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Abstract 
We present a theory of plan modification applicable to hierarchical 
no&ear planning. Our theory utilizes the validation structure of the 
stored plans to yield a flexible and conservative plan modification 
framework The validation structure, which constitutes a hierarchical 
explanation of correctness of the plan with respect to the planner’s 
own knowledge of the domain, is annotated on the plan as a by- 
product of i&al planning. Plan modification is ch&cteri& as a 
brocess of remov&g inconsistencies in the validation structure of a 
&an when it is being reused in a new (changed) planning situation. 
The reuair of these -inconsistencies involves removing unnecessary 
pans of the plan and adding new non-primitive tasks to the plan to 
establish mi&g or failing validations. The resultant partially re- 
duced plan (with a consistent validation structure) is sent to the 
planner for complete reduction. We discuss the development of this 
theory in PMAR system, and characterize its completeness, coverage, 
efficiency and limitations. 

I. Introduction 
The ability to flexibly and conservatively modify existing plans 
to make them conform to the constraints of a new of changed 
planning situation is very useful in plan reuse, replanning and 
incremental planning. While the value of such capability has 
been acknowledged early in planning research [5,7], the stra- 
tegies developed were inflexible in that they could reuse or 
modify a given plan in only a limited number of situations, and 
could deal with only a limited variety of applicability failures. 
There was no general framework for conservatively modifying 
an existing plan to fit it to the constraints of a new problem 
situation. A major shortcoming with these approaches was that 
the stored plans did not represent enough information about the 
internal dependencies of the plan to permit flexible modification. 
For example, reuse based on macro-operators [5] built from 
sequences of primitive plan steps was unable to modify inter- 
mediate steps of the macro-operator, as macro-operators did not 
represent the intermediate decisions and dependencies 
corresponding to their internal steps. Even in cases where the 
need for the dependency information was recognized (e.g. 
[4,22]), a systematic representation and utilization of such struc- 
tures in plan reuse and modification was not attempted. 
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We present a theory of plan modification that allows flexible 
and conservative modification of plans generated by a hierarchi- 
cal nonlinear planner. Hierarchical planning is a prominent 
method of abstraction and least-commitment in domain- 
independent planning [3]. Our theory of plan modification pro- 
poses validation structure as a way of representing the internal 
dependencies of a hierarchical plan and provides algorithms for 
annotating the validation structure on the plans during plan gen- 
eration. It systematically explores the utility of the annotated 
validation structure in guiding and controlling all the processes 
involved in flexible plan reuse and modification. The PRIAR plan 
modification system [9,11,10,12] is our implementation of this 
theory. 

The plan modification problem that is addressed in PRL4R is 
the following: Given (i ) a planning problem P ’ (specified by a 
partial description of the initial state I” and goal state G” ), (ii) 
an existing plan R” (generated by a hierarchical nonlinear 
planner), and the corresponding planning problem P”, Produce 
a plan for P” by minimally modifying R O. 

In the PRIAR reuse framework, the internal dependencies of a 
hierarchical plan which are relevant to guide its reuse and 
modification are formalized as the validation structure of the 
plan. The validation structure can be seen as a form of 
hierarchical explanation of correctness for the plan with respect 
to the planner. Individual tasks of the hierarchical plan are 
annotated with information about their role in the plan validation 
structure. PRIAR provides efficient algorithms for acquiring these 
annotations as a by-product of planning. 

When an existing plan is being reused in a new planning 
situation, the applicability failures, the redundancies, and the 
shortcomings that may arise in the process are formally charac- 
terized as inconsistencies in the plan’s validation structure. 
Reuse in the PRIAR framework is formally seen as a process of 
repairing the inconsistencies in the validation structure of a 
given plan when it is mapped into the new problem situation. 
Given the new problem P” , and an annotated plan R O, PRIAR'S 
reuse process proceeds in the following steps: 

(1) Mapping and Interpretation: An appropriate mapping a 
between the objects of [P” ,I? O ] and P” is computed, and R O 
is mapped into P” with it. Next, some important differences 
between P” and P” are marked. The resulting interpreted 
plan, R’, is typically a plan with an inconsistent validation 
structure. 
(2) Annotation Verification: The inconsistencies in the valida- 
tion structure of R’ are located, and appropriate repairs are 



suggested. The repairs include removing parts of R’ that are 
unnecessary and adding non-primitive tasks (called reJit tasks) 
to establish any required new validations. The resulting 
annotation-verified plan R B will have a consistent validation 
structure but is typically only partially reduced. It consists of 
all the applicable parts of R’ and any refit tasks which are 
introduced. 
(3) Refitting: The refit tasks specified during the annotation 
verification phase constitute sub-planning problems for. the 
hierarchical planner. The refitting process involves reducing 
them with the help of the planner. Conservatism is ensured 
through the use of a heuristic control strategy which minimizes 
the disturbance to the applicable parts of R” during this pro- 
cess. 

