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J.INTRODUCTTION :-

1,1 0OBJECTIVE :-

The objective of this study is to investigate the
performance of existing ISOLATED WORD RECOGNITION SYSTEMS
for confusable vocabulary and to suggest methods for

improving the performance.

I.2 EXISTING SYSTEMS:

Speech Recognition, as a very important problem of
pPattern-Recognition has been recognised long back and efforts
td make Speech Recognition a practical reality date as far
pback as 1950's (1). One of the very first problems, to
be tackled in Speech Recognition is npecognition of Isola-
ted Words". Apart from being the simplest facet of Speech
Recognition, TWR has been found to have potential commer-
cial applications (2) and more importantly to be a first
step towards more complicated problems of Connected Word
Recognition and finally Speech Understanding.

I.2.1 DESCRIPTION OF EXISTING SYSTEMS:
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FIG.I.2.1 PATTERN=-RECOGNITION MODEL FOR IWR:
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FIG I.2.1. shows the canonic pattern recognition
model used in most of the Isolated Word Speech
Recognition systems (3). There are three basic
steps in the model:

A, Feature Measurement
B. Pattern Similarity Determination
C. Decision Rule

We will discuss below these three steps with
reference to existing Speech Recognition systems.

4 FEATURE MEESUREMENT:

Feature measurement, in the context of IWR is
basically a data reduction technique whereby a
larger number of data points (in this case samples
of speech waveform recorded at appropriate rate)
are converted into a smaller set of features, which
are equivalent in the sense that they faithfully
describe the Salient Properties of the acoustic

waveforme.

In most of the existing speech recognition
systems for Isolated words, the incoming analog
speech waveform is digitized at a rate of 10 KHZ
and feature measurement Xor Pafameter Extraction)
is done for this digitized Speech data. For repre-
senting this digitized speech data, a number of
different feature sets have been proposed, ranging
from simple sets such as Energy and Zero crossing
rates (usuvally in selected frequency bands) to
complex, "Complete" representations such as Short-
time Spectrum, Linear-predictive Coding (LPC) and
the Homomorphic model (4).
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Again, most of the existing systems use either
"Short-time Spectrum" based features such as Mel
Spectral Coefficients (5), Mel Cepstral Coefficients
or "LPC" based features such as Aute~correlation &
Filter Coefficients (6) and LPC based Cepstral Co-
efficients. In either case, the digitized speech
data is segmented uniformly, with or without overlap
between frames, and the features are calculated for
each segment (henceforth to be called 'frame').

Typical frame sizes are 256, 128 samples per frame.

B. PATTERN SIMILARITYS

Because speaking rates vary greatly, pattern
similarity involves both time alignment and distance
computation and Often these two are performed simul-
taneously. Almost all the existing¢g systems maka use
of Dynamic TIME WARPING algorithms (DIW) which are
variations of the original algorithm proposed by
Sakoe and Chiba (7). Distance Measures depend upon
the parameters used. For example the Itakura System
(8) uses LPC Coefficients, a DIW For time registra-
tion and Log Likelihood Ratio for distance computa-
tione.

C. DECISION RULE AND PERFORMANCE CRITERION:

Most of the systems use Nearest Neighbour rule,
which marks the reference template giving minimum
distance with the unknown utterance as the recognized
utterance or K-Nearest Neighbour rule, if multiple
reference templates are used for each utterance.
Almost all the systems measure the performance by
the error rate or recognition rate, the former being
the percentage of utterances misclassified and later

the percentage recognized correctly.

I.3 AN EVALUATION OF EXISTING SYSTEMS:

The preceding section described the general
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details of the existing systems. Starting from
Itakura's Version (8), many modified systems have
been built and numerous studies have been made
to improve the performance of the systems. Most
of these studies and improvements were in the
areas of Parameter Optimization (6, 8), Dynamic
Time Warping Optimization (9, 10) and Optimal
Reference Template generation (11). 1In fact, para=-
meter optimization and DTW variations were the
most extensively studied facets of IWR systems.
The best IWR system performances were reported by
groups such as 'Rabiner et al' (12)(13). One very
interesting result to be noticed is that whenever
English alphabet was included in the recognition,
results were invaria?%yB}8yD'é}%zp'Tg%fE}cularly
the so called E-set/contributed to most of the
recognition errors. It is at this point that most
of the existing systems breakdown. No particular
effort has been made in any of these systems to
improve the performance of IWR for confusable
Vocabulary. RAEX

Another issue left untouched is the perfor-
mance evaluation for small vocabulary. All studies
for improvement of recognition of E~set were done
on the basis of "number of utterances recognised"
as performance criterion. But with a small voca=-
bulary, this error xakx#z rate/accuracy will be
inadeqguate and the system performance has to be
measured by some other more meaningful criterion.
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I.3.1 CURRENT EFFORTS TOWARDS RECOGNITION OF CONFUSABLE
VOCABULARY :

Of late, the problem of recognition of confusable
vocabulary has assumed importance, particularly after
the advent of large Speech Uunderstanding systems like
HARPY(21) which »rovad that final understanding perfor-
mance depends to a very large extent on phoneme recog-
nition. It is worth noting that in HARPY the perfor-
mance of Phone recognizér was only around 40%.,

This underlined the need for improving performance
for confusable vocabulary and some studies have been
made into it. S.K.DOSS(14), reasoning out that most of
the confusion is due to the skipping of transition
frames during warping, suggested an increase of segments
in the transition region by interpolation to counteract
the skipping. Apart from pointing out the fact that
transition regions are important in recognition, it
doesn't offer any practical solution, because identifi-
cation of transition regions everytime can be very costly
and time consuming computationally. The other way of
improving performance is using smaller frame size to
improve time resolution. The fewsystems which advocated
appxmazk this approach suffer from excessive data rate
and variance in steady 'vowel like' part, as discussed
later in this report. Yet another approach is Rabiner's
(15) '2-Pass Pattern recognition approach', in which the
actual recognition is implemented in two stages. The
first pass derives a classification for an incoming
utterance by comparing 1t with all reference templates,
and identifies the utterance as a member of a particular
class. The test utterance is‘then compared with all
words within its top class, this time using weighting
functions. The minimum overall distance in the second
stage determines the final recognition.




~_ All these approaches use uniform segmentation,
uniform parametric representation and pay little
attention to intra-utterance signal variation. A
novel method in this respect is suggested by B.Yegna-
narayana & Sreekumar (16). This method tries to
lncorporate. signal dependent information in the
matching stage.” Many useful experiments weére carried
out in that paper/report to prove the capabilities of
Signal Dependent Matching. We show, by the help of
several experiments, that Signal Dependent Matching
is a potential tool in solving the problem of isolated
word recognition of confusable wvocabulary.,



II EXPERIMENTAL SYSTEM:

In this section we briefly describe the recognition
system we used.,. We first describe the basic features of
the system, and changes made to the system by refinements,
will be reported in the appropriate sections. Our aim is
to improve IWR performance for confusable vocabulary. As’
a first step in that direction we use an existing system
and observe its performance for confusable wvocabulary.

The details of the system are presented in this section.
We also discuss the choice of vocabulary for our studies.

II-1. DESCRIPTION OF THE SYSTEM:

(1) The utterances, spoken in a relatively silent,
partitioned room, are recorded on an ordinary lowcost
tape~-recorder and are digitized with the help of a fast
A/D Converter at 10 Khz.

(2) The digitized samples thus obtained are stored
on a magnetic tape in blocks of 1024 samples.

(3) The samples are accessed from the tape frame by
frame. Each frame of 256 samples is windowed {3 Hamming
window is used) and FFT is computed for each frame.
Subsequently the FFT samples are grouped into 16 Mel
Spectral coefficients (5). The parameters are transfe-
rred to Prime-450 system and further processing is done
on this 16+bit interactive computing system.

(4) For each utterance a begin and detection based
on enexrgy is made and it is checked manually.
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(5) The above process(steps 1-4) is repeated for
two (or more) repetitions of utterances in each voca-
bulary set, one repetition to serve as test and other
as reference during matching.

(6) During matching the time registration is done
using an Itakura type DTW(8), with the end point,
registration condition relaxed ('Modified End Point
DTW' as described in (9)), to facilitate skipping of
few beginning frames (typically upto 5) for better
registration.

(7) The warped frames are matehimg matched using
an Eucledian distance norm.

(8) The performance of the system was measured
in a m novel way, by using a performance index as
defined in (16), instead of using the error rate as is
done in most of the systems.

It is worth noting here that the error rate as a
measure of performance does not describe well the
system performance for small vocabularies. More impor-
tant is the fact that any improvements made in the
recognition system may not be immediately apparent in
small vocabulary IWR systems' error-rates. On the
otherhand (16) proved that a performance index defined
over the distance matrix represents the system behaviour
more closely. &<Bxisfiyxd A brief description of per-
formance Index is presented below.

The scheme developed is based on the normalized

distance matrix.
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(A) Any off-diagonal element which is larger by
66% of the diagonal one is considered as perfectly
non-confusing, and its contribution to PIX is 100.

(B) Any off-diagonal element which is smaller by
a value of 20% of the diagonal one is considered
fully confusable and its contribution to PIX is Zero.

