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Abstract
In this paper, we demonstrate how a planner (or a robot as an
embodiment of it) can explain its decisions to multiple agents
in the loop together considering not only the model that it
used to come up with its decisions but also the (often mis-
aligned) models of the same task that the other agents might
have had. To do this, we build on our previous work on multi-
model explanation generation (Chakraborti et al. 2017b) and
extend it to account for settings where there is uncertainty of
the robot’s model of the explainee and/or there are multiple
explainees with different models to explain to. We will illus-
trate these concepts in a demonstration on a robot involved
in a typical search and reconnaissance scenario with another
human teammate and an external human supervisor.

In (Chakraborti et al. 2017b) we showed how a robot can ex-
plain its decisions to a human in the loop who might have a
different understanding of the same problem (either in terms
of the agent’s knowledge or intentions, or in terms of its
capabilities). These explanations are intended to bring the
human’s mental model closer to the robot’s estimation of
the ground truth – we refer to this as the model reconcili-
ation process by the end of which a plan that is optimal in
the robot’s model is also optimal in the human’s updated
mental model. We also showed how this process can be
achieved successfully while transferring the minimum num-
ber of model updates possible via what we call minimally
complete explanations or MCEs. Such techniques can be es-
sential contributors to the dynamics of trust and teamwork
in human-agent collaborations by significantly lowering the
communication overhead between agents while at the same
time providing the right amount of information to keep the
agents on the same page with respect to their understanding
of each others’ tasks and capabilities – thereby reducing the
cognitive burden on the human teammates and increasing
their situational awareness.

The process of model reconciliation is illustrated in Fig-
ure 1. The robot’s model, which is its ground truth, is rep-
resented byMR (note: “model” of a planning problem in-
cludes the state and goals information as well as the domain
or action model) and π∗MR is the optimal plan in it. A human
H who is interacting with it may have a different modelMR

h
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Figure 1: The model reconciliation process in case of model
uncertainty or multiple explainees.

of the same planning problem, and the optimal plan π∗MR
h

in
the human’s model can diverge from that of the robot’s lead-
ing to the robot needing to explain it’s decision to the human.
As explained above, a multi-model explanation is an update
or correction to the human’s mental model to a new model
M̂R

h where the optimal plan π∗
M̂R

h

is equivalent to π∗MR .

Imagine that the planner is now required to explain the
same problem to multiple different human teammatesHi, or
if the model of the human is not known with certainty (which
is an equivalent setting with multiple possible models). The
robot can, of course, call upon the previous service to com-
pute MCEs for each such configuration. However, this can
result in situations where the explanations computed for in-
dividual models independently are not consistent across the
all the possible target domains. In the case of multiple team-
mates being explained to, this may cause confusion and loss



of trust; and in the case of model uncertainty, such an ap-
proach cannot even guarantee that the resulting explanation
will be an acceptable explanation in the real domain. Instead,
we want to find an explanation such that ∀i π∗

M̂R
hi

≡ π∗MR ,

i.e. a single model update that makes the given plan optimal
in all the updated domains (or in all possible domains). At
first glance, it appears that such an approach, even though
desirable, might turn out to be prohibitively expensive espe-
cially since solving for a single MCE involves search in the
model space where each search node is a optimal planning
problem. However, it turns out that the exact same search
strategy can be employed here as well by modifying the way
in which the models are represented and the equivalence cri-
terion is computed during the search process.

Thus, in this paper, we (1) outline how uncertainty over
models in the multi-model planning setting can be repre-
sented in the form of annotated models; (2) show how the
search for a minimally complete explanation in the revised
setting can be compiled to the original MCE search based on
this representation; and (3) demonstrate these concepts on a
typical search and reconnaissance setting involving a robot
and its human teammate internal to a disaster scene and an
external human commander supervising the proceedings.

Background
In this section, we provide a brief introduction to the classi-
cal planning problem and its evolution towards “model-lite”
planning to handle model uncertainty.

