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ABSTRACT
Recent work in explanation generation for decision making agents
has looked at how unexplained behavior of autonomous systems
can be understood in terms of differences in the model of the system
and the human’s understanding of the same, and how the expla-
nation process as a result of this mismatch can be then seen as
a process of reconciliation of these models. Existing algorithms
in such settings, while having been built on contrastive, selective
and social properties of explanations as studied extensively in the
psychology literature, have not, to the best of our knowledge, been
evaluated in settings with actual humans in the loop. As such, the
applicability of such explanations to human-AI and human-robot
interactions remains suspect. In this paper, we set out to evaluate
these explanation generation algorithms in a series of studies in a
mock search and rescue scenario with an internal semi-autonomous
robot and an external human commander. We demonstrate to what
extent the properties of these algorithms hold as they are evaluated
by humans, and how the dynamics of trust between the human and
the robot evolve during the process of these interactions.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Plan-
ning and scheduling; Cognitive robotics; • Human-centered
computing; • Computer systems organization→ Robotics;

KEYWORDS
Human-Aware Planning, Explicable Planning, Plan Explanations,
Explanation as Model Reconciliation, Minimal Explanations, Mono-
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1 INTRODUCTION
The issue of explanations for AI systems operating alongside or
with humans in the loop has been a topic of considerable interest
of late [8, 9], especially as more and more AI-enabled components
get deployed into hitherto human-only workflows. The ability to
generate explanations holds the key [15, 18] towards acceptance of
AI-based systems in collaborations with humans. Indeed, in many
cases, this may even be required by law [12].

Of course, the answer to what constitutes a valid, or even useful,
explanation largely depends on the type of AI-algorithm in question.
Recent works [5, 29, 30] have attempted to address that question
in the context of human-robot interactions [4] by formulating the
process of explaining the decisions of an autonomous agent as a
model reconciliation process whereby the agent tries to bring the
human in the loop to a shared understanding of the current situ-
ation so as to explain its decisions in that updated model. This is
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Figure 1: A typical [2] urban search and rescue (USAR) sce-
nario with an internal semi-autonomous robot and an exter-
nal human supervisor. Models (e.g. map of the environment)
may diverge in the course of the operation due to the disas-
ter. The robot can either choose to generate explicable plans
by conforming to the expectations of the human in the loop
or explain its plans to the human in terms of their model
differences via a process calledmodel reconciliation.

illustrated in Figure 1. While these techniques have been developed
on theories in the psychology literature [1, 19] built on extensive
studies in how humans explain behavior, none of these algorithms
have, to the best of our knowledge, been evaluated yet with humans
in the loop. As such, it remains unclear whether the theoretical
guarantees provided by explanations generated by such algorithms
do, in fact, bear out during interactions with humans.

The aim of this paper is then to provide an empirical study of
the “explanation as model reconciliation” process, especially as it
relates to a human-robot dyad in a mock up version of a typical
search and rescue scenario (Section 4) which the authors in [29, 30]
have repeatedly used as an illustrative scenario. But before we go
there, we will provide a brief overview of explanations (Section 2)
in the planning community and a glossary of terms (Section 3) used
throughout the rest of the discussion.

2 A BRIEF HISTORY OF
EXPLAINABLE PLANNING

From the perspective of planning and decision making, the notion
of explanations of the deliberative process of an AI-based system
was first explored extensively in the context of expert systems [24].
Similar techniques have been looked at for explanations in case
based planning systems [16, 28] and in interactive planning [26]
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where the planner is mostly concernedwith establishing the correct-
ness [14] and quality [11, 27] of a given plan with respect to its own
model. These explanation generation techniques served more as a
debugging system for an expert user rather than explanations for
situations generally encountered in everyday interactions, which
may be referred to as “everyday explanations” [22]. A key difference
here is that the former is mostly algorithm dependent and explains
the how of the decision making process whereas the latter, in addi-
tion, can model-based and hence algorithm independent and thus,
in a sense, explain the why of a particular decision in terms of the
knowledge that engendered it.

