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Abstract 
Most previous work in analytic generalization of plans 
dealt with totally ordered plans. These methods can- 
not be directly applied to generalizing partially ordered 
plans, since they do not capture all interactions among 
plan operators for all total orders of such plans. In this 
paper we introduce a new method for generalizing par- 
tially ordered plans. This method is based on providing 
EBG with explanations which systematically capture the 
interactions among plan operators for all the total orders 
of a partially-ordered plan. The explanations are based 
on the Modal Truth Criterion [2], which states the nec- 
essary and sufficient conditions for ensuring the truth 
of a proposition at any point in a plan (for a class of 
partially ordered plans). The generalizations obtained 
by this method guarantee successful and interaction-free 
execution of any total order of the generalized plan. In 
addition, the systematic derivation of the generalization 
algorithms from the Modal Truth Criterion obviates the 
need for carrying out a separate formal proof of correct- 
ness of the EBG algorithms. 

P Introduction 
Creating and using generalized plans is a central problem 
in machine learning and planning. This paper addresses 
the problem of generalizing a class of plans known as 
partiadEy ordered plans that have been extensively inves- 
tigated in the planning literature [16] [17] [18] [2]. A par- 
tially ordered plan corresponds to a set of total orderings, 
called completions, each corresponding to a topological 
sort of the plan. A partially ordered plan is considered 
correct if and only if each of its completions will be able 
to achieve the desired goals (that is, the plan should be 
executable in any total order consistent with the partial 
ordering, without any subgoal interactions). 

The problem of generalizing a plan has traditionally 
been characterized as that of computing the wealcest 
(most1 general) initial conditions of a sequence of opera, 
tors. The computed conditions are required to describe 
exactly the set of initial states such that the generalized 
plan applicable in those states is guaranteed to achieve 
a state matching the goals. 
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Puton(x,y) 
P: clear(x),clear(y),on(x,Table) 
A: on(x,y) 
D: clear(y),on(x,Table) 

clear(B) 
on(A,Table) 

clear(C) 
clear(D) 
on(C,Table) 

Figure 1: Four Block Stacking Problem (4BSP) 

Goal re ression [15], explanation-based generalization 
(EBG) df [41 cl41 and macro-operator formation [S], 
are some previous analytic solutions to the plan general- 
ization problem. These methods were developed for to- 
tally ordered plans. They typically compute the weakest 
conditions of such plans by regressing variablized goals 
back through the plan operator sequence to ensure ap- 
propriate producer-consumer dependencies among effects 
and preconditions in the generalized plan, and to prevent 
deletions of needed literals. 

These methods cannot be directly applied to gener- 
alizing partially ordered plans, since they do not cap- 
ture all interactions among plan operators for all total 
orders of such plans. To illustrate this limitation, con- 
sider the simple blocks world problem for stacking four 
blocks (4BSP) and a partially ordered plan for solving 
it, shown in Figure 1. Given an initial state where 
four blocks A, B, C, D are on the table and clear, 
the goal On(A,B) A Qn(C,D) can be achieved by the 
partially ordered plan corresponding to two total or- 
ders, or completions, Puton(A, B) --j Puton(C, II), and 
Puton( 6, D) + Puton(A, B) (where the operator tem- 
plate Puton(z, y) is specified as shown in the figure). 
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total orders of the generalized plan. In addition, the sys- 
tematic derivation of the generalization algorithms from 

clear(p) 
clear(q) 
on(p,Table) 

clear(r) 
clear(s) 
on(r,Table) 
q*w*s 

Figure 2: An incorrect generalization of 4BSP 

For this problem, the generalization algorithms dis- 
cussed above produce a generalized plan such as the one 
shown in Figure 2. However, if we would like to guaran- 
tee that any total order of this partial order will succeed, 
the generalized conditions are incorrect. The reason is 
that the plan was generalized guided by one specific to- 
tal order, so constraints for other total orders were not 
accounted for. For example, if the problem were to stack 
three blocks A, B and C on top of each other, this gen- 
eralized plan would be applicable, and yet fail for one of 
the two total orders (as it includes an incorrect comple- 
tion Puton(A, B) -+ Puton( B, C)). What is missing is 
the constraint that s be not the same as p (whereas both 
are codesignating with B in this case). 

