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Abstract 

Despite the long history of classical planning, there has been very little comparative analysis of 
the performance tradeoffs offered by the multitude of existing planning algorithms. This is partly 
due to the many different vocabularies within which planning algorithms are usually expressed. 
In this paper we show that refinement search provides a unifying framework within which various 
planning algorithms can be cast and compared. Specifically, we will develop refinement search 
semantics for planning, provide a generalized algorithm for refinement planning, and show that 
planners that search in the space of (partial) plans are specific instantiations of this algorithm. The 
different design choices in partial-order planning correspond to the different ways of instantiating 
the generalized algorithm. We will analyze how these choices affect the search space size and 
refinement cost of the resultant planner, and show that in most cases they trade one for the 
other. Finally, we will concentrate on two specific design choices, viz., protection strategies and 
tractability refinements, and develop some hypotheses regarding the effect of these choices on the 
performance on practical problems. We will support these hypotheses with a series of focused 
empirical studies. 
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1. Introduction 

[. . .] Search is usually given little attention in this$eld, relegated SO a footnote 
about how “Backtracking was used when the heuristics didn’t work.” 

Drew McDermott [26, p. 4131 

The idea of generating plans by searching in the space of (partially ordered or totally 
ordered) plans has been around for almost twenty years, and has received a lot of for- 
malization in the past few years. Much of this formalization has however been limited 
to providing semantics for plans and actions, and proving soundness and complete- 
ness results for planning algorithms. There has been very little effort directed towards 
comparative analysis of the performance tradeoffs offered by the multitude of plan- 
space planning algorithms. ’ Indeed, there exists a considerable amount of disagreement 
and confusion about the role and utility of even such long-standing concepts as “goal 
protection”, and “conflict resolution”- not to mention the more recent ideas such as 
“systematicity”. 

An important reason for this state of affairs is the seemingly different vocabularies 
and/or frameworks within which many of the algorithms are usually expressed. The 
lack of a unified framework for viewing planning algorithms has hampered comparative 
analyses and understanding of design tradeoffs, which in turn has severely inhibited 
fruitful integration of competing approaches. 

The primary purpose of this paper is to provide a unified framework for understand- 
ing and analyzing the design tradeoffs in partial-order planning. We make five linked 
contributions: 

( 1) We provide a unified representation and semantics for partial-order planning in 
terms of refinement search. * 

(2) Using these representations, we present a generalized algorithm for refinement 
planning and show that most existing partial-order planners are instantiations of 
this algorithm. 

(3) The generalized algorithm facilitates the separation of important ideas underly- 
ing individual algorithms from “brand-names”, and thus provides a rational basis 
for understanding the tradeoffs offered by various planners. We will character- 
ize the space of design choices in writing partial-order planning algorithms as 
corresponding to the various ways of instantiating the individual steps of the 
generalized algorithm. 

’ The work of Barrett and Weld [2] as well as of Minton et al. [27,28] are certainly steps in the right 
direction. However, they do not tell the full story since the comparison them was between a specific partial- 
order and total-order planner. The comparison between different partial-order planners itself is still largely 
unexplored. See Section 9 for a more complete discussion of the related work. 

* Although it has been noted in the literature that most existing classical planning systems are “ret%tement 
planners”, in that they operate by adding successively more constraints to the partial plan, without ever 
retracting any constraint, no formal semantics have ever been developed for planning in terms of refinement 
search. 
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(4) We will develop a model for estimating the search space size and refinement 
cost of the generalized algorithm, and will provide a qualitative explanation of 
the effect of various design choices on these factors. 

(5) Seen as instantiations of our generalized algorithm, most existing partial-order 
planners differ along the dimensions of the protection strategies they use and 
the tractability refinements (i.e., refinements whose primary purpose is to reduce 
refinement cost at the expense of increased search space size) they employ. Us- 
ing the qualitative model of design tradeoffs provided by our analysis, we will 
develop hypotheses regarding the effect of these dimensions of variation on per- 
formance. Specifically, we will predict the characteristics of the domains where 
eager tractability refinements and stronger protection strategies will improve per- 
formance. We will validate these predictive hypotheses with the help of a series 
of focused empirical studies involving a variety of normalized instantiations of 
our generalized planning algorithm. 

Organization 

The paper is organized as follows: Section 2 provides the preliminaries of refinement 
search, develops a model for estimating the size of the search space explored by a 
refinement search, and introduces the notions of systematicity and strong systematicity. 
Section 3 reviews the classical planning problem, and provides semantics of plan-space 
planning in terms of refinement search. Specifically, the notion of a candidate set of a 
partial plan is formally defined in this section, and the ontology of constraints used in 
representing partial plans is described. Sections 2 and 3 develop a fair amount of formal 
machinery and new terminology. Casual readers may want to skim over these sections 
on the first reading (relying on the glossary and list of symbols in the appendix for 
reference). 

Section 4 describes the generalized refinement planning algorithm, Refine-Plan, 
discusses its various components, and shows how the various ways of instantiating the 
component steps correspond to the various design choices for partial-order planning. 
Section 5 shows how the existing plan-space planners, including TWEAK [3], SNLP 
[ 241, UA [ 281 and NONLIN [40] can be seen as instantiations of Refine-Plan. It 
also discusses how Refine-Plan can be instantiated to give rise to a variety of new 
planning algorithms with interesting tradeoffs. 

Section 6 develops a model for estimating the search space size and refinement 
cost of the Refine-Plan algorithm, and uses it to develop a qualitative model of the 
tradeoffs offered by the different design choices (ways of instantiating Refine-Plan). 
Section 7 develops some hypotheses regarding the effect of various design choices on 
practical performance. Section 8 reports on a series of focused empirical studies aimed 
at evaluating these hypotheses. Section 9 discusses the relations between our work and 
previous efforts on comparing planners. Section 10 summarizes the contributions of the 
paper. 

Appendix A provides a quick reference for the list of symbols used in the paper, and 
Appendix B contains a glossary of terms introduced in the paper. 
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Fig. 1. Schematic diagram illustrating refinement search. Here, the candidate space (Ic) is the set 

{A, B, C, D, E, E G, H, I, A’, B’, C’}. The fringe (3) is given by the set { N2, N3, N4, N5, N6). The av- 
erage size of the candidate sets of the nodes on the fringe, q. is 16/5, and the redundancy factor p for the 

fringe is 16/12. It is easy to verify that lFd1 = (IKI x pd)/~,j. 

2. Introduction to refinement search 

The refinement search (also called split-and-prune search [29]) paradigm is useful 
for modeling search problems in which it is possible to enumerate all potential solutions 

(called candidates) and verify if one of them is a solution for the problem. The search 

process can be visualized as a process of starting with the set of all potential solutions, 
and splitting the set repeatedly until a solution can be picked up from one of the sets 

in bounded time. Each search node N in the refinement search thus corresponds to a 

set of candidates, denoted by ((N)). Fig. 1 shows a schematic diagram illustrating the 

refinement search process (it also illustrates much of the terminology introduced in this 

section). 
A refinement search is specified by providing a set of refinement operators (strategies) 

R, and a solution constructor function sol. The search process starts with the initial 

node Nn, which corresponds to the set of all candidates (we shall call this set the 

candidate space of the problem, and denote it by K). 
The search progresses by generating children nodes by the application of refinement 

operators. Refinement operators can be seen as set splitting operations on the candidate 
sets of search nodes. The search terminates when a node N is found for which the 

solution constructor returns a solution. The formal definitions of refinement operator 

and solution constructor follow: 

Definition 1. A refinement operator R maps a node N to a set of children nodes {JI$!} 
such that the candidate sets of each of the children are proper subsets of the candidate 

set of N (i.e., V,IP ((4!)) c ((N))). 
72 is said to be iomplete if every solution belonging to the candidate set of N belongs 

to the candidate set of at least one of the children nodes. 

R is said to be systematic if Vw,y,is/j((N/)) n ((Ni)) = 8. 
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Definition 2 (Solution constructor). A solution constructor sol is a 2-place function 
which takes a search node N and a solution criterion S, as arguments. It will return 

either one of three values: 
(1) *fail*, meaning that no candidate in ((N)) satisfies the solution criterion. 

(2) Some candidate k E ((N)) which satisfies the solution criterion (i.e., k is a 

solution). 
(3) I, meaning that sol can neither return a solution, nor determine that no such 

candidate exists. 

In the first case, N can be pruned. In the second case, search terminates with success, 

and in the third, N will be refined further. N is called a solution node if the call 

sol(N, S(;) returns a solution.3 

Definition 3 (Completeness of rejinement search). A refinement search with the refine- 
ment operator set R and a solution constructor function sol is said to be complete if 

for every solution k of the problem, there exists some search node N that results 
from a finite number of successive refinement operations on No, (i.e., &RN = 
721 (‘I&. . . (R,(No))), where Ng is the node whose candidate set is the entire candi- 
date space K), such that sol can pick up k from N. 

Notice that the completeness of search depends not only on the refinement strategies, 

but also on the match between the solution constructor function and the refinement 
strategies. It can be shown easily that for finite candidate spaces, and solution con- 

structors that are powerful enough to pick solutions from singleton sets in bounded 
time, completeness of refinement operators is suficient to guarantee the completeness 
of refinement search. 4 

Search nodes as constraint sets 
Although it is conceptually simple to think of search nodes in terms of their candidate 

sets, we obviously do not want to represent the candidate sets explicitly in our imple- 

mentations. Instead, the candidate sets are typically implicitly represented as generalized 

constraint sets associated with search nodes (cf. [ lo]) such that every candidate that is 
consistent with the constraints in that constraint set is taken to belong to the candidate 

set of the search node. Under this representation, the refinement of a search node cor- 
responds to adding new constraints to its constraint set, thereby restricting its candidate 
set. 

Any time the set of constraints of a search node becomes inconsistent (unsatisfiable), 

the candidate set becomes empty. Since there is no utility in refining an empty candidate 
set, such inconsistent nodes can be pruned, optionally, from the search space. When such 
pruning is done, it can reduce the overall size of the search tree. However, depending 
upon the type of the constraints, verifying that a node is inconsistent can be very costly. 

’ It is instructive to note that a solution constructor may return *fail* even if the candidate set of the node 

is not empty. The special case of nodes with empty candidate sets is usually handled by consistency check, 
see below. 

4 This condition is not necessary because the individual refinements need not be complete according to the 

strong definition of Definition l-specifically, it is enough if the refinements never lose a minimal solution. 
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Algorithm Refine-Node(N) 

Parameters: (i) sol: solution constructor function. 
(ii) R: refinement operators. 

0. Termination check: If sol.(N, SG ) returns a solution, return it, and terminate. If 
it returns *fail*, fail. Otherwise, continue. 

1. Refinements: Pick a refinement operator R E R. Not a backtrack point. Nonde- 
terministically choose a refinement N’ from R(N) (the refinements of IZ with 
respect to R). 
(Note: It is legal to repeat this step multiple times per invocation.) 

2. Consistency check (Optional) : If N’ is inconsistent, fail. Else, continue. 
3. Recursive Invocation: Recursively invoke Refine-Node on N’. 

Fig. 2. A recursive nondeterministic algorithm for generic refinement search. The search is initiated by invoking 

Ref ine-Node(hlg). 

Thus, the optional pruning step trades the cost of consistency check against the reduction 
in the search space afforded through pruning. 

Definition 4 (Inconsistent search nodes). A search node is said to be inconsistent if its 
candidate set is empty, or equivalently, its constraint set is unsatisfiable. 

Definition 5 (Infomzedness). A refinement search is said to be informed if it never 
refines an inconsistent search node. 

Search space size 
Fig. 2 outlines the general refinement search algorithm. To characterize the size of the 

search space explored by this algorithm, we will look at the size of the fringe (number 
of leaf nodes) of the search tree. Suppose Fd is the &h-level fringe of the search tree 
explored by the refinement search (in a breadth-first search). Let Ed > 0 be the average 
size of the candidate sets of the search nodes in the &h-level fringe, and Ed (2 1) 
be the redundancy factor, i.e., the average number of search nodes on the fringe whose 
candidate sets contain a given candidate in ic. It is easy to see that IFdl x Ed = licl x pd 
(where I . I is used to denote the cardinality of a set). If b is the average branching 
factor of the search, then the size of &h-level fringe is also given by O( bd) . Thus, we 
have, 

lFdl = Ix1 ’ pd = O(bd). 
Kd 

(1) 

In terms of this model, a minimal guarantee one would like to provide is that the size 
of the fringe will never be more than the size of the overall candidate space 1x1. Trying 
to ensure this motivates two important notions of irredundancy in refinement search: 
systematicity and strong systematic@. 
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Definition 6 (Systematicity). A refinement search is said to be systematic if, for any 
two nodes N and N’ falling in different branches of the search tree, ((nr)) II ((N’)) = 0 
(i.e., the candidate sets represented by N and N’ are disjoint). 

Definition 7 (Strong systematicity). A refinement search is said to be strongly system- 
atic if it is both systematic and informed (see Definition 5). 

From the above, it follows that for a systematic search, the redundancy factor, p, is 
1. Thus, the sum of the cardinalities of the candidate sets of the termination fringe will 
be no larger than the set of all candidates K. For strongly systematic search, in addition 
to p being equal to 1, we also have Kd 2 1 (since no node has an empty candidate set) 
and thus IFdl 6 1x1. Thus, 

Proposition 8. The fringe size of any search tree generated by a strongly systematic 
re$nement search is strictly bounded by the size of the candidate space (i.e. 1X1). 

It is easy to see that a refinement search is systematic if all the individual refinement 
operations are systematic. To convert a systematic search into a strongly systematic one, 
we only need to ensure that all inconsistent nodes are pruned from the search. The 
complexity of the consistency check required to effect this pruning depends upon the 
nature of the constraint sets associated with the search nodes. 

3. Planning as refinement search 

3.1. Informal overview 

Given a planning problem, plan-space planners attempt to solve it by searching in 
the space of “partial plans”. The partial plans are informally understood as incomplete 
solutions. The search process starts with an empty plan, and successively adds “details” 
(steps, orderings, etc.) to it until it becomes a correct plan for solving the problem. 
Without attaching a formal meaning to partial plans, it is hard to explain the semantic 
implications of this process. 

In this section, we will provide semantics for partial plans in terms of refinement 
search. In this view, partial plans are seen not as incomplete solutions, but as represen- 
tations for sets of potential solutions (candidates). Planning is seen as the process of 
splitting these candidate sets until a solution is found. In the subsequent sections, we 
shall show that this view provides a powerful unifying framework. 

To provide a formal account of this process, we need to define the notion of the 
candidate set of a partial plan, and we tie this semantic notion to some syntactic 
characteristic of the partial plan. We start by noting that the solution for a planning 
problem is ultimately a sequence of operators (actions), which when executed from 
an initial state, results in a state that satisfies all the goals of the problem. Thus, 
ground operator sequences constitute potential solutions for any planning problem, and 
we will define the candidate set of a partial plan as all the ground operator sequences 
that are consistent with all the constraints in the partial plan. Accordingly, the steps, 
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orderings and bindings of the partial plan are seen as imposing constraints on which 
ground operator sequences do and do not belong to the candidate set of the plan. The 

empty plan corresponds to all the ground operator sequences since it doesn’t impose 

any constraints. 
For example, consider the scenario of solving a blocks world problem of moving three 

blocks A, B and C from the table to the configuration On(A, B) A On(B, C). Suppose 
at some point during the search we have the following partial plan: 

Ps: start-Move( A, Table, 8)-f in. 

We will see it as a stand-in for all ground operator sequences which contain the 

operator instance Move(A, Table, B) in it. In other words, the presence of the step 

Move(A, Table, B) eliminates from the candidate set of the plan any ground operator 
sequence that does not contain the action Move( A, Table, B). Operator sequences such 
as Move(A, Table, C)-Move(B, Table, A)-Move( A, Table, B) are candidates of the 

partial plan PB. 

One technical problem with viewing planning as a refinement search, brought out by 
the example above, is that the candidate sets of partial plans are potentially infinite. In 
fact, the usual types of constraints used by plan-space planners are such that no partial 
plan at any level of refinement in the search tree will have a “singleton candidate set”. 5 

This means that the usual mental picture of refinement search as the process of “splitting 

sets until they become singletons” (see Section 2) is not valid. In addition, tractable 

solution constructor functions cannot hope to look at the full candidate sets of partial 
plans at any level of refinement. 

To handle this problem, the solution constructor functions in planning look at only 

the “minimal candidates” of the plan. Intuitively, minimal candidates are ground op- 

erator sequences that will not remain candidates if any of the operators are removed 

from them. In the example plan PB described earlier, the only minimal candidate is 

Move( A, Table, B) . All other candidates of a partial plan can be derived by starting 
from a minimal candidate and adding operators without violating any plan constraints. 
As the refinements continue, the minimal candidates of a partial plan increase in length, 

and the solution constructors examine to see if one of them is a solution. This can be 

done in bounded time since the set of minimal candidates of a partial plan is finite (this 
is because an n-step plan has at most n! linearizations). Fig. 3 illustrates this view of 

the candidate set of a partial plan. 
Finally, to connect this view to the syntactic operations performed by planners, we 

need to provide a relation between the candidate set of the plan and some syntactic 

notion related to the plan. We do this by fixing a one-to-one correspondence between 
minimal candidates (a semantic concept) and a syntactic notion called the safe ground 

linearizations of the plan. 
In the remainder of this section, we formalize these informal ideas. We will start by 

reviewing the notion of solution of a planning problem (Section 3.2). Next, we provide 

5 For a partial plan to have a singleton candidate set, the constraints on the plan must explicitly disallow 

addition of new operators to the plan. The “immediacy” constraints, discussed by Ginsberg in [9] are an 

example of such constraints (see Section 9). 
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Partial Plan (a set of ordering, binding, step and auxiliary constraints) 

Ground inearization 1 

1 

Ground Linearization 2 . . . . . Ground Linearization n 

Ground linearizations that satisfy auxiliary constraints 

\ 

Safe Ground Linearization 1 Safe ground Linearization m 
: : 

: Corresponds to the ground operator sequence : Syntactic View 
----____-___--:___-_____--_____--____--_____-_____---_____:_--_____________ 

: : 
: : 

Semantic View 

Minimal Candidate 1 
. 

Minimal Candidate m 

2 / 
Union of these sets is the candidate set of the partial plan 

Fig. 3. A schematic illustration of the relation between a partial plan and its candidate set. The candidate set 
of a partial plan consist of all ground operator sequences that are consistent with its constraints. These can be 
seen in terms of minimal candidates (which correspond to the safe ground linearizations of the partial plan) 
and ground operator sequences derived from them by adding more operators. 

a syntactic description of the constraints comprising a partial plan (Section 3.3). At this 
point we will develop the syntactic and semantic notions of satisfying the constraints 
of the partial plan. The semantic notion depends on the concept of ground operator 
sequences, while the syntactic notion depends on the idea of ground linearizations. 

We will then provide semantics of partial plans in terms of their candidate sets, which 
are ground operator sequences satisfying all the constraints of the partial plan, and show 
that executable candidates of the plan correspond to solutions to the planning problem 
(Section 3.4). Finally, we will relate the semantic notion of the candidate set of a 
partial plan to a syntactic notion called safe ground linearization of the partial plan (see 
Fig. 3 and Section 3.5). Specifically we will show that the safe ground linearizations 
correspond to the minimal candidates of a partial plan (i.e., the smallest-length ground 
operator sequences belonging to the candidate set of a plan). This allows us to provide 
meanings to syntactic operations on the partial plan representation in terms of their 
import on the candidate set of the partial plan. 

3.2. Solutions to a planning problem 

Whatever the exact nature of the planner, the ultimate aim of (classical) planning is 
to find a sequence of ground operators, which when executed in the given initial state, 
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will produce desired behaviors or sequences of world states. Most classical planning 
techniques have traditionally concentrated on the attainment of goals [ 81. These goals 

can be seen as a subclass of behavioral constraints, which restricts the agent’s attention 

to behaviors that end in world states satisfying desired properties. For the most part, 
this is the class of goals we shall also be considering in this paper.6 Below, we assume 

that a planning problem is a pair of world states, [I, E], where Z is the initial state of 
the world, and Q is the specification of the desired behaviors. 

