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ABSTRACT

The main concern in automated planning is to construct a sequence of actions that

achieves an objective given an initial situation of the world. Planning is hard; even the

most restrictive case of automated planning, called classical planning, is PSPACE-complete

in general. Factors affecting planning complexity are large search spaces, problem decom-

position and complex action and goal interactions.

One of the most straightforward algorithms employed to solve classical planning

problems is state-space search. In this algorithm, each state is represented through a node

in a graph, and each arc in the graph corresponds to a state transition carried out by the

execution of an action from the planning domain. A plan on this representation corresponds

to a path in the graph that links the initial state of the problem to the goal state. The crux

of controlling the search involves providing a heuristic function that can estimate the relative

goodness of the states. However, extracting heuristic functions that are informative, as well

as cost effective, remains a challenging problem. Things get complicated by the fact that

subgoals comprising a state could have complex interactions. The specific contributions of

this work are:

An underlying framework based on planning graphs that provides a rich source

for extracting distance-based heuristics for disjunctive planning and regression state-space

planning.

Extensions to the heuristic framework to support the generation of parallel plans in

state-space search. The approach introduced generates parallel plans online using planning

graph heuristics, and plan compression techniques; and

The application of state-space planning to cost-based over-subscription planning

problems. This work extends planning graph heuristics to take into account real execution
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costs of actions and goal utilities, using mutex analysis to solve problems where goals have

complex interactions.

Beyond the context of planner efficiency and impressive results, this research can be

best viewed as an important step towards the generation of heuristic metrics that are infor-

mative as well as cost effective not only for state-space search but also for any other planning

framework. This work demonstrates that state-space planning is a viable alternative for

solving planning problems that originally were excluded for taking into consideration given

their combinatorial complexity.
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CHAPTER 1

Introduction

Planning in the general case can be seen as the problem of finding a sequence of

actions that achieves a given goal from an initial situation of the world [Russell and Norvig,

2003]. Planning in fully observable, deterministic, finite, static and discrete domains is called

Classical Planning [Ghallab et al., 2004; Russell and Norvig, 2003; Kambhampati et al.,

1997], and although, real world problems may be far more complex than those represented

by classical planning, it has been shown that even this restrictive class of propositional

planning problems is PSPACE-complete in general [Bylander, 1994]. Therefore, one of the

main challenges in planning is the generation of heuristic metrics that can help planning

systems to scale up to more complex planning problems and domains. Such heuristic metrics

have to be domain-independent in the absence of control knowledge in order to work across

different plan synthesis algorithms and planning domains, which increases the complexity

of finding efficient and flexible estimates.

More formally speaking, a planning problem can be seen as a three-tuple P =

(Ω, G, I), where Ω represents the set of deterministic actions instantiated from the problem

description, G is a goal state, and I is the initial state of the problem. A plan ρ can be

seen as a sequence of actions a1, a2, ..., an which, when applied to the initial state I of the
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problem, achieves the goal state G [Ghallab et al., 2004; Russell and Norvig, 2003]. Each

action ai ∈ Ω has a set of conditions that must be true for the action to be applicable, such

conditions are described in terms of a precondition list Prec(ai). The effects of the actions

Eff(ai) are described in two separate lists, an add list Add(ai) that specifies the conditions

that the action makes true, and a delete list Del(ai), which describes those conditions that

the action negates from the current state of the world.

One of the most efficient planning frameworks for solving large deterministic plan-

ning problems is state-space planning [Bonet et al., 1997; Bonet and Geffner, 1999;

Hoffmann and Nebel, 2001; Do and Kambhampati, 2001; Nguyen et al., 2002; Gerevini

and Serina, 2002], which explicitly searches in the space of world states using heuristics

to evaluate the goodness of them. The heuristic can be seen as estimating the num-

ber of actions required to reach a state, either from the goal G or the initial state I.

The main challenge of course is to design such heuristic function h that will rank the

states during search. Heuristic functions should be as informative as possible, as well

as cheap to compute. However, finding the correct trade-off could be as hard as solv-

ing the original problem [Ghallab et al., 2004]. Things get complicated by the fact that

subgoals comprising a goal state could have complex interactions. There are two kinds

of interactions among subgoals, negative and positive [Nguyen et al., 2002]. Negative in-

teractions happen when the achievement of a subgoal precludes the achievement of an-

other subgoal. Ignoring this type of interaction would normally underestimate the cost of

achievement. Positive interactions occur when the achievement of a subgoal reduces the

cost of achieving another one. Ignoring positive interactions would overestimate the cost

returned by the heuristic, making it inadmissible. In consequence, heuristics that make
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strong assumptions (relaxations) about the independence of subgoals, often perform badly

in complex problems. In fact, taking into account such interactions to compute admissible

heuristics in state-space planning remains a challenging problem [Bonet and Geffner, 1999;

Nguyen et al., 2002].

This dissertation presents our work on heuristic planning. More specifically, our

research demonstrates the scalability of state-space planning techniques in problems where

their combinatorial complexity previously excluded state-space search for taking it into

consideration (e.g., parallel planning, over-subscription planning). The main contribution

of our work is the introduction of a flexible and effective heuristic framework that carefully

takes into account complex subgoals interactions, producing more informative heuristic

estimates. Our approach, based on planning graphs [Blum and Furst, 1997], computes

approximate reachability estimates to guide the search during planning. Furthermore, as

we will discuss later, our heuristic framework is flexible enough to be applied to any plan

synthesis algorithm.

This work will show first that the planning graph data structure of Graphplan is

an effective medium to automatically extract reachability information for any planning

problem. It will show then how to use such reachability information to develop distance-

based heuristics directly in the context of Graphplan. After that, this research will show that

planning graphs are also a rich source for deriving effective and efficient heuristics, more

sensitive to subgoals interactions, for controlling state-space search. In addition to this,

methods based on planning graphs to control the cost of computing the heuristics and limit

the branching factor of the search are also introduced. Extensions to our heuristic framework

are made to support the generation of parallel plans in state-space search [Sanchez and
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Kambhampati, 2003a]. Our approach generates parallel plans online using distance-based

heuristics, and improves even further the quality of the solutions returned by using a plan

compression algorithm.

Finally, we will also show the applicability of our heuristic framework to cost-based

sensitive problems. More specifically, we will address the application of heuristic state-space

planning to partial satisfaction (over-subscription) planning problems. Over-subscribed

problems are those in which there are many more objectives than the agent can satisfy

given its resource limitations, constraints or goal interactions. Our approach introduces a

greedy algorithm to solve cost-sensitive partial satisfaction planning problems in the context

of state-space search, using mutex analysis to solve over-subscribed problems where goals

have complex interactions. We will present extensive empirical evaluation of the application

of our planning graph based techniques across different domains and problems.

Beyond the context of planner efficiency, and impressive results, our current work

can be best viewed as an important step towards the generation of heuristic metrics that

are informative as well as cost effective not only for state-space search but also for any other

planning framework. This work demonstrates then that planning graph based heuristics are

highly flexible, and successful for scaling up plan synthesis algorithms.

The remainder of this chapter highlights our specific research contributions and the

overall organization of this dissertation.

.
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1.1. Specific Research Contributions

The contributions of this dissertation can be divided in two major directions. In

the first one, we demonstrate that the planning graph data structure from Graphplan is

a rich source for extracting very effective heuristics, as well as important related infor-

mation to control the cost of computing such heuristics and limit the branching factor of

the search. Specifically, we will show the effectiveness of such heuristics in the context

of regression state-space search by introducing two efficient planners that use them, Al-

tAlt and AltAltp.1 Part of AltAlt’s work has been presented at KBCS-2000 [Sanchez et

al., 2000], and has been also published by the Journal of Artificial Intelligence [Nguyen et

al., 2002]. AltAltp’s work has been presented at IJCAI-2003 [Sanchez and Kambhampati,

2003b], and it has been published by the Journal of Artificial Intelligence Research [Sanchez

and Kambhampati, 2003a]. The reachability information from the planning graph has also

been applied to the backward search of Graphplan itself. This work has been presented at

AIPS-2000 [Kambhampati and Sanchez, 2000].

In the second direction, we will show that state-space planning can be successfully

applied to more complex planning scenarios by adapting our heuristic framework. We will

introduce a greedy state-space search algorithm to solve Partial Satisfaction Cost-sensitive

(Over-subscription) problems. This time, our heuristic framework is extended to cope

with cost sensitive information. This work has developed two planning systems AltAltps

and AltWlt that solve over-subscription planning with respect to the PSP Net Benefit

1Preliminary work on AltAlt was presented by Xuanlong Nguyen at AAAI-2000 [Nguyen and Kambham-
pati, 2000].
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problem. 2 The work on AltAltps has been presented in WIPIS-2004 [van den Briel et al.,

2004b] and in AAAI-2004 [van den Briel et al., 2004a]. Extensions to AltAltps to handle

complex goal interactions and multiple goal selection was presented at ICAPS-2005 [Sanchez

and Kambhampati, 2005].

1.2. Thesis Organization

The next Chapter presents a brief background on automated planning and its rep-

resentation. We provide a description of classical planning, the specific planning substrate

that this dissertation mostly deals with. We also introduce state-space plan synthesis algo-

rithms, highlighting the need for heuristic support in planning.

In Chapter 3, we introduce the notion of distance-based heuristics in Graphplan.

We show how these estimations can naturally be extracted from planning graphs, and use

them to guide Graphplan’s own backward search. Then, we explain how we can further

extract more aggressive planning graph heuristics and apply them to drive regression state-

space search. We also show that planning graphs themselves are an effective medium for

controlling the cost of computing the heuristics and reducing the branching factor of the

search.

Next Chapter, we demonstrate the applicability of state-space search to parallel

planning by extending our heuristic framework. Our approach is sophisticated in the sense

that parallelizes partial plans online using planning graph estimations. Our empirical eval-

2Curious readers may advance to Chapter 5 for a description of PSP Net Benefit.



7

uation shows that our approach is an attractive tradeoff between quality and efficiency in

the generation of parallel plans.

Finally, Chapter 5 exposes state-space planning to Partial Satisfaction prob-

lems [Haddawy and Hanks, 1993], where the planning graph heuristics are adjusted to take

into account real execution costs of actions and goal utilities. This chapter also presents

techniques to account for complex goal interactions using mutex analysis from the planning

graph. Chapter 6 discusses related work, and Chapter 7 summarizes the contributions of

this dissertation and future directions.



CHAPTER 2

Background on Planning and State-space Search

Automated planning can be seen as the process of synthesizing goal-directed behav-

ior. In other words, planning is the problem of finding a course of actions that deliberatively

transforms the environment of an intelligent agent in order to achieve some predefined ob-

jectives. Automated planning not only involves action selection, but also action sequencing,

entailing during this process rational behavior. Therefore, one of the main motivations be-

hind automated planning is the design and development of autonomous intelligent agents

that can interact with humans [Ghallab et al., 2004].

There are many forms of planning given that there are many different problems in

which planning could be applied. In consequence, planning problems could be addressed us-

ing domain-specific approaches, in which each problem gets solved using a specific set of tech-

niques and control knowledge related to it. However, domain-specific planning techniques

are hard to evaluate and develop given that they are specific to a unique agent structure,

and in consequence, their applicability is very limited. For all these reasons, unless stated

otherwise, this dissertation is concerned in developing domain-independent planning tools

that can be applicable to a more general range of planning problems. Domain-independent

planners take as input an abstract general model of actions, and a problem definition, pro-
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ducing a solution plan. Depending of the problem, a solution plan could be sets of actions

sequences, policies, action trees, task networks, variable assignments, etc.

Planning is hard, some of the main factors that increase planning complexity are

large search spaces, lack of heuristic guidance, problem decomposition and complex goal and

action interactions. However, plan synthesis algorithms have advanced enough to be useful

in a variety of applications. Including among these NASA space applications [RAX, 2000;

Jonsson et al., 2000; Ai-Chang et al., 2004], aviation (e.g, flight planning software), DoD

applications (e.g, mission planning), planning with workflows [Srivastava and Koehler,

2004], planning and scheduling integration [Kramer and Giuliano, 1997; Frank et al., 2001;

Smith et al., 2000; 1996; Chien et al., 2000], grid computing [Blythe et al., 2003], auto-

nomic computing [Ranganathan and Campbell, 2004; Srivastava and Kambhampati, 2005],

logistics applications and supply chain management (e.g. transportation, deployment, etc),

data analysis, process planning, factory automation, etc.

The success of plan synthesis algorithms in the last few years is mainly due to the

development of efficient and effective heuristics extracted automatically from the problem

representation, which help planning systems to improve their search control. The primary

goal of this dissertation is to show the impact of our work on this planning revolution by

demonstrating empirically and theoretically that state-space planning algorithms can scale

up to complex problems, when augmented with efficient and effective heuristics. Planning

graphs provide rich reachability information that can be used to derive estimates that can

be used across different planning problems.

The rest of this Chapter is organized as follows, in the next Section a brief back-

ground on the many complexities of planning is provided, putting special emphasis on the
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substrate of planning that this research mostly deals with (i.e., classical planning) and its

representation. After that, state-space plan synthesis algorithms are presented, highlighting

their need for heuristic support in order to scale up to complex planning problems.

2.1. The Classical Planning Problem

The planning problem involves manipulation of the agent’s environment in an in-

telligent way in order to achieve a desired outcome. Under this scenario, the complex-

ity of plan synthesis is directly linked to the capabilities of the agent and the restric-

tions on the environment. This dissertation considers only environments that are fully

observable, static, propositional, finite and in which the agent’s execution of actions

are instantaneous (discrete) and deterministic. Plan synthesis under these conditions is

known as the classical planning problem [Russell and Norvig, 2003; Ghallab et al., 2004;

Kambhampati, 1997], see Figure 1 reproduced from [Kambhampati, 2004]:

• Fully observable: the environment is fully observable if the agent has complete and

perfect knowledge to identify in which state of the world it is.

• Static: The environment is static if only responds to the agent’s changes.

• Propositional: Planning states are represented with boolean state variables.

• Finite: The whole planning problem can be represented with a finite number of states.

• Deterministic: Each possible action of the agent, when applicable to a single state,

leads to a well defined other single state.
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Figure 1. Planning substrates

• Instantaneous (Discrete): Agent’s actions do not have durations. They are instanta-

neous state transitions.

Although, classical planning appears to be restrictive for more real world prob-

lems, it is still computationally very hard, PSPACE-complete or worse [Erol et al., 1995;

Bylander, 1994; Ghallab et al., 2004]. We can see in Figure 1 some of these planning en-

vironments. Notice that a particular extension over instantaneous actions is when actions

have durations, but still the planning problem could remain classical (if the environment

is static, deterministic and fully observable). Some adaptations of the heuristics estimates

discussed in this research have been implemented to cope with these types of problems [Do

and Kambhampati, 2003; Bryce and Kambhampati, 2004].
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2.2. Plan Representation

The classical planning problem involves selection of actions as well as sequencing

decisions to change the environment of the agent. Therefore, one way of representing the

classical planning problem is to use general models that reflect the nature of dynamic

systems. One such a model is a state-transition system [Dean and Wellman, 1991; Ghallab

et al., 2004]. A state-transition planning system can be seen as a 3-tuple Υ = (S, A, γ),

where:

• S is a finite set of states;

• A is a finite set of deterministic actions; and

• γ is ternary relation in terms of S x A x S, which represents the state-transition

function showing that there is a transition from state si to state sj with action ak.

A state-transition system Υ can be seen as a directed graph, where the states S

correspond to nodes in the graph, and actions in A correspond to the arcs in the graph,

labeling the transitions between the nodes. Under this representation, finding a plan in

deterministic environments is equivalent to finding paths in the graph corresponding to the

transition system. Transition system models are commonly called “explicit” models because

they explicit enumerate the set of all possible states and transitions. Unfortunately, such

description is impossible in large and complex planning problems. In general, factored

models are needed, in which the planning problem is more compactly represented, and in

which states and their transitions are computed on-the-fly. One of such representations
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is based on State-variable models. Next subsection introduces one model based on binary

state-variables, which constitutes the most known representation for classical planning.

2.2.1. Binary State-variable Model. One of the most known representations for

classical planning is the Binary State-variable model. On this model, states of the world are

represented by binary state-variables. In other words, each state is a conjunction of logical

atoms (propositional literals) that can take true or false values. Under this representation,

actions are modeled as planning operators that change the truth values of the state literals,

they are in fact considered as state transformation functions. For the purposes of this work,

literals are completely ground and function free.

Most work in classical planning has followed the state-variable model using the

STRIPS representation [Fikes and Nilsson, 1971; Lifschitz, 1986]. In STRIPS, a planning

state is conformed of a conjunction of positive literals. For simplicity, we consider the

closed-world assumption [Russell and Norvig, 2003], meaning that any literals that are not

present in a particular state have false values. A planning problem using STRIPS is then

specified by:

• A complete initial state,

• A partially specified goal state, in which non-goal literals are not specified; and

• A set of ground actions. Each action is represented in terms of its preconditions,

which consist of a set of conditions (literals) that need to be true in the state for the

action to be executed; and a set of effects (positive as well as negative) that describes

how the state changes when the action gets executed.
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Figure 2. Rover planning problem

The most accepted standard language to represent planning problems inspired by

the STRIPS representation is PDDL [Committee, 1998]. 1 In PDDL, planning problems

are usually described using two components. The first component describes the literals that

conform the planning domain, their types, any relations among them, and their values. It

also describes the literals that conform the initial state of the problem as well as the top

level goal state. The second component is an operator file that describes the skeleton for

the actions in terms of their parameters, preconditions, and effects. We can see in Figure 2

a problem from the Rover domain [Long and Fox, 2003], and in Example 2.2.1 a description

of it using the PDDL language.

Example 2.2.1

Suppose that we want to formulate a rover planning problem in which there are three

locations or waypoints (wp0, wp1, wp2), one rover (rover0), one store (store0), and one

lander (general). There are two types of samples (i.e., rock and soil). The problem is

to travel across different waypoints to collect the samples and send the data back to the

1The Planning Domain Definition Language
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lander. We can see in Figure 2 that there are only three samples to collect, two in waypoint

one, and one in waypoint two. For this problem, we have the following PDDL description:

Rover problem.pddl

(define (problem roverExample) (:domain Rover)

(:objects general rover0 store0

wp0 wp1 wp2)

(:init

(visible wp0 wp1)

(visible wp1 wp0)

(visible wp0 wp2)

(visible wp2 wp0)

(visible wp1 wp2)

(visible wp2 wp1)

(rover rover0) (store store0) (lander general)

(waypoint wp0) (waypoint wp1) (waypoint wp2)

(atsoilsample wp1)

(atrocksample wp1) (atrocksample wp2)

(channelfree general) (at general wp0)

(at rover0 wp0) (available rover0)

(storeof store0 rover0) (empty store0)

(equippedforsoilanalysis rover0) (equippedforrockanalysis rover0)

(cantraverse rover0 wp0 wp1)

(cantraverse rover0 wp0 wp2)

(cantraverse rover0 wp2 wp1))

(:goal (and

(communicatedsoildata wp1)

(communicatedrockdata wp1)

(communicatedrockdata wp2))))

end Problem definition;

The second component is the domain file, which describes the operators that are

applicable in the planning problem. This file describes basically the dynamics of the plan-

ning domain by specifying the literals that each operator requires, and also those that they

affect. Here is a partial example on the rover domain:
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Rover Domain.pddl

(:requirements :strips)

(:predicates (at ?x ?y) ...)

(:action navigate

:parameters ( ?x ?y ?z)

:precondition

(and (rover ?x) (waypoint ?y) (waypoint ?z)(at ?x ?y)

(cantraverse ?x ?y ?z) (available ?x)(visible ?y ?z))

:effect

(and (not (at ?x ?y)) (at ?x ?z)))

(:action samplesoil

:parameters ( ?x ?s ?p)

:precondition

(and (rover ?x) (store ?s) (waypoint ?p)

(at ?x ?p) (atsoilsample ?p) (empty ?s)

(equippedforsoilanalysis ?x) (storeof ?s ?x))

:effect

(and (not (empty ?s)) (not (atsoilsample ?p))

(full ?s) (havesoilanalysis ?x ?p)))

(:action communicatesoildata

:parameters (?r ?l ?p ?x ?y)

:precondition

(and (rover ?x) (lander ?l) (waypoint ?p) (waypoint ?x)

(waypoint ?y) (at ?r ?x) (at ?l ?y) (havesoilanalysis ?r ?p)

(visible ?x ?y) (available ?r) (channelfree ?l))

:effect

(communicatedsoildata ?p))

(:action drop

:parameters ( ?x ?y)

:precondition

(and (rover ?x) (store ?y) (storeof ?y ?x) (full ?y))

:effect

(and (not (full ?y)) (empty ?y)))

end Domain definition;

Once we have the domain and problem description in PDDL, they are used to com-

pute the set of ground actions that the planner manipulates in order to find a solution to

the problem. This step during the planning process is commonly called plan synthesis, and

there are a variety of planning algorithms that perform it. In the next Section, we briefly
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discusses some of the most popular algorithms, putting special emphasis on state-space

search algorithms, in which our planning solutions are based.

2.3. Heuristic State-space Plan Synthesis Algorithms

Algorithms that search on the space of world states are maybe the most straightfor-

ward algorithms used to solve classical planning problems. In these algorithms, each state of

the world is represented through a node in a graph structure, and each arc in the graph corre-

sponds to a state transition carried out by the execution of a single action from the planning

domain. In consequence, in state-space planning each state is represented as a set of propo-

sitions (or subgoals). A plan on this representation would correspond to a path in the graph

that links the initial state of the problem to the goal state. We can see in Figure 3 a sub-

set of the search space unfolded from the initial state specified in Figure 2, and described

by Example 2.2.1. Notice that the initial and goal states are pointed out in the figure,

and specified by S0 = {at(rover0,wp0), atrocksample(wp1), atsoilsample(wp1),

atrocksample(wp2), at(general,wp0),...}, and G = {communicatedsoildata(wp1),

communicatedrockdata(wp1), communicatedrockdata(wp2)}.

As mentioned before, a planning problem in state-space gets also represented as a

three-tuple P = (Ω, G, S0). We are given a complete initial state S0, a goal state G that

could be partially specified, and a set of deterministic actions Ω which are modeled as

state transformation functions. As mentioned earlier, each action a ∈ Ω has a precondition

list, add list and delete list (effects), denoted by Prec(a), Add(a), and Del(a), respectively.

The planning problem is concerned with finding a plan ρ, e.g a totally ordered sequence
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Figure 3. Partial rover state-space
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Algorithm ForwardSearch(S0, G,Ω)

S ← S0

ρ← ∅

loop

if(G ⊆ S) return ρ

Q← {a|a ∈ Ω, and applicable in S}

if(Q = ∅) return Failure

nondeterministally choose a ∈ Q

S ← Progress(S, a)

ρ← ρ.a

End ForwardSearch;

Figure 4. Forward-search algorithm

of actions in Ω,2 that when applied to the initial state S0 (and executed) will achieve the

goal G. Given the representation of the planning problem, there are two obvious ways of

implementing state-space planning. Forward-search and Backward-search.

2.3.1. Forward-search. Starts from the initial state S0, trying to find a state S′

that satisfies the top level goals G. In Forward search, we progress the state space through

the application of actions. An action a is said to be applicable to state S if Prec(a) ⊆ S.