(C) Contribution of off-~diagonal elements falling
between the above two values, to the PIX is obtained
from a mapping function composed of four straight
lines as below:-

for elements betweens: CONTRIBUTION:
80 To 100 0 To 10
100 To 110 10 To 20

: 110 To 135 20 To 70
135 To 165 70 To 100

For finding PIX, first an Index Matrix is formed
from the Normalized Matrix using the mapping. Then the
average of off-diagonal elements is taken to be per-
formance Index. (See table II.l.l).

II.2., CHOICE OF VOCABULARY:

Since our aim is improvement of IWR for confusalkle
vocabulary, the first task is the choice of a suitable
confusable vocabulary. There are many sets of confusa-
ble vocabulary reported in literature, the E-Set being
a familiar example from English alphabet. Infact it
has been reported that systems which give near 100%
accuracy fqr English digits and the non-confusable Eng-
lish alphabet, give very high error rates of about
37.1% (17) for E-Set and the lowest error rate obtained
after careful optimization of reference templates was
around 23% (17).
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We have chosen the stop consonants of Devanagari
(for that matter of most Indian languages), as the
confusable vocabulary. That the vocabulary is confusa-
ble, we prove by direct verification #s in Section-II.3.
Apart from this, the language being phonetic (unlike
English), recognition of consonants with good reliability
can assure a much better word recognition, and so this
problem is more similar to phonemic recognition problem
faced by large systems such as HARPY THAN that of recog-
nition of English alphaket.

Apart from the above considerations, the structure
of the Devanagari stop consonants (Table II.2.l) is such
that in a given row or column, there is a lot of acoustic
similarity giving rise to confusion, and if we develop

COLUMNS

%KA KHA G A e GHA

R XCHA CHHA J A e JHA
o] }TA see T T A D A - By T
W XTHA T H A DHA .., DHA
S §PA PHA B A .e B HA

table - ITI,.2.1

methods to reduce confusion in a given row and column, we
can reasonably hope that it will work for all rows and all
columns, as we shall actually show in Section-IV.5.

The reaspns for the acoustic similarity is easy to
comprehend. All the consonants in a given column (see
table II.2.1) differ only in vocal tract shape, with
excitation being same more or less. For eg, first column
all are unvoiced consonants, Second all aspirated, third
all voiced etc., This causes a lot of intra column acoustic
confusion. Similarly all the consonants in a given ® row
are acoustically similar in the sense that only excitation
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changes across the row. The vocal tract shape remains
constant more or less for a given row. This type of
phonetic order formalizes the problem of confusable
vocabulary recognition and subdivides it into distinct
exhaustive sub problems. This is not the case for eg
with E-set consisting of (3,B,C,D,E,G,P,T,V,2), so that
an approach which works well for E-set maf not perform
will for any other given set of confusable vocabulary.
We have chosen the 5 utterances in the first column
(rable II.2.1), °‘KA', ‘CHA', 'TA', 'THA', & 'PA', as
basic vocabulary for all our studies. Our intention was
to develop an approach to recognize this column well and
show that it works for other columns too. We have
collected 3 repetitions of these 5 utterances, digitized
it and stored it for use in recognition systems. We call

this set KP-set from now one.

II.3. PERFORMANCE OF EXPERIMENTAL SYSTEM AND RECOGNITION
OF PROBLEM:

In what follows, we present the results of the
experimental system for 3 different vocabularies:=-

1, ENGLISH DIGITS

2. ENGLISH ALPHABET

3. KP=-SET.

The first two sets are considered to prove system
performance, and also to acquanit the reader with concept

of PIX (Performance Index). The last set is to prove the
confusability of that particular set and also in general
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to prove the ineffid?lof existing IWR Systems for con-
fusable vocabulary. For set-l, digits '1', 12, '3, 149
are considered. We give in TABLE II.3.l1, the Distance
Matrix, Normalized Matrix and Index Matrix along with the
PIX for the particular set; using 16 parameters (mel
spectral).

The some what poor performance index, (though recog-
nition is 100%) here can be attributed to the fact that
we didn't select the reference templates carefully.

For set 2, we considered A,B,C,D & E. We give the
recognition results for this set in TABLE II.3.2. These
results are slightly inferior to those obtained for set I.
But this is expected because of a higher degree of confu-
sability among alphabet.

For third set, the results are presented in table
II.3.3. These results prove conclusively that, even though
the system performance is g on par K with existing systems
(as was noticed through results of set 1 & 2), it falls to
distinguish between utterances of Kp-set, and this inturn
suggests that (1) KP-set is potentially confusable as con-
jectured, (2) The existing systems fail to recognize confu-
sable wvocabulary.

We conclude this section with the observation that the
existing techniques need modifieations, for the case of
recognition of confusable vocabulary.




-3 13 2:-

IIX. PRELIMINARY EXPERIMENTS AND CONCLUSIONS:

III.1 SOME THOUGHTS ON THE REASONS FOR CONFUSABILITY OF
KP SET:

We observed in the last section that the existing
IWR systems fail to recognize KP set. In this =m subsec-
tion, we put forward few possible explanations for their
confusability and suggestions for improvement and we go
on to give experimental validation to these observations
in the following sub-sections.

Some possible reasons for confusability of KP-set
ares

Cl, Most of the utterances are mono-syallabic and of very
short duration giving almost no chance of graceful recovery
to the system.

C2. The different utterances, in most cases differ consi-
derably only in the initial consonantal part, which is of
short duration, comprdsing on an average only ¥6th of
utterance duration and consonant-vowel transition region
and unless our endpoint detection is accurate, most of this
information is irretri@rably lost.

C3, Because of the importance of the relatively short con-
sonantal and transition portions, we should make sure that
dynamic time warping does not skip these transition frames.
One way of making sure is to find the transition region and
increase the number of frames in that region by interpola-
tion as outlined in S.K.DOSS'S ¥a¥X Paper(l14). But this
involves detection of transition region every time and the
only other alternative is to reduce the frame size and
increase frame overlap; which increases the number of frames
in the consonantal and transition regions thereby reducing
the chance of transition frames getting skipped during

warpinge..
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To verify these conclusions and generate new approa-
ches we conducted a series of experiments on KP set, for
every experiment we describe the experimental procedure,
results and conclusions derived from it, which take us
logically to the next experiment.

III.2 DESCRIPTION OF EXPERIMENTS, RESULTS AND CONCLUSIONS :

In the first experiment, we used the sane 256 sample
frame size but incorporated a 196 sample overlap between
adjacent frames. This increases the number of transition
frames four times and should give more temporal resolution,
as desired in consonantal and transition parts. The results
are shown in TABLE III.2.1. The PIX improved and has gone
upto 50. This proves that there is a need for improved
time resolution in the consonantal and transition parts.

But still the PIX is nowhere near that of English alpha-
bet. This can be reasoned out as below.

C4. In our attempt to improve the time resolution of
the consonantal and transition parts, we are increasing the
time resolution in the vowel part also. But a consideration
of signal structure of transition and vowel parts demands
a better time resolution in the former and better frequency
resolution in the later. This is so because the transition
part has 1little spectral structure and what matters there is
gross spectral behaviour and improved time resolution whereas

THE vowel part with its well defined formant structure demads
more spectral resolution and less temporal resolution to

reduce variance.

So in our seco:d experiment we tried to incorporate the
above considerations.
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For incorporating the abowve design features we n=ed
to know the vowel-consonant transitions. A rough estimate
will in fact do for our purpose. This, we obtained by
plotting educlidian distances between adjacent frames of
the utterance (14). The transition region is then earmarked
by large distances between adjacent frames.

Having obtained transition information as above, we
used 256 sample frames with 192 sample overlap between
adjacent frames and 4 mel spectral coefficients for each
frame (obtailned by averaging 4 adjacent co-efficients
of 16-mel spectral coefficients) in the consonant and
transition region and 256 sample frames with no overlap
between adjacent frames for the vowel part. The results
are shown in Table III.2.Z2,.

There is a definite improvement of PIX (from 50 to 68)
but still it is nowhere near the English alphabet PIX.

C5. We- conjectured that in the consonant region we not
only need overlap between frames but smaller frames size also.
This would ensure that the transition features are not

smoothened out.

But reduction of frame size leads to problems in the
vowel part by way of variance of spectmal values. In FIG.III.Z2.Z2,
a fYame size 'A' will maintain average level of spectral

FIG,IIT.2.1.
coefficients whereas that of 'B' will give rise to large
variation of level of spectral coefficients. This leads
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to problems in vowel part matching and will affect the
recognition adversely.

C6. This means that we need to have smaller size for
consonantal and transition region and larger frame size
for vowel part, or in other words variable frame size.

In our third experiment we tried this approach. We
took 64 sample frame size with no overlap for consonant
part and 256 sample frame with no overlap for vowel part.
We used 4 spectral parameters for the former and 16 for
the later (as in 2nd expt.) The results are shown in
TABLE IIX.2.3. It is important to poiht out that the
results pointed out correspond to the consonantal part
only. It is obvious here that we can not indiscriminately
combine vowel and consonantal parts because there will be
normalization problems due to different frame sizes. The

performance though betker than that for 2nd expt. suffers
from the fact that there will be inordinately large
distances when 64 length frame of consonantal portion is
matched with 256 length frame of vowel portion during

warping, due to normalization problems.
(PSR AS)
These experiments focussed the following problems in

the IWR system for confusable vocabularys:

If we incrcase the time resolution, variance of vowel
part will increase. If we reduce it, the temporal features
in the consonantal and transition parts get smoothened out.
If we try keeping different frame sizes, we will have
normalization problems when cross-matching is being done.

