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Abstract As the information available to naive users through autonomous data
sources continues to increase, mediators become important to ensure that the wealth
of information available is tapped effectively. A key challenge that these information
mediators need to handle is the varying levels of incompleteness in the underlying
databases in terms of missing attribute values. Existing approaches such as QPIAD
aim to mine and use Approximate Functional Dependencies (AFDs) to predict
and retrieve relevant incomplete tuples. These approaches make independence
assumptions about missing values—which critically hobbles their performance when
there are tuples containing missing values for multiple correlated attributes. In this
paper, we present a principled probabilistic alternative that views an incomplete
tuple as defining a distribution over the complete tuples that it stands for. We
learn this distribution in terms of Bayesian networks. Our approach involves min-
ing/“learning” Bayesian networks from a sample of the database, and using it to
do both imputation (predict a missing value) and query rewriting (retrieve relevant
results with incompleteness on the query-constrained attributes, when the data
sources are autonomous). We present empirical studies to demonstrate that (i) at
higher levels of incompleteness, when multiple attribute values are missing, Bayesian
networks do provide a significantly higher classification accuracy and (ii) the relevant
possible answers retrieved by the queries reformulated using Bayesian networks
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provide higher precision and recall than AFDs while keeping query processing costs
manageable.

Keywords Data cleaning - Bayesian networks - Query rewriting -
Autonomous database

1 Introduction

As the popularity of the World Wide Web continues to increase, naive users have
access to more and more information in autonomous databases. Incompleteness in
these autonomous sources is extremely commonplace. Such incompleteness mainly
arises due to the way in which these databases are populated—by naive users,
or through (inaccurate) automatic extraction. Dealing with incompleteness in the
databases requires tools for dealing with uncertainty. Previous attempts at dealing
with this uncertainty by systems like QPIAD (Wolf et al. 2009) have mainly focused
on using rule-based approaches, popularly known in the database community as
Approximate Functional Dependencies (AFDs). The appeal of AFDs is due to
the ease of specifying the dependencies, learning and reasoning with uncertainty.
However, uncertain reasoning using AFDs adopts the certainty factors model, which
assumes that the principles of locality and detachment (Russell and Norvig 2010)
hold. But, these principles do not hold for uncertain reasoning and can lead to
erroneous reasoning. As the levels of incompleteness in the information sources
increases, the need for more scalable and accurate reasoning becomes paramount.

Full probabilistic reasoning avoids the traps of AFDs. Graphical models are an
efficient way of doing full probabilistic reasoning. A Bayesian network is such a
model, where direct dependencies between the variables in a problem are modeled
as a directed acyclic graph, and the indirect dependencies can be inferred. As
desired, Bayesian networks can model both causal and diagnostic dependencies.
Using Bayesian networks for uncertain reasoning has largely replaced rule-based
approaches in Artificial Intelligence. However, learning and inference on Bayesian
networks can be computationally expensive which might inhibit their applications
to handling incompleteness in autonomous data sources. In this paper, we consider
if these costs can be handled without compromising on the improved accuracy
offered by Bayesian networks, in the context of incompleteness in the autonomous
databases.

1.1 Incompleteness in autonomous databases

Increasingly many of the autonomous web databases are being populated by auto-
mated techniques or by naive users, with very little curation. For example, databases
like autotrader.com are populated using automated extraction techniques by crawl-
ing the text classifieds and by car owners entering data through forms. Scientific
databases such as CBioC (2013), also use similar techniques for populating the
database. However, Gupta and Sarawagi (2006) have shown that these techniques
are error prone and lead to incompleteness in the database in the sense that many
of the attributes have missing values. Wolf et al. (2009) report that 99 % of the
35,000 tuples extracted from Cars Direct were incomplete. When the mediator has
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privileges to modify the data sources, the missing values in these data sources can be
completed using “imputation”, which attempts to fill in the missing values with the
most likely value. As the levels of incompleteness in these data sources increase, it is
not uncommon to come across tuples with multiple missing values. Effectively finding
the most likely completions for these multiple missing values would require capturing
the dependencies between them. A second challenge arises when the underlying
data sources are autonomous, i.e., access to these databases are through forms, the
mediator cannot complete the missing values with the most likely values. Therefore,
mediators need to generate and issue a set of reformulated queries, in order to
retrieve the relevant answers with missing values. Efficiency considerations dictate
that the number of reformulations be kept low. In such scenarios, it becomes very
important for mediators to send queries that not only retrieve results with a large
fraction of relevant results (precision), but also a large number of relevant results
(recall).

QPIAD & AFDs The QPIAD system addresses the challenges in retrieving rel-
evant incomplete answers by learning the correlations between the attributes in
the database as AFDs and the value distributions as Naive Bayesian Classifiers.
AFDs are rule-based methods for dealing with uncertainty. AFDs adopt the certainty
factors model (Shortliffe 1976) which makes two strong assumptions:

1. Principle of Locality: Whenever there is a rule A — B, given evidence of A, we
can conclude B, regardless of the other rules and evidences.

2. Principle of Detachment: Whenever a proposition B is found to be true, the truth
of B can be used regardless of how it was found to be true.

However, these two assumptions do not hold in the presence of uncertainty. When
propagating beliefs, not only is it important to consider all the evidence but also their
sources. Therefore, using AFDs for reasoning with uncertainty can lead to cyclic
reasoning and fail to capture the correlations between multiple missing values. In
addition to these shortcomings, the beliefs are represented using a Naive-Bayesian
Classifier, which makes strong conditional independence assumptions, often leading
to inaccurate values.

1.2 Overview of our approach

Given the advantages of Bayesian networks over AFDs, we investigate if replacing
AFDs with Bayesian networks in QPIAD system, provides higher accuracy and
while keeping the costs manageable. Learning and inference with Bayesian net-
works are computationally harder than AFDs. Therefore, the challenges involved
in replacing AFDs with Bayesian networks include learning and using them to do
both imputation and query rewriting by keeping costs manageable. We use BANJO
software package (Hartemink et al. 2005) to learn the topology of the Bayesian
network and use BNT (Murphy et al. 2001) and INFER.NET (Minka et al. 2010)
software packages to do inference on them. Even though learning the topology
for the Bayesian network from a sample of the database involves searching over
the possible topologies, we found that high fidelity Bayesian networks could be
learned from a small fraction of the database by keeping costs manageable (in
terms of time spent in searching). Inference in Bayesian networks is intractable in
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the worst case if the network is multiply connected, i.e., there is more than one
undirected path between any two nodes in the network. We handle this challenge
by using approximate inference techniques. Approximate inference techniques are
able to retain the accuracy of exact inference techniques and keep the cost of
inference manageable. We compare the cost and accuracy of using AFDs and
Bayesian networks for imputing single and multiple missing values at different levels
of incompleteness in test data.

