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ABSTRACT
Human aware planning requires an agent to be aware of the in-

tentions, capabilities and mental model of the human in the loop

during its decision process. This can involve generating plans that

are explicable to a human observer as well as the ability to provide

explanations when such plans cannot be generated. In this paper,

we bring these two concepts together and show how an agent can

account for both these needs and achieve a trade-off during the plan

generation process itself by means of a model-space search method

MEGA. This in effect provides a comprehensive perspective of what it

means for a decision-making agent to be “human-aware” by bring-

ing together existing principles of planning under the umbrella

of a single plan generation process. We situate our discussion in

the context of recent work on explicable planning and explanation

generation, and illustrate these concepts in modified versions of

two well-known planning domains, as well as in a demonstration

of a robot involved in a typical search and reconnaissance task with

an external supervisor. Human factor studies in the latter highlight

the usefulness of the proposed approaches.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Plan-
ning and scheduling; Cognitive robotics; • Human-centered
computing; • Computer systems organization→ Robotics;

KEYWORDS
Human-Aware Planning, Explicable Planning, Plan Explanations,

Explanation as Model Reconciliation, Minimal Explanations.

1 INTRODUCTION
It is often useful for a planning agent while interactingwith a human

in the loop to use, in the process of its deliberation, not only the

modelMR
of the task it has on its own, but also the modelMR

h
that the human thinks it has (refer to Figure 1a). This mental model

of the human [9] is in addition to the physical model of the human.

This is, in essence, the fundamental thesis of the recent works on

plan explanations [10] and explicable planning [35], summarized

under the umbrella ofmulti-model planning, and is in addition to the
originally studied human-aware planning (HAP) problems where

actions of the human (and hence the actual human model and the

robot’s belief of it) are also involved in the planning process. The

need for explicable planning or plan explanations in fact occur

when these two models –MR
andMR

h – diverge. This means that

the optimal plans in the respective models – π∗MR and π∗MR
h
– may

∗
The first two authors contributed equally.

not be the same and hence optimal behavior of the robot in its own

model is inexplicable to the human in the loop. In the explicable

planning process, the robot produces a plan π̂ that is closer to the

human’s expected plan, i.e. π̂ ≈ π∗MR
h
. In the explanation process,

the robot instead attempts to update the human’s mental model to

an intermediate model M̂R
h in which the robot’s original plan is

equivalent (with respect to a metric such as cost or similarity) to

the optimal and hence explicable, i.e. π∗MR ≡ π∗
M̂R

h

.

Until now, these two processes of plan explanations and explica-

bility have remained separate in so far as their role in an agent’s

deliberative process is considered - i.e. a planner either generates an

explicable plan to the best of its ability or it produces explanations

of its plans where they required. However, there may be situations

where a combination of both provide a much better course of action

– if the expected human plan is too costly in the planner’s model

(e.g. the human might not be aware of some safety constraints) or

the cost of communication overhead for explanations is too high

(e.g. limited communication bandwidth). Consider, for example,

a human working with a robot that has just received a software

update allowing it to perform new complex maneuvers. Instead of

directly trying to conceive all sorts of new interactions right away

that might end up spooking the user, the robot could instead reveal

only certain parts of the new model while still using its older model

(even though suboptimal) for the rest of the interactions so as to

slowly reconcile the drifted model of the user. This is the focus of

the current paper where we try to attain the sweet spot between

plan explanations and explicability.

1.1 Related Work
As AI agents become pervasive in our daily lives, the need for such

agents to be cognizant of the beliefs and expectations of the hu-

mans in their environment has been well documented [21]. From

the perspective of task planning, depending on the extent of in-

volvement of the human in the life cycle of a plan, work in this

direction has ranged on a spectrum of “human-aware planning”

[2, 3, 8, 11–13, 22, 33] where a robot passively tries to account for the

plans of humans cohabiting its workspace, to “explicable planning”

[14, 23, 34, 35] where a robot generates plans that are explicable or

predictable to a human observer, to “plan explanations” [10, 17, 24]

where the agent uses explanations to bring the human (who may

have a different understanding of the agent’s abilities) on to the

same page, to “human-in-the-loop planning” [1, 4, 16, 25, 30] in

general where humans and planners are participating in the plan

generation and/or execution process together.
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(a) The evolving scope of Human-Aware Planning (HAP) (b) A Subsumption Architecture for HAP

Figure 1: The expanding scope of human-aware planning (HAP) acknowledging the need to account for the mental model
of the human in the loop in the deliberative process of an autonomous agent. The planner can, for example, choose to bring
the human’s model closer to the ground truth using explanations via a process called model reconciliation (MRP) so that an
otherwise inexplicable plan makes sense in the human’s updated model or it can compute explicable plans which are closer
to the human’s expectation. These capabilities can be stacked to realize more and more complex behavior – in this paper we
will concentrate on the explicability versus explanation trade-off as a form of argumentation during human-aware planning.