IV DISCUSSION OF EFFECTIVE SYSTEM DESIGN CRITERIA:

From the preceding section it is clear that what we
need now 1s a scheme which has good temporal resolution and
at the same time reduces the variance of feature vectors

in the vowel part.
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The wvariance in the vowel part, as we have observed
in the preceding section is mainly due to very large energy
level variations and will keep persisting as long as we use
spectral features, It can be avoided by taking LPC based
filter coefficients as features for the vowel part; since
the LPC coefficients are insensitive to absolute level
differences. 'This gets us to either Itakura measure or
Cepstral measure for distance computation. We chose the
later with a view to keep the distance computation similar
to Eucledian distance. Also it has been shown to be
superior to Itakuras measure (6).

Here again we have two choicess:

1. cepstral rms distance as defined by

i. [cociTr2®

cr-cf]”
T

Where Ci & Ci' are the cepstral coefficients representing
reference and test frames and co & Co' the corresponding gain
terms., Markel & Gray (6) showed that we can make Co & Co'
equal arbitrarily, without losing much recognition accuracy.
This leaves the energy level completely out.

2, A measure based on ve derivative of phase or group delay

function defined as

g L 2
d: gz i* [cr-ci'l
124

This is (also called weighted cepstral distance measum)
shown to be equally effective (18). Here again the gain terms
Co and Co' will not enter distance Calculation. ABy of these
two methods fit our requirements and the Cepstral Coefficients
can be Calculated from filter coefficients using the well

known recurrence relations (6).
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The above discussionhghown that LPC based Cepstral
distance measure is more suitable for Vowel Part, if we
want to have high temporal resolution throughout the
utterance as required by the consonant part (This also
avolids normalization problems associated with variable
frame sizes). But we cannot have LPC measure in the
transition and consonant part, since as outlined before,
the spectrum in those parts has little or no formant
structure and is highly suceptible to changes in the presence
of noise and needs only a gross spectral representation.
In fact the use of LPC might degrade the performance by
trying to attribute a well defined spectral structure
for these frames. It is also worth noting that LPC are
highly prone to noise degradation ( N5

This suggests one very important deficiency hitherto
overlooked in the recognition systems, namely the use of
uniform parameters all over the utterance, without regard
to the signal characterstics. What we need isa"Parameter
Extractionand Matching Strategy" dependent on signal charac=-
terstics. In the present case we need to use spectral
parameters in transition and consonantal parts and LPC
parameters in vowel parts.

This discussion assumes implicitly that we do a
pBeliminary classification of the utterance into consonant
& transition parts (CT) on one hand and steady vowel part (V)
on other. This method of preliminary classification has been
adopted in many systems (19) to reduce the pafameter
computation cost.

Thus on the basis of above discussion and experiments,

we propose the following method of recognition:

1. We make a broad categorization of utterance into
CT/V and silence.
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2. We then adopt different recognition stragegies in
different classes. The basic warping method remains in
the same. The features and matching algorithms will be
different for different classes. This really does not
increase the computational cost very much beeause the only
extra decision made &R is that of CTHV for each frame
and once this decision is made for each frame reliably,
we only cl@culate the appropriate features for each
test frame, based upon the preliminary categorization.

The £ reference templates on the otherhand will have
all different features stored for each of the frames and
when the matching is done the features which are
pertinent to the category into which test frame is
classified are used. This is very important part and
it ensures that since recognition is guided by test frame
rather than reference, the matching of test utterance with
different reference templates will have a strong normali-
zation.

In our case we propose to use LPC based cepstral
features for voiced parts and Mel cepstral parameters
(derived from mel spectral coefficients) for consonantal
and transition parts. The use of mel cepstral rather
than mel spectral coefficients would bring a better
normalization into play in the recognition.

3. The matching strategy takes the form of
Eucledian distance norm.

This approach poses one potential problem, that of
combining mel cepstral & LPC cepstral distances. This
is sorted out by taking PIX for consonantal and vowel
parts seperately.




IVAIMPLEMENTATION DETAILS OF PROPOSED SYSTEM:

1. We used a frame size of 128 samples with 64 sample over-
lap throughout the utterance.

2. The following parameters were calculated for each frame.

(A) 8 Mel-Spectral coefficients

(B) 8 Mel-Cepstral Coefficients

(C) 8 LPC-Cepstral coefficients

(D) Log Energy in decibels

(E) LPC Prediction error as a percentage of frame
energy

(F) First Autocorrelation coefficient as a percentage
of Zeroth autocorrelation coefficient.

(G) HILO, the ratio (in dB) of high frequency energy
to low frequency energy, derived from mel spectral
coefficients.

The LPC coefficients are calculated using preemphasis(6).
LPC Cepstral coefficients are calculated using recurrence
relations from LPC filter coefficients. Log Energy is calcu-
lated from Mel~spectral coefficients. LPC prediction error
was calculated using Levinson's algorithm (See appendix).
The HILO was calculated as a ratio of energy in the last
4 mel-frequency bands to the first four.

This part was implemented on IBM 370/155 system using
theFFTPGM, the listing of which is given in Appendix.

3. A begin end point detection was made based on the predic-
tion error, log energy and spectral coefficients; using an
algorithm similar to that of Rabiner et al (20). The PL/1
procedure used for this purpose SILENCE is listed as a part
of program NEWT in appendix. The begin end detection

results are shown in Table-IV.1l.
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4. The nonsilence ftames are divided into CT/Voiced frames
by the help of PL/1 procedure NONVOICED, which is listed as
a part of program NEWT in appendix.

5. For reference templates we need all parameters whereas
for test utterance it is worth noting that we need only the
parameters pertinent to the CT/V classification already made
for the frame.

6. The warping remained same as in the original system. The
distances are calculated using Eucledian norm or weighted
cepstral norm. The warping and distance computation are
made with the help of SRIBA programme listed in appendix.

7. The distances are accumulated for CT and vowel parts
separately and three distance matrices were formed, one for
the full utterance, one for consonantal part and one for
vowel part,

The decision is made, giving more weightage to the
nonvoiced transition part than the voiced vowel part. This
is necessary because a relatively long identical vowel part
in test and reference increases the chance of inordinate
distances between frames and spoils the performance even
though the consonantal part is correctly recognised. At the
same time we can not entirely neglect the vowel part because
we do not know the exact ending of transition region and
beginning of vowel part, and incorrect removal of vowel part
might lead to deletion of information important to recogni-
tion. Instead we reduce the weightage for the vowel frames

graduallye.

IV.2 RESULTS OF THE PROPOSED APPROACH
VARIANCE OF VOWEL PART & DTW

As was proposed in last section we implemented the above
approach, with 8 mel-cepstral parameters in consonant part
and 8 LPC cepstral parameters in the vowel part. The problems
we expected were of the nature of normalization errors
between different sets of parameters used.
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The results obtained are shown in table IV.2.1 . One
surprising result was that the performance was very poor in
this case. The corresponding results for 2 cepstral para-
meters all over the utterance were much more promising.
After convincing ourselves that the warping paths in two
cases are drastically different from each other atleast in
the consonantal part, (which is contrary to the experiments
made earlier((16)), and the former differs from warping
paths observed during earlier experiments, notably experi-
ments 2, we tried to analyse the warping in these cases more
closely. The difference between the present case and expt.2
was that the vowel part now has 4 times more number of
frames as before and smaller frame sizes.

It is well known that in the stop consonants we have
chosen, the vowel parts are identical, and as such, are not
supposed to give any distance in the ideal case. Even in
a non-ideai case, it is reasonable to expect that the order
of vowel distances be compatible to those of consonantal
frame distances. Now it is known that DTW does not depend
upon the absolute order of magnitude of the consonantal and
vowel part frames, but it does depend very much upon the
variance of the distances and we shall show below, as the
order of magnitude of vowel distances becomes larger compared
to consonantal distances (Here the distances in respective
classes depend upon the type of parameters used and their
number): the variance in the vowel distances also goes up
and a stage might come, where the large variances in vowel
distances can cause global warping path to be non-optimal
for the consonantal region.

Consider the following case to illustrate these points:
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A test utterance with consonantal and vowel parts as
shown 1is being warped against a reference (FIG. IV.2.1) .

