
Artificial Intelligence 76 (1995) 167-238

Artificial
Intelligence

Planning as refinement search:
a unified framework for evaluating design tradeoffs

in partial-order planning
Subbarao Kambhampati a,*, Craig A. Knoblock b, Qiang Yang’

a Department of Computer Science and Engineering, Arizona State Universiv, Tempe, AZ 85287-5406, USA
h Information Sciences Institute and Department of Computer Science, University of Southern California.

4676 Admiralty Way, Marina de1 Rey, CA 90292, USA
’ University of Waterloo, Computer Science Department, Waterloo, Ontario, Canada N2L 3GI

Received June 1993; revised April 1994

Abstract

Despite the long history of classical planning, there has been very little comparative analysis of
the performance tradeoffs offered by the multitude of existing planning algorithms. This is partly
due to the many different vocabularies within which planning algorithms are usually expressed.
In this paper we show that refinement search provides a unifying framework within which various
planning algorithms can be cast and compared. Specifically, we will develop refinement search
semantics for planning, provide a generalized algorithm for refinement planning, and show that
planners that search in the space of (partial) plans are specific instantiations of this algorithm. The
different design choices in partial-order planning correspond to the different ways of instantiating
the generalized algorithm. We will analyze how these choices affect the search space size and
refinement cost of the resultant planner, and show that in most cases they trade one for the
other. Finally, we will concentrate on two specific design choices, viz., protection strategies and
tractability refinements, and develop some hypotheses regarding the effect of these choices on the
performance on practical problems. We will support these hypotheses with a series of focused
empirical studies.

* Corresponding author. Fax: (602) 965-2751, E-mail: rao@asu.edu.

0004-3702/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved
SSDI 0004-3702(94)00076-X

168 S. Kambhampati et al. /Artificial Intelligence 76 (I 995) 167-238

1. Introduction

[. . .] Search is usually given little attention in this$eld, relegated SO a footnote
about how “Backtracking was used when the heuristics didn’t work.”

Drew McDermott [26, p. 4131

The idea of generating plans by searching in the space of (partially ordered or totally
ordered) plans has been around for almost twenty years, and has received a lot of for-
malization in the past few years. Much of this formalization has however been limited
to providing semantics for plans and actions, and proving soundness and complete-
ness results for planning algorithms. There has been very little effort directed towards
comparative analysis of the performance tradeoffs offered by the multitude of plan-
space planning algorithms. ’ Indeed, there exists a considerable amount of disagreement
and confusion about the role and utility of even such long-standing concepts as “goal
protection”, and “conflict resolution”- not to mention the more recent ideas such as
“systematicity”.

An important reason for this state of affairs is the seemingly different vocabularies
and/or frameworks within which many of the algorithms are usually expressed. The
lack of a unified framework for viewing planning algorithms has hampered comparative
analyses and understanding of design tradeoffs, which in turn has severely inhibited
fruitful integration of competing approaches.

The primary purpose of this paper is to provide a unified framework for understand-
ing and analyzing the design tradeoffs in partial-order planning. We make five linked
contributions:

(1) We provide a unified representation and semantics for partial-order planning in
terms of refinement search. *

(2) Using these representations, we present a generalized algorithm for refinement
planning and show that most existing partial-order planners are instantiations of
this algorithm.

(3) The generalized algorithm facilitates the separation of important ideas underly-
ing individual algorithms from “brand-names”, and thus provides a rational basis
for understanding the tradeoffs offered by various planners. We will character-
ize the space of design choices in writing partial-order planning algorithms as
corresponding to the various ways of instantiating the individual steps of the
generalized algorithm.

’ The work of Barrett and Weld [2] as well as of Minton et al. [27,28] are certainly steps in the right
direction. However, they do not tell the full story since the comparison them was between a specific partial-
order and total-order planner. The comparison between different partial-order planners itself is still largely
unexplored. See Section 9 for a more complete discussion of the related work.

* Although it has been noted in the literature that most existing classical planning systems are “ret%tement
planners”, in that they operate by adding successively more constraints to the partial plan, without ever
retracting any constraint, no formal semantics have ever been developed for planning in terms of refinement
search.

S. Kambhampati et al./Artijcial Intelligence 76 (199.5) 167-238 169

(4) We will develop a model for estimating the search space size and refinement
cost of the generalized algorithm, and will provide a qualitative explanation of
the effect of various design choices on these factors.

(5) Seen as instantiations of our generalized algorithm, most existing partial-order
planners differ along the dimensions of the protection strategies they use and
the tractability refinements (i.e., refinements whose primary purpose is to reduce
refinement cost at the expense of increased search space size) they employ. Us-
ing the qualitative model of design tradeoffs provided by our analysis, we will
develop hypotheses regarding the effect of these dimensions of variation on per-
formance. Specifically, we will predict the characteristics of the domains where
eager tractability refinements and stronger protection strategies will improve per-
formance. We will validate these predictive hypotheses with the help of a series
of focused empirical studies involving a variety of normalized instantiations of
our generalized planning algorithm.

Organization

The paper is organized as follows: Section 2 provides the preliminaries of refinement
search, develops a model for estimating the size of the search space explored by a
refinement search, and introduces the notions of systematicity and strong systematicity.
Section 3 reviews the classical planning problem, and provides semantics of plan-space
planning in terms of refinement search. Specifically, the notion of a candidate set of a
partial plan is formally defined in this section, and the ontology of constraints used in
representing partial plans is described. Sections 2 and 3 develop a fair amount of formal
machinery and new terminology. Casual readers may want to skim over these sections
on the first reading (relying on the glossary and list of symbols in the appendix for
reference).

Section 4 describes the generalized refinement planning algorithm, Refine-Plan,
discusses its various components, and shows how the various ways of instantiating the
component steps correspond to the various design choices for partial-order planning.
Section 5 shows how the existing plan-space planners, including TWEAK [3], SNLP
[241, UA [281 and NONLIN [40] can be seen as instantiations of Refine-Plan. It
also discusses how Refine-Plan can be instantiated to give rise to a variety of new
planning algorithms with interesting tradeoffs.

Section 6 develops a model for estimating the search space size and refinement
cost of the Refine-Plan algorithm, and uses it to develop a qualitative model of the
tradeoffs offered by the different design choices (ways of instantiating Refine-Plan).
Section 7 develops some hypotheses regarding the effect of various design choices on
practical performance. Section 8 reports on a series of focused empirical studies aimed
at evaluating these hypotheses. Section 9 discusses the relations between our work and
previous efforts on comparing planners. Section 10 summarizes the contributions of the
paper.

Appendix A provides a quick reference for the list of symbols used in the paper, and
Appendix B contains a glossary of terms introduced in the paper.

170 S. Kambhampati et al. /ArtQicial Intelligence 76 (1995) 167-238

_ - Candidate Space (K)
(Primed letters represent solutions

N3)

-“FRINGE of the Search Tree

, ,..-
‘..

I

... . ..__.._) ,_.__..__..__“‘... ‘.i
t ___...___..__._...‘.

, ,

, h______ Inconsistent node (node with empty candidate set)

‘$ _ _ _ _ _ _ _ _ _ _ Node without any solution (a solution constructor could return *FAIL* on this node)

Fig. 1. Schematic diagram illustrating refinement search. Here, the candidate space (Ic) is the set

{A, B, C, D, E, E G, H, I, A’, B’, C’}. The fringe (3) is given by the set { N2, N3, N4, N5, N6). The av-
erage size of the candidate sets of the nodes on the fringe, q. is 16/5, and the redundancy factor p for the

fringe is 16/12. It is easy to verify that lFd1 = (IKI x pd)/~,j.

2. Introduction to refinement search

The refinement search (also called split-and-prune search [29]) paradigm is useful
for modeling search problems in which it is possible to enumerate all potential solutions

(called candidates) and verify if one of them is a solution for the problem. The search

process can be visualized as a process of starting with the set of all potential solutions,
and splitting the set repeatedly until a solution can be picked up from one of the sets

in bounded time. Each search node N in the refinement search thus corresponds to a

set of candidates, denoted by ((N)). Fig. 1 shows a schematic diagram illustrating the

refinement search process (it also illustrates much of the terminology introduced in this

section).
A refinement search is specified by providing a set of refinement operators (strategies)

R, and a solution constructor function sol. The search process starts with the initial

node Nn, which corresponds to the set of all candidates (we shall call this set the

candidate space of the problem, and denote it by K).
The search progresses by generating children nodes by the application of refinement

operators. Refinement operators can be seen as set splitting operations on the candidate
sets of search nodes. The search terminates when a node N is found for which the

solution constructor returns a solution. The formal definitions of refinement operator

and solution constructor follow:

Definition 1. A refinement operator R maps a node N to a set of children nodes {JI$!}
such that the candidate sets of each of the children are proper subsets of the candidate

set of N (i.e., V,IP ((4!)) c ((N))).
72 is said to be iomplete if every solution belonging to the candidate set of N belongs

to the candidate set of at least one of the children nodes.

R is said to be systematic if Vw,y,is/j((N/)) n ((Ni)) = 8.

S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238 171

Definition 2 (Solution constructor). A solution constructor sol is a 2-place function
which takes a search node N and a solution criterion S, as arguments. It will return

either one of three values:
(1) *fail*, meaning that no candidate in ((N)) satisfies the solution criterion.

(2) Some candidate k E ((N)) which satisfies the solution criterion (i.e., k is a

solution).
(3) I, meaning that sol can neither return a solution, nor determine that no such

candidate exists.

In the first case, N can be pruned. In the second case, search terminates with success,

and in the third, N will be refined further. N is called a solution node if the call

sol(N, S(;) returns a solution.3

Definition 3 (Completeness of rejinement search). A refinement search with the refine-
ment operator set R and a solution constructor function sol is said to be complete if

for every solution k of the problem, there exists some search node N that results
from a finite number of successive refinement operations on No, (i.e., &RN =
721 (‘I&. . . (R,(No))), where Ng is the node whose candidate set is the entire candi-
date space K), such that sol can pick up k from N.

Notice that the completeness of search depends not only on the refinement strategies,

but also on the match between the solution constructor function and the refinement
strategies. It can be shown easily that for finite candidate spaces, and solution con-

structors that are powerful enough to pick solutions from singleton sets in bounded
time, completeness of refinement operators is suficient to guarantee the completeness
of refinement search. 4

Search nodes as constraint sets
Although it is conceptually simple to think of search nodes in terms of their candidate

sets, we obviously do not want to represent the candidate sets explicitly in our imple-

mentations. Instead, the candidate sets are typically implicitly represented as generalized

constraint sets associated with search nodes (cf. [lo]) such that every candidate that is
consistent with the constraints in that constraint set is taken to belong to the candidate

set of the search node. Under this representation, the refinement of a search node cor-
responds to adding new constraints to its constraint set, thereby restricting its candidate
set.

Any time the set of constraints of a search node becomes inconsistent (unsatisfiable),

the candidate set becomes empty. Since there is no utility in refining an empty candidate
set, such inconsistent nodes can be pruned, optionally, from the search space. When such
pruning is done, it can reduce the overall size of the search tree. However, depending
upon the type of the constraints, verifying that a node is inconsistent can be very costly.

’ It is instructive to note that a solution constructor may return *fail* even if the candidate set of the node

is not empty. The special case of nodes with empty candidate sets is usually handled by consistency check,
see below.

4 This condition is not necessary because the individual refinements need not be complete according to the

strong definition of Definition l-specifically, it is enough if the refinements never lose a minimal solution.

172 S. Kambhampati et al./Art@cial Intelligence 76 (1995) 167-238

Algorithm Refine-Node(N)

Parameters: (i) sol: solution constructor function.
(ii) R: refinement operators.

0. Termination check: If sol.(N, SG) returns a solution, return it, and terminate. If
it returns *fail*, fail. Otherwise, continue.

1. Refinements: Pick a refinement operator R E R. Not a backtrack point. Nonde-
terministically choose a refinement N’ from R(N) (the refinements of IZ with
respect to R).
(Note: It is legal to repeat this step multiple times per invocation.)

2. Consistency check (Optional) : If N’ is inconsistent, fail. Else, continue.
3. Recursive Invocation: Recursively invoke Refine-Node on N’.

Fig. 2. A recursive nondeterministic algorithm for generic refinement search. The search is initiated by invoking

Ref ine-Node(hlg).

Thus, the optional pruning step trades the cost of consistency check against the reduction
in the search space afforded through pruning.

Definition 4 (Inconsistent search nodes). A search node is said to be inconsistent if its
candidate set is empty, or equivalently, its constraint set is unsatisfiable.

Definition 5 (Infomzedness). A refinement search is said to be informed if it never
refines an inconsistent search node.

Search space size
Fig. 2 outlines the general refinement search algorithm. To characterize the size of the

search space explored by this algorithm, we will look at the size of the fringe (number
of leaf nodes) of the search tree. Suppose Fd is the &h-level fringe of the search tree
explored by the refinement search (in a breadth-first search). Let Ed > 0 be the average
size of the candidate sets of the search nodes in the &h-level fringe, and Ed (2 1)
be the redundancy factor, i.e., the average number of search nodes on the fringe whose
candidate sets contain a given candidate in ic. It is easy to see that IFdl x Ed = licl x pd
(where I . I is used to denote the cardinality of a set). If b is the average branching
factor of the search, then the size of &h-level fringe is also given by O(bd) . Thus, we
have,

lFdl = Ix1 ’ pd = O(bd).
Kd

(1)

In terms of this model, a minimal guarantee one would like to provide is that the size
of the fringe will never be more than the size of the overall candidate space 1x1. Trying
to ensure this motivates two important notions of irredundancy in refinement search:
systematicity and strong systematic@.

S. Kambhampati et al./Arti~cial Intelligence 76 (1995) 167-238 173

Definition 6 (Systematicity). A refinement search is said to be systematic if, for any
two nodes N and N’ falling in different branches of the search tree, ((nr)) II ((N’)) = 0
(i.e., the candidate sets represented by N and N’ are disjoint).

Definition 7 (Strong systematicity). A refinement search is said to be strongly system-
atic if it is both systematic and informed (see Definition 5).

From the above, it follows that for a systematic search, the redundancy factor, p, is
1. Thus, the sum of the cardinalities of the candidate sets of the termination fringe will
be no larger than the set of all candidates K. For strongly systematic search, in addition
to p being equal to 1, we also have Kd 2 1 (since no node has an empty candidate set)
and thus IFdl 6 1x1. Thus,

Proposition 8. The fringe size of any search tree generated by a strongly systematic
re$nement search is strictly bounded by the size of the candidate space (i.e. 1X1).

It is easy to see that a refinement search is systematic if all the individual refinement
operations are systematic. To convert a systematic search into a strongly systematic one,
we only need to ensure that all inconsistent nodes are pruned from the search. The
complexity of the consistency check required to effect this pruning depends upon the
nature of the constraint sets associated with the search nodes.

3. Planning as refinement search

3.1. Informal overview

Given a planning problem, plan-space planners attempt to solve it by searching in
the space of “partial plans”. The partial plans are informally understood as incomplete
solutions. The search process starts with an empty plan, and successively adds “details”
(steps, orderings, etc.) to it until it becomes a correct plan for solving the problem.
Without attaching a formal meaning to partial plans, it is hard to explain the semantic
implications of this process.

In this section, we will provide semantics for partial plans in terms of refinement
search. In this view, partial plans are seen not as incomplete solutions, but as represen-
tations for sets of potential solutions (candidates). Planning is seen as the process of
splitting these candidate sets until a solution is found. In the subsequent sections, we
shall show that this view provides a powerful unifying framework.

To provide a formal account of this process, we need to define the notion of the
candidate set of a partial plan, and we tie this semantic notion to some syntactic
characteristic of the partial plan. We start by noting that the solution for a planning
problem is ultimately a sequence of operators (actions), which when executed from
an initial state, results in a state that satisfies all the goals of the problem. Thus,
ground operator sequences constitute potential solutions for any planning problem, and
we will define the candidate set of a partial plan as all the ground operator sequences
that are consistent with all the constraints in the partial plan. Accordingly, the steps,

174 S. Kambhampati et al./Artificial Intelligence 76 (1995) 167-238

orderings and bindings of the partial plan are seen as imposing constraints on which
ground operator sequences do and do not belong to the candidate set of the plan. The

empty plan corresponds to all the ground operator sequences since it doesn’t impose

any constraints.
For example, consider the scenario of solving a blocks world problem of moving three

blocks A, B and C from the table to the configuration On(A, B) A On(B, C). Suppose
at some point during the search we have the following partial plan:

Ps: start-Move(A, Table, 8)-f in.

We will see it as a stand-in for all ground operator sequences which contain the

operator instance Move(A, Table, B) in it. In other words, the presence of the step

Move(A, Table, B) eliminates from the candidate set of the plan any ground operator
sequence that does not contain the action Move(A, Table, B). Operator sequences such
as Move(A, Table, C)-Move(B, Table, A)-Move(A, Table, B) are candidates of the

partial plan PB.

One technical problem with viewing planning as a refinement search, brought out by
the example above, is that the candidate sets of partial plans are potentially infinite. In
fact, the usual types of constraints used by plan-space planners are such that no partial
plan at any level of refinement in the search tree will have a “singleton candidate set”. 5

This means that the usual mental picture of refinement search as the process of “splitting

sets until they become singletons” (see Section 2) is not valid. In addition, tractable

solution constructor functions cannot hope to look at the full candidate sets of partial
plans at any level of refinement.

To handle this problem, the solution constructor functions in planning look at only

the “minimal candidates” of the plan. Intuitively, minimal candidates are ground op-

erator sequences that will not remain candidates if any of the operators are removed

from them. In the example plan PB described earlier, the only minimal candidate is

Move(A, Table, B) . All other candidates of a partial plan can be derived by starting
from a minimal candidate and adding operators without violating any plan constraints.
As the refinements continue, the minimal candidates of a partial plan increase in length,

and the solution constructors examine to see if one of them is a solution. This can be

done in bounded time since the set of minimal candidates of a partial plan is finite (this
is because an n-step plan has at most n! linearizations). Fig. 3 illustrates this view of

the candidate set of a partial plan.
Finally, to connect this view to the syntactic operations performed by planners, we

need to provide a relation between the candidate set of the plan and some syntactic

notion related to the plan. We do this by fixing a one-to-one correspondence between
minimal candidates (a semantic concept) and a syntactic notion called the safe ground

linearizations of the plan.
In the remainder of this section, we formalize these informal ideas. We will start by

reviewing the notion of solution of a planning problem (Section 3.2). Next, we provide

5 For a partial plan to have a singleton candidate set, the constraints on the plan must explicitly disallow

addition of new operators to the plan. The “immediacy” constraints, discussed by Ginsberg in [9] are an

example of such constraints (see Section 9).

S. Kambhampati et al. /Artificial Inrelligence 76 (1995) 167-238 175

Partial Plan (a set of ordering, binding, step and auxiliary constraints)

Ground inearization 1

1

Ground Linearization 2 Ground Linearization n

Ground linearizations that satisfy auxiliary constraints

\

Safe Ground Linearization 1 Safe ground Linearization m
: :

: Corresponds to the ground operator sequence : Syntactic View
----____-___--:___-_____--_____--____--_____-_____---_____:_--_____________

: :
: :

Semantic View

Minimal Candidate 1
.

Minimal Candidate m

2 /
Union of these sets is the candidate set of the partial plan

Fig. 3. A schematic illustration of the relation between a partial plan and its candidate set. The candidate set
of a partial plan consist of all ground operator sequences that are consistent with its constraints. These can be
seen in terms of minimal candidates (which correspond to the safe ground linearizations of the partial plan)
and ground operator sequences derived from them by adding more operators.

a syntactic description of the constraints comprising a partial plan (Section 3.3). At this
point we will develop the syntactic and semantic notions of satisfying the constraints
of the partial plan. The semantic notion depends on the concept of ground operator
sequences, while the syntactic notion depends on the idea of ground linearizations.

We will then provide semantics of partial plans in terms of their candidate sets, which
are ground operator sequences satisfying all the constraints of the partial plan, and show
that executable candidates of the plan correspond to solutions to the planning problem
(Section 3.4). Finally, we will relate the semantic notion of the candidate set of a
partial plan to a syntactic notion called safe ground linearization of the partial plan (see
Fig. 3 and Section 3.5). Specifically we will show that the safe ground linearizations
correspond to the minimal candidates of a partial plan (i.e., the smallest-length ground
operator sequences belonging to the candidate set of a plan). This allows us to provide
meanings to syntactic operations on the partial plan representation in terms of their
import on the candidate set of the partial plan.

3.2. Solutions to a planning problem

Whatever the exact nature of the planner, the ultimate aim of (classical) planning is
to find a sequence of ground operators, which when executed in the given initial state,

176 S. Kambhampati et al./Artijcial Intelligence 76 (1995) 167-238

will produce desired behaviors or sequences of world states. Most classical planning
techniques have traditionally concentrated on the attainment of goals [81. These goals

can be seen as a subclass of behavioral constraints, which restricts the agent’s attention

to behaviors that end in world states satisfying desired properties. For the most part,
this is the class of goals we shall also be considering in this paper.6 Below, we assume

that a planning problem is a pair of world states, [I, E], where Z is the initial state of
the world, and Q is the specification of the desired behaviors.