A Classical Planning Problem is a tupleM = 〈D, I,G〉1
with domain D = 〈F,A〉 – where F is a finite set of flu-
ents that define a state s ⊆ F , and A is a finite set of ac-
tions – and initial and goal states I,G ⊆ F . Action a ∈ A
is a tuple 〈ca, pre(a), eff±(a)〉 where ca is the cost, and
pre(a), eff±(a) ⊆ F are the preconditions and add/delete
effects, i.e. δM(s, a) |= ⊥ if s 6|= pre(a); else δM(s, a) |=
s ∪ eff+(a) \ eff−(a) where δM(·) is the transition
function. The cumulative transition function is given by
δM(s, 〈a1, a2, . . . , an〉) = δM(δM(s, a1), 〈a2, . . . , an〉).

This forms the classical definition of a planning problem
(Russell and Norvig 2003) whose models are represented in
the syntax of PDDL (McDermott et al. 1998). The solution to
the planning problem is a sequence of actions or a (satisfic-
ing) plan π = 〈a1, a2, . . . , an〉 such that δM(I, π) |= G.
The cost of a plan π is given by C(π,M) =

∑
a∈π ca

if δM(I, π) |= G; ∞ otherwise. The cheapest plan π∗ =
arg minπ C(π,M) is the (cost) optimal plan. We refer to
the cost of the optimal plan in the modelM as C∗M.

In (Nguyen, Sreedharan, and Kambhampati 2017) the au-
thors introduced an update to the standard representation
of planning problems to an annotated model or PDDL to
account for uncertainty over the definition of the planning
model. In addition to the standard preconditions and effects
associated with the definition of actions, this introduces the
notion of possible preconditions and effects which may or

1Note that the definition of a planning “model” includes the
action model as well as the initial and goal states of an agent.

may not be realized in practice. Such representations are
relevant especially in the context of learning human men-
tal models, where uncertainty after the learning process can
be represented in terms of annotated models as in (Bryce,
Benton, and Boldt 2016).

An Incomplete (Annotated) Model is the tuple aM =
〈aD,a I,a G〉 with a domain aD = 〈F, aA〉 – where
F is a finite set of fluents that define a state s ⊆ F ,
and aA is a finite set of annotated actions – and an-
notated initial and goal states aI = 〈I0, I+〉, aG =
〈G0,G+〉; I0,G0, I+,G+ ⊆ F . Action a ∈a A is a tuple
〈ca, pre(a), p̃re(a), eff±(a)〉, ẽff ±(a)〉 where ca is the cost
and, in addition to its preconditions and add/delete effects
pre(a), eff±(a),⊆ F each action also contains possible pre-
conditions p̃re(a) ⊆ F containing propositions that action
a might need as preconditions, and possible add (delete) ef-
fects ẽff ±(a) ⊆ F ) containing propositions that the action a
might add (delete, respectively) after execution.

An instantiation of an annotated model aM is a classi-
cal planning model where a subset of the possible condi-
tions have been realized, and is thus given by the tuple
ins(aM) = 〈D, I,G〉 with domain D = 〈F,A〉, initial and
goal states I = I0 ∪ χ; χ ⊆ I+ and G = G0 ∪ χ; χ ⊆ G+

respectively, and action A 3 a = 〈ca, pre(a) ← pre(a) ∪
χ; χ ⊆ p̃re(a), eff±(a) ← eff±(a) ∪ χ; χ ⊆ ẽff ±(a)〉.
Given an annotated model with k possible conditions, there
may be 2k such instantiations, which forms its completion
set (Nguyen, Sreedharan, and Kambhampati 2017).

The Multi-Model Planning Setting
The multi-model planning paradigm (Chakraborti et al.
2017b) introduces the mental model of the human in the
loop into a planner’s deliberative process, in addition to the
planner’s own model in the classical sense. In such settings,
when a planner’s optimal plans diverge from human expec-
tations2, the planner can attempt corrections to the human’s
mental model to resolve the inoptimality by participating in
what we call the model reconciliation process. Thus –

A Multi-Model Planning (MMP) Setting is the tuple
Φ = 〈MR,MR

h 〉, where MR = 〈DR, IR,GR〉 is the
planner’s model of a planning problem, while MR

h =
〈DR

h , IRh ,GRh 〉 is the human’s expectations of the same.