1.1.1 The Evolving Scope of Human-Aware Planning. The ongo-
ing efforts to make planning more “human-aware” is illustrated in

Figure 1a – initial work on this topic had largely focused on incor-

porating an agent’s understanding of the humanmodelMH
into its

decision making process. Since then the importance of considering

the human’s understandingMR
h of the agent’s actual modelMR

in the planning process has also been acknowledged, sometimes

implicitly [3] and later explicitly [10, 35]. These considerations en-

gender interesting behaviors both in the space of plans and models.

For example, in the model space, the modifications to the human

mental modelMR
h is used for explanations in [10] while reasoning

over the actual modelMH
can reveal interesting behavior by affect-

ing the belief state of the human, such as in planning for serendipity

[8]. In the plan space, a human-aware agent can useMH
andMR

h
to compute joint plans for teamwork [32] or generate behavior

that conforms to the human’s preferences [11, 22] and expectations

[23, 34, 35]. From the point of view of the planner, this is, in a sense,

an asymmetric epistemic setting with single-level nested beliefs

over its models. Indeed, existing literature on epistemic reasoning

[19, 27, 28] can also provide interesting insights in the planning

process of an agent in these settings.

1.1.2 A Subsumption Architecture for HAP. These different forms

of behavior can be composed to form more and more sophisticated

forms of human-aware behavior. This hierarchical composition of

behaviors can be viewed in the form of a subsumption architecture

for human-aware planning, similar in motivation to [7]. This is il-

lustrated in Figure 1b. The basic reasoning engines are the Plan and

MRP (Model Reconciliation) modules. The former accepts model(s)

of planning problems and produces a plan, the latter accepts the

same and an produces a new model. The former operates in plan

space and gives rise to classical, joint and explicable planning de-

pending on the models it is operating on, while the latter operates

in model space to produce explanations and belief shaping behav-

ior. These are then composed to form argumentation modules for

trading of explanations and explicability (which is the topic of the

current paper) and human-aware planning in general.

1.1.3 The Explicability-Explanation Trade-off. From the perspec-

tive of design of autonomy, this trade-off has two important im-

plications – (1) the agent can now not only explain but also plan
in the multi-model setting with the trade-off between compromise

on its optimality and possible explanations in mind; and (2) the

argumentation process is known to be a crucial function of the

reasoning capabilities of humans [26], and now by extension of au-

tonomous agents as well, as a result of algorithms we develop here

to incorporate the explanation generation process into the agent’s

decision making process itself. General argumentation frameworks
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for resolving disputes over plans have indeed been explored be-

fore [6, 15]. Our work can be seen as the specific case where the

argumentation process is over a set of constraints that prove the

correctness and quality of plans by considering the cost of the

argument specifically as it relate to the trade-off in plan quality

and the cost of explaining that plan. This is the first of its kind

algorithm that can achieve this in the scope of plan explanations

and explicable in presence of model differences with the human.

HUMAN-AWARE PLANNING REVISITED
The problem formulation closely follows that introduced in [10],

reproduced here for clarity of methods built on the same definitions.

A Classical Planning Problem. is a tupleM = ⟨D,I,G⟩1 with
domain D = ⟨F ,A⟩ - where F is a set of fluents that define a state

s ⊆ F , andA is a set of actions - and initial and goal states I,G ⊆ F .
Action a ∈ A is a tuple ⟨ca , pre(a), eff±(a)⟩ where ca is the cost, and

pre(a), eff±(a) ⊆ F are the preconditions and add/delete effects, i.e.

δM (s,a) |= ⊥ if s ̸ |= pre(a); else δM (s,a) |= s ∪ eff+(a) \ eff−(a)
where δM (·) is the transition function. The cumulative transition

function is δM (s, ⟨a1,a2, . . . ,an⟩) = δM (δM (s,a1), ⟨a2, . . . ,an⟩).

