
and Retrieval During Plan Reuse:
ation Structure Based Approach

Subbarao Kambhampati*

Center for Design Research and Department of Computer Science
Stanford University

Bldg. 530, Duena Street, Stanford CA 94305-4026
e-mail: rao@sunrise.stanford.edu

Abstract
Effective mapping and retrieval are important issues in suc-
cessful deployment of plan reuse strategies. In this paper we
present a domain independent strategy for ranking a set of
plausible reuse candidates in the order of cost of modifying
them to solve a new planning problem. The cost of
modification is estimated by measuring the amount of distur-
bance caused to the validation structure of a reuse candidate
if it were to be reused in the new problem situation. This
strategy is more informed than the typical feature based re-
trieval strategies, and is more efficient than the methods
which require partial knowledge of the nature of the plan for
the new problem situation to guide the retrieval process. We
discuss the implementation of this retrieval strategy in PRIAR,

a framework for flexible reuse and modification in hierarchi-
cal planning.

I. Introduction
The utility of reusing existing plans to solve new planning prob-
lems has been realized early in the planning research, and has
more recently received considerable attention in case-based rea-
soning [6,1]. A major obstacle to successful deployment of
plan reuse schemes has been the problem of plan retrieval and
mapping. Retrieving an appropriate plan that can be efficiently
reused in the current problem situation, and choosing an
appropriate mapping between the objects of the existing plan
and the objects of the new planning problem is generally very
hard [151. The payoff from plan reuse depends crucially on
both the cost of retrieval and mapping, and the the cost of
modifying the retrieved plan to solve the new problem. Thus,
for reuse to be effective, the similarity metrics used should be
capable of evaluating the ease of modifying an existing plan to
solve the new problem, rather than merely measuring surface
similarity. For efficiency reasons, most typical retrieval stra-
tegies employ straight forward feature matching or domain
dependent indexing schemes. Such schemes do not accurately
reflect the cost of reusing the retrieved plan in the new problem

*The support of the Defense Advanced Research Projects Agency
and the U.S. Army Engineer Topographic Laboratories under contract
DACA76-88-C-0008, and that of Office of Naval Research under con-
tract NOOO14-88-K-0620 are gratefully acknowledged.

situation. To be effective, such strategies should also be able to
take into account the expected match between the plans for the
two problem situations.

While the above limitations have been recognized, many of
the proposed alternatives failed to be cost-effective as they
require comparison of the solution derivations for the old and
new problems (e.g., [2]). In this paper, we provide a partial
solution for the retrieval and mapping problem that does not
depend on any prior knowledge of the plan for solving the new
problem. It makes an informed estimate of the cost of modify-
ing a given plan to solve a new problem by analyzing how the
internal dependencies of that plan will be affected in the new
problem situation. It utilizes a novel representation of the inter-
nal dependency structure of the plan for this purpose. This stra-
tegy has been implemented in PRIAR, a framework for flexible
reuse and modification of plans [10,9,11,13].

PRIAR utilizes plan validation structure, a systematic internal
dependency representation of hierarchically generated plans, to
guide and control all phases of reuse of a given plan in a new
problem situation. In PRIAR, plan modification is seen as a pro-
cess of repairing the inconsistencies in the validation structure of
an existing plan when it is interpreted in a new problem situa-
tion. The cost of modification process depends upon the number
and type of these inconsistencies. The retrieval strategy esti-
mates the number inconsistencies for each reuse candidate, and
rank orders the candidates based on that estimate. This ordering
is facilitated through the development of the notion of the plan
kernel of a plan. The plan kernel provides a way of encapsulat-
ing the validation dependencies between a plan and its problem
specification. In the rest of the paper, we briefly discuss PRLlR’s

validation structure based plan reuse framework, and describe its
plan kernel based ordering strategy for choosing among reuse
candidates.

2. verview of PRIAR Plan Modification Frame-
work

2.1. Validation Structure
In PRZAR framework the building blocks of the stored plan
dependency structure are validations. A validation is a 4-tuple
(E ,n,,C ,nd) where the effect E of the task n, (called source
node) in the hierarchical task network (HTN) is used to satisfy
(support) the condition c of task nd (called destination node).