Assume that B represents the segment of the Ideal global
warping paths, in the consonantal region. If there were

no variance problems in vowel part, this should have been

the consonantal part segment of the global warping path
determined. Now consider a case in which vowel distances
show large variances due to either of the following reasons:-

1. Small frame size

2. Number and type of parameters used.

Let us focus our attention on test frame TFl. Assume
without loss of generality that the local continuity cons-
traints of DTW:iconform to Itakura version. Assume that
¥sk Vo, V1, ... V4 are the points which fall inside the
global paralkllogram at test frame Tfl, Now we can see that
at Tfl-1, several warping segments terminate, out of which
segment B ia the optimal one. So accumulated distance at
B' is less than accumulated distance at A',C' etc., Now
for the points Vv1,v2,V3, B' can be a legal predecessor and
so as long as V1,V2 or V3 have minimal vowel frame distance,
the warping path in consonantal part remains optimale.
Consider the points Vo & V4 for both of which B' is not a
legal predecessor. In general there will be several such
points in the set (Vi). Now assume that due to large variance
in vowel distances Vo or V4 happen to be minimum among(Vi):
in such a way that cumulative warping distance at Vo(V4)
(which obviously exclude path B), might be minimal compared
to the corresponding values at v1, v2, V3. In such a case
we can be reasonably sure that the global warping path will
not be optimal in consonantal part.
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What is more important here is the variance in the
vowel distances rather than the magnitude order difference.
Given large variance in vowel part, the situation outlined
above is bound to occur at & some test frame or other,
provided the number of vowel frames is large enough. The
magnitude order difference hastens this process.

IV.3. METHODS COF CONTROLLING VARIANCE EFFECT ON WARPING PATH:

Two effective ways of controlling this phenomenon can
be suggested from the above discussion:-

1, The reduction of variance in vowel distances, which
can be brought about by, for eg., use of less number of
cepstral parameters in vowel part.

2. Leaving out the information containing absolute level
of the frame. This reduces the magnitude differences between
different wvowel distances. This automatically suggests three
reasons for absence of this warping path problem for expt.2.

1, The parameters used were '"Mel-spectral for 256 sample

frames", in both vowel and consonant parts, though their
numbers differed, which effectively ruled out the difference
in order of magnitude.

2, The frame size in vowel part was 256 instead of 128,
reducing variance of parameters in vowel part that much.

3. Finally the time resolution in vowel part was 1/4 of
its value in the present case. i

It is however instructive to note that, even in that
experiment we observed better results when we used 2 para-
metres instead of 16 in the vowel part (See table-III.2.2}).
This proves our point that, when we know that vowel parts
are identical we need to reduce the number of parameters in
the vowel part, to reduce the variance.
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Based on the above study we conjectured that 2=-para-

metres LPC based cepstral coefficients satisfy all +the

conditions and can be taken as in vowel part parameters.

We used the same parametres in the consonantal part also |
while- determining the warping path. This has an added E
advantage in that we will be using less number of para- |
meters in path fixing, reducing amount of distance compu- ‘
tation. From (16) we also know that the warping path '
thus fixed can be taken as the optimal warping path for E
any set of parameters with little loss of performance, ‘

The results of this stage were presented in Table
IV.3.1. The results show distdnct improvement in the
consonantal part.

IV.4 PARAMETER OPTIMIZATION STUDIES:

Tooptimise the number and type of parameters to be
used in consonantal part, we conducted following studies

1. Varying number of LPC cepstral parameters used
in the consonantal part from 1 to 8, This’is done for 2
cases.

l.,a, with rms cepstral distance measure

l.b. with weighted cepstral distance measure

all the results are tabulated in tables Iv.4,1.a and
Iv.4.1.b,

We observed that 5 parameters in consonantal part
give best performance in both l.a and 1.b. Also, it was
seen that the variation of performance with other than
optimal number of parameters im more severe in 1.B than
in 1.a.
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2, We used Mel-cepstral values in consonant part
and varied the number used again.We repeated this study
for two different cases,

2.a, With rms cepstral distance measure
2.b. With weighted cepstral measure.

All the results are tabulated in tables in IV.4.2.a
and IvV.4.2.b.

In this case we observed that in both 2.a. & 2.b.,
2 Mel-cepstra; parameters are optimal for consonantal
part. Again the best performance of 2 and 1 are comparable,

Thus we concluded that both Mel-cepstral (2) and LPC
Cepstral (5) are good parameters for consonantal part. We
also observed that rms cepstral and weighted cepstral
perform similarly for all cases.

IV.5 EXPERIMENTAL VERIFICATION OF THE PROPOSALS FOR LARGER
VOCABULARY s

We performed the recognition using the proposed system
and optimal parameters on 2 More KP sets. The results are
summarized in Tables IV.5.l1 and IV.5.2. These results, as
expected, support our conjectures.

Next we performed the recognition for one set of GA, JA,
DA,DHA,BA, 3rd Columns in Table-II.2.l1. We again found that
our system is valid for these utterances also as we expected.
The results are tabulated in IV.5.3. It is worth noting here

that we had to reduce the transition frames here for good

recognition, because, it is known that for this set the tran-

sition part is rather short.
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V. CONCLUSIONS:

V. a) Discussion of Results:

We investigated, in this report, methods for better
recognition of confusable vocabulary. The underlying
philosophy behind most of the methods suggested in
this report is signal dependent matching, and we proved
with the help of numerous experiments the efficacy of
the approach.

We showed that a two pass recognition where first part
classifies the utterance into broad classes like w/v and
second part uses suitable parameters is superior to
ordinary one pass algorithms. We also showed that the
computational cost can be reduced, by using very small
number of parameters for fixing the warping path, and
the optimal matching can then be carried out using this
warping path with a better set of parameters.

We also showed that a matching strategy which is
optimal for one column in the stop consonants table
(IT.2.1) is also optimal for other columns, by taking
Ga, Ja, Da, Dha, Ba set into consideratione.

Issues raised during the studys

The study gave raise one important side issue, the
effect of parameter variance on the DTW algorithm. We ¢
showed that a relatively long steady part in an utterance
can adversely affect the recognition if the variance of
parameterfs in this part is high. We suggested methods
and parameters to be used to off set the variance effect.
One noteworthy result is that DIW will be least affected
when we use least number of parameters; since this also
reduces the computational cost.
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Apart from this we also discussed the frequency and
time resolution tradeoffs in the vowel and consonant parts.

Scope for further Studiess

1) The methods developed for Ka, Cha, Ta, Tha, Pa can be
tried for the other columns too (we already showed that
these work well for Ga, Ja, Da, Dha, BA too).

2) Similar stretegies can be developed for utterances
in the same row also.

3) The Dynamic time warping algorithm limitations in the
context of Isolated confusable vocabulary recognition can be
further reduced by using a level building type of DIW

algorithm, in which the warping path in consonant and vowel
part can be made relatively independent of each other.

-XXX-
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/¥ This Program .
1. Copies Parameters of each frame of digitized utterance
2. Calculates Cepstarzl Coefficients from LPC
3. Dtects end points "
4. Makes V/UV decision [
5. Puts the Results in AZM file.
*/
WEIGHT: PROC OPTIONS(MAIN);
DCI. (TESTPAR(150, 30), DIFFPAR( 150, 30) ) FIXED;
DCL. (IUT1.J;JJ,IEND;ITENP;lPrVERQ;K:FR THRSL., NTEMP, JM, IPQ, LM, IGUI
DCL. (IEN THRSL,M_ENERGY, IPRED THRSL, IBEGFR, N_UV, L_UV, I, N ) FIXED:;
DCL. (PREDERR, HTLO. AUTOC, DISTR YFLOAT
DCL. (CEP(20), A(20) s FlL.OAT;
DCL. (SPEAKER, REP(150): MF(150), EXT(150) ) FIXED;
DCL. (IFRTEMP(8), IBEG(S) -} FIXED;
DCL. (8YM(180) ) CHARICL )
DCL. (SYMBOLC150) ) CHAR(2);
DCL (UTRFTL, NUTR, AZMCYL ) FILE INPUT;
DCL (AZ FILE QUTRUT;

Ml
BILENCE: PROC

/7# This Procedure takes the digitized and parameterized utterance
and calculates the silence bounds, taking into account
. Log Ermergy '
2. Prediction Error
3. Mel Frequency bands

Various Thresholds used are

1. TEN_THRSL 0
{Log Energy Jump Threshold 10 db. 3

2. FR_THRSL
{Mel Frequency band jump Threshold 8 db. }

3. IPRED_THRSL.
{Prediction ervror Jump Thrsl 30 % ¥

5/
THRSL_DE}ECIDR: PROC (IPAR, DIFF_THRSL, ITYPE);

QUT=0;
DO WHILE (IOUT=0);
IEND=0; |
DO J=2 TO_EXT(IUTT) WHILE(IEND=0);
IF ITYPE=1 THEN D0;
IF DIFFPAR(J, IPAR) »= DIFF_THRSL
THEN_ DO
ITEMP=0; LM=0;
DO IP=1 TO &
ITEMP=ITEMP+DIFFPAR (J+IP-1, IPAR);

gﬁD;TEMP >z (DIFF_THRSL) THEN  LM=LM+1;

IF (LM-1) = 4 THEN DO;
IBEG (ITYRE)=J;
IEND=1;

END;
B8k ;

LEND
ELSE DO; \
IF DIFFPAR(J, IPAR) <= DIFF_THRSL
THEN DO;
ITEMP=0; L. M=0;
DO IP=1 TO 6&; .
ITEMP=ITEMP+DIFFPAR (J+IP—1, IPAR);

T F b- % = A
|

) Fixi DY

ELSE




IF ITEWP <= (DIFF_THRSL+5) THEN LM=LP+L; ELST.