In [23] authors argued that, in a classic case of “inmates run-
ning the asylum”, most of the existing literature on explanation
generation techniques for AI systems are based on the developer’s
intuitions rather than any principled understanding of the norma-
tive explanation process in interactions among humans as has been
studied extensively in the fields of philosophy, cognitive psychol-
ogy/science, and social psychology. The authors note that the latter
can be a valuable resource for the design of explanation generation
methodologies in AI-based systems as well.

The authors in [22] state the three most important properties of
explanations (as accounted for in the existing literature in the social
sciences) as being (1) contrastive (so as to be able to compare the fact
being questioned with other alternatives or foils); (2) selective (of
what information among many to attribute causality of an event to);
and (3) social (implying that the explainer must be able to leverage
themental model of the explaineewhile engaging in the explanation
process). In recent work on explanation generation for planners,
authors in [5] expressed similar sentiments by arguing that the
explanation process towards end users “cannot be a soliloquy” but
rather a process of “model reconciliation” during which the system
tries to bring the mental model (social property) of the user on the
same page with respect to the plan being explained. The authors in
[5] addressed the contrastive property by ensuring optimality of the
plan being explained in the updated human mental model, and the
selectivity property by computing the minimum number of updates
required to realize the above constraint.

In a related thread of work, researchers have looked recently at
the idea of “explicable” planning [17, 31, 32] which aims to circum-
vent the need for explanations by instead having the robot sacrifice
optimality in its own model and produce plans that are as close to
optimal as possible in the mental model of the human in the loop.
Of course, such plans may be too costly, or even infeasible, from
the robot’s perspective and as such the process of explicability and
explanations form a delicate balancing act [29] during the deliber-
ative process of a decision making agent and forms a basis of an
augmentative theory [21] of planning for an automated agent.

The process of explanations and explicability for task plans,
in general, is also a harder process than in motion planning (c.f.
recent works on “legibility” [10] and “verbalization” [25]) where
acceptable behavior can be understood in terms of simple rules (e.g.
minimizing distance to shortest path). In the case of task planning,
human mental models are harder to acquire and thus must be
learned [32]. Further, given a mental model of the user, it is still a
challenge on how to leverage that model in the explanation process,
keeping in mind the cognitive abilities and implicit processes and
preferences of the human in the loop that are often very hard,

or even impossible, to codify precisely in the task model itself.
Evaluation of learned mental models is out of scope of the current
discussion, though readers are encouraged to refer to [32] for related
studies. In this paper, we will focus only on known models, and
explore how humans respond to these techniques in situations
where these models diverge. In the next section, we will describe
some of the terms as it relates to explicable planning and plan
explanations that will be used throughout the rest of the paper.

3 GLOSSARY OF TERMS
Existing teamwork literature [7] on human-human and human-
animal teams has identified characteristics of effective teams – in
terms of shared mental models [3, 20] that contribute to team situa-
tional awareness [13] and interaction [6]. Thus, it has been argued
[4] that the ability to leverage these shared mental models, and rea-
soning over multiple models at a time, during the decision making
process is critical to the effective design of cognitive robotic agents
for teaming with humans. The multi-model setting is illustrated in
Figure 1 in the context of a search and rescue scenario (more on this
later in Section 4) where the map of the environment shared across
the robot and its operator diverge in course of operations. When
making plans in such scenarios, the robot can choose to either (1)
conform to human expectations, potentially sacrificing optimality
in the process; or (2) preserve optimality and explain its plan (which
may thus be inexplicable) in terms of the model differences (that
causes this inexplicability). As explained before, the former process
is described as explicable planning, while the latter is referred to as
explanations as model reconciliation.

3.1 Explicable Plans
Let the model (which includes beliefs or state information and
desires or goals as well as the action model) that the robot is using
to plan be given by MR and the human’s understanding of the
same be given by MH

R . Further, let π∗(MR ) and π∗(MH
R ) be the

optimal plans in the respective models, and CM (·) be the (cost)
function denoting the goodness of a plan in a model M (less the
better). WhenMH

R ,MR , it is conceivable thatCMH
R
(π∗(MR )) >

CMH
R
(π∗(MH

R )) which constitutes an inexplicable behavior from
the perspective of the human in the loop.

