
A Theory of Plan Modification

Subbarao Kambhampati*

Center for Design Research and Department of Computer Science
Stanford University

Bldg. 530, Duena Street, Stanford CA 943054026
e-mail: rao@sunrise.stanford.edu

Abstract
We present a theory of plan modification applicable to hierarchical
no&ear planning. Our theory utilizes the validation structure of the
stored plans to yield a flexible and conservative plan modification
framework The validation structure, which constitutes a hierarchical
explanation of correctness of the plan with respect to the planner’s
own knowledge of the domain, is annotated on the plan as a by-
product of i&al planning. Plan modification is ch&cteri& as a
brocess of remov&g inconsistencies in the validation structure of a
&an when it is being reused in a new (changed) planning situation.
The reuair of these -inconsistencies involves removing unnecessary
pans of the plan and adding new non-primitive tasks to the plan to
establish mi&g or failing validations. The resultant partially re-
duced plan (with a consistent validation structure) is sent to the
planner for complete reduction. We discuss the development of this
theory in PMAR system, and characterize its completeness, coverage,
efficiency and limitations.

I. Introduction
The ability to flexibly and conservatively modify existing plans
to make them conform to the constraints of a new of changed
planning situation is very useful in plan reuse, replanning and
incremental planning. While the value of such capability has
been acknowledged early in planning research [5,7], the stra-
tegies developed were inflexible in that they could reuse or
modify a given plan in only a limited number of situations, and
could deal with only a limited variety of applicability failures.
There was no general framework for conservatively modifying
an existing plan to fit it to the constraints of a new problem
situation. A major shortcoming with these approaches was that
the stored plans did not represent enough information about the
internal dependencies of the plan to permit flexible modification.
For example, reuse based on macro-operators [5] built from
sequences of primitive plan steps was unable to modify inter-
mediate steps of the macro-operator, as macro-operators did not
represent the intermediate decisions and dependencies
corresponding to their internal steps. Even in cases where the
need for the dependency information was recognized (e.g.
[4,22]), a systematic representation and utilization of such struc-
tures in plan reuse and modification was not attempted.

*The support of the Defense Advanced Research Projects Agency
and the U.S. Army Engineer Topographic Laboratories under contract
DACA76-88-C-0008, and that of Office of Naval Research under con-
tract NOOOl4-88-K-0620 are gratefully acknowledged.

176 AUTOMATEDREASONING

We present a theory of plan modification that allows flexible
and conservative modification of plans generated by a hierarchi-
cal nonlinear planner. Hierarchical planning is a prominent
method of abstraction and least-commitment in domain-
independent planning [3]. Our theory of plan modification pro-
poses validation structure as a way of representing the internal
dependencies of a hierarchical plan and provides algorithms for
annotating the validation structure on the plans during plan gen-
eration. It systematically explores the utility of the annotated
validation structure in guiding and controlling all the processes
involved in flexible plan reuse and modification. The PRIAR plan
modification system [9,11,10,12] is our implementation of this
theory.

The plan modification problem that is addressed in PRL4R is
the following: Given (i) a planning problem P ’ (specified by a
partial description of the initial state I” and goal state G”), (ii)
an existing plan R” (generated by a hierarchical nonlinear
planner), and the corresponding planning problem P”, Produce
a plan for P” by minimally modifying R O.

In the PRIAR reuse framework, the internal dependencies of a
hierarchical plan which are relevant to guide its reuse and
modification are formalized as the validation structure of the
plan. The validation structure can be seen as a form of
hierarchical explanation of correctness for the plan with respect
to the planner. Individual tasks of the hierarchical plan are
annotated with information about their role in the plan validation
structure. PRIAR provides efficient algorithms for acquiring these
annotations as a by-product of planning.

When an existing plan is being reused in a new planning
situation, the applicability failures, the redundancies, and the
shortcomings that may arise in the process are formally charac-
terized as inconsistencies in the plan’s validation structure.
Reuse in the PRIAR framework is formally seen as a process of
repairing the inconsistencies in the validation structure of a
given plan when it is mapped into the new problem situation.
Given the new problem P” , and an annotated plan R O, PRIAR'S
reuse process proceeds in the following steps:

(1) Mapping and Interpretation: An appropriate mapping a
between the objects of [P” ,I? O] and P” is computed, and R O
is mapped into P” with it. Next, some important differences
between P” and P” are marked. The resulting interpreted
plan, R’, is typically a plan with an inconsistent validation
structure.
(2) Annotation Verification: The inconsistencies in the valida-
tion structure of R’ are located, and appropriate repairs are

suggested. The repairs include removing parts of R’ that are
unnecessary and adding non-primitive tasks (called reJit tasks)
to establish any required new validations. The resulting
annotation-verified plan R B will have a consistent validation
structure but is typically only partially reduced. It consists of
all the applicable parts of R’ and any refit tasks which are
introduced.
(3) Refitting: The refit tasks specified during the annotation
verification phase constitute sub-planning problems for. the
hierarchical planner. The refitting process involves reducing
them with the help of the planner. Conservatism is ensured
through the use of a heuristic control strategy which minimizes
the disturbance to the applicable parts of R” during this pro-
cess.

Computational savings stem from the fact that the cost of
solving the sub-planning problems during refitting is on the
average much less than the cost of solving the entire planning
problem from scratch. This is supported by the results of the
empirical studies in blocks world, which showed that plan
modification proveds 20-98% savings (corresponding to speedup
factors of 1.5 to 50) over pure generative planning.

This paper concentrates mainly on the development of the
basic modiGcation framework; the details of mapping and
refitting control strategies can be found in [9,12, lo]. The
organization of this paper is as follows: Rest of this section pro-
vides some necessary preliminaries of hierarchical planning.
Section 2 presents the notion of plan validation structure,
explains the motivation behind remembering it along with each
generated plan, and presents a scheme for annotating it on the
plan. Section 3 develops the basic modification processes, and
explains how they utilize the plan validation structure. Section
4 contains a discussion completeness, coverage and efficiency of
PRLAR modification theory and section 5 provides a brief discus-
sion of related work.

1.1. Preliminaries
This paper makes extensive use of the concepts of hierarchical
planning paradigm. A good introduction to this methodology
can be found in [3]. Some well known hierarchical planners
include NOAH [171, NONLIN [20] and SIPE [21]. In hierarchical
planning, a partial plan is represented as a task network. A task
network is a 3-tuple T,O ,I$ where T is a collection of tasks,

6 0 defines a partial or ering over T, and ll is a set of protection
intervals. A protection interval is a 3-tuple (E,tl,t2), where
tl,t2 E T, E is an effect of fi, and E has to necessarily persist
up to I 2 [3]. Planning proceeds by selecting a task from the
current task network and reducing it with the help of a task
reduction schema to more concrete subtasks. This reduction
may introduce some harmful interactions with the existing pro-
tection intervals, which are handled by introducing additional
partial ordering relations among the tasks.

The planner cannot reduce certain distinguished tasks of the
domain called primitive tasks. (It is assumed that the planner
~‘knows” how to execute such tasks.) Further, if all the
required effects of a task are already true in a given partial plan,
then that task does not have to be reduced any further (such
tasks are called phantom goals [3]). A task network is said to
represent a completed pZan when none of its tasks have to be
reduced further.

The hierarchical development of a plan P :(T,O $I) is cap-
tured by its hierarchical task network (abbreviated as HTN) . A
HTN is a 3-tuple, (P:(T,O,n) ,T*,Ll), where T’ is a superset

of T, and D deties a set of parent-child relations among the
tasks of T*. (The immediate children of a task t are the tasks
that resulted from its reduction during planning.) For conveni-
ence, we will be referring to T’, the tasks of the HTN, also as its
nodes. We shall refer to the number of leaf nodes in a HTN
(IT I) as the length of the corresponding plan, and denote it by
Np. For the sake of uniformity, we shall assume that the HTN
has two special primitive bodes nI,nc E T* , corresponding
respectively to the input state and the goal state of the planning
problem. We shall use the notation “nl < n2” (where ni and
n2 are nodes of HTN) to indicate that n i is ordered to precede n2
in the partially orderered plan represented by the HTN. Simi-
laq, “nl > n2” denotes that nl is ordered to follow n2, and
“ni // n2” denotes that there is no ordering relation between
the two nodes (n, is parallel to nz). The set consisting of a node
n and all its descendents in the HTN is called the sub-reduction
of n, and is denoted by R (n). Following [3,20], we also distin-
guish two types of plan applicability conditions: the precondi-
tions (such as CZeur (A) in the blocks world) which the planner
can achieve, and the filter conditions (such as BZock(A) in the
blocks world) which the planner cannot achieve. Finally, we
shall use the notation “F I- f ” to indicate that f deductively
follows from the set of facts in F.