N | 15

i (LML) o 4 THEN £a;
IREG CTTYPE ) =J;
TEMEY = )
ENMDG ELSE

NI
. ELSE:
NIV
END; \
IF ITYPE=R & IBEG(2) >= 30

RS

THEN DIFF_THRSEL=DIFF_THRSL+%
ELSE I0UT=1;

END; .
END THRSL. DETECTOR;
FRQBEG: PRQC;
/% This procedure processes Mel Frequencg bands
for begin point information %/

DGCL. IFRG(S) FIXED;

ITEND=Q;
DO J=1 TO EXT(IUTT) WHILE(IEND=0); .
NFRQ=Q;

DO K=1 TO 8;
IF DIﬁﬁPAR(d;K) »= FR_THRSL
NFﬁG =NFRQ+1;
IFRQ (NFRQ ) =K;

IF MFRQ »=.3 ' (MFRQ = 2 & IFRQ(1)=7)

THEN DO;
IFRTEMP=0;
NTEMP=0;
RO IP=1 TO NFRQ;

Li==0;

DO I=1 TO 5; ;
‘ IFRTEMP(IP)=IFRTEMP (IP)+DIFFPAR(J+I-1, IFRQ(I#}

IFEéEBTEMP(IP) »= (FR_THRSL-2) THEN LM=LM+L1;

éﬁ (LM-1) >= 3 THEN NTEMP=NTEMP+1;: ELSE;

D;

IF NTEMP Z= 3 ! (NFRQ=2 % NTEMP=2 )
THEN DO; !
IBEG(3)=J;

) END;
END;
END FRQBES;
/¥ THE BODY OF SILENCE BEGINS ¥*/

FALL THRSL _DETECTOR(17, IEN_THRSL, 1); ' \
M_ENERGY=0i

DO J=1 TO EXTC(IUTT);
IF M_ENERGY < TESTPAR(J: 17)
TTHEN M_ENERGY=TESTPAR(J, 17);

END;
IF IBEG(1) 60 THEN DO;

TEND=0;
DO J=2 TO EXT(IUTT) WHILE(IEMD=0);
IF TESTPAR(J, 17) = Q. B*M ENERGY
THEN IF J<= IBEO(l
THEN DO
IBEG(1)=.J;
JEND=1;
END;
i N )0 1
END; )
CALL THRSL DETECTOR(19, IPRED_THRSL, 2);
CALL FRQBEG;




ENMD;
I

END;

END THRSL.

FRQBEG: PROC;

I ITTEMP <=
EMDY;
U= ALF-1) == 4 THEN DO;
IREG COTYPE ) =J;
YE YY)
EMNDG ELSE;
= NIJA
ElGE;
BN
ITYPE = & IBEG(2) »>= 350

DETECTOR;

{DIFF_THRSL+53)

THEN DIFF_THREGL
ELSE I0OUT=1;

THER LiM=LM+L; EL55.

=DIFF _THRSL.+5

/% This procedure pProcesses Mel Erequencg bands
for begin point information %/
DCL. IFR@(S) FIXED;
TEND=0;
DO J=1 TO EXT(IUTT) WHILE(IEND=0); .
NFRQ:=0Q;
DO K=l TO 85
IF DIFFPAR(J, K) = FR_THRSL
THEN DO;
NFRQ=NFRQ+1 ;
IFRQINFRQ ) =K;
END;
; EMD;
IF NFRQ »=-3 ! (MFRQ >= 2 % IFRQ(1)=7)
THEN DO;
IFRTEMP=0;
NTEMP=0;
DO IP=1 TO MFRQ;
Lid=0;
DO I=1 TO 5;
IFRTEMP(IP)=IFRTEMP (IP)+DIFFPAR(J+I--1, IFRQ(I"
IFE&ERTEMP(IP) >= (FR_THRSL-2) THEN LM=LM+1;
éED(LM_l) >= 3 THEN NTEMP=NTEMP+1;: ELSE;
IF NTEMP = 3 ' (NFRQ=2 % NTEMP=2 )
THEN DO ‘ i
IBEG(3)=J;
TEND=1;
END;
) D -
END;
END FRQBES;
/¥ THE BODY OF SILENCE BEGINS ¥*/
CALL THRSL DETECTOR(17, IEM THRSL, 1);
M_ENERGY= 0;
DO J=1 TO EXT(IUTT);
IF M ENERGY < TESTPAR(J, 17)

TTHEN M_ENERGY=TESTPAR(J, 17);

END;
IF IBEG(1) 60 THEN DO;
IEND=0;
DO J=2 TO EXTCIUTT) hH;LF(IEND =0);
IF TESTRAR(J, 17) 2= (. 8#M_ENERGY
THEN IF J<= IBEP(I)

THEN DO;
IBEG(i)-d.

; MDD ;
END;
gHggL DETECTOR(19, IPRED_THRSL., 2);

i

CALL.
CALL.




1TRECFR=1000;
DO IPQ =1 TO 3; ) 1
EﬁDIBEG(IPQ) . IBEGFR THEN IBEGFR=IBEG(IPQ};
PUT SKIP EDIT(IUTTfS\MBDL(I):REP(I);IBEG(I).IBEG (21, IBEG(
s TBEGFR, “#/)(X(5), F(2), 8(2), F(1),F(O),F(&6)Y,F(&), F(&?
DO J=1 TO IBEGFR-1;
BYM(J)=E

END;
/#END SILENCE FRAMES #/
TEND=0;
DO J=EXT(IUTT) TO 1 BY -1 WHILE(IEND=0);
IF TESTPAR(J 17) = M_ENERGY#0.8
THEEN DO
DO JJ=J TO EXTCIUTT);
SYMJUY= "%’
END;
ND ----- 1;

-
Ll )
N
~
-

END;
END SILENCE ;
VOICED: PROC; p

/#This Procedure carries the V/UV clasification of the
end p01nt detected signal #*/

D” J IBEGFR 70 IBFGFRiqol
PREDERR= —(TESTRAR (.J, 19)
HILO=(TESTPAR(J, 20)+17)/
AUTOC=(TESTPA&R(J, 18)~753)
DISCR=0. 6#PREDERR+0O, 2#HI
IF DISCR < ¢ THEN D0;

TES TPAR(‘Ji e2)=1;
N Uy=N_ UY+1;

(WIYEN
Fﬂh;

E:ND; -
IF (L. UV - IBEGFR) = 15
THEN L. WY = IBEG FH+1J;
IF (. WV ~IB:G(I)) <= 3 THENM L_UV = IBEG(1)+5; ELSE;
L_Uys= ]BFGFR+[J
RO J=1IBEGFR TD EXTOIUTT)
IF JOl UY THEN TESTPAR(J, 21)
ElLSE TESTPAR(J, 21)

30)/710;

3;
/710;
LO+0. 2#AUTOC:

Qi

;1;

END;
END VOICED:

/% START DﬁIMAIN PROGRAM

Th1s part of the Program Cﬂﬁles the parameters of the
E1t1zed vtterance form AZMC1 file and calls
ENCE and YDICED procedures.

The silence frames are marked with % The voiced
frames are marked with a ‘1’ in the 21st parameter
of the corresponding frame. ’

Output is to thea ﬁlM file

IEN THRSL=10;
FR_THRSL=8;
TEETPAR=0;
GET FILE(NUTR) EDIT&N) (F{3));
GET SKIP FILE(UTRFIL );
DO I=1 TO WN;
gEE SKIP FILE(UTRFIL ) EDITC(EXT(I)) (X(1i4),F(3));
DO TUTT=1 TO M




DO =31 TO EXTOIUTT )
GET SKIP FILE(AZMCL1) EDIT(SYMBOL(J):REP(M), MF(J))
(A(2), FCL), F(3));
DO K=1 TO &;
gﬁg FILE(AZMCL) EDIT(TESTPAR(J, K)} (F(3)};
DO K=9 T

14
GET FILE(AZMCI) EDIT(TESTPAR(J, K)) (F(51);

GET FILE(AZMCI) EDIT(TESTPAR(J.17) TESTPAR(J, 18}, TESTPAR(J, 19),
TESTPAR(J. 20)) (F(3),F(2),F{(2 ). FOi3h s

END
DO K=1 TD 20;
DIFFPAR(1, K)=0;

END;
DO J=2 TO EXT(IUTT);
DO K=1 TO 20;
DIEFPAR (v, k) =TESTPAR (J) K) ~TESTPAR (J-1. K)

END;

DO J=1 TO EXT(IUTT);
aYM(J)_' ‘;
END;

IPRED THRSL=-25;

CALL SILENCE;

CALL VOICED:;

/# Calculation of Cepstral CocPtts from LLPC Coeffts. #/
po JJu=1 TD LhTfawélu
All)=1.,
DO K=9 TU 1la&;
A(K-7)1=FLOAT(TESTPAR(JJ, K), 10) 710030,
END;
A(2)=A(2)#10;
CEP(1)=A(2);
Do J=2 TO 8;
CEP(J)=J*A(!+1);
JM=J—1;
DO K=1 70
CEP(J)"CEP(J) ~CEP (K)#ACI~K+1);
END;:
END;
DO J=1 TO B

CEP(JI= —CEP(J) /.J;
TESTRAR JuUr 8+)=CEP(J) %10000;

1

END;
DO J=1 TO EXT(IVUTT);
PUT SKIP FILE(AZM) EDIT(SYMBOILL (), REP(J), SYM(J), MF(J))
(AC2), FCL),ACL), F(3) )
DO K=1 TO 8;
LE(AZM) EDIT(TESTPAR(J, KI) (F(3) 3;

EN
DO K=9 TD 16; :
PUT FILECAZit) EDIT(TESTPAR(J, K)) (F(&));

END
DO K=17 TD 22
PUT FILE(AZM) EDIT(TESTPAR(J, K)) (F(3));

ND;
END;
PUT SKIP EDIT(IUTT, SYMBOL (1), TESTPAR( L. L, TESTRAR(1,2))}
(F(4), X{2),A(2), F(4),F(4);

END;
END WEIGHT;




SEEERE POMOT I TAKDT teaass
/% This program is to i
1. Fix the warping paths
arameter set specified in DATFIL,
. Q@ uvte the accumulated distance with all
wi
distance in

each of the cases.