The result of progressing an action a over S is defined using the following progression

function:

Progress(S, a) := (S ∪Add(a)) \Del(a) (2.1)

The states produced by the progression function 2.1 are consistent and complete

given that the initial state S0 is completely specified. However, heuristics have to be re-

computed at every new state during search, which could be very expensive. We can see in

Figure 4 a description of the Forward-search algorithm. It takes as input a planning prob-

2We will relax this restriction later in Chapter 4 when we consider parallel state-space planning.
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lem P = (S0, G, Ω) specified in terms of the initial and goal states, and the set of actions in

the domain [Ghallab et al., 2004]. The algorithm returns a plan ρ if there is a solution, or

failure otherwise. The nondeterministic choice of the next state to progress in the algorithm

is usually manipulated heuristically. Otherwise, it would be impossible to search the large

state-space of complex planning problems. In progression, the heuristic function h over a

state S is the cost estimate of a plan that achieves G from that state. We could check

correctness of a plan ρ by progressing the initial state S0 through the sequence of actions

a ∈ ρ, checking that G is present in the final state of the sequence. The Forward-search

classical planning algorithm is sound and complete [Ghallab et al., 2004]

Example 2.3.1

As an example of how the Forward-search algorithms works, consider the

initial state S0 shown in Figure 2, and the domain description intro-

duced in our last example. It can be seen that the partial action se-

quence ρ = { navigate(rover0,wp0,wp2), samplerock(rover0,store0,wp2),

communicaterockdata(rover0,general,wp2,wp2,wp0) }, produces the resulting

state S′ = { at(rover0,wp2), full(store0), haverockanalysis(rover0,wp2),

communicatedrockdata(wp2) } if executed from S0, constituting the path represented in

the partial graph shown in Figure 5.

2.3.2. Backward-search. Although the Forward-search algorithm generates only

consistent states, the branching factor of its search can be quite large. The main reason for

this is that at each iteration the algorithm progresses all the actions in the domain that are
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Figure 5. Execution of partial plan found by Forward-search
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applicable to the current state. The problem is that many of these actions may not be even

relevant for achieving our goals, this is called the irrelevant action problem [Russell and

Norvig, 2003]. On the other hand, the Backward-search algorithm considers only relevant

actions to the current subgoal, making the search more goal oriented. An action is said

to be relevant to a current state, if it achieves at least one of the literals (subgoals) in it.

The idea with Backward-search is to start from the top-level goal definition, and apply

inverses of actions to produce pre-conditions. The algorithm stops when our current state

is subsumed by the initial state. More formally speaking, in backward state-space search,

an action a is said to be regressable to state S if:

• Action is relevant, Add(a) ∩ S 6= ∅, and;

• it is consistent, Del(a) ∩ S = ∅.

Then, the regression of S over an applicable action a is defined as:

Regress(S, a) := (S \Add(a)) ∪ Prec(a) (2.2)

The result of regressing a state S over an action a represents basically the set of goals

that still need to be achieved before the application of a, such that everything in S would

have been achieved once a is applied. We can see the overall description of the Backward

state-space search algorithm in Figure 6. The Backward-search algorithm is also sound and

complete [Pednault, 1987; Weld, 1994].

Even though the branching factor of Backward-search gets reduced to the application

of relevant actions, it can still be large. Moreover, Backward-search works on states that



23

Algorithm BackwardSearch(S0, G,Ω)

S ← G

ρ← ∅

loop

if(S ⊆ S0) return ρ

Q← {a|a ∈ Ω, and regressable in S}

if(Q = ∅) return Failure

nondeterministally choose a ∈ Q

S ← Regress(S, a)

ρ← a . ρ

End BackwardSearch;

Figure 6. Backward-search algorithm

are partially specified, producing more spurious states. Therefore, heuristic estimates are

also needed to speed up search. In regression, heuristic functions are computed only once

from the single initial state, representing the cost estimate of a plan that achieves a fringe

state S from the initial state S0.

2.4. Heuristic Support for State-space Planning

The efficiency and quality of state-space planners depend critically on the informed-

ness and admissibility of their heuristic estimators. The difficulty of achieving the desired

level of informedness and admissibility of the heuristic estimates is due to the fact that

subgoals interact in complex ways. As mentioned before, there are two kinds of subgoal

interactions: negative interactions and positive interactions. Negative interactions happen

when achieving one subgoal interferes with the achievement of some other subgoal. Ignor-

ing this kind of interactions would normally underestimate the cost, making the heuristic

uninformed. Positive interactions happen when achieving one subgoal also makes it easier

to achieve other subgoals. Ignoring this kind of interactions would normally overestimate
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the cost, making the heuristic estimate inadmissible. For the rest of this section we will

demonstrate the importance of accounting for subgoal interactions in order to compute

more informed heuristic functions. We do so by examining the weakness of heuristics such

as those used by HSP-r [Bonet et al., 1997], which ignore these subgoal interactions.

The HSP-r planner is a regression state-space algorithm. The heuristic value h of a

state S is the estimated cost (number of actions) needed to achieve S from the initial state

S0. In HSP-r, the heuristic function h is computed under the assumption that the proposi-

tions constituting a state are strictly independent. Thus the cost of a state is estimated as

the sum of the cost for each individual proposition making up that state.

h(S)←
∑

p∈S

h(p) (2.3)

Where the heuristic cost h(p) of an individual proposition p is computed using an

iterative procedure that is run to fixpoint as follows. Initially, p is assigned a cost of 0 if

it is in the initial state S0, and ∞ otherwise. For each action a ∈ Ω that adds p, h(p) is

updated as:

h(p)← min{h(p), 1 + h(Prec(a))} (2.4)

The updates continue until the h values of all the individual propositions stabilize.

Because of the independence assumption, the sum heuristic turns out to be inadmissible

(overestimating) when there are positive interactions between subgoals. Sum heuristic is also

less informed (significantly underestimating) when there are negative interactions between

subgoals.
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We can follow our working example 2.3.1 to see how these limitations affect

the sum heuristic. Suppose that we want to estimate the cost of achieving the state

S = {communicatedrockdata(wp1), communicatedrockdata(wp2) } from S0. Under the

independence assumption, each proposition would require only three actions (i.e., navigate,

sample and communicate data), having an overall cost of 6 for S. However, we can easily see

for this example, that goals are negatively interacting since we can not sample two objects

unless we drop one of them, and the rover can not be at two waypoints at the same time.

Ignoring these interactions for this particular example results in underestimating the real

cost for supporting S. We can see that extracting effective heuristic estimators to guide

state-space search is a crucial task, and one of the aims of this dissertation is to provide

a flexible heuristic framework that can make state-space planning scalable to more com-

plex planning problems. The next Chapter introduces planning graphs in the context of

Graphplan [Blum and Furst, 1997], setting the basis for our work in domain-independent

heuristics.



CHAPTER 3

Planning Graphs as a Basis for Deriving Heuristics

The efficiency of most plan synthesis algorithms and their solution quality depend

highly on the informedness and admissibility of their heuristic estimators. The difficulty

to improve such estimators is due to the fact that subgoals interact in complex ways. To

make computation tractable, such heuristic estimators make strong assumptions about the

independence of subgoals, resulting that most planners often thrash badly in problems where

there are strong interactions. Furthermore, also these independence assumptions make the

heuristics inadmissible affecting solution quality.

The Graphplan algorithm is good at dealing with problems where there are a lot

of interactions between actions and subgoals providing step optimality if a solution exists.

However, its main disadvantage is its backward search, which is exponential. Having to

exhaust the whole search space up to the solution bearing level is a big source of inefficiency.

Instead, in this chapter, we provide a way of successfully extracting heuristic estimators

from Graphplan and use them to guide effectively Graphplan’s own backward search and

state-space planning.

More specifically, the planning graph data structure from Graphplan can be seen as a

compact representation of the distance metrics that estimate the cost of achieving any propo-
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sition in the planning graph from the initial state. This reachability information can then

be used to rank the subgoals and the actions being considered during Graphplan’s backward

search, improving its overall efficiency [Kambhampati and Sanchez, 2000]. Furthermore, we

will also show that these estimations can be combined to compute the cost of a specific state

by a regression planner. This will be demonstrated through AltAlt [Nguyen et al., 2002;

Sanchez et al., 2000],1 our approach that combines the advantages of Graphplan and state-

space search. AltAlt uses a Graphplan-style planner to generate a polynomial time planning

data structure, which will be used to generate effective state-space search heuristics [Nguyen

and Kambhampati, 2000; Nguyen et al., 2002]. These heuristics are then used to control

the search engine of AltAlt.

In the next sections, we introduce Graphplan and explain how distance-based heuris-

tics are generated from its planning graph data structure. We also show how these metrics

are used to improve Graphplan’s own backward search. Then, we extend our basic distance-

based metrics to state-space search. First, we discuss the architecture of our approach

AltAlt, and then we discuss the extensions to our heuristics to take into account complex

subgoal interactions. The final section presents an empirical evaluation of our heuristic

state-space planning framework.

3.1. The Graphplan Algorithm

One of the most successful algorithms implemented to solve classical planning prob-

lems is Graphplan of Blum and Furst [Blum and Furst, 1997]. The Graphplan algorithm can

1Preliminary work in AltAlt was done by Xuanlong Nguyen [Nguyen and Kambhampati, 2000].
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be understood as a “disjunctive” version of the forward state-space planners [Kambhampati

et al., 1997].

The Graphplan algorithm alternates between two phases. A forward phase where

a polynomial time data structure, called “planning graph” is incrementally expanded, and

a backward phase where such structure is searched to extract a valid plan. The planning-

graph (see Figure 7) consists of two alternating structures, called “proposition lists” and

“action lists.” Figure 7 shows a partial planning-graph structure corresponding to the rover

Example 2.2.1. We start with the initial state as the zeroth level proposition list. Given

a k level planning graph, the extension of structure to level k + 1 involves introducing all

actions whose preconditions are present in the kth level proposition list. In addition to

the actions given in the domain model, we consider a set of dummy “persist” actions (no-

ops), one for each condition in the kth level proposition list (represented as dashed lines

in Figure 7). A “noopq” action has q as its precondition and q as its effect. Once the

actions are introduced, the proposition list at level k + 1 is constructed as just the union

of the effects of all the introduced actions. Planning-graph maintains the dependency links

between the actions at level k + 1 and their preconditions in level k proposition list and

their effects in level k + 1 proposition list. The planning-graph construction also involves

computation and propagation of “mutex” constraints. The propagation starts at level 1,

with the actions that are statically interfering with each other (i.e., their preconditions and

effects are inconsistent) labeled mutex. Mutexes are then propagated from this level forward

by using two simple propagation rules.
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Figure 7. The Rover planning graph example. To avoid clutter, we do not show the no-ops and Mutexes.
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1. Two propositions at level k are marked mutex if all actions at level k that support

one proposition are mutex with all actions that support the second proposition.

2. Two actions at level k + 1 are mutex if they are statically interfering or if one of the

propositions (preconditions) supporting the first action is mutually exclusive with one

of the propositions supporting the second action.

Notice that we have not included the mutex information in the graph of Fig-

ure 7 to avoid clutter, but we can easily see that the actions navigate(rover0,Wp0,Wp2)

and navigate(rover0,Wp0,Wp1) are statically interfering, in consequence the facts

at(rover0,Wp1) and at(rover0,Wp2) are mutex because all actions supporting them are

mutex to each other. In our current example from Figure 7, the goals are first present at

level three of the graph. However, even though it has not be shown, they are all mutexes

to each other. It is not until level five in the graph when they become free mutex.

The backward phase of Graphplan involves checking to see if there is a subgraph

from a k level planning-graph that corresponds to a valid solution to the problem. This

involves starting with the propositions corresponding to goals at level k (if all the goals are

not present, or if they are present but a pair of them are marked mutually exclusive, the

search is abandoned right away, and planning-graph is grown another level). For each of the

goal propositions, we then select an action from the level k action list that supports it, such

that no two actions selected for supporting two different goals are mutually exclusive (if they

are, we backtrack and try to change the selection of actions). At this point, we recursively

call the same search process on the k − 1 level planning-graph, with the preconditions of
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the actions selected at level k as the goals for the k − 1 level search. The search succeeds

when we reach level 0 (corresponding to the initial state).

Graphplan’s backward search phase can be seen as a CSP problem. Specifically, a

dynamic constraint satisfaction problem [Mittal and Falkenhainer, 1990], where the propo-

sitions in the planning graph can be seen as CSP variables, and the actions supporting them

can be seen as their values. The constraints get specified by the mutex relations [Do and

Kambhampati, 2000; Lopez and Bacchus, 2003]. The next section introduces the notion of

reachability in the context of Graphplan itself, and show how this reachability analysis can

be used to develop distance-based estimates to improve Graphplan’s own backward search.

Following sections will demonstrate the application of domain independent planning graph

based heuristics to state-space planning.

3.2. Introducing the Notion of Heuristics and their Use in Graphplan

The plan synthesis algorithms explored in the previous chapter are effective in finding

solutions to planning problems. However, they all suffer from the combinatorial complexity

of the problems they try to solve. In consequence, one of the main directions in recent

years by the planning community has been the development of heuristic search control to

significantly scale up plan synthesis.

We can see in the descriptions of the algorithms presented in Section 2.3 that they

traverse the search space non-deterministically. In order to improve their node selection,

a function would be needed to select more deterministically those nodes that look more

promising during search from a set of candidates. Such functions are commonly called
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heuristics, and most of the times are abstract solutions to relaxed problems that are used

to prioritize our original choices during search. As we can see, the main objective of a

heuristic function is to guide the search of the problem in the most promising direction

in order to improve the overall efficiency and scalability of the system. As we saw in

Section 2.4, finding accurate heuristic estimates that take into account subgoal interactions

is very important, given that even the smaller problems could be intractable in the worst

case.

3.2.1. Distance-based Heuristics for Graphplan. As mentioned earlier, pre-

vious work has demonstrated the connections between the backward search of Graphplan

and (dynamic) CSP problems [Mittal and Falkenhainer, 1990; Kambhampati et al., 1997;

Weld et al., 1998]. More specifically, the propositions in the planning graph can be seen

as CSP variables, while the actions supporting them can be seen as their domain of val-

ues. Constraints are then represented by the mutex relations in the graph. Given these

relations, the order in which the backward search considers the (sub)goals propositions for

assignment (i.e., variable ordering heuristic), and the order in which actions are chosen to

support those (sub)goals (i.e., value ordering heuristic) can have a significant impact in

Graphplan’s performance.

Our past work from [Kambhampati and Sanchez, 2000] has demonstrated that the

traditional variable and value ordering heuristics from CSP literature do not work well in

the context of Graphplan’s backward search. We then present a family of variable and

value-ordering heuristics that are based on the difficulty of achieving a subgoal from the

initial state. The degree of difficulty of achieving a single proposition is quantified by the
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index of the earliest level of the planning graph in which that proposition first appears.

In other words, the intuition behind the distance-based heuristics is to choose goals based

on the “distance” of those goals from the initial state, where distance is interpreted as the

number of actions required to go from the initial state to the goal state. It turns out that we

can obtain the distances of various goal propositions through the planning graph structure.

The main idea is:

Propositions are ordered for assignment in decreasing value of their levels. Ac-

tions supporting a proposition are ordered for consideration in increasing value

of their costs (see below).

Where:

The level of a proposition p, lev(p) is defined as the earliest level l of the planning

graph that contains p.

These heuristics can be seen as using a “hardest to achieve goal (variable) first/easiest

to support action(value) first” idea, where hardness is measure in terms of the level of the

propositions. Consider the planning graph in Figure 7, the level of the top level goals is 3,

while the level of full(store0) is 2, and that of at(rover0,wp0) is 0. This propagation

is easy to compute in the planning graph. To support value ordering, we need to define the

cost of an action a supporting a proposition p. We have three different alternatives, all of

them based on the level information from the planning graph [Kambhampati and Sanchez,

2000]:

Mop heuristic: The cost of an action is the maximum of the cost (distance) of its pre-

conditions. For example in Figure 7 the cost of samplerock(rover0,store0,wp2) is
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1, since all of its preconditions appear at level 1. This heuristic is defined as:

CostMop(a) = maxp∈Prec(a)lev(p) (3.1)

Sum heuristic: The cost of an action is the sum of the costs of the individual propositions

making up that action’s precondition list, namely:

CostSum(a) =
∑

p∈Prec(a)

lev(p) (3.2)

Consequently, in Figure 7 the cost of samplerock(rover0,store0,wp2) would be 3.

Level heuristic: The cost of an action is the first level at which the set of its preconditions

is present in the graph without being any of them mutex with each other.2 Following

the same example from Figure 7 the cost of samplerock(rover0,store0,wp2) is 1

because its preconditions are non mutex at that level. The heuristic can be described

as:

CostLev(a) = lev(Prec(a)) (3.3)

These simple heuristics extracted from the planning graph and the notion of level

form the basis for building more powerful heuristics that will be applied to more complex

planning frameworks discussed in this dissertation.

2The Level heuristic of an action a is just the level in the planning graph where a first occurs.
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Problem Normal GP Mop GP Lev GP Sum GP Speedup
Length Time Length Time Length Time Length Time Mop Lev Sum

BW-large-A 12/12 .008 12/12 .005 12/12 .005 12/12 .006 1.6x 1.6x 1.3x
BW-large-B 18/18 .76 18/18 .13 18/18 .13 18/18 .085 5.8x 5.8x 8.9x
BW-large-C - >30 28/28 1.15 28/28 1.11 - >30 >26x >27x -

huge-fct 18/18 1.88 18/18 .012 18/18 .011 18/18 .024 156x 171x 78x
bw-prob04 - >30 8/18 5.96 8/18 8 8/19 7.25 >5x >3.7x >4.6x

Rocket-ext-a 7/30 1.51 7/27 .89 7/27 .69 7/31 .33 1.70x 2.1x 4.5x
Rocket-ext-b - >30 7/29 .003 7/29 .006 7/29 .01 10000x 5000x 3000x

Att-log-a - >30 11/56 10.21 11/56 9.9 11/56 10.66 >3x >3x >2.8x
Gripper-6 11/17 .076 11/15 .002 11/15 .003 11/17 .002 38x 25x 38x
Gripper-8 - >30 15/21 .30 15/21 .39 15/23 .32 >100x >80 >93x

Ferry41 27/27 .66 27/27 .34 27/27 .33 27/27 .35 1.94x 2x 1.8x
Ferry-5 - >30 33/31 .60 33/31 .61 33/31 .62 >50x >50x >48x
Tower-5 31/31 .67 31/31 .89 31/31 .89 31/31 .91 .75x .75x .73x

Table 1. Effectiveness of level heuristic in solution-bearing planning graphs. The columns titled Level GP, Mop GP and Sum GP differ in the
way they order actions supporting a proposition. Mop GP considers the cost of an action to be the maximum cost of any if its preconditions.
Sum GP considers the cost as the sum of the costs of the preconditions and Level GP considers the cost to be the index of the level in the
planning graph where the preconditions of the action first occur and are not pair-wise mutex.
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3.3. Evaluating the Effectiveness of Level-based Heuristics in Graphplan

We implemented the three level-based heuristics discussed in this chapter for Graph-

plan’s backward search, and evaluated their performance as compared to normal Graph-

plan. Our extensions were based on the version of Graphplan implementation bundled in

the Blackbox system [Kautz and Selman, 1999], which in turn was derived from Blum &

Furst’s original implementation [Blum and Furst, 1997]. Table 1 shows the results on some

standard benchmark problems. The columns titled “Mop GP”, “Lev GP” and “Sum GP”

correspond respectively to Graphplan armed with the CostMop, CostLev, and CostSum

heuristics for variable and value ordering. Cpu time is shown in minutes. For our Pen-

tium Linux machine with 256 Megabytes of RAM.3 The table compares the effectiveness

of standard Graphplan (with noops-first heuristic [Kambhampati and Sanchez, 2000]), and

Graphplan with our three level-based heuristics in searching the planning graph containing

minimum length solution. As can be seen, the final level search can be improved by 2 to 4

orders of magnitude with the level-based heuristics.

Empirical results demonstrate that these heuristics could speedup backward search

by several orders in solution-bearing planning graphs. Our heuristics, while quite simple,

are nevertheless significant in that previous attempts to devise effective variable ordering

techniques for Graphplan’s search have not been successful.

3For an additional set of experiments see [Kambhampati and Sanchez, 2000].
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3.4. AltAlt: Extending Planning Graph Based Heuristics to State-space

Search

As mentioned earlier, AltAlt system is based on a combination of Graphplan and

heuristic state-space search technology. The high-level architecture of AltAlt is shown in

Figure 8. The problem specification and the action template description are first fed to a

Graphplan-style planner, which constructs a planning graph for that problem in polynomial

time. We use the publicly available STAN implementation [Long and Fox, 1999] for this

purpose as it provides a highly memory efficient implementation of the planning graph

construction phase. This planning graph structure is then fed to a heuristic extractor

module that is capable of extracting a variety of effective and admissible heuristics, based

on the theory that we have developed in our work [Nguyen and Kambhampati, 2000; Nguyen

et al., 2002], and that we will discuss in the next section. This heuristic, along with the

problem specification, and the set of ground actions in the final action level of the planning

graph structure are fed to a regression state search planner. The regression planner code is

adapted from HSP-r [Bonet and Geffner, 1999].

To explain the operation of AltAlt at a more detailed level, we need to provide some

further background on its various components. We shall start with the regression search

module. As introduced in Section 3.4, regression search is the process of searching in the

space of potential plan suffixes. The suffixes are generated by starting with the goal state

and regressing it over the set of relevant action instances from the domain. The resulting

states are then (non-deterministically) regressed again over relevant action instances, and

this process is repeated until we reach a state (set of subgoals) which is satisfied by the
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Figure 8. Architecture of AltAlt

initial state. As mentioned earlier, a state S in our framework is a set of (conjunction of)

literals that can be seen as “subgoals” that need to be made true on the way to achieving

the top level goals. An action instance a is considered relevant to a state S if the effects of

a give at least one element of S and do not delete any element of S. The result of regressing

S over a is then specified by equation 2.2 from Chapter 2. Regress(S, a) represents the set

of goals that still need to be achieved before the application of a, such that everything in S

would have been achieved once a is applied. For each relevant action a, a separate search

branch is generated, with the result of regressing S over that action as the new fringe in that

branch. Search terminates with success at a node if every literal in the state corresponding

to that node is present in the initial state of the problem.

The crux of controlling the regression search involves providing a heuristic function

that can estimate the relative goodness of the states on the fringe of the current search tree

and guide the search in most promising directions. So, to guide a regression search in the

space of states, a heuristic function needs to evaluate the cost of some set S of subgoals
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(comprising a regressed state), from the initial state–in terms of the length of the plan

needed to achieve them from the initial state.

The search algorithm used in AltAlt is similar to that used in HSP-r [Bonet and

Geffner, 1999]–it is a hybrid between greedy depth first and a weighted A* search. It goes

depth-first as long as the heuristic cost of any of the children states is lower than that of

the current state. Otherwise, the algorithm resorts to a weighted A* search to select the

next node to expand. In this latter case, the evaluation function used to rank the nodes

is f(S) = g(S) + w ∗ h(S), where g(S) is the accumulated cost (number of actions when

regressing from the goal state), h(S) is the heuristic value for a given state, and w is a

weight parameter set to 5.4

We now discuss how distance-based heuristics can be computed from the planning

graphs, which, by construction, provide optimistic reachability estimates.

3.5. Extracting Effective Heuristics from the Planning Graph

Normally, the planning graph data structure supports “parallel” plans–i.e., plans

where at each step more than one action may be executed simultaneously. Since we want

the planning graph to provide heuristics to the regression search module of AltAlt, which

generates sequential solutions, we first make a modification to the algorithm so that it

generates a “serial planning graph.” A serial planning graph is a planning graph in which,

in addition to the normal mutex relations, every pair of non-noop actions at the same

level are marked mutex. These additional action mutexes propagate to give additional

4For the role of w in search see [Korf, 1993]



40

propositional mutexes. Finally, a planning graph is said to level-off when there is no

change in the action, proposition and mutex lists between two consecutive levels.