Computational savings stem from the fact that the cost of 
solving the sub-planning problems during refitting is on the 
average much less than the cost of solving the entire planning 
problem from scratch. This is supported by the results of the 
empirical studies in blocks world, which showed that plan 
modification proveds 20-98% savings (corresponding to speedup 
factors of 1.5 to 50) over pure generative planning. 

This paper concentrates mainly on the development of the 
basic modiGcation framework; the details of mapping and 
refitting control strategies can be found in [9,12, lo]. The 
organization of this paper is as follows: Rest of this section pro- 
vides some necessary preliminaries of hierarchical planning. 
Section 2 presents the notion of plan validation structure, 
explains the motivation behind remembering it along with each 
generated plan, and presents a scheme for annotating it on the 
plan. Section 3 develops the basic modification processes, and 
explains how they utilize the plan validation structure. Section 
4 contains a discussion completeness, coverage and efficiency of 
PRLAR modification theory and section 5 provides a brief discus- 
sion of related work. 

1.1. Preliminaries 
This paper makes extensive use of the concepts of hierarchical 
planning paradigm. A good introduction to this methodology 
can be found in [3]. Some well known hierarchical planners 
include NOAH [ 171, NONLIN [20] and SIPE [21]. In hierarchical 
planning, a partial plan is represented as a task network. A task 
network is a 3-tuple T,O ,I$ where T is a collection of tasks, 

6 0 defines a partial or ering over T, and ll is a set of protection 
intervals. A protection interval is a 3-tuple (E,tl,t2), where 
tl,t2 E T, E is an effect of fi, and E has to necessarily persist 
up to I 2 [3]. Planning proceeds by selecting a task from the 
current task network and reducing it with the help of a task 
reduction schema to more concrete subtasks. This reduction 
may introduce some harmful interactions with the existing pro- 
tection intervals, which are handled by introducing additional 
partial ordering relations among the tasks. 

The planner cannot reduce certain distinguished tasks of the 
domain called primitive tasks. (It is assumed that the planner 
~‘knows” how to execute such tasks.) Further, if all the 
required effects of a task are already true in a given partial plan, 
then that task does not have to be reduced any further (such 
tasks are called phantom goals [3]). A task network is said to 
represent a completed pZan when none of its tasks have to be 
reduced further. 

The hierarchical development of a plan P :(T,O $I) is cap- 
tured by its hierarchical task network (abbreviated as HTN) . A 
HTN is a 3-tuple, (P:(T,O,n) ,T*,Ll), where T’ is a superset 

of T, and D deties a set of parent-child relations among the 
tasks of T*. (The immediate children of a task t are the tasks 
that resulted from its reduction during planning.) For conveni- 
ence, we will be referring to T’, the tasks of the HTN, also as its 
nodes. We shall refer to the number of leaf nodes in a HTN 
(IT I) as the length of the corresponding plan, and denote it by 
Np. For the sake of uniformity, we shall assume that the HTN 
has two special primitive bodes nI,nc E T* , corresponding 
respectively to the input state and the goal state of the planning 
problem. We shall use the notation “nl < n2” (where ni and 
n2 are nodes of HTN) to indicate that n i is ordered to precede n2 
in the partially orderered plan represented by the HTN. Simi- 
laq, “nl > n2” denotes that nl is ordered to follow n2, and 
“ni // n2” denotes that there is no ordering relation between 
the two nodes (n, is parallel to nz). The set consisting of a node 
n and all its descendents in the HTN is called the sub-reduction 
of n, and is denoted by R (n). Following [3,20], we also distin- 
guish two types of plan applicability conditions: the precondi- 
tions (such as CZeur (A ) in the blocks world) which the planner 
can achieve, and the filter conditions (such as BZock(A ) in the 
blocks world) which the planner cannot achieve. Finally, we 
shall use the notation “F I- f ” to indicate that f deductively 
follows from the set of facts in F. 