The operators (also called actions) in classical planning are modeled as general state
transformationfunctions. Pednault [311 provides a logical representation, called the Ac-
tion Description Language (ADL) for representing such state transformation functions.

We will be assuming that the domain operators are described in the ADL representa-

tion with precondition and effect formulas. The precondition and effect formulas are
functionfree first-order predicate logic sentences involving conjunction, negation and

quantification. The precondition forrnukrs can also have disjunction, but disjunction is
not allowed in the effects formula. The subset of this representation where both formu-

las can be represented as conjunctions of function-less first-order liter&, and all the

variables have infinite domains, is called the TWEAK representation (cf. [3,17,44] > . 7
A ground operator is an operator that does not contain any uninstantiated variables.

Given a set of ground operators, we can form a space of ground operator sequences,
only a subset of which forms solutions to a planning problem. For any planning problem

the space of all ground operator sequences is called the candidate space of that problem.
As an example of this space, if a domain contains three ground operators al, a2 and
~3, then the candidate space of any problem would be a subset of the regular expression

{al (a2 1 a3}*.
We now formally define the semantic meaning of a solution to a planning problem.

Definition 9 (Solution of a planning problem). A ground operator sequence

s : 0102. . ‘0,

is said to be a solution to a planning problem [Z,S], where Z is the initial state of
the world, and 6 is the specification of the desired behaviors, if the following two
restrictions are satisfied:

(1) S is executable, i.e.,

Zbprec(ol), at(Z) I- prec(o21, 0,-1(0,-2~~~(01G))) bprec(o,)

(where prec(o) denotes the precondition formula of the operator 0).

(2) The sequence of states 1, 01 (Z) , . . . , o,(on_1 . . . (01(I))) satisfies the behav-
ioral constraints specified in the goals of the planning problem.

For goals of attainment, the second requirement is stated solely in terms of the last
state resulting from the plan execution: o, (o,_ 1 . . . (01 (Z))) I- 0. A solution S is said

6 In [14,161 we show that our framework can be easily extended to deal with to a richer class of behavioral

constraints, including maintenance goals and intermediate goals.

’ In TWEAK representation, the list of nonnegated effects is called the Add list while the list of negated
effects is called the Delete list.

Example. Fig. 4 shows an example partial plan PE, whose constraint set appears be-
low:

PE :

T: {to,t,rw,},

0:{to-xt,,to4too, t1 4 t,, tz < t,},B : 0,
SI : {tt -+ or, t2 + 02, to -+ start, t, -+ fin},

L:: {(tl9PJ2)4 2,4,&J, (P@L), (4@LJ, Wtl))

S. Kambhampati et al./Art@cial Intelligence 76 (1995) 167-238 111

to be minimal if no operator sequence obtained by removing some of the operators from
S is also a solution.

3.3. Syntactic dejnition of partial-order plans

Formally, a partial plan is a 5-tuple: (T, 0, B, SI, L) where:
l T is the set of steps in the plan. Elements of T are denoted by symbols s, t and

their subscripted versions. T contains two distinguished steps to and t,.
l Sir is a symbol table, which maps steps to ground operators in the domain.
l 0 is a partial ordering relation over T that specifies the constraints on the order of

execution of the plan steps. By definition, 0 orders to to precede all other steps of
the plan, and too to follow all others steps of the plan.

l B is a set of codesignation (binding) and non-codesignation (prohibited bindings)
constraints on the variables appearing in the preconditions and postconditions of
the operators.

l L is a set of auxiliary constraints (see below).
In a symbol table SI, the special step to is always mapped to the dummy operator

start, and similarly tar, is always mapped to the dummy operator fin. The effects of
start and the preconditions of fin correspond, respectively, to the initial state and the
desired goals (of attainment) of the planning problem. The symbol table SI, together
with T, provides a way of distinguishing between multiple occurrences of the same
operator in the given plan.

The auxiliary constraints L deserve more explanation. In principle, these include any
constraints on the partial plan that are not classifiable into “steps”, “orderings” and
“bindings”. Two important types of auxiliary constraints we will discuss in detail later,
are interval preservation constraints (IPCs), and point truth constraints (PTCs). An
IPC is represented as a 3-tuple (s,p, t), while a PTC is represented as a 2-tuple (p@t).
Informally, the IPC (s, p, t) requires that the condition p be preserved between the steps
s and t, while the PTC (p @ t) requires that the condition p be true before the step t. IPCs
are used to represent bookkeeping (protection) constraints (Section 4.3) while PTCs
are used to capture the prerequisites that need to be true before each of the steps in the
plan. In particular, given any partial plan P, corresponding to every precondition C of
step s in the plan, the partial plan contains a PTC (nonmonotonic auxiliary constraint)
(C@s). Auxiliary constraints can also be used to model other aspects of refinement
planning. In [141, we show that IPCs can be used to model maintenance goals while
PTCs can be used to model filter conditions.

S. Kambhampaii et al. /Arti$cial Intelligence 76 (1995) 167-238

add: p

Domain:

Ground Linearizalzons:to-tl-t2-t,

t&&l-t,
Safe Ground Linearitations: t&-t2&

Candidates: 01 Non-Candidates: - - 02 (minimal Cand.) 02 01

03 - 01 -02 01 - 03 - 02

03 - 01 -O3-01-01-02 01 - 03 - 03 - 02

etc.

Solutions: o3 - 01 - 02 (Minimal)

oa - oi - 03 - 01 - 01 - 02 (Non-Minimal)

Fig. 4. An example partial plan illustrating the terminology used in describing the candidate sets. The table
on the top right shows the preconditions and effects of the operators. The effects of the start operator,
correspond to the initial state of the problem while the preconditions of fin correspond to the top-level goals
of the plan. In this example, initial state is assumed to be null, and the top-level goals are assumed to be p
and q.

PE contains four steps to, tl, t:! and t,. These steps are mapped to the syntactic
operators in this domain, start, 01, 02 and fin, respectively. The preconditions and
effects of these operators are described in the table at the top right corner of Fig. 4. The
orderings between the steps are shown by arrows. The plan also contains a set of five
auxiliary constraints-two IPCs and three PTCs.

3.3.1. Ground linearizations of a partial plan

Definition 10 (Ground linearizutions) . A ground linearization (also called comple-

tion) of a partial plan P : (T, 0,23,ST,L) is a fully instantiated total ordering of the

steps of P that is consistent with 0 (i.e., a topological sort) and B.

Example. In our example partial plan PE, there are two ground linearizations tot1 t&,
and tot2tl tm.

S. Kambhampati et al./Artifcial Intelligence 76 (1995) 167-238 179

A ground linearization captures the syntactic notion of what it means for a partial
plan to be consistent with its own ordering and binding constraints. If a plan has no
ground linearizations, then it means that it is not consistent with its ordering and binding

constraints. We can extend this notion to handle the auxiliary constraints as follows:

Definition 11. A ground linearization G of a partial plan P is said to satisfy an IPC
(t, p, t’) of P, if for every step t” between t and t’ in G, the operator SI[t”] does not

delete p.

Definition 12. G is said to satisfy a I’TC (c@t) if there exists a step t’ before t in G

(t’ could be to), such that SI(t’) has an effect c and for every step t” between t’ and
t in G, SI(t’) does not delete c.

Definition 13. A partial plan P is said to be consistent with an auxiliary constraint if

at least one of its ground linearizations satisfies it.

Example. Consider the ground linearization Gi : tOtI t2t, of our example plan PE.

Gi satisfies the IPC (tl ,p, to3) since the operator 02 corresponding to t2, which comes
between tl and t, in Gi, does not delete p. Thus PE itself is consistent with the IPC

(tl ,p, tm). Similarly, Gi also satisfies the I’TC (q@&) since t2 gives q as an effect
and there is no step between t2 and tm deleting q in Gi.

3.4. Candidate set semantics of a partial plan

Having defined the syntactic representation of a partial plan, we need to answer the
question-what does it represent? In this section, we provide formal semantics for partial

plans based on the notion of candidate sets. Among other things, we explain what it
means to add additional syntactic constraints to a partial plan, and what it means for a
partial plan to represent a solution to a planning problem.

3.4.1. Mapping function M
Our interpretation of a partial plan P corresponds to the set of all ground operator

sequences that are consistent with the constraints of P. This correspondence is defined
formally via a mapping function M:

Definition 14 (Mapping function). M is said to be a mapping function from a plan
P to a ground operator sequence S if:

(1) M maps all steps of P (except the dummy steps to and too) to elements of S,
such that no two steps are mapped to the same element of S;

(2) M agrees with S7 (i.e., S[M(t)] =Sl(t))
(3) for any two steps ti and tj in P such that ti 4 tj, if M(ti) = S[Z] and

M(tj) = S[m], then I < m.

Example. Considering our example plan PE in Fig. 4, M = { tl -+ S[51, t2 -+ S[61) is
a mapping function from PE to the operator sequence S : 0301030~0~0~. This is because:

180

(1)
(2)

S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

S[51 is 01 which is also SI(tt), and similarly S[61 is 02 which is also SI(t2).
There are no ordering relations between ft and t2 in PE and thus S trivially
satisfies the ordering relations of PE.

3.4.2. Auxiliary constraints
Intuitively, the last two clauses of the definition of the mapping function ensure that

the ground operator sequence satisfies the steps and orderings of the partial plan. We
could also define what it means to say that a ground operator sequence satisfies an
auxiliary constraint.

Formally, an IPC (ti, c, ti) of a plan P is said to be satisfied by a ground operator
sequence S, under a mapping function M, if and only if every operator o in S between
M (ti) and M (tj) preserves (does not delete) the condition c. For readers who are
familiar with the “causal link” notation [24], note that an IPC (si, c, sj) does not
require that si give the condition c, but merely that the condition c be preserved (i.e.,
left unaffected) in the interval between si and Sj.

The IPCs are examples of monotonic auxiliary constraints. An auxiliary constraint
C is monotonic if for any ground operator sequence S that does not satisfy C under
M, adding operators to S will not make it satisfy C either. A constraint that is not
monotonic is called nonmonotonic.

Example. In our example plan PE, the operator sequence S : o3o103010102 will Satisfy
the IKs with respect to the mapping function M = {tl + S[5], t2 -+ S[61). In
particular, the IPC (tt ,p, tm) is satisfied because all the operators between S[51 and
the end of the operator sequence, which in this case is just 02, preserve (do not violate)
p. This can be verified from the effects of the operators described in the top right table
in Fig. 4. It can also be verified that the IPC would not be satisfied with respect to a
different mapping, M’ = {tl + S[2], t2 + S[6]} (since S[3] =03 deletes p).

Similarly, a point truth constraint* (cat) is said to be satisfied by a ground operator
sequence S under M, if and only if:

(1) either c is true in the initial state, and is preserved by every action of S occurring
before M(t), or

(2) c is made true by some action S[j] that occurs before M(t), and is preserved
by all the actions between S[j] and M(t).

Example. Consider once again the example plan P.E, the operator sequence S :
03o1o3o1o102 and the mapping function M = {tl + S[5],t2 + S[61}. The F’TC
(r@tl) is satisfied by S with respect to M since S[3] = 0s adds r and S[4] = 01 does
not delete r. It can be verified that the other two F’TCs are also satisfied by S. This is
because S[5] = 01 gives p and S[6] = 02 gives q without deleting p, and thus both p

and q are true at the end S.
The PTCs are examples of nonmonotonic auxiliary constraints. To see this, consider

the operator sequence S : 0102. S fails to satisfy the PTC (r@tl) of PE (Fig. 4) with

* This is called a point-protected condition in [421.

S. Kambhampati et al./Ar!ifcial Intelligence 76 (1995) 167-238 181

Auxiliary Constraints

Monotonic (Auxiliary) Constraints Non-Monotonic (Auxiliary) Constraints

I
Interval Preservation Constraints

Fig. 5. The relation between the various types of auxiliary constraints.

respect to the mapping M = {tl --+ S[11, t2 -+ S[2]}. However S’ : 030t02 will satisfy
the PTC with respect to the same mapping.

Fig. 5 shows the relationship between the different types of auxiliary constraints that
we have defined above.

3.4.3. Candidate set of a partial plan
Now that we have defined what it means for a ground operator sequence to satisfy

the step, ordering, binding and auxiliary constraints, it is time to formally define when
a ground operator sequence becomes a candidate. Intuitively, it would seem reasonable
to go ahead and say that a candidate is a ground operator sequence that satisfies all
the constraints of the plan with respect to the same mapping. This however leads to a
technical difficulty.

A useful property that we want for a candidate is that given a ground operator sequence
S that is not a candidate of a partial plan, adding operators to S should not make it a
candidate. 9 For this to happen, we want the auxiliary constraints to be such that given
an operator sequence S that does not satisfy an auxiliary constraint C with respect to a
mapping M, adding more operators to S will not make it satisfy C. From our previous
discussion, we note that monotonic auxiliary constraints, which include IPCs, have this
property, while nonmonotonic auxiliary constraints don’t. Accordingly, we define the
candidate set of a partial plan in terms of its monotonic auxiliary constraints.

Definition 15 (Candidate set of a partial plan). Given a partial plan P : (T, 0, B,
SI, C), a ground operator sequence S is said to be a candidate of P if there is a
mapping function M from P to S with respect to which S satisfies all the monotonic
auxiliary constraints of P.

‘To understand the motivation behind this, recall, from Fig. 3, that we want to define candidate sets in

such a way that planners can concentrate on the minimal candidates (which “correspond” to the safe ground

linearizations of the partial plan). Accordingly, we would like to ensure that if none of the ground operator

sequences corresponding to the ground linearizations of a partial plan satisfy the auxiliary constraints, the

plan will have an empty candidate set (so that we could go ahead and prune such plans without losing

completeness).

182 S. Kambhampati et al./Artifcial Intelligence 76 (1995) 167-238

The candidate set of a partial plan is the set of all ground operator sequences that are
its candidates.

An operator sequence S is a minimal candidate, if it is a candidate, and no operator

sequence obtained by removing some of the operators from S is also a candidate of P.

Note that by our definition, a candidate of a partial plan might not be executable.
It is possible to define candidate sets only in terms of executable operator sequences
(or ground behaviors), but we will stick with this more general notion of candidates

since generating an executable operator sequence can itself be seen as part of planning

activity.

Definition 16 (Solution of a partial plan). A ground operator sequence S is said to be
a solution of a partial plan P, if S is executable and S is a candidate of P with respect
to a mapping M, and S satisfies all the nonmonotonic auxiliary constraints of P with

respect to M.

It can be verified that for minimal candidates, executability is automatically guaranteed
if all the nonmonotonic auxiliary constraints are satisfied (recall that corresponding to

each precondition c of each step s of the plan, the partial plan contains a PTC (c@s)).

Finally, it can also be verified that the solutions of a partial plan correspond to the
solutions of the planning problem [Z, G] , where Z is the effect formula of to, and 0 is

the precondition formula of t, of P according to Definition 9.

Example. COntinUing with our eXaI@e plan Ps, the operator sequence S : 030~03010102
and the mapping function M = {tl -+ S[5], t2 + S[6]}, we have already seen that

S satisfies the step, ordering and interval preservation constraints with respect to the

mapping M. Thus S is a candidate of the partial plan Ps. S is however not a minimal
candidate since the sequence S’ : 0102 is also a candidate of PE (with the mapping
function M = {tl --f S[ll,t2 + WI}), and S’ can be obtained by removing elements

from S. It can be easily verified that S’ is a minimal candidate.
Since S also satisfies the PTCs with respect to this mapping, and since S is executable,

S is also a solution of PE. S is however not a minimal solution, since it can be verified

that St’ : 030102 is also a solution, and St’ can be derived by removing elements from
S. It is interesting to note that although St’ is a minimal solution, it is not a minimal

candidate. This is because, as discussed above, S’ : 0102 is a candidate of P.s (note
that St is not a solution). This example illustrates the relations between the candidates,
minimal candidates, solutions and minimal solutions.

3.4.4. Summarizing the meaning of partial plans in terms of candidate sets
We are now in a position to summarize the refinement-search-based semantics of

partial plans. A partial plan P can be equivalently understood as its candidate set ((P)).

A subset of ((P)), called the solutions of P, corresponds to the actual solutions to the
planning problem. The process of finding these solutions, through refinement search,
can be seen as splitting the candidate sets of the plan in such a way that the minimal
candidates of the resulting partial plans correspond to solutions of the planning problem.

S. Kambhampati et al. /Art$cial Intelligence 76 (1995) 167-238 183

The main refinement operation used to achieve this involves the so called establishment
refinement (Section 4.2). In essence this can be understood in terms of taking a PTC
of a partial plan, and splitting the candidate set of the partial plan such that the minimal

candidates of the each resulting child plan will satisfy that PTC. After working on each

PTC this way, the planner will eventually reach a partial plan one of whose minimal

candidates satisfies all the PTCs. At this point, the search can terminate with success
(recall that the partial plan contains a PTC corresponding to every precondition of every

step of the plan).

3.5. Relating candidate sets and ground linearizations

In the previous section, we defined the candidate set semantics of partial plans. Can-

didate set semantics can be thought of as providing a denotational semantics for partial
plans in refinement planning. However, actual refinement planners do not deal with

candidate sets explicitly during planning, and instead make some syntactic operations

on the partial plans. To understand the semantic import of these operations, we need to

provide a correspondence between the candidate set of a partial plan and some syntactic
notion related to the partial plan.

In particular, we define the notion of safe ground linearizations.

Definition 17 (Safe ground linearization). A ground linearization G of a plan P is
said to be safe, if it satisfies all the monotonic auxiliary constraints (IPCs for our

representation).

Example. Consider the ground linearization G1 : t0tlt2tm of our example plan PE.
Gi satisfies the IPC (tl,p, too) since the operator 02 corresponding to t2, which comes

between tl and t, in Gt, does not delete p. Similarly, we can see that the IPC (t2, q, ta)
is also satisfied by Gt. Thus, G1 is a safe ground linearization. In contrast, the other

ground linearization G2 : t&t1 t, is not a safe ground linearization since the IPC

(t2, q, too) is not satisfied (tl which comes between tl and t, in G, corresponds to the
operator 01 which delete q).

We will now put the candidate set of a plan in correspondence with the safe ground

linearization. To do this, we first define what it means for an operator sequence to

correspond to a ground linearization of a plan.

Definition 18. Let G be a ground linearization of a plan P. Let G’ be the sequence
derived by removing to and tw from G. An operator sequence S is said to correspond
to the ground linearization G, if V$[i] = S’T(G’[i]) (where S[i] and G’[i] are the

ith elements of S and G’ respectively).

Example. In our example partial plan PE, the ground operator sequence S1 : 0102
corresponds to the ground linearization G1 : tOtI tzt, (since S7 maps tl to 01 and t2
to 02). Similarly, the ground operator sequence Sz : 0201 corresponds to the ground
linearization G2 : tot2tl t,.

184 S. Kambhampati et al. /ArtiJcial Intelligence 76 (1995) 167-238

Proposition 19 (Correspondence theorem). A ground operator sequence S is a min-
imal candidate of a partial plan P if and only if it corresponds to some safe ground
linearization G of the plan P.

Proof. (If Let G be a safe ground linearization of P, and G’ be the sequence obtained

by stripping to and c, from G. Let S be the operator sequence obtained by translating
step names in G to operators (via the symbol table SI, such that S[i] = ST(G’[i]).
By construction, S corresponds to G. Consider the mapping M = {G’[i] -+ S[i] 1 Vi}.
It is easy to see that M is a mapping function from P to S by Definition 14. We can
also verify that S satisfies all monotonic auxiliary constraints of P according to M.
To see this, consider an IPC (t’,p, t) of P. Since G is safe, it satisfies the IPC. This

means that if G[i] = t’ and G[j] = t, then all the elements G[i+ l],...,G[j - l]
will preserve p. By the construction of S from G, we know that S[i] will correspond
to t’ and S[j] will correspond to t under mapping M. Further, it also means that the

operators S[i+ l],... , S[j - I] will preserve p. This means S satisfies the IPC with

respect to M.
The above proves that S is a candidate of P with respect to the mapping function M.

In addition, since by construction S corresponds to G, removing any operator from S

would leave more steps in G than there are elements in S. This makes it impossible to

construct a mapping function from P to S (since a mapping function must map every

step of P to a different element of S). Thus, S is also a minimal candidate.
(Only Zf Before we prove the only if part of the correspondence theorem, We will

state and prove a useful lemma:

Lemma 20. A minimal candidate S of a partial plan P will have exactly as many
elements as the number of steps in P (not counting to and t,).