170 AUTOMATED REASONING

For any plan synthesized by a hierarchical planner, there are a
finite set of validations, corresponding to the protection intervals
[3] that are maintained during planning; we denote this set by V.
The individual validations are classified depending on the type
of the conditions they support. Figure 1 shows the validation
structure of the plan for solving the blocks world problem 3BS
(shown in the figure). Validations are represented graphically as
links between the effect of the source node and the condition of
the destination node. (For the sake of exposition, validations
supporting conditions of the type BZock(?x) have not been
shown in the figure.) For example, (On (B ,C),nls,On (B ,C),n,)
is a validation belonging to this plan since the condition
On (B ,C) is required at the goal state nc; , and is provided by the
effect On (B ,C) of node nrs.

The uniqueness of PRIAR framework is in the way the plan
validations are stored on the HTN. Each task n in the HTN is
annotated with the set of validations that are supplied by, con-
sumed by, or necessarily preserved by the tasks belonging to the
sub-reduction (hierarchical wedge) rooted at n. We call these
the external effect conditions (e-conditions), external precondi-
tions (e -preconditions) and persistence conditions (p -conditions)
respectively of task n. The annotations on a node encapsulate
the node’s role in the validation structure of the plan. These
annotations are computed efficiently for each node in the HTN in
a bottom-up, breadth-first fashion at the planning time. In [lo],
we provide a 0 (N2) algorithm (where N is the length of the
plan) for doing this.

Using the task annotations introduced before, PRIAR also

defines the notion of the validation state preceding and follow-
ing each primitive executable action in the plan. They specify
the set of validations that should hold at each point during the

IFf nnn

pLi-j IA” B”c ’ 2
hut Situation

plan execution for the rest of the plan to have a consistent vali-
dation structure (thereby guaranteeing its successful execution).
Of particular interest for the PRIAR retrieval strategy are the vali-
dation state following the initial node in the JJTN, denoted by
AS (n,), and the one preceding the goal node, denoted by
AP (%). The former contains all validations which are provided
by the initial node, nf and the latter contains all the validations
which are consumed by the goal node, no.

The annotated validation structure effectively provides a
hierarchical explanation of correctness of the plan with respect
to the planner’s knowledge of the domain. In PRIAR, the valida-
tion structure is used (i) to locate the parts of the plan that
would have to be modified, (ii) to suggest appropriate
modification actions, (iii) to control the modification process
such that it changes the existing plan minimally to make it work
in the new situation, and (iv) to assist in plan mapping and
retrieval.

2.2. Plan Modification via Annotation-Verification
Given a plan to be reused to fit the constraints of a new problem
situation, PRIAR fist maps the plan into the new problem situa-
tion. This process, known as interpretation, marks the
differences between the plan and the problem situation. These
differences in turn are seen to produce inconsistencies in the
plan validation structure (such as missing, failing, or redundant
validations). In PRIAR framework, a plan is modified in response
to inconsistencies in its validation structure. PRIAR uses a pro-
cess called annotation-verification to suggest appropriate
modification to the plan for removing those inconsistencies from
the validation structure of the plan. These domain independent
modifications depend on the type of the inconsistencies and

On(A,B)SOn(B,C)

On(A,Table)&Clear(A)
&On(B,Table)&Clear(B)
&On(C,Table)&Clear(C)

Block(A)&Block(B)&BIock(C)

input state

Sch: Make-on(A,B) I goal state

“G

r 7

Figure 1. Validation structure of 3BS plan

KAMBHAMPATI 17 1

involve removal of redundant parts of the plan, exploitation of
any serendipitous effects of the changed situation to shorten the
plan and addition of high level refit tasks to re-establish any
failing validations. At the end of the annotation-verification,
which is a polynomial time process process [lo], PRIAR will
have a partially reduced plan with a consistent validation struc-
ture. PIuAR’s hierarchical nonlinear planner accepts this partially
reduced plan and produces a completely reduced m. The
planner uses a conservative heuristic search control strategy
called task kernel-based ordering (see [9]) to control this pro-
cess of refitting, so as to localize the modification to the plan
and preserve as many of its applicable portions as possible.
(Further details of PRIAR modification process can be found in a
companion paper [13] in this proceedings.)

