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ABSTRACT

This thesis investigates heuristic search control for several planning algorithms. It is divided
into three closely interconnected parts. The first part of the thesis presents a family of effective
and admissible heuristics for state-space planning extracted from planning graph structures. These
heuristics are highly informed by exploiting the problem structure existing in the planning graphs.
The second part of the thesis develops effective heuristic search control for partial order planners
(POP) — a class of highly flexible plan synthesis algorithms that have hither-to lacked effective
search control. This approach employs distance-based heuristic estimators, which are inspired from
our heuristics for state-space planning, the use of reachability analysis and handling of disjunctive
ordering constraints. All these heuristics are empirically shown to improve the efficiency of planning
algorithms dramatically. In the last part of the thesis, dynamic constraint satisfaction (DCSP) model
is proposed for studying and understanding the heuristics that have been developed for partial order
planning and other plan synthesis algorithms. In particular, the thesis investigates a number of
heuristics for value and variable ordering for general DCSP search by exploiting the dual view of
DCSP and state-space search. The connection and applicability of these heuristics to the ones

developed for planning algorithms are also discussed.
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Chapter 1

Introduction

The field of AI planning is primarily concerned with building control algorithms that enable
an agent to synthesize a plan of actions that will achieve its goal. The plethora of different plan
synthesis algorithms developed in the past decades is usually characterized by two “distinct” cate-
gories: Planning as search in the space of world states (also known as state-space planning [48]) and
planning as search in the space of partially ordered plans (also known as partial-order plan-space
planning [62]).

For all their representational and algorithmic differences, the efficiency of each of these types
of planners is decided mainly by the effectiveness of the heuristic search control employed in the
algorithms. Significant advances have been made in the past few years on the use of heuristic
search control for state-space planning algorithms. To date, state-space planners are shown to
exhibit a level of efficiency superior to that of other approaches. Not coincidentally, the search
control heuristics for state-space planners are also better understood in comparison to partial-order
planners through the work by many researchers in the field [48, 6, 5, 20, 21, 4, 32, 33, 27, 12].
Indeed, most search heuristics used in state-space planning algorithms despite being conceptually
very simple, are theoretically quite well-founded, and have roots in state-space search theory [51]
and constraint satisfaction problems [61].

Consider a goal-directed backward state-space planner such as HSP-R [5], which involves



searching from the goal state G until initial state I is reached. The main search decision is in
choosing which state to traverse next. This is typically done by ranking states encountered in the
search space using a ranking function f(S) = g(S) + h(S), where g(S) is the distance (in terms
of number of actions) from S to G, and h(S) is the estimate of the distance h* from I to state
S. According to the theory of admissible state-space heuristics, when an estimate h is admissible
(optimistic) (i.e h < H), this ranking ensures the solution plan to be optimal in number of actions.
In practice, having a close without being admissible estimate of H is often good enough to synthesize
a solution plan of good quality. Therefore, one of the main work of a state-space planning algorithm
often lies in having an accurate estimator of the distance based function h*.

Planning algorithms such as HSP-R are examples of conjunctive search state-space plan-
ning, where the corresponding set of possible solution plans is essentially split into the search space
after each search commitment. Another significant development in state-space planning in the past
decade is the disjunctive search approach, which essentially keeps the set of possible solution
plans in some disjunctive form and then extracts a solution from the disjunctive representation. A
typical disjunctive planning algorithm involves compiling a bounded-length plan specification into a
planning graph as in Graphplan [4], or satisfiability model as in SATPLAN [32], or a constraint sat-
isfaction problem (CSP) as in GP-CSP [12]. In case of Graphplan, a solution plan is then extracted
from the planning graph through graph search. In cases of SATPLAN or GP-CSP, a solution plan
is extracted from a solution of the corresponding SAT or CSP problem.! The disjunctive approach
has also been used in partial-order (plan-space) planning, but with much less success [32].

This thesis is mainly concerned with heuristic search control for conjunctive state-space and
partial-order planning.? In the first part of the thesis we will introduce a derivation of a
family of highly effective and computationally efficient heuristics that guide the (con-

junctive) state-space planning algorithms. We specifically consider the problem of estimating

1From now on, we will use CSP to refer both satisfiability and constraint satisfaction problems, because a SAT
problem is essentially a boolean CSP.