2. Validation Structure and Annotations

2.1. Validation Structure

52.1. Validation: A validation is a 4-tuple (E, n,, C, nd),
where n, and nd are leaf nodes belonging to the HTN, and the
effect E of node n, (called the source) is used to satisfy the
applicability condition C of node nd (called the destination). C
and E are referred to as the supported condition and the sup-
porting efsect respectively of the validation. As a necessary con-
dition for the existence of a validation v, the partial ordering
among the tasks in HTN must satisfy the relation riseid. The
type of a validation is defined as the type of the applicability
condition that the validation supports (one of j2fer condition,
precondition, phantom goal). Notice, from section 1.1 that
every validation v : (E, n,,
interval [3] {E ,n, ,nd).

C , nd) corresponds to a protection
This correspondence implies that there

will only be a finite set of validations corresponding to a given
HTN representing the development of a plan; we shall call this
set V. (If 5 is the maximum number of applicability conditions
for any action in the domain, then IV1 is o(&Vp) [lo].)

Figure 1 shows the validation structure of the plan for solv-
ing a block stacking problem 3BS (also shown in the figure).
Validations are represented graphically as links between the
effect of the source node and the condition of the destination
node. (For the sake of exposition, validations supporting condi-
tions of the type BZock(?x) have not been shown in the figure.)
For example, (On (B ,C), n15,On (B ,C),nc) is a validation
belonging to this plan since On (B ,C) is required at the goal
state n, , and is provided by the effect On (B ,C) of node ni5.
52.2. Inconsistencies and Consistency of Validation Struc-
ture: A validation v :(E ,n, ,C ,nd) is considered a failing valida-
tion if either E 6 effects (n,) or when there exists a node
n E HTN such that n possibly falls between n, and nd. A vali-
dation v: (E, n,, C, nd) is considered an unnecessary validation
iff the node nd does not require the condition C . (This could
happen, for example, if a goal of the plan is no longer necessary
in the current problem situation.) Finally, we say that there is a

KAMBHAMPATI 177

On(A,B)&On(B,C)

On(A,Table)&Clear(A)
&On(B,Table)&Clear(B)
&On(C,Table)&Clear(C)

Block(A)&Block(B)&Block(C)

input state
“I

Inl:r\lOnis,CJI, /n3: AlOn(A,B)J

t I I Input Situation Goal
p” 3BS - -- .- -.-

goal state

?c

I Sch: Make-on(B.CJ Sch: Make-on(A,B)
eff: On(A,B)

\ \

validations

r” 7

Figure 1. Validation structure of 3BS plan

missing validation corresponding to a condition, node pair
(C’,n’l of the EITN iff sv: (E, n,, C, nd) s.t. C=C’Rnd=n’.

applicability conditions of the nodes that lie outside the sub-
reduction. Thus, E-conditions(n) =

The unnecessary, missing or failing validations in a HTN will
be referred to as inconsistencies in its validation structure. An
HTN is said to have a consistent validation structure if it does
not have any inconsistencies. From these defkritions, it should
be clear that in a HTN with a consistent validation structure, each
applicability condition of a node (including each goal of no)
will have a non-failing validation supporting it. (Thus, a com-
pletely reduced HTN with a consistent validation structure consti-
tutes a valid executable plan.)

2.2. Annotating Validation Structure
Having developed the notion of validation in a plan, our next
concern is representing the validation structure of the plan
locally as annotations on individual nodes of a HTN. The intent
is to let these annotations encapsulate the role played by the
sub-reduction below that node in the validation structure of the
overall plan, so that they can help in efficiently gauging the
effect of any modification at that node on the overall validation
structure of the plan. We achieve this as follows: For each node
n E HTN we define the notions of (i) e-condition.+), which are
the externally useful validations supplied by the nodes belonging
to R(n) (the sub-reduction below n) (ii) e-preconditions(n),
which are the externally established validations that are con-
sumed by nodes of R (n), and (iii) p-conditions(n), which are
the external validations of the plan that are required to persist
over the nodes of R (n).