2. Validation Structure and Annotations 

2.1. Validation Structure 

52.1. Validation: A validation is a 4-tuple (E, n,, C, nd), 
where n, and nd are leaf nodes belonging to the HTN, and the 
effect E of node n, (called the source) is used to satisfy the 
applicability condition C of node nd (called the destination). C 
and E are referred to as the supported condition and the sup- 
porting efsect respectively of the validation. As a necessary con- 
dition for the existence of a validation v, the partial ordering 
among the tasks in HTN must satisfy the relation riseid. The 
type of a validation is defined as the type of the applicability 
condition that the validation supports (one of j2fer condition, 
precondition, phantom goal). Notice, from section 1.1 that 
every validation v : (E, n,, 
interval [3] {E ,n, ,nd). 

C , nd) corresponds to a protection 
This correspondence implies that there 

will only be a finite set of validations corresponding to a given 
HTN representing the development of a plan; we shall call this 
set V. (If 5 is the maximum number of applicability conditions 
for any action in the domain, then IV1 is o(&Vp) [lo].) 

Figure 1 shows the validation structure of the plan for solv- 
ing a block stacking problem 3BS (also shown in the figure). 
Validations are represented graphically as links between the 
effect of the source node and the condition of the destination 
node. (For the sake of exposition, validations supporting condi- 
tions of the type BZock(?x) have not been shown in the figure.) 
For example, (On (B ,C ), n15,On (B ,C ),nc) is a validation 
belonging to this plan since On (B ,C ) is required at the goal 
state n, , and is provided by the effect On (B ,C ) of node ni5. 
52.2. Inconsistencies and Consistency of Validation Struc- 
ture: A validation v :(E ,n, ,C ,nd) is considered a failing valida- 
tion if either E 6 effects (n, ) or when there exists a node 
n E HTN such that n possibly falls between n, and nd. A vali- 
dation v: (E, n,, C, nd) is considered an unnecessary validation 
iff the node nd does not require the condition C . (This could 
happen, for example, if a goal of the plan is no longer necessary 
in the current problem situation.) Finally, we say that there is a 
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On(A,B)&On( B,C) 

On(A,Table)&Clear(A) 
&On( B,Table)&Clear( B) 
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“I 
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goal state 

?c 

I Sch: Make-on(B.CJ Sch: Make-on(A,B) 
eff: On(A,B) 

\ \ 

validations 

r” 7 

Figure 1. Validation structure of 3BS plan 

missing validation corresponding to a condition, node pair 
(C’,n’l of the EITN iff sv: (E, n,, C, nd) s.t. C=C’Rnd=n’. 

applicability conditions of the nodes that lie outside the sub- 
reduction. Thus, E-conditions(n) = 

The unnecessary, missing or failing validations in a HTN will 
be referred to as inconsistencies in its validation structure. An 
HTN is said to have a consistent validation structure if it does 
not have any inconsistencies. From these defkritions, it should 
be clear that in a HTN with a consistent validation structure, each 
applicability condition of a node (including each goal of no) 
will have a non-failing validation supporting it. (Thus, a com- 
pletely reduced HTN with a consistent validation structure consti- 
tutes a valid executable plan.) 

2.2. Annotating Validation Structure 
Having developed the notion of validation in a plan, our next 
concern is representing the validation structure of the plan 
locally as annotations on individual nodes of a HTN. The intent 
is to let these annotations encapsulate the role played by the 
sub-reduction below that node in the validation structure of the 
overall plan, so that they can help in efficiently gauging the 
effect of any modification at that node on the overall validation 
structure of the plan. We achieve this as follows: For each node 
n E HTN we define the notions of (i ) e-condition.+ ), which are 
the externally useful validations supplied by the nodes belonging 
to R(n) (the sub-reduction below n) (ii) e-preconditions(n), 
which are the externally established validations that are con- 
sumed by nodes of R (n ), and (iii ) p-conditions(n), which are 
the external validations of the plan that are required to persist 
over the nodes of R (n). 