The Model Reconciliation Problem (MRP) is the tuple
Ψ = 〈π,Φ〉, given an MMP φ, where C(π,MR) = C∗MR .

A solution to an MRP is the set of model changes E or a
multi-model explanation, such that

(1) M̂R
h ←−MR

h + E ; and

(2) C(π,M̂R
h ) = C∗

M̂R
h

.

A Minimally Complete Explanation (MCE) is the short-
est explanation that satisfies conditions (1) and (2).

2This is modeled here in terms of cost optimality, but in general
this can be any preference metric like plan or causal link similarity.



As we mentioned before, in the case of an model uncer-
tainty / multiplicity, we want conditions (1) and (2) to hold
for all instances of the model being explained to. In the fol-
lowing discussion, we are going to show how this can be
achieved by a modified version of the original MCE-search
in (Chakraborti et al. 2017b) using annotated models.

MRP for Model Uncertainty / Multiplicity
We represent the uncertainty or multiplicity of the model of
the explainee in terms of the annotated model introduced in
the previous section – by making preconditions and effects
that appear in all possible models be necessary ones, and
those that appear in just a subset to be possible ones. Let the
set of models under consideration (one belonging to each ex-
plainee hi) be {MR

hi
}. From this set of models we construct

the following annotated model –
aMR

H = 〈aD,a I,a G〉 with domain aD = 〈F, aA〉 and
initial and goal states aI = 〈I0, I+〉, aG = 〈G0,G+〉where

- Action aA 3 a = 〈ca, pre(a), p̃re(a), eff±(a), ẽff ±(a)〉 where
ca is the action cost3 and –

- pre(a) = {f | ∀i f ∈ pre(ai)}
- p̃re(a) = {f | ∃i f 6∈ pre(ai) ∧ ∃i f ∈ pre(ai)}
- eff±(a) = {f | ∀i f ∈ eff±(ai)}
- ẽff ±(a) = {f | ∃i f 6∈ eff ±(ai) ∧ ∃i f ∈ eff ±(ai)}

- I0 = {f | ∀i f ∈ I ∈ MR
hi
}

- I+ = {f | ∃j f 6∈ Ij ∧ ∃i f ∈ Ii; Ii ∈MR
hi
, Ij ∈MR

hj
}

- G0 = {f | ∀i f ∈ G ∈ MR
hi
}

- G+ = {f | ∃j f 6∈ Gj ∧ ∃i f ∈ Gi; Gi ∈MR
hi
, Gj ∈MR

hj
}

Alternatively, consider aMR
H as the culmination of a model

learning process and the model set {MR
hi
} is the completion

set of aMR
H . As mentioned earlier, we intend to find a single

explanation that is a satisfactory explanation for the entire
set of models, without having to iterate the standard MRP
process over all possible models while coming up with an
explanation that can satisfy all of them.

Mmax &Mmin Models
We begin by defining two models – the most relaxed model
Mmax possible and the least relaxed one Mmin. The for-
mer is the model where all the possible add effects (and none
of the possible preconditions and deletes) hold, the state has
all the possible conditions set to true, and the goal is the
smallest one possible; while in the latter all the possible pre-
conditions and deletes (and none of the possible adds) are
realized and with the minimal start state and the maximal
goal. This means that, if a plan is executable inMmin it will
be executable in all the possible models. Also, if this plan is
optimal in Mmax, then it must be optimal through out the
set. Of course, such a plan may not exist, but we are not try-
ing to find one either. Instead, we are trying to find a set of

3Note that for the time being we ignore uncertainty over cost
of an action. Refer to (Nguyen et al. 2012) for a possible way to
address this by computing diverse plans.