To avoid this problem, the EBG algorithm needs to 
be more systematic in accounting for all possible inter- 
actions among operators corresponding to all possible 
total orders consistent with the partial ordering. There 
are two options for doing this. One is to modify the aZ- 
gorithm: For instance, repeatedly compute weakest con- 
ditions of all total orders of the partial order and then 
conjoin them in some way. Another option is to modify 
the input: Provide a full explanation of correctness of 
the instantiated partially ordered plan, and use that ex- 
planation to produce the correct generalized initial con- 
ditions for the generalized partially ordered plan. 

In this paper, we describe a technique for solving this 
problem by the latter approach, viz., by modifying the 
input to generalization algorithm (in particular; to EBG). 
By modifying the input to EBG, rather than the EBG al- 
gorithm, we retain the broad applicability of the algo- 
rithm (for different classes of plans, different generaliza- 
tions can be produced). In addition, a partially plan can 
correspond to an exponential number of totally ordered 
completions, while weakest conditions are more directly 
related to the causal structure of the plan. Thus, com- 
puting the weakest conditions on each total order sepa- 
rately (and conjoining them to get the correct general- 
ization of the plan) would involve an exponential amount 
of redundant computation [Z]. By computing and using 
the explanation of correctness of the partially ordered 
plan directly, we can avoid this redundant computation. 

Our approach is to provide EBG with explanations of 
correctness of partially ordered plans based on the Modal 
Truth Criterion [2], which states the necessary and suffi- 
cient conditions for ensuring the truth of a proposition at 
any point in a plan for a class of partially ordered plans. 
These explanations are then used as the basis for gener- 
alization. The generalizations obtained by this method 
guarantee successful and interaction-free execution of all 

the Modal Truth Criterion obviates the n<ed for carry- 
ing out a separate formal proof of correctness of the EBG 
algorithms. Finally, the methodology can be extended in 
a straightforward fashion to handle other types of gener- 
alizations of partially ordered plans (such as computing 
conditions under which at least some completion of the 
plan can possibly execute; see Section 5). 

In the rest of the paper, we introduce the notion of 
truth criterion and present the explanation of correctness 
of a partially ordered plan based on the Modal Truth Cri- 
terion. We then describe how these explanations form 
the basis for the generalization. We conclude by de- 
scribing related work and examining the contributions 
of this paper. The main focus of this paper is devel- 
opment of systematic methods for generalizing partially 
ordered plans. The complementary issue of tradeoffs in- 
volved in synthesizing and generalizing partially ordered 
vs. totally ordered plans is discussed briefly in Section 5. 

ID 1 Terminology 

Given a planning problem [Z,G] where Z is a conjunc- 
tion of literals specifying the initial state and S is a con- 
junction of literals specifying the desired goal state, a 
partiaZZy ordered plan P is a 2-tuple P : (T, 0), where 
T is the set of actions in the plan, and 0 is a partial 
ordering relation over T. T contains two distinguished 
nodes tl and tG, where the effects of t1 and the precon- 
ditions of tG correspond to the initial and final states 
of the plan, respectively. The actions are represented 
by instantiated STRIPS-type operators with Add, Delete 
and Precondition lists, all of which are conjunctions of 
first order literal&. 0 defines a partial ordering over 
T: 0 = {(ti,tj) ] ti,tj E T}. We write ti 4 tj if ei- 
ther (ti, tj) E 0, or there exist a sequence of operators 
t1.* . t, E T, such that (ti, tl), (tl, t2). e. (tn, tj) E 0. 
(Thus, the “4’ relation corresponds to the transitive 
closure of 0.) If ti and tj are unordered with respect to 
each other (i.e., ti $ tj and tj # ti), then we say ti I] tj. 