Proof. Let m be the number of steps in P (not counting to and t,. S cannot have
less than m elements since if it does then it will be impossible to construct a mapping
function from P to S (recall that a mapping function must map each step to a different

element of S). S cannot have more than m elements, since if it did then S will not be a

minimal candidate. To see this, suppose S has more than m steps, and it is a candidate
of P under the mapping function M. Consider the operator sequence S’ obtained by
removing from S all the elements which do not have any step of P mapped onto them

under M. Clearly, S’ must be of smaller length than S (S’ will have m elements). It is
also easy to see that M is a mapping function from P to S’. Finally, S’ must satisfy

all the monotonic auxiliary constraints of P under M. (To see this, suppose there is

an monotonic auxiliary constraint C that S’ does not satisfy under M. By definition
of monotonic auxiliary constraints (Section 3.4.2), this is impossible, since S, which
is obtained by adding operators to S’, satisfies all the monotonic auxiliary constraints
under M. lo) This shows that S’ must also be a candidate of P under the mapping
function M, which will violate the hypothesis that S is a minimal candidate. •!

to This is the primary reason for defining candidate sets only in terms of monotonic auxiliary constraints.

S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238 18.5

We will now continue with the proof of the correspondence theorem. Suppose S is
a minimal candidate of P with respect to the mapping function M. By the lemma
above, S has as many elements as steps in P. This makes M a one-to-one mapping
from steps of the plan to elements of S (with the exception of ra and too). Consider
the step sequence G’ obtained by translating the operators in S to step names under the
mapping M-’ such that G’[i] = M-‘(S[i]) (note that M can be inverted since it is a
one-to-one mapping). Let G be the step sequence obtained by adding to to the beginning
and t, to the end of G’. Since M maps all steps of P (except to and too) to elements
of S, G’ will contain all steps of P. Further, since by the definition of mapping function,
S satisfies all the ordering relations of P under M, G also satisfies all the ordering
relations of P. This makes G a ground linearization of P that corresponds to S. Since
S also satisfies the auxiliary monotonic constraints of P under M, by construction G
must satisfy them too. Thus, G is a safe ground linearization that corresponds to the
minimal candidate S. 0

Example. In Section 3.4, we noted that Sr : 0102 is a minimal candidate for the
example plan PE. Earlier in this section, we also noted that GI : totlt&, is a safe
ground linearization, and that Gt corresponds to St.

We now have a strong connection between the syntactic concept, safe ground lineariza-
tion, and the semantic concept, minimal candidate. This gives us a way of interpreting
the meaning of the syntactic operations performed on the partial plans in terms of the
candidate set of the partial plan. Checking whether a partial plan has an empty candidate
set can be done by checking if it has a safe ground linearization:

Proposition 21. A partial plan has an empty candidate set (and is inconsistent) if and
only if it has no safe ground linearizations.

This follows directly from the correspondence theorem. Similarly, checking whether a
minimal candidate of the partial plan is a solution to the problem can be done by looking
at the ground operator sequences corresponding to the safe ground linearizations.

4. A generalized algorithm for partial-order planning

The algorithm Refine-Plan in Fig. 7 instantiates the refinement search (Fig. 2)
within the context of planning. In particular, it describes a generic refinement planning
algorithm, the specific instantiations of which cover most of the partial-order plan-space
planners. 1 1

As we noted in Section 3.4.4, the main refinement operation of Refine-Plan, called
establishment refinement, is to consider each I’TC (corresponding to some precondition
of some step of the plan) in turn and work towards adding constraints to the partial plan

‘I An important exception are the hierarchical task reduction planners, such as SIPE [41], IPEM [1] and

O-Plan [51. However, see [161 for a discussion of how Ref ine-Plancan be extended to coverthese planners.

186 S. Kambhampafi et al. /Arf$icial Intelligence 76 (1995) 167-238

so that all of its minimal candidates will satisfy that PTC. Accordingly, each invocation
of Refine-Plan takes a partial plan, along with a data structure called agenda that
keeps track of the set of PTCs still to be considered for establishment during planning.
Given a planning problem [Z,G] , where G is a set of goals (of attainment), the planning
process is initiated by invoking Refine-Plan with the “null” partial plan Pa and the
agenda A0 where

P0 :
{to, too}, {to + too}, 0, {to + start, t, + fin},
LCB : {(gi@tce) I gi E G) >

and

4 : {(gi, too) I gi E G},

where corresponding to each goal gi E G, da contains (gi, t,), and &, contains the
PTC (gi@&). Fig. 6 illustrates PO and An. l2 As noted earlier, the candidate set of Pa,
((Pa)) is the candidate space of the problem K.

The procedure Refine-Plan (see Fig. 7 specifies the refinement operations done by
the planning algorithm. Comparing this algorithm to the refinement search algorithm in
Fig. 2, we note that it uses two broad types of refinements: the establishment refinements
mentioned earlier (step 1) ; and the tractability refinements (step 2) to be discussed in
Section 4.5. In each refinement strategy, the added constraints include step addition,
ordering addition, binding addition, as well as addition of auxiliary constraints. In the
following subsections, we briefly review the individual steps of this algorithm.

Table 1 characterizes many of the well-known plan-space planners as instantiations
of the Refine-Plan algorithm. Refine-Plan is modular in that its individual steps
can be analyzed and instantiated relatively independently. Furthermore, the algorithms
do not assume any specific restrictions on action representation, and can be used by any
planner using the ADL action representation [301. Although we will be concentrating
on goals of attainment, other richer types of behavioral constraints, such as maintenance
goals, and intermediate goals, can be handled by invoking Refine-Plan with a plan
that contains more initial constraints than Pa described above (see [141). In particular,
maintenance goals can be handled by imposing some interval preservation constraints
on the initial plan. Similarly intermediate goals can be handled by introducing some
dummy steps (in addition to to and t,) into the plan, and introducing the intermediate
goals as PTCs with respect to those steps.

‘* Alert readers may note that there is some overlap between the agenda, and the definition of FTCs. Agenda is
a prescriptive data structure used by the planner to keep track of the preconditions that need to be established.
The agenda does not affect the candidate set of the partial plan. The FTCs, in contrast, are only checked
to see if a candidate is a solution. Under this model, the planner can terminate without having explicitly
considered each of the preconditions in the agenda (as long as all the auxiliary constraints, including the
F’TCs are satisfied). Similarly, it also allows us to post preconditions that we do not want the planner to
explicitly work on. In particular, the so called “filter-conditions” [4,40] can be modeled by adding them to
the F’TCs, without adding them to the agenda. This is in contrast to ordinary preconditions which are added
to both the agenda, and the auxiliary constraints.

S. Kambhumpati et al. /Art$cial Intelligence 76 (1995) 167-238 187

Problem:

Initial State: il, iz,...i,

Goal State: gl, g2, . . g,

Empty Partial Plan PO:

add: il,i2,...in

to: start -

(g1 @GO)

(g2@tcu)

>

(gn@too) tcx3 : Fin

Fig. 6. The “empty” partial plan Pe and the agenda with which Refine-Plan is first invoked.

4. I. Solution constructor function

prec: gl,g2,...g,

Agenda An:

htc4

k2JocJ

. .

knlJtc0)

As discussed in Section 3, the job of a solution constructor function is to look for
and return a solution from the candidate set of a partial plan. I3 Since enumerating and
checking the full candidate set of a partial plan is infeasible, most planners concentrate
instead on the minimal candidates. As discussed in Section 3 (see proposition 19 and
Fig. 3)) it is possible to get a complete refinement search in the space of ground operator
sequences if we have a solution constructor which examines the safe ground lineariza-
tions and see if any of those correspond to a solution. This leads to the prototypical
solution constructor, Some-sol:

Definition 22 (Some-sol). Given a partial plan P, return with success when some safe
ground linearization G of P also satisfies all the PTCs (this means that the ground
operator sequence S corresponding to G is a solution to the problem)

It is possible to show that any instantiation of Ref ine-Plan using Some-sol leads to a
complete refinement search, as long as the rejinement operators used by the planner are
complete (Definition 1) . Unfortunately, implementations of Some-sol are not in general
tractable. t4 Because of this, most implemented planners use a significantly restricted

l3 Note that a solution constructor function may also return a *fail* on a given pattial plan. The difference
between this and the consistency check is that the latter fails only when the partial plan has an empty candidate
set, while the solution constructor can fail as long as the candidate set of the partial plan does not contain
any solutions to the given problem.
I4 This is related to the fact that possible correctness of a partially ordered plan is NP-hard [3,171.

188 S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

Lilgorithm Ref ine-Plan((P : (T, 0, t?, ST, L), A))

Parameters: (i) sol: solution constructor function.
(The following parameters are used by the refinement strategies.)

(ii) pick-prec: the routine for picking the preconditions from the
plan agenda for establishment.

(iii) interacts?: the routine used by pre-ordering to check if a pair
of steps interact.

(iv) conflict-resolve: the routine which resolves conflicts with
monotonic auxiliary constraints.

1. Termination check: If sol(P, Q) returns a solution, return it, and terminate. If it
returns *fail*, fail. Otherwise, continue.

1. Establishment refinement: Refine the plan by selecting a goal, choosing a way
of establishing that goal, and optionally remembering the establishment decision.

1.1. Goal selection: Using the pick-prec function, pick a goal (c, S) (where c is a
precondition of step S) from P to work on. Not a backtrack point.

1.2. Goal establishment: Nondeterministically select a new or existing establisher
step s’ for (c, s). Introduce enough ordering and binding constraints, and secondary
preconditions to the plan such that (i) s’ precedes s, (ii) s’ will have an effect
c, and (iii) c will persist until s (i.e., c is preserved by all the steps intervening
between s’ and s). Backtrack point; all establishment possibilities need to be
considered.

1.3. Bookkeeping (Optional) : Add auxiliary constraints noting the establishment
decisions, to ensure that these decisions are protected by any later refinements.
This in turn reduces the redundancy in the search space. The protection strategies
may be one of goal protection, interval protection and contributor protection (see
text). The auxiliary constraints may be one of point truth constraints or interval
preservation constraints.

2. Tractability refinements (Optional) : These refinements help in making the plan
handling and consistency check tractable. Use either one or both:

2.a. Pre-ordering: Impose additional orderings between every pair of steps of
the partial plan that possibly interact according to the static interaction metric
interacts?. Backtrack point; all interaction orderings need to be considered.

2.b. Conflict resolution: Add orderings, bindings and/or secondary (preservation)
preconditions to resolve conflicts between the steps of the plan, and the plan’s
monotonic auxiliary constraints. Backtrack point; all possible conflict resolution
constraints need to be considered.

3. Consistency check (Optional) : If the partial plan is inconsistent (i.e., has no safe
ground linearizations), fail. Else, continue.

1. Recursive invocation: Recursively invoke Refine-Plan on the refined plan.

Fig. 7. A generalized refinement algorithm for plan-space planning.

S. Kambhampati et al./Artifcial Intelligence 76 (1995) 167-238 189

version of Some-sol called All-sol, which terminates only when all ground iinearizations
are safe and all safe ground linearizations correspond to solutions (satisfy all PTCs) :

Definition 23 (All-sol). Given a partial plan P, return with success only when all
ground linearizations of the plan are safe, and all safe ground linear&&ions satisfy all
the PTCs (this means that the ground operator sequences corresponding to all safe
ground linearizations are solutions).

The solution constructors used by most existing planners correspond to some imple-
mentation of All-sol, and the completeness proofs of these planners are given in terms
of All-sol.

Comparing All-sol to the definition of a solution constructor (Definition 2), we note
that in general, All-sol requires the partial plan to have more than one solution before
it will signal success (all minimal candidates must be solutions). One theoretically in-
elegant consequence of this difference is that for planners using All-sol as the solution
constructor, completeness of refinement operators alone does not guarantee the com-
pleteness of refinement search. In Section 5.2, we describe some specific instantiations
of Ref he-Plan that illustrate this.

In particular, an instantiation of Refine-Plan that uses complete refinement op-
erators, and uses an All-sol-based solution constructor will be complete only if the
refinements eventually produce a partial plan all ground linear&ions of which corre-
spond to solutions (i.e., safe, and satisfy all PTCs). I5 We will note later that this is
in general ensured as long as the planner either uses tractability refinements (Section
4.5), or continues to use establishment refinements as long as there are conditions that
are not yet necessarily true (see description of TWEAK in Section 5.1.3).

Once a planner is complete for All-sol, it is actually possible to use a slightly more
general versions of All-sol, called k-sol, which randomly check k safe ground lincariza-
tions of the plan to see if any of them are solutions. If a planner is complete for All-sol,
it is also complete for k-sol. This is because completeness with respect to All-sol means
that eventually a partial plan is produced all of whose ground linearizations become
safe, and will correspond to solutions. When this happens, k-sol will also terminate with
success on that partial plan. Further, k-sol is guaranteed to terminate the search before
All-sol.

The termination criteria of All-sol correspond closely to the notion of necessary cor-
rectness of a partially ordered plan, first introduced by Chapman [31. Existing planning
systems implement All-sol in two different ways: Planners such as Chapman’s TWEAK
[3,441 use the modal truth criterion to explicitly check that all the safe ground lin-
earizations correspond to solutions (we will call these the MTC-based constructors).
Planners such as SNLP [24] and UCPOP [33] depend on protection strategies and
conflict resolution (Section 4.5.2) to indirectly guarantee the safety and necessary cor-
rectness required by All-sol (we call these protection-based constructors). In this way,
the planner will never have to explicitly reason with all the safe ground linearizations.

ls Note that this needs to happen for at least one partial plan, not necessarily all partial plans.

190

Table 1

S. Kambhampati et al. /Artificial Intelligence 76 (I 995) 167-238

Characterization of a variety of existing as well as hybrid planners as instantiations of Refine-Plan; the n
used in the complexity figures is the number of steps in the partial plan

Planner Soln. constructor Goal selection Bookkeeping Tractability
refinements

Existing planners

TWEAK [3] MTC-based 0(n4) MTC-based 0(n4) None None
UA [28] MTC-based 0(n2) MTC-based O(n*) None Unambiguous ordering
NONLIN [40] MTC (Q&A) based Arbitrary 0(1) Interval & Conflict resolution

goal protection
TOCL [2] Protection-based 0(1) Arbitrary 0(1) Contributor protection Total ordering
Pedestal [261 Protection-based 0(1) Arbitrary O(1) Interval protection Total ordering
SNLP [24]
UCPOP [33]

Protection-based 0(1) Arbitrary 0(1) Contributor protection Conflict resolution

MP, MP-I [131 Protection-based Arbitrary (Multi-)contributor Conflict resolution
protection

Hybrid planners (described in Section 5.2)

SNLP-UA MTC-based 0(n2) MTC-based 0(n2) Contributor protection Unambiguous ordering
SNLP-MTC MTC-based 0(n4) MTC-based 0(n4) Contributor protection Conflict resolution
SNLP-CON MTC-based O(n4) MTC-based 0(n4) Contributor protection None
McNONLIN-

MTC MTC-based 0(n4) MTC-based O(n4) Interval protection Conflict resolution
McNONLIN-

CON MTC-based 0(n4) MTC-based 0(n4) Interval protection None
TWEAK-visit MTC-based 0(n4) MTC-based 0(n4) Agenda popping None

4.2, Goal selection and establishment

As we noted in Section 3.4.4 the fundamental refinement operation used in refinement

planners is the so-called establishment operation which adds constraints to the plan so

that its minimal candidates satisfy all the PTCs. The establishment refinement involves
selecting a precondition (c, s) of the plan from the agenda (where c is a precondition

of a step s), and refining (i.e., adding constraints to) the partial plan such that in each

refinement some step t gives c, and c is not violated by any steps intervening between t
and s. When this is done, it is easy to see that all the minimal candidates of the resulting
plan will satisfy the PTC (CBS) (Section 3.4.2). Different refinements correspond to
different steps acting as contributors of c to s. Chapman [3] and Pednault [30] provide
theories of sound and complete establishment refinement. Pednault’s theory is more
general as it deals with actions containing conditional and quantified effects. I6 It is

possible to limit Refine-Plan to establishment refinements alone and still get a sound

and complete (in the sense of Definition 3) planner (using either Some-sol or All-sol

described earlier as solution constructors).
In Pednault’s theory, establishment of a condition c at a step s essentially involves

selecting some step s’ (either existing or new), and adding enough constraints to the plan

” And it also separates checking the truth of a proposition from planning to make that proposition true, see
1171.

Table 2

S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238 191

Implementation and properties of some common protection (bookkeeping) strategies in terms of Ref ine-Plan
framework

Protection Implementation Refine-Plan Property
method
Agenda

popping

When the precondition (p,s) is consid-
ered for establishment, remove it from
the agenda. Prune any partial plan whose
agenda is empty.
Add an IPC (s’, p, s) to the auxiliary con-
straints of the plan, whenever a precondition
(p, s) is established through the effects of 3’.

Will not consider the same precondition for
establishment more than once

Interval
protection

Contributor
protection

Multi-
contributor
protection

Add two IPCs (s’,p,s) and (s’, ‘p, s) to
the auxiliary constraints of the plan, when-
ever a precondition (p, S) is established
through the effects of s’.

Add the disjunctive IPC (s’, p. s)V (s”, p, s)
to the auxiliary constraints of the plan,
whenever a commitment is made to estab-
lish the precondition (p, s) with the effects
of either S’ or s”.

Same as above, hut facilitates earlier prun-
ing of plans that will ultimately necessitate
the reestablishment of a condition that has
already been considered for estabiishment.

In addition to the properties of agenda pop-
ping and interval protection, it also ensures
that the establishment refinement is system-
atic [24] (see Definition 1).

Avoids the excessive commitment to con-
tributors inherent in the interval protection
and contributor protection strategies. But
sacrifices systematicity [131.

such that (i) s’ 4 s, (ii) s’ causes c to be true, and (iii) c is not violated before s. To

ensure ii, we need to, in general, ensure the truth of certain additional conditions before

s’. Pednault calls these the causation preconditions of s’ with respect to c. To ensure
(iii), for every step s” of the plan, we need to either make s” come before s’, or make

s” come after s, or make s” necessarily preserve c. The last involves guaranteeing truth
of certain conditions before s”. Pednault calls these the preservation preconditions of
s” with respect to c. Causation and preservation preconditions are called the secondary
preconditions of the action. These become PTCs of the partial plan (for each secondary

precondition c of s, add the PTC (c@s)), and are also added to the agenda data structure
(to be considered by establishment refinement later).

Goal selection
The strategy used to select the particular precondition (c, s) to be established (called

the goal selection strategy), can be arbitrary, can depend on some ranking based on
precondition abstraction [19,351, and/or demand-driven (e.g. select a goal only when

it is not already necessarily true according to the modal truth criterion [3]). The
last strategy, called MTC-based goal selection, involves reasoning about the truth of a
condition in a partially-ordered plan, and can be intractable for general partial orderings
consisting of ADL [301 actions (see Table 1, as well as the discussion of pre-ordering
strategies in Section 4.5.1) .

4.3. Bookkeeping and protecting establishments

It is possible to do establishment refinement without the bookkeeping step. Chapman’s
TWEAK [3] is such a planner. However, such a planner is not guaranteed to respect

I92 S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

(a> (b)

(pi) M (+gi, +pl, +p2, +p3) i=1,2,3 Init:() Goal: (gl,g2,g3)
i

(OQgd)

al

c (QBal)

a2 -a1

J
(R@al)

a2+a3 --al

1

(Q@al)

a2-a3-%2 -a1

1
w&w,

a2+ar%Z--,a3 -.a1

Actions:

(Q.R)al (+G)
a2 (+Q,-R)

z ;;ij -Q)

03 +02+01
.

03 -~o2+01 .

(a) Considering the same candidate in more than
one branch

(b) Establishing the same condition
more than once

Fig. 8. Examples showing redundancy and looping in the TWEAK search space. In all the examples, the
operators are shown with preconditions on the right side, and effects on the left (with a “+” sign for add list
literals, and a “-‘I sign for delete list literak). The Init and Goal lists specify the problem. The example on
left is adopted from Minton et al. [27].

its previous establishment decisions while making new ones, and thus may have a high
degree of redundancy. Specifically such a planner may:

(1) wind up visiting the same candidate (potential solution) in more than one search
branch (in terms of our search space characterization, this means p > 1) , and

(2) wind up having to consider the same precondition (PTC) for establishment more
than once.

The examples in Fig. 8 illustrate both these behaviors on a planner that only uses
establishment refinement. Fig. 8(a) (originally from Minton et al. [271) shows that
a planner without any form of bookkeeping may find the same solution in multiple
different search branches. (That is, the candidate sets of the search nodes in different
branches overlap.) Specifically, the ground operator sequence 030201 belongs to the
candidate sets of nodes both in the left and right branches of the search tree. In Fig.
g(b), after having established a PTC (Q@ut), the planner works on the PTC (R@at). In
the resulting plan, the tirst FTC is no longer satisfied by any of the minimal candidates
(this is typically referred to as “clobbering” of the precondition (Q, at)). This means
that (Q@ut) needs to be established again. The bookkeeping step attempts to reduce
these types of redundancy. Table 2 summarizes the various bookkeeping strategies uses
by the existing planners.

At its simplest, the bookkeeping may be nothing more than removing each precondi-
tion from the agenda of the partial plan once it is considered for establishment. Since
the establishment refinement looks at all possible ways of establishing a condition at
the time it is considered, when the agenda of a partial plan is empty, it can be pruned
without loss of completeness. We will call this strategy the agenda popping strategy.
The hybrid planner TWEAK-visit in Table 1, a variant of TWEAK, uses this strategy.