{vi: (E, n,, C, nd) IvieV; n,ER(n); nde R(n) ) 
For example, the e-conditions of the node It3 in the HTN of 
figure 1 contains just the validation (On (A ,I3 ), n16, On (A $ ), 
nc) since that is the only effect of R (n3) which is used outside 
of R (n3). The e-conditions provide a way of stating the exter- 
nally useful effects of a sub-reduction. They can be used to 
decide when a sub-reduction is no longer necessary, or how a 
change in its effects will affect the validation structure of the 
parts of the plan outside the sub-reduction. 
52.4. E-Preconditions (External Preconditions): The e - 
preconditions of node n correspond to the validations supporting 
the applicability conditions of any node of R(n) that are 
satisfied by the effects of the nodes that lie outside of R(n). 
Thus, E-preconditions(n) = 

{vi: (E, n,, C, nd) 1 VieV; ndER(n); n,q R (n) } 
For example, the e-preconditions of the node ns in the HTN of 
figure 1 will include the validations (Clear (A ), nf, Clear (A ), 
n71 and (Clear (B ), nf , Clear (B ), ns). The e-preconditions can 
be used to locate the parts of rest of the plan that will become 
unnecessary or redundant, if the sub-reduction below this node 
is changed. 
52.5. P -Conditions (Persistence Conditions): P-conditions of 
a node n correspond to the protection intervals of the HTN that 
are external to R(n), and have to persist over some part of R(n) 
for the rest of the plan to have a consistent validation structure. 
We define them in the following way: 

$2.3. E-Conditions (External Effect Conditions): The e- A validation vi: (E, n,, C, nd)EV is said to intersect the 
conditions of a node n correspond to the validations supported sub-reduction R (n) below a node n (denoted by “v 63 R(n)“) 
by the effects of any node of R (n ) which are used to satisfy if there exists a leaf node n E R (n ) such that n possibly falls 
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between n, and nd (for some total ordering of the tasks in the 
HTN). Using the definition of validation [lo], we have 
vi: {E, n,, C, Q) Q9 R(n) iff 

E R (n) s.t. children (n’)=0 A 
1 

A validation vi : {E, n,, C , nd)EV is considered a p- 
condition of a node n iff Vi intersects R (n ) and neither the 
source nor the destination of the validation belong to R (n ). 
Thus, P-conditions(n) = 

(vi: (E, n,, C, nd)l VicV; n,,ndgr R(n); vi@R(n)} 
From this definition, it follows that if the effects of any node of 
the R(n) violate the validations corresponding to the p- 
conditions of n, then there will be a potential for harmful 
interactions. As an example, the p-conditions of the node n3 in 
the I-RN of figure 1 will contain the validation 
(On (B ,C hnldn (B ,C ),nG) since the condition On (B ,C ), 
which is achieved at n15 would have to persist over R (n3) to 
support the condition (goal) On (B ,C ) at nG . The p-conditions 
help in gauging the effect of changes made at the sub-reduction 
below a node on the validations external to that sub-reduction. 
This is of particular importance in localizing the refitting [9]. 

2.3. Computing Annotations 
Jn the PRIAR framework, at the end of a planning session, the 
HZ+N showing the development of the plan is retained, and each 
node of the HTN is annotated with the following information: (1) 
Schema(n), the schema instance that reduced node n (2) e- 
preconditions(n ) (3) e-conditions(n ), and (4) p-conditions(n ). 
The node annotations are computed in two phases: First, the 
annotations for the leaf nodes of the I-RN are computed with the 
help of the set of validations, V, and the partial ordering rela- 
tions of m. Next, using the relations between the annotations 
of a node and its children (which can be easily derived from the 
definitions of the previous section; see [lo]), the annotations are 
propagated to non-leaf nodes in a bottom up breadth-first 
fashion. The exact algorithms are given in [lo], and are fairly 
straightforward to understand given the development of the pre- 
vious sections. The time complexity of annotation computation 
is 0 (IV:), where Np is the length of the plan (number of leaf 
nodes in the HTN). 

While the procedures discussed above compute the annota- 
tions of a HTN in one-shot, often during plan modification, PRIAR 
needs to add and remove validations from the HTN one at a time. 
To handle this, PRIAR also provides algorithms to update node 
annotations consistently when incrementally adding or deleting 
validations from the HTN. These are used to re-annotate the HTN 
and to maintain a consistent validation structure after small 
changes are made to the plan. They can also be called by the 
planner any time it establishes or removes a new validation (or 
protection interval) during the development of the plan, to 
dynamically maintain a consistent validation structure. The time 
complexity of these algorithms is 0 (Np ) [lo]. 