The modal operators “0” and “0” are used to de- 
note the necessary and possible truth of a statement. In 
particular O(ti + tj) if and only if ti can possibly pre- 
cede t. in some total ordering of the partially ordered 
plan (which means that either (ti 4 tj) or (ti ]I tj)). 
Finally, we define codesignation and non-codesignation 
constraints among literals as follows: If a literal pi is 
constrained to codesignate with another literal pj (writ- 
ten as pi M pj), then pa and pj must be unifiable. 
Similarly, if pi is constrained not to codesignate with 
pj (written as pi $ppj), then pi must not unify with 
pj. Codesignation constraints among literals translate 
into equalities among variables and constants (domain 
objects), while the non-codesignation constraints trans- 
late into disequalities among variables. For example, 
WA, B) x On(x,y) if and only if eq(A, x) A eq(B,y) 
(since the most general unifier of the two literals is 0 = 
((A x)(B y)). Similarly, Qn(A, B)$On(x, y) if and only 
if l[eq(A, x) A eq(B, y)] (that is neq(A, x) V neq(B, y)). 

‘We shall use upper case 
lower case ones for variables. 

letters for constants and the 
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2 Explanation of Correctness using the 
uth Criterion 

In [2], Chapman provided a formal means of reasoning 
about partially ordered plans called the Modal Truth 
Criterion (MTC). The MTC provides necessary and suffi- 
cient conditions for ensuring the truth of a proposition C 
before an action t in a partially ordered plan. In this sec- 
tion, we shall develop the explanation of correctness of 
a partially ordered plan in terms of this truth criterion. 
For plans containing STRIPS-type operators whose pre- 
condition, add and delete lists contain first order literals, 
the MTC can be stated as follows:2 

hodds(C, t, P) c 
3 t’ s.t. q  (t� 4 t) A e E effects(t’) A q  (e M C) A 

Qt” s.t. O(t’ -( t” -( t) 
Vd E debete(t”) q  (d +J C) (1) 

It states that a proposition C holds before an opera- 
tor t in a partially ordered plan P : (T, 0) if and only 
if there exists an operator t’ such that an effect e of t’ 
necessarily codesignates with C, and for every operator 
t” of the plan that may possibly fall between t’ and t, 
every proposition belonging to the delete list of t” will 
necessarily not codesignate with C. The truth criterion 
can usefully be thought of as a completeness/soundness 
theorem for a version of the situation calculus (cj [2], 
pp. 340). Alternatively, it can be thought of as a method 
for doing goal-regression [15] over a class of partially or- 
dered plans. 

In planning, the intended use of the MTC is as a pre- 
scription of all possible ways of making a proposition of a 
partially ordered plan true during plan synthesis. How- 
ever, the MTC can also be used as the formal basis solely 
for proving plan correctness. In particular, a partially 
ordered plan P : (T, 0) is considered correct according 
to the modal truth criterion, if and only if all the goals 
of the plan, as well as all the preconditions of the in- 
dividual plan steps can be shown to hold according to 
the criterion given in equation 1 without extending or 
modifying P in anyway. 

The explanation of correctness of a plan can then be 
characterized as a “proof’ that the plan satisfies this cri- 
terion for correctness. The algorithm EXP-MTC shown in 
Figure 3 constructs the explanation of correctness given 
a partially ordered plan, by interpreting equation 1 for 
each precondition and goal of the plan. It returns failure 
if the plan turns out to be incorrect according to MTC. 