We also develop new techniques for generating rewritten queries using Bayesian
networks. The three challenges that are involved in generating rewritten queries are:

1. Selecting the attributes on which the new queries will be formulated. Selecting
these attributes by searching over all the attributes becomes too expensive as the
number of attributes in the database increases.

2. Determining the values to which the attributes in the rewritten query will
be constrained to. The size of the domains of attributes in most autonomous
databases is often large. Searching over each and every value can be expensive.

3. Most autonomous data sources have a limit on the number of queries to which
it will answer. The rewritten queries that we generate should be able to carefully
tradeoff precision with the throughput of the results returned.

We propose techniques to handle these challenges and compare them with AFD-
based approaches in terms of precision and recall of the results returned.

Organization The rest of the paper is organized as follows—We begin with a
discussion of related work, then in Section 3, we describe the problem setting and
background. In Section 4, we discuss how Bayesian network models of autonomous
databases can be learned by keeping costs manageable. In Section 5, we compare
the prediction accuracy and cost of using Bayesian network and AFDs for imputing
missing values. Next, in Section 6, we discuss how rewritten queries are generated
using Bayesian networks and compare them with AFD-approaches for single and
multi-attribute queries. Finally, we conclude in Section 7.

2 Related work

This work is a significant extension of the QPIAD system (Wolf et al. 2007, 2009),
which also deals with incompleteness in databases. While the QPIAD system also
learns attribute correlations, it does so using Approximate Functional Dependencies
(AFDs) and uses Naive Bayesian Classifiers for representing value distributions and
reformulating queries. Additionally, the QPIAD system can only handle missing val-
ues on a single attribute. In contrast, we use Bayesian network models learned from
a sample of the database to represent attribute correlations and value distributions.
We use the methods used in the QPIAD system as our baseline approach.
Completing missing values in databases using Bayesian networks has been ad-
dressed previously (Ramoni and Sebastiani 1997, 2001; Romero and Salmerén 2004;
Fernandez et al. 2012). Other methods have also been proposed to address learning
from missing data, for example, Batista and Monard (2002) propose using k-Nearest
Neighbor approach; Dempster et al. (1977) propose using an EM approach.
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But most methods focus on completing the missing values so as to preserve the
original data statistics so that other data mining techniques can be applied to it. We
concentrate on retrieving relevant possible answers in the presence of missing values
on single and multiple attributes. For example, Wu et. al. use association rules to
impute the value of the missing attributes (Wu et al. 2004), whereas we use Bayesian
networks to impute the value as well as retrieve results. In Section 5.2, we will show
that using Bayesian networks is clearly superior to using rule-based imputation.

Like QPIAD, and other work on querying over incomplete databases, we too
assume that the level of incompleteness in the database is small enough that it is
possible to get a training sample that is mostly complete. Thus, we use techniques
for learning from complete training data. If the training sample itself were to
be incomplete, then we will need to employ expectation-maximization techniques
during learning (Dempster et al. 1977).

Work on querying inconsistent databases usually focuses on fixing problems with
the query itself (Muslea and Lee 2005; Nambiar and Kambhampati 2006). If the
query has an empty result set, or if the query does not include all relevant keywords,
it can be automatically augmented to fix those shortcomings. The objective of this
work is to deal with shortcomings of the data—our query rewriting algorithms help
retrieve useful tuples even in the presence of multiple missing values in them.

3 Problem setting & background
3.1 Overview of QPTIAD

Since our main comparison is with the QPIAD system, we will provide a brief
overview of its operation. Given a relation R, a subset X of its attributes, and a
single attribute A of R, an approximate functional dependency (AFD) holds on a
relation R, between X and A, denoted by, X ~» A, if the corresponding functional
dependency X — A holds on all but a small fraction of tuples of R.

To illustrate how QPIAD works consider the query Q : Body = SUV issued to
Table 1. Traditional query processors will only retrieve tuples ¢; and 9. However, the
entities represented by tuples g and ¢;y are also likely to be relevant. The QPIAD
system’s aim is to retrieve tuples g and t1, in addition to ¢; and ty. In order to retrieve
tuples tg and ¢y it uses AFDs mined from a sample of the database. For example, an
AFD Model ~» Body may be mined for the fragment of the cars database shown in
Table 1. This indicates that the value of a car’s Model attribute often (but not always)
determines the value of its Body attribute. These rules are used to retrieve relevant
incomplete answers.

When the mediators have access privileges to modify the database, AFDs are
used along with Naive Bayesian Classifiers to fill in the missing values as a simple
classification task and then traditional query processing will suffice to retrieve
relevant answers with missing values. However, in more realistic scenarios, when
such privileges are not provided, mediators generate a set of rewritten queries and
send to the database, in addition to the original user query. According to the AFD
mentioned above and tuple #; retrieved by traditional query processors, a rewritten
query Q] : OModel=santa May be generated to retrieve fg. Similarly Q) : omodel=MDX
may be generated which will retrieve #g.
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Table 1 A fragment of a car

ID Make Model Year Body Mileage
database

1 Audi Null Null Sedan 20000
2 Audi A8 Null Sedan 15000
3 BMW 745 2002 Sedan 40000
4 Audi Null 2005 Sedan 20000
5 Audi A8 2005 Sedan 20000
6 BMW 645 1999 Convt Null
7 Hyundai Santa 1990 SUvV 45000
8 Hyundai Santa 1993 Null 40000
9 Acura MDX 1990 SUv 30000
10 Acura MDX 1990 Null 12000

Multiple rules can be mined for each attribute, for example, the mileage and
year of a car might determine the body style of the car. So a rule {Year, Mileage}
~ {Body} could be mined. Each rule has a confidence associated with it, which
specifies how accurate the determining set of an attribute’s AFD is in predicting it.
The current QPIAD system uses only the highest confidence AFD! of each attribute
for imputation and query rewriting. In addition, it only aims to retrieve relevant
incomplete answers with atmost one missing value on query-constrained attributes.

