supporting
binary variables, the SAT-compilation approach is argyaltkward.

It is easier to support quantitative preferences in ILP dugst natural ability to

support real values and an objective function to optimiaa pjuality. van den Briel
et. al. (43) have shown various examples of how to compijedtary preferences
into ILP constraints. The overall framework is to: (1) obt#ie logical expression
of the preferences; (2) transform those expressions intb Gdhstraints in SAT;

(3) formulate the ILP constraints corresponding to the lteguSAT clauses; and
(4) set up the objective function based on the preferendation cost of those ILP

a7

constraints. Both the SAT and ILP compilation approachesatoscale up well
compared to the heuristic search approach useSajpd® and YocharfS . The

advantage is that they can capitalize on state-of-theedwess in other fields to
solve complex planning problems.

6.3 Qualitative Preference Planners

There is another class of planners that also treats goatdtasoastraints; however,
goals are not quantitatively differentiated by their tyjilvalues, but their prefer-
ences are instead qualitatively represented. Qualitgtigéerences are normally
easier to elicit from users, but they are less expressivelard can be many plans
that areincomparable Brafman & Chernyavsky (10) use TCP-Nets to represent
the qualitative preferences between goals. Some exam@e€lag, - g, means
achievingg, is preferred to achieving; (2) g1 = —g1 means achieving; is bet-
ter than not achieving it. Using the goal preferences, ptais considered better
than planp; if the goal set achieved b#, is preferred to the goal set achieved by
P, according to the pre-defined preferences. A Pareto optitaal P is the plan
such that the goal set achieved Byis not dominated (i.e., preferred) by the goal
set achieved by any other plan. A CSP-based planner is udetlitthe bounded-
length optimal plan. This is accomplished by changing trenbhing rules in the
CSP solver so that the most preferred goal and the most prdfealue for each
goal are always selected first. Thus the planner first branohehe goal set or-
dering according to goal preferences before branching tarscmaking up the
plan. Like the extension from PSP to PDDL3.0 quantitativefgnence models on
plan trajectories, there have also been extensions frotitajiee goal preferences
to qualitative plan trajectory preferences. Tran & Pon{d2) introduced the PP
language that can specify qualitative preferences on pdgactories such as prefer-
ences over the states visited by the plan or over actionsigeaat different states.
PP uses a nested subset of temporal logic (similar to PDD1t3.@crease the set
of possible preferences over a plan trajectory. PP is latended with quantifica-
tion and variables by Bienvenu et al. (6). Both logic-bagi) énd heuristic search
based (6) planners have been used to solve planning withtajied preferences
represented in PP by using weighting functions to conveatitaive preferences
to quantitative utility values. This is due to the fact thakqtitative preferences
such as PSP and PDDL3.0 fit better with the heuristic searploaph that relies
on a clear way to compute and comparandh values. The weights are then used
to compute they and h values guiding the search for an optimal or good quality
solution.

48

6.4 Other PSP Work

The PYRRHUS planning system (46) considers an interestnignt of temporal
partial satisfaction planning where goals have deadlind3YRRHUS, the quality
of the plan is measured by the utilities of goals and the amoftiresources con-
sumed. Goals have deadlines, and utilities of goals deerédlsey are achieved
later than their deadlines. Unlike PSP and PDDL3.0 probjaththe logical goals
still need to be achieved by PYRRHUS for the plan to be valdother words,
the logical aspect of the goals (i.e., the atemporal aspeettill hard constraints
while the goal deadline constraints (i.e., the temporatefpare soft constraints
and can be “partially satisfiable”. For solving this prob|é?YRRHUS uses a par-
tial order planning framework guided by domain-dependaoiedge. Thus, itis
not a domain-independent planner as are the other planisetssded in this paper.

One way of solving PSP problems is to model them directly #ésrdenistic MDPs
(30), where actions have different costs. Any stata which any of the goals hold
is a terminal state with the reward defined as the sum of thiéagiof the goals
that hold inS. The optimal solution to the PSP problem can then be exttdaoten
the optimal policy of this MDP. Given thiSap&® can be seen as an efficient way
of directly computing the plan without computing the enpiaicy (in fact, h*(.5)
can be viewed as the optimal value 8f. Our preliminary experiments with a
state-of-the-art MDP solver show that while direct MDP a@mwhes can guarantee
optimality, they scale very poorly in practice and are urabl solve even small
problems.