Note that this algorithm represents the computed ex- 
planation by a set Y of dependency links. The individual 
dependency links are of the form (e, t’, C, t). We shall 
refer to these links as validations of the plan [9]. Intu- 
itively, these represent the interval of operators t’ and t 
over which a literal C needs to hold. C is made true by 
the effect e of operator t’, and is needed at t. It is pro- 
tected throughout that interval (t’, t) from being clob- 
bered, that is, any operator t” that may possibly come 

‘For ease of exposition, in this paper we will be using a 
version of Chapman’s truth criterion [2] without the white- 
knight clause. The development for the more general version 
call be carried out in a very similar fashion, and with the 
same complexity bounds [lo]. 

Algorithm EXP-MTC (P : (T, 0)) 
foreach t E T do 
foreach (6, t) (where C E precond(t)) do 

Traverse P in the reverse topological order and 
find the first operator t’ s.t. 

t’ 4 t A 3e E effects(t’) A O(e 55! C) A 
Vt”S.t. 0(t’ 4 t” 4 t), 

Vd E delete(t”) q  (d $ C) 
3’ such a t’ is found 

then Y +-- Y U {(e,t’,W)l 
else return failure 

od od 

Figure 3: Explanation Construction Algorithm 

between t’ and t in some total ordering must not violate 
the condition C. The semantics of validations therefore 
capture both the traditional precondition-effect depen- 
dencies and protection violations across all total order- 
ings. In particular, 

v : (e, t’, C, t) is a validation of P : (T, 0) t-3 
O(e M c) A q  (t’ 4 t) A 
Vt” E T s.t. O(t’ 4 t” 4 t) 

Vd E deZete(t”), o(d $ C) (2) 

For the 4BSP plan shown in Figure 1, the explanation 
of correctness found by this algorithm would consist of 
the following validations: 

Vl : 

v2 : 

213 : 
214 : 
215 : 
06 : 

v7 : 
21s : 

I On(A, Table), tr, On(A, Table), tl) 
Clear(A), tl, Clear(A), tl) 

(Clear(B), t1, Clear(B), tl> 
(On(C, Table), tl, On(C, Table), tz) 

I 
Clear(C), tl, Clear(C), t2) 
Clear(D), t1, Clear(D), tz) 

(WA %h, WA, B),tG) 
(@@, D), t2, On(C, D),tG) 

iscussion: The EXP-MTC algorithm shown in Figure 3 
finds only one out of the possibly many explanations of 
correctness of the plan. In particular, for each precon- 
dition C of an operator t, there might possibly be many 
operators that can contribute C (according to the crite- 
ria stated by MTC). Of these, the algorithm records only 
the first operator t’ encountered in a reverse topolo 

4 
ical 

order scan of P that satisfies the conditions of MTC . It 
is perfectly reasonable to choose another explanation of 
correctness (i.e., another set of validation links V) over 
the one given by this algorithm as long as that explana- 
tion also satisfies the MTC. It should however be noted 
that the generalization phase will be guided by the par- 
ticular explanation that is chosen at this step (rather 
than by all possible explanations). This corresponds to 
a common restriction for EBG termed “generalizing with 
respect to the explanation structure”, or “following the 
example” [ 121 
Complexity: The cost of finding a validation link in the 
above algorithm is O(n2c), where c is an upper bound 
on the number of delete literals per operator, and n is 

31f no such t’ is found, the algorithm returns failure, which 
means that there exists at least one linearization of P that 
will have subgoal interactions. 
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clear(i) 
clear(j) 
on&Table) 

clear(k) 
clear(l) 
on(k,Table) 

Figure 4: Schematized Plan for 4BSP 

the number of operators in the plan4. If t is the upper 
bound on the number of preconditions per operator, then 
there must be O(<n) validations links in the explanation. 
Thus the total cost of explanation construction is O(n3). 

3 Generalization using Explanation 

In this section, we will first use the explanation of cor- 
rectness developed in the previous section to derive a 
declarative specification for the generalization phase of 
EBG for partially ordered plans. We will then provide an 
algorithm that interprets this specification. 

The generalization process consists of schematizing5 
the plan P to produce Ps, and determining the weakest 
initial conditions under which Ps will be correct accord- 
ing to the MTC, with respect to the same explanation 
structure as that used to explain the correctness of P. 