To illustrate the shortcomings of AFDs, consider a query Q : 0 ayodel= ASAYear=2005
issued to the fragment of the car database shown in Table 1. When the mediator
has modification privileges, the missing values for attributes Model and Year can be
completed with the most likely values, before returning the answer set. Using AFDs
to predict the missing values in tuple ¢#;, ignores the correlation between the Model
and Year; predicting them independently. Substituting the value for missing attribute
Year in tuple t, using just the highest confidence rule as is done in QPIAD, often
leads to inaccurate propagation of beliefs as the other rules are ignored. When the
mediator does not have privileges to modify the database, a set of rewritten queries
are generated and issued to the database to retrieve the relevant uncertain answers.
Issuing O to the database fragment in Table 1 retrieves 5. The rewritten queries
generated by methods discussed in QPIAD retrieve tuples f, and #. However, it
does not retrieve tuple #;, but it is highly possible that the entity represented by it
is relevant to the user’s query.

3.2 Bayesian networks

A Bayesian network (Pearl 1988) is a graphical representation of the probabilistic
dependencies between the variables in a domain. The generative model of a rela-
tional database can be represented using a Bayesian network, where each node in
the network represents an attribute in the database. The edges between the nodes
represent direct probabilistic dependencies between the attributes. The strength of
these probabilistic dependencies are modeled by associating a conditional probability
distribution (CPD) with each node, which represents the conditional probability of
a variable, given the combination of values of its immediate parents. A Bayesian

IThe actual implementation of QPIAD uses a variant to the highest confidence AFD for some of the
attributes. For details we refer the reader to Wolf et al. (2009).
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network is a compact representation of the full joint probability distribution of the
nodes in the network. The full joint distribution can be constructed from the CPDs
in the Bayesian network. Given the full joint distribution, any probabilistic query
can be answered. In particular, the probability of any set of hypotheses can be
computed, given any set of observations, by conditioning and marginalizing over
the joint distribution. Since the semantics of Bayesian networks are in terms of the
full joint probability distribution, inference using them considers the influence of all
variables in the network. Therefore, Bayesian networks, unlike AFDs, do not make
the Locality and Detachment assumptions.

The Markov blanket of a node X in the Bayesian network is the set of nodes
comprising its parents, its children, and its children’s other parents. If the value of
all the nodes in the Markov blanket of X are given as evidence, then the value
of X is independent of all other nodes in the network (Pearl 1988). The junction-
tree algorithm (Jensen et al. 2006), also known as a clique tree, is a message passing
algorithm that efficiently evaluates the posterior distribution on a Bayesian network.
Gibb’s sampling (Bishop et al. 2006) is a method of approximate inference on a
Bayesian network that relies on Markov sampling of the network.

4 Learning Bayesian network models

In this section we discuss how we learn the topology and parameters of the Bayesian
network by keeping costs manageable. We learn the generative model of two
databases—The first dataset is extracted from Cars.com (Cars.com 2013) with the
schema Cars(Model, Year, Body, Make, Price, Mileage). We call it the ‘car database’
in this paper. The second database is the adult database consisting of 15000 tuples
obtained from UCI data repository (Frank and Asuncion 2010) with the schema
Adult(WorkClass, Occupation, Education, Sex, HoursPerWeek, Race, Relationship,
NativeCountry, MaritalStatus, Age). The car database has 55,000 tuples. We extract
a fragment of 8,000 tuples from this dataset to learn the generative model. The adult
database has 15,000 tuples, and we use the entire dataset for learning. Tables 2 and 3
describe the schema and the domain sizes of the attributes in the two databases.
The first row in these table corresponds to the scenario where a mediator system
is accessing the database. In such a scenario, the system does not have complete
knowledge about the domain, and is therefore able to access only a fraction of the
data. The attributes with continuous values are discretized and used as categorical
attributes. Price and Mileage attributes in the cars database are discretized by
rounding off to the nearest five thousand. In the adult database attributes Age and
Hours Per Week are discretized to the nearest multiple of five.

The structure of the Bayesian network is learned from a complete sample of the
autonomous database. We use the BANJO package (Hartemink et al. 2005) as a
black box for learning the structure of the Bayesian network. To keep the learning

Table 2 Domain size of attributes in car database

Database Year Model Make Price Mileage Body
Cars-8000-20(Mediator) 9 38 6 19 17 5
Cars-8000-100(Complete) 12 41 6 30 20 7
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Table 3 Domain size of attributes in adult database

Database Age Work Education Marital Occupation Relationship Race Sex Hours Native
class status per country
week
Adult-15000- 8 7 16 7 14 6 5 2 10 37
20(Mediator)
Adult-15000- 8§ 7 16 7 14 6 5 2 10 40
100(Complete)

costs manageable we constrain nodes to have at most two parents. In cases where
there are more than two attributes directly correlated to an attribute, these attributes
can be modeled as children. There is no limit on the number of children a node
can have. Figure 1a shows the structure of a Bayesian network learned for the Cars
database and Fig. 1b for the adult database. We used samples of sizes varying from
5-20 % of the database and found that the structure of the highest scoring network
remained the same.

The BANJO settings used were: searcher choice = Simulated Annealing, proposer
choice = Random Local Move (Addition, deletion, or reversal of an edge in the

Fig. 1 Bayesian networks

learned from a sample of the @
data. The size of the sample

was varied from 5 to 20 %; the

same structure was observed in
all cases
(a) Cars.com dataset

Relationship @

. Native
Marital
Country
Status

Hours Per
Week

(a) adult database
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current network, selected at random), evaluator choice = BDe (Heckerman et
al. 1995), decider choice = Metropolis (A Metropolis-Hastings stochastic decision
mechanism, where any network with a higher score is accepted, and any with a
lower score is accepted with a probability based on a system parameter known as
the “temperature”.)

We also experimented with different time limits for the search, ranging from 5-
30 min. We did not see any change in the structure of the highest confidence network.