In explicable planning, the robot instead produces a plan π such
that CMH

R
(π ) ≈ CMH

R
(π∗(MH

R )), i.e. an explicable plan is equiva-
lent (or as close as possible) to the human’s expectation.

3.2 Plan Explanations as Model Reconciliation
The robot can, instead chose to stay optimal in its own model, and
explain away the reasons, i.e. model differences, that causes its plan
to be suboptimal in the human’s mental model.

The Model Reconciliation Problem (MRP) involves the robot
providing an explanation or model update E to the human so that in
the new updated humanmental model M̂H

R the original plan is opti-
mal (and hence explicable), i.e.CM̂H

R
(π∗(MH

R )) = CM̂H
R
(π∗(MR ))1.

1We refer to this constraint as the “optimality condition” in later discussions and the
explanations that satisfy this condition is called complete explanations.
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Figure 2: Illustration of a simulated USAR setting for studying the human-robot relationship in a typical disaster response
team. The external (human) supervisor has restricted access to a changing environment and may thus require explanations
for plans that the (internal semi-autonomous) robot comes up with for tasks assigned to it. We make use of this setting to
study the properties of “model-reconciliation" explanations in a mock interface (Figure 7) to the robot.

Of course, there may be many different types of these explanations,
as explained below (terms reused from [5].

3.2.1 Model Patch Explanations (MPE). Providing the entire
model differences as a model update is a trivial solution. It satis-
fies the optimality criterion but may be too large from the point
of communication when the robot has to operate with minimum
bandwidth as well as cause loss of situational awareness and in-
creased cognitive load on the part of the human by providing too
much information that is not relevant to the plan being explained.

3.2.2 Plan Patch Explanations (PPE). These restrictmodel changes
to only those actions that appear in the plan. This kind of expla-
nations do not satisfy the optimality criterion but ensure the ex-
ecutability of the given plan instead. Further, it may still contain
information that is not relevant to explaining the original robot
plan as opposed to the human expectation or foil.

3.2.3 Minimally Complete Explanations (MCE). These explana-
tions, on top of satisfying the optimality condition, also enforce
min E. This means MCEs not only make sure that the plan being
explained is optimal in the updated model but also it is the mini-
mum set of updates required to make this happen. This is especially
useful in reducing irrelevant information during the explanation
process both from the perspective of the human as well as the robot
when communication is expensive.

3.2.4 Minimally Monotonic Explanations (MME). Interestingly,
MCEs can become invalid when combined, i.e. when multiple plans
are being explained, the current MCE can make a previous one
violate the optimality constraint. This leads to the notion of MMEs
which guarantee that an explanation is always valid regardless of
other plans being explained in the future (while at the same time
revealing as little information as possible). This is especially useful
in long term interactions in the human-robot dyad and is out of
scope of the current study.

3.3 Balancing Explicability and Explanations
Finally, as mentioned before, these ideas can come together whereby
an agent can choose to trade off the cost of explanations versus
the cost of producing explicable plans by performing model space
search during the plan generation process [29]. In the following
studies we simulate such an agent and generate plans that are
either explicable, or optimal in the robot’s model or somewhere in
between (with an associated MCE, MPE or PPE).

4 THE USAR DOMAIN
An application where such multi-model formulations are quite use-
ful is in typical [2] Urban Search And Reconnaissance (USAR) tasks
where a remote robot is put into disaster response operation often
controlled partly or fully by an external human commander who
orchestrates the entire operation. The robot’s job in such scenarios
is to infiltrate areas that may be otherwise harmful to humans,
and report on its surroundings as and when required / instructed
by the external supervisor. The external usually has a map of the
environment, but this map may no longer be accurate in the event
of the disaster – e.g. new paths may have opened up, or older paths
may no longer be available, due to rubble from collapsed structures
like walls and doors. The robot (internal) however may not need to
inform the external of all these changes so as not to cause informa-
tion overload of the commander who may be otherwise engaged
in orchestrating the entire operation. The robot is thus delegated
high level tasks but is often left to compute the plans itself since it
may have a better understanding of the environment. However, the
robot’s actions also contribute to the overall situational awareness
of the external, who may require explanations on the robots plans
when necessary. As such, such simulated USAR scenarios provide an
ideal testbed for developing and evaluating algorithms for effective
human-robot interaction. Figure 2 illustrates our setup (explained
in more detail in the video (https://youtu.be/40Xol2GY7zE)). In the
current study, we only simulate the interface to the external. This
is described in details later in Section 6.
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Figure 3: Interface for Study-1 where participants assumed the role of the internal agent and were asked to explain their plan
to a teammate with a possibly different model or map of the world.