The operators (also called actions) in classical planning are modeled as general state 
transformationfunctions. Pednault [ 311 provides a logical representation, called the Ac- 
tion Description Language (ADL) for representing such state transformation functions. 

We will be assuming that the domain operators are described in the ADL representa- 

tion with precondition and effect formulas. The precondition and effect formulas are 
functionfree first-order predicate logic sentences involving conjunction, negation and 

quantification. The precondition forrnukrs can also have disjunction, but disjunction is 
not allowed in the effects formula. The subset of this representation where both formu- 

las can be represented as conjunctions of function-less first-order liter&, and all the 

variables have infinite domains, is called the TWEAK representation (cf. [ 3,17,44] > . 7 
A ground operator is an operator that does not contain any uninstantiated variables. 

Given a set of ground operators, we can form a space of ground operator sequences, 
only a subset of which forms solutions to a planning problem. For any planning problem 

the space of all ground operator sequences is called the candidate space of that problem. 
As an example of this space, if a domain contains three ground operators al, a2 and 
~3, then the candidate space of any problem would be a subset of the regular expression 

{al ( a2 1 a3}*. 
We now formally define the semantic meaning of a solution to a planning problem. 

Definition 9 (Solution of a planning problem). A ground operator sequence 

s : 0102. . ‘0, 

is said to be a solution to a planning problem [Z,S], where Z is the initial state of 
the world, and 6 is the specification of the desired behaviors, if the following two 
restrictions are satisfied: 

(1) S is executable, i.e., 

Zbprec(ol), at(Z) I- prec(o21, 0,-1(0,-2~~~(01G))) bprec(o,) 

(where prec( o) denotes the precondition formula of the operator 0). 

(2) The sequence of states 1, 01 (Z) , . . . , o,( on_1 . . . (01(I) ) ) satisfies the behav- 
ioral constraints specified in the goals of the planning problem. 

For goals of attainment, the second requirement is stated solely in terms of the last 
state resulting from the plan execution: o, (o,_ 1 . . . (01 (Z) ) ) I- 0. A solution S is said 

6 In [ 14,161 we show that our framework can be easily extended to deal with to a richer class of behavioral 

constraints, including maintenance goals and intermediate goals. 

’ In TWEAK representation, the list of nonnegated effects is called the Add list while the list of negated 
effects is called the Delete list. 



Example. Fig. 4 shows an example partial plan PE, whose constraint set appears be- 
low: 

PE : 

T: {to,t,rw,}, 

0:{to-xt,,to4too, t1 4 t,, tz < t,},B : 0, 
SI : {tt -+ or, t2 + 02, to -+ start, t, -+ fin}, 

L:: {(tl9PJ2)4 2,4,&J, (P@L), (4@LJ, Wtl)) 
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to be minimal if no operator sequence obtained by removing some of the operators from 
S is also a solution. 

3.3. Syntactic dejnition of partial-order plans 

Formally, a partial plan is a 5-tuple: (T, 0, B, SI, L) where: 
l T is the set of steps in the plan. Elements of T are denoted by symbols s, t and 

their subscripted versions. T contains two distinguished steps to and t,. 
l Sir is a symbol table, which maps steps to ground operators in the domain. 
l 0 is a partial ordering relation over T that specifies the constraints on the order of 

execution of the plan steps. By definition, 0 orders to to precede all other steps of 
the plan, and too to follow all others steps of the plan. 

l B is a set of codesignation (binding) and non-codesignation (prohibited bindings) 
constraints on the variables appearing in the preconditions and postconditions of 
the operators. 

l L is a set of auxiliary constraints (see below). 
In a symbol table SI, the special step to is always mapped to the dummy operator 

start, and similarly tar, is always mapped to the dummy operator fin. The effects of 
start and the preconditions of fin correspond, respectively, to the initial state and the 
desired goals (of attainment) of the planning problem. The symbol table SI, together 
with T, provides a way of distinguishing between multiple occurrences of the same 
operator in the given plan. 

The auxiliary constraints L deserve more explanation. In principle, these include any 
constraints on the partial plan that are not classifiable into “steps”, “orderings” and 
“bindings”. Two important types of auxiliary constraints we will discuss in detail later, 
are interval preservation constraints (IPCs), and point truth constraints (PTCs). An 
IPC is represented as a 3-tuple (s,p, t), while a PTC is represented as a 2-tuple (p@t). 
Informally, the IPC (s, p, t) requires that the condition p be preserved between the steps 
s and t, while the PTC (p @ t) requires that the condition p be true before the step t. IPCs 
are used to represent bookkeeping (protection) constraints (Section 4.3) while PTCs 
are used to capture the prerequisites that need to be true before each of the steps in the 
plan. In particular, given any partial plan P, corresponding to every precondition C of 
step s in the plan, the partial plan contains a PTC (nonmonotonic auxiliary constraint) 
(C@s). Auxiliary constraints can also be used to model other aspects of refinement 
planning. In [ 141, we show that IPCs can be used to model maintenance goals while 
PTCs can be used to model filter conditions. 
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add: p 

Domain: 

Ground Linearizalzons:to-tl-t2-t, 

t&&l-t, 
Safe Ground Linearitations: t&-t2& 

Candidates: 01 Non-Candidates: - - 02 (minimal Cand.) 02 01 

03 - 01 -02 01 - 03 - 02 

03 - 01 -O3-01-01-02 01 - 03 - 03 - 02 

etc. 

Solutions: o3 - 01 - 02 (Minimal) 

oa - oi - 03 - 01 - 01 - 02 (Non-Minimal) 

Fig. 4. An example partial plan illustrating the terminology used in describing the candidate sets. The table 
on the top right shows the preconditions and effects of the operators. The effects of the start operator, 
correspond to the initial state of the problem while the preconditions of fin correspond to the top-level goals 
of the plan. In this example, initial state is assumed to be null, and the top-level goals are assumed to be p 
and q. 

PE contains four steps to, tl, t:! and t,. These steps are mapped to the syntactic 
operators in this domain, start, 01, 02 and fin, respectively. The preconditions and 
effects of these operators are described in the table at the top right corner of Fig. 4. The 
orderings between the steps are shown by arrows. The plan also contains a set of five 
auxiliary constraints-two IPCs and three PTCs. 

3.3.1. Ground linearizations of a partial plan 

Definition 10 (Ground linearizutions) . A ground linearization (also called comple- 

tion) of a partial plan P : (T, 0,23,ST,L) is a fully instantiated total ordering of the 

steps of P that is consistent with 0 (i.e., a topological sort) and B. 

Example. In our example partial plan PE, there are two ground linearizations tot1 t&, 
and tot2tl tm. 
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A ground linearization captures the syntactic notion of what it means for a partial 
plan to be consistent with its own ordering and binding constraints. If a plan has no 
ground linearizations, then it means that it is not consistent with its ordering and binding 

constraints. We can extend this notion to handle the auxiliary constraints as follows: 

Definition 11. A ground linearization G of a partial plan P is said to satisfy an IPC 
(t, p, t’) of P, if for every step t” between t and t’ in G, the operator SI[ t”] does not 

delete p. 

Definition 12. G is said to satisfy a I’TC (c@t) if there exists a step t’ before t in G 

(t’ could be to), such that SI( t’) has an effect c and for every step t” between t’ and 
t in G, SI( t’) does not delete c. 

Definition 13. A partial plan P is said to be consistent with an auxiliary constraint if 

at least one of its ground linearizations satisfies it. 

Example. Consider the ground linearization Gi : tOtI t2t, of our example plan PE. 

Gi satisfies the IPC (tl ,p, to3) since the operator 02 corresponding to t2, which comes 
between tl and t, in Gi, does not delete p. Thus PE itself is consistent with the IPC 

(tl ,p, tm). Similarly, Gi also satisfies the I’TC (q@&) since t2 gives q as an effect 
and there is no step between t2 and tm deleting q in Gi. 

3.4. Candidate set semantics of a partial plan 

Having defined the syntactic representation of a partial plan, we need to answer the 
question-what does it represent? In this section, we provide formal semantics for partial 

plans based on the notion of candidate sets. Among other things, we explain what it 
means to add additional syntactic constraints to a partial plan, and what it means for a 
partial plan to represent a solution to a planning problem. 

3.4.1. Mapping function M 
Our interpretation of a partial plan P corresponds to the set of all ground operator 

sequences that are consistent with the constraints of P. This correspondence is defined 
formally via a mapping function M: 

Definition 14 (Mapping function). M is said to be a mapping function from a plan 
P to a ground operator sequence S if: 

( 1) M maps all steps of P (except the dummy steps to and too) to elements of S, 
such that no two steps are mapped to the same element of S; 

(2) M agrees with S7 (i.e., S[M(t)] =Sl(t)) 
(3) for any two steps ti and tj in P such that ti 4 tj, if M( ti) = S[Z] and 

M(tj) = S[m], then I < m. 

Example. Considering our example plan PE in Fig. 4, M = { tl -+ S[ 51, t2 -+ S[ 61) is 
a mapping function from PE to the operator sequence S : 0301030~0~0~. This is because: 
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S[ 51 is 01 which is also SI( tt ), and similarly S[ 61 is 02 which is also SI( t2). 
There are no ordering relations between ft and t2 in PE and thus S trivially 
satisfies the ordering relations of PE. 

3.4.2. Auxiliary constraints 
Intuitively, the last two clauses of the definition of the mapping function ensure that 

the ground operator sequence satisfies the steps and orderings of the partial plan. We 
could also define what it means to say that a ground operator sequence satisfies an 
auxiliary constraint. 

Formally, an IPC (ti, c, ti) of a plan P is said to be satisfied by a ground operator 
sequence S, under a mapping function M, if and only if every operator o in S between 
M (ti) and M (tj) preserves (does not delete) the condition c. For readers who are 
familiar with the “causal link” notation [24], note that an IPC (si, c, sj) does not 
require that si give the condition c, but merely that the condition c be preserved (i.e., 
left unaffected) in the interval between si and Sj. 

The IPCs are examples of monotonic auxiliary constraints. An auxiliary constraint 
C is monotonic if for any ground operator sequence S that does not satisfy C under 
M, adding operators to S will not make it satisfy C either. A constraint that is not 
monotonic is called nonmonotonic. 

Example. In our example plan PE, the operator sequence S : o3o103010102 will Satisfy 
the IKs with respect to the mapping function M = {tl + S[5], t2 -+ S[ 61). In 
particular, the IPC (tt ,p, tm) is satisfied because all the operators between S[ 51 and 
the end of the operator sequence, which in this case is just 02, preserve (do not violate) 
p. This can be verified from the effects of the operators described in the top right table 
in Fig. 4. It can also be verified that the IPC would not be satisfied with respect to a 
different mapping, M’ = {tl + S[2], t2 + S[6]} (since S[3] =03 deletes p). 

Similarly, a point truth constraint* (cat) is said to be satisfied by a ground operator 
sequence S under M, if and only if: 

( 1) either c is true in the initial state, and is preserved by every action of S occurring 
before M(t), or 

(2) c is made true by some action S[ j] that occurs before M(t), and is preserved 
by all the actions between S[ j] and M(t). 

Example. Consider once again the example plan P.E, the operator sequence S : 
03o1o3o1o102 and the mapping function M = {tl + S[5],t2 + S[61}. The F’TC 
(r@tl) is satisfied by S with respect to M since S[3] = 0s adds r and S[4] = 01 does 
not delete r. It can be verified that the other two F’TCs are also satisfied by S. This is 
because S[5] = 01 gives p and S[6] = 02 gives q without deleting p, and thus both p 

and q are true at the end S. 
The PTCs are examples of nonmonotonic auxiliary constraints. To see this, consider 

the operator sequence S : 0102. S fails to satisfy the PTC (r@tl) of PE (Fig. 4) with 

* This is called a point-protected condition in [421. 
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Auxiliary Constraints 

Monotonic (Auxiliary) Constraints Non-Monotonic (Auxiliary) Constraints 

I 
Interval Preservation Constraints 

Fig. 5. The relation between the various types of auxiliary constraints. 

respect to the mapping M = {tl --+ S[ 11, t2 -+ S[2]}. However S’ : 030t02 will satisfy 
the PTC with respect to the same mapping. 

Fig. 5 shows the relationship between the different types of auxiliary constraints that 
we have defined above. 

3.4.3. Candidate set of a partial plan 
Now that we have defined what it means for a ground operator sequence to satisfy 

the step, ordering, binding and auxiliary constraints, it is time to formally define when 
a ground operator sequence becomes a candidate. Intuitively, it would seem reasonable 
to go ahead and say that a candidate is a ground operator sequence that satisfies all 
the constraints of the plan with respect to the same mapping. This however leads to a 
technical difficulty. 

A useful property that we want for a candidate is that given a ground operator sequence 
S that is not a candidate of a partial plan, adding operators to S should not make it a 
candidate. 9 For this to happen, we want the auxiliary constraints to be such that given 
an operator sequence S that does not satisfy an auxiliary constraint C with respect to a 
mapping M, adding more operators to S will not make it satisfy C. From our previous 
discussion, we note that monotonic auxiliary constraints, which include IPCs, have this 
property, while nonmonotonic auxiliary constraints don’t. Accordingly, we define the 
candidate set of a partial plan in terms of its monotonic auxiliary constraints. 

Definition 15 (Candidate set of a partial plan). Given a partial plan P : (T, 0, B, 
SI, C), a ground operator sequence S is said to be a candidate of P if there is a 
mapping function M from P to S with respect to which S satisfies all the monotonic 
auxiliary constraints of P. 

‘To understand the motivation behind this, recall, from Fig. 3, that we want to define candidate sets in 

such a way that planners can concentrate on the minimal candidates (which “correspond” to the safe ground 

linearizations of the partial plan). Accordingly, we would like to ensure that if none of the ground operator 

sequences corresponding to the ground linearizations of a partial plan satisfy the auxiliary constraints, the 

plan will have an empty candidate set (so that we could go ahead and prune such plans without losing 

completeness). 
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The candidate set of a partial plan is the set of all ground operator sequences that are 
its candidates. 

An operator sequence S is a minimal candidate, if it is a candidate, and no operator 

sequence obtained by removing some of the operators from S is also a candidate of P. 

Note that by our definition, a candidate of a partial plan might not be executable. 
It is possible to define candidate sets only in terms of executable operator sequences 
(or ground behaviors), but we will stick with this more general notion of candidates 

since generating an executable operator sequence can itself be seen as part of planning 

activity. 

Definition 16 (Solution of a partial plan). A ground operator sequence S is said to be 
a solution of a partial plan P, if S is executable and S is a candidate of P with respect 
to a mapping M, and S satisfies all the nonmonotonic auxiliary constraints of P with 

respect to M. 

It can be verified that for minimal candidates, executability is automatically guaranteed 
if all the nonmonotonic auxiliary constraints are satisfied (recall that corresponding to 

each precondition c of each step s of the plan, the partial plan contains a PTC (c@s)). 

Finally, it can also be verified that the solutions of a partial plan correspond to the 
solutions of the planning problem [Z, G] , where Z is the effect formula of to, and 0 is 

the precondition formula of t, of P according to Definition 9. 

Example. COntinUing with our eXaI@e plan Ps, the operator sequence S : 030~03010102 
and the mapping function M = {tl -+ S[5], t2 + S[6]}, we have already seen that 

S satisfies the step, ordering and interval preservation constraints with respect to the 

mapping M. Thus S is a candidate of the partial plan Ps. S is however not a minimal 
candidate since the sequence S’ : 0102 is also a candidate of PE (with the mapping 
function M = {tl --f S[ll,t2 + WI}), and S’ can be obtained by removing elements 

from S. It can be easily verified that S’ is a minimal candidate. 
Since S also satisfies the PTCs with respect to this mapping, and since S is executable, 

S is also a solution of PE. S is however not a minimal solution, since it can be verified 

that St’ : 030102 is also a solution, and St’ can be derived by removing elements from 
S. It is interesting to note that although St’ is a minimal solution, it is not a minimal 

candidate. This is because, as discussed above, S’ : 0102 is a candidate of P.s (note 
that St is not a solution). This example illustrates the relations between the candidates, 
minimal candidates, solutions and minimal solutions. 

3.4.4. Summarizing the meaning of partial plans in terms of candidate sets 
We are now in a position to summarize the refinement-search-based semantics of 

partial plans. A partial plan P can be equivalently understood as its candidate set ((P)). 

A subset of ((P)), called the solutions of P, corresponds to the actual solutions to the 
planning problem. The process of finding these solutions, through refinement search, 
can be seen as splitting the candidate sets of the plan in such a way that the minimal 
candidates of the resulting partial plans correspond to solutions of the planning problem. 
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The main refinement operation used to achieve this involves the so called establishment 
refinement (Section 4.2). In essence this can be understood in terms of taking a PTC 
of a partial plan, and splitting the candidate set of the partial plan such that the minimal 

candidates of the each resulting child plan will satisfy that PTC. After working on each 

PTC this way, the planner will eventually reach a partial plan one of whose minimal 

candidates satisfies all the PTCs. At this point, the search can terminate with success 
(recall that the partial plan contains a PTC corresponding to every precondition of every 

step of the plan). 

3.5. Relating candidate sets and ground linearizations 

In the previous section, we defined the candidate set semantics of partial plans. Can- 

didate set semantics can be thought of as providing a denotational semantics for partial 
plans in refinement planning. However, actual refinement planners do not deal with 

candidate sets explicitly during planning, and instead make some syntactic operations 

on the partial plans. To understand the semantic import of these operations, we need to 

provide a correspondence between the candidate set of a partial plan and some syntactic 
notion related to the partial plan. 

In particular, we define the notion of safe ground linearizations. 

Definition 17 (Safe ground linearization). A ground linearization G of a plan P is 
said to be safe, if it satisfies all the monotonic auxiliary constraints (IPCs for our 

representation). 

Example. Consider the ground linearization G1 : t0tlt2tm of our example plan PE. 
Gi satisfies the IPC (tl,p, too) since the operator 02 corresponding to t2, which comes 

between tl and t, in Gt, does not delete p. Similarly, we can see that the IPC (t2, q, ta) 
is also satisfied by Gt. Thus, G1 is a safe ground linearization. In contrast, the other 

ground linearization G2 : t&t1 t, is not a safe ground linearization since the IPC 

(t2, q, too) is not satisfied ( tl which comes between tl and t, in G, corresponds to the 
operator 01 which delete q). 

We will now put the candidate set of a plan in correspondence with the safe ground 

linearization. To do this, we first define what it means for an operator sequence to 

correspond to a ground linearization of a plan. 

Definition 18. Let G be a ground linearization of a plan P. Let G’ be the sequence 
derived by removing to and tw from G. An operator sequence S is said to correspond 
to the ground linearization G, if V$[ i] = S’T(G’[ i] ) (where S[ i] and G’[ i] are the 

ith elements of S and G’ respectively). 

Example. In our example partial plan PE, the ground operator sequence S1 : 0102 
corresponds to the ground linearization G1 : tOtI tzt, (since S7 maps tl to 01 and t2 
to 02). Similarly, the ground operator sequence Sz : 0201 corresponds to the ground 
linearization G2 : tot2tl t,. 
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Proposition 19 (Correspondence theorem). A ground operator sequence S is a min- 
imal candidate of a partial plan P if and only if it corresponds to some safe ground 
linearization G of the plan P. 