The solution to the planning problem is a sequence of actions or

a (satisficing) plan π = ⟨a1,a2, . . . ,an⟩ such that δM (I,π ) |= G.
The cost of a plan π is C(π ,M) = ∑

a∈π ca if δM (I,π ) |= G; ∞
otherwise. The cheapest plan π∗ = argminπ C(π ,M) is the (cost)
optimal plan. We refer to this cost asM as C∗M .

A Human-Aware Planning (HAP) Problem. is given by the tuple

Ψ = ⟨MR ,MH ,MR
h ⟩ whereM

R = ⟨DR ,IR ,GR ⟩ is the planner’s
model of a planning problem, whileMH = ⟨DH ,IH ,GH ⟩ and
MR

h = ⟨D
R
h ,I

R
h ,G

R
h ⟩ are respectively the planner’s estimate of the

human’s model and the human’s understanding of its own model.

The solution to the human-aware planning problem is a joint plan

[8] π = ⟨a1,a2, . . . ,an⟩; ai ∈ {DR ∪ DH
r } such that δΨ(IR ∪

IHr ,π ) |= GR ∪ GHr . The robot’s component in the plan is referred

to as π (R) = ⟨ai | ai ∈ π ∧ DR ⟩. For the purposes of this paper, we
ignore the robot’s belief of the human model, i.e.MH

r = ⟨{}, {}, {}⟩
– in effect, making the human an observer only or a passive con-

sumer of the plan – and focus instead on the challenges involves in

planning with the human’s model of the planner. Planning with the

human model has indeed been studied extensively in the literature,

as noted above, and this assumption does not change in any way

the relevance of the work here. Specifically, the following concepts

are built on top of the joint planning problem – e.g. an explicable

plan in this paper would, in the general sense, correspond to the

robot’s component in the joint plan being explicable to the human

in the loop. Thus, for the purposes of this paper, we have π (R) ≡ π ;
without loss of generality, we focus on the simplified setting with

only the model of the planner and the human’s approximation of it.

Explicable Planning
In “explicable planning" a solution to the human-aware planning

problem is a plan π such that (1) it is executable (but may no longer

1
Note that the “model of a planning problem” includes the action model as well as the
initial and goal states of an agent.

be optimal) in the robot’s model but is (2) “closer” to the expected

plan in the human’s model, given a particular planning problem –

(1) δMR (IR ,π ) |= GR ; and
(2) C(π ,MR

h ) ≈ C
∗
MR

h
.

“Closeness” or distance to the expected plan is modeled here in

terms of cost optimality, but in general this can be any preference

metric like plan similarity. In existing literature [23, 34, 35] this has

been usually achieved by modifying the search process so that the

heuristic that guides the search is driven by the robot’s knowledge

of the human’s mental model. Such a heuristic can be either derived

directly [23] from the human’s model (if it is known) or learned

[35] through interactions in the form of affinity functions between

plans and their purported goals.

Plan Explanations
The other approach would be to (1) compute optimal plans in the

planner’s model as usual, but also provide an explanation (2) in the

form of a model update to the human so that (3) the same plan is

now also optimal in the human’s updated model of the problem.

Thus, a solution involves a plan π and an explanation E such that –

(1) C(π ,MR ) = C∗MR ;

(2) M̂R
h ←−M

R
h + E; and

(3) C(π , M̂R
h ) = C

∗
M̂R

h

.

Note that here a model update, as indicated by the + operator may

include a correction to the belief (goals or state information) as

well as information pertaining to the action model itself. In [10]

the authors explored various ways of generating such solutions

– including methods to minimize the lengths of the explanations

given as a result. However, this was done in an after-the-fact fash-

ion, i.e. the optimal plan was already generated and it was just a

matter of finding the best explanation for it. This not only ignores

the possibility of finding better plans (that are equally optimal)

with smaller explanations, but also avenues of compromise in a

manner we discussed previously whereby the planner sacrifices its

optimality to further reduce overhead in the explanation process.

MEGA
We bring the notions of explicability and explanations together in

a novel planning technique MEGA (Multi-model Explanation Gener-

ation Algorithm) that trades off the relative cost of explicability to

providing explanations during the plan generation process itself
2
.