3. Mapping and Retrieval in PRIAR
In this section we will assume that PRIAR is given a new prob-
lem Pn=[I” ,G “1 and a set of reuse candidates {(R O ,a)}, where
R” is an existing plan and a is a mapping between the objects
of R” and P" . PRIAR currently performs a partial unification on
the goals of R” and P” to get an initial set of reuse candidates.
This strategy is described in [lo], and is not of particular
interest for the purposes of this paper. Here we will concentrate
on strategies that exploit the validation structure of the plans to
efficiently rank the initial set of reuse candidates in the order of
the cost of modiig them to solve the new problem. The
heuristic cost metric of each reuse candidate (R” ,01) is computed
in terms of the number and type of validations of R” that will
be failing in P” , for the mapping a. We detie the notion of
plan kernel of a reuse candidate to facilitate efficient computa-
tion of this cost metric. The degree of match between the plan
kernel of the reuse candidate and the new problem situation will
be used to guide the ordering.

3.1. Plan Kernels
The plan kernel of a stored plan R” , PK (R”), is intended to
encapsulate the dependencies between R” and the features of its
input and goal specification. We will formulate it as a collec-
tion of validations of R” that are supported by or supporting the
features of the input and goal states of the plan. These valida-
tions are further divided into three categories based on the
expected difficulty of re-establishing them, in the event that the
input and goal state features on which they are dependent no
longer hold in the new planning situation. Thus, we define it as
a three tuple

PK (R O) = (g-features, f-features, PC-features)
where the g-features, f-features and PC-features are in turn
defined as follows:

g-features (Goal Features): These correspond to the valida-
tions of R” that directly support its goals. Thus

g-features(PK (R O)) = AP (no)
(where AP (no) is as defined in the previous section.)
f-features (Filter Features): These correspond to the valida-
tions supported by the input specification of R” to either the
filter conditions (the unachievable applicability conditions) of
the plan, or the phantom nodes that achieve some main goal
of R”. Thus, a validation v:{E,nf,C,~) belongs to f-
features(PK (R”)), iff v E A’ (Q) and either C is a filter con-
dition or +‘:(E’,nd,C ‘,no) E AP (no) such that
nAt = nd jiC=C’

pc-features (Precondition Features): These correspond to the
the validations supported by the input specification of R” that

support either the preconditions of some node of R” , or the
phantom nodes achieving the preconditions of some node of
R”. In the current framework, these will essentially be all the
validations of A”(Q) that are not included in the f-features of
the plan kernel. That is, pc-features(PK (R O)) =

(v Iv E A”(nl) A vef-features(PK(R”)))

Based on the above definition, the plan kernel of a plan can be
computed in a straightforward fashion from the initial validation
state A”(nl) and the final validation state AP (no) of that plan.
As an example, the plan kernel of 3BS plan shown in figure 1
will be:

PK(3BS) =

9-features’

(on (A J hn 16,on (A & hn,)

{ (On (B ,C),n Is,On (B ,C),n,)

(Block (B >,q ,Block (B hn 15)

(Block CB h &lock (B h6)

‘features

i

(Block (A h Block (A h6)

(Block (C >,nr ,Block (C),n 15)

(On (B ,Table),nr ,On (B ,?x >,n 15)

(On (A ,Table),q ,On (A ,?n),nl6)

k Clear (B),nr ,Clear (B),nb)

pc-featwes’

(Clear (B),nr ,Clear (B),n,)

t

(Clear (C),rq ,Clear (C),ng)

(Clear (A),rq ,Clear (A),nT)

Notice that the different features of the problem specification
enter the plan kernel only by virtue of the validations that they
provide to the plan Moreover, if any features support multiple
validations, they enter the plan kernel once for each of these
validations. For example, the features Block(B) and Clear (B)
enter PK(3BS) more than once. Thus, the number of times a
feature enters the plan kernel, and the type of validations it sup-
ports implicitly reflect the relative importance of that feature
during retrieval.