The critical asset of the planning graph, for our purposes, is the efficient marking an

propagation of mutex constraints during the expansion phase. A mutex relation is called

static (or “persistent”) if it remains a mutex up to the level where the planning graph levels

off. A mutex relation is called dynamic (or level specific) if it is not static.

Based on the above, the following properties can be easily verified:

1. The number of actions required to achieve a pair of propositions is no less than the

index of the smallest proposition level in the planning graph in which both propositions

appear without a mutex relation.

2. Any pair of propositions having a static mutex relation between them can never be

true together.

3. The set of actions present in the level where the planning graph levels off contains all

actions that are applicable to states reachable from the initial state.

These observations give a rough indication as how the information in the leveled

planning graph can be used to guide state-space search planners. The first observation

shows that the level information in the planning graph can be used to estimate the cost of

achieving a set of propositions. Furthermore, the set of dynamic propositional mutexes help

to get finer distance estimates. The second observation allows us to prove that certain world

states are unreachable from the initial state pruning the search space. The third observation

shows a way of extracting a finer (smaller) set of applicable actions to be considered by the

regression search.
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We will assume for now that given a problem, the Graphplan module of AltAlt is

used to generate and expand a serial planning graph until it levels off. (As we shall see

later, we can relax the requirement of growing the planning graph to level-off, if we can

tolerate a graded loss of informedness of heuristics derived from the planning graph.) We

will start with the notion of level of a proposition that was introduced informally before:

Definition 1 (Level). Given a proposition p, lev(p) is the index of the first level in the

leveled serial planning graph in which p first appeared.

The intuition behind this definition is that the level of a literal p in the planning

graph provides a lower bound on the number of actions required to achieve p from the initial

state. Following these observations, we can arrive to our first planning graph distance-based

heuristic [Nguyen et al., 2002; Sanchez et al., 2000]:

Heuristic 1 (Max heuristic). hmax(S) := maxp∈S lev({p})

The hmax heuristic is admissible, however, is not very informed as it grossly under-

estimates the cost of achieving a given state [Nguyen et al., 2002]. Our second heuristic

estimates the cost of a set of subgoals by adding up their levels:

Heuristic 2 (Sum heuristic). hsum(S) :=
∑

p∈S lev({p})

The sum heuristic is very similar to the greedy regression heuristic used in UN-

POP [McDermott, 1999] and the heuristic used in the HSP planner [Bonet et al., 1997].

Its main limitation is that the heuristic makes the implicit assumption that all the sub-

goals (elements of S) are independent. Sum heuristic is neither admissible nor particularly
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informed. Specifically, since subgoals can be interacting negatively (in that achieving one

winds up undoing progress made on achieving the others), the true cost of achieving a pair

of subgoals may be more than the sum of the costs of achieving them individually. This

makes the heuristic inadmissible. Similarly, since subgoals can be positively interacting in

that achieving one winds up making indirect progress towards the achievement of the other,

the true cost of achieving a set of subgoals may be lower than the sum of their individual

costs. To develop more effective heuristics, we need to consider both positive and nega-

tive interactions among subgoals in a limited fashion. We start taking into account more

interactions by considering the notion of level of a set of propositions:

Definition 2 (Set Level). Given a set S of propositions, lev(S) is the index of the first

level in the leveled serial planning graph in which all propositions in S appear and are non-

mutexed with one another (If S is a singleton p, then lev(S) = lev(p)). If no such level exists

and the planning graph has been grown to level-off then lev(S) = ∞. Or, lev(S) = l + 1,

where l is the index of the last level that the planning graph has been grown to (i.e not until

level-off).

Leading us to our next heuristic:

Heuristic 3 (Set-level heuristic). hlev(S) := lev(S)

It is easy to see that set-level heuristic is admissible. Secondly, it can be significantly

more informed than the max heuristic, because the max heuristic is only equivalent to the

level that a single proposition first comes into the planning graph. Thirdly, a by-product of

the set-level heuristic is that it is easy to compute and effective since we already have the

static and dynamic mutex information from the planning graph.
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However, Set-level heuristics is not perfect. It tends to be too conservative and often

underestimates the real cost in domains with many independent subgoals [Nguyen et al.,

2002]. To overcome these limitations, two families of heuristics have been implemented

that take into account subgoals interactions, “partition-k” heuristics and “adjusted-sum”

heuristics [Nguyen and Kambhampati, 2000; Nguyen et al., 2002].

Partition-k heuristics:

The Partition-k heuristics attempts to improve and generalize the set-level heuristic

using the sum heuristic idea. Specifically, it estimates the cost of a set in terms of the

costs of its partitions. When the subgoals are relatively independent, the summation of the

cost of each individual gives a much better estimate, whereas the graph level value of the

set tends to underestimate significantly. To avoid this problem and at the same time keep

track of the interaction between subgoals, we want to partition the set S of propositions

into subsets, each of which has k elements: S = S1 ∪ S2... ∪ Sm (if k does not divide |S|,

one subset will have less than k elements), and then apply the set-level heuristic value on

each partition. Ideally, we want a partitioning such that elements within each subset Si

may be interacting with each other, but the subsets are independent (i.e non-interacting)

of each other. By interacting we mean the two propositions form either a pair of dynamic

(level-specific) or static mutex in the planning graph. These notions are formalized by the

following definitions.

Definition 3. The (binary) interaction degree δ between two propositions p1 and p2 is

defined as: δ(p1, p2) = lev({p1, p2})−max{lev(p1), lev(p2)}.
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When p1 and p2 are dynamic mutex, δ(p1, p2) > 0 but lev({p1, p2}) <∞. When p1

and p2 are static mutex, lev({p1, p2}) = ∞. Since we only consider propositions that are

present in the planning graph, i.e max{lev(p1), lev(p2)} < ∞, it follows that δ(p1, p2) > 0

as well. When p1 and p2 are neither type of mutex, lev({p1, p2}) = max{lev(p1), lev(p2)},

thus δ(p1, p2) = 0.

Definition 4. Two propositions p and q are interacting with each other if and only if

δ(p, q) > 0. Two sets of propositions S1 and S2 are not interacting with each other if no

proposition in S1 is interacting with a proposition in S2.

Following our definitions, we are ready to state our next heuristics:

Heuristic 4 (Partition-k heuristic).

hpart−k(S) :=
∑

Si
lev(Si), where S1, ..., Sm are k-sized partitions of S.5

Adjusted-sum heuristics:

The second family of heuristics, called “adjusted sum” heuristics attempt to improve

the hsum heuristic 2 using the set-level idea 3. Specifically, it starts explicitly from the hsum

heuristic and then considers adding the positive and negative interactions among subgoals

that can be extracted from the planning graph’s level information. Since fully accounting for

either type of interaction alone can be as hard as the planning problem itself, we circumvent

this difficulty by using partial relaxation assumption on the subgoal interactions. Namely,

we ignore one type of subgoal interaction in order to account for the other, and then combine

them both together.

5For a deeper analysis on this class of heuristics see [Nguyen et al., 2002]
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We start with the assumption that all propositions are independent. Remember that

this is a property of the hsum heuristic. We assume that there are no positive interactions,

but there are negative interactions among the propositions. This can be computed using

the interaction degree among propositions in a set S, which is no more than an extension

of Definition 3.

Definition 5. The interaction degree among propositions in a set S is:

∆(S) = hlev(S)− hmax(S)

We can easily see that when there are no negative interactions among the subgoals

hlev(S) = hmax(S). So, our following heuristics gets formulated as:

Heuristic 5 (Adjusted-sum heuristic). hadjsum(S) := hsum(S) + ∆(S)

As mentioned earlier, hsum accounts for the cost of achieving S under the indepen-

dence assumption, while ∆(S) accounts for the additional cost incurred by the negative

interactions.

We can improve the heuristic estimators of hadjsum(S) by replacing its first term

with another estimate that takes into account positive interactions. This is done by another

heuristic, which we called hadjsum2M (S).

The basic idea of hAdjSum2M is to adjust the sum heuristic to take positive as well

as negative interactions into account. This heuristic approximates the cost of achieving the

subgoals in some set S as the sum of the cost of achieving S, while considering positive

interactions and ignoring negative interactions, plus the penalty for ignoring the negative
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interactions. The first component can be computed as the length of a “relaxed plan”

for supporting S, which is extracted by ignoring all the mutex relations. The relaxed

plan is computed by regressing S over an applicable action as, obtaining the state S′ =

Regress(S, as). Getting the following recurrent relation:

relaxP lan(S) = 1 + relaxP lan(S′) (3.4)

This regression accounts for the positive interactions in the state S given that by

subtracting the effects of as, any propositions that are co-achieved will not count in the cost

computation. The recursive application of the last equation is bounded by the final level

of the planning graph, and it will eventually reduce to a state S0 where each proposition

q ∈ S0 is also in the initial state I.

To approximate the penalty induced by the negative interactions alone, we proceed

to use the binary degree of interaction among any pair of propositions from Definition 3.

We want to use the δ(p, q) values to characterize the amount of negative interactions present

among the subgoals of a given set S. If all subgoals in S are pair-wise independent, clearly,

all δ values will be zero, otherwise each pair of subgoals in S will have a different value. The

largest such δ value among any pair of subgoals in S is used as a measure of the negative

interactions present in S in the heuristic hAdjSum2M . In summary, we have

Heuristic 6 (Adjusted heuristic 2M). hAdjSum2M (S) := length(relaxP lan(S)) +

maxp,q∈S δ(p, q)
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The analysis in [Nguyen and Kambhampati, 2000; Nguyen et al., 2002] shows that

this is one of the more robust heuristics in terms of both solution time and quality. This is

thus the default heuristic used in AltAlt.6

3.6. Controlling the Cost of Computing the Heuristics

Although planning graph construction is a polynomial time operation, it does lead

to a relatively high time and space consumption in many problems. The main issues are the

sheer size of the planning graph, and the cost of marking and managing mutex relations.

Fortunately, however, there are several possible ways of keeping the heuristic computation

cost in check. To begin with, one main reason for basing AltAlt on STAN rather than other

Graphplan implementations is that STAN provides a particularly compact and efficient

planning graph construction phase. In particular, as described in [Long and Fox, 1999],

STAN exploits the redundancy in the planning graph and represents it using a very compact

bi-level representation. Secondly, STAN uses efficient data structures to mark and manage

the “mutex” relations.

While the use of STAN system reduces planning graph construction costs signifi-

cantly, heuristic computation cost can still be a large fraction of the total run time. Thank-

fully, however, by trading off heuristic quality for reduced cost, we can aggressively limit

the heuristic computation costs. Specifically, in the previous section, we discussed the ex-

traction of heuristics from a full leveled planning graph. Since AltAlt does not do any

search on the planning graph directly, there is no strict need to use the full leveled graph to

6See [Nguyen et al., 2002] for an extensive presentation of these heuristics and their variations.
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preserve completeness. Informally, any subgraph of the full leveled planning graph can be

gainfully utilized as the basis for the heuristic computation. There are at least three ways

of computing a smaller subset of the leveled planning graph:

1. Grow the planning graph to some length that is less than the length where it levels

off. For example, we may grow the graph until the top level goals of the problem are

present without any of them having mutex relations.

2. Spend only limited time on marking mutexes on the planning graph.

3. Introduce only a subset of the “applicable” actions at each level of the planning graph.

For example, we can exploit the techniques such as RIFO [Kohler et al., 1997] and

identify a subset of the action instances in the domain that are likely to be “relevant”

for solving the problem.

Any combination of the above three techniques can be used to limit the space and

time resources expended on computing the planning graph. What is more, it can be shown

that the admissibility and completeness characteristics of the heuristic will remain unaf-

fected as long as we do not use the third approach. Only the informedness of the heuristic

is affected. We shall see later in this chapter that in many problems the loss of informedness

is more than offset by the improved time and space costs of the heuristic.

3.7. Limiting the Branching Factor of the Search Using Planning Graphs

The preceding chapters focused on the use of the planning graphs for computing

the heuristics in AltAlt. However, from Figure 8, we can see that the planning graph is
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also used to pick the action instances considered for expanding the regression search tree.

The advantages of using the action instances from the planning graph are that in many

domains there is a prohibitively large number of ground action instances, only a very small

subset of which are actually applicable on a given state reachable from the initial state.

Using all such ground actions in regression search can significantly increase the cost of node

expansion (and may, on occasion, lead the search down the wrong paths). In contrast, the

action instances present in the planning graph are more likely to be applicable in states

reachable from the initial state.

The simplest way of picking action instances from the planning graph is to consider

all action instances that are present in the final level of the planning graph. If the graph

has been grown to level off, it can be proved that limiting regression search to this subset

of actions is guaranteed to preserve completeness. A more aggressive selective expansion

approach, that we call PACTION, involves the following. Suppose that we are trying to expand

a state S in the regression search, then only the set of actions appearing in the action level

lev(S) (i.e., the index of the level of the planning graph at which the propositions in set S

first appear without any pair-wise mutex relations between them) is considered to regress

the state S. The intuition behind PACTION strategy is that the actions in level lev(S)

comprise the actions that are likely to achieve the subgoals of S in the most direct way

from the initial state. While this strategy may in principle result in the incompleteness

of the search (for example, some actions needed for the solution plan could appear much

later in the graph, at levels l > lev(S)), we have not yet come across a single problem

instance in which our strategy fails to find a solution that can be found considering the full
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STAN3.0 HSP-r HSP2.0 AltAlt(AdjSum2M)

Problem Time Length Time Length Time Length Time Length

gripper-15 - - 0.12 45 0.19 57 0.31 45

gripper-20 - - 0.35 57 0.43 73 0.84 57

gripper-25 - - 0.60 67 0.79 83 1.57 67

gripper-30 - - 1.07 77 1.25 93 2.83 77

tower-3 0.04 7 0.01 7 0.01 7 0.04 7

tower-5 0.21 31 5.5 31 0.04 31 0.16 31

tower-7 2.63 127 - - 0.61 127 1.37 127

tower-9 108.85 511 - - 14.86 511 48.45 511

8-puzzle1 37.40 31 34.47 45 0.64 59 0.69 31

8-puzzle2 35.92 30 6.07 52 0.55 48 0.74 30

8-puzzle3 0.63 20 164.27 24 0.34 34 0.19 20

8-puzzle4 4.88 25 1.35 26 0.46 42 0.41 24

aips-grid1 1.07 14 - - 2.19 14 0.88 14

aips-grid2 - - - - 14.06 26 95.98 34

mystery2 0.20 9 84.00 8 10.12 9 3.53 9

mystery3 0.13 4 4.74 4 2.49 4 0.26 4

mystery6 4.99 16 - - 148.94 16 62.25 16

mystery9 0.12 8 4.8 8 3.57 8 0.49 8

mprime2 0.567 13 23.32 9 20.90 9 5.79 11

mprime3 1.02 6 8.31 4 5.17 4 1.67 4

mprime4 0.83 11 33.12 8 0.92 10 1.29 11

mprime7 0.418 6 - - - - 1.32 6

mprime16 5.56 13 - - 46.58 6 4.74 9

mprime27 1.90 9 - - 45.71 7 2.67 9

Table 2. Comparing the performance of AltAlt with STAN, a state-of-the-art Graphplan

system, and HSP-r, a state-of-the-art heuristic state search planner.

set of actions. As we shall see in the next section, this strategy has significant effect on the

performance of AltAlt in some domains.

3.8. Empirical Evaluation of AltAlt

AltAlt planning system as described in the previous sections has been fully imple-

mented. Its performance on many benchmark problems, as well as the test suite used in the

AIPS-2000 planning competition, is remarkably robust. Our experiments suggest that Al-

tAlt system is competitive with some of the best systems that participated in the AIPS-2000

competition [Bacchus, 2001]. The evaluation studies presented in this section are however
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aimed at establishing two main facts: First, AltAlt convincingly outperforms both STAN

and HSP-r systems in a variety of domains. Second, AltAlt is able to reduce the cost of

its heuristic computation with very little negative impact on the quality of the solutions

produced.

Our experiments were all done on a Linux system running on a 500 mega hertz

pentium III CPU with 256 megabytes of RAM. We compared AltAlt with the latest versions

of both STAN and HSP-r system running on the same hardware. HSP2.0 [Bonet and

Geffner, 2001] is a more recent variant of the HSP-r system that opportunistically shifts

between regression search (HSP-r) and progression search (HSP). We also compare AltAlt

to HSP2.0. The problems used in our experiments come from a variety of domains, and

were derived primarily from the AIPS-2000 competition suites [Bacchus, 2001], but also

contain some other benchmark problems known in the literature. Unless noted otherwise,

in all the experiments, AltAlt was run with the heuristic hAdjSum2M , and with a planning

graph grown only until the first level where top level goals are present without being mutex

(see discussion in Section 3.6). Only the action instances present in the final level of the

planning graph are used to expand nodes in the regression search (see Section 3.7).

Table 2 shows some statistics gathered from head-on comparisons between AltAlt,

STAN, HSP-r and HSP2.0 across a variety of domains. For each system, the table gives

the time taken to produce the solution, and the length (measured in the number of actions)

of the solution produced. Dashes show problem instances that could not be solved by the

corresponding system under a time limit of 10 minutes. We note that AltAlt demonstrates

robust performance across all the domains. It decisively outperforms STAN and HSP-r in

most of the problems, easily solving those problems that are hard for STAN as well as those
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Figure 9. Results in Blocks World and Logistics from AIPS-00
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(b) Solution Quality

Figure 10. Results on trading heuristic quality for cost by extracting heuristics from partial
planning graphs.

that are hard for HSP-r. We also notice that the quality of the solutions produced by AltAlt

is as good as, or better than those produced by the other two systems in most problems.

The table also shows a comparison with HSP2.0. While HSP2.0 predictably outperforms

HSP-r, it is still dominated by AltAlt, especially in terms of solution quality.

The plots in Figure 9 compare the time performance of STAN, AltAlt, HSP-r and

HSP2.0 in specific domains. Plot (a) summarizes the problems from blocks world and

the plot (b) refers to the problems from logistics domain. We can see that AltAlt clearly

dominates STAN. It dominates HSP2.0 and HSP-r in logistics and is very competitive with

them in blocks world. Although not shown in the plots, the length of the solutions found

by AltAlt in all these domains was as good as, or better than the rest of the systems.

Cost/Quality tradeoffs in the heuristic computation: We mentioned earlier that in

all these experiments we used a partial (non-leveled) planning graph that was grown only
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until all the goals are present and are non-mutex in the final level. As the discussion in

Section 3.6 showed, deriving heuristics from such partial planning graphs trades cost of the

heuristic computation with quality. To get an idea of how much of a hit on solution quality

we are taking, we ran experiments comparing the same heuristic hAdjSum2M derived once

from full leveled planning graph, and once from the partial planning graph stopped at the

level where goals first become non-mutexed.

The plots in Figure 10 show the results of experiments with a large set of problems

from the scheduling domain [Bacchus, 2001]. Plot (a) shows the total time taken for heuristic

computation and search together, and Plot (b) compares the length of the solution found for

both strategies. We can see very clearly that if we insist on full leveled planning graph, we

are unable to solve problems beyond 81, while the heuristic derived from the partial planning

graph scales all the way to 161 problems. As expected, the time taken by the partial planning

graph strategy is significantly lower. Plot b shows that even on the problems that are solved

by both strategies, we do not incur any appreciable loss of solution quality because of the

use of partial planning graph. The few points below the diagonal correspond to the problem

instances on which the plans generated with the heuristic derived from the partial planning

graph were longer than those generated with heuristic derived from the full leveled planning

graph. This validates our contention in Section 3.6 that the heuristic computation cost can

be kept within limits without an appreciable loss in efficiency of search or the quality of the

solution. It should be mentioned here that the planning graph computation cost depends a

lot upon domains. In domains such as Towers of hanoi, where there are very few irrelevant

actions, the full and partial planning graph strategies are almost indistinguishable in terms

of cost. In contrast, domains such as grid world and scheduling world incur significantly
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higher planning graph construction costs, and thus benefit more readily by the use of partial

planning graphs.7

7For a most comprehensive set of experiments see [Nguyen et al., 2002].



CHAPTER 4

Generating Parallel Plans Online with State-space Search

We have introduced heuristic state-space search planning in the first chapters,

and we have seen that it is one of the most efficient planning frameworks for solv-

ing large deterministic planning problems [Bonet et al., 1997; Bonet and Geffner, 1999;

Bacchus, 2001]. Despite its near dominance, planners based on this framework can not

generate efficiently “parallel plans” [Haslum and Geffner, 2000]. Parallel plans allow con-

current execution of multiple actions in each time step. Such concurrency is likely to be

more important as we progress to temporal domains. While disjunctive planners such as

Graphplan [Blum and Furst, 1997] SATPLAN [Kautz and Selman, 1992] and GP-CSP [Do

and Kambhampati, 2000] seem to have no trouble generating such parallel plans, planners

that search in the space of states are overwhelmed by this task. The main reason for this

is that straightforward methods for generation of parallel plans would involve progression

or regression over sets of actions. This increases the branching factor of the search space

exponentially. Given n actions, the branching factor of a simple progression or regression

search is bounded by n, while that of progression or regression search for parallel plans will

be bounded by 2n.
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The inability of state search planners in producing parallel plans has been noted

in the literature previously. Past attempts to overcome this limitation have not been very

successful. Indeed, in [Haslum and Geffner, 2000] Haslum and Geffner consider the problem

of generating parallel plans using regression search in the space of states. They notice

that the resulting planner, HSP*p, scales significantly worse than Graphplan. In [Haslum

and Geffner, 2001], they also present TP4, which in addition to being aimed at actions

with durations, also improves the branching scheme of HSP*p, by making it incremental

along the lines of Graphplan. Empirical studies reported in [Haslum and Geffner, 2001]

however indicate that even this new approach, unfortunately, scales quite poorly compared

to Graphplan variants.

Given that the only way of generating efficiently optimal parallel plans involves using

disjunctive planners, we might want to consider ways of generating near-optimal parallel

plans using state-space search planners. An alternative, that we explore in this dissertation,

involves incremental and greedy online parallelization. Specifically, we have developed a

planner called AltAltp, which is a variant of the AltAlt planner [Nguyen et al., 2002; Sanchez

et al., 2000] that uses planning graph heuristics and a compression algorithm to generate

parallel plans. The idea is to search in the space of regression over single actions. Once

the most promising single action to regress is selected, AltAltp then attempts to parallelize

(“fatten”) the selected search branch with other independent actions. This parallelization

is done in a greedy incremental fashion based on our planning graph heuristics. Actions

are considered for addition to the current search branch based on the heuristic cost of the

subgoals they promise to achieve. The parallelization continues to the next step only if the

state resulting from the addition of the new action has a better heuristic cost. The sub-
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optimality introduced by the greedy nature of the parallelization is offset to some extent by

a plan-compression procedure called “PushUp” that tries to rearrange the evolving parallel

plans by pushing up actions to higher levels in the search branch (i.e. later stages of

execution) in the plan.

Despite the seeming simplicity of our approach, we will show that it is quite robust in

practice. In fact, our experimental comparison with five competing planners–STAN [Long

and Fox, 1999], LPG [Gerevini and Serina, 2002], Blackbox [Kautz and Selman, 1992], SAPA

[Do and Kambhampati, 2001] and TP4 [Haslum and Geffner, 2001]– shows that AltAltp is

a viable and scalable alternative for generating parallel plans in several domains. For many

problems, AltAltp is able to generate parallel plans that are close to optimal in step length.

It also seems to retain the efficiency advantages of heuristic state search over disjunctive

planners, producing plans in a fraction of the time taken by the disjunctive planners in

many cases.