{vi: (E, n,, C, nd) IvieV; n,ER(n); nde R(n))
For example, the e-conditions of the node It3 in the HTN of
figure 1 contains just the validation (On (A ,I3), n16, On (A $),
nc) since that is the only effect of R (n3) which is used outside
of R (n3). The e-conditions provide a way of stating the exter-
nally useful effects of a sub-reduction. They can be used to
decide when a sub-reduction is no longer necessary, or how a
change in its effects will affect the validation structure of the
parts of the plan outside the sub-reduction.
52.4. E-Preconditions (External Preconditions): The e -
preconditions of node n correspond to the validations supporting
the applicability conditions of any node of R(n) that are
satisfied by the effects of the nodes that lie outside of R(n).
Thus, E-preconditions(n) =

{vi: (E, n,, C, nd) 1 VieV; ndER(n); n,q R (n) }
For example, the e-preconditions of the node ns in the HTN of
figure 1 will include the validations (Clear (A), nf, Clear (A),
n71 and (Clear (B), nf , Clear (B), ns). The e-preconditions can
be used to locate the parts of rest of the plan that will become
unnecessary or redundant, if the sub-reduction below this node
is changed.
52.5. P -Conditions (Persistence Conditions): P-conditions of
a node n correspond to the protection intervals of the HTN that
are external to R(n), and have to persist over some part of R(n)
for the rest of the plan to have a consistent validation structure.
We define them in the following way:

$2.3. E-Conditions (External Effect Conditions): The e- A validation vi: (E, n,, C, nd)EV is said to intersect the
conditions of a node n correspond to the validations supported sub-reduction R (n) below a node n (denoted by “v 63 R(n)“)
by the effects of any node of R (n) which are used to satisfy if there exists a leaf node n E R (n) such that n possibly falls

178 AUTOMATEDREASONING

between n, and nd (for some total ordering of the tasks in the
HTN). Using the definition of validation [lo], we have
vi: {E, n,, C, Q) Q9 R(n) iff

E R (n) s.t. children (n’)=0 A
1

A validation vi : {E, n,, C , nd)EV is considered a p-
condition of a node n iff Vi intersects R (n) and neither the
source nor the destination of the validation belong to R (n).
Thus, P-conditions(n) =

(vi: (E, n,, C, nd)l VicV; n,,ndgr R(n); vi@R(n)}
From this definition, it follows that if the effects of any node of
the R(n) violate the validations corresponding to the p-
conditions of n, then there will be a potential for harmful
interactions. As an example, the p-conditions of the node n3 in
the I-RN of figure 1 will contain the validation
(On (B ,C hnldn (B ,C),nG) since the condition On (B ,C),
which is achieved at n15 would have to persist over R (n3) to
support the condition (goal) On (B ,C) at nG . The p-conditions
help in gauging the effect of changes made at the sub-reduction
below a node on the validations external to that sub-reduction.
This is of particular importance in localizing the refitting [9].

2.3. Computing Annotations
Jn the PRIAR framework, at the end of a planning session, the
HZ+N showing the development of the plan is retained, and each
node of the HTN is annotated with the following information: (1)
Schema(n), the schema instance that reduced node n (2) e-
preconditions(n) (3) e-conditions(n), and (4) p-conditions(n).
The node annotations are computed in two phases: First, the
annotations for the leaf nodes of the I-RN are computed with the
help of the set of validations, V, and the partial ordering rela-
tions of m. Next, using the relations between the annotations
of a node and its children (which can be easily derived from the
definitions of the previous section; see [lo]), the annotations are
propagated to non-leaf nodes in a bottom up breadth-first
fashion. The exact algorithms are given in [lo], and are fairly
straightforward to understand given the development of the pre-
vious sections. The time complexity of annotation computation
is 0 (IV:), where Np is the length of the plan (number of leaf
nodes in the HTN).

While the procedures discussed above compute the annota-
tions of a HTN in one-shot, often during plan modification, PRIAR
needs to add and remove validations from the HTN one at a time.
To handle this, PRIAR also provides algorithms to update node
annotations consistently when incrementally adding or deleting
validations from the HTN. These are used to re-annotate the HTN
and to maintain a consistent validation structure after small
changes are made to the plan. They can also be called by the
planner any time it establishes or removes a new validation (or
protection interval) during the development of the plan, to
dynamically maintain a consistent validation structure. The time
complexity of these algorithms is 0 (Np) [lo].

3. Modification by Annotation Verification
We will now turn to the plan modification process, and demon-
strate the utility of annotated validation structure in guiding plan
modification. Throughout the ensuing discussion, we will be
following the simple example case of modifying the plan for the
three block stacking problem 3BS (i.e., R”= 3BS) shown on the
left side in figure 2 to produce a plan for the four block stacking

A 11 1 1 r-a-i-H a B c

input Sltuatcon Goal Input situatton Goal

P” 38s p” 4BSl

Figure 2.3BS+4BSl Reuse problem

problem 4BSl (i.e., P”= 4BSl) shown on the right side. We
shall refer to this as the 3BS+4BSl example.