In general, differences in the models of the human and the robot
can manifest in any form (e.g. the robot may have lost some capa-
bility or its goals may have changed). In the current setup, we deal
with differences in the map of the environment as available to the
two agents, i.e. these differences can then be compiled to differences
only in the initial state of the planning problem (the human model
has the original unaffected model of the world). This makes no
difference to the underlying explanation generation algorithm [5]
which treats all model changes equally.

5 STUDY – 1
Study-1 aims to develop an understanding of how humans respond
to the task of generating explanations, i.e. if left to themselves,
humans preferred to generate explanations similar to the ones
enumerated in Section 3.2. To test this, we asked participants to
assume the role of the internal agent in the explanation process and
explain their plans with respect to the faulty map of their teammate.

5.1 Experimental Setup
Figure 3 shows an example map and plan provided to a participant.
On left side, the participant is shown the actual map along with the
plan, starting position and the goal. The panel on the right shows
the map that is available to the explainee. The maps have rubbles
(both removable and non-removable) blocking access to certain
paths. The maps may disagree as to the locations of the debris. The
participants were told that they need to convince the explainee of
the correctness and optimality of the given plan by updating the
latter’s maps with annotations they felt were relevant in achieving
that goal. We ran the study with two conditions –

C1. Here the participants were asked to ensure, via their expla-
nations, that their plan was (1) correct and (2) optimal in the
updated model of their teammate; and

C2. Here, in addition to C1, they were also asked to use the
minimal amount of information they felt was needed to
achieve the condition in C1.

Each participant was shown how to annotate on an example
(not an actual explanation) map and was then asked to explain 12
different plans using similar annotations. After each participant
finished with the set of maps provided to them, they were provided
with the following set of subjective questions –
Q1. Providing map updates were necessary to explain my plans.
Q2. Providing map updates were sufficient to explain my plans.
Q3. I found that my plans were easy to explain.

The answers to these questions were measured using a five-point
Likert scale. The answers to the first two questions will help to
establish whether humans considered map updates (or in general
updates on the model differences) at all necessary and/or suffi-
cient to explain a given plan. The final question measures whether
the participants found the explanation process using model differ-
ences tractable. It is important to note that in this setting we do
not measure the efficacy of these explanations (this is the subject
of Study-2 in Section 6). Rather we are trying to find whether a
human explainer would have naturally participated in the model
reconciliation approach during the explanation process.

In total, we had 12 participants for condition C1 and 10 partici-
pants for condition C2 including 7 female and 18 male participants
between the age range of 18-29 (data corresponding to 5 partici-
pants who misinterpreted the instructions had to be removed, 2
participants did not reveal their demographics). Participants for
the study were recruited by requesting the department secretary to
send an email to the student body to ensure that they had no prior
knowledge about the study or its relevance. Each participant was
paid $10 for taking part in the study.

5.2 Results
The results of the study are presented in Figures 4, 5 and 6. We
summarize some of the major findings below –

Figure 4 – The first hypothesis we tested was whether the expla-
nations generated by the humans matched any of the explanation
types discussed in Section 3.2. We did this by going through all
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(a) Study-1:C1 (b) Study-1:C2

Figure 4: Count of different types of explanations for Study-
1 conditions C1 and C2.

the individual explanations provided by the participants and then
categorizing each explanation to one of the four types, namely
MCE, PPE, MPE or Other (the "other" group contains explanations
that do not correspond to any of the predefined explanation types
– more on this later in Section 7). Figure 4a shows the number of
explanations of each type that were provided by the participants of
C1. The graph shows a clear preference for MPE. It seemed most
participants felt that it was preferable to provide all the model dif-
ferences. A possible reason for this may be since the size of MPEs
for the given maps were not too large (and participants did not
have time constraints). Interestingly, in case of C2 we see a clear
shift in preferences (as seen in Figure 4b) where most participants
ended up generating MCE style explanations. This means at least
for scenarios where there are constraints on communication, the
humans would prefer generating MCEs as opposed to explaining
all the model differences.