In the rest of this chapter, we discuss the implementation and evaluation of our

approach to generate parallel plans with AltAltp. Section 4.1 introduces alternative ap-

proaches to generate parallel plans, including post-processing the sequential plans given as

input. Then, we present the architecture of our approach and our algorithm in Sections 4.2

and 4.3. The plan compression procedure used to improve the quality of AltAltp’s solu-

tions is described in Section 4.4. We finish this chapter with an empirical evaluation of our

system.
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4.1. Preliminaries: Alternative Approaches and the Role of Post-processing

As mentioned earlier disjunctive planners (e.g. Graphplan) do not have problems in

generating parallel plans. For example, Graphplan builds a planning graph of k − length

and starts searching for a solution in it. If there is no solution, then the graph gets expanded

one more layer. The solution extraction phase searches for a plan by considering each of

the n subgoals in turn, selecting for each of them a correspondent action. So, Graphplan

could include at most n supporting actions in a single step, allowing concurrency. The

problem with this iterative approach is that it is exponential, so we have to look into some

alternative techniques.

Another way of producing parallel plans that has been studied previously in the

literature is to post-process sequential plans. Techniques to optimize plans according to dif-

ferent criteria (e.g. execution time, quality, etc) has been done offline. The post-processing

computation of a given plan to maximize its parallelism has been discussed in [Backstrom,

1998].

Reordering and de-ordering techniques are used to maximize the parallelism of the

plan. In de-ordering techniques ordering relations can only be removed, not added. In re-

ordering, arbitrary modifications to the plan are allowed. In the general case this problem is

NP-Hard and it is difficult to approximate [Backstrom, 1998]. Furthermore, post-processing

techniques are just concerned with modifying the order between the existing actions of a

given plan, which may result in plans that are not close to optimal parallel plans if the plan

given as input does not have any concurrency flexibility.
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Figure 11. Architecture of AltAltp

.  . . .  . .

A={a1,a2,...,ap,...am}

a1 a2 ap am

SmSpS2S1

S

Figure 12. AltAltp notation

4.2. Introducing AltAltp, its Architecture and Heuristics

In order to avoid search directly in the whole space of parallel plans, AltAltp uses a

greedy depth-first approach that makes use of its heuristics to regress single actions, and

incrementally parallelizes the partial plan at each step, rearranging the partial plan later if

necessary.
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The high level architecture of AltAltp is shown in Figure 11. Notice that the heuris-

tic extraction phase of AltAltp is very similar to that of AltAlt, but with one important

modification. In contrast to AltAlt which uses a “serial” planning graph as the basis for

its heuristic (see Section 3.5), AltAltp uses the standard “parallel” planning graph. This

makes sense given that AltAltp is interested in parallel plans while AltAlt was aimed at

generating sequential plans. The regression state-space search engine for AltAltp is also

different from the search module in AltAlt. AltAltp augments the search engine of AltAlt

with (1) a fattening step and (2) a plan compression procedure (PushUp).

The general idea in AltAltp is to select a fringe action ap from among those actions A

used to regress a particular state S during any stage of the search (see Figure 12). Then, the

pivot branch given by the action ap is “fattened” by adding more actions from A, generating

a new state that is a consequence of regression over multiple parallel actions. The candidate

actions used for fattening the pivot branch must (a) come from the sibling branches of the

pivot branch, (b) be pairwise independent with all the other actions currently in the pivot

branch and (c) lead to better heuristic estimates. We use the standard definition of action

independence: two actions a1 and a2 are considered independent if the state S′ resulting

after regressing both actions simultaneously is the same as that obtained by applying a1

and a2 sequentially with any of their possible linearizations. A sufficient condition for this

is

((prec(a1) ∪ eff(a1)) ∩ (prec(a2) ∪ eff(a2))) = ∅
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We now discuss in the next sections the details of the two main phases of AltAltp

used to generate parallel plans online, the fattening procedure and the plan compression

algorithm.

4.3. Selecting and Fattening a Search Branch in AltAltp

The first step in the AltAltp search engine is to select and parallelize a branch in

the search tree. Figure 13 shows the steps of the fattening procedure. The procedure first

identifies the set of regressable actions A for the current node S, and regresses each of them

computing the new children states. Next, the action leading to the child state with the

lowest heuristic cost among the new children is selected as the pivot action ap, and the

corresponding branch becomes the pivot branch.

The heuristic cost of the states is computed with the hadjsum2M heuristic 6 from

Chapter 3, based on a “parallel” planning graph. Based on the discussion on that section,

we compute the δ(p, q) values, which in turn depend on the level(p), level(q) and level(p, q)

in terms of the levels of a parallel planning graph rather than a serial planning graph. It is

easy to show that the level of a set of conditions on the parallel planning graph will be less

than or equal to the level on the serial planning graph. The length of the relaxed plan is

still computed in terms of number of actions.

The search algorithm used in AltAltp is similar to that used in AltAlt [Nguyen et al.,

2002; Sanchez et al., 2000], which has been already introduced in Chapter 3. But this time,

we slightly modify the evaluation function used to rank the nodes (f(S) = g(S)+w ∗h(S)).

In AltAltp, g(S) is the length of the current partial plan in terms of its number of steps,
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parexpand(S)
A ← get set of applicable actions for current state S
forall ai ∈ A

Si ← Regress(S,ai)
CHILDREN(S) ← CHILDREN(S) + Si

Sp ← The state among Children(S) with minimum
hadjsum2M value
ap ← the action that regresses to Sp from S

/**Fattening process
O ← { ap }
forall g ∈ S ranked in the decreasing order of level(g)

Find an action ag ∈ A supporting g such that ag 6∈ O

and ai is pairwise independent with each action in O.
If there are multiple such actions, pick the one that has
minimum hadjsum(Regress(S, O + ag)) among all ag ∈ A

If hadjsum2M (S, O + ai) < hadjsum2M (S, O)
O ← O + ag

Spar ← Regress(S, O)
CHILDREN(S) ← CHILDREN(S) + Spar

return CHILDREN
END;

Figure 13. Node expansion procedure

where each step may have multiple concurrent actions. h(S) is our estimated cost given by

the heuristic function based on a parallel planning graph, and w remains the same.

In case of a tie in selecting the pivot branch, i.e., more than one branch leads to a

state with the lowest heuristic cost, we break the tie by choosing the action that supports

subgoals that are harder to achieve. Here, the hardness of a literal l is measured in terms

of the level in the planning graph at which l first appears. The standard rationale for

this decision (c.f. [Kambhampati and Sanchez, 2000]) is that we want to fail faster by

considering the most difficult subgoals first. We have an additional justification in our case,

we also know that a subgoal with a higher level value requires more steps and actions for

its achievement because it appeared later into the planning graph. So, by supporting it
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Figure 14. After the regression of a state, we can identify the Pivot and the related set of
pairwise independent actions.
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Figure 15. Spar is the result of incrementally fattening the Pivot branch with the pairwise
independent actions in O
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first, we may be able to achieve other easier subgoals along the way and thereby reduce the

number of parallel steps in our partial plan.

Fattening the Pivot Branch: Next the procedure needs to decide which subset O ⊆ A

of the sibling actions of the pivot action ap will be used to fatten the pivot branch. The

obvious first idea would be to fatten the pivot branch maximally by adding all pairwise

independent actions found during that search stage. The problem with this idea is that

it may add redundant and heuristically inferior actions to the branch, and satisfying their

preconditions may lead to an increase of the number of parallel steps.

So, in order to avoid fattening the pivot branch with such irrelevant actions, before

adding any action a to O, we require that the heuristic cost of the state S′ that results

from regressing S over O + a is strictly lower than that of S. This is in addition to the

requirement that a is pairwise independent with the current set of actions in O. This simple

check also ensures that we do not add more than one action for supporting the same set of

subgoals in S.

The overall procedure for fattening the pivot branch thus involves picking the next

hardest subgoal g in S (with hardness measured in terms of the level of the subgoal in the

planning graph), and finding the action ag ∈ A achieving g, which is pair-wise independent

of all actions in O and which, when added to O and used to regress S, leads to a state S′

with the lowest heuristic cost. Once found, ag is then added to O, and the procedure is

repeated. If there is more than one action that can be ag, then we break ties by considering

the degree of overlap between the preconditions of action ag and the set of actions currently

in O.
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Definition 6. The degree of precondition overlap between an action a and the set of

actions chosen O is:

|prec(a) ∩ {∪o∈Oprec(o)}|

The action a with higher degree of overlap is preferred as this will reduce the amount

of additional work we will need to do to establish its preconditions. Notice that because of

the fattening process, a search node may have multiple actions leading to it from its parent,

and multiple actions leading from it to each of its children.

Example 4.3

Figure 14 illustrates the use of this node expansion procedure for a problem from the

logistics domain [Bacchus, 2001]. In this example we have four packages pack1, pack2,

pack3 and pack4. Our goal is to place the first three of them at ASU and the remaining one

at home. There are two planes airp1 and airp2 to carry out the plans. The figure shows the

first level of the search after S has been regressed. It also shows the pivot action ap given

by unload(pack1,airp1,ASU), and a candidate set of pairwise independent actions with

respect to ap. Finally, we can see on Figure 15 the generation of the parallel branch. Notice

that each node can be seen as a partial regressed plan. As described in the paragraphs

above, only actions regressing to lower heuristics estimates are considered in apar to fatten

the pivot branch. Furthermore, we can also see that we have preferred actions using the

plane airp1, since they a higher degree of overlap with the pivot action ap.
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pushUP(S)
As ← get actions leading to S
forall a ∈ As

x ← 0
Sx ← get parent node of S

/** Getting highest ancestor for each action
Loop

Ax ← get actions leading to Sx

If (parallel(a,Ax))
x ← x + 1
Sx ← get parent node of Sx−1

Else

aj ← get action conflicting with a from Ax

If (Secondary Optimizations)
Remove a and aj from branch
Include anew if necessary

Else

Ax−1 ← Ax−1 + a

As ← As − a

break
End Loop

/**Adjusting the partial plan
Sx ← get highest ancestor x in history
createNewBranchFrom(Sx)
while x > 0

Snew ← regress Sx with Ax−1

Sx ← Snew

x ← x− 1
END;

Figure 16. PushUp procedure
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Figure 17. Rearranging of the partial plan
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4.4. Compressing Partial Plans to Improve Parallelism

The fattening procedure is greedy, since it insists that the state resulting after fatten-

ing have a strictly better heuristic value. While useful in avoiding the addition of irrelevant

actions to the plan, this procedure can also sometimes preclude actions that are ultimately

relevant but were discarded because the heuristic is not perfect. These actions may then

become part of the plan at later stages during search (i.e., earlier parts of the execution

of eventual solution plan; since we are searching in the space of plan suffixes). When this

happens, the parallel length of the solution plan is likely to be worsened, since more steps

that may be needed to support the preconditions of such actions would be forced to come at

even later stages of search (earlier parts of the plan). Had the action been allowed to come

into the partial plan earlier in the search (i.e., closer to the end of the eventual solution

plan), its preconditions could probably have been achieved in parallel to the other subgoals

in the plan, thus improving the number of steps.

In order to offset this negative effect of greediness, AltAltp re-arranges the partial

plan to promote such actions higher up the search branch (i.e., later parts of the execution

of the eventual solution plan). Specifically, before expanding a given node S, AltAltp checks

to see if any of the actions in As leading to S from its parent node (i.e., Figure 15 shows

that Apar leads to Spar) can be pushed up to higher levels in the search branch. This online

re-arrangement of the plan is done by the PushUp procedure, which is shown in Figure 16.

The PushUp procedure is called each time before a node gets expanded, and it will try to

compress the partial plan. For each of the actions a ∈ As we find the highest ancestor node

Sx of S in the search branch to which the action can be applied (i.e., it gives some literal in
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Sx without deleting any other literals in Sx, and it is pairwise independent of all the actions

Ax currently leading out of Sx, in other words the condition parallel(a, Ax) is satisfied).

Once Sx is found, a is then removed from the set of actions As leading to S and introduced

into the set of actions leading out of Sx (to its child in the current search branch). Next, the

states in the search branch below Sx are adjusted to reflect this change. The adjustment

involves recomputing the regressions of all the search nodes below Sx. At first glance, this

might seem like a transformation of questionable utility since the preconditions of a (and

their regressions) just become part of the descendants of Sx, and this does not necessarily

reduce the length of the plan. We however expect a length reduction because actions

supporting the preconditions of a will get “pushed up” eventually during later expansions.

Rather than doctor the existing branch, in the current implementation, we just add

a new branch below Sx that reflects the changes made by the PushUp procedure.1 The new

branch then becomes the active search branch, and its leaf node is expanded next.

The PushUp procedure, as described above, is not expensive as it only affects the

current search branch, and the only operations involved are recomputing the regressions

in the branch. Of course, it is possible to be more aggressive in manipulating the search

branch. For example, after applying an action a to its ancestor Sx the set of literals in

the child state, say Snew changes, and thus additional actions may become relevant for

expanding Snew. In principle, we could re-expand Snew in light of the new information. We

decided not to go with the re-expansion option, as it typically does not seem to be worth

the cost. In the next section, we do compare our default version of PushUp procedure with

1Because of the way our data structures are set up, adding a new search branch turned out to be a more
robust option than manipulating the existing one.
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a variant that re-expands all nodes in the search branch, and the results of those studies

support our decision to avoid re-expansion. Finally, although we introduced the PushUp

procedure as an add-on to the fattening step, it can also be used independent of the latter,

in which case the net effect would be an incremental parallelization of a sequential plan.

Example 4.4

In Figure 17(a), we have two actions leading to the node Spar (at depth two), these two

actions are Unload(pack4,airp2,Home) and fly(airp1,LocX,ASU). So, before expanding

Spar we check if any of the two actions leading to it can be pushed up. While the second

action is not pushable since it interacts with the actions in its ancestor node, the first

one is. We find the highest ancestor in the partial plan that interacts with our pushable

action. In our example the root node is such an ancestor. So, we insert our pushable action

Unload(pack4,airp2,Home) directly below the root node. We then re-adjust the state

Spar to Snew at depth 1, as shown in Figure 17(b) adding a new branch, and reflecting the

changes in the states below. Notice that we have not re-expanded the state Snew at depth 1,

we have only made the adjustments to the partial plan using the actions already presented

in the search trace.2

4.5. Results from Parallel Planning

We have implemented AltAltp on top of AltAlt. We have tested our implementation

on a suite of problems that were used in the 2000 and 2002 AIPS competition [Bacchus,

2Instead, the aggressive PushUp modification would expand Snew at depth 1, generating similar states
to those generated by the expansion of Spar at the same depth.
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2001; Long and Fox, 2003], as well as other benchmark problems [McDermott, 2000]. Our

experiments are broadly divided into three sets, each aimed at comparing the performance

of AltAltp under different scenarios:

1. Comparing the performance of AltAltp to other planning systems capable of producing

parallel plans.

2. Comparing our incremental parallelization technique to AltAlt + Post-Processing.

3. Ablation studies to analyze the effect of the different parts of the AltAltp approach

on its overall performance.

Our experiments were all done on a Sun Blade-100 workstation, running SunOS 5.8

with 1GB RAM. Unless noted otherwise, AltAltp was run with the hadjsum2M heuristics

described in section 3.5 of this proposal, and with a parallel planning graph grown until the

first level where the top goals are present without being mutex. All times are in seconds.

4.5.1. Comparing AltAltp with Competing Approaches. In the first set of

experiments we have compared the performance of our planner with the results obtained by

running STAN [Long and Fox, 1999], Blackbox [Kautz and Selman, 1999], TP4 [Haslum and

Geffner, 2001], LPG [Gerevini and Serina, 2002] and SAPA [Do and Kambhampati, 2001].

Unless noted otherwise, every planner has been run with its default settings. Some of the

planners could not be run in some domains due to parsing problems or memory allocation

errors. In such cases, we just omit that planner from consideration for those particular

domains.
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Figure 18. Performance on Logistics (AIPS-00)
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4.5.1.1. Planners used in the Comparison Studies. As mentioned before, STAN is an

optimized version of the Graphplan algorithm that reasons with invariants and symmetries

to reduce the size of the search space. Blackbox is also based on the Graphplan algorithm

but it works by converting planning problems specified in STRIPS [Fikes and Nilsson, 1971]

notation into boolean satisfiability problems, solving them using a SAT solver (the version

we used defaults to SATZ).3 LPG [Gerevini and Serina, 2002] was judged the best perform-

ing planner at the 3rd International Planning Competition [Long and Fox, 2003], and it is a

planner based on planning graphs and local search inspired by the Walksat approach [Kautz

and Cohen, 1994]. LPG was run with its default heuristics and settings. Since LPG em-

ploys an iterative improvement algorithm, the quality of the plans produced by it can be

improved by running it for multiple iterations (thus increasing the running time). To make

the comparisons meaningful, we decided to run LPG for two iterations (n=2), since beyond

that, the running time of LPG was generally worse than that of AltAltp. Finally, we have

also chosen two metric temporal planners, which are able to represent parallel plans because

of their representation of time and durative actions. We consider TP4 [Haslum and Geffner,

2001], and the last planner in our list is SAPA [Do and Kambhampati, 2001]. SAPA is a

powerful domain-independent heuristic forward chaining planner for metric temporal do-

mains that employs distance-based heuristics [Kambhampati and Sanchez, 2000] to control

its search.

Logistics: The plots corresponding to the Logistics domain from [Bacchus, 2001] are shown

in Figure 18. For some of the most difficult problems AltAltp outputs lower quality solutions

3We have not chosen IPP [Koehler, 1999], which is also an optimized Graphplan planning system because
results in [Haslum and Geffner, 2001] show that it is already less efficient than STAN.
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than the optimal approaches. However, only AltAltp and LPG are able to scale up to more

complex problems, and we can easily see that AltAltp provides better quality solutions than

LPG. AltAltp also seems to be more efficient than any of the other approaches. The LPG

solutions for problems 49 to 61 are obtained doing only one iteration, since LPG was not

able to complete the second iteration in a reasonable amount of time. This explains the low

time taken for LPG, but also the lower quality of its solutions.

Zeno-Travel: Only AltAltp, SAPA, and LPG are able to solve most of the problems in this

domain. AltAltp solves them very efficiently (Figure 19(b)) providing very good solution

quality (Figure 19(a)) compared to the temporal metric planners.

Summary: In summary, we note that AltAltp is second only to the Blackbox algorithm

in the problems that this optimal planner can solve in the Logistics domain. However, it

scales up along with LPG to bigger size problems, returning very good step-length quality

plans. In the ZenoTravel domain AltAltp is very efficient returning very good solutions.

TP4, the only other heuristic state-space search regression planner capable of producing

parallel plans is not able to scale up in most of the domains. SAPA, a heuristic search

progression planner, while competitive, is still outperformed by AltAltp in planning time

and solution quality.

4.5.2. Comparison to Post-Processing Approaches. As we mentioned earlier

(see Section 4.1), one way of producing parallel plans that has been studied previously in

the literature is to post-process sequential plans [Backstrom, 1998]. To compare online

parallelization to post-processing, we have implemented Backstrom’s “Minimal De-ordering

Algorithm” [Backstrom, 1998], and used it to post-process the sequential plans produced
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by AltAlt (running with its default heuristic hAdjSum2M using a serial planning graph). In

this section we will compare our online parallelization procedure to this offline method.

Figure 20 shows some experiments in the ZenoTravel domain [Long and Fox, 2003].

As expected, the original AltAlt has the longest plans since it allows only one action per

time step. The plot shows that post-processing techniques do help in reducing the makespan

of the plans generated by AltAlt. However, we also notice that AltAltp outputs plans with

better makespan than either AltAlt or AltAlt followed by post-processing. This shows that

online parallelization is a better approach than post-processing sequential plans. Moreover,

the plot in Figure 20(b) shows that the time taken by AltAltp is largely comparable to that

taken by the other two approaches. In fact, there is not much additional cost overhead in

our procedure.

4.5.3. Ablation Studies. This section attempts to analyze the impact of the dif-

ferent parts of AltAltp on its performance.

Utility of the PushUp Procedure: Figure 21 shows the effects of running AltAltp

with and without the PushUp procedure (but with the fattening procedure), as well as

running it with a more aggressive version of PushUp, which as described in Section 4.4,

re-expands all the nodes in the search branch, after an action has been pushed up. We

can see that running AltAltp with PushUp and fattening procedure is better than just the

latter. In Figure 21(b) we can see that although the PushUp procedure does not add much

overhead, the aggressive version of PushUp does get quite expensive. We also notice that

only around 20 problems are solved within time limits with aggressive PushUp. We can
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conclude then that the PushUp procedure, used to offset the greediness of the algorithm,

achieves its purpose.

Utility of basing heuristics on Parallel Planning Graphs: We can see in Figure 22(a)

that using parallel planning graph as the basis for deriving heuristic estimates in AltAltp

is a winning idea. The serial planning graph overestimates the heuristic values in terms of

steps, producing somewhat longer parallel solutions. The fact that the version using serial

planning graph runs out of time in many problems also demonstrates that the running times

are also improved by the use of parallel planning graphs.

Comparison to AltAlt: One final concern would be how much of an extra computa-

tional hit is taken by the AltAltp algorithm in serial domains (e.g. Blocks World [Bacchus,

2001]). We expect it to be negligible since O = ∅. To confirm our intuitions, we ran AltAltp

on a set of problems from the sequential Blocks-world domain from [Bacchus, 2001]. We see

from the plot 22(b) that the time performance between AltAlt and AltAltp are equivalent

for almost all of the problems.4

4For a deeper analysis and more experiments see [Sanchez and Kambhampati, 2003a].



CHAPTER 5

Planning Graph Based Heuristics for Partial Satisfaction

(Over-subscription) Planning

Most planners handle goals of attainment, where the objective is to find a se-

quence of actions that transforms a given initial state I to some goal state G, where

G = g1 ∧ g2 ∧ ... ∧ gn is a conjunctive list of goal fluents. Plan success for these plan-

ning problems is measured in terms of whether or not all the conjuncts in G are achieved.

However, in many real world planning scenarios, the agent may only be able to partially sat-

isfy G, because of subgoal interactions, or lacking of resources and time. Effective handling

of partial satisfaction planning (PSP) problems poses several new challenges, including the

problem of designing efficient goal selection heuristics, and an added emphasis on the need

to differentiate between feasible and optimal plans based on new models for handling plan

quality (in terms of action costs and goal utilities). In this chapter, We provide a first

systematic analysis of PSP problems. We will start by distinguishing several classes of PSP

problems, but focus on one of the most general PSP problems, called PSP Net Benefit.

In this problem, each goal conjunct has a fixed utility attached to it, and each ground action
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has a fixed execution cost associated with it. The objective is to find a plan with the best

“net benefit” (i.e., cumulative utility minus cumulative cost).

Despite the ubiquity of PSP problems, surprisingly little attention has been paid to

the development of effective approaches for solving them in the planning community. Earlier

work by the PYRRHUS system [Williamson and Hanks, 1994] allows for partial satisfaction

in planning problems with goal utilities. However, unlike the PSP problems discussed in this

Dissertation, PYRRHUS requires all goals to be achieved; partial satisfaction is interpreted

by using a non-increasing utility function on each of the goals. Many NASA planning prob-

lems have been identified as partial satisfaction problems [Smith, 2003]. Some preliminary

work by Smith (2004) proposed a planner for over-subscribed planning problems, in which

an abstract planning problem (i.e., the orienteering graph) is built to select the subset of

goals and orderings to achieve them. Smith (2004) speculated that the heuristic distance

estimates derived from a planning graph data structure are not particularly suitable for

PSP problems given that they make the assumption that goals are independent, without

solving the problem of interactions among them.