3.1. Mapping and Interpretation

In PRIAR, the set of possible mappings between [P”,Ro] and P”
are found through a partial unification of the goals of the two
problems. There are typically several semantically consistent
mappings between the two planning situations, and selecting the
right mapping can considerably reduce the cost of modification.
The mapping and retrieval methodology used by PRIAR [10,121
achieves this by selecting mappings based on the number and
type of inconsistencies that would be caused in the validation
structure of R”. As the details of this strategy are beyond the
scope of this paper, for the purposes of this paper, we shall sim-
ply assume that such a mapping is provided to us. (It should be
noted that this mapping stage will not be required if the objec-
tive is to modify an existing plan in response to changes in its
own specifications.) Once a mapping a is selected, the inter-
preted plan R’ is constructed by mapping R” along with its
anno tations into the new planning situation P” , and marking the
differences between the specifications of the old and new &an-
ning situations. These differences, marked in I’ and G’, serve
to focus the annotation verification procedure on the inconsisten-
cies in the validation structure of the interpreted plan.

In the 3BS+4BSl example, let us assume that the mapping
strategy selects a = [A +L ,I? +K,C +J] as the mapping from
3BS and 4BSl. With this mapping, Clear(L) is no longer true
in the input specification of 4BSl. So it will be marked out in
I’. The facts On (J ,L), On (Z ,TubZe) and Clear (I) are true in
4BSl but not in 3BS, so they will be marked as nav facts in I’.
Similarly, as On(J ,Z) is not a goal of 3BS but is a goal of
4BS 1, it will be marked as an exfru goal in G’ . There are no
unnecessary goals. At the end of this processing, Ri, I’ and Gi
are sent to the annotation verification procedure.

3.2. Annotation Verification and Refit Task
Specification
At the end of the interpretation procedure, R’ may not have a
consistent validation structure (see 92.2) as the differences
between the old and the new problem situations (as marked by
the interpretation procedure) may be causing some inconsisten-
cies in the validation structure of R’ . These inconsistencies will
be referred to as applicability failures, as these are the reasons
why R’ cannot be directly applied to P” . The purpose of the
annotation verification procedure is to modify R’ such that the
result, R” , will be a partially reduced HTN with a consistent vali-
dation structure.

The annotation verification procedure achieves this goal by
fhst localizing and characterizing the applicability failures
caused by the differences in I’ and G’ , and then appropriately
modifying the validation structure of R’ to repair those failures.

KAMBHAMPATI 179

It groups the applicability failures into one of several classes
depending on the type of the inconsistencies and the type of the
conditions involved in those inconsistencies. The repairs are
suggested based on this classification, and involve removal of
unnecessary parts of the HTN and/or addition of non-primitive
tasks (called refit tasks) to establish missing and failing valida-
tions. The individual repair actions taken to repair the different
types of inconsistencies are briefly described below; they make
judicious use of the node annotations to modify R’ appropriately
(see [lo, 121 for the detailed procedures). In [lo], we show that
the time complexity of the annotation-verification process is
polynomial (0 (IV INp3)) in the length of the plan.
[I] Unnecessary Validations-Pruning Unrequired Parts: If
the supported condition C of a validation v :(E,n,,C ,nd) is no
longer required, then v can be removed from the plan along
with all the parts of the plan whose sole purpose is supplying
those validations. The removal can be accomplished in a clean
fashion with the help of the annotations on R i. After removing
v validation from the HTN (which will also involve incremen-
tally re-annotating the HTN, see section 2.3), the HTN is checked
for any node n,, that has no e-conditions. If such a node exists,
then its sub-reduction, R (n,,) has no useful purpose, and thus its
nodes can be removed from the HTN. This essentially involves
backtracking over the task reductions in that sub-reduction, and
removing any ordering relations that were introduced as a result
of those reductions. This removal turns the e-preconditions of
n,, into unnecessary validations, and they are handled in the
same way recursively.
[2] Missing Validations-Adding Tasks for Achieving Extra
Goals: An extra goal is any goal of the new problem that is not
a goal of the old plan, and thus is unsupported by any valida-
tion in R’. The general procedure for repairing missing valida-
tions (including the extra goals, which are considered conditions
of nc) is to create a refit task of the form Achieve [G], and to
add it to the HTN in such a way that it follows the initial node
nf, and precedes the node which requires the unsupported condi-
tion (in this case nc). Establishing a new validation in this way
necessitates checking to see if its introduction leads to any new
failing validations in the plan; the planner’s interaction detection
routines are used for this purpose. Finally, the annotations of
the nodes of the HTN are updated (with the help of incremental
annotation procedures) to reflect the introduction of the new
validation.
[3] Failing Validations: The facts of I’ which are marked
“out ” during the interpretation process, may be supplying vali-
dations to the applicability conditions or goals of the interpreted
plan R’. The treatment of such failing validations depends upon
the types of the conditions that are being supported by the vali-
dation. We distinguish three types of validation failures-
validations supporting preconditions, phantom goals and filter
conditions respectively-and discuss each of them in turn
below’.