S. Karnbhampati et al./Artijcial Intelligence 76 (1995) 167-238 193

A more active form of bookkeeping involves protecting previous establishments in
a partial plan, while making new refinements to it. In terms of Refine-Plan, such
protection strategies can be seen as posting IPCs on the partial plan to record the
establishment decisions. The intuition behind this is that the IPCs will constrain the
candidate set of the plan such that ground operator sequences corresponding to partial
plan ground linearizations that do not satisfy the PTC are automatically removed from
the candidate set (by making the corresponding ground linearizations unsafe). When

there are no safe ground linearizations left, the plan can be abandoned without loss of
completeness (even if its agenda is not empty).

The protection strategies used by classical partial-order planners come in two main va-
rieties: interval protection, I7 and contributor protection. ‘* They can both be represented
in terms of the interval preservation constraints.

Suppose the planner just established a condition c at step s with the help of the
effects of the step s’. For planners using interval protection (e.g., PEDESTAL [261))
the bookkeeping constraint requires that no candidate of the partial plan can have
p deleted between operators corresponding to s’ and s. It can thus be modeled in
terms of the interval preservation constraint (s’, p, s). Finally, for bookkeeping based on
contributor protection, the auxiliary constraint requires that no candidate of the partial
plan can have p either added or deleted between operators corresponding to s’ and s. l9
This contributor protection can be modeled in terms of the twin interval preservation
constraints (s’, p, s) and (s’, up, s). *’

While most planners use one or the other type of protection strategies exclusively for
all conditions, planners like NONLIN and O-Plan [5,40] post different bookkeeping
constraints for different types of conditions. Finally, the interval protections and contrib-
utor protections can also be generalized to allow for multiple contributors supporting a
given condition [131. In particular, a multiple-contributor protection may represent the
commitment that the precondition p of step s’ will be given by either st or ~2. Such a

protection can be represented as a disjunction of two IPCs: (st ,p, s’) v (~2, p, s’).

4.3.1. Contributor protections and systematic@
While all the bookkeeping strategies described above avoid considering the same

precondition for establishment more than once (and thus avoid the looping described
in Fig. 8(b)), only the contributor protection eliminates the redundancy of overlapping
candidate sets, by making establishment refinement systematic. Specifically, we have:

Proposition 24 (Systematicity of establishment with contributor protection [241) .
Establishment refinement with contributor protection is systematic in that partial plans
in different branches of the search tree will have non-overlapping candidate sets (thus
p= 1).

t7 Also called causal link protection, or protection intervals in the literature.
I8 Also called exhaustive causal link protection [131.
tg See [111 for a reconstruction of the ideas underlying goal protection strategies.
*O It is easy to see that contributor protection implies interval protection. What is not obvious at first glance
is that in the presence of the optional consistency check, it also implies the essence of agenda popping (in
that it will not allow the planner to consider the same precondition for establishment more than once).

194 s. Kambhampati et al./Artijcial Intelligence 76 (1995) 167-238

This property can be proven from the fact that contributor protections provide a way
of uniquely naming steps independent of the symbol table mapping (see [11,241). TO

understand this, consider the following partial plan (where the PTCs are omitted for
simplicity) :

(

{~0AJco}~{~0 4 ll,fl + tco},O,
N : {tl + ol,fo + start,t, + fin},

{(~l~P~~oo)~(~l,~P,~~)})

where the step tt is giving condition p to t,, the goal step. Suppose tt has a precondition
q. Suppose further that there are two operators 02 and 03 respectively in the domain
which can both provide the condition q. The establishment refinement generates two
partial plans:

(

{~0,~1J2&}~{~0 + t2,t2 + fl,fl 4 fco},0,
NI: {tl --t01,t2j02,to_fstart,t, -+fin},

{(~lrP,~~)~(~l,~P,~m)~(~2,q,~,),(~2,~q~~,)} i

(

{~0,tlJ2,tKJr{t0 4 t2,t2 + tl,tl 4 &},0,
N; : {tl + 01, t3 + 03, to -+ start, t, + fin},

{(~l,P,~oo),(~l,~P~~03),(~2rq,~co),(~2,~q,~oo)})

Consider step t2 in h/l. This can be identified independent of its name in the following
way:

The step which gives q to the step which in turn gives p to the dummy final
step.

An equivalent identification in terms of candidates is:

The last operator with an effect q to occur before the last operator with an effect
p in the candidate (ground operator sequence).

The contributor protections ensure that this operator is 02 in all the candidates of J$
and o3 in all the candidates of N2. Because of this, no candidate of Nl can ever be a
candidate of N2, thus ensuring systematicity of establishment refinement.

The discussion about bookkeeping strategies in this section demonstrates that system-
aticity should not be seen in isolation, but rather as part of a spectrum of methods for
reducing redundancy in the search space. We will return to this motif in Section 7.2.

4.4. Consistency check

The aim of the consistency check is to prune inconsistent partial plans (i.e., plans
with empty candidate sets) from the search space, thereby improving the performance of
the overall refinement search. (Thus, from the completeness point of view, consistency
check is an optional step.) Given the relation between the safe ground linearizations
and candidate sets (Proposition 21)) the consistency check can be done by ensuring that
each partial plan has at least one safe ground linearization. This requires checking the

S. Kambhumpati et al. /Art$icial Intelligence 76 (1995) 167-238 195

consistency of orderings, bindings and auxiliary constraints of the plan. Ordering con-
sistency can be checked in polynomial time, binding consistency is tractable for infinite
domain variables, but is intractable for finite domain variables. Finally, consistency with
respect to auxiliary constraints is also intractable for many common types of monotonic
auxiliary constraints (even for ground partial plans without any variables). Specifically,
we have:

Pmposition 25. Given a partial plan whose monotonic auxiliary constraints contain
interval preservation constraints, checking if there exists a safe ground linearization of
the plan is NP-hard.

This proposition directly follows from a result due to Smith [361, which shows that
checking whether there exists a conflict-free ground linearization of a partial plan with
interval preservation constraints is NP-hard.

4.5. Tractability refinements

Since, as observed above, the consistency check is NP-hard in general, each call to
Ref he-plan is also W-hard. It is of course possible to reduce the cost of refinement by
pushing the complexity into search space size. In general, when checking the satisfiability
of a set of constraints is intractable, we can still achieve polynomial consistency check
by refining the partial plans into a set of mutually exclusive and exhaustive constraint
sets such that the consistency of each of those refinements can be checked in polynomial
time.

This is the primary motivation behind tractability refinements. To understand the
type of refinements that need to be done, we note that the reason for the intractability
of consistency check is that checking whether a plan has a safe ground linearization
(Proposition 21) requires going through a potentially exponential number of ground
linearizations. Thus, to make it tractable, we could either restrict each partial plan to
have less than exponential ground linearizations, or make all the ground linearizations
be uniform with respect to their satisfaction of the IPCs (Definition 11)-e.g., either
all of them satisfy an IPC or none of them satisfy it. In the later case, the consistency
can be checked by looking at any one ground linearization. These ideas are realized in
two broad classes of tractability refinements: pre-ordering and co@ct resolution.

Note that an interesting property of partial plans in the presence of tractability refine-
ments is that eventually the refinements will produce a partial plan all of whose ground
linearizations are safe. This later property, coupled with the fact that all planners will
eventually consider each PTC for establishment once, ensures that any instantiation of
Refine-Plan which uses tractability refinements will eventually produce a partial plan
all of whose ground linearizations of a partial plan correspond to solutions.21 Thus,
they will be complete with respect to All-sol-based solution constructors (see Section
4.1).

*l This claim assumes the completeness of establishment refinements.

196 S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

4.5.1. Pre-ordeting refinements
Pre-ordering strategies aim to restrict the type of partial orderings in the plan such

that consistency with respect to monotonic auxiliary constraints can be checked without
explicitly enumerating all the ground linearizations. Two possible pre-ordering tech-
niques are total ordering and unambiguous ordering [271. Total ordering orders every
pair of steps in the plan, while unambiguous ordering orders a pair of steps only when
one of the steps has an effect c, and the other step either negates c or needs c as a
precondition (implying that the two steps may interact). Both of them guarantee that in
the refinements produced by them, either all ground linearizations will be safe or none
will be. 22 Thus, consistency can be checked in polynomial time by examining any one
ground linearization.

Pre-ordering techniques can also make other plan handling steps, such as MTC-
based goal selection and MTC-based solution constructor, tractable (cf. [11,271). For
example, unambiguous plans also allow polynomial check for necessary truth of any
condition in the plan. Polynomial necessary truth check can be useful in MTC-based
goal selection and termination tests. In fact, unambiguous plans were originally used in
UA [27] for this purpose.

4.5.2. ConJict resolution rejinements
Conflict resolution refines a given partial plan with the aim of compiling the monotonic

auxiliary constraints into the ordering and binding constraints. Specifically, the partial
plan is refined (by adding ordering, binding or secondary preconditions [301 to the
plan) until each possible violation of the auxiliary candidate constraint (called conflict)
is individually resolved.

An interval preservation constraint (Si, p, sj) threatened by a step s’ can possibly
come between si and sj and not preserve p (note from Definition 11 that this means
that at least one ground linearization of the plan will not satisfy the IPC). A conflict is
specified by an IPC and a threatening step.

Resolving the conflict involves either making s’ not intervene between si and sj
(by adding either the ordering s’ 4 Si or the ordering Sj 4 s’), or adding secondary
(preservation) preconditions of s’, required to make s’ preserve c [301, as PTCs to the
partial plan (and to the agenda). The ordering strategies for resolving conflicts are called
promotion and demotion, while the secondary precondition-based conflict resolution is
called confrontation. When all conflicts are resolved this way, the resulting refinements
will have the property that all their ground linearizations are safe (or will eventually
become safe in the case of confrontation). Thus, checking the partial plan consistency
will amount to checking for the existence of ground linearizations. This can be done by
checking ordering and binding consistency.

4.5.3. Deferring tractability refinements
Until now, we assumed that the only choice regarding tractability refinements is

to either use them, or not use them. However, since the tractability refinements are

** In the case of total ordering, this holds vacuously true since the plan has only one linearization.

S. Kambhumpati et al. /Artificial Intelligence 76 (1995) 167-238 197

optional, it is also possible to do some tractability refinements, while ignore or defer
other refinements. For example, we could pre-order some potentially conflicting steps,
while leaving others unordered. Similarly, we can resolve some conflicts, while leaving
others unresolved. Finally, we could either handle the unordered and/or unresolved
conflicts by the end of the search, or ignore them all together. Such strategies could be
useful in improving performance [34], since as we shall see in Section 6, tractability
refinements reduce the cost of consistency check at the expense of increased branching
factor (corresponding to additional refinements). This type of selective use of tractability
refinements does not in general affect soundness and completeness of the Refine-Plan.
There are two caveats however:

(1) If the tractability refinements are being ignored rather than being deferred, then
in general Refine-Plan is not guaranteed to produce a partial plan all of
whose ground linearizations are safe. This means that, for such instantiation
of Refine-Plan, completeness with respect to solution constructors based on
All-sol is not guaranteed (Section 4.1) .

(2) If the Refine-Plan uses a consistency check based only on orderings and
bindings, then it may wind up not detecting the inconsistency of a partial plan
(specifically, the deferred/ignored conflicts may be unresolvable). This means
that Refine-Plan could refine inconsistent plans, thereby unnecessarily increas-
ing the search space size in the worst case. In particular, Refine-Plan is not
guaranteed to be informed and consequently will not be sfrongly systematic (Def-
inition 7). (This may not necessarily have any impact on the performance of the
planner however, see Section 7.2.)

5. Specific instantiations of Refine-Plan

As we observed in the previous section, most existing partial-order planning algorithms
can be seen as instantiations of the Refine-Plan algorithm. Table 1 characterizes many
well-known algorithms in terms of the way they instantiate the different parts of the
Refine-Plan algorithm. To make things concrete, and to help in focused empirical
comparisons in the later sections, we will now provide more details about some spe-
cific instantiations of Refine-Plan. We will first discuss instantiations that correspond
to some well-known existing partial-order planners and then (in Section 5.2) discuss
some instantiations of Refine-Plan that have not been previously discussed in the
literature.

5.1. Existing planners

In this section we will discuss the instantiations of Refine-Plan corresponding to
four well-known planners: SNLP [241, McNONLIN [40], TWEAK [31 and UA [281.
We will start with the instantiation of Refine-Plan that corresponds to SNIP, called
Ref ine-Plan-SNLP, and describe the other three algorithms in terms of the incremental
changes that need to be made to the SNLP instantiation.

198 S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

5.1.1. The SNLP algorithm
The following describes the SNIP algorithm, first described in [241, as an instantia-

tion of Refine-Plan.

Algorithm Ref ine-Plan-SNLP((P : (T, 0, B, ST, ,C), A))

0. Termination: If A is empty, report success and stop.
1.1. Goal selection: Pick any (p, S& E A. Set A = A - (p, s&.
1.2. Establishment:

l Let &dd be an existing step, or some new step, that adds p before S,,,+ If no such
step exists or can be added then backtrack. Set T = TU{sadd}, 0 = OU{s~d+sneed},

and 23 = f3 U the set of variable bindings (causation preconditions) to make &dd
add p.

l For every step st such that sy comes between &,dd and Sneed and deletes p, make
two refinements, one in which 0 = 0 + (&,d 4 st) and the other in which
0=0+ (St 4 &jd).

l Finally, if &dd is new, then update the agenda and the set of nonmonotonic auxiliary
constraints:

A = A u {(p’, &dd) 1 VP’ E PreCond(&add)) 9

c = L u {(P’@sadd) 1 VP’ E preCOnd(&dd)}.

(For completeness, all ways of establishing the condition must be considered.)
1.3. Bookkeeping: Update the set of monotonic auxiliary constraints with two interval

preservation constraints:

2.b. Conflict resolution (tractability refinements):
l Threatkonjfict detection: A step t is said to be a threat for an interval preservation

constraint (s,p, s’) of the plan, if t E T, (s,p, s’) E L, such that t can possibly
come between s and s’, and the effect of t necessarily violates (does not preserve)

P.
l Threat resolution: For each threat consisting of step t and IPC (s,p, s’), make two

refinements, one in which 0 = O-l- (t -i s) and the other in which 0 = 0+ (s’ + t).
3. Consistency check: Prune the plan if it is either order-inconsistent (0 contains cycles)

or is binding-inconsistent (B contains both a codesignation and a non-codesignation
between a pair of variables).

4. Recursive invocation: Recursively invoke Ref ine-Plan-SNLP on the refined plan.

Note that the consistency check in the above algorithm checks order and binding
consistency, rather than the existence of safe ground linearizations (Section 3.5). How-
ever, as we discussed in Section 4.5, as long as we do complete conflict resolution with
respect to auxiliary constraints, every (remaining) ground linearization of the plan is

S. Kambhampati et al./Artifcial Intelligence 76 (1995) 167-238 199

guaranteed to be a safe ground linearization. Thus, consistency check can be done by
checking for the existence of ground linearizations (which is equivalent to ensuring that
ordering and binding constraints are consistent). 23

Most common implementations of SNLP, including the one we used in our experi-
ments (Section 8) avoid a separate consistency check in step 4 by compiling the order
and binding consistency checks into the establishment and conflict resolution refinements
(thus ensuring that none of the refinements produced in either step 2 or step 4 are order-
or binding-inconsistent). Further, some implementations of SNLP, such as the popular
one by Barrett and Weld [21, do conflict resolution one threat per iteration (invocation
of Refine-Plan). While this can also be cast as an instantiation of Refine-Plan
(which defers tractability refinements; Section 4.5.3) the implementation we used in
our experiments is faithful to the description above. 24

In writing the algorithm above, we made the implicit assumption that the domain
actions do not have conditional or quantified effects. The primary reason for making
this assumption is the desire to make the exposition simple, rather than any fundamental
limitation of the Refine-Plan algorithm. If the actions have conditional effects, the
establishment step and the conflict resolution step must consider adding causation and
preservation preconditions during establishment and threat resolution.

51.2. The McNONLIN algorithm
SNLP is a descendant of the NONLIN [40] planning algorithm. There are several

differences between NONLIN, which is a hierarchical task reduction planner, and SNLP,
which a non-hierarchical partial-order planner. One difference that is of interest with
respect to Refine-Plan is that while SNLP uses contributor protection, NONLIN used
interval protections.25 To illustrate this difference, we describe an algorithm called
McNONLIN that is inspired by the protection strategies of NONLIN.

1.3. Bookkeeping: Update auxiliary constraint with one interval preservation constraint:
L = L: + (s~~,J, p, rneed) to the auxiliary constraints.

Note that McNONLIN adds fewer auxiliary constraints per establishment than SNLP
does. This means that a search branch becomes inconsistent for SNLP earlier than it
does for McNONLIN. In depth-first regimes, this means that SNLP backtracks earlier
(and more often) than McNONLIN (the flip side being that McNONLIN will have
more redundancy in its search space than SNLP). 26

23 Notice that our description of conflict resolution avoids the positive threat negative threat terminology
commonly used in describing SNLP This is because each “causal link” used by SNLP naturally corresponds
to two independent IPCs, and the notion of threat need only be defined with respect to an IPC.
24 The SNLP implementation used by Peot and Smith in their conflict deferment experiments [341 corresponds
closely to our description above.
25 Actually, the original NONLIN used different types of protections based on the type of the precondition
being protected [40].
26 Note, once again, that by using IPCs to model the bookkeeping constraints, we avoid having to redefine
the notion of a threat.

200 S. Kambhampati et al. /Art$cial Intelligence 76 (1995) 167-238

The difference in the bookkeeping step also has an implicit effect on the conflict
resolution step, since conflict resolution is done with respect to each auxiliary con-
straint. Specifically, McNONLIN will generate fewer tractability (conflict resolution)
refinements than SNIP

5.1.3. The TWEAK algorithm
The primary difference between TWEAK and the two previous algorithms is that

TWEAK does not use any form of bookkeeping constraints. Thus it neither uses the
bookkeeping step, nor the conflict resolution step. Further, the standard formulation of the
TWEAK algorithm [31 uses the modal truth criterion (MTC) for goal selection as well
as termination. In particular, MTC is used to check if a given precondition (C, s) E A
is necessarily true in the plan. The goal selection step prefers conditions that are not yet
necessarily true, and the termination test succeeds as soon as all the preconditions are
necessarily true (i.e., there are no conditions that need to be established). The following
describes the steps of Refine-Plan where TWEAK differs from SNIP *’

0. Termination: If every precondition (c, s) E A is necessarily true according to the
modal truth criterion, report success and stop.

1.1. Goal selection: Pick any (p, s,,d) E A that is not necessarily true according to the
modal truth criterion. Do not remove (p, sneed) from A.

1.3. Bookkeeping: None.
2. Tractability refinement: None.

Notice that TWEAK never removes the condition from the agenda when it is consid-
ered for establishment. This is what allows it to work on the same precondition more
than once. Further, although TWEAK does not use any tractability refinements, it is still
complete for All-sol (of which the MTC-based termination is a special case), since it
continues to use the establishment refinement as long as there are preconditions of the
plan that are not necessarily correct (according to MTC).

5.1.4. The UA algorithm
Another partial-order planning algorithm that received a significant amount of analysis

is Minton et al’s UA planner [28]. UA is very similar to TWEAK (in that it uses no
bookkeeping constraints) and employs goal selection and termination strategies similar
to TWEAK. The only difference between UA and TWEAK is that UA uses a pre-
ordering tractability refinement. In particular, we can get the UA algorithm by replacing
step 2 of TWEAK by the following:

27 It is instructive to note that our formulation of TWEAK is not completely in correspondence with Chapman’s

[31 initial characterization of the algorithm. In particular, Chapman suggests that planning be done by inverting

the modal truth criterion. Among other things, this involves using the so-called “white-knight declobbering”
clause during establishment. However, by Chapman’s own admission, introducing new steps into the plan

as white-knights greatly increases the branching factor and can thus be very inefficient. Accordingly, in our
formulation, we do not allow new (white-knight) steps to be introduced during declobbering.

S. Kambhampati et al./Art@cial Intelligence 76 (1995) 167-238 201

2.a. Pre-ordering (tractability refinements):
l Interaction detection: A pair of steps st and s2 is said to be interacting with each

other if $1 and s2 are not ordered with respect to each other (i.e., neither st 4 s:!
nor s2 < st) and
. SI has a precondition p, and s2 either has an effect p or an effect lp or
. s2 has a precondition p, and st either has an effect p or an effect lp or
. SI has an effect p and s:! has an effect 1~.
Find every step s’ in the plan such that s’ interacts with S&t.

l Interaction resolution: For every step s’ that interacts with S&t, either add the
order s’ 4 &,,&j or the ordering S&d -X s’. (Both orderings need to be considered
for completeness.)

The pre-ordering refinement used by UA entails an interesting property for the partial
plans maintained by UA. All the partial plans produced at the end of UA’s pre-ordering
step are all unambiguous in the sense that every precondition (c, s) of the plan (where
c is a condition that needs to be true at step s) is either necessarily true (i.e., true in
all ground linearizations) or necessarily false (i.e., false in all ground linearizations) .
Because of this property, although UA uses MTC-based goal selection and termination,
the cost of interpreting MTC is smaller for the unambiguous partial plans maintained by
UA (O(n2), where IZ is the number of steps in the plan) than for the plans maintained
by TWEAK (0(n4)) (see Table 1) . In particular, necessary truth of a condition can be
determined by simply examining any one ground linearization of the plan.