The output of MEGA is a plan π and an explanation E such that (1)

π is executable in the robot’s model, and with the explanation (2)

in the form of model updates it is (3) optimal in the updated human

model while (4) the cost (length) of the explanations, and the cost

of deviation from optimality in its own model to be explicable to

the human, is traded off according to a constant α –

(1) δMR (IR ,π ) |= GR ;
(2) M̂R

h ←−M
R
h + E;

(3) C(π , M̂R
h ) = C

∗
M̂R

h

; and

2
As in [10] we assume that the human mental model is known and has the same

computation power ([10] also suggests possible ways to address these issues, the same

discussions apply here as well). Also refer to the discussion on model learning later.
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(4) π = argminπ { |E | + α × | C(π ,MR ) −C∗MR | }.
Clearly, with higher values of α the planner will produce plans

that require more explanation, with lower α it will generate more

explicable plans. Thus, with the help of this hyperparameter α , an
autonomous agent can deliberate over the trade-off in the costs it

incurs in being explicable to the human (second minimizing term

in (4)) versus explaining its decisions (first minimizing term in (4)).

Note that this trade-off is irrespective of the cognitive burden of

those decisions on the human in the loop. For example, for a robot in

a collapsed building during a search and rescue task, or the rover on

Mars, may have limited bandwidth for communication and hence

prefer to be explicable instead instead.

We employ a model space A∗ search (Algorithm 1) to compute

the expected plan and explanations for a given value of α . Similar to

[10] we define a state representation over planning problems with

a mapping function Γ :
aM 7→ F which represents a planning

problem by transforming every condition in it into a predicate. The

set Λ of actions contains unit model change actions λ : F → F
which make a single change to a domain at a time.

We start by initializing the min node tuple (N) with the human

mental model and an empty explanation. For each new possible

model we come across during our model space search, we test if

the objective value of the new node is smaller than the current min

node. We stop the search once we identify a model that is capable

of producing a plan that is also optimal in the robot’s own model.

This is different from the stopping condition used by the original

MCE-search
3
in [10], where the authors are just trying to identify

the first node where the given plan is optimal.

Property 1. MEGA yields the smallest possible explanation for a

given human-aware planning problem.

This means that with a high enough α (see below) the algorithm is

guaranteed to compute the best possible plan for the planner as well

as the smallest explanation associated with it. This is by construc-

tion of the search process itself, i.e. the search only terminates after

the all the nodes that allowC(π , M̂R
h ) = C

∗
M̂R

h

have been exhausted.

This is beyond what is offered by the model reconciliation search

in [10], which only computes the smallest explanation given as a

plan that is optimal in the planner’s model.

Property 2. α = | MR ∆MR
h | yields the most optimal plan in

the planner’s model along with the minimal explanation possible

given a human-aware planning problem.

This is easy to see, since with ∀E, |E | ≤ | MR ∆MR
h |, the latter

being the total model difference, the penalty for departure from

explicable plans is high enough that the planner must choose from

possible explanations only (note that the explicability penalty is

always positive until the search hits the nodes with C(π , M̂R
h ) =

C∗
M̂R

h

, at which point onwards the penalty is exactly zero). In general

this works for any α ≥ |MCE | but since an MCEwill only be known

retrospectively after the search is complete, the above condition

suffices since the entire model difference is known up front and is

the largest possible explanation in the worst case.

3
An MCE or a minimally complete explanation is the shortest model update so that a
given plan optimal in the robot model is also optimal in the updated human model.

Algorithm 1 MEGA

1: procedure MEGA-Search

2: Input: HAP Ψ = ⟨MR ,MR
h ⟩, α

3: Output: Plan π and Explanation E
4: Procedure:
5: fringe← Priority_Queue()
6: c_list← {} ▷ Closed list

7: Nmin ← ⟨MR
h , {}⟩ ▷ Node with minimum objective value

8: π ∗R ← π ∗ ▷ Optimal plan being explained

9: πRh ← π s.t.C(π ,MR
h ) = C

∗
MR
h

▷ Plan expected by human

10: fringe.push(⟨MR
h , {}⟩, priority = 0)

11: while True do

12: ⟨M̂, E⟩, c ← fringe.pop(M̂)
13: if OBJ_VAL(⟨M̂, E⟩) ≤ OBJ_VAL(Nmin ) then
14: Nmin ← ⟨M̂, E⟩ ▷ Update min node

15: if C(π ∗
M̂
,MR ) = C∗

MR then

16: ⟨Mmin, Emin ⟩ ← Nmin
17: return ⟨πMmin , Emin ⟩ ▷ If π ∗

M̂
is optimal inMR

18: else
19: c_list← c_list ∪ M̂
20: for f ∈ Γ(M̂) \ Γ(MR ) do ▷ Models that satisfy condition 1