(3.i) Failing Precondition Validations: If a validation support-
ing a precondition of some node in the HTN is found to be fail-
ing, because its supporting effect E is marked out, it can sim-
ply be reachieved. The procedure involves creating a refit task,
n.,, Achieve [El, to re-establish the validation v, and adding it to
the HTN in such a way that it follows the source node and

’ In NONLIN terminology [19] the precondition validations support
the “unsupervised conditions” of a schema, while the phantom goal
validations support the “supervised conditions” of a schema.

precedes the destination node of the failing validation. The
validation structure of the plan is updated so that the failing
validation will be replaced by an equivalent validation to be
supplied by n,,. Finally, the annotations on the other nodes of
the HTN are adjusted incrementallv to reflect this change. -
(3.ii) Failing Phantom Valia’ations: If the validation support-
ing a phantom goal node is failing, then the node cannot
remain phantom. The repair involves undoing the phantomiza-
tion, so that the planner would know that it has to re-achieve
that goal. Once this change is made, the failing validation is
no longer required and can be removed.
(3.iiG Failing Filter Condition Validations: In contrast to the
validations supporting the preconditions and the phantom goals,
the validations supporting failing filter conditions cannot be
reachieved by the planner. Instead, the planning decisions
which introduced those filter conditions into the plan have to
be undone. That is, if the validation v:{E,n, ,C ,nd) supporting
a filter condition C of a node nd is failing, and n ’ is the ances-
tor of n, whose reduction introduced C into the HTN originally,
then the sub-reduction R (n’) has to be replaced, and n ’ has to
be re-reduced with the help of an alternate schema instance.
So as to least affect the validation structure of the rest of the
HTN, any new reduction of n’ is be expected to supply (or con-
sume) the validations previously supplied (or consumed) by the
replaced reduction. Any validations not supplied by the new
reduction would have to be re-established by alternate means,
and the validations not consumed by the new reduction would
have to be pruned. Since there is no way of knowing what the
new reduction will be until refitting time, this processing is
deferred until that time.

141 P-Phantom-Validations-Exploiting Serendipitous
Effects: It is possible that some of the validations that R’ estab-
lishes via step addition can be established directly from the
interpreted initial state, thus shortening the plan. Such valida-
tions, called p-phantom validations, are located by collecting
validations whose source node is not nf, and checking to see if
their supporting effects are now true in the new facts of I’. For
each p -phantom validation, PRIAR checks to see if an equivalent
validation can actually be established from the initial state, nl
without introducing new interactions (and thereby causing sub-
stantial revisions) in the plan. If so, the p-phantom validation
becomes redundant, and is treated as an unnecessary validation.
The parts of the plan that are currently establishing this valida-
tion are pruned from the HTN, thus effectively shortening the
plan.
Example: Figure 3 shows R”, the HTN produced by the annota-
tion verification procedure for the 3BS+4BSl example. The
input to the annotation verification procedure is the interpreted
plan R i discussed in section 3.1. In this example, R i contains a
failing phantom validation and a missing validation correspond-
ing to an extra goal. The goal On (JJ) of G i is an extra goal,
and is not supported by any validation of the HTN. So, the refit
task n lolAchieve [On (J ,I)] is added to the task network, in
parallel to the existing plan, such that nl<n la<nG . n 1o now sup-
plies the validation (On (J ,I),nlo,On (J,I),n,) to the goal
On (JJ). Next, the fact Clear(L), which is marked out in I’,
causes the validation (Clear (L),nr ,CZear (L),n7) supporting the
phantom goal node n 7 to fail. So, the phantom goal node n7 is
converted into a refit task to be reduced. It no longer needs the
failing phantom validation from nf . Notice that the HTN shown
in this figure corresponds to a partially reduced task network
which consists of the applicable parts of the old plan and the
two refit tasks suggested by the annotation verification