5.2. Hybrid algorithms

In looking at the four existing partial-order planning algorithms as instantiations of
Ref ine+lan, we note that there are many opportunities for integrating the algorithms
to make hybrid planning algorithms. In this section, we discuss four such instantiations
of Refine-Plan, SNLP-MTC, McNONLIN-MTC, SNLP-UA and TWEAK-visit.

5.2.1. The SNLP-MTC, McNONLIN-MTC algorithms
The SNLP-MTC algorithm is similar to the SNLP algorithm, except that it uses

the goal selection and termination steps of TWEAK. Unlike TWEAK, which does
not remove the condition from the agenda once it is considered for establishment,
SNLP-MTC, like SNLP, does remove the condition from the agenda. In the same vein,
McNONLIN-MTC is similar to McNONLIN, except that it uses the goal selection and
termination steps of TWEAK.

5.2.2. The SNLP-UA algorithm
The SNLP-UA algorithm is similar to the SNLP-MTC algorithm except that it uses

a variation on the pre-ordering step of UA, instead of the conflict resolution step. It
thus borrows the bookkeeping step from SNLP, and the tractability refinement step
from UA. In particular, the following algorithm shows SNLP-UA as an instantiation of
Refine-Plan.

202 S. Kambhampati et al. /Art@cial Intelligence 76 (1995) 167-238

Algorithm Ref ine-Plan((P : (T, 0, t?, ST, .C), A))

0. Termination: Same as TWEAK.

1.1 Goal selection: Same as TWEAK.

1.2. Establishment: Same as SNLP
1.3. Bookkeeping: Same as SNLI?

2.a. Pre-ordering (tractability refinements):
l Interaction detection: (The following is the same as the step used by UA, except

for the underlined part). A pair of steps st and s2 is said to be interacting with

each other if st and s2 are not ordered with respect to each other (i.e., neither
sr 4 s2 nor s2 -+ sr) and

. SI has a precondition p, and s2 either has an effect p or an effect up or

. s2 has a precondition p, and sr either has an effect p or an effect up or

. SI has an effect p and s2 has an effect up or p. (Note that the underlined clause

is not present in the interaction detection step of UA.)
Find every step s’ in the plan such that s’ interacts with &dd.

l Interaction resolution: For every step s’ that interacts with &dd, either add the
order s’ 4 &dd or the ordering S&j -+ s’. (Both orderings need to be considered

for completeness.)

3. Consistency check: Prune the plan if it is either order-inconsistent (0 contains cycles)

or is binding-inconsistent (I3 contains both a codesignation and a non-codesignation
between a pair of variables), or it contains any auxiliary constraint with a conflict

(i.e., an IPC (s’,p, s) and a step s” which falls in between s’ and s and deletes (does
not preserve) p) .

The consistency check prunes the plan if any auxiliary constraint has a conflict. This is
reasonable since after the pre-ordering step, any remaining conflicts are unresolvable (by

promotion or demotion). 28 It also shows that not every planner which uses protection

strategies is required to use conflict resolution step.

Finally, note that unlike UA, the interaction detection step of SNIP-UA considers two
steps to be interacting even if they share the same effect. This is required to ensure that

all the auxiliary constraints are either necessarily safe or necessarily unsafe.

5.2.3. The TWEAK-visit algorithm

TWEAK-visit is the same as TWEAK except that it does not work on a precon-

dition that has already been considered for establishment. TWEAK-visit thus uses the

“agenda popping” strategy that we described in Section 4.3. The only difference between
TWEAK-visit and TWEAK algorithms is the goal selection step:

1. Goal selection: Pick any (p, sneed) E A that is not necessarily true according to the
modal truth criterion. Set A = A - (p, &@_I).

** When we consider actions with conditional effects, the consistency check must be changed to prune the
plan only when the conflict cannot be confronted [331, i.e., resolved by posting preservation preconditions as
additional preconditions of the plan.

S. Kambhampari et al. /Artificial Intelligence 76 (1995) 167-238 203

Specifically, unlike TWEAK which does not remove a condition from A once it is
considered for establishment, TWEAK-visit does remove it. It is instructive to note that
TWEAK-visit avoids the looping described in Fig. 8 (b) .

Since TWEAK-visit does not use tractability refinements and, unlike TWEAK, es-

tablishes each precondition at most once, depending on the order in which goals are
considered for establishment, it could be incomplete. The example below illustrates

this.

Example showing incompleteness of TWEAK-visit for MTC-based termination
Suppose the domain consists of two operators: 01 which has an effect p, and no

preconditions, and 02 which has effects q and lp, and no preconditions. Suppose we

start with an empty initial state, and want to achieve p and q in the goal state, and
suppose that the goal p is considered for establishment first and then the goal q.
TWEAK-visit establishes p first and then q, then the only partial plan in the search
space will have 01 and 02 unordered. The ground linearization 0201 is a solution, while

0~02 is not a solution. Thus, the MTC-based solution constructor does not terminate on
this plan, and TWEAK-visit does not allow any further establishment refinements since
both the goals have been considered for establishment once.

Of course, TWEAK-visit could be made complete by replacing the MTC-based ter-
mination check with one that uses an implementation of Some-sol (Definition 22).

5.2.4. The SNLP-CON, McNONLIN-CON algorithms
The SNLP-CON algorithm is similar to the SNLP-MTC algorithm except that it does

not use any tractability refinements, and uses a consistency check that explicitly checks

for existence of safe ground linearizations (see Section 3.5). Specifically, the tractability
refinement and consistency checks of SNLP-CON will be: 29

2.b. Conflict resolution (tractability refinement): None.
3. Consistency check: Prune the partial plan if it has no safe ground linearizations.

In the same vein, the McNONLIN-CON algorithm is similar to McNONLIN-MTC,
except that it does not use any tractability refinements, and uses a consistency check

that prunes any partial plan that has no safe ground linearizations.30

Since SNLP-CON and McNONLIN-CON ignore tractability refinements, and do not
consider a precondition for establishment more than once, as discussed in Sections 4.5.3

29 Perceptive readers might note a close relation between the operation of SNLP-CON and the idea of conflict

deferment described in [341. In particular, in comparison to SNLP and SNLP-MTC, SNLP-CON can be seen

as deferring all threats. However, unlike the implementations of SNLP used in 1341, SNLP-CON uses a full

consistency check, and thus will never refine an inconsistent plan. See Section 9.

3o There are several ways of implementing these full consistency checks. One is to enumerate all the ground

linearizations, and check them one by one to see if any of them arc safe with respect to all auxiliary constraints.

Another, which we used in our implementations of SNLP-CON and McNONLIN-CON, is to simulate the

conflict resolution step on the given plan P, and prune P if the conflict resolution step produces no refinements

that are order- and binding-consistent. The difference between this use of conflict resolution and its normal

use is that in the latter we replace P with the refinements generated by P (thereby increasing the branching
factor),

204 S. Kambhampati et al. /Art@cial Intelligence 76 (199.5) 167-238

and 4.1, they are not guaranteed to be complete with respect to any All-sol solution
constructor. As given here, they use MTC-based termination (which is an implementation
of All-sol), and thus could be incomplete. This can be illustrated by the same example
we used to illustrate the incompleteness of TWEAK-visit for an MTC-based termination
check. Both SNLP-CON and McNONLIN-CON can of course be made complete by
replacing the termination condition with one based on Some-sol (Definition 22).

6. Modeling and analysis of design tradeoffs

We will start by developing two complementary models for the size of the search
space explored by Refine-Plan in a breadth-first search regime. Recall, from Eq. (1)
in Section 2 that the search space size of a refinement search is related by the equation:

lFdl = lx1 x Pd = O(bd).
Kd

The search space size of any instantiation of Refine-Plan can be estimated with
the help of the above equation. In the context of Refine-Plan, K: is the candidate
space of the problem (i.e., the candidate set of the initial null plan, Q, with which
planning is initiated). b is the average branching factor of the search tree and d is the
average depth of the search tree. Fd is the dth-level fringe of the search tree explored
by Refine-Plan. Kd is the average size of the candidate sets of the partial plans in
the dth-level fringe, and Pd is the redundancy factor, i.e., the average number of partial
plans on the fringe whose candidate sets contain a given candidate in lc.

A minor technical problem in adapting this equation to planning is that according
to Definition 15, both candidate space and candidate sets can have infinite cardinalities
even for finite domains. However, if we restrict our attention to planning domains with
finite state spaces, solvable problems from those domains, and minimal solutions for
those problems, then it is possible to construct finite versions of both the candidate
space and candidate set. Given a planning problem instance P, let 2, be the length of
the longest ground operator sequence that is a minimal solution of P (since the plan
has a finite state space, all minimal solutions will be finite in length). Without loss of
generality, we can now define Ic to be the set of all ground operator sequences of up
to length I,. Similarly, we can redefine the candidate set of a partial plan to consist of
only the subset of its candidates that are not longer than I,.

If TV is the average per-invocation cost of Refine-Plan algorithm, then the total
time complexity of the Refine-Plan algorithm is:

Trp X IFdl x O(bd x TV) M 1x1 X Pd X TV

Kd ’

We next analyze the complexity of Refine-Plan by fleshing out the parameters b, d
and TV. In this analysis, let P denote the maximum number of preconditions or effects
for a single step, let N denote the total number of operators in an optimal solution plan.

S. Kambhmnpati et al. /Artijcial Intelligence 76 (1995) 167-238 20.5

Branching factors
To expand the average branching factor b, we first define the following additional

parameters. Let b, be the number of successors generated by step 1.2. of Refine-Plan.
This parameter is called the establishment branching factor, which can be further split
into several parameters. We use b,, for the number of new operators found by step 1.2
for achieving (c, s), and bold for the number of existing operators found by step 1 for
achieving (c, s). Given a precondition (c, S) E A being established, for each establisher
s’ new or existing, step 1.2 makes sure that c persists from S’ to S, by imposing additional
constraints. The alternative choices in these constraints give rise to more successor plans.
Let b, be the number of successors generated corresponding to each new establisher s’.
Then the establishment branching factor is

b, = (b,, + bold) x 6,.

Another contributor to the average branching factor is step 2, which applies additional
refinements to make plan handling tractable. This step includes pre-ordering and conflict
resolution, both of which involve imposing more constraints on the plan. For each plan
P generated by step 1, let bt be the number of successor plans generated from P by
step 2. bt is called the tractability branching factor.

Putting both the components of the branching factor together, the average branching
factor is

Search depth
Next, we consider the average search depth d. Let N be the length (in number of

steps) of the solution, and P be the average number of preconditions per operator. Then,
in the solution, there are N x P preconditions (tuples (c, s), where c is a precondition
of the operator corresponding to step s). Let f be the fraction of the N x P pairs chosen
by step 1.1. Let u be the total number of times any fixed pair (c, s) is chosen by step 1.1
(Note that CJ could be greater than one for planners that do not employ any bookkeeping
steps.) Then we have

d=NxPxfxu.

Per-invocation cost of Ref ine-Plan
Trp itself can be decomposed into four main components:

where Test, is the establishment cost (including the cost of selecting the open goal to
work on), TSOt is the cost of the solution constructor, T Vact is the cost of tractability
refinement, and Tcons is the cost of the consistency check.

A summary of all the parameters used in the complexity model above can be found
in Table 3. Armed with this model of the search space size and refinement cost, we will
now look at the effect of the various ways of instantiating each step of the Refine-Plan
algorithm on the search space size and the cost of refinement.

206 S. Kambhampati et al./Art@cial Intelligence 76 (1995) 167-238

6.I. Tradeoffs offered by the solution constructor

Stronger solution constructors allow the search to end earlier, reducing the average
depth of the search, and thereby the size of the explored search space. In terms of
candidate space view, stronger solution constructors lead to larger Q at the termination
fringe. However, at the same time they increase the cost of refinement TV (specifically
the TsOl factor).

6.2. Tradeoffs offered by goal selection

Use of more sophisticated goal selection strategies increases the refinement cost
(specifically the Test factor). However, they can also bring about substantial reduc-
tions in the size of the explored search space size. For example, demand-driven goal
selection strategies such as MTC-based goal selection take a least-commitment approach
and establish a goal only when it is not necessarily true. This could either help in ter-
minating before all goals are explicitly considered for establishment, or allowing the
planner to work on them again if and when they are no longer necessarily true in later
stages of the search. Either way, this could reduce the average establishment branching
factor b,, the average depth and consequently the search space size. 3’

4.3. Tradeoffs offered by bookkeeping

The addition of bookkeeping techniques tend to reduce the redundancy factor Pd, and
the average candidate set size Kd (since fewer ground linearizations will be safe with
the added auxiliary constraints). In particular, as we observed earlier, use of contributor
protections makes the search systematic, eliminating all the redundancy in the search
space and making Pd equal to 1 [11,241. This tends to reduce the fringe size, [.&I.
Bookkeeping constraints do however tend to increase the cost of consistency check. In
particular, checking the consistency of a partial plan containing interval preservation
constraints is NP-hard even for ground plans in TWEAK representation (cf. [361) . In
terms of the b-d view of the fringe size, use of bookkeeping techniques tends to reduce
the branching factor (assuming the optional consistency check is being used) while
keeping the average depth of the search constant.

4.4. Tradeoffs offered by the consistency check

As mentioned earlier, the motivation behind consistency check is to avoid refining
inconsistent plans (or the plans with empty candidate sets). Refining inconsistent plans
is a useless activity and populates the search fringe with plans with empty candidate

” It is important to note the difference between demand-driven goal selection and modal truth criterion. Since

modal truth criterion becomes NP-hard for plans containing actions with conditional effects, it looks as if

demand-driven goal selection also becomes intractable for such plans. This is not the case since one does not

have to use a necessary and sufjicient modal truth criterion for implementing demand-driven goal selection.

Since the order of goal selection does not affect completeness, any tractable approximation to the modal truth

criterion will be enough.

Table 3

S. Kambhumpati et al. /ArtiJicial Intelligence 76 (1995) 167-238 207

Summary of the parameters used in describing the complexity of Refine-Plan

Size of the candidate space (i.e., size of the candidate set of “null” plan Pe)
Average size of the candidate sets of the nodes (partial plans) at dth-level fringe
Average number of times each candidate (ground operator sequences) occurs in the d&level fringe
Number of nodes (partial plans) at dth-level fringe

Average branching factor
Average search depth
Average number of new establishers for a precondition
Average number of existing (or old) establishers for a precondition
Average number of establishers for a precondition
Successors after pre-ordering and conflict resolution
Successors generated by substeps (i) to (iii) in step 1.2 of the Refine-Plan algorithm

Per-invocation cost of Refine-Plan
Cost of establishment refinement
Cost of tractability refinement
Cost of consistency check
Cost of solution constructor (termination check)

Total number of operators in a plan
Total number of preconditions per operator
Fraction of the preconditions of the plan ((c, s)) considered by the establishment refinement
Average number of times a precondition ((c, s)) is considered by the establishment refinement
(visited)

sets, driving down Ed. The stronger the consistency check, the smaller this reduction. In
particular, if the planner uses a sound and complete consistency check that is capable of
identifying every inconsistent plan, then the average candidate set Ed is guaranteed to be

greater than or equal to 1. Combined with a systematic search, this will guarantee that

the fringe size of the search will never be greater than the size of the candidate space

[ICI. Such a search is called a strong systematic search (Definition 7) In terms of the
refinement cost, stronger consistency checks tend to be costlier, thereby driving up the

refinement cost (in particular TsOt). As mentioned earlier, sound and complete consis-
tency check is NP-hard even for ground plans, if the plans contain interval preservation

constraints.

6.5. Tradeoffs offered by tractability refinements

The primary motivation for tractability refinements, whether pre-ordering or conflict
resolution, is to make the consistency check tractable. They thus primarily reduce the
T ems component of refinement cost. In the case of pre-ordering refinements, they also
tend to reduce the cost of goal selection and solution construction, especially when

the latter are based on MTC (thereby reducing the T&I and Test components) [111. In
terms of search space size, tractability refinements further refine the plans coming out

of the establishment stage, increasing the b, component of the branching factor. While
conflict resolution strategies introduce orderings between steps based both on the static
description of the steps (such as their effects and preconditions) and the role played

208 S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

by them in the current partial plan, the pre-ordering strategies consider only the static

description of the steps. Thus, the br increase is typically higher for pre-ordering than

for conflict resolution strategies.

7. Predicting performance

In the previous section, we discussed the way design choices in instantiating individual

steps of the Refine-Plan algorithm affect the search space size and the refinement cost.
An important insight given by this discussion is that most individual design choices

(such as goal selection, termination, bookkeeping, tractability refinement) can be seen

as trading the complexity between search space size and refinement cost. As such,

we will not expect any universally valid dominance results among them, Rather, the

performance will depend upon domain-dependent factors such as solution density.
Further, the performance depends on the overall effect of the tradeoffs provided by

the specific design choices. While the discussion above shows how individual design
choices affect the search space size in isolation, it does not account for the interaction

between the choices made in two separate steps. Given this, an obvious question that

arises is: Can we predict which instantiation of Ref ine-Plan will per$onn the best in
a given domain. Of particular interest will be any predictions that are made in terms of
easily measurable features of the domain. This is the question that we shall address in

this section.
Given the many possible dimensions of variation of Refine-Plan, we would like

to focus our attention on those dimensions that account for the prominent differences
between existing planners. From our discussion in Section 5 (as well as the character-
ization of the various planners in Table 1), we note that two of the most prominent

differences among the various planning strategies are the specific bookkeeping strategies

employed by them, and the specific types of tractability refinements they use. In this
section, we will attempt to predict the effect of these differences on the performance

on practical problems. To make our exposition simpler, we will restrict our attention to

propositional planning domains.

7.1. Tractability rejnements

Our discussion about design tradeoffs shows that tractability refinements aim to reduce

the cost of consistency check by increasing the search space size. The more eager the

tractability refinement, the larger the bt factor, and the larger the search space increase.
For the case of breadth-first search regimes, with other factors of b kept constant,
the increase in bt will increase the search space size exponentially. Although tractability

refinements aim to reduce the cost of the consistency check, unless this relative reduction
is also exponential, we will not expect stronger tractability refinements to improve
performance.

However, under certain circumstances, it is possible for tractability refinements to have
interactions with other parts of the planner. In particular, while increase in bt should

in general increase b, the additional linearization of the plan done at the tractability
refinement stage may sometimes wind up reducing the number of establishment refine-

S. Kambhampati et al./Artificial Intelligence 76 (1995) 167-238 209

ments for the conditions considered in the later stages. In particular, when the plan is
more linear, there are fewer existing steps that can act as establishers for a condition.

This reduces bold. Furthermore, when the plan is more linear, there are fewer steps in

the plan that can violate an establishment. Thus the number of declobbering choices for

each establishment (i.e., the number of ways of preserving the precondition that is just

established) will also be lower. This reduces b,. Since be is proportional to the product

of bold and bc, it also reduces b,. The more eager the tractability refinement, the more

linear the partial plan, and the higher the reduction in bold.
The reduction in be could, sometimes, offset the increase in bt, reducing the overall

branching factor in the presence of tractability refinements. Whether or not this will

happen in practice depends on the features of the domain, as well as the specific order

in which goals are considered for establishment during planning. In particular, two
(static) characteristics of a domain that are relevant are:

(i) the average number of actions that can establish a precondition or top-level goal,

and

(ii) the average number of actions that can delete a precondition or top-level goal,
in a partial plan.

We will call these two factors #,,t and #&b respectively.

We will call a goal condition or a precondition c a high-frequency condition if it has

very high k&t and #&, factors. Since high-frequency conditions have many potential
establishers and clobberers, establishment refinement on such conditions has potentially

high bold and b, factors, and can thus benefit from the interaction between b, and be.
Moreover, when the domain contains only a few high-frequency conditions, the order in

which high-frequency conditions are established relative to the other preconditions will
guide the interaction between the bt and be factors.

In summary, given two instantiations Z, and ZC of Refine-Plan that differ only in the

type of tractability refinements they employ, such that Ze uses a more eager tractability

refinement than I, (i.e., the bt factor of Z, is greater than that of Z,), we can make
the following predictions about the relative performance of Z, and Z, on a population of
problems from a domain D.

Hypothesis 1. If none of the conditions in the domain are high-frequency conditions,
then there will be no interaction between bt and be, and since Z, has a lower bt than Ze,
it will have a smaller search space than Z,. It will also have a lower time complexity as
long as the per-node cost of Z, is not exponentially lower than that of Z,.

Hypothesis 2. If all (or most) of the conditions in the domain are high-frequency

conditions (i.e., &St >> 1 and #crab > 1 for all conditions), then Z, may have a smaller
search space than Z, because of the interaction between bt and be. Thus, Z, could perform
better than I,.