Proof. (If Let G be a safe ground linearization of P, and G’ be the sequence obtained 

by stripping to and c, from G. Let S be the operator sequence obtained by translating 
step names in G to operators (via the symbol table SI, such that S[i] = ST(G’[i]). 
By construction, S corresponds to G. Consider the mapping M = {G’[i] -+ S[i] 1 Vi}. 
It is easy to see that M is a mapping function from P to S by Definition 14. We can 
also verify that S satisfies all monotonic auxiliary constraints of P according to M. 
To see this, consider an IPC (t’,p, t) of P. Since G is safe, it satisfies the IPC. This 

means that if G[i] = t’ and G[j] = t, then all the elements G[i+ l],...,G[j - l] 
will preserve p. By the construction of S from G, we know that S[i] will correspond 
to t’ and S[j] will correspond to t under mapping M. Further, it also means that the 

operators S[i+ l],... , S[j - I] will preserve p. This means S satisfies the IPC with 

respect to M. 
The above proves that S is a candidate of P with respect to the mapping function M. 

In addition, since by construction S corresponds to G, removing any operator from S 

would leave more steps in G than there are elements in S. This makes it impossible to 

construct a mapping function from P to S (since a mapping function must map every 

step of P to a different element of S). Thus, S is also a minimal candidate. 
(Only Zf Before we prove the only if part of the correspondence theorem, We will 

state and prove a useful lemma: 

Lemma 20. A minimal candidate S of a partial plan P will have exactly as many 
elements as the number of steps in P (not counting to and t,). 

Proof. Let m be the number of steps in P (not counting to and t,. S cannot have 
less than m elements since if it does then it will be impossible to construct a mapping 
function from P to S (recall that a mapping function must map each step to a different 

element of S). S cannot have more than m elements, since if it did then S will not be a 

minimal candidate. To see this, suppose S has more than m steps, and it is a candidate 
of P under the mapping function M. Consider the operator sequence S’ obtained by 
removing from S all the elements which do not have any step of P mapped onto them 

under M. Clearly, S’ must be of smaller length than S (S’ will have m elements). It is 
also easy to see that M is a mapping function from P to S’. Finally, S’ must satisfy 

all the monotonic auxiliary constraints of P under M. (To see this, suppose there is 

an monotonic auxiliary constraint C that S’ does not satisfy under M. By definition 
of monotonic auxiliary constraints (Section 3.4.2), this is impossible, since S, which 
is obtained by adding operators to S’, satisfies all the monotonic auxiliary constraints 
under M. lo ) This shows that S’ must also be a candidate of P under the mapping 
function M, which will violate the hypothesis that S is a minimal candidate. •! 

to This is the primary reason for defining candidate sets only in terms of monotonic auxiliary constraints. 
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We will now continue with the proof of the correspondence theorem. Suppose S is 
a minimal candidate of P with respect to the mapping function M. By the lemma 
above, S has as many elements as steps in P. This makes M a one-to-one mapping 
from steps of the plan to elements of S (with the exception of ra and too). Consider 
the step sequence G’ obtained by translating the operators in S to step names under the 
mapping M-’ such that G’[i] = M-‘(S[i]) (note that M can be inverted since it is a 
one-to-one mapping). Let G be the step sequence obtained by adding to to the beginning 
and t, to the end of G’. Since M maps all steps of P (except to and too) to elements 
of S, G’ will contain all steps of P. Further, since by the definition of mapping function, 
S satisfies all the ordering relations of P under M, G also satisfies all the ordering 
relations of P. This makes G a ground linearization of P that corresponds to S. Since 
S also satisfies the auxiliary monotonic constraints of P under M, by construction G 
must satisfy them too. Thus, G is a safe ground linearization that corresponds to the 
minimal candidate S. 0 

Example. In Section 3.4, we noted that Sr : 0102 is a minimal candidate for the 
example plan PE. Earlier in this section, we also noted that GI : totlt&, is a safe 
ground linearization, and that Gt corresponds to St. 

We now have a strong connection between the syntactic concept, safe ground lineariza- 
tion, and the semantic concept, minimal candidate. This gives us a way of interpreting 
the meaning of the syntactic operations performed on the partial plans in terms of the 
candidate set of the partial plan. Checking whether a partial plan has an empty candidate 
set can be done by checking if it has a safe ground linearization: 

Proposition 21. A partial plan has an empty candidate set (and is inconsistent) if and 
only if it has no safe ground linearizations. 

This follows directly from the correspondence theorem. Similarly, checking whether a 
minimal candidate of the partial plan is a solution to the problem can be done by looking 
at the ground operator sequences corresponding to the safe ground linearizations. 

4. A generalized algorithm for partial-order planning 

The algorithm Refine-Plan in Fig. 7 instantiates the refinement search (Fig. 2) 
within the context of planning. In particular, it describes a generic refinement planning 
algorithm, the specific instantiations of which cover most of the partial-order plan-space 
planners. 1 1 

As we noted in Section 3.4.4, the main refinement operation of Refine-Plan, called 
establishment refinement, is to consider each I’TC (corresponding to some precondition 
of some step of the plan) in turn and work towards adding constraints to the partial plan 

‘I An important exception are the hierarchical task reduction planners, such as SIPE [41], IPEM [ 1] and 

O-Plan [ 51. However, see [ 161 for a discussion of how Ref ine-Plancan be extended to coverthese planners. 
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so that all of its minimal candidates will satisfy that PTC. Accordingly, each invocation 
of Refine-Plan takes a partial plan, along with a data structure called agenda that 
keeps track of the set of PTCs still to be considered for establishment during planning. 
Given a planning problem [ Z,G] , where G is a set of goals (of attainment), the planning 
process is initiated by invoking Refine-Plan with the “null” partial plan Pa and the 
agenda A0 where 

P0 : 
{to, too}, {to + too}, 0, {to + start, t, + fin}, 
LCB : {(gi@tce) I gi E G) > 

and 

4 : {(gi, too) I gi E G}, 

where corresponding to each goal gi E G, da contains (gi, t,), and &, contains the 
PTC (gi@&). Fig. 6 illustrates PO and An. l2 As noted earlier, the candidate set of Pa, 
((Pa)) is the candidate space of the problem K. 

The procedure Refine-Plan (see Fig. 7 specifies the refinement operations done by 
the planning algorithm. Comparing this algorithm to the refinement search algorithm in 
Fig. 2, we note that it uses two broad types of refinements: the establishment refinements 
mentioned earlier (step 1) ; and the tractability refinements (step 2) to be discussed in 
Section 4.5. In each refinement strategy, the added constraints include step addition, 
ordering addition, binding addition, as well as addition of auxiliary constraints. In the 
following subsections, we briefly review the individual steps of this algorithm. 

Table 1 characterizes many of the well-known plan-space planners as instantiations 
of the Refine-Plan algorithm. Refine-Plan is modular in that its individual steps 
can be analyzed and instantiated relatively independently. Furthermore, the algorithms 
do not assume any specific restrictions on action representation, and can be used by any 
planner using the ADL action representation [ 301. Although we will be concentrating 
on goals of attainment, other richer types of behavioral constraints, such as maintenance 
goals, and intermediate goals, can be handled by invoking Refine-Plan with a plan 
that contains more initial constraints than Pa described above (see [ 141). In particular, 
maintenance goals can be handled by imposing some interval preservation constraints 
on the initial plan. Similarly intermediate goals can be handled by introducing some 
dummy steps (in addition to to and t,) into the plan, and introducing the intermediate 
goals as PTCs with respect to those steps. 

‘* Alert readers may note that there is some overlap between the agenda, and the definition of FTCs. Agenda is 
a prescriptive data structure used by the planner to keep track of the preconditions that need to be established. 
The agenda does not affect the candidate set of the partial plan. The FTCs, in contrast, are only checked 
to see if a candidate is a solution. Under this model, the planner can terminate without having explicitly 
considered each of the preconditions in the agenda (as long as all the auxiliary constraints, including the 
F’TCs are satisfied). Similarly, it also allows us to post preconditions that we do not want the planner to 
explicitly work on. In particular, the so called “filter-conditions” [4,40] can be modeled by adding them to 
the F’TCs, without adding them to the agenda. This is in contrast to ordinary preconditions which are added 
to both the agenda, and the auxiliary constraints. 
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Problem: 

Initial State: il, iz,...i, 

Goal State: gl, g2, . . g, 

Empty Partial Plan PO: 

add: il,i2,...in 

to: start - 

(g1 @GO) 

(g2@tcu) 

> 

(gn@too) tcx3 : Fin 

Fig. 6. The “empty” partial plan Pe and the agenda with which Refine-Plan is first invoked. 

4. I. Solution constructor function 

prec: gl,g2,...g, 

Agenda An: 

htc4 

k2JocJ 

. . 

knlJtc0) 

As discussed in Section 3, the job of a solution constructor function is to look for 
and return a solution from the candidate set of a partial plan. I3 Since enumerating and 
checking the full candidate set of a partial plan is infeasible, most planners concentrate 
instead on the minimal candidates. As discussed in Section 3 (see proposition 19 and 
Fig. 3)) it is possible to get a complete refinement search in the space of ground operator 
sequences if we have a solution constructor which examines the safe ground lineariza- 
tions and see if any of those correspond to a solution. This leads to the prototypical 
solution constructor, Some-sol: 

Definition 22 (Some-sol). Given a partial plan P, return with success when some safe 
ground linearization G of P also satisfies all the PTCs (this means that the ground 
operator sequence S corresponding to G is a solution to the problem) 

It is possible to show that any instantiation of Ref ine-Plan using Some-sol leads to a 
complete refinement search, as long as the rejinement operators used by the planner are 
complete (Definition 1) . Unfortunately, implementations of Some-sol are not in general 
tractable. t4 Because of this, most implemented planners use a significantly restricted 

l3 Note that a solution constructor function may also return a *fail* on a given pattial plan. The difference 
between this and the consistency check is that the latter fails only when the partial plan has an empty candidate 
set, while the solution constructor can fail as long as the candidate set of the partial plan does not contain 
any solutions to the given problem. 
I4 This is related to the fact that possible correctness of a partially ordered plan is NP-hard [ 3,171. 
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Lilgorithm Ref ine-Plan( (P : (T, 0, t?, ST, L), A)) 

Parameters: (i) sol: solution constructor function. 
(The following parameters are used by the refinement strategies.) 

(ii) pick-prec: the routine for picking the preconditions from the 
plan agenda for establishment. 

(iii) interacts?: the routine used by pre-ordering to check if a pair 
of steps interact. 

(iv) conflict-resolve: the routine which resolves conflicts with 
monotonic auxiliary constraints. 

1. Termination check: If sol(P, Q) returns a solution, return it, and terminate. If it 
returns *fail*, fail. Otherwise, continue. 

1. Establishment refinement: Refine the plan by selecting a goal, choosing a way 
of establishing that goal, and optionally remembering the establishment decision. 

1.1. Goal selection: Using the pick-prec function, pick a goal (c, S) (where c is a 
precondition of step S) from P to work on. Not a backtrack point. 

1.2. Goal establishment: Nondeterministically select a new or existing establisher 
step s’ for (c, s). Introduce enough ordering and binding constraints, and secondary 
preconditions to the plan such that (i) s’ precedes s, (ii) s’ will have an effect 
c, and (iii) c will persist until s (i.e., c is preserved by all the steps intervening 
between s’ and s). Backtrack point; all establishment possibilities need to be 
considered. 

1.3. Bookkeeping (Optional) : Add auxiliary constraints noting the establishment 
decisions, to ensure that these decisions are protected by any later refinements. 
This in turn reduces the redundancy in the search space. The protection strategies 
may be one of goal protection, interval protection and contributor protection (see 
text). The auxiliary constraints may be one of point truth constraints or interval 
preservation constraints. 

2. Tractability refinements (Optional) : These refinements help in making the plan 
handling and consistency check tractable. Use either one or both: 

2.a. Pre-ordering: Impose additional orderings between every pair of steps of 
the partial plan that possibly interact according to the static interaction metric 
interacts?. Backtrack point; all interaction orderings need to be considered. 

2.b. Conflict resolution: Add orderings, bindings and/or secondary (preservation) 
preconditions to resolve conflicts between the steps of the plan, and the plan’s 
monotonic auxiliary constraints. Backtrack point; all possible conflict resolution 
constraints need to be considered. 

3. Consistency check (Optional) : If the partial plan is inconsistent (i.e., has no safe 
ground linearizations), fail. Else, continue. 

1. Recursive invocation: Recursively invoke Refine-Plan on the refined plan. 

Fig. 7. A generalized refinement algorithm for plan-space planning. 
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version of Some-sol called All-sol, which terminates only when all ground iinearizations 
are safe and all safe ground linearizations correspond to solutions (satisfy all PTCs) : 

Definition 23 (All-sol). Given a partial plan P, return with success only when all 
ground linearizations of the plan are safe, and all safe ground linear&&ions satisfy all 
the PTCs (this means that the ground operator sequences corresponding to all safe 
ground linearizations are solutions). 

The solution constructors used by most existing planners correspond to some imple- 
mentation of All-sol, and the completeness proofs of these planners are given in terms 
of All-sol. 

Comparing All-sol to the definition of a solution constructor (Definition 2), we note 
that in general, All-sol requires the partial plan to have more than one solution before 
it will signal success (all minimal candidates must be solutions). One theoretically in- 
elegant consequence of this difference is that for planners using All-sol as the solution 
constructor, completeness of refinement operators alone does not guarantee the com- 
pleteness of refinement search. In Section 5.2, we describe some specific instantiations 
of Ref he-Plan that illustrate this. 

In particular, an instantiation of Refine-Plan that uses complete refinement op- 
erators, and uses an All-sol-based solution constructor will be complete only if the 
refinements eventually produce a partial plan all ground linear&ions of which corre- 
spond to solutions (i.e., safe, and satisfy all PTCs). I5 We will note later that this is 
in general ensured as long as the planner either uses tractability refinements (Section 
4.5), or continues to use establishment refinements as long as there are conditions that 
are not yet necessarily true (see description of TWEAK in Section 5.1.3). 

Once a planner is complete for All-sol, it is actually possible to use a slightly more 
general versions of All-sol, called k-sol, which randomly check k safe ground lincariza- 
tions of the plan to see if any of them are solutions. If a planner is complete for All-sol, 
it is also complete for k-sol. This is because completeness with respect to All-sol means 
that eventually a partial plan is produced all of whose ground linearizations become 
safe, and will correspond to solutions. When this happens, k-sol will also terminate with 
success on that partial plan. Further, k-sol is guaranteed to terminate the search before 
All-sol. 

The termination criteria of All-sol correspond closely to the notion of necessary cor- 
rectness of a partially ordered plan, first introduced by Chapman [ 31. Existing planning 
systems implement All-sol in two different ways: Planners such as Chapman’s TWEAK 
[ 3,441 use the modal truth criterion to explicitly check that all the safe ground lin- 
earizations correspond to solutions (we will call these the MTC-based constructors). 
Planners such as SNLP [24] and UCPOP [ 33 ] depend on protection strategies and 
conflict resolution (Section 4.5.2) to indirectly guarantee the safety and necessary cor- 
rectness required by All-sol (we call these protection-based constructors). In this way, 
the planner will never have to explicitly reason with all the safe ground linearizations. 

ls Note that this needs to happen for at least one partial plan, not necessarily all partial plans. 
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Characterization of a variety of existing as well as hybrid planners as instantiations of Refine-Plan; the n 
used in the complexity figures is the number of steps in the partial plan 

Planner Soln. constructor Goal selection Bookkeeping Tractability 
refinements 

Existing planners 

TWEAK [3] MTC-based 0( n4) MTC-based 0(n4) None None 
UA [28] MTC-based 0( n2 ) MTC-based O(n*) None Unambiguous ordering 
NONLIN [40] MTC (Q&A) based Arbitrary 0( 1) Interval & Conflict resolution 

goal protection 
TOCL [2] Protection-based 0( 1) Arbitrary 0( 1) Contributor protection Total ordering 
Pedestal [ 261 Protection-based 0( 1) Arbitrary O( 1) Interval protection Total ordering 
SNLP [24] 
UCPOP [33] 

Protection-based 0( 1) Arbitrary 0( 1) Contributor protection Conflict resolution 

MP, MP-I [ 131 Protection-based Arbitrary (Multi-)contributor Conflict resolution 
protection 

Hybrid planners (described in Section 5.2) 

SNLP-UA MTC-based 0(n2) MTC-based 0( n2) Contributor protection Unambiguous ordering 
SNLP-MTC MTC-based 0( n4) MTC-based 0( n4) Contributor protection Conflict resolution 
SNLP-CON MTC-based O( n4) MTC-based 0(n4) Contributor protection None 
McNONLIN- 

MTC MTC-based 0(n4) MTC-based O(n4) Interval protection Conflict resolution 
McNONLIN- 

CON MTC-based 0( n4) MTC-based 0(n4) Interval protection None 
TWEAK-visit MTC-based 0(n4) MTC-based 0(n4) Agenda popping None 

4.2, Goal selection and establishment 

As we noted in Section 3.4.4 the fundamental refinement operation used in refinement 

planners is the so-called establishment operation which adds constraints to the plan so 

that its minimal candidates satisfy all the PTCs. The establishment refinement involves 
selecting a precondition (c, s) of the plan from the agenda (where c is a precondition 

of a step s), and refining (i.e., adding constraints to) the partial plan such that in each 

refinement some step t gives c, and c is not violated by any steps intervening between t 
and s. When this is done, it is easy to see that all the minimal candidates of the resulting 
plan will satisfy the PTC (CBS) (Section 3.4.2). Different refinements correspond to 
different steps acting as contributors of c to s. Chapman [3] and Pednault [30] provide 
theories of sound and complete establishment refinement. Pednault’s theory is more 
general as it deals with actions containing conditional and quantified effects. I6 It is 

possible to limit Refine-Plan to establishment refinements alone and still get a sound 

and complete (in the sense of Definition 3) planner (using either Some-sol or All-sol 

described earlier as solution constructors). 
In Pednault’s theory, establishment of a condition c at a step s essentially involves 

selecting some step s’ (either existing or new), and adding enough constraints to the plan 

” And it also separates checking the truth of a proposition from planning to make that proposition true, see 
1171. 
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Implementation and properties of some common protection (bookkeeping) strategies in terms of Ref ine-Plan 
framework 

Protection Implementation Refine-Plan Property 
method 
Agenda 

popping 

When the precondition (p,s) is consid- 
ered for establishment, remove it from 
the agenda. Prune any partial plan whose 
agenda is empty. 
Add an IPC (s’, p, s) to the auxiliary con- 
straints of the plan, whenever a precondition 
(p, s) is established through the effects of 3’. 

Will not consider the same precondition for 
establishment more than once 

Interval 
protection 

Contributor 
protection 

Multi- 
contributor 
protection 

Add two IPCs (s’,p,s) and (s’, ‘p, s) to 
the auxiliary constraints of the plan, when- 
ever a precondition (p, S) is established 
through the effects of s’. 

Add the disjunctive IPC (s’, p. s)V (s”, p, s) 
to the auxiliary constraints of the plan, 
whenever a commitment is made to estab- 
lish the precondition (p, s) with the effects 
of either S’ or s”. 

Same as above, hut facilitates earlier prun- 
ing of plans that will ultimately necessitate 
the reestablishment of a condition that has 
already been considered for estabiishment. 

In addition to the properties of agenda pop- 
ping and interval protection, it also ensures 
that the establishment refinement is system- 
atic [24] (see Definition 1). 

Avoids the excessive commitment to con- 
tributors inherent in the interval protection 
and contributor protection strategies. But 
sacrifices systematicity [ 131. 

such that (i) s’ 4 s, (ii) s’ causes c to be true, and (iii) c is not violated before s. To 

ensure ii, we need to, in general, ensure the truth of certain additional conditions before 

s’. Pednault calls these the causation preconditions of s’ with respect to c. To ensure 
(iii), for every step s” of the plan, we need to either make s” come before s’, or make 

s” come after s, or make s” necessarily preserve c. The last involves guaranteeing truth 
of certain conditions before s”. Pednault calls these the preservation preconditions of 
s” with respect to c. Causation and preservation preconditions are called the secondary 
preconditions of the action. These become PTCs of the partial plan (for each secondary 

precondition c of s, add the PTC (c@s)), and are also added to the agenda data structure 
(to be considered by establishment refinement later). 