Given a plan P : (T, 0), we construct its schematized 
version, Ps : (T’, 0”) by replacing each instantiated op- 
erator t E T by the corresponding operator template tS 
(with unique variables). (For tl and tG, we replace their 
literals by their variablized versions.) 0” defines a par- 
tial ordering on TS that is isomorphic to 0. Figure 4 
shows the schematized plan corresponding to the 4BSP 
plan shown in Figure 1. 

The schematization process defines a one-to-one map- 
ping between the add, delete and precondition lists of 
each step t of P and those of the corresponding operator 
template tS of Ps. Let LMAP denote this mapping. For 
example, the literal On(A, Table) in the preconditions 
of operator tl in the 4BSP plan shown in Figure 1 cor- 
responds to the literal On(x,Tubbe) in the schematized 
plan. Given this mapping, a set of explanation links Ys 
for Ps can be constructed such that they are isomorphic 
to V of P. For each validation v : (e, t’, C, t”) E Y, there 
will be a validation us : (es, tf3, C”, t”‘) E Ys such that 
tfS and tffS are operator templates in the schematized 
plan corresponding to t’ and t” respectively, and es and 
C” are the literals corresponding to e and C according 
to LMAP defined above. For the 4BsP schematized plan 
shown in Figure 4, the explanation links in Vs are: 

4This assumes that the transitive closure of the partial or- 
dering relations among plan steps is available (for an n step 
plan, this can be computed in O(n3) time), thereby allowing 
the checks on ordering relations during explanation construc- 
tion to be done in constant time. 

5We shall use the superscript “3 to distinguish entities 
corresponding to the schematized plan. 

v,S : (On(i, Table), t;, On(x, Table), t!) 
v$ : Clear i), t;, Clear(x), ti 
vi : Clear j), tf, Clear(y), tf I I i 
vi : (On(k, Table), t;, On(z, Table), t$) 
vg : (Clear(k), tt, Clear(z), ti) 
vi : 
v+ : I 

Clear(l), t;, Clear(w), t;) 
Qn(x, 1.4)~ tf y On@, a)&) 

vi : (On(z, w), t$, On(r, s), t&) 

Notice that after the schematization, Ps and Vs are over 
general in that the links in V may no longer consti- 
tute an explanation of correctness of Ps according to 
the MTC. The objective of the generalization phase is to 
post constraints (codesignation and non-codesignation) 
on the variable bindings to specialize this over general 
schematized plan and validations just enough so that V” 
is an explanation of correctness for Ps according to MTC. 
Extracted initial conditions on Ps are then the weakest 
(most general) conditions for which Ps can be executed 
in any total order consistent with the partial order OS, 
according to the same explanation structure 

We now develop the declarative specification of the 
necessary and sufficient conditions under which Ys will 
be an explanation of correctness of Ps according to the 
MTC. We do this by expressing the conditions under 
which each element us E V” is a validation of Ps. From 
the semantics of the validations provided in equation 2, 
these conditions can be stated as the conjunction of 
codesignation and non-codesignation constraints shown 
in expression 3 in Figure 5.6 

Essentially, the validations offer an “interval” view on 
the explanation - the intervals in which literals have to 
hold. For our generalization algorithm to mirror stan- 
dard EBG algorithms, we regroup the validations to re- 
flect what needs to hold for each operator (the “opera 
to? view). The validations grouped for each operator 
tS E TS, describe validations it is required to support 
and preserve in the explanation of correctness. The “in- 
terval” view in expression 3 can thus be re-expressed in 
an “operator” view by grouping the validations at each 
operator, as shown in expression 4 in Figure 5. 