Hypothesis 3. If only some of the conditions in the domain are high-frequency con-

ditions, and the goal selection strategy is such that the high-frequency conditions are
considered for establishment earlier, then Ze may once again have a smaller search space
than I,, and thus could perform better than Z,.

210 S. Kambhampati et al./Art$icial Intelligence 76 (1995) 167-238

7.2. Bookkeeping (protection) strategies

Bookkeeping strategies by themselves do not increase the search space size, as they
do not contribute to the increase of the branching factor. The difference between a

planner employing a bookkeeping strategy and one that does not employ a bookkeeping

strategy, is that the partial plans in the former have more constraints than those of the
latter. Thus, the partial plans in the former can become inconsistent earlier than those in
the latter. This can lead to increased backtracking. The flip side is that the size of the

overall search space is smaller for planners with protection strategies than for planners

without protection strategies (as bookkeeping constraints tend to reduce redundancy in

the search space).

Thus, protection strategies have two possible effects on the size of the explored search
space [121:

l They reduce the redundancy in the search space and thus make the overall search

space smaller.

l They represent higher commitment to establishment choices, and thus can lead to
higher backtracking during search.

The combined effect of these two factors on the size of the explored search space
depends on the type of search strategy used by the planner, the type of conditions in the

domain, as well as the apparent solution density of the planning problem.

For problems with low solution densities, the planners will be forced to look at a
large fraction of their search space, and thus the size of the overall search space will
have an effect on the performance of the planner. In particular, planners using strong

protection strategies will ensure smaller overall search spaces, and thus lower planning

cost.
For problems with high solution densities, the size of the overall search space has

no appreciable correlation with the size of the explored search space, and thus we do
not expect redundancy reduction afforded by protection strategies to lead to improved
performance. On the other hand, the increased commitment to establishment choices

entailed by protection strategies can lead to increased backtracking (see [12,13]),
which can degrade performance (this effect is more apparent in depth-first search

regimes).
Solution density has a lower correlation with performance in the case of breadth-first

search regimes, which search all branches of the search space. For these, the effect of
protection strategies will be felt in terms of the branching factor reduction. Specifically,

planners with stronger protection strategies will prune more partial plans and will thus

have smaller average branching factor than weaker protection strategies. This should

improve performance, unless the cost of maintaining consistency of the bookkeeping
constraints posted by stronger protection strategies is high.

The protection strategies also have interactions with the other steps of the Refine-
Plan algorithm, and their effect on performance can sometimes be modified by the
combination. For example, the harmful effects of increased commitment to Specific

establishers can be overcome to some extent by using goal selection strategies such
as those based on modal truth criterion which take a demand-driven approach to goal
establishment (by working only on goals that are not necessarily true), or by using

S. Kambhmnpati et al. /Artificial Intelligence 76 (1995) 167-238 211

precondition abstraction strategies that work on most-constrained goals (i.e., goals with
fewest establishers) first. In both cases, there is a smaller amount of branching in the

search tree, and thus the chances of committing to a wrong establishment choice are
lower.

Similarly, although protection strategies themselves do not increase the search space

size, they do indirectly determine the amount of refinement done at the tractabil-
ity refinement step. For example, planners using stronger protection strategies will

be posting more bookkeeping constraints, and thus have to do more pre-ordering

or conflict resolution refinements, leading to higher branching factors. (It is impor-

tant to note however that this increase in search space size is not a necessary side-

effect of protection strategies since tractability refinements are an optional step in
Refine-Plan.)

Let us summarize and restrict our attention to the first-order effect of protection

strategies on performance: given two instances of Refine-Plan, Zsp and Znp, which

differ only in their use of bookkeeping strategies, such that &r uses stronger protections
compared to I,,,,, we can make the following predictions on the relative performance of

Is,, and I,,,, on a populations of problems from a domain D:

Hypothesis 4. If the domain has a high solution density, then there will be no ap-

preciable difference in the relative performance of Zsp and lop, unless there is a high
probability that the planner will commit to wrong establishments in the beginning of the
search (this could happen, for example, when the domain contains many high-frequency
conditions [121).

Hypothesis 5. If the domain has a low solution density, the planners are forced to

explore a large part of their search space. Thus, the redundancy in the search space will

become a factor affecting the performance of the planner. Specifically, the size of the
search space explored by Is,, could be smaller than that of Znp. Thus, Zsp could perform
better than Z”r.

Hypothesis 6. For breadth-first search regimes, stronger protection strategies reduce
the overall branching factor and can reduce the average size of the search space size

explored. Thus, Zsp can once again perform better than Znp.

8. Empirical evaluation of performance predictions

In this section we will discuss the results of a series of empirical studies with several
instantiations of Refine-Plan. The aim of the empirical study is two-fold:

l to provide experimental support for our hypotheses regarding the effect of tractabil-
ity refinements and bookkeeping constraints;

l to demonstrate that the complexity model developed in the previous section helps
in explaining the empirical performance.

The following sections briefly describe the planning domains that we used in our
experiments, and the experiments themselves. Before we go into those details however,

212 S. Kambhumpati et al./Artificial Intelligence 76 (1995) 167-238

a few comments about the experimental methodology are in order. All the planners used
in our experiments are described as instantiations of Refine-Plan in Section 5 (and
summarized in Table 1) . We implemented them all as instantiations of the Refine-Plan
algorithm, thereby allowing sharing of many common routines, and facilitating a fair
comparison. Moreover, when evaluating the hypotheses about a specific component of
Refine-Plan, we made sure to compare only the planners that correspond to instances
of Refine-Plan that are equivalent in all other components. This type of normal-
ization was a direct result of the unified view of partial-order planners provided by
Refine-Plan.

In many of the experiments, the planners were tested on a random population of
problems from several artificial domains. Unless otherwise stated, all the experiments
used a breadth-first search. To account for extraneous variations, all the plots were
made with averages over 25 runs. All the experiments were run with a per-problem
CPU time limit of 60 seconds. This meant that in some runs the planners were aborted
before solving the problem. In all cases, we have provided plots showing the number of
unsolved problems corresponding to each data point. Since the final averages were taken
over both solved and unsolved problems in a set, some of the averages underestimate
the actual numbers for those planners that failed to solve many problems within the
resource limit. This point should be kept in mind in viewing the various performance
plots presented in this section.

Finally, most of the experiments described in the following sections have been val-
idated by running them on two largely independent implementations (see [151 and
[2 1]) . This lends us confidence that the results are not dependent on any idiosyncrasies
of a particular implementation. The final data reported in this paper correspond to runs
on a SUN Spare 20 with 96 megabytes of main memory running Lucid Commonlisp.
The code and the data for replicating our experiments as well as all the raw data
collected from the experiments are available via the Internet. 32

8.1. Experimental domains

In our experiments, we concentrated on artificial domains as they provide for a
controlled setting to evaluate our hypotheses about performance tradeoffs. Specifically,
we experimented with two families of artificial domains.

The first family of domains that we considered is the ART-#,,t-#ctot, family. These
domains were designed to provide a way of controlling the &St and #&, factors of the
preconditions and goals in the domain. Specifically, each goal can be achieved by a
subplan of two steps in a linear sequence. Each step either achieves a goal condition
or a precondition of a later step. The preconditions of the first step always hold in the
initial state. In addition to this basic structure, we add extra operator effects to change
the +&St and &lob factors of the conditions.

An example of an operator schema from ART-#&&,, domain is shown below. Let
n be the total number of goals to be achieved. Let the goal state be G = {Gi, i =
O,l,... , n - 1). Assume that the initial state I is {Zi, i = 0, 1, . . . , n - 1). Each goal

32From ftp://ftp.isi.edu/sims/code/refine-plan.tar.2.

S. Kambhampati et al. /Art$icial Intelligence 76 (1995) 167-238 213

Gi can be achieved by operator A,z, and the precondition Pi for Ai can be achieved by
operator Ai,. The average #est factor is controlled by a number n+ (where n+ < n), and

the average #&b factor by a number n- (where it- < n). For #est, it is assumed that

for the first n+ operators in a solution plan, each operator achieves a precondition of an

operator for the next subgoal. In a similar manner, for #&b only the first n_ operators
interact, and each operator deletes a precondition of another operator for a previous

subgoal.

(defstep :action Ail
:precond Ii

:add {Pi} U {Ii+, if i < n+}

:equals {}
:delete {Zi-t, if 0 < i < n-}

(defstep :action An
:precond Pi
:add {Gi} U {Pi+, if i < h+}
:equals {}
:delete {Pi-l, if 0 < i < n_}

The second domain that we experimented with, called ART-MD-RD, is given be-
low:

l For even i:

(defstep :action Ai
:precond Ii, he
:add Gi, hf
:equals {}

:delete {Zj 1 j < i} U {he})

l For odd i:

(defstep :action Ai

:precond Ii, hf
:add Gi, he
:equals {}

:delete {Zj 1 j < i} U {hf})

Unlike the ART-#,,r-#,t,b domains, where all the conditions have the roughly same
average #est and #cl& factors, ART-MD-m domain contains two high-frequency condi-

tions, e.g. hf and he, with the rest being low-frequency conditions (e.g. 4 and Gi) . Thus,
the order in which the goals are established has a significant impact on the complexity of

the search as well as the relative performance of the various planners in ART-MD-RD.
In particular, the performance of a planner depends to a large extent on whether and
when the planner explicitly considers hf and he for establishment.

A third domain that we used in some of our experiments is ART-MD, which is a

214 S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

variant of ART-MD-RD, where the actions do not have hf and he in their preconditions
and effects. (ART-MD is identical to the D’S’ domain used in Barrett and Weld’s

experiments [21.)

8.2. Evaluation of the hypotheses about tractability refinements

To evaluate our hypotheses about the effect of tractability refinements on performance
(see Hypotheses 1, 2 and 3 in Section 7.1) , we conducted two separate experiments: one

with the problems from the ART-#est-#clob domain and the other with the problems from
the ART-MD-RD domain. The first one helps us evaluate our hypotheses in domains

where all the preconditions have uniform #est and #&b factors, while the second one
helps us evaluate our hypotheses in domains where the preconditions have nonuniform

%st and #clob factors. We describe both in turn.

8.2.1. Experiments in the ART-#,,-#,l,b domain
In our first experiment, we used problems from the ART-#est-#cl,,b domain and simul-

taneously varied the #est and #cl& factors, such that the #cl&, factor increased from 0 to
9 and the &St factor decreased from 9 to 0, while the sum of the two factors remained
a constant 9. The number of goals in each problem instance was 10. We compared the

relative performance of three planners-TWEAK, SNLP-MTC and McNONLIN-MTC-

which use three different tractability refinement strategies. For any pair of (#est,#clob)

values, we ran the planners on 25 randomly generated problems. The plots in Figs. 9
and 10 show the averages of various features of the search space and refinement cost
model.

From Section 5, we know that TWEAK does not do any tractability refinement

(thus, its bt = 1) while SNLP-MTC and McNONLIN-MTC do conflict-resolution-based

tractability refinement. We also know that SNLP-MTC which does conflict resolution
with respect to contributor protections, corresponds to a more eager tractability refine-
ment strategy than McNONLIN-MTC which does conflict resolution with respect to

interval protection. Thus, we have:

b, (SNLP-MTC) > bt (McNONLIN-MTC) 2 b,(TWEAK).

Based on Hypothesis 2 regarding tractability refinement, we expect that SNLP-MTC
and McNONLIN-MTC should perform better than TWEAK when the domain contains
high-frequency conditions (i.e., conditions with high #est and #&,b factors). With respect

to our current experiment in the ART-#est-#clob domain, this happens when &St x #&b.
Since we are keeping #est + #&b constant at 9, we expect that this corresponds to the

region in the middle of the graph around #cl& = 4. In these instances, we expect that
the planners, SNLP-MTC and McNONLIN-MTC, which are eager to use tractability
refinements, will perform better than TWEAK, which uses no tractability refinements.

Fig. 9 compares a variety of factors of the search space size and refinement cost
for TWEAK, SNLP-MTC and McNONLIN-MTC. From the plots of average CPU time

and number of unsolved problems (Fig. 9(a) and Fig. 9(b) respectively), we see that

TWEAK’s performance deteriorates significantly around points with %t M &lot, W 4.
We also note that around these middle points both SNLP-MTC and McNONLIN-MTC

S, Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238 215

0 12 3 4 5 6 7 8 9
#ClOh l4kE.t = 9 #ClOb)

(a) Average CPU time

0 12 3 4 5 6 7 8 9
tclob ,XeSt = 9 ?klob,

(e) Avg. b

(b) # Unsolved Problems

(d) Avg. # nodes

” 12 3 4 5 6 7 8 9
tclob (test = 9 - XClOb,

(f) Avg. d

Fig. 9. Plots comparing relative performance of normalized planners in the ART-#.&&,~ domain, where

Gt + ?&I& is kept constant at 9.

216 S. Katnbhampati et al. /Ar@ial Intelligence 76 (1995) 167-238

Fig. 10. Analyzing the branching factors of the planners in the ART-#est-#c~o~ domain, where #Iest + #clob is
kept constant at 9.

perform much better than TWEAK. This conforms to Hypothesis 2. Using a signed-rank
test [71 on CPU times, these results are statistically significant at #&b = 4 with p-values
of 0.01 and 0.008,33 respectively.

To show that this observed performance differential is correlated with the interplay
between the bt and b, factors, we compare the average bt and be factors of the three
planners in Fig. 10. We note that although bt is higher for McNONLIN-MTC and SNLP-
MTC as expected, the be factor varies according to our hypothesis. In particular, we
note that around the region of #&b M 4, where all the conditions in the domain become
high-frequency conditions, TWEAK’s b, attains its maximum. At the same time, SNLP-
MTC and McNONLIN-MTC benefit from the additional linearization provided by their
eager tractability refinements, and thus show significantly lower b, (and consequently
have lower b, despite higher b,).

Thus, this experiment supports our prediction that tractability refinements are useful
when both the establishment and tractability branching factors are high enough. One
might still ask what would happen if only one of #est and #cl& is high and the other

is low. Since there are no high-frequency conditions in such domains, according to
Hypothesis 1, we would not expect any interplay between bt and be and thus the
performance of SNLP-MTC and McNONLIN-MTC should be either worse than or
equal to that of TWEAK.

The plots in Figs. 9(a) and 9(b) validate this prediction. At both extreme points
when only one of #,,t and #cl&, is high, planners with strong tractability constraints do
not have any notable performance advantage. At both ends McNONLIN-MTC performs
similarly to TWEAK, and when #est is largest, SNLP-MTC performs much worse than
TWEAK. These phenomena fit exactly with our prediction. When #cl& = 9 and #&St =
0, the tractability constraints do not have any additional effect on the establishment

33 The signed-rank test generates an upper bound on what is called the p-value. The p-value is the probability
that conclusions drawn from the data are in error. The lower the p-value, the stronger the evidence that the
hypotheses are correct. In all of these comparisons the significance level is taken to be 0.05. When the p-value
is below the significance level the results are considered to be statistically significant.

S. Kambhampari et al. /Artificial Inlelligence 76 (1995) 167-238 217

branching factor be, since b, is already at its lowest value. Thus, all three planners have
the same performance. On the other hand, when #est = 9 and #&,b = 0, SNLP-MTC
generates more refinements in each step than TWEAK due to its more eager tractability
refinement strategy, but the reduction in its establishment branching factor does not
justify the increase in tractability branching factor (see plots in Fig. 10). Thus, at this
point, SNLP-MTC performs worse than TWEAK.

Importance of normalization
One might ask why we used the non-standard planners SNLP-MTC and McNONLIN-

MTC, instead of SNLP and McNONLIN. The obvious reason of course is that seen as
instances of Refine-Plan, SNLP and McNONLIN differ from TWEAK in aspects
other than tractability refinements. Let us elaborate on this further by demonstrating the
importance of using the normalized planners. In Fig. 11, we provide the comparisons
between the brand-name planners SNLP, McNONLIN, TWEAK and UA, instead of
the normalized instances we used in the previous experiments. Note that unlike SNLP-
MTC and McNONLIN-MTC, SNLP and McNONLIN do not outperform TWEAK in
the region around #est x #&b M 4. In fact, we find that SNLP and McNONLIN perform
worse or about the same as TWEAK for most of the points. This discrepancy is easy
to explain once we note that SNLP and McNONLIN differ from TWEAK not only in
tractability refinements, but also in the goal selection and termination criteria they use.
In particular, SNLP and McNONLIN insist on working on each precondition exactly
once, while TWEAK uses MTC and takes the more demand-driven approach-working
only on those goals that are not necessarily true. This difference winds up drowning the
effect of tractability refinements. In fact, we can see from Fig. 11 (d) that the fraction
of preconditions visited by SNLP and McNONLIN is considerably higher than that of
TWEAK in the middle range. 34 Consequently, the solution depth is also higher, and
reduction in b due to the b,-6, interaction is not enough to offset this. The use of
different goal selection and termination strategies also affects the per-invocation cost of
Refine-Plan. The plots in Fig. 11 (c) show that TWEAK has a higher TV than SNLP
and McNONLIN.

In contrast, once we normalize the goal selection and termination criteria, the fraction
of preconditions visited by TWEAK, SNLP-MTC and McNONLIN-MTC get much
closer (see Fig. 12(a)), thus allowing the effect of tractability refinements to stand
out. (The stark performance difference between SNLP and SNLP-MTC, as well as
McNONLIN and McNONLIN-MTC, also demonstrate the utility of demand-driven goal
selection strategies.)

8.2.2. Experiments in the ART-MD-RD domain

All the the ART-#&-#,-lOb domains are uniform in that in each of them all the precon-
ditions have roughly the same number of #& and #cl,& factors. To evaluate Hypothesis
3 regarding the domains that have preconditions with differing #est and #cl& factors, we
experimented with problems from the ART-MD-RD domain. In addition to the three

34 The f-values of SNLP and McNONLIN are depressed towards the beginning because they fail to solve

most of the problems in that region.

218 S. Kambhampati et al./Artifcial Intelligence 76 (1995) 167-238

0 12 3 4 5 6 7 8 9
#ClOb (test = 9 XClOb,

(a) Average CPU time

0’ j ’ ’ ’ - ’
0 12 3 4 5 5 7 8 9

klob (test = 9 #clob)

(c) Avg. Trp

(e) Avg. b

(b) # Unsolved Problems

0.5’ ’ ’ J
II 12 3 4 5 5 7 8 9

#Cl& (#eat = 9 YClObl

Cd) Avg. f

(f) Avg. d

Fig. 11. Plots comparing relative performance of existing (brand-name) planners in the ART-#est-#clob domain,

where #W + #&b is kept constant at 9.

S. Kambhampati et al. /Art$cial Intelligence 76 (1995) 167-238 219

(a) Avg. f (b) Avg. u

Fig. 12. Analyzing the solution depths of the planners in the ART4&#,.tob domain.

planners used in the ART-#&#~t,,b domain, we also included two other planners, UA
and SNLP-UA, which use pre-ordering-based tractability refinements (see Section 5).
These two represent tractability refinement strategies that are even more eager than those
of SNLP-MTC and McNONLIN-MTC. Specifically, the bt factors of these planners are

expected to follow the order:

bi (SNLP-UA) > br (UA) b br (SNLP-MTC)

> b, (McNONLIN-MTC) 2 b, (TWEAK).

Fig. 13 shows the performance of the five planners, SNLP-MTC, McNONLIN-MTC,
UA, TWEAK and SNLP-UA on problems from the ART-MD-RD domain. Each point

in the plot corresponds to an average over 25 random problems with a given number

of goals (drawn from {Gt , . . . , Gg}). The initial state is the same for all the problems,
and contains {It,. . . ,&3} + {he}.

Recall that Hypothesis 3 in Section 7.1 predicts that the relative performance of

the planners in such situations will depend on the order in which the high-frequency

conditions are established relative to the low-frequency ones. We thus experimented with

two different goal selection orderings (over and above the MTC-based goal selection
strategy). In LIFO ordering, a goal and all its subgoals (which are not necessarily

true according to MTC) are established before the next higher-level goal is addressed.

In the FIFO ordering, all the top-level goals are established before their subgoals are
addressed.

From the description of the ART-MD-RD domain in Section 8.1, it is easy to see
that hf/he are high-frequency conditions, with &St x #&b z 4, while Gi and Ii are
low-frequency conditions (with #& x 1 and #&,b % 8). Looking at the description

of ART-MD-RD, we also note that in LIFO ordering, hf and he are considered for
establishment in the early parts of the search, while in FIFO ordering, they are considered
after all Gi are considered for expansion. Further, in FIFO ordering, establishing Zi and
Gi linearizes the plan and consequently implicitly establishes the hf/he preconditions of
the actions. Thus, under MTC-based goal selection strategies that are used by the five
planners, hf/he will rarely be considered for expansion. Based on this reasoning, and

S. Kambhatnpati et al. /Artificial Intelligence 76 (I995) 167-238

(a) Avg. CPU time (LIFO)

(c) # Unsolved (LIFO) (d) # Unsolved (FIFO)

(b) Avg. CPU time (FIFO)

Fig. 13. Comparative performance in the ART-MD-RD domain.

our hypotheses regarding the effect of tractability refinements on performance, we would

expect that the planners using more eager tractability refinements will perform better

than the planners using less eager tractability refinements in LIFO ordering. Similarly,

in FIFO ordering, we would expect the planners using eager tractability refinements to
perform worse.