2For historical reasons, unless noted otherwise in this thesis we will keep referring to conjunctive state-space plan-
ning and conjunctive partial-order planning simply as state-space planning and partial-order planning, respectively.
Disjunctive state-space and disjunctive partial-order planning are both referred to simply as CSP-based planning.



the number of actions required to reach a state from the initial state. This type of distance-based
heuristic estimators have been pursued by several researchers such as McDermott [48], Bonet and
GefIner [6, 5], Hoffman [21], Refanidis et al [52] in their respective state-space planning algorithms.
To make the computation tractable, most of these heuristic estimators make strong assumptions
about the independence of subgoals. Because of these assumptions, state-space planners often thrash
badly in problems where there are strong interactions between subgoals. Furthermore, these inde-
pendence assumptions also make the heuristics inadmissible, precluding any guarantees about the
optimality of solutions found. In fact, the authors of UNPOP and HSP/HSP-R planners [48, 5]
acknowledge that taking the subgoal interactions into account in a tractable fashion to compute
more robust and/or admissible heuristics remains a challenging problem [48, 6].

We show that the planning graph, which is used in Graphplan as a disjunctive representation
of the set of possible solution plans, is a rich source for deriving effective and admissible heuristics
for controlling state space search. Specifically, we describe how a large family of heuristics—with or
without admissibility property—can be derived in a systematic manner from a leveled off planning
graph. These heuristics are then used to control a regression search in the state space to generate
plans. The effectiveness of these heuristics is directly related to the fact that they give a better
account of the subgoal interactions. We show how the propagation of binary (and higher order)
mutual exclusion relations makes the heuristics derived from the planning graph more sensitive to
negative subgoal interactions. Positive interactions are accounted for by exploiting structure of
the planning graph that explicitly shows when achieving a subgoal also, as a side effect, achieves
another subgoal. The heuristic computation is also highly efficient, by relying on the advances made
in the past few years on the efficient construction of compact planning graphs. We also provide an
empirical study that shows that a state-space planning algorithm armed with our heuristics is very
competitive with some of the fastest planning algorithms in the literature.

In the second part of the thesis we will present effective search control for

improving the efficiency of partial order planning (POP) algorithms. To date there have



been no known search control heuristics effective enough to carry the POP algorithms to the rank
of the fastest state-space planners. Ironically, most existing architectures for integrating planning
with execution, information gathering, and scheduling are based on POP algorithms. Several known
real-world planning systems such as RAX [22], IxTeT[16] all fall under the POP category. In fact,
as argued in [55], POP is widely considered to be the more open planning frameworks. It offers a
more promising approach for handling domains with durative actions, and temporal and resource
constraints as compared to other planning approaches. All this makes the task of improving the
performance of POP algorithms a significant and timely contribution to the AI planning research.

While state-space planners synthesize plans that are totally ordered, partial-order planners
search in the space of partially ordered plans. A typical POP algorithm such as UCPOP [62] works
in a backward search manner, starting from an initial partial plan made of only a set of subgoals in
the goal state. Then the algorithm repeatedly finds an action step to achieve each subgoal, unless
such subgoal is already satisfied in the initial state. The addition of a new action (without being
totally ordered with other actions) into the current partial plan in turn introduces new subgoals to
achieve. The algorithm terminates when there is no more subgoals to achieve. There are several
search decisions involved in a POP algorithm. The first search decision is in choosing which flaw
(either subgoal or unsafe link, which is a special structure used to ensure the consistency of the
plan) to consider. Once a subgoal is considered, the second search decision is in choosing which
action step to achieve the subgoal. The third type of search decision is how to resolve an unsafe
link, which basically involves in reordering several action steps in the partial plan so that the plan
remains consistent.

We will show that the insights and heuristic techniques responsible for the advances in plan
synthesis made in the recent years in the context of conjunctive and disjunctive state-space planners
are largely adaptable to POP algorithms. In dealing with the search decisions mentioned above
in POP algorithms, we present novel methods for adapting distance based heuristics, reachability

analysis and disjunctive constraint processing techniques to POP algorithms. Distance-based heuris-



tics are used as the basis for ranking partial plans and as flaw selection methods. The other two
techniques are used for efficiently enforcing the consistency of the partial plans—by detecting implicit
conflicts and resolving them.