In this chapter, We show that in fact although planning graph estimates for PSP

problems are not very accurate in the presence of complex goal interactions, they can

also be extended to overcome such problems. In particular, We extend the reachability

analysis provided by planning graphs to compute cost-sensitive heuristics augmented with

mutex analysis to overcome over-subscribed planning problems. Our approach named Al-

tWlt [Sanchez and Kambhampati, 2005], involves a sophisticated multiple goal set selection

process augmented with mutex analysis in order to solve complex PSP problems. The

goal set selection process considers multiple combinations of goals and assigns penalty costs
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based on mutex analysis when interactions are found. Once a subset of goal conjuncts is

selected, they are solved by a regression search planner with cost-sensitive planning graph

heuristics.

The rest of this chapter is organized as follows. First, We start by describing a

spectrum of PSP problems, and focus on the PSP Net Benefit problem, where actions

have execution costs and goals have utilities. After that, We will review AltAltps [van den

Briel et al., 2004b; 2004a], our initial approach to PSP, which forms the basis for AltWlt,

emphasizing its goals set selection algorithm and cost-sensitive reachability heuristics. In the

next part of this chapter, We will introduce AltWlt, pointing out the limitations of AltAltps

with some clarifying examples, and the extensions to overcome them. After that, We will

present a set of complex PSP problems and an empirical study on them that compares the

effectiveness of AltWlt with respect to its predecessor, and another experimental PSP based

planners. Finally, We conclude this chapter with some discussion on the current state of the

art alternative approaches, including among these Sapaps [Do and Kambhampati, 2004],

another planning-graph based heuristic planner, and the optimal MDP and IP formulation

to PSP Net Benefit to assess the quality of the solutions returned by AltWlt.

5.1. Problem Definition and Complexity

The following notation will be used: F is a finite set of fluents and A is a finite set

of actions, where each action consists of a list of preconditions and a list of add and delete

effects. I ⊆ F is the set of fluents describing the initial state and G ⊆ F is the set of

goal conjuncts. Hence we define a planning problem as a tuple P = (F, A, I, G). Figure 23
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Figure 23. Hierarchical overview of several types of complete and partial satisfaction plan-
ning problems.

gives a taxonomic overview of several types of complete and partial satisfaction planning

problems. The problem of PSP Net Benefit is a combination of the problem of finding

minimum cost plans (Plan Cost) and the problem of finding plans with maximum utility

(PSP Utility), as a result is one of the most general PSP problems.1 In the following,

We formally define the problem of finding a plan with maximum net benefit:

Definition 7 (PSP Net Benefit:). Given a planning problem P = (F, A, I, G) and, for each

action a “cost” Ca ≥ 0 and, for each goal specification f ∈ G a “utility” Uf ≥ 0, and a

positive number k. Is there a finite sequence of actions ∆ = 〈a1, ..., an〉 that starting from I

leads to a state S that has net benefit
∑

f∈(S∩G) Uf -
∑

a∈∆ Ca ≥ k?

Given that Plan Existence and PSP Net Benefit are PSPACE-hard prob-

lems [van den Briel et al., 2004b; 2004a], it should be clear that the other problems given in

Figure 23 also fall in this complexity class. PSP Net Benefit does, however, foreground

1For a more comprehensive study on the complexity and taxonomy of PSP problems see [van den Briel
et al., 2004b; 2004a].
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the need to handle plan quality issues. To clarify the PSP Net Benefit problem, we

introduce the following example:

Example 5.1

Figure 24 illustrates again a small example from the rover domain [Long and Fox, 2003]

to motivate the need for partial satisfaction. 2 This time, a rover that has landed on

Mars needs to collect scientific data from some rock and soil samples. Some waypoints

have been identified on the surface. Each waypoint has scientific samples. For example,

waypoint3 has a rock sample, while waypoint4 has a soil sample. The rover needs to

travel to a corresponding waypoint to collect its samples. Each travel action has a cost

associated to it. For example, the cost of traveling from waypoint0 to waypoint1 is given

by Ctravel0,1
= 10. In addition to the travelx,y actions, we have two more actions sample

and comm to collect and communicate the data respectively to the lander. To simplify our

problem, these actions have uniform costs independent of the locations where they take

2This time the notation of the problem is more descriptive to better understand it.
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place. These costs are specified by Csampledata,x
= 5 and Ccommdata,x,y

= 4. Each sample (or

subgoal) has a utility attached to it. We have a utility of Urock3
= 30 for the rock sample

at waypoint3, and a utility Usoil4 = 20 for a soil sample at waypoint4. The goal of the

rover is to find a travel plan that achieves the best cost-utility tradeoff for collecting the

samples. In this example, the best plan is P = {travel0,2 , samplerock2,2, commrock2,2,0,

travel2,1, samplerock1,1, commrock1,1,0, samplesoil1,1, commsoil1,1,0} which achieves the goals

rock2, rock1 and soil1, and ignores the rest of the samples at waypoint3 and waypoint4

giving the net benefit 45.

As mentioned before, current planning frameworks do not address the issue of partial

satisfaction of goals, because they strictly try to satisfy a conjunction of them. However,

this all-or-nothing success criterion does not seem to be very realistic. There are problems

where satisfying at least some of the goals is better than not satisfying any of them at

all. The problem is of course to choose the goals that will be satisfied with respect to an

optimization criteria. PSP problems could be solved optimally using Integer Programming

techniques [Haddawy and Hanks, 1993]. Unfortunately, current IP planning approaches do

not scale up well to bigger sized problems [Kautz and Walser, 1999; Vossen et al., 1999;

van den Briel et al., 2004b]. In the following section, we introduce AltAltps, our preliminary

heuristic approach to Partial Satisfaction (Over-subscription) Planning. First, We describe

how the cost information is propagated in a planning graph data structure, and then how

this information is used to select the set of goals upfront and guide the search of the planner.
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5.2. Background: AltAltps Cost-based Heuristic Search and Goal Selection

In this section, We introduce AltAltps because it forms the basis for AltWlt, the

proposed algorithm that handles complex goal interactions. AltAltps is a heuristic regression

planner that can be seen as a variant of AltAlt [Sanchez et al., 2000; Nguyen et al., 2002]

equipped with cost sensitive heuristics. An obvious, if naive, way of solving the PSP Net

Benefit problem with such a planner is to consider all plans for the 2n subsets of an n-

goal problem, and see which of them will wind up leading to the plan with the highest net

benefit. Since this is infeasible, AltAltps uses a greedy approach to pick a goal subset up

front. The greediness of the approach is offset by considering the net benefit of covering

a goal not in isolation, but in the context of the potential (relaxed) plan for handling the

already selected goals. Once a subset of goal conjuncts is selected, AltAltps finds a plan

that achieves such subset using its regression search engine augmented with cost sensitive

heuristics. This description can be seen in the overall architecture of AltAltps in Figure 25.

Given that the quality of the plans for PSP problems depends on both the utility of

the goals achieved and the cost to achieve them, AltAltps needs heuristic guidance that is

sensitive to both action cost and goal utility. Because only the execution costs of the actions

and the achievement cost of propositions in the initial state (zero cost) are known, we need

to do cost-propagation from the initial state through actions to estimate the cost to achieve

other propositions, especially the top level goals. We can see in Figure 25 that AltAltps

is using the planning graph structure to compute this cost information. This information

over the planning graph is the basis for heuristic estimation in AltAltps, and is also used

to estimate the most beneficial subset of goals upfront and guide the search in the planner.
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The cost sensitive heuristics, as well as the goal set selection algorithm are described in

more detail in the next sections.

5.2.1. Propagating Cost as the Basis for Computing Heuristics. Follow-

ing [Do and Kambhampati, 2003], cost functions are used to capture the way cost of

achievement changes as the graph gets expanded. In the following, we briefly review the

procedure.

The purpose of the cost-propagation process is to build the cost functions C(f, lf )

and C(a, la) that estimate the cheapest cost to achieve fluent f at level lf of the planning

graph, and the cost to execute action a at level la. At the beginning (l = 0), let Sinit be

the initial state and Ca be the cost of action a then3: C(f, 0) = 0 if f ∈ Sinit, C(f, 0) =∞

otherwise; ∀a ∈ A : C(a, 0) =∞. The propagation rules are as follows:

3
Ca and C(a, l) are different. If a = Travel0,1 then Ca is the travel cost and C(a, l) is the cost to achieve

preconditions of a at level l, which is the cost incurred to be at waypoint0 at l.
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Figure 26. Cost function of at(waypoint1)

• C(f, l) = min{C(a, l) + Ca) : f ∈ Eff(a)}

• Max-prop: C(a, l) = max{C(f, l) : f ∈ Prec(a)}

• Sum-prop: C(a, l) = Σ{C(f, l) : f ∈ Prec(a)}

The max-propagation rule will lead to an admissible heuristic, while the sum-

propagation rule does not. Assume that we want to reach waypoint1 in our rover example.

We can reach it directly from waypoint0 within a unit of time, or we can travel through

waypoint2 and reach it within two steps. Figure 26 shows the cost function for proposition

p1 = At(waypoint1), which indicates that the earliest level to achieve p1 is at l = 1 with the

lowest cost of 10 (route: waypoint0 → waypoint1). The lowest cost to achieve p1 reduces

to 8 at l = 2 (route: waypoint0 → waypoint2 → waypoint1) for the leveled planning graph.

There are many ways to terminate the cost-propagation process [Do and Kambham-

pati, 2003]: We can stop when all the goals are achievable, when the cost of all the goals

are stabilized (i.e. guaranteed not to decrease anymore), or lookahead several steps after
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the goals are achieved. For classical planning, we can also stop propagating cost when the

graph levels-off [Nguyen et al., 2002].

5.2.2. Cost-sensitive Heuristics. Before describing the goal set selection process

of AltAltps, We introduce in this section cost-based heuristics that will help us to guide the

search of the planner once the goals have been selected. Notice that from the cost propa-

gation procedure described in the last section, we could easily derive the first heuristic for

our cost-based planning framework, computed under the assumption that the propositions

constituting a state are strictly independent. Such a heuristic is described as follows:

Sum Cost Heuristic 1. hsumC(S) =
∑

p∈S C(p, l)4

The hsumC heuristic suffers from the same problems than the hsum heuristic intro-

duced by Bonet et al.,1997. It will tend to overestimate the cost of a set of propositions.

To make the heuristic admissible we could replace the sum function with the maximum

of the individual costs of the propositions composing the state. This leads us to our next

heuristic:

Max Cost Heuristic 2. hmaxC(S) = maxp∈S C(p, l)

This heuristic also directly resembles the hmax heuristic from [Bonet et al., 1997;

Nguyen et al., 2002], but in terms of cost. We could try to combine the differential power

of hsumC and hmaxC to get a more effective heuristic for a wider range of problems [Nguyen

et al., 2002].

4Where l = levels − off .



92

Combo Cost Heuristic 3. hcomboC(S) = hsumC(S) + hmaxC(S)

We could improve further the solution quality of our heuristics if we start taking

into account the positive interactions among subgoals while still ignoring the negative ones.

We could adapt the idea of the relaxed plan heuristic from [Hoffmann and Nebel, 2001;

Nguyen and Kambhampati, 2001; Nguyen et al., 2002] into our framework. So, AltAltps uses

variations of the relaxed plan extraction process guided by the cost-functions to estimate

heuristic values h(S) [Do and Kambhampati, 2003]. The basic idea is to compute the cost

of the relaxed plans in terms of the costs of the actions comprising them, and use such costs

as heuristic estimates. The general relaxed plan extraction process for AltAltps works as

follows:

1. Start from the goal set G containing the top level goals, remove a goal g from G and

select a lowest cost action ag (indicated by C(g, l)) to support g

2. Regress G over action ag, setting G = G ∪ Prec(ag)\Eff(ag)

The process above continues recursively until each proposition q ∈ G is also in the

initial state I. This regression accounts for the positive interactions in the state G given that

by subtracting the effects of ag, any other proposition that is co-achieved when g is being

supported is not counted in the cost computation. The relaxed plan extraction procedure

indirectly extracts a sequence of actions RP , which would have achieved the set G from the

initial state I if there were no negative interactions. The summation of the costs of the

actions ag ∈ RP can be used to estimate the cost to achieve all goals in G, in summary we

have:
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Relax Cost Heuristic 4. hrelaxC(S) =
∑

a∈Rp
Ca

5.3. AltAltps Goal Set Selection Algorithm

The main idea of the goal set selection procedure in AltAltps is to incrementally

construct a new partial goal set G′ from the top level goals G such that the goals considered

for inclusion increase the final net benefit, using the goals utilities and costs of achievement.

The process is complicated by the fact that the net benefit offered by a goal g depends

on what other goals have already been selected. Specifically, while the utility of a goal g

remains constant, the expected cost of achieving it will depend upon the other selected goals

(and the actions that will anyway be needed to support them). To estimate the “residual

cost” of a goal g in the context of a set of already selected goals G′, we compute a relaxed

plan RP for supporting G′ + g, which is biased to (re)use the actions in the relaxed plan

R′
P for supporting G′.

Figure 27 gives a description of the goal set selection algorithm. The first block

of instructions before the loop initializes our goal subset G′,5 and finds an initial relaxed

plan R∗
P for it using the procedure extractRelaxedPlan(G′,∅). Notice that two arguments

are passed to the function. The first one is the current partial goal set from where the

relaxed plan will be computed. The second parameter is the current relaxed plan that

will be used as a guidance for computing the new relaxed plan. The idea is that we want

to bias the computation of the new relaxed plan to re-use the actions in the relaxed plan

from the previous iteration. Having found the initial subset G′ and its relaxed plan R∗
P , we

5getBestBenefitialGoal(G) returns the subgoal with the best benefit, Ug − C(g, l) tradeoff



94

Procedure GoalSetSelection(G)

g ← getBestBenefitialGoal(G);

if(g = NULL)

return Failure;

G′ ← {g}; G← G \ g;

R∗

P ← extractRelaxedP lan(G′, ∅)

B∗

MAX ← getUtil(G′)− getCost(R∗

P );

BMAX ← B∗

MAX

while(BMAX > 0 ∧G 6= ∅)

for(g ∈ G \G′)

GP ← G′ ∪ g;

RP ← ExtractRelaxedP lan(GP , R∗

P )

Bg ← getUtil(GP )− getCost(RP );

if(Bg > B∗

MAX)

g∗ ← g; B∗

MAX ← Bg; R∗

g ← RP ;

else

BMAX ← Bg −B∗

MAX

end for

if(g∗ 6= NULL)

G′ ← G′ ∪ g∗; G ← G \ g∗; BMAX ←

B∗

MAX ;

end while

return G′;

End GoalSetSelection;

Figure 27. Goal set selection algorithm.
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compute the current best net benefit B∗
MAX by subtracting the costs of the actions in the

relaxed plan R∗
P from the total utility of the goals in G′. B∗

MAX will work as a threshold

for our iterative procedure. In other words, we would continue adding subgoals g ∈ G to G′

only if the overall net benefit B∗
MAX increases. We consider one subgoal at a time, always

computing the benefit added by the subgoal in terms of the cost of its relaxed plan RP and

goal utility Bg. We then pick the subgoal g that maximizes the net benefit, updating the

necessary values for the next iteration. This iterative procedure stops as soon as the net

benefit does not increase, or when there are no more subgoals to add, returning the new

goal subset G′.

In our running example, the original subgoals are {g1 = soil1, g2 = rock1,

g3 = rock2, g4 = rock3, g5 = soil4}, with final costs C(g, t) = {17, 17, 14, 34, 24} and

utilities vectors U = {20, 30, 30, 30, 20} respectively, where t = leveloff in the planning

graph. Following our algorithm, our starting goal g would be g3 because it returns the

biggest benefit (e.g. 30 - 14). Then, G′ is set to g3, and its initial relaxed plan R∗
P is

computed. Assume that the initial relaxed plan found is R∗
P = {travel0,2, samplerock2

,

commrock2,2,0}. We proceed to compute the best net benefit using R∗
P , which in our exam-

ple would be B∗
MAX = 30− (5 + 5 + 4) = 16. Having found our initial values, we continue

iterating on the remaining goals G = {g1, g2, g4, g5}. On the first iteration we compute

four different set of values, they are: (i) GP1
= {g3 ∪ g1}, RP1

= {travel2,1, samplesoil1 ,

commsoil1,2,0, travel0,2, samplerock2
, commrock2,2,0}, and Bgp1

= 24; (ii) GP2
= {g3 ∪ g2},

RP2
= {travel2,1, samplerock1

, commrock1,2,0, travel0,2, samplerock2
, commrock2,2,0}, and

Bgp2
= 34; (iii) GP3

= {g3 ∪ g4}, RP3
= {travel0,3, samplerock3

, commrock3,2,0, travel0,2,

samplerock2
, commrock2,2,0}, and Bgp3

= 12, and (iv) GP4
= {g3 ∪ g5}, RP4

= {travel0,4,
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samplesoil4 , commsoil4,2,0, travel0,2, samplerock2
, commrock2,2,0} with Bgp4

= 12. Notice

then that our net benefit B∗
MAX could be improved most if we consider goal g2. So, we

update G′ = g3 ∪ g2, R∗
P = RP2

, and B∗
MAX = 34. The procedure keeps iterating until

only g4 and g5 remain, which decrease the final net benefit. The procedure returns then

G′ = {g1, g2, g3} as our goal set, which in fact it is the optimal goal set. In this example,

there is also a plan that achieves the five goals with a positive benefit, but it is not as good

as the plan that achieves the selected G′.

5.4. AltWlt: Extending AltAltps to Handle Complex Goal Scenarios

The advantage of AltAltps for solving PSP problems is that after committing to a

subset of goals, the overall problem is simplified to the planning problem of finding the

least cost plan to achieve the goal set selected, avoiding the exponential search on 2n goal

subsets. However, the goal set selection algorithm of AltAltps is greedy, and as a result it

is not immune from selecting a bad subset. The main problem with the algorithm is that

it does not consider goal interactions. Because of this limitation the algorithm may:

• return a wrong initial subgoal affecting the whole selection process, and

• select a set of subgoals that may not even be achievable due to negative interactions

among them.

The first problem corresponds to the selection of the initial subgoal g from where

the final goal set will be computed, which is one of the critical decisions of the algorithm.

Currently, the algorithm selects only the subgoal g with the highest positive net benefit.



97

Figure 28. Modified rover example with goal interactions

Although, this first assumption seems to be reasonable, there may be situations in which

starting with the most promising goal may not be the best option. Specifically, when a

large action execution cost is required upfront to support a subset of the top level goals, in

which each isolated goal component in the subset would have a very low benefit estimate

(even negative), precluding the algorithm for considering them initially, but in which the

conjunction of them could return a better quality solution. The problem is that we are

considering each goal individually in the beginning, without looking ahead into possible

combinations of goals in the heuristic computation.

Example 5.4

Consider again the modified Rover example from Figure 28. This time, we have added extra

goals, and different cost-utility metrics to our problem. Notice also that the traversal of the

paths has changed. For example, we can travel from waypoint0 to waypoint1, but we can

not do the reverse. Our top-level goals are {g1 = soil1, g2 = rock1, g3 = rock2, g4 = rock3,

g5 = soil3, g6 = rock4, g7 = soil4}, with final costs C(g, t) = {19, 19, 14, 59, 59, 29, 29}

and utilities U = {20, 30, 40, 50, 50, 20, 20} respectively. Following this example, the goal

set selection algorithm would choose goal g3 as its initial subgoal because it returns the
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highest net benefit (e.g. 40 - 14). Notice this time that considering the most promising

subgoal is not the best option. Once the rover reaches waypoint2, it can not achieve any

other subgoal. In fact, there is a plan P for this problem with a bigger net benefit that

involves going to waypoint3, and then to waypoint4 collecting their samples. Our current

goal selection algorithm can not detect P because it ignores the samples on such waypoints

given that they do not look individually better than g3 (e.g. g4 has a benefit of 50 − 59).

This problem arises because the heuristic estimates derived from our planning graph cost

propagation phase assume that the goals are independent, in other words, they may not

provide enough information if we want to achieve several consecutive goals.

The second problem about negative interactions among goals is also exhibited in the

last example. We already mentioned that if we choose g3 we can not select any other goal.

However, our goal set selection algorithm would also select g1 and g2 given that the residual

cost returned by the relaxed plan heuristic is lower than the benefit added because it ignores

the negative interactions among goals. So, our final goal set would be G = {g3, g2, g1}, which

is not even achievable. Clearly, we need to identify such goal interactions and add some

cost metric when they exist. �

We extended the goal selection algorithm in AltWlt to overcome these problems.

Specifically, this work considers multiple groups of subgoals, in which each subgoal from

the top level goal set is forced to be true in at least one of the groups, and also considers

adding penalty costs based on mutex analysis to account for complex interactions among

goals to overcome the limitations of the relaxed plan heuristic. Although these problems

could be solved independently, they can be easily combined and solved together. These

additions are discussed in the next sections.
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Procedure MGS (G)

B∗

MAX ← −∞, G∗ ← ∅

for (gi ∈ G)

GLi ← nonStaticMutex(gi, G \ gi)

Rpi ← extractGreedyRelaxedP lan(gi, ∅)

G′

i ←

greedyGoalSetSelection(gi, GLi, Rpi)

NBi ← getUtil(G′

i)− getCost(Rpi)

if(NBi > B∗

MAX)

B∗

MAX ← NBi, G∗ ← G′

i

end for

return G∗;

End MGS ;

Figure 29. Multiple goal set selection algorithm

5.4.1. Goal Set Selection with Multiple Goal Groups. The general idea be-

hind the goal set selection with multiple groups procedure is to consider each goal gi from

the top level goal set G as a feasible starting goal, such that we can be able to find what

the benefit would be if such goal gi were to be part of our final goal set selected. The

idea is to consider more aggressively multiple combinations of goals in the selection process.

Although, we relax the assumption of having a positive net benefit for our starting goals,

the approach is still greedy. It modifies the relaxed plan extraction procedure to bias not

only towards those actions found in the relaxed plan of the previous iteration, but also

towards those facts that are reflected in the history of partial states of the previous relaxed

plan computation to account for more interactions. The algorithm will stop computing a

new goal set as soon as the benefit returned decreases. The new algorithm also uses mutex

analysis to avoid computing non-achievable goal groups. The output of the algorithm is the

goal group that maximizes our net benefit. A more detailed description of the algorithm is

shown in Figure 29, and is discussed below.
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Given the set of top level goals G, the algorithm considers each goal gi ∈ G and finds

a corresponding goal subset G′
i with positive net benefit. To get such subset, the algorithm

uses a modified greedy version of our original GoalSetSelection function (from Figure 27),

in which the goal gi has been set as the initial goal for G′
i, and the initial relaxed plan Rpi

for supporting gi is passed to the function. Furthermore, the procedure only considers those

top-level goals left GLi ⊆ G which are not pair-wise static mutex with gi. The set GLi

is obtained using the procedure nonStaticMutex in the algorithm. By selecting only the

non-static mutex goals, we partially solve the problem of negative interactions, and reduce

the running time of the algorithm. However, we still need to do additional mutex analysis

to overcome complex goal interactions (e.g. dynamic mutexes); and we shall get back to

this below. At each iteration, the algorithm will output a selected goal set G′
i given gi, and

a relaxed plan Rpi supporting it.

As mentioned in the beginning of this section, the modified

extractGreedyRelaxedP lan procedure takes into account the relaxed plan from the

previous iteration (e.g. Rp∗i ) as well as its partial execution history to compute the new

relaxed plan Rpi for the current subgoal gi. The idea is to adjust the aggregated cost of the

actions C(ai, l) supporting gi, to order them for inclusion in Rpi, when their preconditions

have been accomplished by the relaxed plan Rp∗i from the previous iteration. Remember

that C(ai, l) has been computed using our cost propagation rules, we decrease this cost

when Prec(ai) ∩∃ak∈Rp∗i
Eff(ak) 6= ∅ is satisfied. In other words, if our previous relaxed

plan Rp∗i supports already some of the preconditions of ai it better be the case that such

preconditions are not being over-counted in the aggregated cost of the action ai. This

greedy modification of our relaxed plan extraction procedure biases even more to our
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previous relaxed plans, ordering differently the actions that will be used to support our

current subgoal gi. The idea is to try to adjust the heuristic positively to overcome the

independence assumption among subgoals.