180 AUTOMATEDREASONING

Ff
nl I

Clear(J) ---
/

Clear{ K)L--

On(K,Table),

On(L,Table)
-

n2: A[On(K,J)] r-r Sch: Make-on(K,J)
eff: On(K.J)

n15: Puton-Action

Figure 3. Annotation-Verified plan for 3BS+4BSl
procedure. It has a consistent validation structure, but it con-
tains two unreduced refit tasks nlo and n7 which have to be
reduced.

3.3. Refitting
To produce an executable plan for P” , R” (the HTN after the
annotation verification process) has to be completely reduced.
This process, called refitting, essentially involves reduction of
the refit tasks that were introduced into R” during the annotation
verification process. The responsibility of reducing the refit
tasks is delegated to the planner by sending R” to the planner.
An important difference between refitting and from-scratch (or
generative) planning is that in refitting the planner starts with an
already partially reduced m. For this reason, solving P” by
reducing R” is less expensive on the average than solving P n
from scratch.

The procedure used for reducing refit tasks is fairly similar
to the one the planner normally uses for reducing non-primitive
tasks (see section l.l), with the following important difference.
An important consideration in refitting is to minimize the distur-
bance to the applicable parts of R” during the reduction of the
refit tasks. To ensure this conservatism of refitting, the default
schema selection procedure is modified in such a way that for
each refit task, it selects a schema instance that is expected to
give rise to the least amount of disturbance to the validation
structure of R”. The annotated validation structure of the plan
helps in this selection by estimating the effect of reduction at a
refit task on the rest of the plan. A detailed presentation of this
heuristic control strategy is beyond the scope of this paper; the
interested reader is referred to [9, lo]. Once the planer selects an
appropriate schema instance in this way, it reduces the refit task
by that schema instance in the normal way, detecting and resolv-
ing any interactions arising in the process.
Example: Figure 4 shows the hierarchical task reduction struc-
ture of the plan for the 4BS 1 problem that PRIAR produces by
reducing the annotation-verified task network (shown in Figure
3). (The top down hierarchical reductions are shown in left to
right fashion in the figure. The dashed arrow lines show the
temporal precedence relations developed between the nodes of
the HTN.) The shaded nodes correspond to the parts of the

interpreted plan R’ that survive after the annotation verification
and refitting process. The white nodes represent the refit tasks
added during the annotation verification process, and their subse-
quent reductions. In the current example, the refitting control
strategy recommends that the planner reduce the refit task
A [Clear(L)] by putting J on I rather than putting J on Table
or on K. This decision in turn leads to a shortened plan by
allowing the extra goal refit task A [On (J J)] to be achieved by
phantomization.

4. Completeness, Coverage and Efficiency
Completeness : The validation structure based modification is
complete in that it will correctly handle all types of applicability
failures that can arise during plan modification, and provide the
planner with a partially reduced HTN with a consistent validation
structure. In particular, our definition of inconsistencies (see
$2.2) captures all types of applicability failures that can arise
due to a change in the specification of the problem; and our
annotation verification procedure provides methods to correctly
modify the plan validation structure to handle each type of
inconsistency (see section 3.2), without introducing any new
inconsistencies into the HTN (a proof is provided in [lo].)
Coverage : The validation structure developed here covers the
internal dependencies of the plans produced by most traditional

Figure 4. The plan produced by PRIAR 3BS+4BSl

KAMBHAMPATI 18 1

hierarchical planners. The captured dependencies can be seen as
a form of explanation of correctness of the plan with respect to
the planner’s own domain model. By ensuring the consistency of
the validation structure of the modified plan, PRIAR guarantees
correctness of the modified plan with respect to the planner.
However, it should be noted that as the dependencies captured
by the validation structure do not represent any optima&y con-
siderations underlying the plan the optimal@ of modification is
not guaranteed. Further, since the modi&ation is integrated
with the planner, failures arising from the incorrectness or
incompleteness of the planner’s own domain model will not be
detected or handled by the modification theory. Of course, these
should not be construed as limitations of the theory, as its goal
is to improve the average case efficiency of the planner.
Flexibility and Efficiency: In the worst case, when none of the
steps of R” are applicable in the new situation, annotation
verification will return a degenerate HTN containing refit tasks
for all the goals of P” . In such extreme cases PRIAR may wind
up doing a polynomial amount of extra work compared to a
pure generative planner. In other words, the worst case com-
plexity of plan modification remains same as the worst case
complexity of generative planning. However, on the average,
PFUAR will be able to minimize the repetition of planning effort
(thereby accrue possibly exponential savings in planning time)
by providing the planner with a partially reduced HTN, and con-
servatively controlling refitting such that the already reduced
(applicable) parts of R” are left undisturbed.