Over-subscription issues have received more attentioharstheduling commu-
nity. Earlier work in over-subscription scheduling usedéegdy” approaches, in
which tasks of higher priorities are scheduled first (34;. 380re recent efforts
have used stochastic greedy search algorithms on coridbased intervals (20),
genetic algorithms (27), and iterative repairing teche&(85) to solve this prob-
lem more effectively. Some of those techniques can potgnkialp PSP planners
to find good solutions. For example, scheduling tasks wiginéi priorities shares
some similarity with the waylt Alt?* builds the initial goal set, and iterative re-
pairing techniques may help local search planners such & ibPsolving PSP
problems.

6.5 Our variation ofA* vs. Other Closely Related Search Algorithms

For the rest of this section, we will discuss search algor#ticlosely related to our
search algorithm, which was discussed in Section 3.1.

vs. variations of anytimd*: The main difference between best-first heuristic search
algorithms such asg!* and our algorithm is that one deals with minimizing path

49

length in a graph with onlypositiveedge costs and the other works to maximize
thepath lengthin a graph with botlpositiveandnegativeedge benefits. The other
difference is that any node can be a goal node in P&P BENEFIT problems.
Nevertheless, only ones with higher net benefit than theirstate are interest-
ing and can potentially provide better solutions than thetgmlan. Turning from
maximization to minimization can be done by negating theecognefit to create
“edge cost”, resulting in a new gragh. However, we cannot conveft’ into an
equivalent graph with only positive edges, which is a caadifor A*. Compare
this search to other anytime variations of thealgorithm such as Anytimél A*
(28) or ARA* (36). Both of these anytime variations are based on findingra n
optimal solution first using amadmissibleheuristic and later gradually improving
the solution quality by branch and bound or gradually longtihe weight in the
heuristic estimat¢ = g + w - h. Given that there are both positive and negative
edges in PSP K BENEFIT, our algorithm may generate multiple solutions with
gradually improving quality before the optimal solutiorfegind regardless of the
admissibility of the heuristic. This is due to the fact tHatrie are potentially many
solutions on the path to a better quality, or optimal solutiBerhaps the closest
work to our algorithm is by Dasgupta, et al. (11) which seascfor the shortest
path in a directed acyclic graph with negative edges. Howeavehat case a sin-
gle goal node is still pre-defined. We also want to note thaides theDPEN list,
there is noOCLOSEDIist used in Algorithm 2, which is popular in most shortest-
path graph search algorithms to facilitate duplicate detecOur algorithm is im-
plemented in a metric temporal planner with a complicatatesepresentation and
duplicate states are rarely generated. Therefore, we didypiement theCLOSED
list. However, one can be added to our algorithm similar eovtlay aCLOSEDIist

is used inA*. Besides admissibility, another important property of tlegristic is
consistencyi.e., h(s) < h(s') + c. with " is a successor of), which allowsA*
with duplicate detection to expand each node at most onceaphgsearch. It can
be shown that our algorithm has a similar property. Thaf itha heuristic is con-
sistent (i.e.h(s) > h(s’) + b.), then our algorithm with duplicate detection will
also expand each node at most once.

vs. Bellman-Ford AlgorithmThe Bellman-Ford algorithm solves the single-source
shortest path problem for a graph with both positive and tngadges (in a di-
graph). We can use this algorithm to solve PSPTNBENEFIT problems with the
edge weights defined by the negation of the edge benefit. HaywNs algorithm
requires enumerating through all plan states and can becestyy for planning
problems which normally have a very large number of posstdées. Moreover,
we only need to find a single optimal solution in a digraph withnegative cycle
and, thus, the additional benefit of the Bellman-Ford atbarisuch as negative
cycle detection and shortest path to all states are not deétimvever, given the
relations between thd* and Dijkstra algorithms that can be used to prove some
properties ofA* and the relations between the Dijkstra and Bellman-Ford-alg
rithms (generalization from an undirected graph to a digyape can potentially
prove similar properties of our algorithm by exploiting ttedations between our

50

algorithm and the Bellman-Ford algorithm.

vs. Branch and Boundvlany anytime algorithms share similarities with the branch
and bound search framework in the sense that at any giverdtinieg the search,

a best found solution is kept and used as a bound to cutoff potential paths that
lead to solutions proved worse thanOur algorithm is no exception, as it uses
the best found solution represented By to filter nodes from the OPEN list and
prevent newly generated nodes of lower quality from beirgdpado the OPEN list

as shown in Algorithm 2.