ITAKI: PROC ;.

DCL uUT FIXED

DCL MELKEP FIXED;

DCL (ZTSTD, ZREFD, TOTAL1, TOTAL2, TOTAL. @, PRT

DCL - (TITRAR, JJP, TT, KT, MOD1 . MODLO, GIVENPAR )

DEL BTAK. FILE INPUT;

DCL LAOGKEP FILE INPUT;

DCL. &1

DCL T1TT FI

DCL (NKEP.PT) F
TST

DCI.. #R
EAR(EOJQOO)

. UTRFIL
DCL PRINT
KEP

— MMM = T M 2GS T
=
T
- :

F
s
[

=M

X
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TMOCZTTNTTTE . NGOSTMTT
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/# The internal procedure INITZU
i. When called by the main procedure,

used to determine the array sizes.

INITZU: PROC(TSTFIL, UT)

DCL. TSTFIL FILE VARIABLE ;
DCL UT FIXED i
DCL TSYMB CHAR(2) ;
DCL SYMBOL CHAR (1) ;
TSYMB = “$%° ;
OPEN FILEC(TSTFIL) -
DO WHILE(TSYMB = ‘##7) ;
GET FILE(TSTFIL) EDRIT (TSYMB){A(2)) ;
GET FILE(TSTFIL) EDIT (SYMBOL)<{(AC1)) ;
PUT SKIP EDIT (TSYMB) (A(2)) ;
UT = UT + 1
END .
CLOSE FILE(TSTFIL)

Ut UT 1
END INITZU :

t j the parameter
all the above-fixed warping paths and compute the total

» TSTD, REFD
FIXED;

in each cd3se of comparison with the

sekg

.35./

) FLOAT:;

determines the number of
utterances in Teference as well as test files

These values are
®*/




DRIVE: PROC

i

DCL P1 FIXED
DCL SYN CHAR (1)

DCL P2 FIXED
DCL @ FIXED
DCL. FRMDIS(F) FLOAT
DCL. DISMAT (&, F+1) FLOAT
DCL. NARRAY (UT) FIXED i
DCL MARRAY (UR) FIXED
DCL. TAVG FIXED

DCL RAVG FIXED

DCL. IT FIXED
DCL IR FiXED
DCL M FIXED i
DCL N F1XED
DCL DIST LA

DCL X F1XED

DCL. Y FIXED
DeL. 2 F XD

DCL T FIXED
DCL. J FiXED
DCL K FIXED i
DCIL PATH(F) FIXED ;
DCL TRAC(F,F) FIXED i
DCL TESTPAR(UT,F, 34) FLOAT
DCL REFPAR(UR, F, 34) FLOAT
DCL DISTANCE(UT,UR) FLOAT i
DCL PATRN(UT,UR,F)  FIXED :
DCL INDXLO FIXED
DCL INDXHI FIXED i
DCL ZREFFPAR(34) FLOAT i
DCL ZTESTPAR(34) FLOAT
DCL ZDIST FLOAT
DCL MATRIX(UT, UR, &) FIXED »
DCL NMATRIX(UT,UR)  FIXED |
DCL IMATRIX(UT,UR)  FIXED

DCL PIX FIXED
DCL FLAG FiXED

/% Ihe intern:

ny

LESE

AcCco
TOTF
Usin
the

Usin
Cheet
ACCo
for

arra
Read
the

31 procedure LOPY: ) -
rding to the index 1T, gats\the utterance information
IL/REFFIL in the varoable TSYMB.

g the information obtained in TSYMB, from the UTRFIL,

from

computes

START and EXT information of that particular utterance.

g BTART and EXT information, accesses the valid region
ke pach frame. and skips if it is silence.

rdimg to the information in P (number of parameters to
comparison) copies the valid portion of the parameters
y TESTPAR/REFPAR. ‘ . ] )

s the valueg of welﬂht1ng function and VUST information
#ZM +tile along with the other parameters.

COPY: PROC(IT, TSTFIL, TESTPAR: NARRAY, TST, PAR)
DCL IT FIXED i

DCL.
DCL
DCL
DCL
DCL

TST
PAR {20
QARRAY

Y

i FIXED
» 200) FIXED ;
{%) FIXED i
FIXED

FIXED

of UTRFIL.

be used
into the

from
%*/




DCL. Z FIXED

DCL START FIXED

DCL EXT FIXED ;

DCL. TESTPAR{#, %, #) FLOAT

DCtL. SYMBOL CHAR(1) ;

DCL TSYMB CHAR(Z) ;

DCL SYM CHAR(2) ;

DCL SYMB: CHAR (8)

DCL TSTFIL Frib VAR AL
DCL _J PIXE,
38(IT-1)

DPEN FILE(TSTFiL )

DO WHILE (X ~= O) ;
GET FILE(TSTFIL! €DIT (SYMBOL) (A1)
X = X—=1 ; . :

END ;
GET FILE(TSTFIL) EDIT (TSYMB) {(A(2));
CILLOSE FILE(TSTFIL)

DPEN FI%ESUTRFIL) 3 .
DO WHILE (TSYMB ~= 3YM)

gﬁg SKIP FILE(UTRFIL) EDIT (SYM)(A(2)) ;
GET FILE(UTRFIL) EDIT (START.EXT)(X(4),F(4), X(4),F(3)) ;
CLOSE FILE(UTRFIL) ;

N = EXT ;

OPEN FILE(AZM) LINESIZE (150);
DO X = 1 TO (S8TART = 1)

A GEB SMIP FILE(AZM) ;

1
b0 '="1 70 EXT
GET FILE(AZM) EDIT (SYMB) (A(7))
IF_SUBSTR(SYMB, 4, 1) "= '8’
THEN DO
DO K = 1 TO , .=
gET FILECAZM) EDIT (TESTPARCIT.Y. 1)) (F(g)) | -
DO K = 9 T0 16
GET FILE(AZM) EDIT_(TESTPAR(IT.Y,K))
TESTPAR (1T, Y, K)=TESTPAR(LT, ¥, K) /10000;

i

SERECS BT

DO K=17 TO 22; .
GET FILE(AZM) EDIT(TEBTPAR:IT, Y, A1) (F(31);

END;
/% DO K=23 TO 30; iy
GET FILE(AZM) EDIT(TESTPAR(IT, Y. K} (F{&)};
EEETPAR(IT;Y:K)xTESTPAR(IT,?,M)/lCGﬂO;
/% 1IF TESTPAR(IT,Y.34) < 0O
THEN TESTPAR(IT.Y:34) = 0O ;
ELSE
IF TST= e
THEN GET FILE(AZM) EDIT(PAR(IT:K??fFfJ;?;%/
Y =Y + 1 ;
END ;
ELSE

GET SKIP FILE(AZM) ;




END
MOARRAY(IT) = Y = 1 ;

CIOGE FILE(AZM)
END COPY

/% The internal procedure WAL

1. Is called from the ETBCedure DRIVE. .

2, Initializes the HZFLAG array to O (which indicates whether a
horizxontal transition has occured at the previous tesl frame
Comparison). ]

3. Initializes the PRVCUM array to 10000 (infinity) (which indicates
the accumulated distance at the previous test comparisonl), but
PRWVCUM(L), PRYCUM{Z2): and PRVCUM(3) to zero to give an initial
ﬁleii?ilitg of first 2 reference frames to match with the first
iest fFrame.

4. Initializes TRAC, the 2-d arraY, to 3 to indicate the undefined area
which, later 3s modified to O.1 or & to indicate the path slope.

5, Initializes PRNCUM array, which contains the accumulated distance
at the Rresent test frame comparison as 10000 (infinity).

& Calis the procedure LIMITS to obtain the lower and upper limits for
the reference frames to be compared with the given test frame, as
dictated hy the gYobal region paralleloagram.

7. Calls the procedure VECTCMP to compute the Eucledian distance
between ‘the given test frame and each of the reference framees of
the global region. ] i B ; ]

2, Performs the marpin? function using FTAKE constaints throuﬁh the
above steps, for all the test frames in sequence. Stores the
temporary path information in TRAC for each test frame.