The claims of flexibility and average case efficiency are also
supported by the empirical evaluation experiments that were
conducted on PRIAR. The plot in figure 5 shows the computa-
tional savings achieved when different blocks world problems
are solved from scratch and by reusing a range of existing
blocks world plans (see [lo] for the details of the experimental
strategy). For example, the curve marked 7BSl shows the sav-
ings afforded by solving a particular seven-block problem by
reusing several different blocks world plans (indicated on the
x-axis). The relative savings over the entire corpus of experi-
ments ranged from 30% to 98% (corresponding to speedup fac-
tors of 1.5 to 50) with the highest gains shown for the more
difficult problems tested. These results also showed that as the
size of P” increases, the computational savings afforded by
PRIAR stay very high for a range of reused plans with varying
amount of similarity; consider, for example, the plot for the
12BSl problem in the figure. This latter behavior lends support
to the claim of flexibility of the modification framework.

s

a

IVR
n a
9 u
s s

e
f
r %
0

m

1007 12851

3BS 4BS 4BSl 58s 6BS 785 7851 8BS 8BS.l 9BS
Reused Problems

Figure 5. Variation of performance with problem size and similarity

5. Related Work
Representations of plan internal dependency structure have been
used by several planners previously to guide plan modification
(e.g., the triangle tables and the macro operators of [5] and [8];
the decision graphs of [7] and [4]; the plan rationale representa-
tion of [22]). However, our work is the first to systematically
characterize the nature of such dependency structures and their
role in plan modification. It subsumes and formalizes the previ-
ous approaches, provides a better coverage of applicability
failures, and allows the reuse of a plan in a larger variety of
new planning situations. Unlike the previous approaches, it also
explicitly focuses on the flexibility and conservatism of the plan
modification. The modification is fully integrated with the gen-
erative planning, and aims to reduce the average case cost of
producing correct plans. In this sense, PRL4R’s strategies are
complementary to the plan debugging strategies proposed in
GORDIUS [181 and CHEF [6], which use an explanation of correct-
ness of the plan with respect to an external (deeper) domain
model (generated through a causal simulation of the plan) to
guide the debugging of the plan and to compensate for the
inadequacies of the planner’s own domain model. Similarly,
PRIAR’S validation structure based approach to plan modification
stands in contrast to other approaches which rely on domain
dependent heuristic modification of the plan (e.g. [6,1,16]).
Our approach of grounding plan modification on validation
structure guarantees the correctness of the modification with
respect to planner’s domain model and reduces the need for a
costly modify-test-debug type approach.

6. Conclusion
Our theory of plan modification utilizes the validation structure
of the stored plans to yield a flexible and conservative plan
modification framework. The validation structure, which consti-
tutes a hierarchical explanation of correctness of the plan with
respect to the planner’s own knowledge of the domain, is anno-
tated on the plan as a by-product of initial planning. Plan
modification is characterized as a process of removing incon-
sistencies in the validation structure of a plan, when it is being
reused in a new (changed) planning situation. The repair of
these inconsistencies involves removing unnecessary parts of the
HTN, and adding new high-level tasks to it to re-establish failing
validations. The resultant partially reduced HTN (with a con-
sistent validation structure) is given to the planner for complete
reduction. We discussed the development of this theory in
PRIAR system, and characterized its completeness, coverage,
efficiency and limitations. This theory provides unified treatment
for plan modification involved in replanning, plan reuse and
incremental planning.

Acknowledgements
Jim Hendler, Lindley Dar-den and Larry Davis have influenced
the development of the ideas presented here. Jack Mostow and
Austin Tate provided useful comments on previous drafts. All
three AAAI referees provided very informative reviews. To all,
my thanks.

References

[Please consult the list of references under the companion arti-
cle “Mapping and Retrieval During Plan Reuse: A Valida-
tion Structure Based Approach,” also in these proceedings.]

182 AUTOMATED REASONING