3. Modification by Annotation Verification 
We will now turn to the plan modification process, and demon- 
strate the utility of annotated validation structure in guiding plan 
modification. Throughout the ensuing discussion, we will be 
following the simple example case of modifying the plan for the 
three block stacking problem 3BS (i.e., R”= 3BS) shown on the 
left side in figure 2 to produce a plan for the four block stacking 

A 11 1 1 r-a-i-H a B c 

input Sltuatcon Goal Input situatton Goal 

P” 38s p” 4BSl 

Figure 2.3BS+4BSl Reuse problem 

problem 4BSl (i.e., P”= 4BSl) shown on the right side. We 
shall refer to this as the 3BS+4BSl example. 

3.1. Mapping and Interpretation 

In PRIAR, the set of possible mappings between [P”,Ro] and P” 
are found through a partial unification of the goals of the two 
problems. There are typically several semantically consistent 
mappings between the two planning situations, and selecting the 
right mapping can considerably reduce the cost of modification. 
The mapping and retrieval methodology used by PRIAR [ 10,121 
achieves this by selecting mappings based on the number and 
type of inconsistencies that would be caused in the validation 
structure of R”. As the details of this strategy are beyond the 
scope of this paper, for the purposes of this paper, we shall sim- 
ply assume that such a mapping is provided to us. (It should be 
noted that this mapping stage will not be required if the objec- 
tive is to modify an existing plan in response to changes in its 
own specifications.) Once a mapping a is selected, the inter- 
preted plan R’ is constructed by mapping R” along with its 
anno tations into the new planning situation P” , and marking the 
differences between the specifications of the old and new &an- 
ning situations. These differences, marked in I’ and G’, serve 
to focus the annotation verification procedure on the inconsisten- 
cies in the validation structure of the interpreted plan. 

In the 3BS+4BSl example, let us assume that the mapping 
strategy selects a = [A +L ,I? +K,C +J] as the mapping from 
3BS and 4BSl. With this mapping, Clear(L) is no longer true 
in the input specification of 4BSl. So it will be marked out in 
I’. The facts On (J ,L ), On (Z ,TubZe ) and Clear (I) are true in 
4BSl but not in 3BS, so they will be marked as nav facts in I’. 
Similarly, as On(J ,Z) is not a goal of 3BS but is a goal of 
4BS 1, it will be marked as an exfru goal in G’ . There are no 
unnecessary goals. At the end of this processing, Ri, I’ and Gi 
are sent to the annotation verification procedure. 

3.2. Annotation Verification and Refit Task 
Specification 
At the end of the interpretation procedure, R’ may not have a 
consistent validation structure (see 92.2) as the differences 
between the old and the new problem situations (as marked by 
the interpretation procedure) may be causing some inconsisten- 
cies in the validation structure of R’ . These inconsistencies will 
be referred to as applicability failures, as these are the reasons 
why R’ cannot be directly applied to P” . The purpose of the 
annotation verification procedure is to modify R’ such that the 
result, R” , will be a partially reduced HTN with a consistent vali- 
dation structure. 

The annotation verification procedure achieves this goal by 
fhst localizing and characterizing the applicability failures 
caused by the differences in I’ and G’ , and then appropriately 
modifying the validation structure of R’ to repair those failures. 
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It groups the applicability failures into one of several classes 
depending on the type of the inconsistencies and the type of the 
conditions involved in those inconsistencies. The repairs are 
suggested based on this classification, and involve removal of 
unnecessary parts of the HTN and/or addition of non-primitive 
tasks (called refit tasks) to establish missing and failing valida- 
tions. The individual repair actions taken to repair the different 
types of inconsistencies are briefly described below; they make 
judicious use of the node annotations to modify R’ appropriately 
(see [lo, 121 for the detailed procedures). In [lo], we show that 
the time complexity of the annotation-verification process is 
polynomial (0 (IV INp3)) in the length of the plan. 
[I] Unnecessary Validations-Pruning Unrequired Parts: If 
the supported condition C of a validation v :(E,n,,C ,nd) is no 
longer required, then v can be removed from the plan along 
with all the parts of the plan whose sole purpose is supplying 
those validations. The removal can be accomplished in a clean 
fashion with the help of the annotations on R i. After removing 
v validation from the HTN (which will also involve incremen- 
tally re-annotating the HTN, see section 2.3), the HTN is checked 
for any node n,, that has no e-conditions. If such a node exists, 
then its sub-reduction, R (n,,) has no useful purpose, and thus its 
nodes can be removed from the HTN. This essentially involves 
backtracking over the task reductions in that sub-reduction, and 
removing any ordering relations that were introduced as a result 
of those reductions. This removal turns the e-preconditions of 
n,, into unnecessary validations, and they are handled in the 
same way recursively. 
[2] Missing Validations-Adding Tasks for Achieving Extra 
Goals: An extra goal is any goal of the new problem that is not 
a goal of the old plan, and thus is unsupported by any valida- 
tion in R’. The general procedure for repairing missing valida- 
tions (including the extra goals, which are considered conditions 
of nc) is to create a refit task of the form Achieve [G], and to 
add it to the HTN in such a way that it follows the initial node 
nf, and precedes the node which requires the unsupported condi- 
tion (in this case nc). Establishing a new validation in this way 
necessitates checking to see if its introduction leads to any new 
failing validations in the plan; the planner’s interaction detection 
routines are used for this purpose. Finally, the annotations of 
the nodes of the HTN are updated (with the help of incremental 
annotation procedures) to reflect the introduction of the new 
validation. 
[3] Failing Validations: The facts of I’ which are marked 
“out ” during the interpretation process, may be supplying vali- 
dations to the applicability conditions or goals of the interpreted 
plan R’. The treatment of such failing validations depends upon 
the types of the conditions that are being supported by the vali- 
dation. We distinguish three types of validation failures- 
validations supporting preconditions, phantom goals and filter 
conditions respectively-and discuss each of them in turn 
below’. 