7 Conclusion and Future Work

In this paper, we present a heuristic search approach te galstial satisfaction
planning problems. In these problems, goals are modeledfasanstraints with
utility values, and actions have costs. Goal utility représ the value of each goal
to the user and action cost represents the total resourtéecgs time, fuel cost)
needed to execute each action. The objective is to find thretpé maximizes the
trade-off between the total achieved utility and the tatalirred cost; we call this
problem PSP WHT BENEFIT. Previous PSP planning approaches heuristically con-
vert PSP NET BENEFIT into STRIPS planning with action cost by pre-selecting
a subset of goals. In contrast, we provide a novel anytimecBeslgorithm that
handles soft goals directly. Our new search algorithm hamgtime property that
keeps returning better quality solutions until the terrtioracriteria are met. This
search algorithm, along with the relaxed plan heuristiegpéet to PSP KT BEN-
EFIT problems, were implemented in the forward state-spacepls®apd® .

BesidesSap&® , we also presenteMocharf’® , a planner that converts “simple
preferences” in the standard language PDDL3.0 into P&P BENEFIT and uses
Sapd* to find good quality solutionsYocharf® recognizes the similarities be-
tween (1) goal and action precondition preference viotatiosts in PDDL3-SP,
and (2) goal utility and action cost in PSPENBENEFIT. It uses these similari-
ties to create new goals and actions in PSPrIBENEFIT with appropriate utility
and cost values to represent the original preferen¥esharf® participated in
the the5*" International Planning Competition (IPC-5) and was coritipetwith
other planners that can handle PDDL3-SP, receiving a tfajsished performance”
award. While SGPIan, the winner of the competition, solvasiyrimore problems
thanYocharf’® , our planner returns comparable quality solutions (whsdhe em-
phasis of the IPC) to SGPIan, in problems it can solve. Thexsaveral technical
reasons for our planner’s inability to solve many problescharfs ’s parsing
and grounding routine was quite slow and took most if not fithe allocated 30
minutes time to parse big problems in many domains. WWaharf® can ground
the competition problems in a reasonable time, it typicedlg solve them.

51

We also introduce another planner callédchary’®s”. Like Yocharf® , it com-
piles away preferences in PDDL3-SP. However, the resufinogplem is not PSP
NET BENEFIT but a problem with hard goals and action costs. Our empireal
sults show thavocharf’® performs better thaiochary’©>* by handling soft goals
directly.

We want to further explore our current approach of solving Pp&blems in several
directions. Even though we have used a forward planner,iinae search algo-
rithm presented in this paper can be used for other typesuidtie search planners
such as regression or partial order causal link plannevgolid be interesting to
compare which is a better-suited planning framework. Westedso expanded the
basic PSP HT BENEFIT framework to include metric goals with variable goal util-
ity in the plannerSapa'”S (3), and logical goals with inter-dependent utilities in
the planner SPUDS (12). We are currently planning on extenidlto handle goals
whose utilities depend on their achievement time.

AcknowledgmentsThis article is in part edited and extended from Do & Kamb-
hampati (15); Benton, Kambhampati & Do (4); and van den B&anchez, Do &
Kambhampati (44). We would like to thank Romeo Sanchez ftp Wéh his code
and the experiments, and Menkes van den Briel and Rong Zhahéda discus-
sions and helpful comments on this paper. We also greatlseagte the assistance
of William Cushing for discussions and help with experinsedditionally, we
express our gratitude to David Smith and Daniel Bryce foirteeggestions and
discussions in the initial stages of this work. And of couttsanks go to Sylvie
Thiebaux and the anonymous reviewers, who gave valuableneos that helped
us to improve the article. This research is supported in parthe ONR grants
N000140610058 and N0O001407-1-1049 (MURI subcontract firmtrana Univer-
sity), a Lockheed Martin subcontract TT0687680 to ASU as pathe DARPA
Integrated Learning program, and the NSF grant 11S-308139.