Figures 5 and 6 – These show the results of the subjective ques-
tions for C1 and C2 respectively. Interestingly, in C1, while most
people agreed on the necessity of explanations in the form of model
differences, they were less confident regarding the sufficiency of
such explanations. In fact, we found that many participants left
additional explanations in their worksheet in the form of free text
(we discuss some of these findings in Section 7). In C2, we still see
that more people are convinced about the necessity of these expla-
nations than sufficiency. But we see a reduction in the confidence
of the participants, which may have been caused by the additional
minimization constraints.

6 STUDY – 2
In this study we want to understand how the different kinds of ex-
planations outlined in Section 3.2 are perceived or evaluated when
they are presented to the participants. This study was designed
to provide clues to how humans comprehend explanations when
provided to them in the form of model differences.

Figure 5: Subjective responses of participants in Study-1:C1.

Figure 6: Subjective responses of participants in Study-1:C2.

6.1 Experimental Setup
During this study, participants were incentivized to make sure that
the explanation does indeed help them understand the optimal-
ity and correctness of the plans in question by formulating the
interaction in the form of a game.

Figure 7 shows a screenshot of the interface. The game displays
to each participant an initial map (which they are told may differ
from the robot’s actual map), the starting point and the goal. Once
the player asks for a plan, the robot responds with a plan illustrated
in the form of a series of paths through the various waypoints
highlighted on the map. The goal of the participant is to identify if
the plan shown is optimal or just satisficing. If the player is unsure
of the path, they can always ask for an explanation from the robot.
The explanation is provided to the participant in the form of a set
of model changes in the player’s map. If the player is still unsure,
they can just click on the pass button to move to the next map.

The scoring scheme for the game is as follows. Each player
is awarded 50 points for correctly identifying the plan as either
optimal or satisficing. Incorrectly identifying an optimal plan as
just satisficing or a suboptimal plan as optimal would cost them
20 points. Every request for explanation would further cost them 5
points, while skipping a map does not result in any penalty. The
participants were additionally told that selecting an inexecutable
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Figure 7: Interface for Study-2 where participants assumed the role of the external commander and evaluated plans provided
by the internal robot. They could request for plans and explanations to those plans (e.g. if not satisfied with it) and rate those
plans as optimal or suboptimal based on that explanation. If still unsatisfied with the plan even after the explanation they
could chose to pass and move on to the next problem.

plan as either feasible or optimal would result in a penalty of 400
points. Even though there were no actual incorrect plans in the
dataset, this information was provided to deter participants from
taking chances with plans they did not understand well.

Each participant was paid $10 dollars and received additional
bonuses based on the following payment scheme –

- Scores higher than or equal to 540 were paid $10.
- Scores higher than 540 and 440 were paid $7.
- Scores higher than 440 and 340 were paid $5.
- Scores higher than 340 and 240 were paid $3.
- Scores below 240 received no bonuses.

The scoring systems for the game was designed to make sure –
• Participants should only ask for an explanation when they
are unsure about the quality of the plan (due to small negative
points on explanations).

• Participants are incentivized to identify the feasibility and
optimality of the given plan correctly (large reward and
penalty on doing this wrongly).

Each participant was shown a total of 12 maps (same maps as in
Study–1). For 6 of the 12 maps, the player was assigned the optimal
robot plan, and when they asked for an explanation, they were ran-
domly shown either MCE, PPE or MPE explanation with regards
to the robot model. For the rest of the maps, participants could
potentially be assigned a plan that is optimal in the human model
(i.e. an explicable plan) or somewhere in between as introduced
in Section 3.3 (referred henceforth as the balanced plan). In place

of the robot’s optimal plan2. The participants that were assigned
the optimal robot plan were still provided an MCE, PPE or MPE
explanation, otherwise they were provided either the shorter ex-
planation (for balanced plans) or an empty explanation (for the
explicable plan). Also note that for 4 out of the 12 maps the PPE
explanation cannot prove the optimality of the plan.