Our methods help scale up POP algorithms dramatically-making them competitive with re-
spect to state space planners, while preserving their flexibility. We present empirical studies showing
that POP++, a partial order planner which is enhanced by our ideas, can perform competitively
with other existing approaches in many planning domains. In particular, POP++ appears to scale
up much better than Graphplan in parallel domains. More importantly, the solutions POP++
generates are generally shorter in length, and provide significantly more execution flexibility. We
believe that the scalable versions of the POP algorithm developed in this work will make it feasible
to handle domains with temporal and resource constraints, as advocated in [55].

The successful application of state-space and CSP search heuristics to the POP algorithm,
while encouraging enough, still leaves us feeling uneasy and puzzled. An inevitable question comes to
mind: What if we want to generalize the techniques we developed to dealing with more complex type
of constraints, such as those involving time and resources? CSP and state-space provides different
facets of a POP algorithm, but they are clearly not the most suitable model for generalizing such
techniques. The silver bullet is a computational model that inherits characteristics from both CSP
and state-space search. A study of heuristic search control in such model — in addition to being
interesting in its own right — will undoubtedly provide invaluable insights into how heuristic search
control should be devised in the like of POP algorithms.

The last part of this thesis is set to embark on this ambitious task. We will use dynamsic
constraint satisfaction problem (DCSP) [36] as a general model based on which our
study of search control for POP algorithms is pushed further. That POP search can be
seen as DCSP is not much of a discovery. This connection was first remarked by Kambhampati [25]
in the context of refinement search. However, we are not aware of any work that actually exploits

this connection to study heuristic search control for POP algorithms. In fact, as far as we know,



while work on both CSP and state space search are plentiful, there were no significant work on
search heuristics for the DCSP model, which was first formalized only recently (1990) by Mittal and
Falkenhainer [36].

Shortly, a DCSP is a generalization of a CSP instance. In addition to the logical constraints
among variables as in CSP, which is to be called compatibility constraints, there also is another
type of constraint called activity constraints. An activity constraint says that given certain true
logical conditions, a new variable is activated. A compatibility constraint is valid (applicable) only
if all the variables involved in the constraint are active. We will present in this thesis a simple DCSP
formulation of a POP algorithm, and point out that with some extension, one can come up with
a DCSP formulation that includes time and resource constraints as well. This also demonstrates
that the DCSP model appears to be powerful enough to handle a wide variety of constraint-based
synthesis tasks, as argued in [36].

While it is possible to simply translate a DCSP instance into a CSP and then solve it using a
CSP solver in a manner similar to the disjunctive approach to planning, we would consider heuristic
search control for DCSP algorithm that involves incremental activating variables and assigning values
for these variables until a solution is found. This algorithm overcomes the memory problem faced
by the CSP compilation approach. Furthermore, by discerning the different natures of activity and
compatibility constraints, we may be able to come up with more suitable search heuristics for DCSP
algorithms.

The heuristic search control in a general DCSP is divided into two main issues similar to
that of a CSP: value ordering and variable ordering. The investigation of DCSP value and variable
ordering heuristics is based on the close connection of DCSP to both CSP search and state-space
search. Briefly, we will point out that the value ordering can be done by a ranking function that
ranks DCSP “states” in the search space. This ranking function is closely related to the distance-
based function used in state-space search. The main work, however, lies in how to come up with an

efficient and accurate approximation of this distance-based function. We present a general heuristic



estimator for approximating the distance-based function based on the ideas of relaxing some of the
constraints in the DCSP. The connection between this heuristic estimator and that of the distance-
based heuristic estimator developed in the earlier parts of the thesis is also examined. We also
examines several variable ordering heuristics for DCSP, which draws ideas from both CSP and

state-space, and discuss the connection with POP’s flaw selection heuristics.

1.1 Problem Statement and Thesis Contribution

We will now be more precise obout the tasks that we are about to accomplish in this thesis. The

first part of the thesis focuses on heuristic search control for state-space planning algorithm.?