Bayesian network inference is used in both imputation and query rewriting tasks.
Imputation involves substituting the missing values with the most likely values,
which involves inference. Exact inference in Bayesian networks is NP-hard (Cooper
1990) in the worst case, if the network is multiply connected. Therefore, to keep
query processing costs manageable we use approximate inference techniques. In
our experiments described in Section 5, we found that using approximate inference
techniques retains the accuracy edge of exact inference techniques, while keeping
the prediction costs manageable. We use the BNT package (Murphy et al. 2001) for
doing inference on the Bayesian Network? for the imputation task. We experimented
with various exact inference engines that BNT offers and found the junction-tree
engine to be the fastest. While querying multiple variables, junction tree inference
engine can be used only when all the variables being queried form a clique. When
they do not form a clique we use the variable elimination algorithm (Jensen and
Nielsen 2007).

5 Imputation using Bayesian networks

In this section we compare the prediction accuracy and cost of Bayesian networks
versus AFDs for imputing single and multiple missing values when there is in-
completeness in test data. The prediction accuracy will be measured in controlled
experiments where the ground truth is known, and the cost is determined as the time
taken by the algorithm to generate the result. When the mediator has privileges to
modify the underlying autonomous database, the missing values can be substituted
with the most probable value. Imputation using Bayesian networks first computes
the posterior of the attribute that is to be predicted given the values present in the
tuple and completes the missing value with the most likely value given the evidence.
When predicting multiple missing values, the joint posterior distribution over the
missing attributes are computed and the values with the highest probability are used
for substituting the missing values. Computing the joint probability over multiple
missing values captures the correlations between the missing values, which gives
Bayesian networks a clear edge over AFDs. In contrast, imputation using AFDs uses
the AFD with the highest confidence for each attribute for prediction. If an attribute
in the determining set of an AFD is missing, then that attribute is first predicted
using other AFDs (chaining), before the original attribute can be predicted. The
most likely value for each attribute is used for completing the missing value. When
multiple missing values need to be predicted, each value is predicted independently.

’In this prototype, we manually transferred the output of the BANJO module to the BNT module.
In future systems, we will integrate them programmatically.
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Before discussing the experimental results, we note that an implicit assumption
for our method to work is that the incompleteness in the data is random. In more
precise statistical terms, we assume that our data attributes are missing at random
(Heitjan and Basu 1996). While this assumption does hold by-and-large, it is certainly
not guaranteed to always hold in real world data. In used car data, for example,
the owners of cars with known defects (e.g. Yugo), may well opt to not specify the
make. If this happens systematically and completely, then our system will not be
able to learn how make being Yugo will be correlated with any other attribute/value
combination.

We use the car and adult databases described in the previous section. We compare
AFD approach used in QPIAD which uses Naive Bayesian Classifiers to represent
value distributions with exact and approximate inference in Bayesian networks. We
call exact inference in Bayesian network as BN-Exact. We use Gibbs sampling as
the approximate inference technique, which we call BN-Gibbs. For BN-Gibbs, the
probabilities are computed using 250 samples. For the imputation experiments, the
data was divided into a training set and a test set. In the test set, randomly chosen
values from the attribute being tested were removed.

5.1 Imputing single missing values

Our experiments show that prediction accuracy using Bayesian networks is higher
than AFDs for attributes which have multiple high confidence rules. Approaches
for combining multiple rules for classification have been shown to be ineffective by
Khatri (2006). Since there is no straightforward way for propagating beliefs using
multiple AFDs, only the AFD with the highest confidence is used for propagating
beliefs. This method, however, fails to take advantage of additional information
that the other rules provide. Bayesian networks, on the other hand, systematically
combine evidences from multiple sources. Figure 2 shows the prediction accuracy in
the presence of a single missing value for each attribute in the Cars database. We
notice that there is a statistically significant difference in prediction accuracies by the
two approaches for the attributes Model and Year. There are multiple rules that are
mined for these two attributes but using just the rule with highest confidence, ignores
the influence of the other available evidence, which affects the prediction accuracy.

Fig. 2 Single attribute 1 =
prediction accuracy (cars) M ©BN-Exact mBN-Gibbs = AFDs
g 0.8
5 e [
ot & :
< 06 2 2
c o] b
o a5 =
€ o4 = &
el ] b
g ] *
a 0.2 & = I

R/Iake Model Year Price Mileage Body
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5.2 Imputing multiple missing values

In most real-world scenarios, however, the number of missing values per tuple is
likely to be more than one. The advantage of using a more general model like
Bayesian networks becomes even more apparent in these cases. Firstly, AFDs cannot
be used to impute all combinations of missing values, this is because when the
determining set of an AFD contains a missing attribute, then the value needs to
be first predicted using a different AFD by chaining. While chaining, if we come
across an AFD containing the original attribute to be predicted in its determining
set, then predicting the missing value becomes impossible. When the missing values
are highly correlated, AFDs often get into such cyclic dependencies. In Fig. 3 we
can see that the attribute pairs Year-Mileage, Body-Model and Make-Model cannot
be predicted by AFDs. As the number of missing values increases, the number of
combinations of missing values that can be predicted reduces. In our experiments
with the Cars database, when predicting three missing values, only 9 out of the 20
possible combinations of missing values could be predicted.

On the other hand, Bayesian networks can predict the missing values regardless of
the number and combination of values missing in a tuple. Secondly, while predicting
the missing values, Bayesian networks compute the joint probability distribution
over the missing attributes which allows them to capture the correlations between
the attributes. In contrast, prediction using AFDs, which use a Naive Bayesian
Classifier to represent the value distributions, predict each of the missing attributes
independently, ignoring the interactions between them. The attribute pair Year-
Model in Fig. 3 shows that the prediction accuracy is significantly higher when
correlations between the missing attributes are captured. We also observe that in
some cases, when the missing values are D-separated (Geiger et al. 1990) given the
values for other attributes in the tuple, the performance of AFDs and Bayesian net-
works is comparable. In Fig. 3, we can see that the prediction accuracy for Mileage-
Make and Mileage-Model are comparable for all the techniques since attributes are
D-separated given the other evidence in the tuple. However, the number of attributes
that are D-separated is likely to decrease with increase in incompleteness in the
databases.