Informally, expression 4 states that every operator in 
the schematized plan should: (i) necessarily support the 
conditions that its counterpart in the specific plan was 
required to support according to the explanation and (ii) 
necessarily preserve all the conditions that its counter- 
part in the specific plan was required to preserve. In 
particular, we can define the e-conditions (for relevant 
effect conditions) of an operator as the set of validations 
it is required to support in the explanation of correctness 
(equation 5 in Figure 5), and p-conditions (for preserv- 
able conditions) of an operator as the set of validations 
it is required to protect (equation 6). Using equations 5 
and 6, we can now rewrite expression 4 as expression 7. 

Expression 7 is then the declarative specification of 
the necessary and sufficient conditions under which the 
schematized plan Ps is correct according to MTC, given 
the same explanation structure Vs. Ps can be used in 
any initial state S that satisfies the conditions shown in 

‘Since there is a direct correspondence between Y’ and Y, 
and 0” is isomorphic to 0, for each V’ : (es, t’S, C’, t”s) E 
V, we already have t’S 4 PS (see equation 2) 
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A q  (e3 ‘s,C8,t”s) E trs m 6”) /j Vt” E T3 s.t. ;$‘;-$j,;t;(;)~(d8 + C3) vvs:(es,t 1 (3) 

VW’ : (e3,t’3,C3,ttt3) s.t.t” = t3, q  (C3 

A 
e-condition3(t8) 

Vd” E delete(P) O(d” # 6”) 
VtsET8 

p-condition3(ts) 1 
e - conditions(t’) = (vs 1 v3 : (es, t”, C”, tt’3) E V” s.t. t” = t”) 

P- conditions(t’) = (v” 1 v3 : (es, t”, C”, t”‘) E V” s.t. O(t’” + t3 4 ttts)) 

VW’ : (es, t”, C”, t”‘) E e - conditions(t’) , O(C” M eS) A 
Vv’ : (e3,t’3,C3,ttt3) E p - conditions(t’) Vd” E dedete(t3) q  (d” $ C3) 1 

Figure 5: Derivation of the generalization algorithm (see text) 

Algorithm EXP-GEN (P" : (TS, OS), V3) 
Initialize: Let p be a null substitution and y be True 
foreach t3 E T” do 
foreach v3 : (es, t”, C”, t”‘) E e - conditions(t’) do 
Let p’ be the substitution under which q  (e3 R C3) 
P +--POP’ 

foreach v3 : (es, t”, C”, t”‘) E p - conditions(t’) do 
Let y’ be the condition under which 

Vd” E delete(t3) q  (d” $ C3) 
Y +-YAY’ 

Substitute ,0 into all the literals of P3 and V” 
Weakest preconditions c effects(t;) A y o /3 

Figure 6: Generalization Algorithm 

expression 7. For such states, the plan is guaranteed to 
succeed in adl of its total orderings. Furthermore, note 
that expression 7 computes exactly those conditions that 
are required (by MTC) to make V3 an explanation of cor- 
rectness of P’. In this sense, the computed conditions 
are the weakest preconditions (modulo the given expla- 
nation) for P3 

The algorithm EXP-GEN shown in Figure 6 implements 
expression 7 procedurally in a straightforward manner. 
The algorithm makes one pass through the plan, vis- 
iting each operator, computing the codesignation and 
non-codesignation constraints imposed on the general- 
ized plan. The codesignation constraints are maintained 
as substitutions in ,B, and the non-codesignation con- 
straints ar.e maintained as disequality constraints on the 
variables in y. At the end of the generalization phase, 
the substitution list p is applied to all the literals in 
the schematized plan P3 and its explanation structure 
Vs. Finally, the equality and disequality constraints im- 
posed by ,0 and y respectively are conjoined with the 
initial state specification7 of the generalized plan to get 
the weakest preconditions for the generalized plan. 
Complexity: The generalization algorithm runs in 
polynomial time. In particular, the e-conditions and p- 
conditions of all the operators in P3, as required by the 

7the literals in the e-conditions of tr, to be precise 

(4) 

(5) 
(6) 