To present a family of effective and admissible heuristics extracted from planning graphs

for state-space planning algorithms.

e We show the weakness of the current state-space heuristic estimators in the literature that
make the strong assumption about subgoal independence. We show that ineffectiveness of
these heuristics in a number of planning domains is attributed to their failure to account for

the complex subgoal interactions inherent in these domains.

e We show that the planning graph structures, with their very useful causal structures and
mutual exclusion constraints, can be used to derive a family of highly effective state-space
heuristics. We also provide a family of admissible heuristics whose accuracy can be arbitrarily

guaranteed at the cost of heuristic computation.

e We provide an empricial study that shows that a state-space planning algorithm armed with
our most effective heuristic has a robust performance across a variety of planning domains.
This algorithm, which is called AltAlt, is also very competitive with some of the best planning

algorithms in the literature, such as Graphplan [4] and HSP-R [5].
3This work was or to be published in Proceedings of AAAI-2000 and Artificial Intelligence Journal [38, 39].




The second part of the thesis focuses on heuristic search control for partial-order planning,
a class of planning algorithms synthesizing highly flexible plans and which have hither-to lacked

effective search control.*

To present effective search control heuristics that can significantly improve the efficiency

of partial-order planning algorithms.

We introduce three main techniques that contribute to the huge improvement of our POP
algorithm’s efficiency. Interestingly, all these ideas have deep connection to the advances made in

the state-space planning algorithm. More specifically,

e We provide an approximation of the distance-based function that measures the number of
actions needed to refine a partial plan into a solution plan. The distance-based function is
used for ranking partial plans in the search space. The approximation technique is similar to
our previous work on search heuristic for state-space planning. Briefly, the approximation is
done on the basis of relaxing the negative interactions of actions, and the extraction of actions

possibly relevant to the refinements from a planning graph.

e We delay refining threats (unsafe links) using disjunctive ordering constraints. This idea was
first introduced by Kambhampati and Yang [26]. From a DCSP’s variable ordering perspective,
where subgoals are fertile variables, and threats are infertile, this technique reflects a fertile-first

variable ordering scheme.

e We apply reachability analysis to discover additional constraints, which are helpful in detecting

inconsistent partial plans very early.

e We provide a careful empirical study of the ideas above in a planner called REPOP, which is
implemented on top of UCPOP. In our study, REPOP shows some impressive performance for
a partial order planner. It is able to solve large planning problem (such as logistics with up to

70 actions plan) in a matter of seconds. In addition to dominating the base planner UCPOP,

4This work was published in Proceedings of IJCAI-01 [40].



REPOP can outperform Graphplan algorithm [4] and is quite competitive with a state of the

art state-space planner AItAlt[37] in a number of planning domains.

e We also discuss ideas for extending our heuristics to dealing with partially instantiated actions;

devising admissible heuristics in terms of both actions and time.

Following the connection of our heuristic ideas to that of state-space search and CSP search

theory, we turn our attention to a general DCSP:

To investigate search control heuristics for dynamic constraint satisfaction problems, and

their application to partial order planning algorithms.

In addition to clarifying the “POP as DCSP” view, and the dual nature of DCSP as both state-
space search and CSP, we introduce a number of value and variable ordering heuristics for DCSP,
and discuss their connection to the heuristics developed earlier for our partial order planner REPOP.

More specifically,

e Based on earlier work by Mittal and Falkenhainer [36], we introduce a simple DCSP model that
also includes a general objective function. We show that a POP algorithm can be formulated

as solving a DCSP.

e We show that DCSP can be seen as state-space search, where each DCSP is made up of DCSP
variables and the compatibility constraints among these variables. The transformation one
state to another is triggered by applying activity constraints to a new a value assignment of a

fertile variable in the state.

e We introduce a general distance-based function that can be used to ranking DCSP states in
the search space. This ranking provides a basis for value ordering in the DCSP. We also intro-
duce a general technique for estimating the distance-based function through partial constraint
relaxation technique, and show the connection of this heuristic estimator to the one used in

REPOP for ranking partial plans.
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e We introduce the notions of fertile and infertile variables based on which there are a number
of different heuristics for variable ordering. In particular, we turn our attention to a promising
heuristic that follows these principles: (1) Favoring fertile variables over infertile ones; (2)
Using a CSP heuristic for infertile variables; (3) For fertile variables, favor the one whose size
of the descendent tree is smallest. We discuss in detail the connection of this heuristic to the

one used in REPOP planner.