model updates which when applied to the annotated model,
produces a new set of models where a given plan is optimal.
In providing these model updates, we are in effect reducing
the set of possible models, to a smaller set. The new set need
not be a subset of the original set of models but will be equal
or smaller in size to the original set. For any given annotated
model, such an explanation exist, and we intent to find the
smallest one. aMR

H thus affords the following two models –

Mmax = 〈D, I,G〉 with domain D = 〈F,A〉 and

- initial state I ← I0 ∪ I+; given aI

- goal state G ← G0; given aG

- ∀a ∈ A

- pre(a)← pre(a); a ∈ aA

- eff+(a)← eff+(a) ∪ ẽff
+

(a); a ∈ aA

- eff−(a)← eff−(a); a ∈ aA

Mmin = 〈D, I,G〉 with domain D = 〈F,A〉 and

- initial state I ← I0; given aI

- goal state G ← G0 ∪ G+; given aG

- ∀a ∈ A

- pre(a)← pre(a) ∪ p̃re(a); a ∈ aA

- eff+(a)← eff+(a); a ∈ aA

- eff−(a)← eff−(a) ∪ ẽff
−

(a); a ∈ aA

As explained before,Mmax is a model where all the pos-
itive conditions hold and it is easiest to achieve the goal, and
vice versa forMmin. Note that these definitions might end
up creating inconsistencies in the models (e.g. in an anno-
tated model for the BlocksWorld domain, the definition
of unstack action may have add effects to make the block
both holding and ontable at the same time), but the
model reconciliation process will take care of these.

Proposition 1 For a given MRP Ψ = 〈π, 〈MR, {MR
hi
}〉〉,

if the plan π is optimal inMmax and executable inMmin,
then conditions (1) and (2) hold for all i.

This now becomes the new criterion to satisfy in the course
of search for an MCE for a set of models.

Model-Space Search
We will employ use a modified version of the model space
A∗ search in (Chakraborti et al. 2017b) to calculate the min-
imal explanation in the presence of model uncertainty / mul-
tiplicity. We define the following state representation, as out-
line in (Chakraborti et al. 2017b), over planning problems
for our model-space search algorithm –

F = {init-has-f | ∀f ∈ FR
h ∪ FR} ∪ {G-has-f | ∀f ∈ FR

h ∪ FR}⋃
a∈AR

h
∪AR

{a-has-precondition-f, a-has-add-effect-f,

a-has-del-effect-f | ∀f ∈ FR
h ∪ FR}

∪ {a-has-cost-ca | a ∈ AR
h } ∪ {a-has-cost-ca | a ∈ AR}.



A mapping function Γ : M 7→ s represents any planning
problemM = 〈〈F,A〉, I,G〉 as a state s ⊆ F as follows -

τ(f) =



init-has-f if f ∈ I,
goal-has-f if f ∈ G,
a-has-precondition-f if f ∈ pre(a), a ∈ A
a-has-add-effect-f if f ∈ eff+(a), a ∈ A
a-has-del-effect-f if f ∈ eff−(a), a ∈ A
a-has-cost-f if f = ca, a ∈ A

Γ(M) =
{
τ(f) | ∀f ∈ I ∪ G∪⋃

a∈A

{f ′ | ∀f ′ ∈ {ca} ∪ pre(a) ∪ eff+(a) ∪ eff−(a)}
}

We now define a model-space search problem
〈〈F ,Λ〉,Γ(M1),Γ(M2)〉 with a new action set Λ
containing unit model change actions λ : F → F such that
|s1∆s2| = 1, where the new transition or edit function is
given by δM1,M2(s1, λ) = s2 such that condition 1 :
s2 \ s1 ⊆ Γ(M2) and condition 2 : s1 \ s2 6⊆ Γ(M2)
are satisfied. This means that model change actions can only
make a single change to a domain at a time, and all these
changes are consistent with the model of the planner. The
solution to a model-space search problem is given by a set of
edit functions {λi} that can transform the modelM1 to the
model M2, i.e. δM1,M2

(Γ(M1), {λi}) = Γ(M2). Thus,
for a given MRP Ψ, an MCE is the smallest solution to the
model space search problem 〈〈F ,Λ〉,Γ(MR

h ),Γ(M̂)〉 with
the transition function δMR

h ,MR such that C(π,M̂) = C∗
M̂

,

i.e. EMCE = arg minE |Γ(M̂)∆Γ(MR
h )|.