3.2. Plan Kernel Based Ordering of Reuse Candi-
dates
The degree of match between the plan kernel of a reuse candi-
date and the input and goal specification of a new planning
problem gives a rough indication as to how much of that plan
would be applicable to the new problem and as to what type of
validation failures would arise when it is reused in the new
problem situation. Since the refitting cost depends to a large
extent on the number and type of validation failures, it is rea-
sonable to use this match to estimate the amount of modification
that would be needed for reuse. Below we describe a three lay-
ered ordering procedure to rank a set of reuse candidates with
the help of their plan kernels. The procedure measures the
difficulty of reusing the given plan in the new problem situation
by estimating the number of inconsistencies that will arise in the
validation structure of a plan because of the problem differences.

Given. The new problem P” =[I” ,G” 1, and a set of reuse can-
didates {(R O ,a)) .
StepO. The plan kernels of the reuse candidates are computed
by translating the plan kernels of the corresponding plans,
using the mapping. That is, PK((R”,or)) = R” *a, where “.”

172 AUTOMATEDREASONING

refers to the operation of object substitution.
Step 1. The reuse candidates are ranked based on
of goals of P” that will not be supported by the g

the number
-features of

the plan kernels of individual candidates.
for this layer of ordering will be given by

The cost function

g-features(PiY ({R O ,a))) s.t.

(whereF l--f istrueifff can be deductively inferred from
F and the domain axioms.) Based on this step, the best candi-
dates are those which will need to achieve the least number of
extra goals to be reused in the new problem situation.
Step 2. If more than one candidate is ranked best by the ord-
ering of step 1, then the best candidates are ranked further
based on the number of f-features of their plan kernels that
do not hold in the input specification of the new problem.
Thus the cost function for this layer is given by

1 (v Iv :(E ,nI ,C ,nd) E fifeatures(PK({RO ,a))) A I” I+-C) 1

Step 3. Finally, the best ranked candidates in the ordering of
step 2 are further rauked by the number of PC-features of their
plan kernels that do not hold in the input state of the new
problem. Thus, the cost function for this layer is given by

1 (v :(E ,nI C ,nd) 1 v E pc-features(PK(<R” ,a))) A I” I-K } I

The best ranked reuse candidates at the end of this three layer
ordering procedure are returned as the preferred candidates for
reuse in solving P” .

Remarks: Even if an old plan matches all the goals of P”, it
may still be an inappropriate candidate for solving P” since the
methods it uses to achieve those goals may not be applicable in
the new problem situation. This, for example, is the case when
a filter condition of the schema used to reduce the task achiev-
ing a goal in R O is no longer true in P” , or the phantom goal
node that achieved a goal in R” can no longer stay phantom in
P”. The ranking with respect to f-features, carried out in step
2, essentially attempts to prefer candidates which will not have
validations supporting such failing filter conditions or failing
phantom goals.
The implicit levels of importance attached to the validations at
different layers of the plan kernel can be justified in terms of the
computational effort needed for re-establishing them in the new
problem situation. The main heuristic is -that a significant
amount of task reduction and interaction resolution would be
required to generate subplans to achieve goals of the new prob-
lem that are not supported by the retrieved plan, or to replace
subplans of the retrieved plan with failing filter conditions, in
contrast to the effort required to reachieve the failing precondi-
tions. The second heuristic is that in the event of filter condi-
tion failwe, it is possible that to exploit some of the previous
planning effort (e.g., effort expended in establishing the e-
preconditions of the sub-reduction being replaced) in the new
planning situation (see [lo]). For this reason, the failing filter
conditions are considered less costly to handle than new goals.

3.3. Example
Figure 2 shows the initial and goal state specification of 4BS1, a
blocks world problem and lists four possible reuse candidates
for that problem. For each reuse candidate, the figure shows the
the initial and goal state specifications, the mapping between the
candidate and the 4BSl problem, and the plan kernel of the
reuse candidate (as an exercise, compare the plan kernels of the
reuse candidates (3BS ,[A +L ,B +K,C -41) and

6
3BS,[A-+K,B+J,C+I]) with PK(3BS) specified previously).
or ease of exposition, the figure shows the validations of the

plan kernels only by their supporting effects. It does not include
facts of type Block(?x) in the specifications of the problems.
Similarly, it also does not explicitly show the validations of the
type (Block(?x),-,-,-).