For example, on Figure 28, assume that our previous relaxed plan Rp∗i has achieved

the subgoals at waypoint3, and we want to achieve subgoal gi = soil4. In order to collect

the sample, we need to be at waypoint4, the cheapest action in terms of its aggregated cost

that supports that condition is a = travel0,4 with cost of 20 which precludes gi for being

considered (no benefit added). However, notice that there is another action b = travel3,4

with original aggregated cost of 50 (due to its precondition), whose cost gets modified by

our new relaxed plan extraction procedure since its precondition (at waypoint3) is being

supported indirectly by our previous Rp∗i . By considering action b, the residual cost for

supporting soil4 lowers to 5, and as a result it can be considered for inclusion.

Finally, the algorithm will output the goal set G∗ that maximizes the net benefit

B∗
MAX among all the different goal partitions G′

i. Following Example 2 from Figure 28, we

would consider 7 goal groups having the following partitions: g1 = soil1 & GL1 = {g2},

g2 = rock1 & GL2 = {g1}, g3 = rock2 & GL3 = ∅, g4 = rock3 & GL4 = {g5, g6, g7},

g5 = soil3 & GL5 = {g4, g6, g7}, g6 = rock4 & GL6 = {g7}, g7 = soil4 & GL7 = {g6}.

The final goal set returned by the algorithm in this example is G∗ = {g4, g5, g6, g7}, which

corresponds to the fourth partition G′
4, with maximum benefit of 49. Running the original

algorithm (from Figure 27) in this example would select goal group G′
3 = {g3} with final

benefit of 26.

Even though our algorithm may look expensive since it is looking at different goal

combinations on multiple groups, it is still a greedy approximation of the full 2n combina-
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tions of an optimal approach. The reduction comes from setting up the initial subgoals at

each goal group at each iteration. The worst case scenario of our algorithm would involve

to consider problems with no interactions and high goal utility values, in which the whole

set of remaining subgoals would need to be considered at each group. Given n top level

goals leading to n goal groups, the worst case running time scenario of our approach would

be in terms of n ∗
∑n−1

i=1 i, which is much better than the factor 2n.

Notice that our multiple goal set selection process shares some similarities to the

Partition-k heuristic introduced in Section 3.5. The Partition-k heuristic tries to build sub-

sets of interacting goals, and then adds the amount of interactions found for each particular

subset built. The idea is to measure how costly a state is in terms of its subsets interactions.

Although, our MGS algorithm also takes into account subgoals interactions, it indirectly

behaves in an opposite direction to the Partition-k heuristic. The basic idea of MGS is to

keep adding subgoals to each goal subset if they increase the net benefit returned. Usually,

the subgoals added are those that are less costlier, which most of the times are also less

interacting with the current subset of goals. In other words, while MGS tries to measure

how beneficial a subset is, Partition-k considers how costly a subset could be.

5.4.2. Penalty Costs Through Mutex Analysis. Although the MGS algorithm

considers static mutexes, it still misses negative interactions among goals that could affect

the goal selection process. This is mainly due to the optimistic reachability analysis provided

by the planning graph. Consider again Example 5.4, and notice that goals g5 = soil3

and g7 = soil4 are not statically interfering, and they require a minimum of three steps

(actions) to become true in the planning graph (e.g. travel - sample - comm). However, at
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level 3 of the planning graph these goals are mutex, implying that there are some negative

interactions among them. Having found such interactions, we could assign a penalty cost

PC to our residual cost estimate for ignoring them.

5.4.2.1. Penalty Costs Through Subgoal Interactions. A first approach for assigning

such a penalty cost PC , which we call NEGFM ,6 follows the work from [Nguyen et al.,

2002] considering the binary interaction degree δ among a pair of propositions. The idea is

that every time a new subgoal g gets considered for inclusion in our goal set G′, we compute

δ among g and every other subgoal g′ ∈ G′. At the end, we output the pair [g, g′] with

highest interaction degree δ if any. Recalling from Chapter 3, δ gets computed using the

following equation:

δ(p1, p2) = lev(p1 ∧ p2)−max{lev(p1), lev(p2)} (5.1)

Where lev(S) corresponds to the set level heuristic that specifies the earliest level

in the planning graph in which the propositions in the set S appear and are not mutex to

each other [Nguyen et al., 2002]. Obviously, if not such level exists then lev(S) =∞, which

is the case for static mutex propositions.

The binary degree of interaction δ provided a clean way for assigning a penalty

cost to a pair of propositions in the context of heuristics based on number of actions,

given that δ was representing the number of extra steps (actions) required to make such

pair of propositions mutex free in the planning graph. Following our current example,

lev(g5 ∧ g7) = 5 (due to dummy actions), as a result δ(g5, g7) = 2 represents the cost for

6Negative Factor: Max
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ignoring the interactions. However, in the context of our PSP problem, where actions have

real execution costs and propositions have costs of achievement attached to them, it is not

clear how to compute a penalty cost when negative interactions are found.

Having found the pair with highest δ(g, g′)g′∈G′ value, our first solution NEGFM

considers the maximum cost among both subgoals in the final level loff of the planning

graph as the penalty cost PC for ignoring such interaction. This is defined as:

PC(g, G′)NEGFM = max















(C(g, loff ), C(g′, loff ))

: g′ ∈ G′ ∧max(δ(g, g′))















(5.2)

NEGFM is greedy in the sense that it only considers the pair of interacting goals

with maximum δ value. It is also greedy in considering only the maximum cost among the

subgoals in the interacting pair as the minimum amount of extra cost needed to overcome

the interactions generated by the subgoal g being evaluated. Although NEGFM is easy

to compute, it is not very informative affecting the quality of the solutions returned. The

main reason for this is that we have already considered partially the cost of achieving g

when its relaxed plan is computed, and we are in some sense blindly over-counting the cost

if C(g, loff ) gets selected as the penalty PC . Despite these clear problems, NEGFM is able

to improve in problems with complex interactions over our original algorithm.

5.4.2.2. Penalty costs through action interactions. A better idea for computing the

negative interactions among subgoals is to consider the interactions among the actions

supporting such subgoals in our relaxed plans, and locate the possible reason for such

interactions to penalize them. Interactions could arise because our relaxed plan computation
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Procedure NEGFAM (G,RpG, g′, ag′)

cost1 ← 0, cost2 ← 0

PC ← 0, maxCost← 0

for (gi ∈ G)

ai ← getSupportingAction(gi, RpG)

cost1 ←

competingNeedsCost(gi, ai, g
′, ag′)

cost2 ← interferenceCost(gi, ai, g
′, ag′)

maxCost← max(cost1, cost2)

if(maxCost > PC)

PC ← maxCost

end for

return PC ;

End NEGFAM ;

Figure 30. Interactions through actions

is greedy. It only considers the cheapest action7 to support a given subgoal g′, ignoring any

negative interactions of the subgoal. Therefore, the intuition behind this idea is to adjust the

residual cost returned by our relaxed plans, by assigning a penalty cost when interactions

among their goal supporting actions are found, in order to get better estimates. We called

this idea NEGFAM .8

NEGFAM is also greedy because it only considers the actions directly supporting

the subgoals in the relaxed plan, and it always keeps the interaction with maximum cost

as its penalty cost. In case that there is no supporting action for a given subgoal g′ (e.g. if

g′ ∈ I), the algorithm will take g′ itself for comparison. NEGFAM considers the following

types of action interaction based on [Weld, 1999]:

7With respect to C(a, l) + Ca
8Negative Factor By Actions: Max
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1. Competing Needs: Two actions a and b have preconditions that are statically mutually

exclusive, or at least one precondition of a is statically mutually exclusive with the

subgoal g′ given.

2. Interference: Two actions a and b, or one action a and a subgoal g′ are interfering if

the effect of a deletes b’s preconditions, or a deletes g′.

Notice that we are only considering pairs of static mutex propositions when we do

the action interaction analysis. The reason for this is that we just want to identify those

preconditions that are critically responsible for the actions interactions, and give a penalty

cost based on them. Once found a pair of static propositions, we have different ways of

penalizing them. We show the description of the NEGFAM technique on Figure 30. The

procedure gets the current selected goals G, the relaxed plan RpG supporting them, and the

subgoal g′ being evaluated and action ag′ supporting it. Then, it computes two different

costs, one based on the competing needs of actions, and the second one based on their

interference:

• For competing needs, we identify the proposition with maximum cost in the pair of

static preconditions of the actions, and we set PC to this cost. The idea is to identify

what the minimum cost would be in order to support two competing preconditions.

Given p1∧p2, where p1 ∈ Prec(ai) and p2 ∈ Prec(ag′), or p2 = g′ when ¬∃ag′
, the cost

is cost1 = max(C(p1, leveloff),C(p2, leveloff)) if lev(p1 ∧ p2) = ∞. This penalty

gets computed using the procedure competingNeedsCost(gi, ai, g
′, ag′) in Figure 30.

• In case of interference, our penalty cost PC is set to the cheapest alternate way (i.e.

action) for supporting a proposition being deleted. The idea is to identify what the
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additional cost would be in order to restore a critical precondition, which needs to

be deleted to achieve another subgoal. Given p1 ∈ Prec(ai), and ¬p1 ∈ Eff(ag′) or

g′ = ¬p1, the cost is cost2 = min{Cx : ∀x s.t p1 ∈ Eff(x)}. This cost is computed

using the procedure InterferenceCost(gi, ai, g
′, ag′).

Our algorithm then selects the cost that maximizes our return value PC given by the two

techniques mentioned above. Our PC is then added to the residual cost of subgoal g′.

Following our example 2 (Figure 28), we already mentioned that if we chose g3 =

rock2 we would also select g1 = soil1 and g2 = rock1 in our original algorithm, which is

not feasible. However, by taking into account the negative interactions among subgoals

with NEGFAM we would discard such unfeasible sets. For example, suppose that G =

{g3} and RpG = {travel0,2, samplerock2,2, commrock2,2,0}, and the goal being considered

for inclusion is g′ = g1 with residual cost 19, corresponding to its relaxed plan Rpg′ =

{travel0,1, samplesoil1,1, commrock1,1,0}. Notice that the supporting actions for g3 and g1

are commrock2,2,0 and commsoil1,1,0 respectively. These actions have competing needs, one

action requires the rover to be at waypoint2 while the other one assumes the rover is at

waypoint1. The penalty cost PC given by NEGFAM for ignoring such interaction is 10,

which is the maximum cost among the static mutex preconditions. Adding this value to

our residual cost gives us a final cost of 29, which precludes the algorithm for considering

g1 (i.e. benefit = 20 - 29). Although NEGFAM is also greedy since it may over increase

the residual cost of a subgoal g′, it improves over our original algorithm and NEGFM ,

returning better quality solutions for problems with complex interactions (as will be shown

in our next section).
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5.5. Empirical Evaluation

In the foregoing, We have described with illustrative examples, how complex inter-

actions may affect the goal set selection process of AltAltps. Our aim in this section is

to show that planning graph reachability heuristics augmented with mutex analysis still

provide efficient estimates for solving the PSP Net Benefit problem in the presence of

complex goal interactions.

Since there are no benchmark PSP problems, we used existing STRIPS planning

domains from the 2002 International Planning Competition [Long and Fox, 2003], and

modified them to support explicit declaration of goal utilities and action costs. 9 In par-

ticular, our experiments include the domains of DriverLog and Rover. For the DriverLog

domain, goal utilities ranged from 40 to 100, while the costs of the actions ranged from 3

to 70. Goal interactions were increased by considering bigger action execution costs, and

modified paths in the network that the planning agent has to traverse. The idea was to

place the most rewarding goals in the costlier paths of the network in order to increase

the complexity of finding the most beneficial subset of goals. For the Rover domain, utili-

ties ranged from 20 to 30, and action execution costs ranged from 4 to 45. In addition to

the modifications introduced in the DriverLog domain to increase the level of interactions

among goals, the Rover domain also allows for dead-ends, and loops in the network that

the rover has to traverse. The idea was to present more options for the planning agent to

fail. Consequently, it proved to be much more difficult to solve restricting even more the

9For a description of the domains and problems see Appendix A.
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attainability of multiple goal sets. The design of this domain was inspired by the Rover

domain presented by Smith(2004), without considering resources in our domain description.

We compared our new approach AltWlt to its predecessor (AltAltps), and

Sapaps [van den Briel et al., 2004a]. Although Sapaps also uses planning graph heuristics

to rank their goals, it does not provide mutex analysis and its search algorithm is different.

We considered it pertinent to take into account both planners to see more clearly the impact

of the techniques introduced by this dissertation. See the next section for further discussion

on Sapaps [Do and Kambhampati, 2004].

We have also included in this section a run of OptiPlan [van den Briel et al., 2004a]

in the Rover domain, to demonstrate that our greedy approach is able to return high quality

plans. OptiPlan is a planner that builds on the work of solving planning problems through

IP [Vossen et al., 1999], which generates plans that are optimal for a given plan length.10

We did not compare to the approach presented by Smith(2004) because his approach was

not yet available by the time of this writing.11 All four planners were run on a P4 2.67Ghz

CPU machine with 1.0GB RAM.

Figure 31(a) shows our results in the DriverLog and Rover domains. We see that

AltWlt outperforms AltAltps and Sapaps in most of the problems, returning higher quality

solutions. In fact, it can be seen that AltWlt returns 13 times as much net benefit on average

than AltAltps in the DriverLog domain (i.e., a 1300% benefit increase). A similar scenario

occurs with Sapaps , where AltWlt returns 1.42 times as much more benefit on average (a

42% benefit increase). A similar situation occurs with the Rover domain in Figure 31 (b),

10For a more comprehensive description on OptiPlan see [van den Briel et al., 2004a].
11Smith’s approach takes as input a non-standard PDDL language, without the explicit representation of

the operators descriptions.
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in which AltWlt returns 10 and 12 times as much more benefit on average than AltAltps

and Sapaps respectively. This corresponds to a 1000% and 1200% benefit increase over

them. Although OptiPlan should in theory return optimal solutions for a given length, it

is not able to scale up, reporting only upper bounds on most of its solutions. Furthermore,

notice also in the plots that the total running time taken by AltWlt incurs a very little

additional overhead over AltAltps, and it is completely negligible in comparison to Sapaps

or OptiPlan.

Looking at the run times, it could appear at first glance that the set of problems

are relatively easy to solve given the total accumulated time of AltAltps. However, remem-

ber that for many classes of PSP problems, a trivially feasible, but decidedly non-optimal

solution would be the “null” plan, and AltAltps is in fact returning faster but much lower

quality solutions. We can see that the techniques introduced in AltWlt are helping the

approach to select better goal sets by accounting for interactions. This is not happening in

AltAltps, where the goal sets returned are very small and easier to solve.

We also tested the performance of AltWlt in problems with less interactions. Specif-

ically, we solved the suite of random problems from [van den Briel et al., 2004a], including

the ZenoTravel and Satellite planning domains [Long and Fox, 2003]. Although the gains

there were less impressive, AltWlt was able to produce in general better quality solutions

than the other approaches, returning bigger total net benefits.
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(a) Cost-based Driverlog domain

(b) Cost-based Rover domain

Figure 31. Plots showing the total time and net benefit obtained by different PSP ap-
proaches



CHAPTER 6

Related Work

As discussed in previous chapters, the advancement in planning is mainly due to the

extraction of heuristics from the problem representation. Heuristic state-space planning is

one of the most successful plan synthesis approaches. In consequence, most effective and

current planning systems are based on a combination of state-space search and planning

graph related heuristics. One main difference of our approach with respect to anyone else is

that our heuristic framework encodes positive as well as negative interactions among sub-

goals, improving the quality of our solutions. We will discuss in this Chapter the connections

of our work to alternative approaches, and state-of-the-art plan synthesis algorithms.

In the first section, we will discuss and survey related state-space planning algo-

rithms, emphasizing the main differences with respect to our approach, and possible venues

for improving our work. Then, we will explore work on parallel planning, highlighting the

limitations of competing approaches with respect to AltAltp. Finally, we will conclude

this Chapter by providing a background on over-subscription planning, and alternative

approaches to PSP Net Benefit.
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6.1. Heuristic State-space Search and Disjunctive Planning

As we have already discussed in chapter 3, AltAlt has obvious rich connections

to the existing work on Graphplan [Blum and Furst, 1997; Long and Fox, 1999] and

regression state-space search planners [Bonet et al., 1997; Bonet and Geffner, 1999;

McDermott, 1999]. The closest planning algorithm to our approach is HSP-r [Bonet and

Geffner, 1999]. As mentioned before, HSP-r is a regression planner that mostly uses the

hadd heuristic to rank its search states. One of the main problems with such a heuristic

is that it assumes goal independence, thrashing badly in problems with high number of

interactions. Our approach however is able to extend on such ideas by considering positive

as well as negative interactions using relaxed plans and penalty costs. Moreover, the idea of

using the planning graph to select action instances and focus the regression search improves

our approach even further over HSP-r. This idea is similar to the RIFO [Koehler, 1999] and

helpful actions [Hoffmann and Nebel, 2001] techniques, that use relevance analysis to focus

progression search.

Although AltAlt has proven to be efficient and effective in a wide spectrum of plan-

ning problems, it lacks behind current state-of-the-art planning systems. Most successful

planning systems are currently based on some sort of forward state-space algorithm en-

hanced with different planning graph heuristic relaxations, as corroborated by the most

recent international planning competitions [Long and Fox, 2003; Hoffmann and Edelkamp,

2005]. Although progression search tends to have a bigger branching factor than regression

search, the states produced by progression search are complete and consistent, which in

turn results in more accurate heuristic estimates. Moreover, the relevance analysis used by
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progression search algorithms helps them to reduce their branching factor improving their

overall efficiency.

One of such planning systems is FF [Hoffmann and Nebel, 2001]. FF’s base heuristic

can be seen as a graphplan relaxation. During its forward search, it computes from scratch

a relaxed plan for each state visited. Its relaxed plan heuristic takes into account positive

interactions among subgoals, and in that sense is similar to the hAdjSum2M heuristic of

AltAlt. However, negative interactions are still ignored. FF search strategy is a type of

enforced hill-climbing, combining local search and systematic search. The planner uses the

helpful actions technique from its relaxed plans to cut out search branches. In that sense,

it is similar to AltAlt using the PACTION procedure directly from the planning graph.

LPG [Gerevini and Serina, 2002] has been another very successful planning system

that also uses subgraphs from the planning graph data structure to guide its search. The

operators for moving from one search state into another are based on modifications to the

subgraphs. In that sense, its heuristics differ from the distance-based estimations discussed

in this Dissertation given that they weight how costly is to repair the inconsistencies found

in a particular subgraph.

As discussed in [Nguyen and Kambhampati, 2000; Nguyen et al., 2002], there are also

several rich connections between our strategies for deriving the heuristics from the planning

graphs, and recent advances in heuristic search, such as pattern databases [Culberson and

Schaeffer, 1998], capturing subproblem interactions [Korf and Taylor, 1996; Korf, 1997], and

greedy regression tables [Refanidis and Vlahavas, 2001] by the GRT planning system. It is

worth to mention that the GRT planning system implements a progression search algorithm,

but it only computes its heuristic once backwards from the top level goals as a preprocessing
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step. In order to construct the heuristic backwards, the actions of the problem have to be

inverted, enhancing the top level goal set with the missing propositions to obtain better

estimates for its tables, and discarding objects that are not relevant. Notice that in our case

a similar idea could be tried during the regression search of AltAlt. Remember that the

states resulting from regression search constitute partial assignments (i.e, they represent a

set of states due to the missing propositions). In consequence, we could try to enhance (or

complete) our regressed states to also improve our heuristics during search.

Finally, one of the most recent and successful planners is Fast Downward [Helmert

and Richter, 2004; Helmert, 2004]. Motivated by the fact that progression planners tend

to suffer in domains with deadends or frequent plateau regions (since most of them ignore

negative interactions among subgoals), the Fast Downward algorithm introduced multi-

value state variables as a natural way of computing and compactly representing subgoals

and their interactions. Fast Downward uses hierarchical decompositions of planning tasks

based on causal graphs for computing its heuristic function. The main idea of the heuristic

is to split the planning task, and combine the lengths of the solutions of the parts to form

a distance heuristic for the overall task. The heuristic estimates the cost of changing the

values of the state variables in the subtasks. In that sense, it is similar to LPG, which tries

to repair locally the inconsistencies of its subgraphs.

Although AltAlt lacks behind the current state-of-the-art planning systems, it still

remains as one of the best regression state-space search planners up to date. Moreover,

some of the new techniques employed by progression planners could be extended to improve

the two phases of our approach, the heuristics and the search process. For example, the

multi-value state variable representation of Fast Downward could be adapted to improve
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the planning graph expansion phase of AltAlt. Moreover, the use of helpful actions and

consistency enforcement techniques, such as those described in [Hoffmann and Nebel, 2001;

Gerevini and Schubert, 1998; Fox and Long, 1998; Rintanen, 2000], could be tried to further

improve the backward search algorithm of AltAlt.

6.2. State-space Parallel Planning and Heuristics

The idea of partial exploration of parallelizable sets of actions is not new [Kabanza,

1997; Godefroid and Kabanza, 1991; Do and Kambhampati, 2001]. It has been studied in

the area of concurrent and reactive planning, where one of the main goals is to approximate

optimal parallelism. However, most of the research there has been focused on forward

chaining planners [Kabanza, 1997], where the state of the world is completely known. It

has been implied that backward-search methods are not suitable for this kind of analysis

[Godefroid and Kabanza, 1991] because the search nodes correspond to partial states. We

have shown in Chapter 4 that backward-search methods can also be used to approximate

parallel plans in the context of classical planning.

Optimization of plans according to different criteria (e.g. execution time, quality,

etc) has also been done as a post-processing step. The post-processing computation of a

given plan to maximize its parallelism has been discussed by Backstrom(1998). Reordering

and de-ordering techniques are used to maximize the parallelism of the plan. In de-ordering

techniques ordering relations can only be removed, not added. In reordering, arbitrary

modifications to the plan are allowed. In the general case this problem is NP-Hard and

it is difficult to approximate [Backstrom, 1998]. Furthermore, as discussed in Section 4.1,
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post-processing techniques are just concerned with modifying the order between the existing

actions of a given plan. Our approach not only considers modifying such orderings but also

inserting new actions online which can minimize the possible number of parallel steps of

the problem.

We have already discussed Graphplan based planners [Long and Fox, 1999; Kautz

and Selman, 1999], which return optimal plans based on the number of time steps. As

mentioned in Chapter 4, Graphplan uses IDA* to include the greatest number of parallel

actions at each time step of the search. However, this iterative procedure is very time

consuming and it does not provide any guarantee on the number of actions in its final plans.

There have been a few attempts to minimize the number of actions in these planners [Huang

et al., 1999] by using some domain control knowledge based on the generation of rules for

each specific planning domain. The Graphplan algorithm tries to maximize its parallelism

by satisfying most of the subgoals at each time step, if the search fails then it backtracks

and reduces the set of parallel actions being considered one level before. AltAltp does the

opposite, it tries to guess initial parallel nodes given the heuristics, and iteratively adds

more actions to these nodes as possible with the PushUp procedure later during search.