Fig. 13 compares the performance of the five planners on problems in the ART-

MD-RD domain for both LIFO and FIFO. We start by noting that our predictions

regarding relative performance are borne out by the plots comparing average CPU time
and the number of unsolved problems of the five planners across the two goal orderings.
Specifically, we note that UA and SNLP-UA, which use the most eager tractability
refinements, outperform TWEAK in LIFO, but perform worse than TWEAK in FIFO.
These comparisons are statistically significant for the average CPU time over the entire
data set with p-values of 0 (using signed-rank test).

Fig. 14 compares the average tractability branching factor b,, establishment branching
factor be, and the overall branching factor b across the five planners and two goal
selection strategies. These plots show that the performance of the planners is correlated

S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238 221

with the b,-b, interaction as per our hypothesis. Specifically, from the average bt plots
in Figs. 14(a) and 14(b), we note that relative values of bt across both goal orderings
are in accordance with our expectation:

b, (SNLP-UA) 2 b,(UA) 2 b, (SNLP-MTC)
>, b,(McNONLIN-MTC) > b,(TWEAK).

The overall branching factors, shown in Figs. 14(e) and 14(f) follow the relative
pattern of bt in the case of FIFO ordering, but are opposed to the relative pattern of bt

in the case of LIFO ordering. We note that the relative plots of the overall branching
factors are fully correlated with the average CPU time plots in Figs. 13 (a) and 13 (b) .

The plots in 14(c) and 14(d) show the average establishment branching factors of
the five planners in LIFO and FIFO goal orderings. From these, we also note that the
relative pattern of the overall branching factors is fully correlated with our hypothesis
regarding the b,-b, interaction. Specifically, in the case of LIFO ordering, which ex-
plicitly considers the high-frequency hflhe conditions for establishment, the b, values
are much lower for planners using eager tractability refinements. Since b = bt x b,,

the overall branching factor of planners with eager tractability refinements (and higher
b,) is lower. In the case of FIFO, the increase in bt is not offset by the reduction in
b,. Consequently, tractability refinements do not provide any performance advantages.
Instead, the additional branching introduced by the planners with most eager tractability
refinement strategies, UA and SNLP-UA, winds up increasing their overall branching
factor, thereby significantly degrading the performance.

From the plots of the per-node cost of refinement, solution depth and explored search
space size in Fig. 15, we note that there are no other dominant competing explanations
for the observed performance differentials. Specifically, although there are minor differ-
ences in the relative values of the per-node cost (Figs. 15(c) and 15(d)) and solution
depth (Figs. 15(a) and 15(b) > across the planners, the plots of the explored search
space size (Figs. 15(e) and 15(f)) follow the same pattern as the overall branching
factor and the average CPU time.

Finally, our experiments also show that planners using conflict resolution strategies
(SNLP-MTC and McNONLIN-MTC) strike a middle ground in terms of performance,
across both goal orderings. Since the orderings introduced by them are more sensitive to
the role played by the various steps in the plan, they seem to avoid both the excessive
b, of planners using pre-ordering strategies (UA, SNLP-UA), and the excessive be of
planners not using any form of tractability refinement (TWEAK).

8.3. Evaluation of hypotheses regamling bookkeeping strategies

To evaluate our hypotheses regarding the correlation between the solution density and
the effect of strong protection strategies, we ran two different experiments. In the first
experiment, we used problems from the ART-MD-RD domain described earlier. In the
second we used problems from ART-MD and randomly misdirected each planner with
respect to a min-goals heuristic. We will describe these experiments and their results
below.

222 S. Kambhampati et al./Art$cial Intelligence 76 (1995) 167-238

(a) Avg. bt (LIFO)

(c) Avg. be (LIFO)

(e) Avg. Branching Factor(LIFO) (f) Avg. Branching Factor(FIF0)

2

0

3.5

(b) Avg. b, (FIFO)

(d) Avg. be (mo)

Fig. 14. Plots comparing average branching factors in the ART-MD-RD experiments

S. Kambhampati et al. /Artijicial Intelligence 76 (1995) 167-238 223

(a) Avg. soln. depth. (LIFO)

0.2’ ’ ’ ’
1 2 3 4 5 6 7 8

Number CJf Goals

(c) Avg. per-node cost TV (LIFO)

(e) Avg. search space size Fd (LIFO)

(b) Avg. soln. depth (FIFO)

(d) Avg. per-node cost T, (FIFO)

(f) Avg. search space size Fd (FIFO)

Fig. 15. Plots comparing solution depth, per-node cost and search space size in ART-MD-RD experiments.

224 S. Kambhampati et al./Artifcial Intelligence 76 (1995) 167-238

8.3.1. ART-MD-RD experiments
In this experiment we used the problems from ART-MD-RD again. An interesting

characteristic of the ART-MD-RD domain is that the interactions between the actions
in the domain are such that often there is only one ground operator sequence that is
a solution for a given problem consisting of a set of goals {Gi}. Thus, as the number
of goals increase, the search space size increases, but the number of solutions does not
increase commensurately. This has the implicit effect of reducing solution density.

To compare the effect of protection strategies, we experimented with four planners,
TWEAK, TWEAK-visit, SNLP-CON and McNONLIN-CON (described in Section 5),
all of which differ only along the dimension of the bookkeeping constraints they employ.

We recall that TWEAK employs no protection strategy, TWEAK-visit uses agenda
popping, McNONLIN-CON uses interval protection and SNLP-CON uses contributor
protection. In terms of search space redundancy, TWEAK allows both overlapping can-
didate sets, and repeated establishments of the same precondition. TWEAK-visit and
McNONLIN-CON avoid repeated establishments, but allow overlapping candidate sets.
The difference between TWEAK-visit and McNONLIN-CON is that the latter backtracks
as soon as any establishment is necessarily violated, while the former will backtrack
only when all the conditions returned by the goal selection strategy have already been
established once. SNLP-CON improves upon McNONLIN-CON by avoiding both re-
peated establishments and overlapping candidate sets. All these planners are complete
for the problems in the ART-MD-RD domain.35

As the problem size (i.e., number of goals) increases in ART-MD-RD, the solution
density reduces and the search space size increases. From Hypothesis 4 in Section
7.2 we expect that for problems of small size, and thus high solution density, the
performance of the different systems will be similar. Based on Hypothesis 5, we expect
that, as the problem size increases, the explored search space size of SNLP-CON will
be the smallest, that of TWEAK will be the largest, and those of McNONLIN-CON and
TWEAK-visit will fall in the middle.

Fig. 16 shows the plots comparing the relative performance of these planners on
problems in the ART-MD-RD domain. We note that these plots conform to our predic-
tions. In particular, as the problem size increase, the average search space size becomes
significantly lower for planners with stronger protections strategies (Fig. 16(a)). This
reduction is well correlated with the average branching factors of the planners (Fig.
16(f)) . The plots of average CPU time in Fig. 16(c) show that the differences in it
are not as drastic as the average search space sizes. This can be explained by the fact
that the planners using stronger protection strategies impose more auxiliary constraints
(IPCs in our case), and thus will take longer to check consistency of the partial plans.

35 Although, as discussed in Section 5.2, SNLP-CON, McNONLIN-CON and TWEAK-visit are not in general
complete for MTC-based termination criteria, they are complete for problems in the ART-MD-RD domain.
This is because in ART-MD-RD, by the time the planners have established each precondition once, they
would, of necessity, have a totally ordered partial plan, because of the causal ordering forced by the hf/he pm-
conditions of the steps. Since eventually solution bearing partial plans will have only one ground linearization,
and since all planners can eventually consider each precondition for establishment at least once, SNLP-
CON, McNONLIN-CON and TWEAK-visit will also eventually produce a partial plan all of whose ground
linearizations correspond to solutions. Thus, they will be complete for MTC-based termination condition.

S. Kambhampati et al./Arf@cial Intelligence 76 (1995) 167-238 225

3000 . ..’

,I ./

2000 ..a”

1000

” I ,;’
n

/ .’
,.,:/

I

I . .
,..’

.,_.._+: .__.. o...
___~~~~~~~~~~~~~~~~~~....

(a) Avg. # nodes searched Fd (LIFO)

(c) Avg. CPU time (LIFO)

(e) Avg. soln. depth (LIFO) (f) Avg. branching factor (LIFO)

Fig. 16. Plots comparing relative effect of protection strategies ART-MD-RD experiments.

(d) Avg. u (LIFO)

1.5

.-..* “. . .
‘*...

..
. .

‘.D...
.-.s___

.--m._.
.-.__ .._.._,(I

226 S. Kambhampati et al. /Art$cial Intelligence 76 (1995) 167-238

(a) Avg. CPU Time (b) Number Unsolved

Fig. 17. Plot showing the effect of misdirection on protection strategies.

The plots of average per-node refinement cost in Fig. 16(b) confirm this explanation.
Finally, the plots in Fig. 16(d) confirm that of the four planners, only TWEAK can

suffer from repeated establishment of the same precondition.

8.3.2. Misdirection experiment
In this experiment, we compared TWEAK and SNIP-MTC in ART-MD, a variant

of the ART-MD-RD domain without the hflhe conditions (similar to the D”S’ domain

described in [2]). Both planners were started off with a min-goals heuristic [28],

which ranks a partial plan by the number of preconditions that are not necessarily
true according to MTC. We then systematically varied the probability p (called the
misdirection parameter) with which both planners will reject the direction recommended
by the heuristic and will select the worst ranked branch instead. Assuming that the
initial heuristic was a good heuristic for the problem, to a first order of approximation,

we would expect that increasing the misdirection parameter degrades the planner’s

ability to zero-in on the solutions, forcing it to consider larger and larger parts of
its search space. By Hypothesis 6, strong protection strategies should help in such
situations.

The plot in Fig. 17 shows the performance of the planners (measured in terms of
average CPU time taken for solving a set of 20 random problems run on a SparcII with

a time limit of 120 seconds), as a function of misdirection parameter. It shows that, as
the misdirection parameter increases, the performance of TWEAK, which employs no
protections, degrades much more drastically than that of SNIP-MTC, which employs
contributor protection. These results thus support our hypothesis.

The experiments about protection strategies also show that the performance of planners
using conflict resolution strategies is more stable with respect to the bt-be interaction

than that of planners using pre-ordering strategies. This can be explained by the fact
that the former are more sensitive to the role played by the steps in the current partial
plan than the latter.

S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238 221

Table 4

Estimates of average redundancy factor and average candidate set size at the termination fringe for 30 random

six-goal problems in the ART-MD-RD domain

Planner LIFO PIFO

Pd Kd Pd Kd

TWEAK 1.47 2.93 1.32 30.14

UA 1 .I6 1.0 1.01 1.0

McNONLIN-MTC 1.004 1.007 1.22 34.17

SNLP-MTC 1.0 0.77 1.0 13.87

SNLP-UA 1.0 0.87 1.0 0.88

8.4. Combined effects of protection strategies and tractability refinements

In the last two sections, we looked at the individual effects of tractability refinements
and protection strategies on performance. Given that most existing planners differ in
both rather than only one of these dimensions, it would be interesting to understand
which of these differences have the dominant effect on performance. The experiments
in the previous sections provide a partial answer to this question.

Recall that the planners used in the experiments in Section 8.2.2 differ both in
the tractability refinements they use and the protection strategies they employ (this is
not surprising since conflict resolution refinements are related to the type of auxiliary
constraints posted by the protection strategies). Table 4 shows the estimates of the
average redundancy factors at the termination fringe of the five planners used in these
experiments, for 30 six-goal ART-MD-RD problems.36 As to be expected, SNLP-
MTC and SNLP-UA, which use contributor protections, have no redundancy (pd = 1) .
However, from the plots in Fig. 13, we note that the performance profiles in the ART-
MD-RD domain are not in correspondence with the redundancy factors. From the same
plots, we also note that SNLP-UA, which uses contributor protection, is closer to UA
than SNLP-MTC in performance.

Another data point can be obtained by comparing the relative performance of SNLP-
CON and McNONLIN-CON to SNLP-MTC and McNONLIN-CON respectively. In
particular, by comparing the plots of the size of the explored search space size in Figs.
16(a) and 15(e), we note that the effect of tractability refinements dominates over
that of protection strategies. While the average search space size of SNLP-CON is
significantly lower than that of McNONLIN-CON (Fig. 16(a)), the search space sizes
of SNLP-MTC and McNONLIN-MTC are almost identical (Fig. 15 (e)) .

From the foregoing, we note that in cases where two planners differ both in terms of
tractability refinements and protection strategies, the empirical performance differentials
are dominated more by the differences in the tractability refinements than the differences
in protection strategies. The protection strategies themselves only act as an insurance
policy that pays off in the worst-case scenario when the planner is forced to look at a
substantial part of its search space. This latter observation is supported by the comparison

s6 The estimates were made by considering only the minimal candidates corresponding to the safe ground

linearizations of the plans at the termination fringe.

228 S. Kambhampati et al./Artijcial Intelligence 76 (1995) 167-238

between TWEAK and SNLP-MTC in the misdirection experiments reported in Section
8.3.2.

9. Related work

We will partition the related work discussion loosely into three categories: relations
with other refinement search-based frameworks, relations with other experimental anal-
yses of planning algorithms and relations with other research efforts to improve/explain
the performance of partial-order planners.

9.1. Relations with other refinement-search-based frameworks

In [37,391, Smith uses a search paradigm, called global search, to provide a unifying
framework for scheduling. His motivation is to attempt to use the global search frame-
work, in conjunction with an interactive software development system (KIDS [381) to
synthesize efficient scheduling algorithms for given problem populations [391. Global
search has several similarities with the refinement search framework discussed in this
paper. For example, corresponding to our monotonic auxiliary constraints, Smith’s global
search has the notion of filters. In addition to the ideas of “splitting” and “pruning”,
Smith also talks about the notion of reducing the candidate set size through a process
of “constraint tightening” or “constraint propagation”. In theory, such a process is also
possible in the refinement search framework that is described here. We did not con-
centrate on this aspect as we are not aware of any existing planners that use constraint
propagation in this fashion.

The idea of looking at partial plans not as incomplete solutions, but rather as sets
of potential solutions, has also been used in Ginsberg’s recent work on approximate
planning [91. In particular, his notion of “linearizations” of a plan is very close to our
notion of candidate set of a partial plan. One technical difference is that Ginsberg makes
no difference between candidates and solutions, assuming instead that a linearization
that does not execute and produce the goals is an “incorrect” solution. He also espouses
the view that the goal of planning is to produce a plan whose candidate set contains
“more” solutions than it does non-solutions. Ginsberg also deals with the problem of
non-finite candidate sets by introducing a new type of constraint called “immediacy
constraint”. In our framework, the immediacy constraint can be seen as a monotonic
auxiliary constraint. Consider the constraint where the step tl is constrained to come
immediately before t2 (denoted by “tl * t2”). A ground operator sequence S is said to
satisfy this constraint with respect to a mapping M if M maps tl and t2 to consecutive
elements of S. It can be easily seen that a partial plan of the form to * tl * t2 * t, will
have exactly one ground operator sequence that belongs to its candidate set.

9.2. Relations with other experimental analyses of planning algorithms

Let us now address the relations between our work, and previous work on comparative
analysis of planning strategies. As we mentioned earlier, much of the previous work has

S. Kambhampati et al. /Art#cial Intelligence 76 (1995) 167-238 229

concentrated on comparing partial-order and total-order planners. Two representative
efforts of this line of research are those of Barrett and Weld [2] and Minton et al.
[27,281.

Barrett and Weld [2] compare the performance of two plan-space planners (SNLP
and TOCL, in Table 1) and a state-space planner (TOPI), and develop hypotheses
regarding the relative performance of these planners. In particular, they extend the notions
of serializability defined in [23] to include trivial and laborious serializability, and
contend that the partial-order planners yield superior performance because the subgoals
in planning domains are trivially serializable for them more frequently than for total-
order planners. Minton et al. [27,281 concentrate on the performance of a partial-order
and a total-order plan-space planner (UA and TO in Table 1) and develop hypotheses
regarding their relative performance.

From the point of view of Refine-Plan, it is interesting to note that both TOCL
and SNLP, and UA and TO are pairs of plan-space planners that differ only in terms of
the tractability refinements they employ. From Table 1, we can see that TOCL employs
a more eager tractability refinement strategy compared to SNLP, while TO employs a
more eager tractability refinement strategy compared to UA. This observation puts the
empirical studies of Barrett and Weld and Minton et al. in perspective and provides
a common ground for comparing their results with ours. In particular, our hypotheses
regarding the effect of tractability refinements (Section 7.1) should be applicable for
both these comparisons.

Another interesting relation with Minton et al.‘s work concerns the comparison be-
tween TWEAK and UA. Minton et al. [27] suggest that UA could be more efficient
than TWEAK because TWEAK has more redundancy in its search space. To begin
with, the notion of redundancy used in their paper is very different from the notion of
redundancy defined in terms of overlapping candidate sets that we used in this paper.
In particular, seen as instantiations of Refine-Plan, neither TWEAK nor UA uses any
bookkeeping constraints (see Table l), and thus suffer from both types of redundancy
discussed in Section 4.3 (and Fig. 8). They differ instead on the type of tractability re-
finements they use. Given this, and our hypotheses and experiments regarding the effect
of tractability refinements on performance, there is no a prioti reason to believe that
UA will always outperform TWEAK, the relative performance will depend on the b,-be
interaction. In fact, the plots in Fig. 13 show that TWEAK can outperform UA in any
domain where high-frequency conditions are not considered for establishment explicitly
in the beginning parts of the search. The unambiguity of partial plans maintained by UA
seems to have less of an effect on the performance. 37

Another recent effort doing a comparative study on partial-order planners is that of
Yang and Murray [43]. They evaluate the utility of applying pruning heuristics to partial-
order planners while preserving their completeness. One particular heuristic, known as

37 Similarly, Minton et al. conjecture [28] that addition of causal links (i.e., bookkeeping strategies) will
increase the cost of UA. Our empirical comparison of SNLP-UA and UA in the ART-MD-RD domain (Section
8.2.2) provides a data point for checking this conjecture. They show that although the per-node cost of SNLP-
UA is higher than that of UA (Figs. 15(c) and 15(d)), the average search space size of SNLP-UA is lower
than that of UA (Figs. 15(e) and 15(f)), thus making their performances almost identical.

230 S. Kambhampati et al./Artificial Intelligence 76 (1995) 167-238

temporal coherence, works by using a set of domain constraints to prune away plans
that do not “make sense”, or are temporally incoherent. Their analysis shows that, while

intuitively appealing, to maintain completeness, temporal coherence can only be applied

to a very specific implementation of a partial-order planner. Furthermore, the heuristic
does not always improve planning efficiency; in some cases, its application can actually

degrade the efficiency of planning dramatically.

9.3. Relations with other efforts to explain/improve planning performance

Our unified framework for partial-order planning also puts in perspective some of
the recent efforts to improve the performance of partial-order planners. An example

is the recent work on improving planning performance through selective deferment of
conflict resolution [341. Since conflict resolution is an optional step in Refine-Plan,
the planner can be selective about which conflicts to resolve, without affecting the

completeness or the systematicity of Refine-Plan (see Section 4.5.3). 38 Conflict

deferment is motivated by the idea that many of the conflicts are ephemeral, and will
be resolved automatically during the course of planning. Thus, conflict deferment tends

to reduce the search space size both by reducing the tractability branching factor bt,

and by pushing the branching from earlier parts of the search to the later parts of

the search. However, this does not come without a tradeoff. Specifically, when the
planner does such partial conflict resolution, the consistency check has to once again
test for existence of safe ground linearizations, rather than order and binding consistency

(making consistency check intractable once again).

The planners with which Peot et al. [34] experimented all used ordering and bind-
ing consistency checks. Conflict deferment in such situations can lead to refinement

of inconsistent plans, thereby reducing Kd and increasing]Fd], and leading to loss of

strong systematicity (Definition 7). In such cases, we would expect that best perfor-
mance is achieved neither with eager conflict resolution, nor with full conflict deferment.
This intuition is consistent with the empirical evidence provided by Peot et al. [341.

In particular, they found that deferring any conflict which has more than one way of

resolution is better than deferring every conflict. In terms of Refine-Plan, the former
strategy reduces the chance that the partial plan with deferred conflicts is inconsis-

tent.
In our discussion of bookkeeping constraints, we observed that some of them, espe-

cially the interval protection and contributor protection strategies, incur a strong form of

commitment to previous establishments. In [12,131, Kambhampati provides a general-
ization of single-contributor causal links, called multiple-contributor causal links, which
attempts to reduce the commitment to specific establishments. As shown in Section 4.3,
the multiple-contributor causal links can be formalized in terms of disjunctions of in-

terval preservation constraints. Kambhampati describes experiments comparing a variety
of partial-order planners using causal-link-based bookkeeping strategies, and shows that

?s Note, from Section 5.2.4 that SNLP-CON and McNONLIN-CON do not do any conflict resolution at all,

and thus correspond to deferring all the conflicts indefinitely.