Our MEGAAlgorithm
The proposed search procedure is presented in Algorithm 1.
The search closely follows the MCE search defined in
(Chakraborti et al. 2017b) with minimal additions4 to ac-
commodate the annotated model. We start the search by first
creating the correspondingMmax andMmin model for the
given annotated model aMR

h . While the goal test for the
original MCE only included an optimality test, here we need
to both check the optimality of the plan inMmax and verify
the correctness of the plan inMmin. As stated in Proposi-
tion 1, the plan is only optimal in the entire set of possible
models if it satisfies both tests. Since the correctness of a
given plan can be verified in polynomial time with respect
to the plan size, this is a relatively easy test to perform.

The other important point of difference between the al-
gorithm mentioned above and the original MCE is how we
calculate the applicable model updates. Here we consider
the superset of model difference between the robot model
andMmin and the difference between the robot model and
Mmax. This could potentially mean that the search might
end up applying a model update that is already satisfied in
one of the models but not in the other. Since all the model
update actions are formulated as set operations, the origi-
nal MRP formulation can handle this without any further

4Similar to the new MCE search, we can also adapt MME, ap-
proximate MCE and even the heuristic in (Chakraborti et al. 2017b)
to work with annotated PDDL models with minimal changes.

Algorithm 1 MEGA
1: procedure MCE-SEARCH

2: Input: MRP 〈π∗, 〈MR,aMR
h 〉〉

3: Output: Explanation EMCE

4: Procedure:

5: fringe ← Priority Queue()

6: c list ←{} . Closed list
7: π∗R ← π∗ . Optimal plan being explained
8: Mmax, Mmin ←(aMR

h ) . Proposition 2
9: fringe.push(〈Mmin,Mmax, {}〉, priority = 0)

10: while True do

11: 〈M̂min,M̂max, E〉, c← fringe.pop()

12: if C(π∗R,M̂max)=C∗M̂max
∧ δ(IM̂min

, π∗R) |= GM̂min
then

13: return E . Proposition 1
14: else
15: c list← c list ∪ 〈M̂max,M̂min〉

16: for f ∈ {Γ(M̂min) ∪ Γ(M̂max)} \ Γ(MR) do
17: λ← 〈1, 〈M̂min,M̂max〉, {}, {f}〉 . Removes f from M̂
18: if δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ) 6∈ c list then

19: fringe.push(〈δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),

E ∪ λ〉, c+ 1)

20: for f ∈ Γ(MR) \ {Γ(M̂min) ∪ Γ(M̂max)} do
21: λ← 〈1, {〈M̂min,M̂max〉, {f}, {}〉 . Adds f to M̂
22: if δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ) 6∈ c list then

23: fringe.push(〈δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),

E ∪ λ〉, c+ 1)

changes. The models obtained by applying the model update
toMmin andMmax are then pushed to the open queue.

Proposition 2 Mmax and Mmin only need to be com-
puted once before the search – i.e. with a model update E to
{MR

hi
},Mmax ← Mmax + E andMmin ← Mmin + E

for the new model set.

Following Proposition 2, these models form the newMmin

andMmax models for the set models obtained by applying
the current set of model updates to the original annotated
model. This proposition ensures that we no longer have to
keep track of the current list of models or recalculateMmin

andMmax for the new set.