Goal selection 
The strategy used to select the particular precondition (c, s) to be established (called 

the goal selection strategy), can be arbitrary, can depend on some ranking based on 
precondition abstraction [ 19,351, and/or demand-driven (e.g. select a goal only when 

it is not already necessarily true according to the modal truth criterion [3]). The 
last strategy, called MTC-based goal selection, involves reasoning about the truth of a 
condition in a partially-ordered plan, and can be intractable for general partial orderings 
consisting of ADL [ 301 actions (see Table 1, as well as the discussion of pre-ordering 
strategies in Section 4.5.1) . 

4.3. Bookkeeping and protecting establishments 

It is possible to do establishment refinement without the bookkeeping step. Chapman’s 
TWEAK [3] is such a planner. However, such a planner is not guaranteed to respect 
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(a) Considering the same candidate in more than 
one branch 

(b) Establishing the same condition 
more than once 

Fig. 8. Examples showing redundancy and looping in the TWEAK search space. In all the examples, the 
operators are shown with preconditions on the right side, and effects on the left (with a “+” sign for add list 
literals, and a “-‘I sign for delete list literak). The Init and Goal lists specify the problem. The example on 
left is adopted from Minton et al. [27]. 

its previous establishment decisions while making new ones, and thus may have a high 
degree of redundancy. Specifically such a planner may: 

( 1) wind up visiting the same candidate (potential solution) in more than one search 
branch (in terms of our search space characterization, this means p > 1) , and 

(2) wind up having to consider the same precondition (PTC) for establishment more 
than once. 

The examples in Fig. 8 illustrate both these behaviors on a planner that only uses 
establishment refinement. Fig. 8(a) (originally from Minton et al. [ 271) shows that 
a planner without any form of bookkeeping may find the same solution in multiple 
different search branches. (That is, the candidate sets of the search nodes in different 
branches overlap.) Specifically, the ground operator sequence 030201 belongs to the 
candidate sets of nodes both in the left and right branches of the search tree. In Fig. 
g(b), after having established a PTC (Q@ut), the planner works on the PTC (R@at). In 
the resulting plan, the tirst FTC is no longer satisfied by any of the minimal candidates 
(this is typically referred to as “clobbering” of the precondition (Q, at)). This means 
that (Q@ut) needs to be established again. The bookkeeping step attempts to reduce 
these types of redundancy. Table 2 summarizes the various bookkeeping strategies uses 
by the existing planners. 

At its simplest, the bookkeeping may be nothing more than removing each precondi- 
tion from the agenda of the partial plan once it is considered for establishment. Since 
the establishment refinement looks at all possible ways of establishing a condition at 
the time it is considered, when the agenda of a partial plan is empty, it can be pruned 
without loss of completeness. We will call this strategy the agenda popping strategy. 
The hybrid planner TWEAK-visit in Table 1, a variant of TWEAK, uses this strategy. 
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A more active form of bookkeeping involves protecting previous establishments in 
a partial plan, while making new refinements to it. In terms of Refine-Plan, such 
protection strategies can be seen as posting IPCs on the partial plan to record the 
establishment decisions. The intuition behind this is that the IPCs will constrain the 
candidate set of the plan such that ground operator sequences corresponding to partial 
plan ground linearizations that do not satisfy the PTC are automatically removed from 
the candidate set (by making the corresponding ground linearizations unsafe). When 

there are no safe ground linearizations left, the plan can be abandoned without loss of 
completeness (even if its agenda is not empty). 

The protection strategies used by classical partial-order planners come in two main va- 
rieties: interval protection, I7 and contributor protection. ‘* They can both be represented 
in terms of the interval preservation constraints. 

Suppose the planner just established a condition c at step s with the help of the 
effects of the step s’. For planners using interval protection (e.g., PEDESTAL [ 261)) 
the bookkeeping constraint requires that no candidate of the partial plan can have 
p deleted between operators corresponding to s’ and s. It can thus be modeled in 
terms of the interval preservation constraint (s’, p, s). Finally, for bookkeeping based on 
contributor protection, the auxiliary constraint requires that no candidate of the partial 
plan can have p either added or deleted between operators corresponding to s’ and s. l9 
This contributor protection can be modeled in terms of the twin interval preservation 
constraints (s’, p, s) and (s’, up, s). *’ 

While most planners use one or the other type of protection strategies exclusively for 
all conditions, planners like NONLIN and O-Plan [5,40] post different bookkeeping 
constraints for different types of conditions. Finally, the interval protections and contrib- 
utor protections can also be generalized to allow for multiple contributors supporting a 
given condition [ 131. In particular, a multiple-contributor protection may represent the 
commitment that the precondition p of step s’ will be given by either st or ~2. Such a 

protection can be represented as a disjunction of two IPCs: (st ,p, s’) v (~2, p, s’). 

4.3.1. Contributor protections and systematic@ 
While all the bookkeeping strategies described above avoid considering the same 

precondition for establishment more than once (and thus avoid the looping described 
in Fig. 8(b) ), only the contributor protection eliminates the redundancy of overlapping 
candidate sets, by making establishment refinement systematic. Specifically, we have: 

Proposition 24 (Systematicity of establishment with contributor protection [ 241) . 
Establishment refinement with contributor protection is systematic in that partial plans 
in different branches of the search tree will have non-overlapping candidate sets (thus 
p= 1). 

t7 Also called causal link protection, or protection intervals in the literature. 
I8 Also called exhaustive causal link protection [ 131. 
tg See [ 111 for a reconstruction of the ideas underlying goal protection strategies. 
*O It is easy to see that contributor protection implies interval protection. What is not obvious at first glance 
is that in the presence of the optional consistency check, it also implies the essence of agenda popping (in 
that it will not allow the planner to consider the same precondition for establishment more than once). 
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This property can be proven from the fact that contributor protections provide a way 
of uniquely naming steps independent of the symbol table mapping (see [ 11,241). TO 

understand this, consider the following partial plan (where the PTCs are omitted for 
simplicity) : 

( 

{~0AJco}~{~0 4 ll,fl + tco},O, 
N : {tl + ol,fo + start,t, + fin}, 

{(~l~P~~oo)~(~l,~P,~~)} ) 

where the step tt is giving condition p to t,, the goal step. Suppose tt has a precondition 
q. Suppose further that there are two operators 02 and 03 respectively in the domain 
which can both provide the condition q. The establishment refinement generates two 
partial plans: 

( 

{~0,~1J2&}~{~0 + t2,t2 + fl,fl 4 fco},0, 
NI: {tl --t01,t2j02,to_fstart,t, -+fin}, 

{(~lrP,~~)~(~l,~P,~m)~(~2,q,~,),(~2,~q~~,)} i 

( 

{~0,tlJ2,tKJr{t0 4 t2,t2 + tl,tl 4 &},0, 
N; : {tl + 01, t3 + 03, to -+ start, t, + fin}, 

{(~l,P,~oo),(~l,~P~~03),(~2rq,~co),(~2,~q,~oo)} ) 

Consider step t2 in h/l. This can be identified independent of its name in the following 
way: 

The step which gives q to the step which in turn gives p to the dummy final 
step. 

An equivalent identification in terms of candidates is: 

The last operator with an effect q to occur before the last operator with an effect 
p in the candidate (ground operator sequence). 

The contributor protections ensure that this operator is 02 in all the candidates of J$ 
and o3 in all the candidates of N2. Because of this, no candidate of Nl can ever be a 
candidate of N2, thus ensuring systematicity of establishment refinement. 

The discussion about bookkeeping strategies in this section demonstrates that system- 
aticity should not be seen in isolation, but rather as part of a spectrum of methods for 
reducing redundancy in the search space. We will return to this motif in Section 7.2. 

4.4. Consistency check 

The aim of the consistency check is to prune inconsistent partial plans (i.e., plans 
with empty candidate sets) from the search space, thereby improving the performance of 
the overall refinement search. (Thus, from the completeness point of view, consistency 
check is an optional step.) Given the relation between the safe ground linearizations 
and candidate sets (Proposition 21)) the consistency check can be done by ensuring that 
each partial plan has at least one safe ground linearization. This requires checking the 
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consistency of orderings, bindings and auxiliary constraints of the plan. Ordering con- 
sistency can be checked in polynomial time, binding consistency is tractable for infinite 
domain variables, but is intractable for finite domain variables. Finally, consistency with 
respect to auxiliary constraints is also intractable for many common types of monotonic 
auxiliary constraints (even for ground partial plans without any variables). Specifically, 
we have: 

Pmposition 25. Given a partial plan whose monotonic auxiliary constraints contain 
interval preservation constraints, checking if there exists a safe ground linearization of 
the plan is NP-hard. 

This proposition directly follows from a result due to Smith [ 361, which shows that 
checking whether there exists a conflict-free ground linearization of a partial plan with 
interval preservation constraints is NP-hard. 

4.5. Tractability refinements 

Since, as observed above, the consistency check is NP-hard in general, each call to 
Ref he-plan is also W-hard. It is of course possible to reduce the cost of refinement by 
pushing the complexity into search space size. In general, when checking the satisfiability 
of a set of constraints is intractable, we can still achieve polynomial consistency check 
by refining the partial plans into a set of mutually exclusive and exhaustive constraint 
sets such that the consistency of each of those refinements can be checked in polynomial 
time. 

This is the primary motivation behind tractability refinements. To understand the 
type of refinements that need to be done, we note that the reason for the intractability 
of consistency check is that checking whether a plan has a safe ground linearization 
(Proposition 21) requires going through a potentially exponential number of ground 
linearizations. Thus, to make it tractable, we could either restrict each partial plan to 
have less than exponential ground linearizations, or make all the ground linearizations 
be uniform with respect to their satisfaction of the IPCs (Definition 11 )-e.g., either 
all of them satisfy an IPC or none of them satisfy it. In the later case, the consistency 
can be checked by looking at any one ground linearization. These ideas are realized in 
two broad classes of tractability refinements: pre-ordering and co@ct resolution. 

Note that an interesting property of partial plans in the presence of tractability refine- 
ments is that eventually the refinements will produce a partial plan all of whose ground 
linearizations are safe. This later property, coupled with the fact that all planners will 
eventually consider each PTC for establishment once, ensures that any instantiation of 
Refine-Plan which uses tractability refinements will eventually produce a partial plan 
all of whose ground linearizations of a partial plan correspond to solutions.21 Thus, 
they will be complete with respect to All-sol-based solution constructors (see Section 
4.1). 

*l This claim assumes the completeness of establishment refinements. 
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4.5.1. Pre-ordeting refinements 
Pre-ordering strategies aim to restrict the type of partial orderings in the plan such 

that consistency with respect to monotonic auxiliary constraints can be checked without 
explicitly enumerating all the ground linearizations. Two possible pre-ordering tech- 
niques are total ordering and unambiguous ordering [ 271. Total ordering orders every 
pair of steps in the plan, while unambiguous ordering orders a pair of steps only when 
one of the steps has an effect c, and the other step either negates c or needs c as a 
precondition (implying that the two steps may interact). Both of them guarantee that in 
the refinements produced by them, either all ground linearizations will be safe or none 
will be. 22 Thus, consistency can be checked in polynomial time by examining any one 
ground linearization. 

Pre-ordering techniques can also make other plan handling steps, such as MTC- 
based goal selection and MTC-based solution constructor, tractable (cf. [ 11,271). For 
example, unambiguous plans also allow polynomial check for necessary truth of any 
condition in the plan. Polynomial necessary truth check can be useful in MTC-based 
goal selection and termination tests. In fact, unambiguous plans were originally used in 
UA [27] for this purpose. 

4.5.2. ConJict resolution rejinements 
Conflict resolution refines a given partial plan with the aim of compiling the monotonic 

auxiliary constraints into the ordering and binding constraints. Specifically, the partial 
plan is refined (by adding ordering, binding or secondary preconditions [ 301 to the 
plan) until each possible violation of the auxiliary candidate constraint (called conflict) 
is individually resolved. 

An interval preservation constraint (Si, p, sj) threatened by a step s’ can possibly 
come between si and sj and not preserve p (note from Definition 11 that this means 
that at least one ground linearization of the plan will not satisfy the IPC). A conflict is 
specified by an IPC and a threatening step. 

Resolving the conflict involves either making s’ not intervene between si and sj 
(by adding either the ordering s’ 4 Si or the ordering Sj 4 s’), or adding secondary 
(preservation) preconditions of s’, required to make s’ preserve c [ 301, as PTCs to the 
partial plan (and to the agenda). The ordering strategies for resolving conflicts are called 
promotion and demotion, while the secondary precondition-based conflict resolution is 
called confrontation. When all conflicts are resolved this way, the resulting refinements 
will have the property that all their ground linearizations are safe (or will eventually 
become safe in the case of confrontation). Thus, checking the partial plan consistency 
will amount to checking for the existence of ground linearizations. This can be done by 
checking ordering and binding consistency. 

4.5.3. Deferring tractability refinements 
Until now, we assumed that the only choice regarding tractability refinements is 

to either use them, or not use them. However, since the tractability refinements are 

** In the case of total ordering, this holds vacuously true since the plan has only one linearization. 
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optional, it is also possible to do some tractability refinements, while ignore or defer 
other refinements. For example, we could pre-order some potentially conflicting steps, 
while leaving others unordered. Similarly, we can resolve some conflicts, while leaving 
others unresolved. Finally, we could either handle the unordered and/or unresolved 
conflicts by the end of the search, or ignore them all together. Such strategies could be 
useful in improving performance [34], since as we shall see in Section 6, tractability 
refinements reduce the cost of consistency check at the expense of increased branching 
factor (corresponding to additional refinements). This type of selective use of tractability 
refinements does not in general affect soundness and completeness of the Refine-Plan. 
There are two caveats however: 

( 1) If the tractability refinements are being ignored rather than being deferred, then 
in general Refine-Plan is not guaranteed to produce a partial plan all of 
whose ground linearizations are safe. This means that, for such instantiation 
of Refine-Plan, completeness with respect to solution constructors based on 
All-sol is not guaranteed (Section 4.1) . 

(2) If the Refine-Plan uses a consistency check based only on orderings and 
bindings, then it may wind up not detecting the inconsistency of a partial plan 
(specifically, the deferred/ignored conflicts may be unresolvable). This means 
that Refine-Plan could refine inconsistent plans, thereby unnecessarily increas- 
ing the search space size in the worst case. In particular, Refine-Plan is not 
guaranteed to be informed and consequently will not be sfrongly systematic (Def- 
inition 7). (This may not necessarily have any impact on the performance of the 
planner however, see Section 7.2.) 

5. Specific instantiations of Refine-Plan 

As we observed in the previous section, most existing partial-order planning algorithms 
can be seen as instantiations of the Refine-Plan algorithm. Table 1 characterizes many 
well-known algorithms in terms of the way they instantiate the different parts of the 
Refine-Plan algorithm. To make things concrete, and to help in focused empirical 
comparisons in the later sections, we will now provide more details about some spe- 
cific instantiations of Refine-Plan. We will first discuss instantiations that correspond 
to some well-known existing partial-order planners and then (in Section 5.2) discuss 
some instantiations of Refine-Plan that have not been previously discussed in the 
literature. 

5.1. Existing planners 

In this section we will discuss the instantiations of Refine-Plan corresponding to 
four well-known planners: SNLP [ 241, McNONLIN [40], TWEAK [ 31 and UA [ 281. 
We will start with the instantiation of Refine-Plan that corresponds to SNIP, called 
Ref ine-Plan-SNLP, and describe the other three algorithms in terms of the incremental 
changes that need to be made to the SNLP instantiation. 
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5.1.1. The SNLP algorithm 
The following describes the SNIP algorithm, first described in [ 241, as an instantia- 

tion of Refine-Plan. 

Algorithm Ref ine-Plan-SNLP( (P : (T, 0, B, ST, ,C), A)) 

0. Termination: If A is empty, report success and stop. 
1.1. Goal selection: Pick any (p, S& E A. Set A = A - (p, s&. 
1.2. Establishment: 

l Let &dd be an existing step, or some new step, that adds p before S,,,+ If no such 
step exists or can be added then backtrack. Set T = TU{sadd}, 0 = OU{s~d+sneed}, 

and 23 = f3 U the set of variable bindings (causation preconditions) to make &dd 
add p. 

l For every step st such that sy comes between &,dd and Sneed and deletes p, make 
two refinements, one in which 0 = 0 + (&,d 4 st) and the other in which 
0=0+ (St 4 &jd). 

l Finally, if &dd is new, then update the agenda and the set of nonmonotonic auxiliary 
constraints: 

A = A u {(p’, &dd) 1 VP’ E PreCond( &add) ) 9 

c = L u {(P’@sadd) 1 VP’ E preCOnd( &dd)}. 

(For completeness, all ways of establishing the condition must be considered.) 
1.3. Bookkeeping: Update the set of monotonic auxiliary constraints with two interval 

preservation constraints: 

2.b. Conflict resolution (tractability refinements): 
l Threatkonjfict detection: A step t is said to be a threat for an interval preservation 

constraint (s,p, s’) of the plan, if t E T, (s,p, s’) E L, such that t can possibly 
come between s and s’, and the effect of t necessarily violates (does not preserve) 

P. 
l Threat resolution: For each threat consisting of step t and IPC (s,p, s’), make two 

refinements, one in which 0 = O-l- (t -i s) and the other in which 0 = 0+ (s’ + t). 
3. Consistency check: Prune the plan if it is either order-inconsistent (0 contains cycles) 

or is binding-inconsistent (B contains both a codesignation and a non-codesignation 
between a pair of variables). 

4. Recursive invocation: Recursively invoke Ref ine-Plan-SNLP on the refined plan. 

Note that the consistency check in the above algorithm checks order and binding 
consistency, rather than the existence of safe ground linearizations (Section 3.5). How- 
ever, as we discussed in Section 4.5, as long as we do complete conflict resolution with 
respect to auxiliary constraints, every (remaining) ground linearization of the plan is 
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guaranteed to be a safe ground linearization. Thus, consistency check can be done by 
checking for the existence of ground linearizations (which is equivalent to ensuring that 
ordering and binding constraints are consistent). 23 

Most common implementations of SNLP, including the one we used in our experi- 
ments (Section 8) avoid a separate consistency check in step 4 by compiling the order 
and binding consistency checks into the establishment and conflict resolution refinements 
(thus ensuring that none of the refinements produced in either step 2 or step 4 are order- 
or binding-inconsistent). Further, some implementations of SNLP, such as the popular 
one by Barrett and Weld [ 21, do conflict resolution one threat per iteration (invocation 
of Refine-Plan). While this can also be cast as an instantiation of Refine-Plan 
(which defers tractability refinements; Section 4.5.3) the implementation we used in 
our experiments is faithful to the description above. 24 

In writing the algorithm above, we made the implicit assumption that the domain 
actions do not have conditional or quantified effects. The primary reason for making 
this assumption is the desire to make the exposition simple, rather than any fundamental 
limitation of the Refine-Plan algorithm. If the actions have conditional effects, the 
establishment step and the conflict resolution step must consider adding causation and 
preservation preconditions during establishment and threat resolution. 

51.2. The McNONLIN algorithm 
SNLP is a descendant of the NONLIN [40] planning algorithm. There are several 

differences between NONLIN, which is a hierarchical task reduction planner, and SNLP, 
which a non-hierarchical partial-order planner. One difference that is of interest with 
respect to Refine-Plan is that while SNLP uses contributor protection, NONLIN used 
interval protections.25 To illustrate this difference, we describe an algorithm called 
McNONLIN that is inspired by the protection strategies of NONLIN. 

1.3. Bookkeeping: Update auxiliary constraint with one interval preservation constraint: 
L = L: + (s~~,J, p, rneed) to the auxiliary constraints. 