21: λ ← ⟨1, {M̂ }, {}, {f }⟩ ▷ Removes f from M̂
22: if δMR

h ,MR (Γ(M̂), λ) < c_list then

23: fringe.push(⟨δMR
h ,MR (Γ(M̂), λ), E ∪ λ ⟩, c + 1)

24: for f ∈ Γ(MR ) \ Γ(M̂) do ▷ Models that satisfy condition 2

25: λ ← ⟨1, {M̂ }, {f }, {}⟩ ▷ Adds f to M̂
26: if δMR

h ,MR (Γ(M̂), λ) < c_list then

27: fringe.push(⟨δMR
h ,MR (Γ(M̂), λ), E ∪ λ ⟩, c + 1)

28: procedure OBJ_VAL(⟨M̂, E⟩)
29: return |E | + α × | C(π ∗

M̂
,MR ) −C∗

MR |

Property 3. α = 0 yields the most explicable plan.

Under this condition, the planner has to minimize the cost of expla-

nations only. Of course, at this point it will produce the plan that

requires the shortest explanation, and hence the most explicable

plan. Note that this is distinct from just computing the optimal plan

in the human’s model, since such a plan may not be executable in

the planner’s model so that some explanations are required even in

the worst case. This is also a welcome additions to the explicabil-

ity only view of plan generation introduced in [23, 34, 35], where

the human model only also guides the plan generation process

instead of doing so directly, though none of these works provided

any insight into how to make the remainder of the model reconcil-

iation possible in such cases, as done here with the explanations

associated with the generated plans.

Property 4. MEGA-search is required only once per problem, and

is independent of α .

Algorithm 1 terminates only after all the nodes containing a mini-

mally complete explanation
3
have been explored. This means that

for different values of α , the agent only needs to post-process the

nodes with the new objective function in mind. Thus, a large part of

the reasoning process for a particular problem can be pre-computed.

2 EVALUATIONS
We will now provide internal evaluations of MEGA in modified

versions of two well-known IPC domains Rover and Barman [20]
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Domain Name Problem

∆ = 2 ∆ = 7 ∆ = 10

|E | Time (secs) |E | Time (secs) |E | Time (secs)

Rover
p1 0 1.22 1 5.83 3 143.84

p2 1 1.79 5 125.64 6 1061.82

p3 0 8.35 2 10.46 3 53.22

Barman
p1 2 18.70 6 163.94 6 5576.06

p2 2 2.43 4 57.83 6 953.47

p3 2 45.32 5 4183.55 6 5061.50

Table 1: Computation time for human-aware plans in Rover
and Barman domains along with the length of explanations.

demonstrating the trade-off in the cost and computation time of

plans with respect to varying size of the model difference and the

hyper-parameter α and follow it up with a demonstration of MEGA in
action on a robot in a search and reconnaissance domain. Finally,

we will report on human factor studies on how this trade-off is re-

ceived by users. The code and the domain models will be available

after the double-blind review process is over.

2.1 Empirical Results: Cost Trade-off
The value of α determines how much an agent is willing to sacri-

fice its own optimality versus the cost of explaining a (perceived)

suboptimal plan to the human. In the following, we illustrate this

trade-off on modified versions of two well-known IPC domains.

2.1.1 The Rover (Meets a Martian) Domain. Here theMars Rover

has a model as described in the IPC domain, but has gone an update

whereby it can carry all the rock and soil samples needed for a

mission at the same time. This means that it does not need to empty

the store before collecting new rock and soil samples anymore so

that the new action definitions for sample_soil and sample_rock
no longer contain the precondition (empty ?s).

During its mission it runs across a Martian who is unaware of

the robot’s expanded storage capacity, and has an older, extremely

cautious, model of the rover it has learnedwhile spying on it from its

cave. It believes that any time we collect a rock sample, we also need

to collect a soil sample and need to communicate this information

to the lander. It also believes that before the rover can perform

take_image action, it needs to send the soil data and rock data

of the waypoint from where it is taking the image. Clearly, if the

rover was to follow this model in order not to spook the Martians, it

will end up spending a lot of time performing unnecessary actions

(like dropping old samples and collecting unnecessary samples). For

example, if the rover is to communicate an image of an objective

objective2, all it needs to do is move to a waypoint (waypoint3)
from where objective2 is visible and perform the action –

(take_image waypoint3 objective2 camera0 high_res)

If the rover was to produce a plan that better represents the Mar-

tian’s expectations, it would look like –

(sample_soil store waypoint3)
(communicate_soil_data general waypoint3 waypoint3 waypoint0)
(drop_off store)
(sample_rock store waypoint3)
(communicate_rock_data general waypoint3 waypoint3 waypoint0)
(take_image waypoint3 objective1 camera0 high_res)

(a) The Rover (Meets a Martian) Domain

(b) The Barman (in a Bar) Domain

Figure 2: Trade-off between explicability versus explanation
cost for plans produced at different values of α .