(3.i) Failing Precondition Validations: If a validation support- 
ing a precondition of some node in the HTN is found to be fail- 
ing, because its supporting effect E is marked out, it can sim- 
ply be reachieved. The procedure involves creating a refit task, 
n.,, Achieve [El, to re-establish the validation v, and adding it to 
the HTN in such a way that it follows the source node and 

’ In NONLIN terminology [19] the precondition validations support 
the “unsupervised conditions” of a schema, while the phantom goal 
validations support the “supervised conditions” of a schema. 

precedes the destination node of the failing validation. The 
validation structure of the plan is updated so that the failing 
validation will be replaced by an equivalent validation to be 
supplied by n,,. Finally, the annotations on the other nodes of 
the HTN are adjusted incrementallv to reflect this change. - 
(3.ii) Failing Phantom Valia’ations: If the validation support- 
ing a phantom goal node is failing, then the node cannot 
remain phantom. The repair involves undoing the phantomiza- 
tion, so that the planner would know that it has to re-achieve 
that goal. Once this change is made, the failing validation is 
no longer required and can be removed. 
(3.iiG Failing Filter Condition Validations: In contrast to the 
validations supporting the preconditions and the phantom goals, 
the validations supporting failing filter conditions cannot be 
reachieved by the planner. Instead, the planning decisions 
which introduced those filter conditions into the plan have to 
be undone. That is, if the validation v:{E,n, ,C ,nd) supporting 
a filter condition C of a node nd is failing, and n ’ is the ances- 
tor of n, whose reduction introduced C into the HTN originally, 
then the sub-reduction R (n’) has to be replaced, and n ’ has to 
be re-reduced with the help of an alternate schema instance. 
So as to least affect the validation structure of the rest of the 
HTN, any new reduction of n’ is be expected to supply (or con- 
sume) the validations previously supplied (or consumed) by the 
replaced reduction. Any validations not supplied by the new 
reduction would have to be re-established by alternate means, 
and the validations not consumed by the new reduction would 
have to be pruned. Since there is no way of knowing what the 
new reduction will be until refitting time, this processing is 
deferred until that time. 

141 P-Phantom-Validations-Exploiting Serendipitous 
Effects: It is possible that some of the validations that R’ estab- 
lishes via step addition can be established directly from the 
interpreted initial state, thus shortening the plan. Such valida- 
tions, called p-phantom validations, are located by collecting 
validations whose source node is not nf, and checking to see if 
their supporting effects are now true in the new facts of I’. For 
each p -phantom validation, PRIAR checks to see if an equivalent 
validation can actually be established from the initial state, nl 
without introducing new interactions (and thereby causing sub- 
stantial revisions) in the plan. If so, the p-phantom validation 
becomes redundant, and is treated as an unnecessary validation. 
The parts of the plan that are currently establishing this valida- 
tion are pruned from the HTN, thus effectively shortening the 
plan. 
Example: Figure 3 shows R”, the HTN produced by the annota- 
tion verification procedure for the 3BS+4BSl example. The 
input to the annotation verification procedure is the interpreted 
plan R i discussed in section 3.1. In this example, R i contains a 
failing phantom validation and a missing validation correspond- 
ing to an extra goal. The goal On (JJ) of G i is an extra goal, 
and is not supported by any validation of the HTN. So, the refit 
task n lolAchieve [On (J ,I)] is added to the task network, in 
parallel to the existing plan, such that nl<n la<nG . n 1o now sup- 
plies the validation (On (J ,I),nlo,On (J,I),n,) to the goal 
On (JJ). Next, the fact Clear(L), which is marked out in I’, 
causes the validation (Clear (L ),nr ,CZear (L ),n7) supporting the 
phantom goal node n 7 to fail. So, the phantom goal node n7 is 
converted into a refit task to be reduced. It no longer needs the 
failing phantom validation from nf . Notice that the HTN shown 
in this figure corresponds to a partially reduced task network 
which consists of the applicable parts of the old plan and the 
two refit tasks suggested by the annotation verification 
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n15: Puton-Action 