At the end of the study, each participant was presented with a
series of subjective questions. The responses to each question were
measured on a five-point Likert scale.
Q1. The explanations provided by the robot was helpful.
Q2. The explanations provided by the robot was easy to understand.
Q3. I was satisfied with the explanations.
Q4. I trust the robot to work on its own.
Q5. My trust in the robot increased during the study.

In total, we had 27 participants for Study–2, including 4 female
and 22 male participants between the age range of 19-31 (1 partici-
pant did not reveal their demographic).

6.2 Results
The results of the study are presented in Figures 8, 9 and 10. We
summarize some of the major findings below –

Figure 8 – The goal of this study is to identify if explanations in the
form of model reconciliation can convince humans the optimality
and correctness of the plans. As mentioned earlier we ran the test

2Note that out of the 6 maps, only 3 had both balanced plans as well as explicable
plans, the other 3 either had a balanced plan or the optimal human plan
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Figure 8: Plots showing percentage of times different kinds of explanations (i.e. MCE / MPE / PPE) led to the correct decision
on the human’s part in each problem (the aggregated result is shown on the right). A “correct decision for the human" involves
them recognizing optimality of the robot’s plan on being presented anMCE or anMPE, and optimality or executability (as the
case may be) in case of a PPE.

Figure 9: Subjective responses of participants in Study–2.

on 27 participants, and each participant was shown 12 unique maps
and each map was assigned a random explanation type (and in
some cases different plans). We wanted to identify whether the
participants that asked for explanations were able to come up with

Figure 10: Percentage of times explanations were sought
for in Study–2 when participants presented with explicable
plans vs. balanced or robot optimal plans with explanations.

the correct conclusions. This means that the subjects who asked
for MCE and MPE were able to correctly identify the plans as the
most optimal ones, while the people who received PPE were able to
correctly classify the plan to either optimal or satisficing (i.e. for all
but 5 maps PPE should be enough to prove optimality of the plans).
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Figure 8 shows the statistics of the selections made by partici-
pants who had requested an explanation. The right side of the graph
shows the percentage (for every map instance) of participants who
selected the correct options (marked in blue), the incorrect ones
(marked in red) or simply passed (marked in orange), while the left
side shows the average across all 12 maps. We notice that in general
people were overwhelmingly able to identify the correct choice.
Even in the case of PPEs, where the explanations only ensured
correctness (map instances 1, 2, 3, 8 and 11) the participants were
able to make the right choice. This shows that explanations in the
form of model reconciliation are a feasible form of explanation to
convey the correctness and optimality of robot plans. Additionally,
participants can differentiate between complete and non-complete
explanations based on such explanations.

Figure 9 – These conclusions are further supported by the results
from the subjective questionnaire (Figure 9). We can see that most
people seem to agree that the explanations were helpful and easy
to understand. In fact, the majority of people strongly agreed that
their trust of the robot increased during the study.

Figure 10 – We were also curious about the usefulness of expli-
cable plans (i.e plans that are optimal in human’s model) and if
the humans would still ask for explanations when presented with
explicable plans. Figure 10 shows the percentage of times people
asked for explanations when presented with various types of plans.
These results are from 382 problem instances that required ex-
planations, and 25 and 40 instances that contained balanced and
explicable plans respectively. From the perspective of the human,
the balanced plan and the robot optimal plan do not make any dif-
ference since both of them appear suboptimal. This is evident from
the fact that the click-through rate for explanations in these two
conditions are similar. However, the rate of explanations is consid-
erably less in case of explicable plans as desired. This matches the
intuition behind the notion of plan explicability as a viable means
(in addition to explanations) of dealing with model divergence in
human-in-the-loop operation of robots.

It is interesting to see that in Figure 10 about a third of the time
participants still asked for explanations even when the plan was
explicable, and thus optimal in their map. This is an artifact of
the risk-averse behavior incentivized by the gamification of the
explanation process and indicative of the cognitive burden on the
humans who are not (cost) optimal planners. Thus, going forward,
the objective function should incorporate the cost or difficulty of
analyzing the plans and explanations from the point of view of
the human in addition to the current costs of explicability and
explanations (as shown in Table 1) modeled from the perspective
of the robot model (refer to [29] for more details).