Now if the rover chose to directly use an MCE it could end

up explaining up to six different model differences based on the

problem and the plan under execution. In some case, this may be

acceptable, but in others, it may make more sense for the rover to

bear the extra cost rather than laboriously walking through all the

updates with an impatient Martian. MEGA lets us naturally model

these scenarios through the use of the α parameter – the rover

would choose to execute the Martian’s expected optimal plan when

the α parameter is set to zero (which means the rover does not care

about the extra cost it needs to incur to ensure that the plan makes

sense to the Martian with the least explaining involved).

Figure 2 shows how the explicability cost and explanation cost

varies for three typical problem instances in this domain. The algo-

rithm starts converging to the smallest possible MCE, when α is

set to one. For smaller α , MEGA chooses to save explanation costs

by choosing more expensive (and explicable) plans.

2.1.2 The Barman (in a Bar) Domain. Here, the brand new two-

handed Barman robot is wowing onlookers with its single-handed
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skills, even as its admirers who may be unsure of its capabilities ex-

pect, much like in the original IPC domain, that it is required to have

one hand free to perform actions like fill-shot, refill-shot,
shake etc. This means that to make a single shot of a cocktail with

two shots of the same ingredient with three shots and one shaker,

the human expects the robot to execute the following plan –

(fill-shot shot2 ingredient2 left right dispenser2)
(pour-shot-to-used-shaker shot2 ingredient3 shaker1 left l1 l2)
(refill-shot shot2 ingredient3 left right dispenser3)
(pour-shot-to-used-shaker shot2 ingredient3 shaker1 left l1 l2)
(leave left shot2)
(grasp left shaker1)

The robot can, however, directly start by picking both the shot

and the shaker and does not need to put either of them down

while making the cocktail. Similar to the Rover domain, we again

illustrate on three typical problems from the barman domain (Figure

2) how at lower values of α the robot choose to perform plans that

require less explanation. As α increases the algorithm produces

plans that require larger explanations with the explanations finally

converging at the smallest MCE required for that problem.

2.2 Empirical Results: Computation Time
Contrary to classical notions of planning that occurs in state or

plan space, we are now planning in the model space, i.e. every node

in the search tree is a new planning problem. As seen in Table 1 this

becomes quite time consuming with increasing number of model

differences between the human and the robot, even as there are

significant gains to be had in terms of minimality of explanations,

and the reduction in cost of explicable plans as a result of it. This

motivates the need for developing approximations and heuristics

[10] for the search for multi-model explanations.

2.3 Demonstration: The USAR Domain
We first demonstrate MEGA on a robot performing an Urban Search

And Reconnaissance (USAR) task – here a remote robot is put into

disaster response operation often controlled partly or fully by an

external human commander. This is a typical USAR setup [5], where

the robot’s job is to infiltrate areas that may be otherwise harmful

to humans, and report on its surroundings as and when required /

instructed by the external. The external usually has a map of the

environment, but this map is no longer accurate in a disaster setting

- e.g. new paths may have opened up, or older paths may no longer

be available, due to rubble from collapsed structures like walls

and doors. The robot (internal) however may not need to inform

the external of all these changes so as not to cause information

overload of the commander who may be otherwise engaged in

orchestrating the entire operation. This calls for an instantiation of

the MEGA algorithm where the model differences are contributed to

by changes in the map, i.e. the initial state of the planning problem

(the human model has the original unaffected model of the world).