Demonstration
We will now demonstrate MEGA on a robot performing an
Urban Search And Reconnaissance (USAR) task - here a
remote robot is put into disaster response operation often
controlled partly or fully by an external human commander.
Usually there might be many such agents, both human and
robot, internal or external. This kind of setup is typical in
USAR settings (Bartlett 2015) where the robot’s job is to in-
filtrate areas that may be otherwise harmful to humans, and
report on its surroundings as and when required / instructed
by the external, or required by its team. The external has a
map of the environment, but this map may no longer be ac-
curate in a disaster setting - e.g. new paths may have opened
up, or older paths may no longer be available, due to rub-
ble from collapsed structures like walls and doors. The same
holds true for other team members in the loop. The robot



(internal) however, while updating its teammates, does not
need to inform them of all these changes so as not to cause
information overload of the commander who is usually oth-
erwise engaged in orchestrating the entire operation, or its
other teammates who are involved in completing their own
tasks. This calls for an instantiation of MEGA to determine
the appropriate model updates5 to pass on to other agents in
the team for a given task. A video demonstrating the scenario
play out is available at https://goo.gl/BKHnSZ.

The scenario (illustrated in Figure 2), involves a robot po-
sitioned at P1 and is expected to collect data from location
P5. Before the robot can perform its surveil action, it
needs to obtain a set of tools from the internal human agent.
The human agent is initially located at P10 and is capable
of traveling to reachable locations to meet the robot for the
handover. As mentioned before, the human agents’ initial
state (the map) may have drifted from the real map which
the robot has – e.g. the agents may have confusion regarding
which paths are clear and which ones are closed.

Here the external commander incorrectly believes that the
path from P1 to P9 is clear and while the one from P2 to P3
is closed. The internal human agent, on the other hand, not
only believes in the mistakes mentioned above but is also
under the assumption that the path from P4 to P5 is un-
traversable. Due to these different initial states, each of these
agents ends up generating a different optimal plan.

The plan expected by the external commander (marked in
black in Figure 2) requires the robot to move to location P10
(via P9) to meet the human. After collecting the package
from the internal agent, the commander expects it to set off
to P5 via P4. The internal agent, on the other hand, believes
that he needs to travel to P9 to hand over the package. As
he believes that the corridor from P4 to P5 is blocked, he
expects the robot to take the longer route to P5 through P6,
P7, and P8 (marked in orange). Finally, the optimal plan for
the robot (marked in blue) involves the robot meeting the
human at P4 on its way to P5. Through MEGA algorithm we
hope to find the smallest explanation, which can explain this
optimal plan to both human agents in the loop.

In this particular case, since the models differ from each
other with respect to their initial states, the initial state of the
corresponding annotated model, will be defined as

I0 = {(at P1), (at human P10), ...,
(clear path P10 P9), (clear path P9 P1)}

I+ = {(clear path P4 P5), (collapsed path P4 P5)}
where I+ represents the state fluents that may or may not
hold in human’s model. The corresponding initial states for
Mmin and Mmax will be as follows –

Imax = {(at P1), (at human P10), ...,
(clear path P10 P9), (clear path P9 P1),
(clear path P4 P5), (collapsed path P4 P5)}

Imin = {(at P1), (at human P10), ...,
(clear path P10 P9), (clear path P9 P1)}

5Note that, in this particular scenario, we only have differences
in the initial states. To the algorithm this is identical to the general
case in the model space.

For this scenario, the MEGA algorithm generates the follow-
ing explanation –

Expln >> add-INIT-has-clear_path P4 P5
Expln >> remove-INIT-has-clear_path P1

P9
Expln >> add-INIT-has-clear_path P2 P3

It is interesting to note that, while the last two model
changes are equally relevant for both the agents, the first
change is specifically designed to help the internal human
agent. The first update helps convince the human that the
robot can indeed reach the goal through P4, while the next
two help convince both agents as to why it is possible and
why the robot should meet at P4 rather than other locations.