1.2 Notes to the Reader

Chapter 2, 3 and 4, which make up the bulk of this thesis, can be seen as both complementary and
independent. Chapter 2 is very self-contained and exclusively concerned with state-space heuristic
estimators. Chapter 3 is exclusively concerned with improving the efficiency of partial order planning
algorithm. While it draws several insights from heuristic search control developed for state-space
planning in the previous chapter, this chapter is generaly self-contained and can be read indepen-
dently. Chapter 3 can also be seen as a motivation for the more general task (on DCSP) tacked in
Chapter 4. Investigating search heuristics for DCSP is an interesting research problem in its own
right. Thus, Chapter 4 is also quite self-contained and can be read independently of the previous
chapter, except for the Section 4.3 and subsections 4.8.2 and 4.8.1, which discuss the connection be-
tween DCSP model and its search heuristics to POP algorithm and POP’s search heuristics. These
(sub)sections are where many general ideas proposed for DCSP are validated by the work on POP.

Finally, Chapter 5 discusses related work and Chapter 6 concludes this thesis.



Chapter 2

Search Heuristics for State-space

Planning

This chapter presents a family of effective and admissible heuristics for state-space planning
algorithms. We show that the informedness of the heuristic estimators used in these algorithms can
be significantly improved by accounting for the subgoal interactions, which can be captured using
planning graphs in a systematic manner. We also provide an empirical evaluation that demonstrates
the effectiveness of our heuristics. The ideas presented in this chapter were also implemented in a
state of the art planner called AItAlt [37, 39]!, which was shown to be very competitive with some

of the fastest planning systems that competed at the AIPS-00 planning competition [1].

2.1 Introduction

The last few years have seen a number of attractive and scaleable approaches for solving deterministic
planning problems. Prominent among these are “disjunctive” planners, exemplified the Graphplan
algorithm of Blum & Furst [4], and heuristic state space planners, exemplified by McDermott’s

UNPOP [48] and Bonet & Geffner’s HSP-R planners [6, 5]. The Graphplan algorithm can be seen
L AltAlt’s source code is available from http://rakaposhi.eas.asu.edu/altweb/altalt.html
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as solving the planning problem using CSP techniques. A compact CSP encoding of the planning
problem is generated using a polynomial-time datastructure called “planning graph” [27]. On the
other hand, UNPOP, HSP, HSP-R are simple state space planners where the world state is considered
explicitly. These planners rely on heuristic estimators to evaluate the goodness of children states.
As such, it is not surprising that heuristic state search planners and Graphplan-based planners are
generally seen as orthogonal approaches [64].

In UNPOP, HSP and HSP-R, the heuristic can be seen as estimating the number of actions
required to reach a state (either from the goal state or the initial state). To make the computation
tractable, these heuristic estimators make strong assumptions about the independence of subgoals.
Because of these assumptions, state search planners often thrash badly in problems where there are
strong interactions between subgoals. Furthermore, these independence assumptions also make the
heuristics inadmissible, precluding any guarantees about the optimality of solutions found. In fact,
the authors of UNPOP and HSP/HSP-R planners acknowledge that taking the subgoal interactions
into account in a tractable fashion to compute more robust and/or admissible heuristics remains a
challenging problem [48, 6].

In this chapter, we show that the planning graph datastructure computed in polynomial-time
as part of the Graphplan algorithm, provides a general and powerful basis for the derivation of state
space heuristics that take subgoal interactions into account. In particular, the so-called “mutex”
constraints of the planning graph provide a robust way of estimating the cost of achieving a set of
propositions from the initial state. The heuristics derived from the planning graph are then used to
guide state space search on the problem, in a way similar to HSP-R [5]. Note that this means we
no longer use Graphplan’s exponential time CSP-style solution extraction phase.

We will describe several families of heuristics that can be derived from the planning graph
structure and demonstrate their significant superiority over the existing heuristic estimators. We will
provide results of empirical studies establishing that state space planners using our best heuristics

easily out-perform both HSP-R and Graphplan planners. Our development focuses both on heuristics
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that speedup search without guaranteeing admissibility (such as those currently used in HSP-R and
UNPOP), and on heuristics that retain admissibility and thus guarantee optimality. In the former
case, we will show that our best heuristic estimators are more robust and are able to tackle many
problem domains that HSP-R does poorly (or fails), such as the grid, travel, and mystery domains
used in the ATPS-98 competition [47].

While our empirical results are themselves compelling, we believe that the more important
contribution of our work is the explication of the way in which planning graph can serve as a rich
basis for derivation of families of heuristic estimators. It is known in the search literature that
admissible and effective heuristics are hard to compute unless the interactions between subgoals are
considered aggressively [41]. Our work shows that planning graph and its mutex constraints provide
a powerful way to take these interactions into account. Since mutex propagation can be seen as a
form of directed partial consistency enforcement on the CSP encoding corresponding to the planning
graph, our work also firmly ties up the CSP and state search views of planning.