More recently, there has been some work on generalizing forward state-space search

to handle action concurrency in metric temporal domains. Of particular relevance to this

work are the temporal TLPlan [Bacchus and Ady, 2001] and SAPA [Do and Kambhampati,

2001] planners. Both of these planners are designed specifically for handling metric temporal

domains, and use similar search strategies. The main difference between them being that

Temporal TLPlan depends on hand-coded search control knowledge to guide its search,

while SAPA (like AltAltp) uses heuristics derived from (temporal) planning graphs. As
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such, both these planners can be co-opted to produce parallel plans in classical domains.

Both these planners do a forward chaining search, and like AltAltp, both of them achieve

concurrency incrementally, without projecting sets of actions, in the following way. Normal

forward search planners start with the initial state S0, corresponding to time t0, consider

all actions that apply to S0, and choose one, say a1 apply it to S0, getting S1. They

simultaneously progress the “system clock” from t0 to t1. In order to allow for concurrency,

the planners by Bacchus and Ady, and Do and Kambhampati essentially decouple the

“action application” and “clock progression.” At every point in the search, there is a non-

deterministic choice - between progressing the clock, or applying (additional) actions at

the current time point. From the point of view of these planners, AltAltp can be seen as

providing heuristic guidance for this non-deterministic choice (modulo the difference that

AltAltp does regression search). The results of empirical comparisons between AltAltp and

SAPA, which show that AltAltp outperforms SAPA, suggest that the heuristic strategies

employed in AltAltp including the incremental fattening, and the pushup procedure, can

be gainfully adapted to these planners to increase the concurrency in the solution plans.

Finally, HSP*, and TP4, its extension to temporal domains, are both heuristic state-space

search planners using regression that are capable of producing parallel plans [Haslum and

Geffner, 2000]. TP4 can be seen as the regression version of the approach used in SAPA

and temporal TLPlan. Our experiments however demonstrate that neither of these planners

scales well in comparison to AltAltp.

The PushUp procedure can be seen as a plan compression procedure. As such, it is

similar to other plan compression procedures such as “double-back optimization” [Crawford,

1996]. One difference is that double-back is used in the context of a local search, while
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PushUp is used in the context of a systematic search. Double-back could be also applied to

any finished plan or schedule, but as any other post-processing approach its outcome would

depend highly on the plan given as input. We can conclude that our approach AltAltp

remains as the state-of-the-art in the generation of parallel plans through state-space search.

6.3. Heuristic Approaches to Over-subscription Planning

As mentioned in Chapter 5, there has been very little work on PSP in planning. One

possible exception is the PYRRHUS planning system [Williamson and Hanks, 1994] which

considers an interesting variant of the partial satisfaction planning problem. In PYRRHUS,

the quality of the plans is measured by the utilities of the goals and the amount of resource

consumed. Utilities of goals decrease if they are achieved later than the goals’ deadlines.

Unlike the PSP problem discussed in this Thesis, all the logical goals still need to be achieved

by PYRRHUS for the plan to be valid. It would be interesting to extend the PSP model

to consider degree of satisfaction of individual goals.

More recently, Smith (2003) motivated oversubscription problems in terms of their

applicability to the NASA planning problems. Smith (2004) also proposed a planner for

oversubscription in which the solution of the abstracted planning problem is used to select

the subset of goals and the orders to achieve them. The abstract planning problem is built

by propagating the cost on the planning graph and constructing the orienteering problem.

The goals and their orderings are then used to guide a POCL planner. In this sense, this

approach is similar to AltAltps; however, the orienteering problem needs to be constructed

using domain-knowledge for different planning domains. Smith (2004) also speculated that
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planning-graph based heuristics are not particularly suitable for PSP problems where goals

are highly interacting. His main argument is that heuristic estimates derived from planning

graphs implicitly make the assumption that goals are independent. However, as shown in

this Dissertation, reachability estimates can be improved using the mutex information also

contained in planning graphs, allowing us to solve problems with complex goal interactions.

Probably the most obvious way to optimally solve the PSP Net Benefit problem

is by modeling it as a fully-observable Markov Decision Process (MDP) [Hoey et al., 1999]

with a finite set of states. MDPs naturally permit action cost and goal utilities, but we

found in our studies that an MDP based approach for the PSP Net Benefit problem

appears to be impractical, even the very small problems generate too many states. To

prove our assumption, we modeled a set of test problems as MDPs and solved them using

SPUDD [Hoey et al., 1999].1 SPUDD is an MDP solver that uses value iteration on alge-

braic decision diagrams, which provides an efficient representation of the planning problem.

Unfortunately, SPUDD was not able to scale up, solving only the smallest problems.2

Remember also that PSP problems could be solved optimally using Integer Pro-

gramming techniques [Haddawy and Hanks, 1993]. An approach included in our evaluation

section is OptiPlan. OptiPlan is a planning system that provides an extension to the state

change programming (IP) model by Vossen et al.(1999). The main extension in OptiPlan

is the use of Graphplan [Blum and Furst, 1997] to eliminate many unnecessary variables.

Unfortunately, the current version of OptiPlan does not scale up well to bigger sized prob-

lems.

1We thank Will Cushing and Menkes van den Briel who first suggested the MDP modeling idea.
2Details on the MDP model and results can be found in [van den Briel et al., 2005].
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The only other heuristic state-space based approach to PSP is Sapaps [Do and

Kambhampati, 2004; van den Briel et al., 2004a]. Unlike to AltWlt, Sapaps does not select

a subset of the goals up front, but uses an anytime A* heuristic search framework in which

goals are treated as “soft constraints” to select them during planning. Any executable plan

is considered a potential solution, with the quality of the plan measured in terms of its net

benefit. Sapaps is a forward state space planner, which does not include mutex analysis in

its search framework.

Over-subscription issues have received relatively more attention in the scheduling

community. Earlier work in over-subscription scheduling used greedy approaches, in which

tasks of higher priorities are scheduled first [Kramer and Giuliano, 1997; Potter and Gasch,

1998]. The approach used by AltWlt is more sophisticated in that it considers the residual

cost of a subgoal in the context of an existing partial plan for achieving other selected goals,

taking into account complex interactions among the goals. More recent efforts have used

stochastic greedy search algorithms on constraint-based intervals [Frank et al., 2001], genetic

algorithms [Globus et al., 2003], and iterative repairing technique [Kramer and Smith, 2003]

to solve this problem more effectively.



CHAPTER 7

Concluding Remarks

The current work is motivated by the need of domain independent heuristic estima-

tors by plan synthesis algorithms. Heuristic functions that can be extracted automatically

from the problem representation, and that can be used across different planning problems

and domains. Particularly, we have shown in this Dissertation, that state-space planning

can be more efficient and effective in solving more complex problems when enhanced with

heuristic functions. A novel heuristic framework was developed based on the reachabil-

ity information encoded in planning graphs. It was shown that distance-based heuristics

extracted from planning graphs are powerful approximations for a variety of planning prob-

lems.

More specifically, techniques for controlling the cost of computing the heuristics and

reducing the branching factor of the search were introduced. Planning graph heuristics

were also developed for parallel state-space planning, where an online plan compression

algorithm was designed to improve even further the quality of the solutions returned by

the system. The empirical evaluation showed that the greedy approach was an attractive

tradeoff between quality and efficiency in the generation of parallel plans.
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The portability of the heuristic estimates was again demonstrated when we adjusted

state-space planning to account for over-subscription planning problems. A greedy algo-

rithm was developed that is able to select a subset of the top-level goals upfront using

planning graph estimates. It was also shown, that the mutex analysis from the planning

graph is a rich source of information for improving even further the heuristics, addressing

more complex planning problems.

Finally, extensive empirical analysis on each different application of state-space plan-

ning was presented at each chapter, highlighting the heuristics used by the algorithms.

Related work on heuristic planning was also discussed at the end of the dissertation.

7.1. Future Work

The solutions presented by this work are based on state-space planning, more

specifically regression planning. Although, regression state-space planning considers rel-

evance of actions to reduce the branching factor of the search, this one can still be

quite large, producing many inconsistent states. A better alternative would be to con-

sider lifted planning representations, in which states are partially instantiated. One of

the main advantages of lifting is the reduction of the planner’s search space by delaying

the introduction of ground atoms into the plan, thus avoiding the large branching fac-

tor of planning problems [Yang and Chan, 1994; Younes and Simmons, 2002]. In conse-

quence, lifting avoids the problem of excessive memory usage [Ginsberg and Parkes, 2000;

Parkes, 1999] by pruning the search space. However, there does not yet exist a convincing

approach for planning with lifted actions. This is mainly due to the lack of heuristics for
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partially instantiated states, and the overhead for maintaining consistency on the bindings

of the lifted operators. Furthermore, the indexing and caching schemas that are essen-

tial to the speed of ground actions [Parkes, 1999] may not be directly applicable to lifted

representations.

A lifted state would have some variables and certain domains of values over them. In

fact, a partially instantiated state would represent a set of states, each one would correspond

to an assignment of the values to the free variables in the state. The challenge would be

to adjust the reachability information provided by planning graphs to cover most of the

variables in the state, without enumerating all different instantiations. One simple, but

naive idea would be to consider the minimum cost (e.g., level information) in the planning

graph among all different instantiations of a particular variable. However, as mentioned

before, this heuristic would be too costly to compute since we would need to enumerate all

possible combinations of values for each variable. A better tradeoff would be to consider

distance as well as cover information for each particular variable. In other words, issues like:

variables appearing more in a state, cardinality of the variables (i.e., size of their domains),

and reachability information may be critical to compute good heuristic estimates. Future

work will try to shed light on these issues, understanding that lifting could be of great help

for those particular planning problems (e.g., probabilistic planning, temporal planning,

planning under uncertainty, etc) where the branching factor of the search is a real and

complicated problem.

As mentioned in Chapter 1, taking into account complex goal interactions to compute

admissible heuristics remains a challenging problem. Another future direction would be

to consider positive as well as negative goal interactions in the application of distance-
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based heuristics in other critical planning frameworks, including among these temporal

planning and least commitment planning where negative interactions are mostly ignored.

The effectiveness of considering positive interactions by the relax plan heuristic has been

widely shown [Hoffmann and Nebel, 2001; Nguyen et al., 2002; Gerevini and Serina, 2002],

and we believe that there are problems in which negative interactions play a crucial role,

but, unfortunately, no planning system has addressed such issue at all. Planning graphs

provide a natural way of considering strong interactions, and we plan to further exploit

them, in other more complex planning frameworks.
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A.1. Rover Domain

(define (domain rover) (:requirements :strips) (:predicates

(at ?x ?y)

(atlander ?x ?y)

(cantraverse ?r ?x ?y)

(equippedforsoilanalysis ?r)

(equippedforrockanalysis ?r)

(equippedforimaging ?r) (empty ?s)

(haverockanalysis ?r ?w)

(havesoilanalysis ?r ?w)

(full ?s)

(calibrated ?c ?r ?o ?p)

(supports ?c ?m)

(available ?r)

(visible ?w ?p)

(haveimage ?r ?o ?m)

(communicatedsoildata ?w)

(communicatedrockdata ?w)

(communicatedimagedata ?o ?m)

(atsoilsample ?w)

(atrocksample ?w)

(visiblefrom ?o ?w)

(storeof ?s ?r)

(calibrationtarget ?i ?o)

(onboard ?i ?r)

(channelfree ?l)

(rover ?x)

(waypoint ?x)

(store ?x)

(camera ?x)

(mode ?x)

(lander ?x)
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(objective ?x))

(:action navigate

:parameters ( ?x ?y ?z)

:precondition

(and (rover ?x) (waypoint ?y) (waypoint ?z)

(cantraverse ?x ?y ?z) (available ?x)

(at ?x ?y) (visible ?y ?z))

:effect

(and (not (at ?x ?y)) (at ?x ?z)))

(:action samplesoil

:parameters ( ?x ?s ?p)

:precondition

(and (rover ?x) (store ?s) (waypoint ?p)

(at ?x ?p) (atsoilsample ?p)

(equippedforsoilanalysis ?x) (storeof ?s ?x) (empty ?s))

:effect

(and (not (empty ?s)) (not (atsoilsample ?p)) (full ?s) (havesoilanalysis ?x ?p)))

(:action samplerock

:parameters ( ?x ?s ?p)

:precondition

(and (rover ?x) (store ?s) (waypoint ?p)

(at ?x ?p) (atrocksample ?p)

(equippedforrockanalysis ?x) (storeof ?s ?x) (empty ?s))

:effect

(and (full ?s) (haverockanalysis ?x ?p) (not (empty ?s)) (not (atrocksample ?p))))

(:action drop

:parameters ( ?x ?y)

:precondition
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(and (rover ?x) (store ?y)

(storeof ?y ?x) (full ?y))

:effect

(and (empty ?y) (not (full ?y))))

(:action calibrate

:parameters ( ?r ?i ?t ?w)

:precondition

(and (rover ?r) (camera ?i) (objective ?t) (waypoint ?w)

(equippedforimaging ?r)

(calibrationtarget ?i ?t)

(at ?r ?w) (visiblefrom ?t ?w) (onboard ?i ?r))

:effect

(calibrated ?i ?r ?t ?w))

(:action takeimage

:parameters ( ?r ?p ?o ?i ?m)

:precondition

(and (rover ?r) (waypoint ?p) (objective ?o) (camera ?i) (mode ?m)

(calibrated ?i ?r ?o ?p) (onboard ?i ?r) (equippedforimaging ?r) (supports ?i ?m)

(visiblefrom ?o ?p) (at ?r ?p))

:effect

(and (haveimage ?r ?o ?m) (not (calibrated ?i ?r ?o ?p))))

(:action communicatesoildata

:parameters ( ?r ?l ?p ?x ?y)

:precondition

(and (rover ?r) (lander ?l) (waypoint ?p) (waypoint ?x) (waypoint ?y)

(at ?r ?x) (atlander ?l ?y)

(havesoilanalysis ?r ?p)

(visible ?x ?y)

(available ?r) (channelfree ?l))
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:effect

(communicatedsoildata ?p))

(:action communicaterockdata

:parameters ( ?r ?l ?p ?x ?y)

:precondition

(and (rover ?r) (lander ?l) (waypoint ?p) (waypoint ?x) (waypoint ?y) (at ?r ?x)

(atlander ?l ?y) (haverockanalysis ?r ?p) (visible ?x ?y) (available ?r) (channelfree ?l))

:effect

(communicatedrockdata ?p))

(:action communicateimagedata

:parameters ( ?r ?l ?o ?m ?x ?y)

:precondition

(and (rover ?r) (lander ?l) (objective ?o) (mode ?m) (waypoint ?x) (waypoint ?y)

(at ?r ?x) (atlander ?l ?y) (haveimage ?r ?o ?m) (visible ?x ?y) (available ?r) (channelfree ?l))

:effect

(communicatedimagedata ?o ?m))

)

A.2. Rover Problem

A.2.1. Problem 11.

(define (problem roverprob11) (:domain Rover) (:objects

general colour highres lowres rover0 rover0store

waypoint0 waypoint1 waypoint2 waypoint3 waypoint4

waypoint5 waypoint6 waypoint7 waypoint8 waypoint9

waypoint10 waypoint11 waypoint12 waypoint13 waypoint14

waypoint15 waypoint16 waypoint17 waypoint18 waypoint19

waypoint20 waypoint21

camera0 camera1 camera2 camera3 camera4 camera5 camera6
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camera7 camera8

objective0 objective1 objective2 objective3 objective4

objective5 objective6 objective7 objective8)

(:init

(visible waypoint0 waypoint5)

(visible waypoint5 waypoint0)

(visible waypoint0 waypoint8)

(visible waypoint8 waypoint0)

(visible waypoint0 waypoint12)

(visible waypoint12 waypoint0)

(visible waypoint0 waypoint13)

(visible waypoint13 waypoint0)

(visible waypoint0 waypoint18)

(visible waypoint18 waypoint0)

(visible waypoint0 waypoint21)

(visible waypoint21 waypoint0)

(visible waypoint1 waypoint2)

(visible waypoint2 waypoint1)

(visible waypoint1 waypoint6)

(visible waypoint6 waypoint1)

(visible waypoint2 waypoint1)

(visible waypoint1 waypoint2)

(visible waypoint2 waypoint6)

(visible waypoint6 waypoint2)

(visible waypoint3 waypoint2)

(visible waypoint2 waypoint3)

(visible waypoint4 waypoint3)

(visible waypoint3 waypoint4)

(visible waypoint4 waypoint21)

(visible waypoint21 waypoint4)

(visible waypoint5 waypoint4)

(visible waypoint4 waypoint5)



144

(visible waypoint5 waypoint6)

(visible waypoint6 waypoint5)

(visible waypoint6 waypoint12)

(visible waypoint12 waypoint6)

(visible waypoint7 waypoint8)

(visible waypoint8 waypoint7)

(visible waypoint7 waypoint11)

(visible waypoint11 waypoint7)

(visible waypoint8 waypoint12)

(visible waypoint12 waypoint8)

(visible waypoint9 waypoint8)

(visible waypoint8 waypoint9)

(visible waypoint9 waypoint13)

(visible waypoint13 waypoint9)

(visible waypoint10 waypoint9)

(visible waypoint9 waypoint10)

(visible waypoint10 waypoint11)

(visible waypoint11 waypoint10)

(visible waypoint13 waypoint12)

(visible waypoint12 waypoint13)

(visible waypoint13 waypoint14)

(visible waypoint14 waypoint13)

(visible waypoint13 waypoint17)

(visible waypoint17 waypoint13)

(visible waypoint14 waypoint15)

(visible waypoint15 waypoint14)

(visible waypoint15 waypoint16)

(visible waypoint16 waypoint15)

(visible waypoint15 waypoint19)

(visible waypoint19 waypoint15)

(visible waypoint16 waypoint17)

(visible waypoint17 waypoint16)
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(visible waypoint17 waypoint18)

(visible waypoint18 waypoint17)

(visible waypoint18 waypoint19)

(visible waypoint19 waypoint18)

(visible waypoint18 waypoint21)

(visible waypoint21 waypoint18)

(visible waypoint19 waypoint20)

(visible waypoint20 waypoint19)

(visible waypoint19 waypoint21)

(visible waypoint21 waypoint19)

(visible waypoint20 waypoint21)

(visible waypoint21 waypoint20)

(lander general)

(mode colour)

(mode highres)

(mode lowres)

(waypoint waypoint0)

(waypoint waypoint1)

(atsoilsample waypoint1)

(waypoint waypoint2)

(atsoilsample waypoint2)

(atrocksample waypoint2)

(waypoint waypoint3)

(atrocksample waypoint3)

(waypoint waypoint4)

(atsoilsample waypoint4)

(atrocksample waypoint4)

(waypoint waypoint5)

(atrocksample waypoint5)

(atsoilsample waypoint5)

(waypoint waypoint6)

(atrocksample waypoint6)
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(atsoilsample waypoint6)

(waypoint waypoint7)

(atsoilsample waypoint7)

(waypoint waypoint8)

(atsoilsample waypoint8)

(atrocksample waypoint8)

(waypoint waypoint9)

(atrocksample waypoint9)

(waypoint waypoint10)

(atsoilsample waypoint10)

(atrocksample waypoint10)

(waypoint waypoint11)

(atrocksample waypoint11)

(atsoilsample waypoint11)

(waypoint waypoint12)

(atrocksample waypoint12)

(atsoilsample waypoint12)

(waypoint waypoint13)

(atsoilsample waypoint13)

(atrocksample waypoint13)

(waypoint waypoint14)

(atsoilsample waypoint14)

(atrocksample waypoint14)

(waypoint waypoint15)

(atrocksample waypoint15)

(atsoilsample waypoint15)

(waypoint waypoint16)

(atsoilsample waypoint16)

(waypoint waypoint17)

(atrocksample waypoint17)

(atsoilsample waypoint17)

(waypoint waypoint18)
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(atrocksample waypoint18)

(atsoilsample waypoint18)

(waypoint waypoint19)

(atsoilsample waypoint19)

(atrocksample waypoint19)

(waypoint waypoint20)

(atrocksample waypoint20)

(waypoint waypoint21)

(atsoilsample waypoint21)

(atrocksample waypoint21)

(atlander general waypoint0)

(channelfree general)

(rover rover0)

(store rover0store)

(at rover0 waypoint0)

(available rover0)

(storeof rover0store rover0)

(empty rover0store)

(equippedforsoilanalysis rover0)

(equippedforrockanalysis rover0)

(equippedforimaging rover0)

(cantraverse rover0 waypoint0 waypoint5)

(cantraverse rover0 waypoint0 waypoint12)

(cantraverse rover0 waypoint0 waypoint8)

(cantraverse rover0 waypoint0 waypoint13)

(cantraverse rover0 waypoint0 waypoint18)

(cantraverse rover0 waypoint0 waypoint21)

(cantraverse rover0 waypoint1 waypoint2)

(cantraverse rover0 waypoint1 waypoint6)

(cantraverse rover0 waypoint2 waypoint1)

(cantraverse rover0 waypoint2 waypoint3)

(cantraverse rover0 waypoint2 waypoint6)
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(cantraverse rover0 waypoint3 waypoint2)

(cantraverse rover0 waypoint4 waypoint3)

(cantraverse rover0 waypoint4 waypoint21)

(cantraverse rover0 waypoint5 waypoint4)

(cantraverse rover0 waypoint5 waypoint6)

(cantraverse rover0 waypoint6 waypoint1)

(cantraverse rover0 waypoint6 waypoint2)

(cantraverse rover0 waypoint6 waypoint5)

(cantraverse rover0 waypoint6 waypoint12)

(cantraverse rover0 waypoint7 waypoint8)

(cantraverse rover0 waypoint7 waypoint11)

(cantraverse rover0 waypoint8 waypoint12)

(cantraverse rover0 waypoint8 waypoint7)

(cantraverse rover0 waypoint9 waypoint8)

(cantraverse rover0 waypoint9 waypoint13)

(cantraverse rover0 waypoint10 waypoint9)

(cantraverse rover0 waypoint10 waypoint11)

(cantraverse rover0 waypoint10 waypoint14)

(cantraverse rover0 waypoint11 waypoint7)

(cantraverse rover0 waypoint11 waypoint10)

(cantraverse rover0 waypoint13 waypoint12)

(cantraverse rover0 waypoint13 waypoint14)

(cantraverse rover0 waypoint13 waypoint17)

(cantraverse rover0 waypoint14 waypoint15)

(cantraverse rover0 waypoint15 waypoint14)

(cantraverse rover0 waypoint15 waypoint16)

(cantraverse rover0 waypoint15 waypoint19)

(cantraverse rover0 waypoint16 waypoint17)

(cantraverse rover0 waypoint16 waypoint15)

(cantraverse rover0 waypoint17 waypoint13)

(cantraverse rover0 waypoint17 waypoint18)

(cantraverse rover0 waypoint18 waypoint19)
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(cantraverse rover0 waypoint18 waypoint21)

(cantraverse rover0 waypoint19 waypoint18)

(cantraverse rover0 waypoint19 waypoint20)

(cantraverse rover0 waypoint19 waypoint21)

(cantraverse rover0 waypoint20 waypoint21)

(camera camera0)

(onboard camera0 rover0)

(calibrationtarget camera0 objective0)

(supports camera0 colour)

(supports camera0 highres)

(supports camera0 lowres)

(objective objective0)

(visiblefrom objective0 waypoint19)

(camera camera1)

(onboard camera1 rover0)

(calibrationtarget camera1 objective1)

(supports camera1 colour)

(supports camera1 highres)

(supports camera1 lowres)

(objective objective1)

(visiblefrom objective1 waypoint21)

(camera camera2)

(onboard camera2 rover0)

(calibrationtarget camera2 objective2)

(supports camera2 colour)

(supports camera2 highres)