2. Stores the accumulated value at the last test frazmz in DILI

10. From the temporary information of the slogz a# "4 gati 1n TRAC,
back—tracks the warping path and stores it ;rn ins I-d array, PATH

" i/

WARP: PROC(M, N, DIST, IT, PAR)
DCL(FRDIS(M), PRYCUM(M), PRNCUM(M), DIST, TEMPMINM ) FLOAT
DCL (MZFLAG (M) » I, J: Ko My N, KL KU, KLLL, IT. PP 3 FIAKED;

DCI._ (PARZ0, 200)) FI1XED;

DCL. DATF FILE InituTs
DO X = 1 TO M ; .

HIFLAG(X) = O ;

PRYCUM{X)Y = 10000 ;

EMD 5

PRVCUMLL )Y = O

PRYCUM(Z)Y = O ; y

PRYCUM(3) = O ;

DO X = 1+ TO F-;

Doy = 1 70 F ;
TRAC(X,Y) = 3 ;
END
END

DO WU =1 TO N ;
PO X = 1 TO M ;

PRNCUM{X) = 10000 ;

END

CALL LIMITS1¢J, M) N, KL, KUY

P=TESTRARCIT, J, &1);
IF ORDPAR=1 THEN P=GTVEMDAR

CaLL INDEX:

CALL WELTINE i, FRO TS, KL KA
IF W > 2 THEN IF PRVCUM{(K—-1) < PRVCUM(K-2)

THEN DO; TEMPMIN = PRVCUM(K—-1) ; TRAC(J,K) = 1 ; END ;
= PRVCUM(K-2) i TRAC(J,K) = 2 i END ;

ELLSE DOy TEMPMIN
ELSE IF K o 1




THEN DO: TEMPMINM PRVCUM{X—~1) ; TRAC(J,K) = 1 ;END ;

ELSE DO; TEMPMIN = PRVCUM(K) ;
TRAC{J. K) = i
HZFLAG(K) = 1 ;
END
IF HZFLAG(K) = O THEN IF PRVCUN(K) < TR
THEN DO ; T"‘ i iN i (I
EL::
ELSE HZ{LHG(K) = 0 ;
PRNCUM(K) = TEMPMIN + FRDIS(K) ;
END ;
DO X = 1 TO M ;
PRVCUM{X) = PRNCUM(X) i "
. END ;
 END :
DIST = PRNCUM{M)
DO X =1 70 F

PATH{X) = O ;
END
ﬁATH(N) =M ;

DO X =1 TO N~-1 ;-
PATH{N-X) = PATH(N~X+1) = TRAC{((N-X+1),K) ;
R o= PATH{N-X) ;
END

END WARP ;

/% The internal procedure VECTCMP:
1. calculates the Distance (Eucledian RMS gr heaghted Cepstral
as the case may be), between the testframe RAME) and
each of the reference frames from KL to KU, taking all the P number

of parameters into account. '
2. The computed distance is stored in the array DIST.

=

] */
VECTCMP: PROC (FRAME, DISTANCE: KL, KU)
DCL (FRAME, KL, KU, I, .J, Z ) FIXED ;
DCL (DISTANCE(#) ) FLOAT |

DO I = KL TO KU
DISTANCE(I) = O ; .
IF INDXLO = 9 ! INDXLO=23 THEN DO;

DO J=INDXLO TD INDXHI;
IF NKEP=1 THEN DISTANCE{(I)=DISTANCE(I)+100#(REFPAR(IR, I.,J)

- TEDTPAR(IT FRAME , J) ) a2 ;
ELSE DIS TANCE(%) DIGTANCE(I)+100*((REFPAR(IR I, )-TESTRPAR(IT, FRAME, J) ) #{J~TNDX L]
EN

END;
EL.SE DO:
) Do J= TNDXLD Ta: [N8XHI BY IITPAR;

DG JJP=0 TO IITPAR-1; - ’
REFD=REFD+REFPAR (IR, I, J+JJP);
TSTD=TSTD+TESTHAR (1T, FRAME; J+JJP);

END
DISTANCE(I) =RDISTANCE(I)+ABS (REFD-TSTD);

END;
END VECTCMF ;




$CMPO PROC
IF INDXLO=9 ' INDXLO=23 THEM
DO J=INDXLO 711 SIEEeg
IF NKEP=! THHEN 2irt
ELSE ZDIST=:z0.
END:
END;

EL 8E DO

EVEC
IDIY

(
Z

=

}=ZTESTRPAR (uJ) ) w33,
ESTPAR (J) ) ¥ (J-INDXiU+1)

DO J=INDXLO TO INDXHI BY IITPAR:
ZREFD=0; £ TSTD=0:
Do JJP=0 TO IITFPAR -1
IREF D=ZREFD+ZREFPAR (J+JJP) ;
ZTSTD=ZTSTD+ZTESTPAR (J+JJP);

END;
ZDIST=ZIDIST+ABS (ZREFD—-ZTSTD);
END;
D -
END ZVECTCMP ’
INDEX : PROG

/% I AZM  file 1-8 Mel Spectral parameters
’ 9—14 LPC Cepstral parameters

'R 23-30 Mel Cepstral Earameters #/
IF = 1 THEN INDXLOD = 9 ;i ELSE ;i
IF ?Nlo THEN INDXL0O =MODLO J ELSE

DAHI=TNDXLO+1;

IF P=0 & MODLO=1 THEN INDXHI=INDXL.O+7; ELSE;
I
I

m U3

IF P=0 & INDXLO=%9 THEN INDXHI=INDXLO+MOD1; ELSE;
: F P=0) & MELKEP=1 THEN 1IMDXLO=23; ELSE;

F P=0 & MELKEP=1 THEN INDXHI=INDXLO+MOD1; ELSE:

END INDEX ;

/% The internal procedure LIMITEL: L . {

: 1. Calculates the upper and lower limits (KU,KL) of the teference
frames for a given test frame (J) where M and N represent the number
of frames in rteference and test frames respectively. The computation
iz according to the concepts of the wider search region,

%/
LIMITSL: PROC (o My N, KL, KU)
DCL (Jo B NS KL, KUY FIXED |
EI =Sl
KU = J/2 ¢ M~ NAZ
I J = 1 THEN KL = 1 ;
L ELSE
END LIMITSI ;

COMPMAT @ PROC
F’ }' x - .

X =D
po IT =1 TO UT ;
DO IR = 1 TO UR , . )
NMATRIX{IT, IR - DISTANCECIT, IR) # 100 / DISTARCECIT, IT) ;
X = MNMATRIX( )

PI=
IT, IR
IF X < 80

THEN ¥ = O ;°
ELBE IF X < 100

>

THEN Y = (X/2) - 40 ;
ELSE IF X < 110
THEN Y = X = 90
EL.SE IF 39

¢




FLBE IF X < 14D
THENM ¥ = X — &5 ;
ELOE v = 100 ;

IMATRIX{IT, TRY = ¥
I T "= IR THEM FIX = 71X + IMAGTRIX(IT, IR)
El S
END
END
PIX = (PIX ® 100) / ((UT #* UR) — MINM{UT,UR)) ;
PUT SKIP(2) EDIT (‘DISTANCE MATRIX. NORMALIZED MATRIX., INDEX MATRIX?)(A) ;
PUT SKIF EDIT (’AND PERFORMANCE INDEX FOR THE PARAMETER SET ‘) (A) ;
PUT EDIT {Q)Y(F(3)) ;
DO IT = 1 TO UT ;
PUT SKIP ;
DO IR = 1 TO UR ;

PUT EDIT (DISTANCE(IT: IR))(F(B 1) ;
PUT EDIT ¢’ ‘)(A) i ‘
DO IR = 1 TO UR ;

PUT EDIT (NMATRIX(IT) IR))(F(5)) ;

PUT EDIT (' ‘)(A) ;

DO IR = 1 TO UR ;
PUT EDIT (IMATRIX(IT, IR))Y(F(3)) ;
END ;

END ;

PUT EDIT (PIX)(F(3)) ;
END COMPHMAT ;

/H# Rk gaEeR#£E BODY OF THE PROCEDURE "DRIVE" FEEGERBRER H/
/¥ pusRxgxessr  BODY OF THE PROCEDURE "DRIVE" HEEFAREREERR
/***%***-ﬁ****%**ﬁ-ﬁ-**%********%%%*%%*** ***********-ﬁ-*************/

/¥ The internal procedure DRIVE:
1. Is called from the maln_Procedure ITAKS.
2 . Calls the procedure COFRY to get a cop% of the parameters of the
required patterns (both reference and test). Here the 2-d array

TETPAR contains the parameters of a test utterance and REFPAR

contains the parameters of a reference utterance.

Calls the procedure WARF to perform a time warping operation
between TESTPAR and REFPAR using oly 2 LPC cepstral parameters.
The result is accuymulated distance in DIST and warping path in PATH

After each calling of WARP, it stores the DIST information in

DISTANCE matrix and path information in a 3-d PATRN array.

Prints the confusion matrix available in DISTARMNCE.

Prints warping paths of all the cases available in PATRN.