When these four reuse candidates are ordered with the help
of their plan kernels, at the first layer the g-features of the plan
kernels of all the reuse candidates fail to satisfy one goal each
of the new problem (4BSl). Thus, they are all deemed equally
costly at this layer, and all the candidates move to the ordering
at the next layer.

At this layer, the f -feature {On (B ,C),-,-,-) of the plan
kernel of {3BS-Phantom,[A +L $ -X,C +J]) is not preserved
in the input state of the new problem (4BSl) as I” POn (B ,C).

(This basically means that the top level phantom goal of this
reuse candidate has to be re-established if we want to use it to
solve P” .) Similarly, the f -feature {Pyramid (L),-,-,-) of the

41Ei:
Init-state(l”): On (I .Tabfe). On(K .Table), On(L .Table). On (J ,L,),

Clear(J), Clear(K). Clear (I),
Goal-state(G “): On (L ,K). On (K .J), On (J J)

Reuse Candidates ((R” ,a))

(3BS-Phantom. [A --+L ,B +K .C+J]):
Init-state: On (A .Table), On (B $2). On (C ,Table), Clear (A). Clear (B)
Goal-state: On (A 8). On@ .C)
Plan: Put-Block-on-Block-Action(A ,B)
PK(3BSPhantom)[A -L ,B -SK .C +J]:

[g -features: (On (LX),-,-.-) On (K ,J).-,-.-)
f -features: On (K J).-,-,-
pc -features: \ 11

On (L .Table).-,-.-)
Clear(L).-.-.- Clear (K),-.-,-)I

(3BS, [A +L ,B +K .C +J]):
Init-state: On (A ,Table).On (E ,Table),On (C ,Table).Clear (A),Clear (B),Clear (C)
Goal-state: On (A ,B), On@ ,C)
Plan: Put-Block-on-Block-Action@ ,C)-+Put-Block-on-Block-Action(A ,B)
PK(3BS)$A 4. ,B +K ,C-+J]:

[g-features: (On (L ,K),-.-.-)
f -features:

(On (K +I),-.-,-)

pc -features:
(On (L ,Table),-,-.-) (On (K ,Table),-.-.-)
{Cfear (L),-.-.-) (Clear (K).-.-.-) (Clear (J).-,-,-)]

(3BS. [A +K ,B +J .C +I]):
Init-state:On (A ,Table),On (B .Table).On (C .Table),Clear (A),Clear (B),Clear (C)
Goal-state: On (A ,B), On (B C)
Plan: Put-Block-on-Block-Action@ ,C)+Put-Block-on-Block-Action(A 8)
PK(3BS)$A -+K ,B +J $2 -+I]:

(g -features: (On (K J).-,-,-}
f-features:

\

(On (J 4),-,-,-)

pc -features:
On (J ,Table),-.-,-) (On (K .Table),-,-.-)
Clear (I),-,-,-) (Clear (K),-,-,-) (Clear (J).-.-,-)I

(3BS-PyramidJA -+L ,B +K $2 -*I I):
Init-state: On(A ,Table), On (E .Table). On (C,Table), Clear (A),

Clear (B). Clear (C). Pyramid (A)
Goal-state: On (A 8). On@ .C)
Plan: Put-Block-on-Block-Action@ .C)+Put-Pyramid-on-Block(A J)
PK(3BS-Pyramid)$A +L ,L3 +K ,C+J]:

[s -features: (On (L ,K),-,-.-}
f-features:

(On (K J).-,-,-)
(F’yramid(L),-,-,-} (On (L ,Table),-,-,-)

pc -features:
(On (K ,Table),-,-,-)