Discussion and Future Work
This paper presents our initial attempt at extending MRP
based explanation to scenarios with incomplete human men-
tal models or multiple explainees. We argue that in such
cases, the robot should try to generate explanations that sat-
isfy all the explainees. As pointed out in earlier sections, the
algorithm introduced in this paper are quite comparable to
the original model space explanation generation algorithms
(Chakraborti et al. 2017b) in terms of its computational com-
plexity. But one can easily see that the robot will need to
provide a much larger explanation to satisfy the more in-
complete models (either because of high uncertainty about
the model or because of a larger set of explainees). One
could imagine cases, where the robot might prefer to pro-
duce explanations that only work for a subset of explainees
or possible models, or where a human’s response to a less
robust explanation can be quite illuminating about the hu-
man’s underlying mental model.

Another exciting avenue of research is the learning of an-
notated models. Most of the current work on learning plan-
ning models have focused on learning complete planning
model from successful plan traces (Yang, Wu, and Jiang
2005), (Cresswell, McCluskey, and West 2013). But in the
case of learning mental models, such traces may be hard
to come up by and even impossible. By learning annotated
models, we can potentially preserve a set of possibly con-
flicting hypotheses and only eliminate a possible model if we
can produce an observation that invalidates it. Systems that
meet some of these requirements include MARSHAL (Bryce,
Benton, and Boldt 2016) and CPISA (Nguyen, Sreedharan,
and Kambhampati 2017). However, neither of them provide
a perfect solution yet, the MARSHAL system may prove to
be too intrusive (the need to observe plans, direct questions
about domain model) in most HRI scenarios, while CPISA
only extracts causal proofs from execution traces and does
not learn an intermediate APDDL model. Ideally, we want
approaches that can learn these models from a robot’s plan
traces labeled by humans, similar to (Zhang et al. 2017).

One of the fundamental premises of the setup discussed in
the paper is that uncertainty over the human’s mental model
and presence of multiple humans in the loop (with known or
uncertain models) is essentially equivalent in so far as the ex-
planation generation technique is concerned. We have shown
how we can address both settings with the same compilation,



Figure 2: An USAR scenario with two human teammates and a robot. It is possible that over time, the models of the agents may
diverge. In such cases, it is important that the robot can come up with explanations that satisfy all the agents involved.

and computed explanations that are valid for all possible
models or all the explainees as the case may be. However,
the process of explaining to the humans themselves might be
different depending on the setup. For example, in the case of
model uncertainty, the safest approach might be to generate
explanations that work for the largest set of possible mod-
els, but in scenarios with multiple explainees, the robot may
have to decide, whether it needs to save computational and
communication time by generating one explanation to fit all
models, or if it needs to tailor the explanation to each hu-
man. This choice may depend on the particular domain and
the nature of teaming relationship with the human.

Finally, annotated planning model is only one of the many
incomplete models that have been studied in planning liter-
ature. One could choose to use an even shallower (Kamb-
hampati 2007) planning model to reduce the model learning
cost – e.g. a word vector based action affinity model (Tian,
Zhuo, and Kambhampati 2016) or the CRF based plan la-
beling model (Zhang et al. 2017). While these models may
capture human expectations and preferences about the robot
plan, in terms of expressiveness of the representation they
may be entirely different from human’s mental model of the
robot. In (Chakraborti et al. 2017a) we discuss a few such
useful representations for learning such models for the pur-
poses of task planning at various levels of granularity. If we
wish to use these models, we will also need to reconsider
how we can perform model reconciliation when the differ-
ence between the learned mental model and the robot model
may no longer be meaningful to the human.

Conclusion
We saw how the explanation generation as model reconcili-
ation technique can be extended to account for multiple pos-
sible models of the explainee – this is useful both in cases
where the model of the explainee is uncertain as well as there

are many explainees to explain to. We demonstrated such a
scenario with a robot involved in a typical search and recon-
naissance scenario with external supervisors whose models
of the environment might have drifted in course of the oper-
ation. In (Sreedharan, Chakraborti, and Kambhampati 2017)
we demonstrated how the plan explanation problem and the
plan explicability problem (Zhang et al. 2017) can be treated
under a single framework – we are currently developing ap-
proaches to bridge the same gap in the current context of
model uncertainty / multiplicity in the context of “model-
lite” planning (Kambhampati 2007).
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