There is an interesting trade-off between the time taken and the accuracy of
imputation when dealing with tuples with 2 or more missing attributes. Suppose

Fig. 3 Multiple attribute 0.8
prediction accuracy (cars) DAFD
0.7 ® BN-Gibbs
@ BN-Exact

©c o
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| |
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w E~Y
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that the attributes that are missing are X = {x, xa, ..., X,} and the attributes that are
known are A = {ay, ay, ..., a,}. Then one approach would be to find those attribute
values for x; that maximize P(x;|A) individually. This would be the “most likely
estimation” approach, and the fastest method; however, this is also the least accurate
since it ignores all interactions among the attributes in X. A slightly more accurate
approach would be a “greedy search” approach, where the value for one of the
variables in X is (i) found using arg max(x;|A), and then (ii) set as evidence. This
process is repeated for the remaining unknown attributes. The imputation of those
attributes is, therefore, informed by A U x;. An even more accurate approach is to
use “most probable explanation”, where we find the entire set of the attributes X
that maximizes the joint conditional probability P(X|A). This is the approach that
we use in this paper.

5.3 Prediction accuracy with increase in incompleteness in test data

As the incompleteness in the database increases, not only does the number of
values that need to be predicted increase, but also the evidence for predicting these
missing values reduces. We compared the performance of Bayesian networks and
AFDs as the incompleteness in the autonomous databases increases. We see that
the prediction accuracy of AFDs drops faster with increase in incompleteness. This
is because the chaining required for predicting missing values using AFDs increases
which in turn increases the chances of getting into cyclic dependencies. Also, when an
attribute has multiple AFDs, propagating beliefs using just one rule and ignoring the
others, often violates the principles of detachment and locality (Heckerman 1992)
impacting the prediction accuracy.

On the other hand, Bayesian networks, being a generative model, can systemat-
ically infer the values of any set of attributes given the evidence of any other set.
Therefore, as the incompleteness of the database increases, the prediction accuracy
of Bayesian Networks will be significantly higher than that of AFDs. Figure 4 shows
the prediction accuracy of AFDs and Bayesian networks when single and multiple
attributes need to be predicted in the car and adult databases. We see that both
Bayesian networks approaches have a higher prediction accuracy than AFDs at all
levels of incompleteness.

5.4 Time taken for imputation

We now compare the time taken for imputing the missing values using AFDs, exact
inference (junction tree) and Gibbs sampling (250 samples) as the number of missing
values in the autonomous database increases. Table 4 reports the time taken to
impute a Cars database with 5,479 tuples and Fig. 4 shows the accuracy. In Fig. 4
we can clearly see that the AFD based method is outperformed by both the Gibbs
sampling based inference method as well as the Exact Inference method. Graphs
(a—b) use the used car database and graphs (c—d) use the census dataset. We can see
from the curves that using approximate inference is not much less accurate than using
exact inference both in the case of single attribute imputation (a, c¢) and two attribute
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Fig. 4 Prediction Accuracy with increase in percentage of incompleteness in test data for various
missing attributes. a—¢ Car database, d adult database

imputation (b, d). The difference is about 4 percentage points in the worst case, so
we can say that the preferred method for most applications is Gibbs sampling.

Table 4 shows the time taken by each of these methods as the percentage of
incompleteness varies. Note that the time taken by the AFD method reduces with
higher incompleteness because there are fewer AFDs learned from the data.

Table 4 Time taken for predicting 5,479 tuples by AFDs, BN-Gibbs (250 samples) and BN-exact in
seconds

Percentage of Time taken Time taken Time taken
incompleteness (%) for AFD (s) by BN-Gibbs (s) by BN-exact (s)
0 0.271 44.46 16.23

10 0.267 47.15 44.88

20 0.205 52.02 82.52

30 0.232 54.86 128.26

40 0.231 56.19 182.33

50 0.234 58.12 248.75

60 0.232 60.09 323.78

70 0.235 61.52 402.13

80 0.262 63.69 490.31

90 0.219 66.19 609.65
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6 Query rewriting with Bayesian networks

In information integration scenarios when the underlying data sources are au-
tonomous, missing values cannot be completed using imputation. Our goal is to
retrieve all relevant answers to the user’s query, including tuples which are relevant,
but have missing values on the attributes constrained in the user’s query. Since
query processors are allowed read-only access to these databases, the only way to
retrieve the relevant answers with missing values on query-constrained attributes is
by generating and sending a set of reformulated queries that constrain other relevant
attributes. We describe two techniques—BN-All-MB and BN-Beam—for retrieving
such relevant incomplete results using Bayesian networks.

6.1 Generating rewritten queries

Table 5 shows a different fragment of the database shown in Table 1. We will use this
fragment to explain our approach. Notice that tuples #,, 3 have one missing (null)
value and tuples ts, ts, t7, ts have two missing values. To illustrate query rewriting
when a single attribute is constrained in the query, consider a query(Q) oBody=sedan-
First, the query Q is issued to the autonomous database and all the certain answers
which correspond to tuples #;, t3, £y and ¢5 in the Table 5 are retrieved. This set of
certain answers forms the base result set. However, tuple t,, which has a missing
value for Body (possibly due to incomplete extraction or entry error), is likely to
be relevant since the value for Body should have been Sedan had it not been missing.
In order to determine the attributes and their values on which the rewritten queries
need to be generated, we use the Bayesian network learned from the sample of the
autonomous database.

Using the same example, we now illustrate how rewritten queries are generated.
First, the set of certain answers which form the base result set are retrieved and
returned to the user. The attributes on which the new queries are reformulated
consist of all attributes in the Markov blanket of the original query-constrained
attribute. We consider all attributes in the Markov blanket while reformulating
queries because given the values of these attributes, the original query-constrained
attribute is dependent on no other attribute in the Bayesian network. From the
learned Bayesian network shown in Fig. 1a, the Markov blanket of the attribute Body
consists of the attributes {Year, Model}. The value that each of the attributes in the
rewritten query can be constrained to is limited to the distinct value combinations

Table 5 A Fragment of a car

1D Make Model Year Body Mileage
database -

1 Audi A8 2005 Sedan 20000
2 Audi A8 2005 Null 15000
3 Acura tl 2003 Sedan Null
4 BMW 745 2002 Sedan 40000
5 Null 745 2002 Sedan Null
6 Null 645 1999 Convt Null
7 Null 645 1999 Coupe Null
8 Null 645 1999 Convt Null
9 BMW 645 1999 Coupe 40000
10 BMW 645 1999 Convt 40000
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Algorithm 1 Algorithm for BN-All-MB

Let R(A;, Az, .., A,) be a database relation. Suppose MB(A,) is the set of attributes
in the Markov blanket of attribute A,. A query Q: o4 is processed as follows

p=Vp

1. Send Q to the database to retrieve the base result set RS(Q). Show RS(Q), the
set of certain answers, to the user.

2. Generate a set of new queries Q’, order them, and sggd the most relevant ones
to the database to retrieve the extended result set RS(Q) as relevant possible
answers of Q. This step contains the following tasks.