Table 1 shows the statistics of the explanations / plans from 124
problem instances that required minimal explanations as per [5],
and 25 and 40 instances that contained balanced and explicable
plans respectively, as before. As desired, the robot gains in length of
explanations but loses out in cost of plans produced as it progresses
along the spectrum of optimal to explicable plans. Thus, while
Table 1 demonstrates the cost of explanation versus explicability
trade-off from the robot’s point of view, Figure 10 shows how this
trade-off is perceived from the human’s perspective.

Figure 11: Click-through rates for explanations in Study–2
revealing either risk-taking behavior or risk-averse behav-
iors from the participants.

Optimal Plan Balanced Plan Explicable Plan
|E | C(π ,MR ) |E | C(π ,MR ) |E | C(π ,MR )
2.5 5.5 1 8.5 - 16

Table 1: Statistics of explicability versus explanation trade-
off with respect to explanation length and plan cost.

Figure 11 shows how the participants responded to inexplicable
plans, in terms of their click-through rate on the explanation request
button. Such information can be used to model the α parameter
to situate the explicability versus explanation trade-off according
to preferences of individual users. It is interesting to see that the
distribution of participants (right inset) seem to be bimodal indi-
cating that there are people who are particularly skewed towards
risk-averse behavior and others who are not, rather than a normal
distribution of response to the explanation-explicability trade-off.
This further motivates the need for learning α interactively with
the particular human in the loop.

7 DISCUSSIONS
As we mentioned before, there were some instances where the
participants from Study 1 generated explanations that are outside
the scope of any of the explanation types discussed in Section 3.2.
These are marked as “Other” in Figure 4. In the following we note
three of these cases that we found interesting –

7.1 Post-hoc explanations
Notice that parts of an MCE that actually contribute to the exe-
cutability of a given plan may not be explained in post-hoc situa-
tions where the robot is explaining plans that have already been
done as opposed to plans that are being proposed for execution. The
rationale behind this is that if the human sees an action, that would
not have succeeded in his model, actually end up succeeding (e.g.
the robot had managed to go through a corridor that was blocked
by rubble) then he can rationalize that event by updating his own
model (e.g. there must not have been a rubble there). This seems to
be a viable approach to further reduce size (c.f. selective property
of explanations in [22]) of explanations in a post-hoc setting, and
is out of scope of explanations developed in [5].
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7.2 Identification of Explicit Foils
Identification of explicit foils [5] can help reduce the size of expla-
nations as well. In the explanations introduced in Section 3.2 the
foil was implicit – i.e. why this plan as opposed to all other plans.
However, when the implicit foil can be estimated (e.g. top-K plans
expected by the human) then the explanations can only include
information on why the plan in question is better than those other
options (which are either not executable or costlier). Some par-
ticipants provided explanations contrasting some of these foils in
terms of (and in addition to just) the model differences.

7.3 Cost-based reasoning
Finally, a kind of explanation that was attempted by some partici-
pants involved a cost analysis of the current plan with respect to
foils (in addition to model differences, as mentioned above). Such
explanations have been studied extensively in previous planning lit-
erature [11, 26] and seems to be still relevant for plan explanations
on top of the model reconciliation process.

8 CONCLUSION
The paper details the results of studies aimed to evaluate the effec-
tiveness of plan explanations in the form of model reconciliation.
Through this study, we aimed to validate whether explanations
in the form of model reconciliation (in its various forms) suffice
to explain the optimality and correctness of plans to the human
in the loop. We also studied cases where participants were asked
to generate explanations in the form of model changes, to see if
explanations generated by the humans align with any of the ex-
planations identified in existing literature. The results of the study
seem to suggest that humans do indeed understand explanations
of this form and believe that such explanations are necessary to
explain plans. In future work, we would like to investigate how
explanations must be adapted for scenarios where the robot is ex-
pected to interact with the humans over a long period of time and
how such interactions affect the dynamics trust and teamwork in
human-robot collaborations.
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