(7) 

algorithm, can be precomputed in O( IT’ 1 IV” I) or O(n’) 
time (where n is the number of operators of the plan), 
and the propositional unification required to compute ,L3’ 
and y’ itself can be done in polynomial time. 
3.1 Example 

Let us now follow the generalization of the schematized 
plan for 4BsP by the aigorithm EXP-GEN. Following the 
definitions in equations 5 and 6, and the schematized val- 
idations in Section 3, the e-conditions and p-conditions 
of the operators in the schematized plan can be com- 
puted as: 

e - conditions : v; : (On(z, y), t:, On(p, q), t$) 
e - conditlons(t~) : vi : (On(z, w), ts, On(r, s), tb) 

B- condhons(t~) : 71: : (On(z, w), tz, On(r, s), t&) 
vg : (Clear(k), i$, CZear(z), t;) 
vg : (CZeur(Z), tt, Clear(w), tt) 

vi : (On(k, Table), t;, On(z, Table), t;) 

P- conchtlons(t~) : v+ : (On(z, y), ty , On(p, q), tz) 
vz : (C/cur(i), t;, Clear(z), ti) 
vi : (Cleur(j), ti, Clear(y), ti) 

vi : (On(i, Table), ti, On(z, Table), ti) 
e - eondltlons(t~) : 21; : (Clear(k) t” ) I, Cd eur(z ,ti 

vi : (Cleur(l), tt, Clear(w), ti) 

vi : (On(k, Table), t;, On(z,Tuble), t”,) 
vi : (Cleur(i), ti, Clear(z), ti) 
vi : (Clear(j), tt, Clew(y), t;) 

vi : (On(i, Table), tt, On(z, Table), ti) 
Recall that e - conditions of an operator t describe 

those literals which t supports, and p - conditions are 
those literals it is required to preserve (these would 
include the preconditions and useful effects of other 
operators parallel to t; for example, among the four 
p - condition validations of t!, the first one corresponds 
to preserving the required effect of t$ and the other three 
correspond to preserving the preconditions of ts). Note 
that by definition, t.& will have no e-conditions or p- 
conditions, and tt will only have e-conditions (since no 
plan operator can precede tI or follow tc). 
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4 
clear(p) 1 
clear(q) 
on(p,Table) 

clear(r) 
clear(s) 
on(r,Table) 
r*q, s*q 
p#rvss;tTable 
p+rvq#Table 
P#s 

Figure 7: Generalized Plan for 4BSP 

The EXP-GEN algorithm computes pi for ti : 
Puton(x, y) by unifying On(x, y) and On(p,q). Thus 
at this point, pi (and therefore ,8) is ((xp)(yq)). Next, 
7: for ti : Puton(x, y) is computed by ensuring that its 
delete literals on(x,Tuble) A clear(y) do not unify with 
the literals of its p-conditions. Thus 7; can be computed 
as [neq(x, z) V neq(Tuble, w)] A neq(y, z) A neq(y, w). 

Similar processing for t$ : Puton(z, u)) yields ,84 
as ((2’f)(WSh and 74 as [neq(z, x) V neq(Tuble, y)] A 
neq(w, x)Aneq(w, y). Finally, the processing for ti yields 
,Bi as ((i x)(j y)(k z)(l w)) (there are no p-conditions for 
tt and so 7; is trivially True). 

The resultant global substitution ,B is thus ,9; o ,84 o &, 
or: 

P = (6 p)(x P>(j q)(y q)(k r)(z r)(l s)(w s>> 
Similarly the global non-codesignation 
variables y is computed by conjoining $ 

constraints 
, 7; and 4 

on 
as: 

= [neq(x, z) V neq(TubZe, w)] A neq(y, z) A 
nei(y, w) A [neq(z, x) V neq(Tubde, y)] A neq(w, x) 

Figure 7 shows the generalized plan (computed by sub- 
stituting ,B into the literals of schematized 4BSP plan 
shown in Figure 4), and its weakest preconditions, com- 
puted by conjoining y o /3 with the effects of tt in the 
plan. In particular, we have: 

y o /3 = [neq(p, r) V neq(Tuble, s)] A neq(q, r) A 
neq(q, s> A [neq(w) V neq(Tabk a>] A neq(s, P) 

Notice that the weakest preconditions rightly prohibit 
the use of this plan in a situation where the goal is 
On(A, B) A On(B, C), b ecause they explicitly prohibit 
codesignation of q and T, and p and s (see y o ,0). Thus, 
the algorithm avoids the overgeneraliz at ion discussed in 
Section 1. 