C1Ff FFW=1). ; ' Tl S

After Finding the distance matrix DISTANCE and warping path set

PATRN, calculates the accumulated distances for vowel and

consonant parts seperately with same warping path and required

set of parameters. ALY the distances are stored

in a_ &2-d array DIEMAT  The toltal distance for each parameter set

is alesp calculated and stored in the DISMAT matrix as the last

entry I die. ., (F+1)Yth rowld,

o

NoTu ok

8. Prints the Cumulative Distance lable i+t PRT=% y
+*




DOIT = 1 TO UT ;
TST=1;

ESLL COPY (1T, TSTFIL, TESTFAH, NARRAY. TS3T, PaR

DO TR = 1 TO UR ;
TST—O:

gﬂl. COPY (1R, REFFIL, REFPAR, MARRAY, TST. PAR) o
/¥ ini % lization of parameters +or path fixing , read from DATFIL #/
DO IT = 1 7T ]

N = NARRAOY(IT)

DO IR = 1 10 UR

M = MARRAY (IR) ,
DISTANCE ¢ IT,IR) = DIHIA
DO K =1 TO0 F ;
PATRN{IT, IR, K) = PATH{K) ;
END ;
END ;

END
PUT SKIP(2) EDIT ( 'FOLLOWING ARE THE RESULIS 0OF FIRST STAGE 0OF THE TWO STAGE
APPROACH ") (A) ;
/% Gives only Overall Matrix #/

/B BB I B A 3 B IR B 3 R R T I I G R B SR R RN S
/A6 3635 A I R B 3630 40 30 H R H 06 IS A R PRI e R RN S

=P ;
CALL COMPMAT ;

GET FILE(FFW) EDIT (FLAG)(F(1)) ; .
/# if FLAG is 1 warping peath is printed %/

IF FLLAG = )
THEN DO ;
PUT SKIP(2) EDIT (‘##% WARPING FUNCTION IS AS BELOW ##%7)(A) ;
PUT SKIP(2) ; ; . ) 3
DO IT =1 TO UT ;
DO IR = 1 7O UR
PUT EDIT (IT;IR)(”(F(i)));
PUT SKIFP ;
DA K =1 TO F
PUT ERIT (PATRN(IT IR, K)Y)Y{FL3)) ;
END ;
END ;
END
END ;
ELLSE
FLAG = 1;
IF FLAG = 1
THEN DO ;

/% Rest of this procedure DRIVE is fom comput:n% the d1stance
between thouse frames. ?Jven by the warpin unction availa-
ble in PATRN. seperately for consonant and vowel parts
printing them in a tahbular form .




PUT SKIP(2) EDIT (/###RESULTS OF THE SECOND STAGE ARE_AS BELOWx##/)(A) ;
PUT SKIP(2) EDIT (’IF YOU WANT 70 PRINT THE DISTANCE TABLE’)(A) ;
PUT SKIP EDIT ¢ 'PRESS 1 OTHERWISE O S YAy
GET FILE(FFD) EDIT (FLAGY{F{1)) ;
MODL.O=1;
DO IT = 1 TO UT

DO IR = 1 TO UR H
/¥ initialize the DISMAT matrix ®/
PO J =1 T0 & ;
DO K =1 70 F+1
DISMAT(J, K) = 0
END ;
END ;
‘ Pl = 146 ;
DO G=1 TO 1;
DO X= 1 TO NARRAY(IT) |
Y = PATRN(IT, IR, X) i
P=TESTPAR(IT., X: 21); .
IF ORDPAR=1 THEN P=GIVENPAR;
CALL INDEX;

DO J = INDXLO TO_INDXHI
ZTESTPAR (J) = TESTPAR(CIT. X, J)
gﬁ%FPAR(J) = REFPARCIR, Y. J) i

CALL ZVECTCHMP
DISMAT(Q, X) = ZDI 3
DISMAT(G:NARRAY( T +1) = DISMAT(Q: NARRAY(IT)+1) + DISMAT(Q, X) i

EN
IF MELKEP=1 THEN DO:
DO TT=1 TO &;
DO KT=1 TO F+l; .
DISMAT(TT, KT)=DISMAT(TT,KT) /100;
END;
END;
END; ELSE ) |
MATRIX(1T, IR, Q) = DISMAT(Q, NARRAY(IT)+1) ; :

END;
IF FLAG = 1
THEN DO ;

L’]

1
) T (IT: IRY(2{(F(5)))
PUT SKIP EDI N Win) LLPC & SPECTRAL ) (X(40), A);

PUT SKIP;

P=T TEH1PAR(II,X;
= ORDPAR=1 THEN P=GIVENFAR; ol e
TR BRTE1 THEN BUT . EDIT (X+PT.Y) (X(5))2(F(5))) ; ELSE;
IF @ =0 THEN DU :
BYMN= 07 -
TOTAL1=TOTALLI+DISMAT (1. X+PT);




TOTAL=TOI AL L
EMID;
- ELSE DO;
SYN= V7 _
TOTALZ=TOTALZ2+DISMAT (1, X +PT);
TOTAL=TUTALZ;
END;
IF PRT=1 THEN PUT EDIT(DISMAT{1,X+PT
(F{5), A, F{B), A, X{(2): &L
END
END;

IF PRT=1 THEN PUT SKIP; ELSE;
END ;

Ty, 5 TOTAL, ‘5 7, BYN, "#%x’)
1), A); ELSE;

IF PRT=1 THEN DG;
PUT SKIP EDIT (‘TOTAL DIST TY(X(20), A) )
PUT EDIT (DISMA T(l,NARRAY(IT}+1).'CDNS DIST =/, TOTAL1, ‘VOWEL. DIST =/, TOTALZ2)
© (X(D), F(B5), X{3), A FIDI, X{3), A F(S));
END;: EL E
ATRIXC(IT, IR, 2)=TOTALL;
. MATRIX(IT; : BY=TOTALZ;
END ;
ELLSE
END ;
END

/¥ Arrange the distance matrix, compute the normalized and index matrices
and calculate the Performdnce Index #/

DO @ = 1 TO & ;
DO IT = 1 TO_UT ;
pO_IR = 1 UR . :
DISTANCE (1T, IR) = MATRIX(IT, IR G) ;
END ;
END
/*************%****%****%*****%%***%%* FRERF RN/

£ R R RS RN R R B SRR R R I SRR R R R R R RS
CALL COMPMAT ;

i

END ;
ELSE

END DRIVE ; ,
/¥ ##% BODY OF THE MAIN PROCEDURE, "ITAK3"  ##% =/

l¥ }ngr?81n procedure ITAKS3, with the help of the internal procedure

h :
1. From the REFFIL and the TS8TFIL (which contain the utterances to

to be used as reference templates and test patterns) determines

the number of utterances to be used in the comparison and

initializes UT (number of utterances in the test file) 'and UR

{(number of utterances in the reference file).

Prints the value of UT and UR.

Initializes the value of F, the maximum number of frames in an

utterance. ) )

Calls the procedure DRIVE.

s wm

+#*/




GET FILE(KEP) EDITONRER) (F{1));
/% NKEP=1 if we need repctraj [MS distance measure

NhEP“O if we need Weighted repstral distance measUre
PUT SKIP(2) EDIT RFFFIL fDMfﬁTN THE FOLLLOWING UlWEPAhCFP')(A) i
CALL INITZU(RIFFIL,UR) i )
PUT SKIP(2) EDIT (‘NUMBER OF UTTER&MCIES IN REFERENCE FILE’)(A) ;
PUT EDIT (UR)Y(F(4)) ;

MODLO=9;

S MODLO =9 if we are usind Cepstral Coefficients
=0y N Meli—-cepstral parameters
= i ) Spectral parameters

N In Lhe beginning MODLO iz set to 9 3/

/% MOD1 sets the # of cepstral coefficients being considered in Matching
MOD1= n means first (n+l) cepstral (Mel cepstral) coeffts are being

considered */
GET FILE{LOCKEP) EDIT(MELKEPR) (FC(1));

¥ MELKEP= 1 if Mel cepstrdl parameters are to be used

= 0 if not
PUT SKIPZ) EDIT (’TqTFIL CONTAINS THE FOLLOWING UTTERANCES ‘) (A) ;
CALL INITZU(TSTFIL. UT)
PUT SKIP(2) EDIT ('NUMBER 0F UTTERANCES IM THE TEST FILE‘)(A) ;
PUT  EDIT (UM F{4)) ;

GET FILE(ORDFIL) EDIT(ORDPAR) (F(1));

/% 1f ORDPAR = 1 it over rides all other constraints and takes the
parameters as given hy GIVENPAR #/

GET FILE(GFIL) EDIT(SIVEMPARY (F{1)); .

/% If Qivenpar = 1 Cepstral parameters are taken all over
= 0 Spectral s */

GET FILE{FRINT) EDIT(PRT) (F(1));

/% [f# PRINT = 1 the distance tables are printed
= () £ 5 are not printed 3/

GET FILEC(TITT) EDITCLITRPAR)Y (F1));

/# This gives the # of spectral parameters being averaged to
get one spectral parameter,

ITTPAR= 1 B parameters

=g 4 parameters
= 4 2 parameters
= 3 1 parameter ¥/
/% initialization of F, the max number of frames 3#/
GET FILE(STAK) EDIT(F) (F{21));
P = 16 : /% oy storage allocetion in DRIVE procedure #/

CALL DRfVF i
EMD ITAKT
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