The rest of the chapter is organized as follows. Section 2.2 reviews the HSP-R planner and
highlights the limitations of its “sum” heuristic. These limitations are also shared to a large extent
by other heuristic state search planners such as UNPOP. Section 2.3 discusses how the Graphplan’s
planning graph can be used to measure the subgoal interactions. Section 2.4 is the heart of the
chapter. It develops several families of heuristics, some aimed at search speed and some at solution
optimality. Each of these heuristic families are empirically evaluated in comparison to HSP-R
heuristic and their relative tradeoffs are explicated. Section 2.5 discusses several ways in which
the heuristic computation cost can be vastly improved by exploiting the advances made in efficient

construction of planning graph structures. Section 2.6 summarizes the chapter.

2.2 Limitation of the HSP-R’s sum heuristic

HSP-R [5] is currently one of the fastest heuristic state search planners. It casts planning as search

through the regression space of world states [50]. In regression state space search, the states can
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be thought of as sets of subgoals. The heuristic value of a state S is the estimated cost (number
of actions) needed to achieve S from the initial state. It is important to note that since the cost
of a state S is computed from the initial state and we are searching backward from the goal state,
the heuristic computation is done only once for each state. Then, HSP-R follows a variation of A*
search algorithm, called Greedy Best First, which uses the cost function f(S) = g(S) + w * h(S),
where g(S) is the accumulated cost (number of actions when regressing from goal state) and h(S) is
the heuristic value of state S.

The heuristic is computed under the assumption that the propositions constituting a state
are strictly independent. Thus the cost of a state is estimated as the sum of the cost for each

individual proposition making up that state.
Heuristic 1 (Sum heuristic) A(S):=3_ sh(p)

The heuristic cost h(p) of an individual proposition p is computed using a iterative procedure
that is run to fix point as follows. Initially, each proposition p is assigned a cost 0 if it is in the
initial state I, and oo otherwise. For each instantiated action a, let Add(a), Del(a) and Prec(a)
be its Add, Delete and Precondition lists. For each action a that adds some proposition p, h(p) is

updated as:

h(p) := min{h(p),1 + h(Prec(a))} (2.1)

Where h(Prec(a)) is computed using the sum heuristic (heuristic 1). The updates continue
until the h values of all the individual propositions stabilize. This computation can be done before
the backward search actually begins, and typically proves to be quite cheap.

Because of the independence assumption, the sum heuristic turns out to be inadmissible
(overestimating) when there are positive interactions between subgoals (i.e achieving some subgoal
may also help achieving other subgoals), and less informed (significantly underestimating) when
there are negative interactions between subgoals (i.e achieving a subgoal deletes other subgoals).

Bonet and Geffner [5] provide two separate improvements aimed at handling these problems to a
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certain extent. Their simple suggestion to make the heuristic admissible is to replace the summation

with the “max” function.
Heuristic 2 (Max heuristic) h(S) := maxpes h(p)

This heuristic, however, is often much less informed than the sum heuristic as it grossly
underestimates the cost of achieving a given state.

To improve the informedness of the sum heuristic, HSP-R adopts the notion of mutex rela-
tions first originated in Graphplan planning graph. But unlike Graphplan, only static propositional
mutexes (also known as binary invariants) are computed. Two propositions p and ¢ form a static
mutex when they cannot both be present in any state reachable from the initial state. Since the
cost of any set containing a mutex pair is infinite, we define a variation of the sum heuristic called

the “sum mutex” heuristic as follows:

Heuristic 3 (Sum Mutex heuristic)

h(S) := 00 if Jp4es s.t. mutex(p,q) else - s h(p)

In practice, the Sum Mutex heuristic turns out to be much more powerful than the sum
heuristic and HSP-R implementation uses it as the default.