4 Related Work 
Our algorithms directly correspond to the EBG expla 
nation and generalization steps, but work on specialized 
explanations of correctness tailored to plans, rather than 
arbitrary proofs. It is possible to use the standard EBG 
algorithm [12] itself for this purpose, by proving (explain- 
ing) correctness of a plan directly from first order situa- 
tion calculus. The advantage of dealing with specialized 
explanations is that they often can be produced much 
more efficiently. In particular, we have seen that expla- 
nations of correctness (validations) based on MTC (which 
states soundness/completeness theorem for a version of 
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situation calculus) can be generated in polynomial time 
(Section 2). In contrast, generating proofs in full situ- 
ation calculus is undecidable. In addition, by starting 
with a provably sound and complete truth criterion and 
deriving the EBG algorithms directly from that, we ob- 
viate the need to carry out a separate formal proof of 
correctness of the algorithms (e.g. [l]). 

There are interesting similarities between our compu- 
tation of generalized protection violations, and that per- 
formed by other plan generalization methods (although 
some plan generalization methods such as [12] and [14] 
omitted this). STRIPS' generalized macro-operators [5] 
handle protection violations by unifying delete lists with 
the literals in a “lifted,” or generalized, trian 

f 
le table, 

adding non-codesignation constraints. Minton ll] spec- 
ified protection violations as a meta-level axiom to be 
used as part of a proof of correctness of plans by EBG. 
Goal regression [15] computes protection violations by 
unifying delete lists with regressed conditions. As noted 
earlier, none of these deal with partially ordered plans. 
In comparison, we provide a systematic way of doing this 
analysis for a class of partially ordered plans, with the 
help of MTC. 

The work reported here is also related the “operator 
order generalization” algorithms such as [13] and [3]. Af- 
ter generalizing a totally ordered plan using the EGGS 
algorithm [14], these algorithms further generalize the 
structure of the plan by removing any redundant or- 
derings. In contrast, we start with a correct partially 
ordered plan (generated by any classical partial-order 
planner-such as NONLIN [17]), and compute a general- 
ized partially ordered macro-operator which represents 
the weakest conditions under which the generalized plan 
can be successfully executed. However, the methodol- 
ogy that we developed here can be extended to allow 
a broader class of generalizations. In fact, by relaxing 
the notion of “following the example” (Section 3), we 
can systematically develop a spectrum of generalization 
algorithms to allow a variety of structural generaliza- 
tions (Section 5). In this sense, the methodology pre- 
sented here could be used to systematically characterize 
the EBG, order generalization and structure generaliza 
tion [13] algorithms as different points on a spectrum 
of generalizations (with varying amounts of emphasis on 
plan-time vs. generalization-time analysis). 

5 Concluding emarks 

This paper addresses the problem of generalizing par- 
tially ordered plans - a class of plans which have been 
extensively investigated in the planning literature. We 
have developed the formal notion of explanation of cor- 
rectness for partially ordered plans based on the MTC, 
and used this definition to derive a declarative specifi- 
cation for explanation-based generalization of partially 
ordered plans. The generalized plans that are produced 
by procedurally interpreting this declarative specifics 
tion are guaranteed to execute successfully in any total 
order consistent with the partial ordering, in any situ- 
ation matching the weakest preconditions computed by 
the generalization. 

While the development here provided a separate al- 
gorithm to compute the explanation of correctness of a 