References

[1] J. Baier, F. Bacchus, S. Mclllraith, A heuristic seargpeoach to planning
with temporally extended preferences, in: Proceedingd©Al-07, 2007.

[2] J. Baier, J. Hussell, F. Bacchus, S. Mclllraith, Plargnimith temporally ex-
tended preferences by heuristic search, in: Proceedings 6CAPS Booklet
on the Fifth International Planning Competition, 2006.

[3] J. Benton, M. B. Do, S. Kambhampati, Over-subscriptitemping with nu-
meric goals, in: Proceedings of IJCAI, 2005, pp. 1207-1213.

[4] J. Benton, S. Kambhampati, M. Do, YochanPS: PDDL3 simpleferences
as partial satisfaction planning, in: Proceedings of th&RS Booklet on the
Fifth International Planning Competition, 2006.

[5] J. Benton, M. van den Briel, S. Kambhampati, A hybrid An@rogramming

52

and relaxed plan heuristic for partial satisfaction plagrproblems, in: Pro-
ceedings of ICAPS, 2007.

[6] M. Bienvenu, C. Fritz, S. Mcllraith, Planning with qudtive temporal pref-
erences, in: Proceedings of KR-06, 2006.

[7] B.Bonet, L. G., H. Geffner, A robust and fast action sétwtmechanism for
planning, in: Proceedings of AAAI-97, 1997.

[8] B.Bonet, H. Geffner, Heuristics for planning with petie$ and rewards using
compiled knowledge, in: Proceedings of KR-06, 2006.

[9] C. Boudtilier, T. Dean, S. Hanks, Decision-theoreticrpiang: Structural as-
sumptions and computational leverage, Journal of Artificigelligence Re-
search 11 (1999) 1-91.

[10] R. I. Brafman, Y. Chernyavsky, Planning with goal preigeces and con-
straints, in: Proceeding of ICAPS-05, 2005.

[11] P. Dasgupta, A. Sen, S. Nandy, B. Bhattacharya, Seagatetworks with un-
restricted edge costs, IEEE Transactions on Systems, MdrCgbernetics.

[12] M. B. Do, J. Benton, S. Kambhampati, M. van den Briel, Hstic planning
with utility dependencies, in: Proceedings of I[JCAI-07020

[13] M. B. Do, S. Kambhampati, Sapa: a multi-objective neeteamporal planer,
Journal of Atrtificial Intelligence Research 20 (2002) 1584-1

[14] M. B. Do, S. Kambhampati, Improving the temporal flekilyi of position
constrained me tric temporal plans, in: Proc. of ICAPS-T®3

[15] M. B. Do, S. Kambhampati, Partial satisfaction (ovabscription) planning
as heuristic search, in: Proceedings of KBCS-04, 2004.

[16] M. B. Do, T. Zimmerman, S. Kambhampati, Planning andesithing with
over-subscribed resources, preferences, and soft conistia: Tutorial given
at AAAI-07, 2007.

[17] S. Edelkamp, Optimal symbolic pddI3 planning with mipsd, in: Proceed-
ings of the ICAPS Booklet on the Fifth International Plargnidompetition,
2006.

[18] S. Edelkamp, S. Jabbar, M. Nazih, Large-scale optimddl® planning with
mips-xxl, in: Proceedings of the ICAPS Booklet on the Fiftlielrnational
Planning Competition, 2006.

[19] E. Fink, Q. Yang, A spectrum of plan justifications, imoPeedings of the
AAAI 1993 Spring Symposium, 1993, pp. 23-33.

[20] J. Frank, A. Jonsson, R. Morris, D. Smith, Planning actiesluling for fleets
of earth observing satellites, in: Proceedings of Sixth&ymp. on Artificial
Intelligence, Robotics, Automation & Space, 2001.

[21] B. Gazen, C. Knoblock, Combining the expressivenesscpbp with the ef-
ficiency of graphplan, in: Fourth European Conference onrittey, 1997.

[22] A. Gerevini, B. Bonet, B. Givan, Fifth internationalgrining competition, in:
IPCO6 Booklet, 2006.

[23] A. Gerevini, D. Long, Plan constraints and preferenceBDDL3: The lan-
guage of the fifth international planning competition, Teep., University of
Brescia, Italy (August 2005).