Before closing this section, we provide a brief summary of the procedure of computing
mutexes used in HSP-R[5]. The basic idea is to start with a large set of “potential” mutex pairs and
iteratively weed out those pairs that cannot be actually mutex. The set M, of potential mutexes is
union of set M4 of all pairs of propositions (p, ¢), such that for some action a in A, p in Add(a) and
g in Del(a), and set Mg of all pairs (r, q), such that for some (p,q) in M4 and some action a, r in
Prec(a) and p in Add(a). This already precludes from consideration potential mutexes {r, s), where
r and s are not in the add, precondition and delete lists of any single action. As we shall see below,

this turns out to be an important limitation in several domains.
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Figure 2.1. A simple grid problem and the first level of regression search on it.

2.2.1 A pathological example that showcases the limitations of sum mu-

tex heuristic

The sum mutex heuristic used by HSP-R, while shown to be powerful in domains where the subgoals
are relatively independent such as logistics and gripper domains [5], thrashes badly in problems where
there is rich interaction between actions and subgoal sequencing. Specifically, when a subgoal that
can be achieved early but that must be deleted much later when other subgoals are achieved, the
sum heuristic is unable to recognize this interaction. To illustrate this, consider a simple problem
from the grid domain [48] shown in Figure 2.1: Given a 3x3 grid. The initial state is denoted by two
propositions at(0,0) and key(0,1) and the goal state is denoted by 2 subgoals at(0,0) and key(2,2)
(See figure 2.1). Notice the subgoal interaction here: When key(2,2) is first achieved, at(0,0) is
no longer true. There are three possible actions: the robot moves from one square to an adjacent
square, the robot picks up a key if there is such a key in the square the robot currently resides, and
the robot drops the key at the current square. One obvious solution is: The robot goes from (0,0)
to (0,1), picks up the key at (0,1), moves to (2,2), drops the key there, and finally moves back to
(0,0). This is in fact the optimal 10-action plan. We have run (our Lisp implementation of) HSP-R,
planner on this problem and no solution was found after 1 hour (generating more than 400,000
nodes, excluding those pruned by the mutex computation). The original HSP-R written in C also
runs out of memory (250MB) on this problem.

It is easy to see how HSP-R goes wrong. First of all, according to the mutex computation
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procedure described above, we are able to detect that when the robot is at a square, it cannot be
in an adjacent square. But HSP-R’s mutex computation cannot detect the type of mutex that says
that the robot can also not be in any other square as well (because there is no single action that can
place a robot from a square to another square not adjacent to where it currently resides).

Now let’s see how this limitation of sum mutex heuristic winds up fatally misguiding the
search. Given the subgoals (at(0,0), key(2,2)), the search engine has three potential actions over
which it can regress the goal state (see Figure 2.1b). Two of these- move from (0,1) or (1,0) to
(0,0)—give the subgoal at(0,0), and the third—dropping key at (2,2), which requires the precondition
at(2,2)—gives the subgoal key(2,2). If either of the move actions is selected, then after the regression
the robot would be at either (0,1) or (1,0), and that would increase the heuristic value because the
cost of at(0,1) or at(1,0) is 1 (greater than the cost of at(0,0)). If we pick the dropping action, then
after regression, we have a state that has both at(0,0) (the regressed first subgoal), and at(2,2) (the
precondition of drop key at (2,2) action). While we can see that this is an inconsistent state, the
mutex computation employed by HSP-R does not detect this (as explained above). Moreover, the
heuristic value for this invalid state is actually smaller compared to the other two states corresponding
to regression over the move actions. This completely misguides the planner into wrong paths, from
which it never recovers.

HSP-R also fails or worsens the performance for similar reasons in the travel, mystery, grid,

blocks world, and eight puzzle domains[47].

2.3 Exploiting the structure of Graphplan’s planning graph

In the previous section, we showed the type of problems where ignoring the (negative) interaction
between subgoals in the heuristic often lead the search into wrong directions. On the other hand,
Graphplan’s planning graph, with its wealth of mutex constraints, contains much of such information,
and can be used to compute more effective heuristics.

Graphplan algorithm [4] works by converting the planning problem specifications into a
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Figure 2.2. Planning Graph for the 3x3 grid problem

planning graph. Figure 2.2 shows part of the planning graph constructed for the 3x3 grid problem
shown in Figure 2.1. As illustrated here, a planning graph is an ordered graph consisting of two
alternating structures, called “proposition lists” and “action lists”. We start with the initial state as
the zeroth level proposition list. Given a k level planning graph, the extension of the structure to level
k + 1 involves introducing all actions whose preconditions are present in the k** level proposition
list. In addition to the actions given in the domain model, we consider a set of dummy “noop”
actions, one for each condition in the kt* level proposition list (the condition becomes both the
single precondition and effect of the noop). Once the actions are introduced, the proposition list at
level k+1 is constructed as just the union of the effects of all the introduced actions. Planning-graph
maintains the dependency links between the actions at level k£ + 1 and their preconditions in level k
proposition list and their effects in level k£ + 1 proposition list.