Note that McNONLIN adds fewer auxiliary constraints per establishment than SNLP 
does. This means that a search branch becomes inconsistent for SNLP earlier than it 
does for McNONLIN. In depth-first regimes, this means that SNLP backtracks earlier 
(and more often) than McNONLIN (the flip side being that McNONLIN will have 
more redundancy in its search space than SNLP). 26 

23 Notice that our description of conflict resolution avoids the positive threat negative threat terminology 
commonly used in describing SNLP This is because each “causal link” used by SNLP naturally corresponds 
to two independent IPCs, and the notion of threat need only be defined with respect to an IPC. 
24 The SNLP implementation used by Peot and Smith in their conflict deferment experiments [ 341 corresponds 
closely to our description above. 
25 Actually, the original NONLIN used different types of protections based on the type of the precondition 
being protected [40]. 
26 Note, once again, that by using IPCs to model the bookkeeping constraints, we avoid having to redefine 
the notion of a threat. 
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The difference in the bookkeeping step also has an implicit effect on the conflict 
resolution step, since conflict resolution is done with respect to each auxiliary con- 
straint. Specifically, McNONLIN will generate fewer tractability (conflict resolution) 
refinements than SNIP 

5.1.3. The TWEAK algorithm 
The primary difference between TWEAK and the two previous algorithms is that 

TWEAK does not use any form of bookkeeping constraints. Thus it neither uses the 
bookkeeping step, nor the conflict resolution step. Further, the standard formulation of the 
TWEAK algorithm [ 31 uses the modal truth criterion (MTC) for goal selection as well 
as termination. In particular, MTC is used to check if a given precondition (C, s) E A 
is necessarily true in the plan. The goal selection step prefers conditions that are not yet 
necessarily true, and the termination test succeeds as soon as all the preconditions are 
necessarily true (i.e., there are no conditions that need to be established). The following 
describes the steps of Refine-Plan where TWEAK differs from SNIP *’ 

0. Termination: If every precondition (c, s) E A is necessarily true according to the 
modal truth criterion, report success and stop. 

1.1. Goal selection: Pick any (p, s,,d) E A that is not necessarily true according to the 
modal truth criterion. Do not remove (p, sneed) from A. 

1.3. Bookkeeping: None. 
2. Tractability refinement: None. 

Notice that TWEAK never removes the condition from the agenda when it is consid- 
ered for establishment. This is what allows it to work on the same precondition more 
than once. Further, although TWEAK does not use any tractability refinements, it is still 
complete for All-sol (of which the MTC-based termination is a special case), since it 
continues to use the establishment refinement as long as there are preconditions of the 
plan that are not necessarily correct (according to MTC). 

5.1.4. The UA algorithm 
Another partial-order planning algorithm that received a significant amount of analysis 

is Minton et al’s UA planner [28]. UA is very similar to TWEAK (in that it uses no 
bookkeeping constraints) and employs goal selection and termination strategies similar 
to TWEAK. The only difference between UA and TWEAK is that UA uses a pre- 
ordering tractability refinement. In particular, we can get the UA algorithm by replacing 
step 2 of TWEAK by the following: 

27 It is instructive to note that our formulation of TWEAK is not completely in correspondence with Chapman’s 

[ 31 initial characterization of the algorithm. In particular, Chapman suggests that planning be done by inverting 

the modal truth criterion. Among other things, this involves using the so-called “white-knight declobbering” 
clause during establishment. However, by Chapman’s own admission, introducing new steps into the plan 

as white-knights greatly increases the branching factor and can thus be very inefficient. Accordingly, in our 
formulation, we do not allow new (white-knight) steps to be introduced during declobbering. 
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2.a. Pre-ordering (tractability refinements): 
l Interaction detection: A pair of steps st and s2 is said to be interacting with each 

other if $1 and s2 are not ordered with respect to each other (i.e., neither st 4 s:! 
nor s2 < st ) and 
. SI has a precondition p, and s2 either has an effect p or an effect lp or 
. s2 has a precondition p, and st either has an effect p or an effect lp or 
. SI has an effect p and s:! has an effect 1~. 
Find every step s’ in the plan such that s’ interacts with S&t. 

l Interaction resolution: For every step s’ that interacts with S&t, either add the 
order s’ 4 &,,&j or the ordering S&d -X s’. (Both orderings need to be considered 
for completeness.) 

The pre-ordering refinement used by UA entails an interesting property for the partial 
plans maintained by UA. All the partial plans produced at the end of UA’s pre-ordering 
step are all unambiguous in the sense that every precondition (c, s) of the plan (where 
c is a condition that needs to be true at step s) is either necessarily true (i.e., true in 
all ground linearizations) or necessarily false (i.e., false in all ground linearizations) . 
Because of this property, although UA uses MTC-based goal selection and termination, 
the cost of interpreting MTC is smaller for the unambiguous partial plans maintained by 
UA (O(n2), where IZ is the number of steps in the plan) than for the plans maintained 
by TWEAK (0( n4) ) (see Table 1) . In particular, necessary truth of a condition can be 
determined by simply examining any one ground linearization of the plan. 

5.2. Hybrid algorithms 

In looking at the four existing partial-order planning algorithms as instantiations of 
Ref ine+lan, we note that there are many opportunities for integrating the algorithms 
to make hybrid planning algorithms. In this section, we discuss four such instantiations 
of Refine-Plan, SNLP-MTC, McNONLIN-MTC, SNLP-UA and TWEAK-visit. 

5.2.1. The SNLP-MTC, McNONLIN-MTC algorithms 
The SNLP-MTC algorithm is similar to the SNLP algorithm, except that it uses 

the goal selection and termination steps of TWEAK. Unlike TWEAK, which does 
not remove the condition from the agenda once it is considered for establishment, 
SNLP-MTC, like SNLP, does remove the condition from the agenda. In the same vein, 
McNONLIN-MTC is similar to McNONLIN, except that it uses the goal selection and 
termination steps of TWEAK. 

5.2.2. The SNLP-UA algorithm 
The SNLP-UA algorithm is similar to the SNLP-MTC algorithm except that it uses 

a variation on the pre-ordering step of UA, instead of the conflict resolution step. It 
thus borrows the bookkeeping step from SNLP, and the tractability refinement step 
from UA. In particular, the following algorithm shows SNLP-UA as an instantiation of 
Refine-Plan. 
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Algorithm Ref ine-Plan( (P : (T, 0, t?, ST, .C), A)) 

0. Termination: Same as TWEAK. 

1.1 Goal selection: Same as TWEAK. 

1.2. Establishment: Same as SNLP 
1.3. Bookkeeping: Same as SNLI? 

2.a. Pre-ordering (tractability refinements): 
l Interaction detection: (The following is the same as the step used by UA, except 

for the underlined part). A pair of steps st and s2 is said to be interacting with 

each other if st and s2 are not ordered with respect to each other (i.e., neither 
sr 4 s2 nor s2 -+ sr ) and 

. SI has a precondition p, and s2 either has an effect p or an effect up or 

. s2 has a precondition p, and sr either has an effect p or an effect up or 

. SI has an effect p and s2 has an effect up or p. (Note that the underlined clause 

is not present in the interaction detection step of UA.) 
Find every step s’ in the plan such that s’ interacts with &dd. 

l Interaction resolution: For every step s’ that interacts with &dd, either add the 
order s’ 4 &dd or the ordering S&j -+ s’. (Both orderings need to be considered 

for completeness.) 

3. Consistency check: Prune the plan if it is either order-inconsistent (0 contains cycles) 

or is binding-inconsistent (I3 contains both a codesignation and a non-codesignation 
between a pair of variables), or it contains any auxiliary constraint with a conflict 

(i.e., an IPC (s’,p, s) and a step s” which falls in between s’ and s and deletes (does 
not preserve) p) . 

The consistency check prunes the plan if any auxiliary constraint has a conflict. This is 
reasonable since after the pre-ordering step, any remaining conflicts are unresolvable (by 

promotion or demotion). 28 It also shows that not every planner which uses protection 

strategies is required to use conflict resolution step. 

Finally, note that unlike UA, the interaction detection step of SNIP-UA considers two 
steps to be interacting even if they share the same effect. This is required to ensure that 

all the auxiliary constraints are either necessarily safe or necessarily unsafe. 

5.2.3. The TWEAK-visit algorithm 

TWEAK-visit is the same as TWEAK except that it does not work on a precon- 

dition that has already been considered for establishment. TWEAK-visit thus uses the 

“agenda popping” strategy that we described in Section 4.3. The only difference between 
TWEAK-visit and TWEAK algorithms is the goal selection step: 

1. Goal selection: Pick any (p, sneed) E A that is not necessarily true according to the 
modal truth criterion. Set A = A - (p, &@_I). 

** When we consider actions with conditional effects, the consistency check must be changed to prune the 
plan only when the conflict cannot be confronted [ 331, i.e., resolved by posting preservation preconditions as 
additional preconditions of the plan. 
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Specifically, unlike TWEAK which does not remove a condition from A once it is 
considered for establishment, TWEAK-visit does remove it. It is instructive to note that 
TWEAK-visit avoids the looping described in Fig. 8 (b) . 

Since TWEAK-visit does not use tractability refinements and, unlike TWEAK, es- 

tablishes each precondition at most once, depending on the order in which goals are 
considered for establishment, it could be incomplete. The example below illustrates 

this. 

Example showing incompleteness of TWEAK-visit for MTC-based termination 
Suppose the domain consists of two operators: 01 which has an effect p, and no 

preconditions, and 02 which has effects q and lp, and no preconditions. Suppose we 

start with an empty initial state, and want to achieve p and q in the goal state, and 
suppose that the goal p is considered for establishment first and then the goal q. 
TWEAK-visit establishes p first and then q, then the only partial plan in the search 
space will have 01 and 02 unordered. The ground linearization 0201 is a solution, while 

0~02 is not a solution. Thus, the MTC-based solution constructor does not terminate on 
this plan, and TWEAK-visit does not allow any further establishment refinements since 
both the goals have been considered for establishment once. 

Of course, TWEAK-visit could be made complete by replacing the MTC-based ter- 
mination check with one that uses an implementation of Some-sol (Definition 22). 

5.2.4. The SNLP-CON, McNONLIN-CON algorithms 
The SNLP-CON algorithm is similar to the SNLP-MTC algorithm except that it does 

not use any tractability refinements, and uses a consistency check that explicitly checks 

for existence of safe ground linearizations (see Section 3.5). Specifically, the tractability 
refinement and consistency checks of SNLP-CON will be: 29 

2.b. Conflict resolution (tractability refinement): None. 
3. Consistency check: Prune the partial plan if it has no safe ground linearizations. 

In the same vein, the McNONLIN-CON algorithm is similar to McNONLIN-MTC, 
except that it does not use any tractability refinements, and uses a consistency check 

that prunes any partial plan that has no safe ground linearizations.30 

Since SNLP-CON and McNONLIN-CON ignore tractability refinements, and do not 
consider a precondition for establishment more than once, as discussed in Sections 4.5.3 

29 Perceptive readers might note a close relation between the operation of SNLP-CON and the idea of conflict 

deferment described in [ 341. In particular, in comparison to SNLP and SNLP-MTC, SNLP-CON can be seen 

as deferring all threats. However, unlike the implementations of SNLP used in 1341, SNLP-CON uses a full 

consistency check, and thus will never refine an inconsistent plan. See Section 9. 

3o There are several ways of implementing these full consistency checks. One is to enumerate all the ground 

linearizations, and check them one by one to see if any of them arc safe with respect to all auxiliary constraints. 

Another, which we used in our implementations of SNLP-CON and McNONLIN-CON, is to simulate the 

conflict resolution step on the given plan P, and prune P if the conflict resolution step produces no refinements 

that are order- and binding-consistent. The difference between this use of conflict resolution and its normal 

use is that in the latter we replace P with the refinements generated by P (thereby increasing the branching 
factor), 
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and 4.1, they are not guaranteed to be complete with respect to any All-sol solution 
constructor. As given here, they use MTC-based termination (which is an implementation 
of All-sol), and thus could be incomplete. This can be illustrated by the same example 
we used to illustrate the incompleteness of TWEAK-visit for an MTC-based termination 
check. Both SNLP-CON and McNONLIN-CON can of course be made complete by 
replacing the termination condition with one based on Some-sol (Definition 22). 

6. Modeling and analysis of design tradeoffs 

We will start by developing two complementary models for the size of the search 
space explored by Refine-Plan in a breadth-first search regime. Recall, from Eq. ( 1) 
in Section 2 that the search space size of a refinement search is related by the equation: 

lFdl = lx1 x Pd = O(bd). 
Kd 

The search space size of any instantiation of Refine-Plan can be estimated with 
the help of the above equation. In the context of Refine-Plan, K: is the candidate 
space of the problem (i.e., the candidate set of the initial null plan, Q, with which 
planning is initiated). b is the average branching factor of the search tree and d is the 
average depth of the search tree. Fd is the dth-level fringe of the search tree explored 
by Refine-Plan. Kd is the average size of the candidate sets of the partial plans in 
the dth-level fringe, and Pd is the redundancy factor, i.e., the average number of partial 
plans on the fringe whose candidate sets contain a given candidate in lc. 

A minor technical problem in adapting this equation to planning is that according 
to Definition 15, both candidate space and candidate sets can have infinite cardinalities 
even for finite domains. However, if we restrict our attention to planning domains with 
finite state spaces, solvable problems from those domains, and minimal solutions for 
those problems, then it is possible to construct finite versions of both the candidate 
space and candidate set. Given a planning problem instance P, let 2, be the length of 
the longest ground operator sequence that is a minimal solution of P (since the plan 
has a finite state space, all minimal solutions will be finite in length). Without loss of 
generality, we can now define Ic to be the set of all ground operator sequences of up 
to length I,. Similarly, we can redefine the candidate set of a partial plan to consist of 
only the subset of its candidates that are not longer than I,. 

If TV is the average per-invocation cost of Refine-Plan algorithm, then the total 
time complexity of the Refine-Plan algorithm is: 

Trp X IFdl x O(bd x TV) M 1x1 X Pd X TV 

Kd ’ 

We next analyze the complexity of Refine-Plan by fleshing out the parameters b, d 
and TV. In this analysis, let P denote the maximum number of preconditions or effects 
for a single step, let N denote the total number of operators in an optimal solution plan. 
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Branching factors 
To expand the average branching factor b, we first define the following additional 

parameters. Let b, be the number of successors generated by step 1.2. of Refine-Plan. 
This parameter is called the establishment branching factor, which can be further split 
into several parameters. We use b,, for the number of new operators found by step 1.2 
for achieving (c, s), and bold for the number of existing operators found by step 1 for 
achieving (c, s). Given a precondition (c, S) E A being established, for each establisher 
s’ new or existing, step 1.2 makes sure that c persists from S’ to S, by imposing additional 
constraints. The alternative choices in these constraints give rise to more successor plans. 
Let b, be the number of successors generated corresponding to each new establisher s’. 
Then the establishment branching factor is 

b, = (b,, + bold) x 6,. 

Another contributor to the average branching factor is step 2, which applies additional 
refinements to make plan handling tractable. This step includes pre-ordering and conflict 
resolution, both of which involve imposing more constraints on the plan. For each plan 
P generated by step 1, let bt be the number of successor plans generated from P by 
step 2. bt is called the tractability branching factor. 

Putting both the components of the branching factor together, the average branching 
factor is 

Search depth 
Next, we consider the average search depth d. Let N be the length (in number of 

steps) of the solution, and P be the average number of preconditions per operator. Then, 
in the solution, there are N x P preconditions (tuples (c, s), where c is a precondition 
of the operator corresponding to step s). Let f be the fraction of the N x P pairs chosen 
by step 1.1. Let u be the total number of times any fixed pair (c, s) is chosen by step 1.1 
(Note that CJ could be greater than one for planners that do not employ any bookkeeping 
steps.) Then we have 

d=NxPxfxu. 

Per-invocation cost of Ref ine-Plan 
Trp itself can be decomposed into four main components: 

where Test, is the establishment cost (including the cost of selecting the open goal to 
work on), TSOt is the cost of the solution constructor, T Vact is the cost of tractability 
refinement, and Tcons is the cost of the consistency check. 

A summary of all the parameters used in the complexity model above can be found 
in Table 3. Armed with this model of the search space size and refinement cost, we will 
now look at the effect of the various ways of instantiating each step of the Refine-Plan 
algorithm on the search space size and the cost of refinement. 
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6.I. Tradeoffs offered by the solution constructor 

Stronger solution constructors allow the search to end earlier, reducing the average 
depth of the search, and thereby the size of the explored search space. In terms of 
candidate space view, stronger solution constructors lead to larger Q at the termination 
fringe. However, at the same time they increase the cost of refinement TV (specifically 
the TsOl factor). 

6.2. Tradeoffs offered by goal selection 

Use of more sophisticated goal selection strategies increases the refinement cost 
(specifically the Test factor). However, they can also bring about substantial reduc- 
tions in the size of the explored search space size. For example, demand-driven goal 
selection strategies such as MTC-based goal selection take a least-commitment approach 
and establish a goal only when it is not necessarily true. This could either help in ter- 
minating before all goals are explicitly considered for establishment, or allowing the 
planner to work on them again if and when they are no longer necessarily true in later 
stages of the search. Either way, this could reduce the average establishment branching 
factor b,, the average depth and consequently the search space size. 3’ 

4.3. Tradeoffs offered by bookkeeping 

The addition of bookkeeping techniques tend to reduce the redundancy factor Pd, and 
the average candidate set size Kd (since fewer ground linearizations will be safe with 
the added auxiliary constraints). In particular, as we observed earlier, use of contributor 
protections makes the search systematic, eliminating all the redundancy in the search 
space and making Pd equal to 1 [ 11,241. This tends to reduce the fringe size, [.&I. 
Bookkeeping constraints do however tend to increase the cost of consistency check. In 
particular, checking the consistency of a partial plan containing interval preservation 
constraints is NP-hard even for ground plans in TWEAK representation (cf. [ 361) . In 
terms of the b-d view of the fringe size, use of bookkeeping techniques tends to reduce 
the branching factor (assuming the optional consistency check is being used) while 
keeping the average depth of the search constant. 

4.4. Tradeoffs offered by the consistency check 

As mentioned earlier, the motivation behind consistency check is to avoid refining 
inconsistent plans (or the plans with empty candidate sets). Refining inconsistent plans 
is a useless activity and populates the search fringe with plans with empty candidate 

” It is important to note the difference between demand-driven goal selection and modal truth criterion. Since 

modal truth criterion becomes NP-hard for plans containing actions with conditional effects, it looks as if 

demand-driven goal selection also becomes intractable for such plans. This is not the case since one does not 

have to use a necessary and sufjicient modal truth criterion for implementing demand-driven goal selection. 

Since the order of goal selection does not affect completeness, any tractable approximation to the modal truth 

criterion will be enough. 
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Summary of the parameters used in describing the complexity of Refine-Plan 

Size of the candidate space (i.e., size of the candidate set of “null” plan Pe) 
Average size of the candidate sets of the nodes (partial plans) at dth-level fringe 
Average number of times each candidate (ground operator sequences) occurs in the d&level fringe 
Number of nodes (partial plans) at dth-level fringe 

Average branching factor 
Average search depth 
Average number of new establishers for a precondition 
Average number of existing (or old) establishers for a precondition 
Average number of establishers for a precondition 
Successors after pre-ordering and conflict resolution 
Successors generated by substeps (i) to (iii) in step 1.2 of the Refine-Plan algorithm 

Per-invocation cost of Refine-Plan 
Cost of establishment refinement 
Cost of tractability refinement 
Cost of consistency check 
Cost of solution constructor (termination check) 

Total number of operators in a plan 
Total number of preconditions per operator 
Fraction of the preconditions of the plan ( (c, s)) considered by the establishment refinement 
Average number of times a precondition ((c, s)) is considered by the establishment refinement 
(visited) 

sets, driving down Ed. The stronger the consistency check, the smaller this reduction. In 
particular, if the planner uses a sound and complete consistency check that is capable of 
identifying every inconsistent plan, then the average candidate set Ed is guaranteed to be 

greater than or equal to 1. Combined with a systematic search, this will guarantee that 

the fringe size of the search will never be greater than the size of the candidate space 

[ICI. Such a search is called a strong systematic search (Definition 7) In terms of the 
refinement cost, stronger consistency checks tend to be costlier, thereby driving up the 

refinement cost (in particular TsOt). As mentioned earlier, sound and complete consis- 
tency check is NP-hard even for ground plans, if the plans contain interval preservation 

constraints. 