(a) Generate Rewritten Queries. Let wypa,)) (RS(Q)) be the projection of RS(Q)
onto MB(A)). For each distinct tuple ¢ in wmp@,) (RS(Q)), create a selec-
tion query Q’; in the following way. For each attribute A, in MB(A,), create
a selection predicate A,=t;.v,. The selection predicates of Q’; consist of the
conjunction of all these predicates

(b) Select the Rewritten Queries. For each rewritten query Q’;, compute the
estimated precision and estimated recall using the Bayesian network as
explained earlier. Then order all Q’;s in order of their F-Measure scores and
choose the top-K to issue to the database.

(c) Order the Rewritten Queries. The top-K Q’;s are issued to the database in the
decreasing order of expected precision.

(d) Retrieve extended result set. Given the ordered top-K queries
{Q’;, O, ..., Q’k} issue them to the database and retrieve their result sets.
The/Llnion of result sets RS(Q’;), RS(Q",), ..., RS(Q’k) is the extended result
set RS(Q).

for each attribute in the base result set. This is because, the values that the other
attributes take are highly likely to be present in relevant incomplete tuples. This
tremendously reduces the search effort required in generating rewritten queries,
without affecting the recall too much. However, at higher levels of incompleteness,
this might have a notable impact on recall, in which case, we would search over the
values in the entire domain of each attribute. Continuing our example, when the
query Q is sent to the database fragment shown in Table 5, tuples ¢, 3, t; and ¢5 are
retrieved. The values over which the search is performed for Model is {AS, tl, 745}
and for Year is {2002, 2003, 2005}.
Some of the rewritten queries that can be generated by this process are

Q’1: OModel=A8nYear=2005> Q2 : OModel=tinYear=2003 and
Q’s: OModel=745AYear=2002-

Each of these queries differ in the number of results that they retrieve and the
fraction of retrieved results that are relevant. An important issue here is to decide
which of these queries should be issued to the autonomous database and in which
order. If we are allowed to send as many queries as we want, ordering the queries in
terms of their expected precision would obviate the need for ranking the relevant
possible results once they are retrieved. This is because the probability that the
missing value in a tuple is exactly the value the user is looking for is the same as the
expected precision of the query that retrieves the tuple. However, limits are often
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imposed on the number of queries that can be issued to the autonomous database.
These limits could be due to network or processing resources of the autonomous data
sources. Given such limits, the precision of the answers need to be carefully traded off
with selectivity (the number of results returned) of the queries. One way to address
this challenge is to pick the top-K queries based on the F-measure metric (Manning et
al. 2008), as pointed out by Wolf et al. F-measure is defined as the weighted harmonic
mean of precision (P) and recall (R) measures :

l1+a)-P-R
a-P+R

For each rewritten query, the F-measure metric is evaluated in terms of its ex-
pected precision and expected recall. The latter which can be computed from the
expected selectivity. Expected precision is computed from the Bayesian network
and expected selectivity is computed the same way as computed by the QPIAD
system, by issuing the query to the sample of the autonomous database. For our
example, the expected precision of the rewritten query ouodei=A8AYear=2005 €an be
computed as the P(Body=Sedan | Model=A8 AYear=2005) which is evaluated by
inference on the learned Bayesian network. Expected selectivity is computed as
SmplSel(Q)-SmplRatio(R), where SmplSel(Q) is the sample selectivity of the query
0O, which is the fraction of the tuples in the sample returned by the query and
SmplRatio(R) is the ratio of the original database size to the size of the sample. For
example, if the original database has 1 million tuples, and our sample database has
10,000 tuples, then the SmplRatio(R) is 10*/10° = 0.01. If the query results have 1,000
tuples in them, then SmplSel(Q) is 103/10* = 0.1. We send queries to the original
database and its sample offline and use the cardinalities of the result sets to estimate
the ratio.

We refer to this technique for generating rewritten queries by constraining all
attributes in the Markov blanket as BN-AIl-MB. In Section 6.2.1 we compare the
performance of BN-AIl-MB and AFD approaches in retrieving uncertain relevant
tuples. However, the issue with constraining all attributes in the Markov blanket
is that its size could be arbitrarily large. Since the Markov blanket comprises
the children, the parents, and the children’s other parent nodes, the number of
attributes contrained in the rewritten queries becomes very large. This will reduce
the throughput of the queries significantly. As we mentioned earlier, in cases where
the autonomous database has a limit on the number of queries to which it will
respond, we need to carefully trade off precision of the rewritten queries with
their throughput. BN-AIl-MB and AFD approaches decide upfront the attributes
to be constrained and search only over the values to which the attributes will be
constrained. Both these techniques try to address this issue by using the F-measure
metric to pick the top-K queries for issuing to the database—all of which have the
same number of attributes constrained. A more effective way to trade off precision
with the throughput of the rewritten queries is by making an “online” decision on the
number of attributes to be constrained. We propose a technique, BN-Beam which
searches over the Markov blanket of the original query-constrained attribute, and
picks the best subset of the attributes with high precision and throughput.
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6.1.1 Generating rewritten queries using BN-beam

We now describe BN-Beam, our technique for generating rewritten queries which
finds a subset of the attributes in the Markov blanket of the query-constrained
attribute with high precision and throughput. To illustrate how rewritten queries are
generated using BN-Beam, consider the same query(Q) oBody=sedan- First, Q is sent to
the database to retrieve the base result set. We consider the attributes in the Markov
blanket of the query-constrained attribute to be the potential attributes on which the
new queries will be formulated. We call this set the candidate attribute set.