Figure 3. Annotation-Verified plan for 3BS+4BSl 
procedure. It has a consistent validation structure, but it con- 
tains two unreduced refit tasks nlo and n7 which have to be 
reduced. 

3.3. Refitting 
To produce an executable plan for P” , R” (the HTN after the 
annotation verification process) has to be completely reduced. 
This process, called refitting, essentially involves reduction of 
the refit tasks that were introduced into R” during the annotation 
verification process. The responsibility of reducing the refit 
tasks is delegated to the planner by sending R” to the planner. 
An important difference between refitting and from-scratch (or 
generative) planning is that in refitting the planner starts with an 
already partially reduced m. For this reason, solving P” by 
reducing R” is less expensive on the average than solving P n 
from scratch. 

The procedure used for reducing refit tasks is fairly similar 
to the one the planner normally uses for reducing non-primitive 
tasks (see section l.l), with the following important difference. 
An important consideration in refitting is to minimize the distur- 
bance to the applicable parts of R” during the reduction of the 
refit tasks. To ensure this conservatism of refitting, the default 
schema selection procedure is modified in such a way that for 
each refit task, it selects a schema instance that is expected to 
give rise to the least amount of disturbance to the validation 
structure of R”. The annotated validation structure of the plan 
helps in this selection by estimating the effect of reduction at a 
refit task on the rest of the plan. A detailed presentation of this 
heuristic control strategy is beyond the scope of this paper; the 
interested reader is referred to [9, lo]. Once the planer selects an 
appropriate schema instance in this way, it reduces the refit task 
by that schema instance in the normal way, detecting and resolv- 
ing any interactions arising in the process. 
Example: Figure 4 shows the hierarchical task reduction struc- 
ture of the plan for the 4BS 1 problem that PRIAR produces by 
reducing the annotation-verified task network (shown in Figure 
3). (The top down hierarchical reductions are shown in left to 
right fashion in the figure. The dashed arrow lines show the 
temporal precedence relations developed between the nodes of 
the HTN.) The shaded nodes correspond to the parts of the 

interpreted plan R’ that survive after the annotation verification 
and refitting process. The white nodes represent the refit tasks 
added during the annotation verification process, and their subse- 
quent reductions. In the current example, the refitting control 
strategy recommends that the planner reduce the refit task 
A [Clear(L)] by putting J on I rather than putting J on Table 
or on K. This decision in turn leads to a shortened plan by 
allowing the extra goal refit task A [On (J J)] to be achieved by 
phantomization. 

4. Completeness, Coverage and Efficiency 
Completeness : The validation structure based modification is 
complete in that it will correctly handle all types of applicability 
failures that can arise during plan modification, and provide the 
planner with a partially reduced HTN with a consistent validation 
structure. In particular, our definition of inconsistencies (see 
$2.2) captures all types of applicability failures that can arise 
due to a change in the specification of the problem; and our 
annotation verification procedure provides methods to correctly 
modify the plan validation structure to handle each type of 
inconsistency (see section 3.2), without introducing any new 
inconsistencies into the HTN (a proof is provided in [lo].) 
Coverage : The validation structure developed here covers the 
internal dependencies of the plans produced by most traditional 