(Clear (K),-,-.-) (Clear (J).-;-,-)I

Figure 2. Example for Plan Kernel Based Qrdering

KAMBHAMPATI 173

kernel of the
Pyrarnid,[A +L ,B +K ,C +J])

reuse
is not

candidate
preserved

(3BS-
since

I” tfpyramid (L). If we wmi to solve 4BS 1 by this reuse can-
didate, the sub-reduction dependent on this filter condition
would have to be replaced. Further, the f-feature
On (J ,Table),-,-,-)

t
1 of the plan kernel of the reuse candidate

3BS,[A-+K,B-+J,C-+Z]) is not preserved since
I” I+ On (J,TabZe). In contrast, none of the f -features of the
reuse candidate (3BS ,[A +L ,B +K,C +J]) fail to hold in the
new problem situation. Thus, this is ranked best by the ordering
based on the f-features of the plan kernel. Since this is the
only best ranked candidate, the ordering at the third layer is not
required and (3BS ,[A +L ,B -+K ,C +J]) is returned as the pre-
ferred reuse candidate for solving the problem 4BSl.

Notice that the plan kernel based ordering is able to discrim-
inate among these reuse candidates even though all the candi-
dates satisfy the same number of goals of P”. Further, as we
mentioned earlier, it is capable of discriminating among different
plans as well as different mappings of the same plan. In the
current example, candidates
(3BS ,[A +L ,B +K ,C -+J]) iii (3B:;:K$3 -+J,C +Z])
correspond to two different mappings of the same (three blocks)
plan. We have seen that the ordering prefers one of the map-
pings over the other.

3.4. Cost Overestimation in the Ordering Heuristic

annotation verification process, after a reuse candidate is
selected (see prune-validation process in [lo]). Thus, to even-
tually avoid overestimation of cost, the annotation verification
procedure would have to be carried out partially before the reuse
candidates are ranked by the plan kernel based ordering. Even
though the annotation verification process is only a polynomial
time process, we feel that using it during mapping and retrieval
stage may still be too expensive. Because of thii, we retained
the overestimating heuristic in the current implementation of
PRL4R. However, this can be changed easily if required.

3.5. Refinements to Plan Kernel Based Ordering
The informedness of the ordering procedure presented in section
3.2 can be further improved by exploiting the hierarchical struc-
ture of the plan. In particular, the notion of the level of a vali-
dation can be used as a means of differentiating further among
the validations of the individual layers of the plan kernel (in
terms of the estimated difficulty of re-establishing them in the
event they are not preserved in the new problem situation).

The level of a validation is defined as the reduction level at
which that validation is first introduced into the HTN (see [lo]
for the formalization of this notion). For example, in figure 1,
the validation (BZock(A),nl ,BZock (A),nre) is considered to be of
a higher level than the validation

6
On (A ,TabZe),q ,On (A ,TabZe),n 16), since the former is intro-
uced into the HTN to facilitate the reduction of task n3 while

the latter is introduced during the reduction of task ng. A useful
characteristic of hierarchical planning is that its domain sche-
mas are written in such a way that the more important condi-
tions are established at higher levels, while the establishment of
less important conditions is delegated to lower levels. Thus, the
level at which a validation is first introduced into an HTN can be
taken to be predictive of the importance of that validation, and
the effort required to (re)establish it.2 The validation levels can
be pre-computed efficiently at the time of annotation.

To improve the informedness of the heuristic ordering, we
can weight the validations of individual layers by their levels.
The cost functions of the ordering procedure will then compute
the weighted sum of the number of failing validations. For
example, the cost function for the f-feature based ordering step
in section 3.2 would now become c level(v), where

In A = {v :(E ,nl,C ,nd) 1 v E f-features(PK ((R” il)) R I” t+C } .

the current example this would mean that the failure of the vali-
dation (Bzock(A) n’$zock(A) n 9 I 9 16

) would be considered more
costly than the failure of the validation
(On (A ,TabZe),n, ,On (A ,TabZe),n 16) This is reasonable since
the former necessitates the relacement of a larger sub-plan (the
sub-plan rooted at ns) than the latter (which only leads to the
replacement of the sub-plan rooted at ng; see figure 1).