For query Q, the candidate attribute set consists of attributes in the Markov
blanket of attribute Body which consists of attributes {Model, Year} for the Bayesian
Network in Fig. 1a. Once the candidate attribute set is determined, a beam search
with a beam width, K and level, L, is performed over the distinct value combinations
in the base result set of the attributes in the candidate attribute set. For example,
when the query Q is sent to the database fragment shown in Table 5, tuples #;, t3, t4
and ¢5 are retrieved. The values over which the search is performed for Model is {AS,
tl, 745} and for Year is {2002, 2003, 2005} . Starting from an empty rewritten query, the
beam search is performed over multiple levels, looking to expand the partial query
at the previous level by adding an attribute-value to it. For example, at the first level
of the search five partial rewritten queries: OModel=745s OModel—A8> OModel—=tls OYear—=2002
and oy..—2003 may be generated. An important issue here is to decide which of the
queries should be carried over to the next level of search. Since there is a limit on the
number of queries that can be issued to the autonomous database and we want to
generate rewritten queries with high precision and throughput while keeping query
processing costs low, we pick the top-K queries based on the F-measure metric, as
described earlier. The advantage of performing a search over both attributes and
values for generating rewritten queries is that there is much more control over the
throughput of the rewritten queries as we can decide how many attributes will be
constrained.

The top-K queries at each level are carried over to the next level for further
expansion. For example, consider query oaoqe—745 Which was generated at level one.
Atlevel two, we try to create a conjunctive query of size two by constraining the other
attributes in the candidate attribute set. Say we try to add attribute Year, we search
over the distinct values of Year in the base set with attribute model taking the value
745. At each level i, we will have the top-K queries with highest F-measure values
with i or fewer attributes constrained. The top-K queries generated at the Level
L are sorted based on expected precision and sent to the autonomous database in
that order to retrieve the relevant possible answers. We now describe the BN-Beam
algorithm for generating rewritten queries for single-attribute queries.

In step 2(d), it is important to remove duplicates from RS(Q). Since rewritten
queries may constrain different attributes, the same tuple might be retrieved by dif-
ferent rewritten queries. For example, consider two rewritten queries- Q’;:0model=A8
and Q’,:0year—2005, that can be generated at level one for the same user query Q, that
aims to retrieve all Sedan cars. All A8 cars manufactured in 2005 will be returned
in the answer sets of both queries. Therefore, we need to remove all duplicate
tuples.
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Algorithm 2 Algorithm for BN-Beam

Let R(A;, A,, ..., A,) be a database relation. Suppose MB(A,) is the set of
attributes in the Markov blanket of attribute A ,. All the steps in processing a query
Q: 04,-y, is the same as described for BN-AlI-MB except step 2(a) and 2(d).

2(a) Generate Rewritten Queries. A beam search is performed over the attributes
in MB(A) and the value for each attribute is limited to the distinct values
for each attribute in RS(Q). Starting from an empty rewritten query, a partial
rewritten query (PRQ) is expanded, at each level, to add an attribute-value
pair from the set of attributes present in M B(A ) but not added to the partial
rewritten query already. The queries with top-K values for F-measure scores,
computed from the estimated precision and estimated recall computed from
the sample, are carried over to the next level of the search. The search is
repeated over L levels. .

2(d) Post-filtering. Remove the duplicates in RS(Q).

6.1.2 Handling multi-attribute queries

Retrieving relevant uncertain answers for multi-attribute queries has been only
superficially addressed in the QPIAD system. It attempts to retrieve only uncertain
answers with missing values on any one of the multiple query-constrained attributes.
Here we describe how BN-All-MB and BN-Beam can be extended to retrieve tuples
with missing values on multiple query-constrained attributes.

BN-AIl-MB: The method described to handle single-attribute queries using BN-
All-MB can be easily generalized to handle multi-attribute queries. The rewritten
queries generated will constrain every attribute in the union of the Markov blanket
of the constrained attributes.

BN-Beam: Similarly, using BN-Beam to handle multi-attribute queries is sim-
ple extension of the method described for single-attribute queries. The candidate
attribute set consists of the union of the attributes in the Markov blanket of each
query-constrained attribute.

To illustrate how new queries are reformulated to retrieve possibly relevant
answers with multiple missing values on query-constrained attributes, consider an
example qQUETY Oprake — BMW AMileage = 40000 S€Nt to database fragment in Table 5. First,
this query retrieves the base result set which consists of tuples 1y, t9, t;9. The set of
candidate attributes on which the new queries will be formulated is obtained by the
union of attributes in the Markov blanket of the query-constrained attributes. For
the learned Bayesian network shown in Fig. 1a, this set consists of {Model, Year}.
Once the candidate attribute set is determined, a beam search with a beam width,
K, is performed similar to the case when a single attribute is constrained. At the
first level of the search some of the partial rewritten queries that can be generated
are OModel=745s OModel=645 aNd Oyeqr=1999. The top-K queries with highest F-measure
values are carried over to the next level of the search. The top-K queries generated
at the Level L are sent to the autonomous database to retrieve the relevant possible
answers.
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6.2 Empirical evaluation of query rewriting

The aim of the experiments reported in this section is to compare the precision
and recall of the relevant uncertain results returned by rewritten queries generated
by AFDs and Bayesian networks for single and multi-attribute queries. We use
the datasets as described in Section 4 and partition them into test and training
sets. 15 % of the tuples are used as the training set. The training set is used for
learning the topology and parameters of the Bayesian network and AFDs. It is
also used for estimating the expected selectivity of the rewritten queries. We use
the Expectation Propagation inference algorithm (Minka 2001) (with 10 samples)
available in Infer. NET software package (Minka et al. 2010) for carrying inference
on the Bayesian network.

In order to evaluate the relevance of the answers returned, we create a copy of
the test dataset which serves as the ground truth dataset. We further partition the
test data into two halves. One half is used for returning the certain answers, and in
the other half all the values for the constrained attribute(s) are set to null. Note that
this is an aggressive setup for evaluating our system. This is because typical databases
may have less than 50 % incompleteness and even the incompleteness may not be on
the query-constrained attribute(s). The tuples retrieved by the rewritten queries from
the test dataset are compared with the ground truth dataset to compute precision
and recall. Since the answers returned by the certain result set will be the same for
all techniques, we consider only uncertain answers while computing precision and
recall.

6.2.1 Comparison of rewritten queries generated by AFDs and BN-All-MB

Figure 5 shows the precision-recall curve for queries on attribute Make in the car
database. The size of the Markov blanket and the determining set is one for attribute
Make. We note that there is no difference in the quality of the results returned by
AFDs and BN-AII-MB in this case (see Fig. 5). Next, we compare the quality of
the results returned by AFDs and BN-All-MB when the size of the Markov blanket
and determining set of the AFD of the constrained attribute is greater than one.
Figure 5 shows the precision and recall curves for the queries issued to car and adult
databases. For the query on the adult database, we found that the order in which
the rewritten queries were ranked were exactly the same. Therefore, we find that the
precision-recall curves of both the approaches lie one on top of the other. For the
queries issued to the car database, we find that there are differences in the order in
which the rewritten queries are issued to the database. However, we note that there
is no clear winner. The curves lie very close to each other, alternating as the number
of results returned increases. Therefore the performance of AFDs and BN-All-MB
is comparable for single-attribute queries.