[24] A. Gerevini, D. Long, IPC-5 website, in: http://zeusgiunibs.it/ipc-5/, 2006.

53

[25] A. Gerevini, A. Saetti, |. Serina, Planning throughdtastic local search and
temporal action graphs in Ipg, Journal of Artificial Intgdince Research 20
(2003) 239-290.

[26] E. Giunchiglia, M. Maratea, Planning as satisfiabiktjth preferences, in:
Proceedings of AAAI-07, 2007.

[27] A. Globus, J. Crawford, J. Lohn, A. Pryor, Schedulingte@abserving sateli-
ites with evolutionary algorithms, in: Proceedings of dbanf. on Space Mis-
sion Challenges for Infor. Tech., 2003.

[28] E. Hansen, R. Zhou, Anytime heuristic search, Jourmdrtficial Intelli-
gence Research 28 (2007) 267-297.

[29] M. Helmert, The Fast Downward planning system, Jouah@rtificial Intel-
ligence Research (2006) 191-246.

[30] J. Hoey, R. St-Aubin, A. Hu, C. Boutilier, Spudd: Stoslia planning using
decision diagrams, in: Proceedings of UAI-99, 1999.

[31] J. Hoffmann, B. Nebel, The FF planning system: Fast gklmeration through
heuristic search, Journal of Artificial Intelligence Resbal4 (2001) 253—
302.

[32] C.-W. Hsu, B. Wah, R. Huang, Y. Chen, New features in aggbr handling
preferences and constraints in pddI3.0, in: ProceedingsdiCAPS Booklet
on the Fifth International Planning Competition, 2006.

[33] E. Keyder, H. Geffner, Set-additive and tsp heurisfarsplanning with ac-
tion costs and soft goals, in: Proceedings of the Workshopleuristics for
Domain-Independent Planning, ICAPS-07, 2007.

[34] L. Kramer, L. Giuliano, Reasoning about and schedulinged hst observa-
tions with spike, in: Proceedings of Int. Workshop on Plaigreand Schedul-
ing for Space, 1997.

[35] L. Kramer, S. Smith, Maximizing flexibility: A retraatn heuristic for over-
subscribed scheduling problems, in: Proceedings of IJ@3AIR2003.

[36] M. Likhachev, G. Gordon, S. Thrun, Ara*: Anytime a* wifirovable bounds
on sub-optimality, in: Proceedings of NIPS-04, 2004.

[37] X. Nguyen, S. Kambhampati, R. S. Nigenda, Planning lgrap the basis to
derive heuristics for plan synthesis by state space andemgls Artificial
Intelligence 135 (1-2) (2002) 73-124.

[38] R. S. Nigenda, S. Kambhampati, Planning graph heasdor selecting ob-
jectives in over-subscription planning problems, in: Rextings of ICAPS-
05, 2005.

[39] W. Potter, J. Gasch, A photo album of earth: Schedulanmgisat 7 mission
daily activities., in: Proceedings of SpaceOp, 1998.

[40] D. E. Smith, Choosing objectives in over-subscriptodanning, in: Proceed-
ings of ICAPS-04, 2004.

[41] E. Stefan, Taming numbers and durations in the modetlchg integrated
planning system, Journal of Artificial Intelligence Res#ad0 (2003) 195—
238.

[42] S. Tran, E. Pontelli, Planning with preferences usogjd programming, The-
ory and Practice of Logic Programming 6 (5) (2006) 559—-608.

54

[43] M. van den Briel, S. Kambhampati, T. Vossen, Planninthyreferences and
trajectory constraints by integer programming., in: Peatiegs of Workshop
on Preferences and Soft Constraints at ICAPS-06, 2006.

[44] M. van den Briel, R. S. Nigenda, M. B. Do, S. Kambhamp@ffective ap-
proaches for partial satisfaction (over-subscriptio@npiing, in: Proceedings
of AAAI-04, 2004.

[45] V. Vidal, A lookahead strategy for heuristic searchnpiang, in: Proceedings
of ICAPS-04, 2004.

[46] M. Williamson, S. Hanks, Optimal planning with a goatetted utility
model, in: Proceedings of AIPS-94, 1994.

55