S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238 231

multi-contributor causal links can avoid the harmful effects of the increased commitment
of the single-contributor causal links to some extent.

The unifying framework also has clear pedagogical advantages in terms of clarifying

the relations between many brand-name planning algorithms, and eliminating several

long-standing misconceptions. An important contribution of Refine-Plan is the careful

distinction it makes between bookkeeping constraints or protection strategies (which aim
to reduce redundancy), and tractability refinements (which aim to shift complexity from

refinement cost to search space size). This distinction removes many misunderstandings
about plan-space planning algorithms. For example, it clarifies that the only motivation

for total-order plan-space planners is tractability of refinement. Similarly, it has been

previously believed (e.g. [201) that the systematicity of SNLP increases the average

depth of the solution. Viewing SNLP as an instantiation of the Refine-Plan template,
we see that it corresponds to several relatively independent instantiation decisions, only
one of which, viz., the use of contributor protections in the bookkeeping step, has a
direct bearing on the systematicity of the algorithm. From the discussion in Section 4,

it should be clear that the use of contributor protection does not, ipso facto, increase

the solution depth in any way. Rather, the increase in solution depth is an artifact of
the particular solution constructor function, and the conflict resolution and/or the pre-

ordering strategies used in order to get by with tractable termination and consistency
checks. These can be replaced without affecting the systematicity property.

Similarly, our framework not only clarifies the relation between the unambiguous
planners such as UA [281 and causal-link-based planners such as SNLP [241, it also
suggests fruitful ways of integrating the ideas in the two planning techniques (cf. SNLP-
UA in Section 5.2.2).

10. Conclusion

The primary contribution of this paper is a unified framework for understanding

and analyzing the design tradeoffs in partial-order plan-space planning. We started by
providing a refinement-search-based semantics to partial-order planning, and developing

a generic for refinement planning algorithm. We then showed that most existing plan-

space planners are instantiations of this algorithm. Next, we developed a model for
estimating the refinement cost and search space size of Refine-Plan and discussed

how they are affected by the different design choices. Based on this understanding, we
have developed hypotheses regarding the effect of two of these choices-tractability
refinements and protection strategies-on the relative performance of different planners.

Finally, we described several focused empirical studies to both evaluate our hypotheses
and demonstrate the explanatory power of our unified framework. These studies show
that the performance is affected more by the differences in tractability refinements than

by the differences in protection strategies.

Limitations and future work

While this paper makes an important start towards understanding of the comparative
performance of partial-order planners, further work is still needed to develop a predictive

232 s. Kambhampati et al. /Art@cial Intelligence 76 (1995) 167-238

understanding of which instantiations of Refine-Plan will perform best in which types
of domains. Specifically, we need to develop hypotheses regarding the effects of other
components of the Refine-Plan algorithm on performance. We also need to develop
a more complete understanding about the second-order interactions between the various
parts of the Refine-Plan algorithm and their effect on the performance. Much of the
analysis in this paper has concentrated on breadth-first search regimes. Given that depth-
first backtracking search regimes are more practical in terms of their space requirements,
we need to extend our analysis to cover these cases. A preliminary analysis of the
effect of tractability refinements on the success probability of Refine-Plan in depth-
first search regimes is given in [11,141. This analysis shows that if we assume that
tractability refinements split the candidate set of the partial plan in such a way that
the solution candidates in it are randomly distributed among the resulting refinements,
then we would expect the probability of success in any given search branch to reduce
with more eager tractability refinements. This analysis needs to be validated, as well
as extended to cover situations where refinements do not distribute solution candidates
randomly among the refined plans.

In Section 9, we noted that Smith [39] uses a global-search-based framework to
automatically synthesize customized schedulers. Given the close similarity between the
global search and refinement search frameworks, this raises an intriguing possibility: is it
possible to automatically synthesize the instantiation of Ref ine-Plan that will be most
efJicient in solving a given class of planning problems? In collaboration with Smith, we
are currently evaluating the feasibility of this approach.

Although we concentrated on plan-space planners in this paper, our refinement search
framework can be easily extended to cover other classical planning approaches such
as state-space planning and task reduction planning. The general idea is to model
these other approaches as providing individually complete refinement operators that are
complementary to Refine-Plan, the plan-space refinement operator described in this
paper. A top-level control strategy can then select any one of the refinement operators
in each iteration and apply them (see Fig. 2). In [181, we describe a generalization
of Refine-Plan called UCP that models both plan-space and state-space approaches
in this fashion. Specific instantiations of UCP can thus cover the plan-space planners,
state-space planners, and means-ends analysis planners. More importantly, UCP also
allows for opportunistic interleaving of state-space and plan-space refinements within
the same planning episode. Empirical results reported in [181 indicate that such hybrid
refinement strategies can outperform both plan-space and state-space approaches in some
circumstances.

Finally, many existing industrial strength planners use task reduction techniques, which
are not modeled by our Refine-Plan algorithm. In [161 we show that Refine-Plan
can be extended to cover task reduction planners (also called HTN planners) by simply
replacing the establishment refinement with another called task reduction refinement.
(We also show that this model clarifies several features of HTN planning.) Since the
tractability refinements and protection strategies remain unchanged in the new algorithm,
the insights regarding their effect on performance, gained in this research, will also be
applicable in the context of HTN planning. The extended algorithm could ah sex-w as

a basis for understanding other performance tradeoffs among task reduction planners.

A

w@s)
d

b

1
fin

g, G

13

LO

c,p,q,r
0, Oi

%

I/

NQ
P

p0

((.I
R

R

(s, c, 8’)

M
ST
S
-+

start

t, s

fco

10

K

1.1

0

233 S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

Appendix A. List of symbols

Symbol Denotes

agenda (a list of the various preconditions the planner intends to establish)

a point truth constraint (l?TC)
solution depth
branching factor

length
the dummy operator corresponding to the goal state (ST maps tm to fin)

top-level goals of the plan (preconditions of to3)

auxiliary constraints in the partial plan
auxiliary constraints in the null plan Pe (contains a FTC (g@t& for each top-level goal g of
the plan)
denote preconditions and effects of steps in the plan
operators in the domain
the solution criterion for a refinement search

set of all steps in a pattial plan
nodes in refinement search
the node whose candidate set corresponds to the candidate space

a partial plan
a null partial plan (with which Refine-Plan starts); ((Pa)) = K

candidate set (of a node or a partial plan)

a refinement operator
the set of refinement operators of a refinement search
an interval preservation constraint (WC)

a mapping between steps of a plan and the elements of a ground operator sequence
a mapping between the steps of a plan, and the operators they stand for
a ground operator sequence

“maps”
the dummy operator corresponding to the initial state (SI maps to to start)
steps in a partial plan

the special step that follows all other steps of a partial plan
the special step that precedes all other steps of a partial plan
the candidate space
cardinal&y of a set
the empty set

An additional list of symbols used in the complexity analysis can be found in Table 3.

Appendii B. Glossary of terms

This section gives a quick and informal glossary of terms. For more detailed defini-
tions, look at the appropriate sections of the text where the terms are defined.
Agenda. A data structure used by the Refine-Plan algorithm to keep track of the

list of preconditions (c, S) of the plan that need to be handled through establishment
refinement.

234 s. Kambhampati et al./ArtiJScial Intelligence 76 (1995) 167-238

Agenda popping. A bookkeeping strategy where Refine-Plan removes from the agen-
da each precondition (c, s) as soon as it has been considered by establishment refine-
ment once. When the agenda is empty, the corresponding partial plan is pruned. This
strategy ensures that no precondition is considered for establishment more than once.

Auxiliary constraints. Constraints of a partial plan other than steps, orderings and
bindings. The auxiliary constraints can be divided into two broad classes-monotonic
and nonmonotonic. Refine-Plan handles two specific types of auxiliary constraints-
interval preservation constraint (IPC), which is monotonic; and point truth constraint

(PTC), which is nonmonotonic.
Bookkeeping strategy. The strategy used by a planner to keep track of the goals it

already established (also called protection strategy) ; see Section 4.3.
Candidate. A potential solution for a problem; for planning, a “ground operator se-

quence”.
Candidate of a partial plan. A ground operator sequence that contains all the steps

of the plan in an ordering and binding consistent with the partial plan, and which
satisfies the monotonic auxiliary constraints of the partial plan.

Candidate space. The space of potential solutions for a problem.
Causal Link. A concept due to McAllester [24]. In terms of the terminology of this

paper, a causal link s 5 S’ can be seen as a macro-constraint that corresponds to the
following constraints: (i) s 3 s’, (ii) s gives an effect p (this may involve either
addition of binding constraints, or secondary preconditions, in the form of PTCs to
s), (iii) an IPC (s,p, s’) to ensure that p is preserved between s and s’.

Conflict. An IPC (t, p, t’) and a step (called threat) t” of the plan such that t” can
possibly come between t and t’, and t” deletes p.

Conflict resolution refinements. A type of tractability refinements that order steps in
the partial plan based on how they interact with the IPCs of the plan. If the partial plan
contains an IPC (s,p, s’) and the step s” has an effect up, then conflict resolution
will attempt to order s” to either come before s or after st.

Ground linearization. An operator sequence that matches a topological sort of the
steps of the partial plan, with all variables instantiated.

Interval preservation constraint (IPC). A monotonic auxiliary constraint on a partial
plan. An IPC (s,p, stt) of a partial plan P requires that every candidate of the partial
plan must preserve p between the operators corresponding to s and s’.

Partial plan. A constraint set that specifies a sets of steps, orderings among those steps,
bindings among the variables, a mapping between the steps and the domain operators,
and a set of auxiliary constraints.

Point truth constraint (PTC). A nonmonotonic auxiliary constraint on a partial plan.
A PTC (CBS) of a partial plan P requires that every solution of the partial plan P
must have c true before the operator corresponding to s.

Preconditions of a plan. Tuples (c, s), where s is a step in the plan, and c is a condition
that needs to be true before s (c may either be a precondition of the operator
corresponding to s or a secondary precondition added during establishment).

I&-or&&g refinements. A type of tractability refinements that order steps in the
partial plan based only on the static description of their effects and preconditions

S. Kambhampati et al. /Art$cial Intelligence 76 (1995) 167-238 235

(and without taking into account the specific roles they play in the current partial
plan). Two important pre-ordering strategies are “total ordering”, which orders every
pair of steps in the plan, and “unambiguous ordering” which orders every pair of steps
that have overlapping preconditions and effects (signifying their potential to interact
with each other).

Protection strategy. See bookkeeping strategy.
Refinement operator. An operator that splits the candidate set of a search node (in the

case of planning, the candidate set of a partial plan). Refine-Plan uses two types of
refinement operators: the establishment refinements, and the tractability refinements.

Safe ground linearization. A ground linearization that satisfies the monotonic auxiliary
constraints.

Search node. A constraint set that implicitly stands for the set of candidates that satisfy
the constraints. In the case of planning, a partial plan is a search node.

Secondary preconditions. Preconditions that need to be made true before an action so
as to make the action provide a particular effect. For example, if an action a has a
conditional effect If p then q, then we can make a give the effect q by making
p a secondary precondition of a. Similarly, we can make a give ~a by making
up a secondary precondition of a. In the Refine-Plan framework, such secondary
preconditions become PTCs for the action (e.g. (p@u) or (-~p@u)).

Solution. A candidate that solves the problem. For planning, a ground operator sequence
that can be executed from the initial state, and gives rise to a state where all the goals
of the plan are satisfied.

Solution constructor. A procedure which takes a search node and the goals of the
problem, and checks to see if one of the candidates of the search node is a solution
for the problem. The procedure may (i) return a solution, or (ii) signal that there
are no solutions, or (iii) signal that it is unable to decide either way. In the first case,
search is terminated with success. In the second case, the search node is pruned, and
in the third case the search node is refined further.

Solution of a partial plan. A candidate of a partial plan P that also solves the planning
problem. This requires that the candidate (i) be executable from the initial state (given
by the effects of to), (ii) satisfy all the nonmonotonic auxiliary constraints.

Solution node/solution plan. A search node (partial plan) for which the solution con-
structor returns a solution, leading to the termination of search.

Strong systematicity. The property that the search is systematic and no node with an
empty candidate set has children in the search tree. In a refinement search that is
strongly systematic, the size of the fringe is bounded by the size of the candidate
space.

Systematicity. The property that the candidate sets of search nodes in different branches
of the search tree are non-overlapping.

Tractability refinement. The class of refinements whose primary purpose is to reduce
the cost of consistency check. They do this by either reducing the number of ground
linearizations per partial plan, or by making all ground linearizations have identical
properties with respect to the auxiliary constraints. Two important types of tractability
refinements are pre-ordering refinements and con$ict resolution refinements.

236 S. Kambhampati et al. /Art$cial Intelligence 76 (I 995) 167-238

Acknowledgements

This paper is the result of combining and extending two initially independent research
efforts, one by Kambhampati [1 I, 14-161 and the other by Knoblock and Yang [20-
221. We thank the editors of this special issue for bringing us together. The paper
by Knoblock and Yang 1211 won the CSCSI (Canadian Society for Computational
Studies of Intelligence) Best Paper Award in 1994 (sponsored by the journal Artificial
Intelligence).

Thanks are due to David McAllester for many enlightening (e-mail) discussions
on the nature of refinement search [251; and Bulusu Gopi Kumar, Suresh Katukam,
Laurie Ihrig, Mark Drummond, Kutluhan Erol, Nort Fowler, Jonathan Gratch, Dan
Weld, and the anonymous reviewers for critical comments on earlier versions of this
paper.

Kambhampati’s research is supported in part by an NSF Research Initiation Award
IRI-9210997, an NSF Young Investigator Award IRI-9457634, and ARPA/Rome Labora-
tory planning initiative under grant F30602-93-C-0039. Knoblock’s research is supported
by Rome Laboratory of the Air Force Systems Command and the Advanced Research
Projects Agency under contract no. F30602-91-C-0081. Yang’s research is supported in
part by grants from the Natural Science and Engineering Research Council of Canada,
and ITRC: Information Technology Research Centre of Ontario.

References

[11 J.A. Ambros-Ingerson and S. Steel, Integrating planning, execution and monitoring, in: Proceedings
AAAI-88, St. Paul, MN (1988).

[2] A. Barrett and D. Weld, Partial-order planning: evaluating possible efficiency gains, Art$ Intell. 67 (1)
(1994) 71-l 12.

[31 D. Chapman, Planning for conjunctive goals, Artit Intell. 32 (1987) 333-377.
[4] G. Collins and L. Pryor, Achieving the functionality of filter conditions in partial order planner, in:

Proceedings AAAI-92, San Jose, CA (1992).
[5] K. Currie and A. Tate, O-Plan: the open planning architecture, Arti& Intell. 51 (1) (1991) 49-86.
[6] K. Erol, D. Nau and J. Hendler, Toward a general framework for hierarchical task-network planning, in:

Proceedings AAAI Spring Symposium on Foundations of Automatic Pkznning (1993).
[71 0. Etzioni and R. Etzioni, Statistical methods for analyzing speedup learning experiments, Mach. Darn.

14 (3) (1994).
[S] M.G. Georgeff, Planning, in: Readings in Planning (Morgan Kaufmann, San Mateo, CA, 1990).
[9] M. Ginsberg, Approximate planning, Art@ Intell. 76 (1995) 89-123 (this volume).

[lo] J. Jaffar and J.L. Lassez, Constraint logic programming, in: Proceedings POPL-87, Munich, Germany
(1987) 111-119.

[111 S. Kambhampati, Planning as refinement search: a unified framework for comparative analysis of search
space size and performance, Tech. Report 93-Cl@, Arizona State University, (1993). Available via
anonymousftp fromenws318.eaa.aau.edu:pub/rao/papers.html.

[121 S. Kambhampati, On the utility of systematicity: understanding tradeoffs between redundancy and
commitment in partial-order planning, in: Proceedings IJCAI-93, Chambery, France (1993).

[131 S. Kambhampati, Multi-contributor causal structures for planning: a formalization and evaluation, Artif:
Intell. 69 (1994) 235-278.

[141 S. Kambhampati, Refinement search as a unifying framework for analyzing planning algorithms, in:
Proceedings Fourth International Conference on Principles of Knowledge Representation and Reasoning
(KR-94), Bonn, Germany (1994).

S. Kambhampati et al./Arttjkial Intelligence 76 (1995) 167-238 237

[151 S. Kambhampati, Design tradeoffs in partial-order (plan space) planning, in: Proceedings Second
International Conference on AI Planning Systems (AIPS-94) (1994).

[161 S. Kambhampati, A comparative analysis of partial-order planning and task reduction planning, SIGART

Bull. 6 (1) (1995).
[171 S. Kambhampati and D.S. Nau, On the nature and role of modal truth criteria in planning, Arttf Intell. (to

appear) ; available as Tech. Report. ISR-TR-93-30, University of Maryland, College Park, MD (1993);
shorter version in: Proceedings AAAI-94, Seattle, WA (1994).

[181 S. Kambhampati and B. Srivastava, Universal Classical Planner: an algorithm for unifying state-space
and plan-space planning, in: Proceedings 3rd European Workshop on Planning (10s Press, Amsterdam,
1995).

[191 C.A. Knoblock, Automatically generating abstractions for planning, Artif: Intell. 68 (1994) 243-302.
[20] C.A. Knoblock and Q. Yang, A comparison of the SNLP and TWEAK planning algorithms, in:

Proceedings AAAI Spring Symposium on Foundations of Automatic Planning (1993).
[21] C.A. Knoblock and Q. Yang, Evaluating the tradeoffs in partial-order planning algorithms, in:

Proceedings Tenth Biennial Conference of the Canadian Society for Computational Studies of
Intelligence, Banff, Alta. (1994).

[22] C.A. Knoblock and Q. Yang, Relating the performance of partial-order planning algorithms to domain
features, SIGART Bull. 6 (1) (1995).

[23] R.E. Korf, Planning as search: a quantitative approach, Artif Intell. 33 (1987) 65-88.
[24] D. McAllester and D. Rosenblitt, Systematic nonlinear planning, in: Proceedings AAAI-91, Anaheim,

CA (1991).
[251 D. McAllester, Private communication (1993).
[26] D. McDermott, Regression planning, Int. .I. Intell. Syst. 6 (1991) 357-416.
[27] S. Minton, J. Bresina and M. Drummond, Commitment strategies in planning: a comparative analysis,

in: Proceedings IJCAI-91, Sydney, Australia (199 1) .
[28] S. Minton, M. Drummond, J. Bresina and A. Philips, Total order versus partial order planning: factors

influencing performance, in: Proceedings Third International Conference on Principles of Knowledge
Representation and Reasoning (KR-92). Cambridge, MA (1992).

[291 J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving (Addison-Wesley,
Reading, MA, 1984).

[301 EPD. Pednault, Synthesizing plans that contain actions with context-dependent effects, Comput. Intell.
4 (1988) 356-372.

[3 11 E.P.D. Pednault, ADL: exploring the middle ground between STRIPS and the situation calculus, in:
Proceedings First International Conference on Principles of Knowledge Representation ana’ Reasoning
(KR-89). Toronto, Ont. (1989).

[32] E.P.D. Pednault, Generalizing nonlinear planning to handle complex goals and actions with context
dependent effects, in: Proceedings IJCAI-91, Sydney, Australia (1991).

[33] J.S. Penbetthy and D. Weld, UCPQP: a sound, complete, partial order planner for ADL, in: Proceedings
Third International Conference on Principles of Knowledge Representation and Reasoning (KR-92),
Cambridge, MA (1992).

[34] M.A. Peot and D.E. Smith, Threat-removal strategies for nonlinear planning, in: Proceedings AAAI-93,
Washington, DC (1993).

[35] E. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artif Intell. 5 (2) (1974) 115-135.
1361 D.E. Smith and M.A. Peot, Postponing threats in partial-order planning, in: Proceedings AAAI-93,

Washington, DC (1993).
1371 D.R. Smith, Structure and design of global search algorithms, Tech. Repott KES.U.87.13, Kestrel Institute

(1987); also in Acta If: (to appear).
1381 D.R. Smith KIDS-a semi-automatic program development system, IEEE Trans. Sofiw. Eng. 16 (9)

(1990) 1024-1043.
[39] D.R. Smith and E.A. Parra, Transformational approach to transportation scheduling, in: Proceedings

Eighth Knowledge-based Sofrwnre Engineering Conference (1993).
1401 A. Tate, Generating project networks, in: Proceedings IJCAI-77, Boston, MA (1977) 888-893.
I41 I D. Wilkins, Practical Planning (Morgan Kaufmann, Los Altos, CA, 1988).
]421 Q. Yang, Formalizing planning knowledge for hierarchical planning, Comput. Intell. 6 (1990) 12-24.

238 S. Kambhampati et al. /Artificial Intelligence 76 (1995) 167-238

[43] Q. Yang and C. Murray, An evaluation of the temporal coherence heuristic in partial-order planning,
Comput. Intell. 10 (3) (1994).

[44] Q. Yang, J. Tenenberg and S. Woods, Abstraction in nonlinear planning, Tech. Report CS 91-65,
Department of Computer Science, University of Waterloo, Waterloo, Ont. (1991) .