4. Related Work

A limitation of the plan kernel-based heuristic ordering strategy
as discussed in the previous section is that it sometimes overes-
timates the cost of reusing a plan in the new situation by count-
ing some spurious inconsistencies. This happens when parts of
the reuse candidate are rendered redundant in the new problem
situation. For example, when the reuse candidate supports some
unnecessary goals (the goals which are satisfied by the reuse
candidate but are not required in the new planning situation),
some of the failing validations may actually be supporting the
parts of the plan whose sole purpose is to help achieve the
unnecessary goal. Such failing validations should obviously not
be counted as inconsistencies, as they can eventually be
removed from the HTN and thus do not have to be re-established.
As an example, suppose that we are judging the appropriateness
of reusing the 3BS plan, shown in figure 1, in a new problem
situation where there is no match for the goal On (A ,B) (i.e., it
. not required).
czem (A h Clear (A > In) such

. .

a case’ *e ‘vhdahon ,n16 cannot be counted as a farhue, even
if CZear (A) is not true in the initial state of the new problem-
this validation, being an e-precondition of the node
n3:A [On (A ,B)], will be pruned away eventually thus making its
failure inconsequential. Similar situation arises when some of
the goals and sub-goals of the reuse candidate are directly
satisfied in the input situation of the new problem (see p -
phantom validations in [lo, 131). To avoid overestimation in
these cases, the parts of the plan that are rendered redundant in
the new problem situation would have to be removed, even Research in analogical problem solving has shown that the
before reuse candidates are ordered by the plan kernel based appropriateness of reusing a previous problem’s solution to
ordering. In PRTAR, this type of pruning is done only during solve a new problem cannot be accurately judged through a

1 We follow the convention of [20] and classify O~(J ,?x) as a filter
condition rather than a precondition. Some effects of the plan depend on
the binding of ?X and one way of correctly propagating the effects when
the binding of ?X changes is to re-reduce the corresponding task.

2 We assume that domain schemas having this type of abstraction
property have been supplied/encoded by the user in the first place. What
we are doing here is to exploit the notion of importance implicit in that
abstraction.

174 AUTOMATEDREASONING

simple matching of the problem specifications. However, the
alternatives, such as the one proposed by Carbonell [2] in
derivational analogy, tend to be very costly, as they require that
the solution derivations rather than the problem specifications be
compared during retrieval. To compare derivations, the new
problem would first have to be partially solved by some non-
analogical methods. The retrieval method proposed here falls in
the middle ground as it does essentially feature based matching,
but takes the validation structure of the solution into account
during the matching. This latter characteristic gives it the ability
to make a more informed estimate of the importance of indivi-
dual feature matches on the cost of the overall modification.

The principle motivation behind our strategy is that mapping
and retrieval should be guided by the features of the existing
plans that are predictive of the amount of modification required
to reuse them in the new problem situation. In this sense, it has
some similarities to the CHEF [6] retrieval strategy which gives
importance to the features that are predictive of execution time
failures and interactions. However, in contrast to CHEF, which
learns the features predictive of the interactions (through an
explanation based generalization of execution time failures),
PRIAR uses the existing validation structure of the plan to decide
the relative importance of the individual features. To some
extent, this difference is a reflection of the differing nature of
the tasks that are addressed by the two systems-while PRIAR

tries to modify plans in the presence of a generative planner,
and ensure correctness of the modification with respect to that
planner, CHEF relies on the heuristic modification of the
retrieved plans and tests the correctness through a domain model
based simulation.

5. Conclusion
Gur main contribution to the mapping and retrieval problem is a
domain independent heuristic strategy for utilizing the
validation structure of the stored plan to decide the appropriate-
ness of reusing it in a new problem situation. The central idea
is to estimate the cost of modifying the plan to solve the new
problem, and prefer the candidate with least expected
modification cost. The modification cost is estimated by
measuring the amount of disturbance that would be caused to
the validation structure of a reuse candidate in new problem
situation. We have discussed the implementation of this
retrieval strategy in PRIAR, a framework for flexible reuse and
modification of plans. We argued that our strategy is more
informed than the typical feature based retrieval strategies, and
more effkient than the methods which require partial knowledge
of the nature of the plan for the new problem situation to guide
the retrieval process. Retrieving plans based solely on the plan
kernel based ordering may still be too expensive when the plan
library is very large. In such cases, the initial retrieval of candi-
date plans, prior to the plan kernel based ordering may have to
be based on a domain dependent retrieval strategy. However,
the plan kernel based ordering strategy can act in conjunction
with such a gross feature-based retrieval strategy to make a
more informed estimate of the utility of reusing a plan in the
given problem situation.