Figure 3 shows a relevant section of the map of the environment

where this whole scenario plays out. The orange marks indicate

rubble that has blocked a passage, while the green marks indicate

collapsed walls. The robot (Fetch), currently located at the position

marked with a blue O, is tasked with taking a picture at location

marked with an orange O in the figure. The external commander’s

Figure 3: A typical search and reconnaissance scenario with
an internal semi-autonomous agent (robot) and an external
supervisor (human) – a video demonstration can be accessed
at https://www.youtube.com/watch?v=u_t1TQotzo4.

expects the robot to take the path shown in red, which is no longer

possible. The robot armed with MEGA has two choices – it can either

follow the green path and explain the revealed passageway due to

the collapse, or compromise on its optimal path, clear the rubble and

proceed along the blue path. A video demonstration of the scenario
can be viewed at https://www.youtube.com/watch?v=u_t1TQotzo4.
The first part of the video demonstrates the plan generated by

MEGA for low α values. As expected, it chooses the blue path that

requires the least amount of explanation, and is thus the most

explicable plan. In fact, the robot only needs to explain a single

initial state change to make this plan optimal, namely –

Explanation >> remove-has-initial-state-clear_path p1 p8

This is also an instance where the plan closest to the human ex-

pectation, i.e. the most explicable plan, still requires an explanation,

https://www.youtube.com/watch?v=u_t1TQotzo4
https://www.youtube.com/watch?v=u_t1TQotzo4


Balancing Explicability and Explanations Technical Report, 2018, ASU

which previous approaches in the literature cannot provide. More-

over, in order to follow this plan, the robot must perform the costly

clear_passage p2 p3 action to traverse the corridor between p2
and p3, which it could have avoided in its optimal plan (shown in

green on the map). Indeed, MEGA switches to the robot’s optimal

plan for higher values of α along with the following explanation –

Explanation >> add-has-initial-state-clear_path p6 p7
Explanation >> add-has-initial-state-clear_path p7 p5
Explanation >> remove-has-initial-state-clear_path p1 p8

By providing this explanation, the robot is able to convey to the

human the optimality of the current plan as well as the infeasibility

of the human’s expected plan (shown in red).

2.4 Human Factors Evaluations
Finally, we will now use the above search and reconnaissance do-

main to analyze how humans respond to the explicability versus

explanations trade-off. This is done by exposing the external com-

mander’s interface to participants who get to analyze plans in a

mock USAR scenario. The participants were incentivized to make

sure that the explanation does indeed help them understand the

optimality of the plans in question by formulating the interaction in

the form of a game. This is to make sure that participants were suf-

ficiently invested in the outcome as well as mimic the high-stakes

nature of USAR settings to accurately evaluate the explanations.

Figure 4 shows a screenshot of the interface which displays to

each participant an initial map (which they are told may differ

from the robot’s actual map), the starting point and the goal. A

plan is illustrated in the form of a series of paths through various

waypoints highlighted on the map. The participant has to identify

if the plan shown is optimal. If the player is unsure, they can ask

for an explanation. The explanation is provided to the participant

in the form of a set of model changes in the player’s map.

The scoring scheme for the game is as follows. Each player

is awarded 50 points for correctly identifying the plan as either

optimal or satisficing. Incorrectly identification costs them 20 points.

Every request for explanation further costs them 5 points, while

skipping a map does not result in any penalty. The participants

were additionally told that selecting an inexecutable plan as either

feasible or optimal would result in a penalty of 400 points. Even

though there were no actual incorrect plans in the dataset, this

information was provided to deter participants from taking chances

with plans they did not understand well.

Each participant was paid $10 dollars and received additional

bonuses based on the following payment scheme –

- Scores higher than or equal to 540 were paid $10.

- Scores higher than 540 and 440 were paid $7.

- Scores higher than 440 and 340 were paid $5.

- Scores higher than 340 and 240 were paid $3.

- Scores below 240 received no bonuses.

The scoring systems for the game was designed to make sure –

• Participants should only ask for an explanation when they

are unsure about the quality of the plan (due to small nega-

tive points on explanations).

Figure 4: Interface to the external commander in a mock
search and reconnaissance study.

Figure 5: Responses to explicable plans versus balanced or
robot optimal plans with explanations.

Figure 6: Click-through rates for explanations.

• Participants are incentivized to identify the feasibility and

optimality of the given plan correctly (large reward and

penalty on doing this wrongly).

Each participant was shown a total of 12 maps. For 6 of the 12

maps, the participant was assigned the optimal robot plan, and

when they asked for an explanation, they were randomly shown

different types of explanations as introduced in [10]. For the rest of

the maps, in place of the robot’s optimal plan, participants could po-

tentially be assigned a plan that is optimal in the human model (i.e.

an explicable plan) with no explanation or somewhere in between

(i.e. the balanced plan) with a shorter explanation. Note that out

of the 6 maps, only 3 had both balanced plans as well as explicable

plans, the other 3 either had a balanced plan or the optimal human

plan. In total, we had 27 participants for the study, including 4

female and 22 male participants between the age range of 19-31 (1

participant did not reveal their demographic).
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Optimal Plan Balanced Plan Explicable Plan

|E | C(π ,MR ) |E | C(π ,MR ) |E | C(π ,MR )
2.5 5.5 1 8.5 - 16

Table 2: Statistics of explicability versus explanation trade-
off with respect to explanation length and plan cost.