6.5. Tradeoffs offered by tractability refinements 

The primary motivation for tractability refinements, whether pre-ordering or conflict 
resolution, is to make the consistency check tractable. They thus primarily reduce the 
T ems component of refinement cost. In the case of pre-ordering refinements, they also 
tend to reduce the cost of goal selection and solution construction, especially when 

the latter are based on MTC (thereby reducing the T&I and Test components) [ 111. In 
terms of search space size, tractability refinements further refine the plans coming out 

of the establishment stage, increasing the b, component of the branching factor. While 
conflict resolution strategies introduce orderings between steps based both on the static 
description of the steps (such as their effects and preconditions) and the role played 
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by them in the current partial plan, the pre-ordering strategies consider only the static 

description of the steps. Thus, the br increase is typically higher for pre-ordering than 

for conflict resolution strategies. 

7. Predicting performance 

In the previous section, we discussed the way design choices in instantiating individual 

steps of the Refine-Plan algorithm affect the search space size and the refinement cost. 
An important insight given by this discussion is that most individual design choices 

(such as goal selection, termination, bookkeeping, tractability refinement) can be seen 

as trading the complexity between search space size and refinement cost. As such, 

we will not expect any universally valid dominance results among them, Rather, the 

performance will depend upon domain-dependent factors such as solution density. 
Further, the performance depends on the overall effect of the tradeoffs provided by 

the specific design choices. While the discussion above shows how individual design 
choices affect the search space size in isolation, it does not account for the interaction 

between the choices made in two separate steps. Given this, an obvious question that 

arises is: Can we predict which instantiation of Ref ine-Plan will per$onn the best in 
a given domain. Of particular interest will be any predictions that are made in terms of 
easily measurable features of the domain. This is the question that we shall address in 

this section. 
Given the many possible dimensions of variation of Refine-Plan, we would like 

to focus our attention on those dimensions that account for the prominent differences 
between existing planners. From our discussion in Section 5 (as well as the character- 
ization of the various planners in Table 1 ), we note that two of the most prominent 

differences among the various planning strategies are the specific bookkeeping strategies 

employed by them, and the specific types of tractability refinements they use. In this 
section, we will attempt to predict the effect of these differences on the performance 

on practical problems. To make our exposition simpler, we will restrict our attention to 

propositional planning domains. 

7.1. Tractability rejnements 

Our discussion about design tradeoffs shows that tractability refinements aim to reduce 

the cost of consistency check by increasing the search space size. The more eager the 

tractability refinement, the larger the bt factor, and the larger the search space increase. 
For the case of breadth-first search regimes, with other factors of b kept constant, 
the increase in bt will increase the search space size exponentially. Although tractability 

refinements aim to reduce the cost of the consistency check, unless this relative reduction 
is also exponential, we will not expect stronger tractability refinements to improve 
performance. 

However, under certain circumstances, it is possible for tractability refinements to have 
interactions with other parts of the planner. In particular, while increase in bt should 

in general increase b, the additional linearization of the plan done at the tractability 
refinement stage may sometimes wind up reducing the number of establishment refine- 
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ments for the conditions considered in the later stages. In particular, when the plan is 
more linear, there are fewer existing steps that can act as establishers for a condition. 

This reduces bold. Furthermore, when the plan is more linear, there are fewer steps in 

the plan that can violate an establishment. Thus the number of declobbering choices for 

each establishment (i.e., the number of ways of preserving the precondition that is just 

established) will also be lower. This reduces b,. Since be is proportional to the product 

of bold and bc, it also reduces b,. The more eager the tractability refinement, the more 

linear the partial plan, and the higher the reduction in bold. 
The reduction in be could, sometimes, offset the increase in bt, reducing the overall 

branching factor in the presence of tractability refinements. Whether or not this will 

happen in practice depends on the features of the domain, as well as the specific order 

in which goals are considered for establishment during planning. In particular, two 
(static) characteristics of a domain that are relevant are: 

(i) the average number of actions that can establish a precondition or top-level goal, 

and 

(ii) the average number of actions that can delete a precondition or top-level goal, 
in a partial plan. 

We will call these two factors #,,t and #&b respectively. 

We will call a goal condition or a precondition c a high-frequency condition if it has 

very high k&t and #&, factors. Since high-frequency conditions have many potential 
establishers and clobberers, establishment refinement on such conditions has potentially 

high bold and b, factors, and can thus benefit from the interaction between b, and be. 
Moreover, when the domain contains only a few high-frequency conditions, the order in 

which high-frequency conditions are established relative to the other preconditions will 
guide the interaction between the bt and be factors. 

In summary, given two instantiations Z, and ZC of Refine-Plan that differ only in the 

type of tractability refinements they employ, such that Ze uses a more eager tractability 

refinement than I, (i.e., the bt factor of Z, is greater than that of Z,), we can make 
the following predictions about the relative performance of Z, and Z, on a population of 
problems from a domain D. 

Hypothesis 1. If none of the conditions in the domain are high-frequency conditions, 
then there will be no interaction between bt and be, and since Z, has a lower bt than Ze, 
it will have a smaller search space than Z,. It will also have a lower time complexity as 
long as the per-node cost of Z, is not exponentially lower than that of Z,. 

Hypothesis 2. If all (or most) of the conditions in the domain are high-frequency 

conditions (i.e., &St >> 1 and #crab > 1 for all conditions), then Z, may have a smaller 
search space than Z, because of the interaction between bt and be. Thus, Z, could perform 
better than I,. 

Hypothesis 3. If only some of the conditions in the domain are high-frequency con- 

ditions, and the goal selection strategy is such that the high-frequency conditions are 
considered for establishment earlier, then Ze may once again have a smaller search space 
than I,, and thus could perform better than Z,. 
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7.2. Bookkeeping (protection) strategies 

Bookkeeping strategies by themselves do not increase the search space size, as they 
do not contribute to the increase of the branching factor. The difference between a 

planner employing a bookkeeping strategy and one that does not employ a bookkeeping 

strategy, is that the partial plans in the former have more constraints than those of the 
latter. Thus, the partial plans in the former can become inconsistent earlier than those in 
the latter. This can lead to increased backtracking. The flip side is that the size of the 

overall search space is smaller for planners with protection strategies than for planners 

without protection strategies (as bookkeeping constraints tend to reduce redundancy in 

the search space). 

Thus, protection strategies have two possible effects on the size of the explored search 
space [ 121: 

l They reduce the redundancy in the search space and thus make the overall search 

space smaller. 

l They represent higher commitment to establishment choices, and thus can lead to 
higher backtracking during search. 

The combined effect of these two factors on the size of the explored search space 
depends on the type of search strategy used by the planner, the type of conditions in the 

domain, as well as the apparent solution density of the planning problem. 

For problems with low solution densities, the planners will be forced to look at a 
large fraction of their search space, and thus the size of the overall search space will 
have an effect on the performance of the planner. In particular, planners using strong 

protection strategies will ensure smaller overall search spaces, and thus lower planning 

cost. 
For problems with high solution densities, the size of the overall search space has 

no appreciable correlation with the size of the explored search space, and thus we do 
not expect redundancy reduction afforded by protection strategies to lead to improved 
performance. On the other hand, the increased commitment to establishment choices 

entailed by protection strategies can lead to increased backtracking (see [ 12,13]), 
which can degrade performance (this effect is more apparent in depth-first search 

regimes). 
Solution density has a lower correlation with performance in the case of breadth-first 

search regimes, which search all branches of the search space. For these, the effect of 
protection strategies will be felt in terms of the branching factor reduction. Specifically, 

planners with stronger protection strategies will prune more partial plans and will thus 

have smaller average branching factor than weaker protection strategies. This should 

improve performance, unless the cost of maintaining consistency of the bookkeeping 
constraints posted by stronger protection strategies is high. 

The protection strategies also have interactions with the other steps of the Refine- 
Plan algorithm, and their effect on performance can sometimes be modified by the 
combination. For example, the harmful effects of increased commitment to Specific 

establishers can be overcome to some extent by using goal selection strategies such 
as those based on modal truth criterion which take a demand-driven approach to goal 
establishment (by working only on goals that are not necessarily true), or by using 



S. Kambhmnpati et al. /Artificial Intelligence 76 (1995) 167-238 211 

precondition abstraction strategies that work on most-constrained goals (i.e., goals with 
fewest establishers) first. In both cases, there is a smaller amount of branching in the 

search tree, and thus the chances of committing to a wrong establishment choice are 
lower. 

Similarly, although protection strategies themselves do not increase the search space 

size, they do indirectly determine the amount of refinement done at the tractabil- 
ity refinement step. For example, planners using stronger protection strategies will 

be posting more bookkeeping constraints, and thus have to do more pre-ordering 

or conflict resolution refinements, leading to higher branching factors. (It is impor- 

tant to note however that this increase in search space size is not a necessary side- 

effect of protection strategies since tractability refinements are an optional step in 
Refine-Plan.) 

Let us summarize and restrict our attention to the first-order effect of protection 

strategies on performance: given two instances of Refine-Plan, Zsp and Znp, which 

differ only in their use of bookkeeping strategies, such that &r uses stronger protections 
compared to I,,,,, we can make the following predictions on the relative performance of 

Is,, and I,,,, on a populations of problems from a domain D: 

Hypothesis 4. If the domain has a high solution density, then there will be no ap- 

preciable difference in the relative performance of Zsp and lop, unless there is a high 
probability that the planner will commit to wrong establishments in the beginning of the 
search (this could happen, for example, when the domain contains many high-frequency 
conditions [ 121). 

Hypothesis 5. If the domain has a low solution density, the planners are forced to 

explore a large part of their search space. Thus, the redundancy in the search space will 

become a factor affecting the performance of the planner. Specifically, the size of the 
search space explored by Is,, could be smaller than that of Znp. Thus, Zsp could perform 
better than Z”r. 

Hypothesis 6. For breadth-first search regimes, stronger protection strategies reduce 
the overall branching factor and can reduce the average size of the search space size 

explored. Thus, Zsp can once again perform better than Znp. 

8. Empirical evaluation of performance predictions 

In this section we will discuss the results of a series of empirical studies with several 
instantiations of Refine-Plan. The aim of the empirical study is two-fold: 

l to provide experimental support for our hypotheses regarding the effect of tractabil- 
ity refinements and bookkeeping constraints; 

l to demonstrate that the complexity model developed in the previous section helps 
in explaining the empirical performance. 

The following sections briefly describe the planning domains that we used in our 
experiments, and the experiments themselves. Before we go into those details however, 
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a few comments about the experimental methodology are in order. All the planners used 
in our experiments are described as instantiations of Refine-Plan in Section 5 (and 
summarized in Table 1) . We implemented them all as instantiations of the Refine-Plan 
algorithm, thereby allowing sharing of many common routines, and facilitating a fair 
comparison. Moreover, when evaluating the hypotheses about a specific component of 
Refine-Plan, we made sure to compare only the planners that correspond to instances 
of Refine-Plan that are equivalent in all other components. This type of normal- 
ization was a direct result of the unified view of partial-order planners provided by 
Refine-Plan. 

In many of the experiments, the planners were tested on a random population of 
problems from several artificial domains. Unless otherwise stated, all the experiments 
used a breadth-first search. To account for extraneous variations, all the plots were 
made with averages over 25 runs. All the experiments were run with a per-problem 
CPU time limit of 60 seconds. This meant that in some runs the planners were aborted 
before solving the problem. In all cases, we have provided plots showing the number of 
unsolved problems corresponding to each data point. Since the final averages were taken 
over both solved and unsolved problems in a set, some of the averages underestimate 
the actual numbers for those planners that failed to solve many problems within the 
resource limit. This point should be kept in mind in viewing the various performance 
plots presented in this section. 

Finally, most of the experiments described in the following sections have been val- 
idated by running them on two largely independent implementations (see [ 151 and 
[ 2 1 ] ) . This lends us confidence that the results are not dependent on any idiosyncrasies 
of a particular implementation. The final data reported in this paper correspond to runs 
on a SUN Spare 20 with 96 megabytes of main memory running Lucid Commonlisp. 
The code and the data for replicating our experiments as well as all the raw data 
collected from the experiments are available via the Internet. 32 

8.1. Experimental domains 

In our experiments, we concentrated on artificial domains as they provide for a 
controlled setting to evaluate our hypotheses about performance tradeoffs. Specifically, 
we experimented with two families of artificial domains. 

The first family of domains that we considered is the ART-#,,t-#ctot, family. These 
domains were designed to provide a way of controlling the &St and #&, factors of the 
preconditions and goals in the domain. Specifically, each goal can be achieved by a 
subplan of two steps in a linear sequence. Each step either achieves a goal condition 
or a precondition of a later step. The preconditions of the first step always hold in the 
initial state. In addition to this basic structure, we add extra operator effects to change 
the +&St and &lob factors of the conditions. 

An example of an operator schema from ART-#&&,, domain is shown below. Let 
n be the total number of goals to be achieved. Let the goal state be G = {Gi, i = 
O,l,... , n - 1). Assume that the initial state I is {Zi, i = 0, 1, . . . , n - 1). Each goal 

32From ftp://ftp.isi.edu/sims/code/refine-plan.tar.2. 
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Gi can be achieved by operator A,z, and the precondition Pi for Ai can be achieved by 
operator Ai,. The average #est factor is controlled by a number n+ (where n+ < n), and 

the average #&b factor by a number n- (where it- < n). For #est, it is assumed that 

for the first n+ operators in a solution plan, each operator achieves a precondition of an 

operator for the next subgoal. In a similar manner, for #&b only the first n_ operators 
interact, and each operator deletes a precondition of another operator for a previous 

subgoal. 

(defstep :action Ail 
:precond Ii 

:add {Pi} U {Ii+, if i < n+} 

:equals {} 
:delete {Zi-t, if 0 < i < n-} 

(defstep :action An 
:precond Pi 
:add {Gi} U {Pi+, if i < h+} 
:equals {} 
:delete {Pi-l, if 0 < i < n_} 

The second domain that we experimented with, called ART-MD-RD, is given be- 
low: 

l For even i: 

(defstep :action Ai 
:precond Ii, he 
:add Gi, hf 
:equals {} 

:delete {Zj 1 j < i} U {he} ) 

l For odd i: 

(defstep :action Ai 

:precond Ii, hf 
:add Gi, he 
:equals {} 

:delete {Zj 1 j < i} U {hf} ) 

Unlike the ART-#,,r-#,t,b domains, where all the conditions have the roughly same 
average #est and #cl& factors, ART-MD-m domain contains two high-frequency condi- 

tions, e.g. hf and he, with the rest being low-frequency conditions (e.g. 4 and Gi) . Thus, 
the order in which the goals are established has a significant impact on the complexity of 

the search as well as the relative performance of the various planners in ART-MD-RD. 
In particular, the performance of a planner depends to a large extent on whether and 
when the planner explicitly considers hf and he for establishment. 

A third domain that we used in some of our experiments is ART-MD, which is a 
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variant of ART-MD-RD, where the actions do not have hf and he in their preconditions 
and effects. (ART-MD is identical to the D’S’ domain used in Barrett and Weld’s 

experiments [ 21.) 

8.2. Evaluation of the hypotheses about tractability refinements 

To evaluate our hypotheses about the effect of tractability refinements on performance 
(see Hypotheses 1, 2 and 3 in Section 7.1) , we conducted two separate experiments: one 

with the problems from the ART-#est-#clob domain and the other with the problems from 
the ART-MD-RD domain. The first one helps us evaluate our hypotheses in domains 

where all the preconditions have uniform #est and #&b factors, while the second one 
helps us evaluate our hypotheses in domains where the preconditions have nonuniform 

%st and #clob factors. We describe both in turn. 

8.2.1. Experiments in the ART-#,,-#,l,b domain 
In our first experiment, we used problems from the ART-#est-#cl,,b domain and simul- 

taneously varied the #est and #cl& factors, such that the #cl&, factor increased from 0 to 
9 and the &St factor decreased from 9 to 0, while the sum of the two factors remained 
a constant 9. The number of goals in each problem instance was 10. We compared the 

relative performance of three planners-TWEAK, SNLP-MTC and McNONLIN-MTC- 

which use three different tractability refinement strategies. For any pair of (#est,#clob) 

values, we ran the planners on 25 randomly generated problems. The plots in Figs. 9 
and 10 show the averages of various features of the search space and refinement cost 
model. 

From Section 5, we know that TWEAK does not do any tractability refinement 

(thus, its bt = 1) while SNLP-MTC and McNONLIN-MTC do conflict-resolution-based 

tractability refinement. We also know that SNLP-MTC which does conflict resolution 
with respect to contributor protections, corresponds to a more eager tractability refine- 
ment strategy than McNONLIN-MTC which does conflict resolution with respect to 

interval protection. Thus, we have: 

b, (SNLP-MTC) > bt ( McNONLIN-MTC) 2 b,( TWEAK). 

Based on Hypothesis 2 regarding tractability refinement, we expect that SNLP-MTC 
and McNONLIN-MTC should perform better than TWEAK when the domain contains 
high-frequency conditions (i.e., conditions with high #est and #&,b factors). With respect 

to our current experiment in the ART-#est-#clob domain, this happens when &St x #&b. 
Since we are keeping #est + #&b constant at 9, we expect that this corresponds to the 

region in the middle of the graph around #cl& = 4. In these instances, we expect that 
the planners, SNLP-MTC and McNONLIN-MTC, which are eager to use tractability 
refinements, will perform better than TWEAK, which uses no tractability refinements. 

Fig. 9 compares a variety of factors of the search space size and refinement cost 
for TWEAK, SNLP-MTC and McNONLIN-MTC. From the plots of average CPU time 

and number of unsolved problems (Fig. 9(a) and Fig. 9(b) respectively), we see that 

TWEAK’s performance deteriorates significantly around points with %t M &lot, W 4. 
We also note that around these middle points both SNLP-MTC and McNONLIN-MTC 
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Fig. 9. Plots comparing relative performance of normalized planners in the ART-#.&&,~ domain, where 

Gt + ?&I& is kept constant at 9. 
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Fig. 10. Analyzing the branching factors of the planners in the ART-#est-#c~o~ domain, where #Iest + #clob is 
kept constant at 9. 

perform much better than TWEAK. This conforms to Hypothesis 2. Using a signed-rank 
test [ 71 on CPU times, these results are statistically significant at #&b = 4 with p-values 
of 0.01 and 0.008,33 respectively. 

To show that this observed performance differential is correlated with the interplay 
between the bt and b, factors, we compare the average bt and be factors of the three 
planners in Fig. 10. We note that although bt is higher for McNONLIN-MTC and SNLP- 
MTC as expected, the be factor varies according to our hypothesis. In particular, we 
note that around the region of #&b M 4, where all the conditions in the domain become 
high-frequency conditions, TWEAK’s b, attains its maximum. At the same time, SNLP- 
MTC and McNONLIN-MTC benefit from the additional linearization provided by their 
eager tractability refinements, and thus show significantly lower b, (and consequently 
have lower b, despite higher b,). 

Thus, this experiment supports our prediction that tractability refinements are useful 
when both the establishment and tractability branching factors are high enough. One 
might still ask what would happen if only one of #est and #cl& is high and the other 

is low. Since there are no high-frequency conditions in such domains, according to 
Hypothesis 1, we would not expect any interplay between bt and be and thus the 
performance of SNLP-MTC and McNONLIN-MTC should be either worse than or 
equal to that of TWEAK. 