References
1. R. Alterman, “An Adaptive Planner”, Proceedings of 5th

AAAZ, 1986, 65-69.
2. J. 6. Carbonell, “Derivational Analogy and its Role in

Problem Solving”, Proceedings of AAAI, Washington

3.

4.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D.C., 1983, 64-69.
E. Charniak and D. McDermott, “Chapter 9: Managing
Plans of Actions’ ‘, in Introduction to ArtiftciaZ
Intelligence, Addison-Wesley Publishing Company, 1984,
485-554.
L. Daniel, “Planning: Modifying non-linear plans”, DAI
Working paper 24, University of Edinburgh, December
1977. (Also appears as “Planning and Operations
Research, *’ in Artificial ZnteNigence: Tools, Techniques
and Applications, Harper and Row, New York, 1983).
R. Fikes, P. Hart and N. Nilsson, “Learning and
Executing Generalized Robot Plans’ ‘, Artificial
Intelligence 3 (1972), 251-288..
K. J. Hammond, “CHEF: A Model of Case-Based
Planning”, Proceedings of 5th AAAI, 1986, 267-271.
P. J. Hayes, “A Representation for Robot Plans”,
Proceedings of 4th ZJCAI, 1975.
M. N. Huhns and R. D. Acosta, “ARGO: A System for
Design by Analogy”, IEEE Expert, Fall 1988, 53-68.
(Also appears in Proc. of 4th IEEE Conf. on Apple. of
AI, 1988).
S. Kambhampati and J. A. Hendler, “Control of Refitting
during Plan Reuse’ ‘, I1 th International Joint Cortference
on Artificial Intelligence, Detroit, Michigan, USA, August
1989.943-948.
S. Kambhampati, “Flexible Reuse and Modification in
Hierarchical Planning: A Validation Structure Based
Approach*‘, CS-Tech. Rep.-2334, CAR-Tech. Rep.-4698,
Center for Automation Research, Department of Computer
Science, University of Maryland, College Park, MD
20742, October 1989. (Ph.D. Dissertation).
S. Kambhampati and J. A. Hendler, “Flexible Reuse of
Plans via Annotation and Verification’ ‘. Proceedings of
5th IEEE Conf. on Applications of Artificial Intelligence,
1989, 37-44.
S . Kambhampati, “Mapping and Retrieval during Plan
Reuse: A Validation-Structure Based Approach”,
Proceedings of Eighth AAAZ, Boston, MA, 1990.
S . Kambhampati, “A Theory of Plan Modification”,
Proceedings of Eighth AAAI, Boston, MA, 1990.
J. L. Kolodner, “Maintaining Organization in a Dynamic
Long-term Memory”, Cognitive Science 7 (1983), 243-
280.
J. L. Kolodner, ‘ ‘Reconstructive Memory: a Computer
Model”, Cognitive Science 7 (1983), 281-328.
J. L. Kolodner, “Case-Based Problem Solving’*,
Proceedings of the Fourth ZnternationaZ Workshop on
Machine Learning, University of California, Irvine, June
1987, 167-178.
E. D. Sacerdoti, A Structure for Plans and Behavior,
Elsevier North-Holland, New York, 1977.
R. Simmons, “A Theory of Debugging Plans and
Interpretations”, Proceedings of 7th AAAI, 1988, 94-99.
A. Tate, “Project Planning Using a Hierarchic Non-Linear
Planner”, Research Report 25, Department of AI,
University of Edinburgh, 1976.
A. Tate, “Generating Project Networks”, Proceedings of
5th ZJCAI, 1977, 888-893.
D. E. Wilkins, ‘ ‘Domain-independent planning:
representation and plan generation”, Artificial Intelligence
22 (1984), 269.
D. E. Wilkins, “Recovering horn execution errors in
SIPE”, Computational Intelligence 1 (1985).

KAMBHAMPATI 175