Figure 5 shows how people responded to the different kinds of

explanations / plans. These results are from 382 problem instances

that required explanations, and 25 and 40 instances that contained

balanced and explicable plans respectively. From the perspective

of the human, the balanced plan and the robot optimal plan do not

make any difference since both of them appear suboptimal. This is

evident from the fact that the click-through rate for explanations in

these two conditions are similar. However, the rate of explanations

is significantly less in case of explicable plans as desired.

Table 2 shows the statistics of the explanations / plans. These

results are from 124 problem instances that requiredminimal expla-
nations as per [10], and 25 and 40 instances that contained balanced

and explicable plans respectively, as before. As desired, the robot

gains in length of explanations but loses out in cost of plans pro-

duced as it progresses along the spectrum of optimal to explicable

plans. Thus, while Table 2 demonstrates the cost of explanation

versus explicability trade-off from the robot’s point of view, Figure 5

shows how this trade-off is perceived from the human’s perspective.

It is interesting to see that in Figure 5 about a third of the time

participants still asked for explanations even when the plan was

explicable, and thus optimal in their map. This is an artifact of

the risk-averse behavior incentivized by the gamification of the

explanation process and indicative of the cognitive burden on the

humans who are not (cost) optimal planners. Thus, going forward,

the objective function should incorporate the cost or difficulty of

analyzing the plans and explanations from the point of view of

the human in addition to the current costs in equation MEGA(4) and
Table 2 modeled from the perspective of the robot model.

Finally, in Figure 6, we show how the participants responded to

inexplicable plans, in terms of their click-through rate on the expla-

nation request button. Such information can be used to model the α
parameter to situate the explicability versus explanation trade-off

according to preferences of individual users. It is interesting to see

that the distribution of participants (right inset) seem to be bimodal

indicating that there are people who are particularly skewed to-

wards risk-averse behavior and others who are not, rather than

a normal distribution of response to the explanation-explicability

trade-off. This further motivates the need for learning α interac-

tively with the particular human in the loop.

3 DISCUSSION AND FUTUREWORK
In the following section, we will elaborate on some of the exciting

avenues of future research borne out of this work.

3.1 Model learning and picking the right α
We assumed that the hyper-parameter α is set by the designer in

determining how much to trade-off the costs of explicability versus

explanations on the part of the autonomous agent. However, the

design of α itself can be more adaptive and “human-aware” in the

sense that the parameter can be learned in course of interactions

with the human in the loop to determine what kind of plans are

preferred (as seen in Figure 6) and how much information can be

transmitted. This is also relevant in cases where the human mental

model is not known precisely or if there is uncertainty towards

what the new model is after an update or explanation. This is a

topic of future work; existing literature on iterative model learning

[18, 29] can provide useful guidance towards the same. Authors in

[9] discuss a few useful representations for learning such models

for the purposes of task planning at various levels of granularity.

Note that search with uncertainty over a learned human (mental)

model can often times be compiled to the same planning process as

described in [31] by using annotatedmodels, so the same techniques

as introduced in this paper still apply.

3.2 Cost of explanations and cognitive load
Currently, we only considered the cost of explanations and explica-

bility from the point of view of the robot. However, there might be

additional (cognitive) burden on the human – measured in terms

of the complexity of interpreting an explanation and how far away

the final plan is from the optimal plan in the human’s mental model.

This again ties back to the assumptions on the cognitive abilities

(i.e. optimality) of the human in the loop, and needs calibration

[18, 29] based on repeated interactions (as seen in Figure 5).

4 CONCLUSION
We saw how an agent can achieve human-aware behavior while

at the same time keeping in mind the cost of departure from its

own optimality which could otherwise have been explained away if

given the opportunity. This raises several intriguing challenges in

the plan generation process, most notably in finding better heuris-

tics in speeding up the model space search process as well as dealing

with model uncertainty and identifying the sweet spot of the al-

gorithm in explicability-explanations trade-off. Indeed, the revised

human-aware planning paradigm opens up exciting new avenues

of research such as learning human mental models, providing ex-

planations at different levels of abstractions, and so on.
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