6.2.2 Comparison of rewritten queries generated by BN-All-MB and BN-beam

Figure 6a shows the increase in recall of the results for three different values of o
in the F-measure metric when ten queries can be issued to the database. We refer
to results for different values for & for BN-Beam as BN-Beam-« (substitute « with
its value) and show a single curve for BN-AIl-MB, since the curves with different

@ Springer



J Intell Inf Syst

—AFD —BN-All-MB
~~AFD -=-BN-All-MB

[

1
08 - 0.8
c c
2 0.6 2 0.6
2 2 N
0.4 204
o (-9
0.2 0.2
0 T T 1
0.00 0.20 0.40 0.60 0.80 1.00 00 0 02 04 06 0.8 10
Recall Recall
(a) o pake (b) O Body
1
0.9
0.8
0.7
§06 ™~
gg-i | —arD
[ |
0.3 | —BN-All-MB
0.2
0.1
0 :
0 0.5 1

Recall

(© O Relationship= Not-in-family

Fig. 5 Precision-recall curve for different queries

a values were coincident. This is because there are no rewritten queries with high
throughput, therefore just increasing the « value does not increase recall. For BN-
Beam, the level of search, L, is set to two. We see that the recall increases with
increase in the value of «. Figure 6b shows the change in precision for different
values of « as the number of queries sent to the database increases. As expected,
the precision of BN-Beam-0.30 is higher than BN-Beam-0.35 and BN-Beam-0.40.
In particular, we point out that the precision of BN-Beam-0.30 remains competitive
with BN-AII-MB in all the cases while providing significantly higher recall. BN-Beam
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Fig. 6 Change in recall and precision for different values of ¢ in F-measure metric for top-10
rewritten queries for oye,, — 2002. The curves for all values of o for BN-All-MB are the same, so
they are represented as a single curve
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is able to retrieve relevant incomplete answers with high recall without any large
decrease in precision: the average difference is only 0.05.

6.2.3 Comparison of multi-attribute queries

We now compare Bayesian network and AFD approaches for retrieving relevant
uncertain answers with multiple missing values when multi-attribute queries are
issued by the user. We note that the current QPIAD system retrieves only uncertain
answers with atmost one missing value on query-constrained attributes. We compare
BN-Beam with two baseline AFD approaches.

1. AFD-AIll-Attributes: This approach creates a conjunctive query by combining
the best rewritten queries for each of the constrained attributes. The best rewrit-
ten queries for each attribute constrained in the original query are computed
independently and new rewritten queries are generated by combining a rewritten
query for each of the constrained attributes. The new queries are sent to the
autonomous database in the decreasing order of the product of the expected
precisions of the individual rewritten queries that were combined to form the
query. AFD-AIll-Attributes technique is only used for multi-attribute queries
where the determining set of each of the attributes are disjoint.

2. AFD-Highest-Confidence: This approach uses only the AFD of the query-
constrained attribute with the highest confidence for generating rewritten
queries, ignoring the other attributes.

We evaluate these methods for selection queries with two constrained attributes.
For BN-Beam, the level of search is set to 2 and the value for « in the F-measure
metric is set to zero.
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Fig. 7 Precision-recall curve for the results returned by top-10 rewritten queries for various queries
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6.2.4 Comparison of AFD-all-attributes and BN-beam

Figure 7a shows the precision-recall curve for the results returned by top
ten rewritten queries by AFD-All-Attributes and BN-Beam for the query
OMake=bmwnMileage=15000 1ssued to the car database. Figure 7b shows a similar curve for
the qUery orqucation=HS-gradnRelationship=Husbana issued to the adult database. We note
that the recall of the results returned by AFD-All-Attributes is significantly lower
than BN-Beam in both cases (see Fig. 8). This is because the new queries generated
by conjoining the rewritten queries of each constrained attribute do not capture the
joint distribution of the multi-attribute query. Therefore, the throughput of these
queries are often very low, in the extreme case they even generate empty queries. The
precision of the results returned by AFD-All-Attributes is only slightly higher than
BN-Beam (see Fig. 7). By retrieving answers with a little lesser precision and much
higher recall than AFD-All-Attributes, BN-Beam technique becomes very effective
in scenarios where the autonomous database has limits on the number of queries that
it will respond to.

6.2.5 Comparison of AFD-highest-confidence and BN-beam

Figure 7 shows the precision-recall curves for the results returned by the top ten
queries for multi-attribute queries issued to the car and adult databases. Figure 8
shows the change in recall with each of the top ten rewritten query issued to the
autonomous database. We note that the recall of the results returned by AFD-
Highest-Confidence is much higher than BN-Beam. However, this increase in
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Fig. 8 Change in recall as the number of queries sent to the autonomous database increases for
various queries
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recall is accompanied by a drastic fall in precision. This is because AFD-Highest-
Confidence approach is oblivious to the values of the other constrained attributes.
Thus, this approach too, is not very effective for retrieving relevant possible answers
with multiple missing values for multi-attribute queries.

7 Conclusion

We presented a comparison of cost and accuracy trade-offs of using Bayesian
network models and Approximate Functional Dependencies (AFDs) for handling
incompleteness in autonomous databases. We showed how a generative model of an
autonomous database can be learned and used by query processors while keeping
costs manageable.

We compared Bayesian networks and AFDs for imputing single and multiple
missing values. We showed that Bayesian networks have a significant edge over
AFDs in dealing with missing values on multiple correlated attributes and at high
levels of incompleteness in test data.

Further, we presented a technique, BN-All-MB, for generating rewritten queries
using Bayesian networks. We then proposed a technique, BN-Beam, to generate
rewritten queries that retrieve relevant uncertain results with high precision and
throughput, which becomes very important when there are limits on the number of
queries that autonomous databases respond to. We showed that BN-Beam trumps
AFD-based approaches for handling multi-attribute queries. BN-Beam contributes
to the QPIAD system by retrieving relevant uncertain answers with multiple missing
values on query-constrained attributes with high precision and recall.
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