The plots in Figs. 9(a) and 9(b) validate this prediction. At both extreme points 
when only one of #,,t and #cl&, is high, planners with strong tractability constraints do 
not have any notable performance advantage. At both ends McNONLIN-MTC performs 
similarly to TWEAK, and when #est is largest, SNLP-MTC performs much worse than 
TWEAK. These phenomena fit exactly with our prediction. When #cl& = 9 and #&St = 
0, the tractability constraints do not have any additional effect on the establishment 

33 The signed-rank test generates an upper bound on what is called the p-value. The p-value is the probability 
that conclusions drawn from the data are in error. The lower the p-value, the stronger the evidence that the 
hypotheses are correct. In all of these comparisons the significance level is taken to be 0.05. When the p-value 
is below the significance level the results are considered to be statistically significant. 
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branching factor be, since b, is already at its lowest value. Thus, all three planners have 
the same performance. On the other hand, when #est = 9 and #&,b = 0, SNLP-MTC 
generates more refinements in each step than TWEAK due to its more eager tractability 
refinement strategy, but the reduction in its establishment branching factor does not 
justify the increase in tractability branching factor (see plots in Fig. 10). Thus, at this 
point, SNLP-MTC performs worse than TWEAK. 

Importance of normalization 
One might ask why we used the non-standard planners SNLP-MTC and McNONLIN- 

MTC, instead of SNLP and McNONLIN. The obvious reason of course is that seen as 
instances of Refine-Plan, SNLP and McNONLIN differ from TWEAK in aspects 
other than tractability refinements. Let us elaborate on this further by demonstrating the 
importance of using the normalized planners. In Fig. 11, we provide the comparisons 
between the brand-name planners SNLP, McNONLIN, TWEAK and UA, instead of 
the normalized instances we used in the previous experiments. Note that unlike SNLP- 
MTC and McNONLIN-MTC, SNLP and McNONLIN do not outperform TWEAK in 
the region around #est x #&b M 4. In fact, we find that SNLP and McNONLIN perform 
worse or about the same as TWEAK for most of the points. This discrepancy is easy 
to explain once we note that SNLP and McNONLIN differ from TWEAK not only in 
tractability refinements, but also in the goal selection and termination criteria they use. 
In particular, SNLP and McNONLIN insist on working on each precondition exactly 
once, while TWEAK uses MTC and takes the more demand-driven approach-working 
only on those goals that are not necessarily true. This difference winds up drowning the 
effect of tractability refinements. In fact, we can see from Fig. 11 (d) that the fraction 
of preconditions visited by SNLP and McNONLIN is considerably higher than that of 
TWEAK in the middle range. 34 Consequently, the solution depth is also higher, and 
reduction in b due to the b,-6, interaction is not enough to offset this. The use of 
different goal selection and termination strategies also affects the per-invocation cost of 
Refine-Plan. The plots in Fig. 11 (c) show that TWEAK has a higher TV than SNLP 
and McNONLIN. 

In contrast, once we normalize the goal selection and termination criteria, the fraction 
of preconditions visited by TWEAK, SNLP-MTC and McNONLIN-MTC get much 
closer (see Fig. 12(a)), thus allowing the effect of tractability refinements to stand 
out. (The stark performance difference between SNLP and SNLP-MTC, as well as 
McNONLIN and McNONLIN-MTC, also demonstrate the utility of demand-driven goal 
selection strategies.) 

8.2.2. Experiments in the ART-MD-RD domain 

All the the ART-#&-#,-lOb domains are uniform in that in each of them all the precon- 
ditions have roughly the same number of #& and #cl,& factors. To evaluate Hypothesis 
3 regarding the domains that have preconditions with differing #est and #cl& factors, we 
experimented with problems from the ART-MD-RD domain. In addition to the three 

34 The f-values of SNLP and McNONLIN are depressed towards the beginning because they fail to solve 

most of the problems in that region. 
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Fig. 11. Plots comparing relative performance of existing (brand-name) planners in the ART-#est-#clob domain, 

where #W + #&b is kept constant at 9. 
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Fig. 12. Analyzing the solution depths of the planners in the ART4&#,.tob domain. 

planners used in the ART-#&#~t,,b domain, we also included two other planners, UA 
and SNLP-UA, which use pre-ordering-based tractability refinements (see Section 5). 
These two represent tractability refinement strategies that are even more eager than those 
of SNLP-MTC and McNONLIN-MTC. Specifically, the bt factors of these planners are 

expected to follow the order: 

bi (SNLP-UA) > br (UA) b br (SNLP-MTC) 

> b, (McNONLIN-MTC) 2 b, (TWEAK). 

Fig. 13 shows the performance of the five planners, SNLP-MTC, McNONLIN-MTC, 
UA, TWEAK and SNLP-UA on problems from the ART-MD-RD domain. Each point 

in the plot corresponds to an average over 25 random problems with a given number 

of goals (drawn from {Gt , . . . , Gg}). The initial state is the same for all the problems, 
and contains {It,. . . ,&3} + {he}. 

Recall that Hypothesis 3 in Section 7.1 predicts that the relative performance of 

the planners in such situations will depend on the order in which the high-frequency 

conditions are established relative to the low-frequency ones. We thus experimented with 

two different goal selection orderings (over and above the MTC-based goal selection 
strategy). In LIFO ordering, a goal and all its subgoals (which are not necessarily 

true according to MTC) are established before the next higher-level goal is addressed. 

In the FIFO ordering, all the top-level goals are established before their subgoals are 
addressed. 

From the description of the ART-MD-RD domain in Section 8.1, it is easy to see 
that hf/he are high-frequency conditions, with &St x #&b z 4, while Gi and Ii are 
low-frequency conditions (with #& x 1 and #&,b % 8). Looking at the description 

of ART-MD-RD, we also note that in LIFO ordering, hf and he are considered for 
establishment in the early parts of the search, while in FIFO ordering, they are considered 
after all Gi are considered for expansion. Further, in FIFO ordering, establishing Zi and 
Gi linearizes the plan and consequently implicitly establishes the hf/he preconditions of 
the actions. Thus, under MTC-based goal selection strategies that are used by the five 
planners, hf/he will rarely be considered for expansion. Based on this reasoning, and 
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Fig. 13. Comparative performance in the ART-MD-RD domain. 

our hypotheses regarding the effect of tractability refinements on performance, we would 

expect that the planners using more eager tractability refinements will perform better 

than the planners using less eager tractability refinements in LIFO ordering. Similarly, 

in FIFO ordering, we would expect the planners using eager tractability refinements to 
perform worse. 

Fig. 13 compares the performance of the five planners on problems in the ART- 

MD-RD domain for both LIFO and FIFO. We start by noting that our predictions 

regarding relative performance are borne out by the plots comparing average CPU time 
and the number of unsolved problems of the five planners across the two goal orderings. 
Specifically, we note that UA and SNLP-UA, which use the most eager tractability 
refinements, outperform TWEAK in LIFO, but perform worse than TWEAK in FIFO. 
These comparisons are statistically significant for the average CPU time over the entire 
data set with p-values of 0 (using signed-rank test). 

Fig. 14 compares the average tractability branching factor b,, establishment branching 
factor be, and the overall branching factor b across the five planners and two goal 
selection strategies. These plots show that the performance of the planners is correlated 
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with the b,-b, interaction as per our hypothesis. Specifically, from the average bt plots 
in Figs. 14(a) and 14(b), we note that relative values of bt across both goal orderings 
are in accordance with our expectation: 

b, (SNLP-UA) 2 b,( UA) 2 b, (SNLP-MTC) 
>, b,(McNONLIN-MTC) > b,( TWEAK). 

The overall branching factors, shown in Figs. 14(e) and 14(f) follow the relative 
pattern of bt in the case of FIFO ordering, but are opposed to the relative pattern of bt 

in the case of LIFO ordering. We note that the relative plots of the overall branching 
factors are fully correlated with the average CPU time plots in Figs. 13 (a) and 13 (b) . 

The plots in 14(c) and 14(d) show the average establishment branching factors of 
the five planners in LIFO and FIFO goal orderings. From these, we also note that the 
relative pattern of the overall branching factors is fully correlated with our hypothesis 
regarding the b,-b, interaction. Specifically, in the case of LIFO ordering, which ex- 
plicitly considers the high-frequency hflhe conditions for establishment, the b, values 
are much lower for planners using eager tractability refinements. Since b = bt x b,, 

the overall branching factor of planners with eager tractability refinements (and higher 
b,) is lower. In the case of FIFO, the increase in bt is not offset by the reduction in 
b,. Consequently, tractability refinements do not provide any performance advantages. 
Instead, the additional branching introduced by the planners with most eager tractability 
refinement strategies, UA and SNLP-UA, winds up increasing their overall branching 
factor, thereby significantly degrading the performance. 

From the plots of the per-node cost of refinement, solution depth and explored search 
space size in Fig. 15, we note that there are no other dominant competing explanations 
for the observed performance differentials. Specifically, although there are minor differ- 
ences in the relative values of the per-node cost (Figs. 15(c) and 15(d)) and solution 
depth (Figs. 15(a) and 15(b) > across the planners, the plots of the explored search 
space size (Figs. 15(e) and 15(f) ) follow the same pattern as the overall branching 
factor and the average CPU time. 

Finally, our experiments also show that planners using conflict resolution strategies 
(SNLP-MTC and McNONLIN-MTC) strike a middle ground in terms of performance, 
across both goal orderings. Since the orderings introduced by them are more sensitive to 
the role played by the various steps in the plan, they seem to avoid both the excessive 
b, of planners using pre-ordering strategies (UA, SNLP-UA), and the excessive be of 
planners not using any form of tractability refinement (TWEAK). 

8.3. Evaluation of hypotheses regamling bookkeeping strategies 

To evaluate our hypotheses regarding the correlation between the solution density and 
the effect of strong protection strategies, we ran two different experiments. In the first 
experiment, we used problems from the ART-MD-RD domain described earlier. In the 
second we used problems from ART-MD and randomly misdirected each planner with 
respect to a min-goals heuristic. We will describe these experiments and their results 
below. 
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Fig. 14. Plots comparing average branching factors in the ART-MD-RD experiments 
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Fig. 15. Plots comparing solution depth, per-node cost and search space size in ART-MD-RD experiments. 
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8.3.1. ART-MD-RD experiments 
In this experiment we used the problems from ART-MD-RD again. An interesting 

characteristic of the ART-MD-RD domain is that the interactions between the actions 
in the domain are such that often there is only one ground operator sequence that is 
a solution for a given problem consisting of a set of goals {Gi}. Thus, as the number 
of goals increase, the search space size increases, but the number of solutions does not 
increase commensurately. This has the implicit effect of reducing solution density. 

To compare the effect of protection strategies, we experimented with four planners, 
TWEAK, TWEAK-visit, SNLP-CON and McNONLIN-CON (described in Section 5), 
all of which differ only along the dimension of the bookkeeping constraints they employ. 

We recall that TWEAK employs no protection strategy, TWEAK-visit uses agenda 
popping, McNONLIN-CON uses interval protection and SNLP-CON uses contributor 
protection. In terms of search space redundancy, TWEAK allows both overlapping can- 
didate sets, and repeated establishments of the same precondition. TWEAK-visit and 
McNONLIN-CON avoid repeated establishments, but allow overlapping candidate sets. 
The difference between TWEAK-visit and McNONLIN-CON is that the latter backtracks 
as soon as any establishment is necessarily violated, while the former will backtrack 
only when all the conditions returned by the goal selection strategy have already been 
established once. SNLP-CON improves upon McNONLIN-CON by avoiding both re- 
peated establishments and overlapping candidate sets. All these planners are complete 
for the problems in the ART-MD-RD domain.35 

As the problem size (i.e., number of goals) increases in ART-MD-RD, the solution 
density reduces and the search space size increases. From Hypothesis 4 in Section 
7.2 we expect that for problems of small size, and thus high solution density, the 
performance of the different systems will be similar. Based on Hypothesis 5, we expect 
that, as the problem size increases, the explored search space size of SNLP-CON will 
be the smallest, that of TWEAK will be the largest, and those of McNONLIN-CON and 
TWEAK-visit will fall in the middle. 

Fig. 16 shows the plots comparing the relative performance of these planners on 
problems in the ART-MD-RD domain. We note that these plots conform to our predic- 
tions. In particular, as the problem size increase, the average search space size becomes 
significantly lower for planners with stronger protections strategies (Fig. 16(a)). This 
reduction is well correlated with the average branching factors of the planners (Fig. 
16(f) ) . The plots of average CPU time in Fig. 16(c) show that the differences in it 
are not as drastic as the average search space sizes. This can be explained by the fact 
that the planners using stronger protection strategies impose more auxiliary constraints 
(IPCs in our case), and thus will take longer to check consistency of the partial plans. 

35 Although, as discussed in Section 5.2, SNLP-CON, McNONLIN-CON and TWEAK-visit are not in general 
complete for MTC-based termination criteria, they are complete for problems in the ART-MD-RD domain. 
This is because in ART-MD-RD, by the time the planners have established each precondition once, they 
would, of necessity, have a totally ordered partial plan, because of the causal ordering forced by the hf/he pm- 
conditions of the steps. Since eventually solution bearing partial plans will have only one ground linearization, 
and since all planners can eventually consider each precondition for establishment at least once, SNLP- 
CON, McNONLIN-CON and TWEAK-visit will also eventually produce a partial plan all of whose ground 
linearizations correspond to solutions. Thus, they will be complete for MTC-based termination condition. 



S. Kambhampati et al./Arf@cial Intelligence 76 (1995) 167-238 225 

3000 . ..’ 

,I ./ 

2000 ..a” 

1000 

” I ,;’ 
n 

/ .’ 
,.,:/ 

I . . . . 

I . . 
,..’ 

.,_.._+: .__.. o... 
___~~~~~~~~~~~~~~~~~~.... 

(a) Avg. # nodes searched Fd (LIFO) 

(c) Avg. CPU time (LIFO) 

(e) Avg. soln. depth (LIFO) (f) Avg. branching factor (LIFO) 

Fig. 16. Plots comparing relative effect of protection strategies ART-MD-RD experiments. 

(d) Avg. u (LIFO) 

1.5 

.-..* “. . . 
‘*... 

.. .... 
. . 

‘.D... 
.-.s___ 

.--m._. 
.-.__ .._.._,(I 



226 S. Kambhampati et al. /Art$cial Intelligence 76 (1995) 167-238 

(a) Avg. CPU Time (b) Number Unsolved 

Fig. 17. Plot showing the effect of misdirection on protection strategies. 

The plots of average per-node refinement cost in Fig. 16(b) confirm this explanation. 
Finally, the plots in Fig. 16(d) confirm that of the four planners, only TWEAK can 

suffer from repeated establishment of the same precondition. 

8.3.2. Misdirection experiment 
In this experiment, we compared TWEAK and SNIP-MTC in ART-MD, a variant 

of the ART-MD-RD domain without the hflhe conditions (similar to the D”S’ domain 

described in [2]). Both planners were started off with a min-goals heuristic [28], 

which ranks a partial plan by the number of preconditions that are not necessarily 
true according to MTC. We then systematically varied the probability p (called the 
misdirection parameter) with which both planners will reject the direction recommended 
by the heuristic and will select the worst ranked branch instead. Assuming that the 
initial heuristic was a good heuristic for the problem, to a first order of approximation, 

we would expect that increasing the misdirection parameter degrades the planner’s 

ability to zero-in on the solutions, forcing it to consider larger and larger parts of 
its search space. By Hypothesis 6, strong protection strategies should help in such 
situations. 

The plot in Fig. 17 shows the performance of the planners (measured in terms of 
average CPU time taken for solving a set of 20 random problems run on a SparcII with 

a time limit of 120 seconds), as a function of misdirection parameter. It shows that, as 
the misdirection parameter increases, the performance of TWEAK, which employs no 
protections, degrades much more drastically than that of SNIP-MTC, which employs 
contributor protection. These results thus support our hypothesis. 

The experiments about protection strategies also show that the performance of planners 
using conflict resolution strategies is more stable with respect to the bt-be interaction 

than that of planners using pre-ordering strategies. This can be explained by the fact 
that the former are more sensitive to the role played by the steps in the current partial 
plan than the latter. 
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Table 4 

Estimates of average redundancy factor and average candidate set size at the termination fringe for 30 random 

six-goal problems in the ART-MD-RD domain 

Planner LIFO PIFO 

Pd Kd Pd Kd 

TWEAK 1.47 2.93 1.32 30.14 

UA 1 .I6 1.0 1.01 1.0 

McNONLIN-MTC 1.004 1.007 1.22 34.17 

SNLP-MTC 1.0 0.77 1.0 13.87 

SNLP-UA 1.0 0.87 1.0 0.88 

8.4. Combined effects of protection strategies and tractability refinements 

In the last two sections, we looked at the individual effects of tractability refinements 
and protection strategies on performance. Given that most existing planners differ in 
both rather than only one of these dimensions, it would be interesting to understand 
which of these differences have the dominant effect on performance. The experiments 
in the previous sections provide a partial answer to this question. 

Recall that the planners used in the experiments in Section 8.2.2 differ both in 
the tractability refinements they use and the protection strategies they employ (this is 
not surprising since conflict resolution refinements are related to the type of auxiliary 
constraints posted by the protection strategies). Table 4 shows the estimates of the 
average redundancy factors at the termination fringe of the five planners used in these 
experiments, for 30 six-goal ART-MD-RD problems.36 As to be expected, SNLP- 
MTC and SNLP-UA, which use contributor protections, have no redundancy (pd = 1) . 
However, from the plots in Fig. 13, we note that the performance profiles in the ART- 
MD-RD domain are not in correspondence with the redundancy factors. From the same 
plots, we also note that SNLP-UA, which uses contributor protection, is closer to UA 
than SNLP-MTC in performance. 

Another data point can be obtained by comparing the relative performance of SNLP- 
CON and McNONLIN-CON to SNLP-MTC and McNONLIN-CON respectively. In 
particular, by comparing the plots of the size of the explored search space size in Figs. 
16(a) and 15(e), we note that the effect of tractability refinements dominates over 
that of protection strategies. While the average search space size of SNLP-CON is 
significantly lower than that of McNONLIN-CON (Fig. 16(a)), the search space sizes 
of SNLP-MTC and McNONLIN-MTC are almost identical (Fig. 15 (e) ) . 

From the foregoing, we note that in cases where two planners differ both in terms of 
tractability refinements and protection strategies, the empirical performance differentials 
are dominated more by the differences in the tractability refinements than the differences 
in protection strategies. The protection strategies themselves only act as an insurance 
policy that pays off in the worst-case scenario when the planner is forced to look at a 
substantial part of its search space. This latter observation is supported by the comparison 

s6 The estimates were made by considering only the minimal candidates corresponding to the safe ground 

linearizations of the plans at the termination fringe. 
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between TWEAK and SNLP-MTC in the misdirection experiments reported in Section 
8.3.2. 

9. Related work 

We will partition the related work discussion loosely into three categories: relations 
with other refinement search-based frameworks, relations with other experimental anal- 
yses of planning algorithms and relations with other research efforts to improve/explain 
the performance of partial-order planners. 

9.1. Relations with other refinement-search-based frameworks 

In [ 37,391, Smith uses a search paradigm, called global search, to provide a unifying 
framework for scheduling. His motivation is to attempt to use the global search frame- 
work, in conjunction with an interactive software development system (KIDS [ 381) to 
synthesize efficient scheduling algorithms for given problem populations [ 391. Global 
search has several similarities with the refinement search framework discussed in this 
paper. For example, corresponding to our monotonic auxiliary constraints, Smith’s global 
search has the notion of filters. In addition to the ideas of “splitting” and “pruning”, 
Smith also talks about the notion of reducing the candidate set size through a process 
of “constraint tightening” or “constraint propagation”. In theory, such a process is also 
possible in the refinement search framework that is described here. We did not con- 
centrate on this aspect as we are not aware of any existing planners that use constraint 
propagation in this fashion. 