(supports camera2 lowres)

(objective objective2)

(visiblefrom objective2 waypoint4)

(visiblefrom objective2 waypoint5)

(visiblefrom objective2 waypoint3)

(camera camera3)
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(onboard camera3 rover0)

(calibrationtarget camera3 objective3)

(supports camera3 colour)

(supports camera3 highres)

(supports camera3 lowres)

(objective objective3)

(visiblefrom objective3 waypoint5)

(visiblefrom objective3 waypoint6)

(visiblefrom objective3 waypoint4)

(visiblefrom objective3 waypoint0)

(camera camera4)

(onboard camera4 rover0)

(calibrationtarget camera4 objective4)

(supports camera4 colour)

(supports camera4 highres)

(supports camera4 lowres)

(objective objective4)

(visiblefrom objective4 waypoint12)

(camera camera5)

(onboard camera5 rover0)

(calibrationtarget camera5 objective5)

(supports camera5 colour)

(supports camera5 highres)

(supports camera5 lowres)

(objective objective5)

(visiblefrom objective5 waypoint8)

(visiblefrom objective5 waypoint9)

(camera camera6)

(onboard camera6 rover0)

(calibrationtarget camera6 objective6)

(supports camera6 colour)

(supports camera6 highres)
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(supports camera6 lowres)

(objective objective6)

(visiblefrom objective6 waypoint11)

(visiblefrom objective6 waypoint7)

(visiblefrom objective6 waypoint10)

(camera camera7)

(onboard camera7 rover0)

(calibrationtarget camera7 objective7)

(supports camera7 colour)

(supports camera7 highres)

(supports camera7 lowres)

(objective objective7)

(visiblefrom objective7 waypoint14)

(visiblefrom objective7 waypoint15)

(camera camera8)

(onboard camera8 rover0)

(calibrationtarget camera8 objective8)

(supports camera8 colour)

(supports camera8 highres)

(supports camera8 lowres)

(objective objective8)

(visiblefrom objective8 waypoint17)

(visiblefrom objective8 waypoint13)

) (:goal (and (communicatedsoildata waypoint1) (communicatedsoildata

waypoint2) (communicatedsoildata waypoint4) (communicatedsoildata

waypoint5) (communicatedsoildata waypoint6) (communicatedsoildata

waypoint7) (communicatedsoildata waypoint8) (communicatedsoildata

waypoint10) (communicatedsoildata waypoint11) (communicatedsoildata

waypoint12) (communicatedsoildata waypoint13) (communicatedsoildata

waypoint14) (communicatedsoildata waypoint15) (communicatedsoildata

waypoint16) (communicatedsoildata waypoint17) (communicatedsoildata

waypoint18) (communicatedsoildata waypoint19) (communicatedsoildata
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waypoint21) (communicatedrockdata waypoint2) (communicatedrockdata

waypoint3) (communicatedrockdata waypoint4) (communicatedrockdata

waypoint5) (communicatedrockdata waypoint6) (communicatedrockdata

waypoint8) (communicatedrockdata waypoint9) (communicatedrockdata

waypoint10) (communicatedrockdata waypoint11) (communicatedrockdata

waypoint12) (communicatedrockdata waypoint13) (communicatedrockdata

waypoint14) (communicatedrockdata waypoint15) (communicatedrockdata

waypoint17) (communicatedrockdata waypoint18) (communicatedrockdata

waypoint19) (communicatedrockdata waypoint20) (communicatedrockdata

waypoint21) (communicatedimagedata objective0 highres)

(communicatedimagedata objective1 lowres) (communicatedimagedata

objective1 highres) (communicatedimagedata objective1 colour)

(communicatedimagedata objective2 highres) (communicatedimagedata

objective2 colour) (communicatedimagedata objective2 lowres)

(communicatedimagedata objective3 highres) (communicatedimagedata

objective4 lowres) (communicatedimagedata objective4 colour)

(communicatedimagedata objective4 highres) (communicatedimagedata

objective5 lowres) (communicatedimagedata objective5 colour)

(communicatedimagedata objective6 lowres) (communicatedimagedata

objective7 lowres) (communicatedimagedata objective7 colour)

(communicatedimagedata objective7 highres) (communicatedimagedata

objective8 lowres) ) ) )

A.2.2. Problem 11 Cost File and Graphical Representation.

374 navigate(rover0,waypoint0,waypoint5) 11

navigate(rover0,waypoint0,waypoint8) 29

navigate(rover0,waypoint0,waypoint12) 15

navigate(rover0,waypoint0,waypoint13) 27

navigate(rover0,waypoint0,waypoint18) 28

navigate(rover0,waypoint0,waypoint21) 21

calibrate(rover0,camera3,objective3,waypoint0) 1
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navigate(rover0,waypoint5,waypoint4) 9

navigate(rover0,waypoint5,waypoint6) 9

navigate(rover0,waypoint8,waypoint7) 11

navigate(rover0,waypoint8,waypoint12) 24

navigate(rover0,waypoint13,waypoint12) 34

navigate(rover0,waypoint13,waypoint14) 19

navigate(rover0,waypoint13,waypoint17) 8

navigate(rover0,waypoint18,waypoint19) 10

navigate(rover0,waypoint18,waypoint21) 8

samplesoil(rover0,rover0store,waypoint5) 5

samplesoil(rover0,rover0store,waypoint8) 5

samplesoil(rover0,rover0store,waypoint12) 5

samplesoil(rover0,rover0store,waypoint13) 5

samplesoil(rover0,rover0store,waypoint18) 5

samplesoil(rover0,rover0store,waypoint21) 5

samplerock(rover0,rover0store,waypoint5) 5

samplerock(rover0,rover0store,waypoint8) 5

samplerock(rover0,rover0store,waypoint12) 5

samplerock(rover0,rover0store,waypoint13) 5

samplerock(rover0,rover0store,waypoint18) 5

samplerock(rover0,rover0store,waypoint21) 5

calibrate(rover0,camera1,objective1,waypoint21) 1

calibrate(rover0,camera2,objective2,waypoint5) 1

calibrate(rover0,camera3,objective3,waypoint5) 1

calibrate(rover0,camera4,objective4,waypoint12) 1

calibrate(rover0,camera5,objective5,waypoint8) 1

calibrate(rover0,camera8,objective8,waypoint13) 1

takeimage(rover0,waypoint0,objective3,camera3,colour) 4

takeimage(rover0,waypoint0,objective3,camera3,highres) 4

takeimage(rover0,waypoint0,objective3,camera3,lowres) 4

navigate(rover0,waypoint6,waypoint1) 10

navigate(rover0,waypoint6,waypoint2) 15
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navigate(rover0,waypoint4,waypoint3) 9

navigate(rover0,waypoint4,waypoint21) 26

navigate(rover0,waypoint6,waypoint5) 9

navigate(rover0,waypoint6,waypoint12) 23

navigate(rover0,waypoint7,waypoint8) 11

navigate(rover0,waypoint7,waypoint11) 8

navigate(rover0,waypoint17,waypoint13) 8

navigate(rover0,waypoint14,waypoint15) 8

navigate(rover0,waypoint17,waypoint18) 16

navigate(rover0,waypoint19,waypoint18) 10

navigate(rover0,waypoint19,waypoint20) 12

navigate(rover0,waypoint19,waypoint21) 13

samplesoil(rover0,rover0store,waypoint4) 5

samplesoil(rover0,rover0store,waypoint6) 5

samplesoil(rover0,rover0store,waypoint7) 5

samplesoil(rover0,rover0store,waypoint14) 5

samplesoil(rover0,rover0store,waypoint17) 5

samplesoil(rover0,rover0store,waypoint19) 5

samplerock(rover0,rover0store,waypoint4) 5

samplerock(rover0,rover0store,waypoint6) 5

samplerock(rover0,rover0store,waypoint14) 5

samplerock(rover0,rover0store,waypoint17) 5

samplerock(rover0,rover0store,waypoint19) 5

drop(rover0,rover0store) 1

calibrate(rover0,camera0,objective0,waypoint19) 1

calibrate(rover0,camera2,objective2,waypoint4) 1

calibrate(rover0,camera3,objective3,waypoint6) 1

calibrate(rover0,camera3,objective3,waypoint4) 1

calibrate(rover0,camera6,objective6,waypoint7) 1

calibrate(rover0,camera7,objective7,waypoint14) 1

calibrate(rover0,camera8,objective8,waypoint17) 1

takeimage(rover0,waypoint21,objective1,camera1,colour) 4
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takeimage(rover0,waypoint21,objective1,camera1,highres) 4

takeimage(rover0,waypoint21,objective1,camera1,lowres) 4

takeimage(rover0,waypoint5,objective2,camera2,colour) 4

takeimage(rover0,waypoint5,objective2,camera2,highres) 4

takeimage(rover0,waypoint5,objective2,camera2,lowres) 4

takeimage(rover0,waypoint5,objective3,camera3,colour) 4

takeimage(rover0,waypoint5,objective3,camera3,highres) 4

takeimage(rover0,waypoint5,objective3,camera3,lowres) 4

takeimage(rover0,waypoint12,objective4,camera4,colour) 4

takeimage(rover0,waypoint12,objective4,camera4,highres) 4

takeimage(rover0,waypoint12,objective4,camera4,lowres) 4

takeimage(rover0,waypoint8,objective5,camera5,colour) 4

takeimage(rover0,waypoint8,objective5,camera5,highres) 4

takeimage(rover0,waypoint8,objective5,camera5,lowres) 4

takeimage(rover0,waypoint13,objective8,camera8,colour) 4

takeimage(rover0,waypoint13,objective8,camera8,highres) 4

takeimage(rover0,waypoint13,objective8,camera8,lowres) 4

communicatesoildata(rover0,general,waypoint5,waypoint5,waypoint0) 3

communicatesoildata(rover0,general,waypoint8,waypoint8,waypoint0) 3

communicatesoildata(rover0,general,waypoint12,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint13,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint18,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint21,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint5,waypoint5,waypoint0) 3

communicaterockdata(rover0,general,waypoint8,waypoint8,waypoint0) 3

communicaterockdata(rover0,general,waypoint12,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint13,waypoint13,waypoint0) 3

communicaterockdata(rover0,general,waypoint18,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint21,waypoint21,waypoint0) 3

navigate(rover0,waypoint1,waypoint2) 10

navigate(rover0,waypoint2,waypoint1) 10

navigate(rover0,waypoint1,waypoint6) 10
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navigate(rover0,waypoint2,waypoint1) 10

navigate(rover0,waypoint1,waypoint2) 10

navigate(rover0,waypoint2,waypoint6) 15

navigate(rover0,waypoint3,waypoint2) 8

navigate(rover0,waypoint2,waypoint3) 8

navigate(rover0,waypoint11,waypoint7) 8

navigate(rover0,waypoint11,waypoint10) 7

navigate(rover0,waypoint15,waypoint14) 8

navigate(rover0,waypoint15,waypoint16) 8

navigate(rover0,waypoint15,waypoint19) 34

navigate(rover0,waypoint20,waypoint21) 11

samplesoil(rover0,rover0store,waypoint1) 5

samplesoil(rover0,rover0store,waypoint2) 5

samplesoil(rover0,rover0store,waypoint11) 5

samplesoil(rover0,rover0store,waypoint15) 5

samplerock(rover0,rover0store,waypoint2) 5

samplerock(rover0,rover0store,waypoint3) 5

samplerock(rover0,rover0store,waypoint11) 5

samplerock(rover0,rover0store,waypoint15) 5

samplerock(rover0,rover0store,waypoint20) 5

calibrate(rover0,camera2,objective2,waypoint3) 1

calibrate(rover0,camera6,objective6,waypoint11) 1

calibrate(rover0,camera7,objective7,waypoint15) 1

takeimage(rover0,waypoint19,objective0,camera0,colour) 4

takeimage(rover0,waypoint19,objective0,camera0,highres) 4

takeimage(rover0,waypoint19,objective0,camera0,lowres) 4

takeimage(rover0,waypoint4,objective2,camera2,colour) 4

takeimage(rover0,waypoint4,objective2,camera2,highres) 4

takeimage(rover0,waypoint4,objective2,camera2,lowres) 4

takeimage(rover0,waypoint6,objective3,camera3,colour) 4

takeimage(rover0,waypoint6,objective3,camera3,highres) 4

takeimage(rover0,waypoint6,objective3,camera3,lowres) 4
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takeimage(rover0,waypoint4,objective3,camera3,colour) 4

takeimage(rover0,waypoint4,objective3,camera3,highres) 4

takeimage(rover0,waypoint4,objective3,camera3,lowres) 4

takeimage(rover0,waypoint7,objective6,camera6,colour) 4

takeimage(rover0,waypoint7,objective6,camera6,highres) 4

takeimage(rover0,waypoint7,objective6,camera6,lowres) 4

takeimage(rover0,waypoint14,objective7,camera7,colour) 4

takeimage(rover0,waypoint14,objective7,camera7,highres) 4

takeimage(rover0,waypoint14,objective7,camera7,lowres) 4

takeimage(rover0,waypoint17,objective8,camera8,colour) 4

takeimage(rover0,waypoint17,objective8,camera8,highres) 4

takeimage(rover0,waypoint17,objective8,camera8,lowres) 4

communicatesoildata(rover0,general,waypoint8,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint13,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint18,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint8,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint13,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint18,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective2,colour,waypoint5,waypoint0) 3

communicateimagedata(rover0,general,objective3,colour,waypoint5,waypoint0) 3

communicateimagedata(rover0,general,objective2,highres,waypoint5,waypoint0) 3

communicateimagedata(rover0,general,objective3,highres,waypoint5,waypoint0) 3

communicateimagedata(rover0,general,objective2,lowres,waypoint5,waypoint0) 3

communicateimagedata(rover0,general,objective3,lowres,waypoint5,waypoint0) 3

communicateimagedata(rover0,general,objective3,colour,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective5,colour,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective3,highres,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective5,highres,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective3,lowres,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective5,lowres,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective3,colour,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective4,colour,waypoint12,waypoint0) 3
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communicateimagedata(rover0,general,objective3,highres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective4,highres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective3,lowres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective4,lowres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective3,colour,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective8,colour,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective3,highres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective8,highres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective3,lowres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective8,lowres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective3,colour,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective3,highres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective3,lowres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective1,colour,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective3,colour,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective1,highres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective3,highres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective1,lowres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective3,lowres,waypoint21,waypoint0) 3

navigate(rover0,waypoint10,waypoint9) 7

navigate(rover0,waypoint10,waypoint11) 7

navigate(rover0,waypoint16,waypoint15) 8

navigate(rover0,waypoint16,waypoint17) 8

samplesoil(rover0,rover0store,waypoint10) 5

samplesoil(rover0,rover0store,waypoint16) 5

samplerock(rover0,rover0store,waypoint10) 5

calibrate(rover0,camera6,objective6,waypoint10) 1

takeimage(rover0,waypoint3,objective2,camera2,colour) 4

takeimage(rover0,waypoint3,objective2,camera2,highres) 4

takeimage(rover0,waypoint3,objective2,camera2,lowres) 4

takeimage(rover0,waypoint11,objective6,camera6,colour) 4

takeimage(rover0,waypoint11,objective6,camera6,highres) 4
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takeimage(rover0,waypoint11,objective6,camera6,lowres) 4

takeimage(rover0,waypoint15,objective7,camera7,colour) 4

takeimage(rover0,waypoint15,objective7,camera7,highres) 4

takeimage(rover0,waypoint15,objective7,camera7,lowres) 4

communicatesoildata(rover0,general,waypoint6,waypoint5,waypoint0) 3

communicatesoildata(rover0,general,waypoint7,waypoint8,waypoint0) 3

communicatesoildata(rover0,general,waypoint5,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint6,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint17,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint13,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint17,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint19,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint4,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint5,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint19,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint6,waypoint5,waypoint0) 3

communicaterockdata(rover0,general,waypoint5,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint6,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint17,waypoint13,waypoint0) 3

communicaterockdata(rover0,general,waypoint13,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint17,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint19,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint4,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint5,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint19,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective5,colour,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective8,colour,waypoint12,waypoint0 3

communicateimagedata(rover0,general,objective5,highres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective8,highres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective5,lowres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective8,lowres,waypoint12,waypoint0) 3

navigate(rover0,waypoint9,waypoint8) 8
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navigate(rover0,waypoint9,waypoint13) 14

samplerock(rover0,rover0store,waypoint9) 5

calibrate(rover0,camera5,objective5,waypoint9) 1

takeimage(rover0,waypoint10,objective6,camera6,colour) 4

takeimage(rover0,waypoint10,objective6,camera6,highres) 4

takeimage(rover0,waypoint10,objective6,camera6,lowres) 4

communicatesoildata(rover0,general,waypoint7,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint17,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint13,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint17,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint17,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint13,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint17,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint20,waypoint21,waypoint0) 22

communicateimagedata(rover0,general,objective6,colour,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective6,highres,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective6,lowres,waypoint8,waypoint0) 3

communicateimagedata(rover0,general,objective2,colour,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective2,highres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective2,lowres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective0,colour,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective8,colour,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective0,highres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective8,highres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective0,lowres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective8,lowres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective0,colour,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective2,colour,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective0,highres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective2,highres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective0,lowres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective2,lowres,waypoint21,waypoint0) 3
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takeimage(rover0,waypoint9,objective5,camera5,colour) 4

takeimage(rover0,waypoint9,objective5,camera5,highres) 4

takeimage(rover0,waypoint9,objective5,camera5,lowres) 4

communicatesoildata(rover0,general,waypoint1,waypoint5,waypoint0) 3

communicatesoildata(rover0,general,waypoint2,waypoint5,waypoint0) 3

communicatesoildata(rover0,general,waypoint11,waypoint8,waypoint0) 3

communicatesoildata(rover0,general,waypoint1,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint2,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint14,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint15,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint6,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint14,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint15,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint2,waypoint5,waypoint0) 3

communicaterockdata(rover0,general,waypoint11,waypoint8,waypoint0) 3

communicaterockdata(rover0,general,waypoint2,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint14,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint15,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint6,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint14,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint15,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective6,colour,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective6,highres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective6,lowres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective8,colour,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective8,highres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective8,lowres,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint4,waypoint5,waypoint0) 3

communicatesoildata(rover0,general,waypoint10,waypoint8,waypoint0) 3

communicatesoildata(rover0,general,waypoint4,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint11,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint7,waypoint13,waypoint0) 3
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communicatesoildata(rover0,general,waypoint8,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint10,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint11,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint14,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint15,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint16,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint16,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint3,waypoint5,waypoint0) 3

communicaterockdata(rover0,general,waypoint4,waypoint5,waypoint0) 3

communicaterockdata(rover0,general,waypoint9,waypoint8,waypoint0) 3

communicaterockdata(rover0,general,waypoint10,waypoint8,waypoint0) 3

communicaterockdata(rover0,general,waypoint3,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint4,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint11,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint8,waypoint13,waypoint0) 3

communicaterockdata(rover0,general,waypoint9,waypoint13,waypoint0) 3

communicaterockdata(rover0,general,waypoint10,waypoint13,waypoint0) 3

communicaterockdata(rover0,general,waypoint11,waypoint13,waypoint0) 3

communicaterockdata(rover0,general,waypoint14,waypoint13,waypoint0) 3

communicaterockdata(rover0,general,waypoint15,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective7,colour,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective7,highres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective7,lowres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective7,colour,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective7,highres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective7,lowres,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint10,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint14,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint15,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint16,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint1,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint2,waypoint21,waypoint0) 3
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communicatesoildata(rover0,general,waypoint16,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint9,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint10,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint14,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint15,waypoint12,waypoint0) 3

communicaterockdata(rover0,general,waypoint2,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective5,colour,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective6,colour,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective7,colour,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective5,highres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective6,highres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective7,highres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective5,lowres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective6,lowres,waypoint13,waypoint0) 3

communicateimagedata(rover0,general,objective7,lowres,waypoint13,waypoint0) 3

communicatesoildata(rover0,general,waypoint7,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint8,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint10,waypoint18,waypoint0) 3

communicatesoildata(rover0,general,waypoint11,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint8,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint9,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint10,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint11,waypoint18,waypoint0) 3

communicaterockdata(rover0,general,waypoint3,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective7,colour,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective7,highres,waypoint12,waypoint0) 3

communicateimagedata(rover0,general,objective7,lowres,waypoint12,waypoint0) 3

communicatesoildata(rover0,general,waypoint7,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint8,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint10,waypoint21,waypoint0) 3

communicatesoildata(rover0,general,waypoint11,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint8,waypoint21,waypoint0) 3
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communicaterockdata(rover0,general,waypoint9,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint10,waypoint21,waypoint0) 3

communicaterockdata(rover0,general,waypoint11,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective5,colour,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective6,colour,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective5,highres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective6,highres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective5,lowres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective6,lowres,waypoint18,waypoint0) 3

communicateimagedata(rover0,general,objective5,colour,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective6,colour,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective5,highres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective6,highres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective5,lowres,waypoint21,waypoint0) 3

communicateimagedata(rover0,general,objective6,lowres,waypoint21,waypoint0) 3

54

communicatedsoildata(waypoint5) 25

communicatedsoildata(waypoint8) 25

communicatedsoildata(waypoint12) 25

communicatedsoildata(waypoint13) 25

communicatedsoildata(waypoint18) 25

communicatedsoildata(waypoint21) 25

communicatedrockdata(waypoint5) 30

communicatedrockdata(waypoint8) 30

communicatedrockdata(waypoint12) 30

communicatedrockdata(waypoint13) 30

communicatedrockdata(waypoint18) 30

communicatedrockdata(waypoint21) 30

communicatedimagedata(objective2,colour) 22

communicatedimagedata(objective2,highres) 25

communicatedimagedata(objective3,highres) 25

communicatedimagedata(objective2,lowres) 20
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communicatedimagedata(objective5,colour) 22

communicatedimagedata(objective5,lowres) 20

communicatedimagedata(objective4,colour) 22

communicatedimagedata(objective4,highres) 25

communicatedimagedata(objective4,lowres) 20

communicatedimagedata(objective8,lowres) 20

communicatedimagedata(objective1,colour) 22

communicatedimagedata(objective1,highres) 25

communicatedimagedata(objective1,lowres) 20

communicatedsoildata(waypoint6) 25

communicatedsoildata(waypoint7) 25

communicatedsoildata(waypoint17) 25

communicatedsoildata(waypoint19) 25

communicatedsoildata(waypoint4) 25

communicatedrockdata(waypoint6) 30

communicatedrockdata(waypoint17) 30

communicatedrockdata(waypoint19) 30

communicatedrockdata(waypoint4) 30

communicatedrockdata(waypoint20) 30

communicatedimagedata(objective6,lowres) 20

communicatedimagedata(objective0,highres) 25

communicatedsoildata(waypoint1) 25

communicatedsoildata(waypoint2) 25

communicatedsoildata(waypoint11) 25

communicatedsoildata(waypoint14) 25

communicatedsoildata(waypoint15) 25

communicatedrockdata(waypoint2) 30

communicatedrockdata(waypoint11) 30

communicatedrockdata(waypoint14) 30

communicatedrockdata(waypoint15) 30

communicatedsoildata(waypoint10) 25

communicatedsoildata(waypoint16) 25
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communicatedrockdata(waypoint3) 30

communicatedrockdata(waypoint9) 30

communicatedrockdata(waypoint10) 30

communicatedimagedata(objective7,colour) 22

communicatedimagedata(objective7,highres) 25

communicatedimagedata(objective7,lowres) 20
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Figure 32. Graphical view of rover problem 11.