Figure 4. The plan produced by PRIAR 3BS+4BSl 
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hierarchical planners. The captured dependencies can be seen as 
a form of explanation of correctness of the plan with respect to 
the planner’s own domain model. By ensuring the consistency of 
the validation structure of the modified plan, PRIAR guarantees 
correctness of the modified plan with respect to the planner. 
However, it should be noted that as the dependencies captured 
by the validation structure do not represent any optima&y con- 
siderations underlying the plan the optimal@ of modification is 
not guaranteed. Further, since the modi&ation is integrated 
with the planner, failures arising from the incorrectness or 
incompleteness of the planner’s own domain model will not be 
detected or handled by the modification theory. Of course, these 
should not be construed as limitations of the theory, as its goal 
is to improve the average case efficiency of the planner. 
Flexibility and Efficiency: In the worst case, when none of the 
steps of R” are applicable in the new situation, annotation 
verification will return a degenerate HTN containing refit tasks 
for all the goals of P” . In such extreme cases PRIAR may wind 
up doing a polynomial amount of extra work compared to a 
pure generative planner. In other words, the worst case com- 
plexity of plan modification remains same as the worst case 
complexity of generative planning. However, on the average, 
PFUAR will be able to minimize the repetition of planning effort 
(thereby accrue possibly exponential savings in planning time) 
by providing the planner with a partially reduced HTN, and con- 
servatively controlling refitting such that the already reduced 
(applicable) parts of R” are left undisturbed. 

The claims of flexibility and average case efficiency are also 
supported by the empirical evaluation experiments that were 
conducted on PRIAR. The plot in figure 5 shows the computa- 
tional savings achieved when different blocks world problems 
are solved from scratch and by reusing a range of existing 
blocks world plans (see [lo] for the details of the experimental 
strategy). For example, the curve marked 7BSl shows the sav- 
ings afforded by solving a particular seven-block problem by 
reusing several different blocks world plans (indicated on the 
x-axis). The relative savings over the entire corpus of experi- 
ments ranged from 30% to 98% (corresponding to speedup fac- 
tors of 1.5 to 50) with the highest gains shown for the more 
difficult problems tested. These results also showed that as the 
size of P” increases, the computational savings afforded by 
PRIAR stay very high for a range of reused plans with varying 
amount of similarity; consider, for example, the plot for the 
12BSl problem in the figure. This latter behavior lends support 
to the claim of flexibility of the modification framework. 
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Figure 5. Variation of performance with problem size and similarity 

5. Related Work 
Representations of plan internal dependency structure have been 
used by several planners previously to guide plan modification 
(e.g., the triangle tables and the macro operators of [5] and [8]; 
the decision graphs of [7] and [4]; the plan rationale representa- 
tion of [22]). However, our work is the first to systematically 
characterize the nature of such dependency structures and their 
role in plan modification. It subsumes and formalizes the previ- 
ous approaches, provides a better coverage of applicability 
failures, and allows the reuse of a plan in a larger variety of 
new planning situations. Unlike the previous approaches, it also 
explicitly focuses on the flexibility and conservatism of the plan 
modification. The modification is fully integrated with the gen- 
erative planning, and aims to reduce the average case cost of 
producing correct plans. In this sense, PRL4R’s strategies are 
complementary to the plan debugging strategies proposed in 
GORDIUS [ 181 and CHEF [6], which use an explanation of correct- 
ness of the plan with respect to an external (deeper) domain 
model (generated through a causal simulation of the plan) to 
guide the debugging of the plan and to compensate for the 
inadequacies of the planner’s own domain model. Similarly, 
PRIAR’S validation structure based approach to plan modification 
stands in contrast to other approaches which rely on domain 
dependent heuristic modification of the plan (e.g. [6,1,16]). 
Our approach of grounding plan modification on validation 
structure guarantees the correctness of the modification with 
respect to planner’s domain model and reduces the need for a 
costly modify-test-debug type approach. 

6. Conclusion 
Our theory of plan modification utilizes the validation structure 
of the stored plans to yield a flexible and conservative plan 
modification framework. The validation structure, which consti- 
tutes a hierarchical explanation of correctness of the plan with 
respect to the planner’s own knowledge of the domain, is anno- 
tated on the plan as a by-product of initial planning. Plan 
modification is characterized as a process of removing incon- 
sistencies in the validation structure of a plan, when it is being 
reused in a new (changed) planning situation. The repair of 
these inconsistencies involves removing unnecessary parts of the 
HTN, and adding new high-level tasks to it to re-establish failing 
validations. The resultant partially reduced HTN (with a con- 
sistent validation structure) is given to the planner for complete 
reduction. We discussed the development of this theory in 
PRIAR system, and characterized its completeness, coverage, 
efficiency and limitations. This theory provides unified treatment 
for plan modification involved in replanning, plan reuse and 
incremental planning. 
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