The idea of looking at partial plans not as incomplete solutions, but rather as sets 
of potential solutions, has also been used in Ginsberg’s recent work on approximate 
planning [ 91. In particular, his notion of “linearizations” of a plan is very close to our 
notion of candidate set of a partial plan. One technical difference is that Ginsberg makes 
no difference between candidates and solutions, assuming instead that a linearization 
that does not execute and produce the goals is an “incorrect” solution. He also espouses 
the view that the goal of planning is to produce a plan whose candidate set contains 
“more” solutions than it does non-solutions. Ginsberg also deals with the problem of 
non-finite candidate sets by introducing a new type of constraint called “immediacy 
constraint”. In our framework, the immediacy constraint can be seen as a monotonic 
auxiliary constraint. Consider the constraint where the step tl is constrained to come 
immediately before t2 (denoted by “tl * t2”). A ground operator sequence S is said to 
satisfy this constraint with respect to a mapping M if M maps tl and t2 to consecutive 
elements of S. It can be easily seen that a partial plan of the form to * tl * t2 * t, will 
have exactly one ground operator sequence that belongs to its candidate set. 

9.2. Relations with other experimental analyses of planning algorithms 

Let us now address the relations between our work, and previous work on comparative 
analysis of planning strategies. As we mentioned earlier, much of the previous work has 
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concentrated on comparing partial-order and total-order planners. Two representative 
efforts of this line of research are those of Barrett and Weld [2] and Minton et al. 
[ 27,281. 

Barrett and Weld [2] compare the performance of two plan-space planners (SNLP 
and TOCL, in Table 1) and a state-space planner (TOPI), and develop hypotheses 
regarding the relative performance of these planners. In particular, they extend the notions 
of serializability defined in [23] to include trivial and laborious serializability, and 
contend that the partial-order planners yield superior performance because the subgoals 
in planning domains are trivially serializable for them more frequently than for total- 
order planners. Minton et al. [ 27,281 concentrate on the performance of a partial-order 
and a total-order plan-space planner (UA and TO in Table 1) and develop hypotheses 
regarding their relative performance. 

From the point of view of Refine-Plan, it is interesting to note that both TOCL 
and SNLP, and UA and TO are pairs of plan-space planners that differ only in terms of 
the tractability refinements they employ. From Table 1, we can see that TOCL employs 
a more eager tractability refinement strategy compared to SNLP, while TO employs a 
more eager tractability refinement strategy compared to UA. This observation puts the 
empirical studies of Barrett and Weld and Minton et al. in perspective and provides 
a common ground for comparing their results with ours. In particular, our hypotheses 
regarding the effect of tractability refinements (Section 7.1) should be applicable for 
both these comparisons. 

Another interesting relation with Minton et al.‘s work concerns the comparison be- 
tween TWEAK and UA. Minton et al. [27] suggest that UA could be more efficient 
than TWEAK because TWEAK has more redundancy in its search space. To begin 
with, the notion of redundancy used in their paper is very different from the notion of 
redundancy defined in terms of overlapping candidate sets that we used in this paper. 
In particular, seen as instantiations of Refine-Plan, neither TWEAK nor UA uses any 
bookkeeping constraints (see Table l), and thus suffer from both types of redundancy 
discussed in Section 4.3 (and Fig. 8). They differ instead on the type of tractability re- 
finements they use. Given this, and our hypotheses and experiments regarding the effect 
of tractability refinements on performance, there is no a prioti reason to believe that 
UA will always outperform TWEAK, the relative performance will depend on the b,-be 
interaction. In fact, the plots in Fig. 13 show that TWEAK can outperform UA in any 
domain where high-frequency conditions are not considered for establishment explicitly 
in the beginning parts of the search. The unambiguity of partial plans maintained by UA 
seems to have less of an effect on the performance. 37 

Another recent effort doing a comparative study on partial-order planners is that of 
Yang and Murray [43]. They evaluate the utility of applying pruning heuristics to partial- 
order planners while preserving their completeness. One particular heuristic, known as 

37 Similarly, Minton et al. conjecture [28] that addition of causal links (i.e., bookkeeping strategies) will 
increase the cost of UA. Our empirical comparison of SNLP-UA and UA in the ART-MD-RD domain (Section 
8.2.2) provides a data point for checking this conjecture. They show that although the per-node cost of SNLP- 
UA is higher than that of UA (Figs. 15(c) and 15(d)), the average search space size of SNLP-UA is lower 
than that of UA (Figs. 15(e) and 15(f) ), thus making their performances almost identical. 
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temporal coherence, works by using a set of domain constraints to prune away plans 
that do not “make sense”, or are temporally incoherent. Their analysis shows that, while 

intuitively appealing, to maintain completeness, temporal coherence can only be applied 

to a very specific implementation of a partial-order planner. Furthermore, the heuristic 
does not always improve planning efficiency; in some cases, its application can actually 

degrade the efficiency of planning dramatically. 

9.3. Relations with other efforts to explain/improve planning performance 

Our unified framework for partial-order planning also puts in perspective some of 
the recent efforts to improve the performance of partial-order planners. An example 

is the recent work on improving planning performance through selective deferment of 
conflict resolution [ 341. Since conflict resolution is an optional step in Refine-Plan, 
the planner can be selective about which conflicts to resolve, without affecting the 

completeness or the systematicity of Refine-Plan (see Section 4.5.3). 38 Conflict 

deferment is motivated by the idea that many of the conflicts are ephemeral, and will 
be resolved automatically during the course of planning. Thus, conflict deferment tends 

to reduce the search space size both by reducing the tractability branching factor bt, 

and by pushing the branching from earlier parts of the search to the later parts of 

the search. However, this does not come without a tradeoff. Specifically, when the 
planner does such partial conflict resolution, the consistency check has to once again 
test for existence of safe ground linearizations, rather than order and binding consistency 

(making consistency check intractable once again). 

The planners with which Peot et al. [34] experimented all used ordering and bind- 
ing consistency checks. Conflict deferment in such situations can lead to refinement 

of inconsistent plans, thereby reducing Kd and increasing ]Fd], and leading to loss of 

strong systematicity (Definition 7). In such cases, we would expect that best perfor- 
mance is achieved neither with eager conflict resolution, nor with full conflict deferment. 
This intuition is consistent with the empirical evidence provided by Peot et al. [ 341. 

In particular, they found that deferring any conflict which has more than one way of 

resolution is better than deferring every conflict. In terms of Refine-Plan, the former 
strategy reduces the chance that the partial plan with deferred conflicts is inconsis- 

tent. 
In our discussion of bookkeeping constraints, we observed that some of them, espe- 

cially the interval protection and contributor protection strategies, incur a strong form of 

commitment to previous establishments. In [ 12,131, Kambhampati provides a general- 
ization of single-contributor causal links, called multiple-contributor causal links, which 
attempts to reduce the commitment to specific establishments. As shown in Section 4.3, 
the multiple-contributor causal links can be formalized in terms of disjunctions of in- 

terval preservation constraints. Kambhampati describes experiments comparing a variety 
of partial-order planners using causal-link-based bookkeeping strategies, and shows that 

?s Note, from Section 5.2.4 that SNLP-CON and McNONLIN-CON do not do any conflict resolution at all, 

and thus correspond to deferring all the conflicts indefinitely. 
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multi-contributor causal links can avoid the harmful effects of the increased commitment 
of the single-contributor causal links to some extent. 

The unifying framework also has clear pedagogical advantages in terms of clarifying 

the relations between many brand-name planning algorithms, and eliminating several 

long-standing misconceptions. An important contribution of Refine-Plan is the careful 

distinction it makes between bookkeeping constraints or protection strategies (which aim 
to reduce redundancy), and tractability refinements (which aim to shift complexity from 

refinement cost to search space size). This distinction removes many misunderstandings 
about plan-space planning algorithms. For example, it clarifies that the only motivation 

for total-order plan-space planners is tractability of refinement. Similarly, it has been 

previously believed (e.g. [ 201) that the systematicity of SNLP increases the average 

depth of the solution. Viewing SNLP as an instantiation of the Refine-Plan template, 
we see that it corresponds to several relatively independent instantiation decisions, only 
one of which, viz., the use of contributor protections in the bookkeeping step, has a 
direct bearing on the systematicity of the algorithm. From the discussion in Section 4, 

it should be clear that the use of contributor protection does not, ipso facto, increase 

the solution depth in any way. Rather, the increase in solution depth is an artifact of 
the particular solution constructor function, and the conflict resolution and/or the pre- 

ordering strategies used in order to get by with tractable termination and consistency 
checks. These can be replaced without affecting the systematicity property. 

Similarly, our framework not only clarifies the relation between the unambiguous 
planners such as UA [ 281 and causal-link-based planners such as SNLP [ 241, it also 
suggests fruitful ways of integrating the ideas in the two planning techniques (cf. SNLP- 
UA in Section 5.2.2). 

10. Conclusion 

The primary contribution of this paper is a unified framework for understanding 

and analyzing the design tradeoffs in partial-order plan-space planning. We started by 
providing a refinement-search-based semantics to partial-order planning, and developing 

a generic for refinement planning algorithm. We then showed that most existing plan- 

space planners are instantiations of this algorithm. Next, we developed a model for 
estimating the refinement cost and search space size of Refine-Plan and discussed 

how they are affected by the different design choices. Based on this understanding, we 
have developed hypotheses regarding the effect of two of these choices-tractability 
refinements and protection strategies-on the relative performance of different planners. 

Finally, we described several focused empirical studies to both evaluate our hypotheses 
and demonstrate the explanatory power of our unified framework. These studies show 
that the performance is affected more by the differences in tractability refinements than 

by the differences in protection strategies. 

Limitations and future work 

While this paper makes an important start towards understanding of the comparative 
performance of partial-order planners, further work is still needed to develop a predictive 
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understanding of which instantiations of Refine-Plan will perform best in which types 
of domains. Specifically, we need to develop hypotheses regarding the effects of other 
components of the Refine-Plan algorithm on performance. We also need to develop 
a more complete understanding about the second-order interactions between the various 
parts of the Refine-Plan algorithm and their effect on the performance. Much of the 
analysis in this paper has concentrated on breadth-first search regimes. Given that depth- 
first backtracking search regimes are more practical in terms of their space requirements, 
we need to extend our analysis to cover these cases. A preliminary analysis of the 
effect of tractability refinements on the success probability of Refine-Plan in depth- 
first search regimes is given in [ 11,141. This analysis shows that if we assume that 
tractability refinements split the candidate set of the partial plan in such a way that 
the solution candidates in it are randomly distributed among the resulting refinements, 
then we would expect the probability of success in any given search branch to reduce 
with more eager tractability refinements. This analysis needs to be validated, as well 
as extended to cover situations where refinements do not distribute solution candidates 
randomly among the refined plans. 

In Section 9, we noted that Smith [39] uses a global-search-based framework to 
automatically synthesize customized schedulers. Given the close similarity between the 
global search and refinement search frameworks, this raises an intriguing possibility: is it 
possible to automatically synthesize the instantiation of Ref ine-Plan that will be most 
efJicient in solving a given class of planning problems? In collaboration with Smith, we 
are currently evaluating the feasibility of this approach. 

Although we concentrated on plan-space planners in this paper, our refinement search 
framework can be easily extended to cover other classical planning approaches such 
as state-space planning and task reduction planning. The general idea is to model 
these other approaches as providing individually complete refinement operators that are 
complementary to Refine-Plan, the plan-space refinement operator described in this 
paper. A top-level control strategy can then select any one of the refinement operators 
in each iteration and apply them (see Fig. 2). In [ 181, we describe a generalization 
of Refine-Plan called UCP that models both plan-space and state-space approaches 
in this fashion. Specific instantiations of UCP can thus cover the plan-space planners, 
state-space planners, and means-ends analysis planners. More importantly, UCP also 
allows for opportunistic interleaving of state-space and plan-space refinements within 
the same planning episode. Empirical results reported in [ 181 indicate that such hybrid 
refinement strategies can outperform both plan-space and state-space approaches in some 
circumstances. 

Finally, many existing industrial strength planners use task reduction techniques, which 
are not modeled by our Refine-Plan algorithm. In [ 161 we show that Refine-Plan 
can be extended to cover task reduction planners (also called HTN planners) by simply 
replacing the establishment refinement with another called task reduction refinement. 
(We also show that this model clarifies several features of HTN planning.) Since the 
tractability refinements and protection strategies remain unchanged in the new algorithm, 
the insights regarding their effect on performance, gained in this research, will also be 
applicable in the context of HTN planning. The extended algorithm could ah sex-w as 

a basis for understanding other performance tradeoffs among task reduction planners. 
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Appendix A. List of symbols 

Symbol Denotes 

agenda (a list of the various preconditions the planner intends to establish) 

a point truth constraint (l?TC) 
solution depth 
branching factor 

length 
the dummy operator corresponding to the goal state (ST maps tm to fin) 

top-level goals of the plan (preconditions of to3 ) 

auxiliary constraints in the partial plan 
auxiliary constraints in the null plan Pe (contains a FTC (g@t& for each top-level goal g of 
the plan) 
denote preconditions and effects of steps in the plan 
operators in the domain 
the solution criterion for a refinement search 

set of all steps in a pattial plan 
nodes in refinement search 
the node whose candidate set corresponds to the candidate space 

a partial plan 
a null partial plan (with which Refine-Plan starts); ((Pa)) = K 

candidate set (of a node or a partial plan) 

a refinement operator 
the set of refinement operators of a refinement search 
an interval preservation constraint (WC) 

a mapping between steps of a plan and the elements of a ground operator sequence 
a mapping between the steps of a plan, and the operators they stand for 
a ground operator sequence 

“maps” 
the dummy operator corresponding to the initial state (SI maps to to start) 
steps in a partial plan 

the special step that follows all other steps of a partial plan 
the special step that precedes all other steps of a partial plan 
the candidate space 
cardinal&y of a set 
the empty set 

An additional list of symbols used in the complexity analysis can be found in Table 3. 

Appendii B. Glossary of terms 

This section gives a quick and informal glossary of terms. For more detailed defini- 
tions, look at the appropriate sections of the text where the terms are defined. 
Agenda. A data structure used by the Refine-Plan algorithm to keep track of the 

list of preconditions (c, S) of the plan that need to be handled through establishment 
refinement. 
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Agenda popping. A bookkeeping strategy where Refine-Plan removes from the agen- 
da each precondition (c, s) as soon as it has been considered by establishment refine- 
ment once. When the agenda is empty, the corresponding partial plan is pruned. This 
strategy ensures that no precondition is considered for establishment more than once. 

Auxiliary constraints. Constraints of a partial plan other than steps, orderings and 
bindings. The auxiliary constraints can be divided into two broad classes-monotonic 
and nonmonotonic. Refine-Plan handles two specific types of auxiliary constraints- 
interval preservation constraint (IPC), which is monotonic; and point truth constraint 

(PTC), which is nonmonotonic. 
Bookkeeping strategy. The strategy used by a planner to keep track of the goals it 

already established (also called protection strategy) ; see Section 4.3. 
Candidate. A potential solution for a problem; for planning, a “ground operator se- 

quence”. 
Candidate of a partial plan. A ground operator sequence that contains all the steps 

of the plan in an ordering and binding consistent with the partial plan, and which 
satisfies the monotonic auxiliary constraints of the partial plan. 

Candidate space. The space of potential solutions for a problem. 
Causal Link. A concept due to McAllester [24]. In terms of the terminology of this 

paper, a causal link s 5 S’ can be seen as a macro-constraint that corresponds to the 
following constraints: (i) s 3 s’, (ii) s gives an effect p (this may involve either 
addition of binding constraints, or secondary preconditions, in the form of PTCs to 
s), (iii) an IPC (s,p, s’) to ensure that p is preserved between s and s’. 

Conflict. An IPC (t, p, t’) and a step (called threat) t” of the plan such that t” can 
possibly come between t and t’, and t” deletes p. 

Conflict resolution refinements. A type of tractability refinements that order steps in 
the partial plan based on how they interact with the IPCs of the plan. If the partial plan 
contains an IPC (s,p, s’) and the step s” has an effect up, then conflict resolution 
will attempt to order s” to either come before s or after st. 

Ground linearization. An operator sequence that matches a topological sort of the 
steps of the partial plan, with all variables instantiated. 

Interval preservation constraint (IPC). A monotonic auxiliary constraint on a partial 
plan. An IPC (s,p, stt) of a partial plan P requires that every candidate of the partial 
plan must preserve p between the operators corresponding to s and s’. 

Partial plan. A constraint set that specifies a sets of steps, orderings among those steps, 
bindings among the variables, a mapping between the steps and the domain operators, 
and a set of auxiliary constraints. 

Point truth constraint (PTC). A nonmonotonic auxiliary constraint on a partial plan. 
A PTC (CBS) of a partial plan P requires that every solution of the partial plan P 
must have c true before the operator corresponding to s. 

Preconditions of a plan. Tuples (c, s), where s is a step in the plan, and c is a condition 
that needs to be true before s (c may either be a precondition of the operator 
corresponding to s or a secondary precondition added during establishment). 

I&-or&&g refinements. A type of tractability refinements that order steps in the 
partial plan based only on the static description of their effects and preconditions 
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(and without taking into account the specific roles they play in the current partial 
plan). Two important pre-ordering strategies are “total ordering”, which orders every 
pair of steps in the plan, and “unambiguous ordering” which orders every pair of steps 
that have overlapping preconditions and effects (signifying their potential to interact 
with each other). 

Protection strategy. See bookkeeping strategy. 
Refinement operator. An operator that splits the candidate set of a search node (in the 

case of planning, the candidate set of a partial plan). Refine-Plan uses two types of 
refinement operators: the establishment refinements, and the tractability refinements. 

Safe ground linearization. A ground linearization that satisfies the monotonic auxiliary 
constraints. 

Search node. A constraint set that implicitly stands for the set of candidates that satisfy 
the constraints. In the case of planning, a partial plan is a search node. 

Secondary preconditions. Preconditions that need to be made true before an action so 
as to make the action provide a particular effect. For example, if an action a has a 
conditional effect If p then q, then we can make a give the effect q by making 
p a secondary precondition of a. Similarly, we can make a give ~a by making 
up a secondary precondition of a. In the Refine-Plan framework, such secondary 
preconditions become PTCs for the action (e.g. (p@u) or (-~p@u)). 

Solution. A candidate that solves the problem. For planning, a ground operator sequence 
that can be executed from the initial state, and gives rise to a state where all the goals 
of the plan are satisfied. 

Solution constructor. A procedure which takes a search node and the goals of the 
problem, and checks to see if one of the candidates of the search node is a solution 
for the problem. The procedure may (i) return a solution, or (ii) signal that there 
are no solutions, or (iii) signal that it is unable to decide either way. In the first case, 
search is terminated with success. In the second case, the search node is pruned, and 
in the third case the search node is refined further. 

Solution of a partial plan. A candidate of a partial plan P that also solves the planning 
problem. This requires that the candidate (i) be executable from the initial state (given 
by the effects of to), (ii) satisfy all the nonmonotonic auxiliary constraints. 

Solution node/solution plan. A search node (partial plan) for which the solution con- 
structor returns a solution, leading to the termination of search. 

Strong systematicity. The property that the search is systematic and no node with an 
empty candidate set has children in the search tree. In a refinement search that is 
strongly systematic, the size of the fringe is bounded by the size of the candidate 
space. 

Systematicity. The property that the candidate sets of search nodes in different branches 
of the search tree are non-overlapping. 

Tractability refinement. The class of refinements whose primary purpose is to reduce 
the cost of consistency check. They do this by either reducing the number of ground 
linearizations per partial plan, or by making all ground linearizations have identical 
properties with respect to the auxiliary constraints. Two important types of tractability 
refinements are pre-ordering refinements and con$ict resolution refinements. 
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