The critical asset of the planning graph, for our purposes, is the efficient marking and
propagation of mutex constraints during the expansion phase. The propagation starts at level
1, with the actions that are statically interfering with each other (i.e., their preconditions and
effects are inconsistent) labeled mutex. Mutexes are then propagated from this level forward by
using two simple propagation rules: Two propositions at level k are marked mutex if all actions at
level k that support one proposition are pair-wise mutex with all actions that support the second

proposition. Two actions at level k + 1 are mutex if they are statically interfering or if one of
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the propositions (preconditions) supporting the first action is mutually exclusive with one of the
propositions supporting the second action. Figure 2.2 shows a part of the planning graph for the
robot problem specified in Figure 2.1. The curved lines with x-marks denote the mutex relations. The
planning graph can be seen as a CSP encoding [30, 64], with the mutex propagation corresponding
to a form of directed partial 1- and 2-consistency enforcement [30]. The CSP encoding can be solved
using any applicable CSP solving methods (a special case of which is the Graphplan’s backward
search procedure).

Normally, Graphplan attempts to extract a solution from the planning graph of length [,
and will expand it to level [ + 1 only if that solution extraction process fails. Graphplan algorithm
can thus guarantee that the solution it finds is optimal in terms of number of steps. To make the
optimality hold in terms of number of actions (a step can have multiple actions), we need to start
with a planning graph that is serial [28]. A serial planning graph is a planning graph in which every
pair of non-noop actions at the same level are marked mutex. These additional action mutexes
propagate to give additional propositional mutexes. A planning graph is said to level off when
there is no change in the action, proposition and mutex lists between two consecutive levels.

Based on the above mutex computation and propagation rules, the following properties can
be easily verified:

1. The number of actions required to achieve a pair of propositions is no less than the
number of proposition levels to be expanded until the two propositions both appear and are not
mutez in the planning graph.

2. Proposition pairs that remain mutex at the level where the planning graph levels off can
never be achieved starting from initial state.

3. The set of actions present in the level where the planning graph levels off contains all
actions that are applicable to states reachable from the initial state.

The three observations above give a rough indication as to how the information in the

planning graph after it levels off, can be used to guide state search planners. The first observation
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shows that the level information in planning graph can be used to estimate the cost of achieving
a set of propositions. Furthermore, the set of level-specific propositional mutexes help give a finer
distance estimate. The second observation shows that once the planning graph levels off, all mutexes
in the final level are static mutexes. The third observation shows a way to extract a finer (smaller)
set of applicable actions to be considered by the regression search, since a new action is introduced
into a level only if all of its preconditions appear in the previous level and are non-mutexed, and all

actions present in a level are also present in the next level.

2.4 Extracting heuristics from planning graph

Before we go on to describing a set of effective heuristics extracted from the planning graph, let us
briefly describe how these heuristics are used and evaluated. All the heuristics extracted from the
planning graph as well as the HSP-R’s sum heuristic are plugged into the same regression search
engine using a variation of A* search’s cost function f(S) = g(S) + w * h(S).

We tested the heuristics on a variety of planning domains. These include several well-known
benchmark domains such as the blocksworld, rocket, logistics, 8-puzzle, gripper, mystery, grid and
travel. Some of these were used in the AIPS-98 competition [47]. These domains are believed
to represent different types of planning difficulty. Problems in the rocket, logistics and gripper
domains are typical of those where the subgoals are relatively independent. The grid, travel and
mystery domains add to logistic domains the hardness of the “topological” combinatorics, while
the blocksworld and 8-puzzle domains also have very rich interactions between actions and subgoal
sequencing.

Subsection 2.4.1 is concerned with effective heuristics without consideration of the solution
optimality. We set w = 1 in all experimental results described in this subsection, except for the
parallel domains (e.g rocket, logistics and gripper) where the heuristics work best (in terms of

speed) with w = 5 2. Subsection 2.4.2 is concerned with improving admissible heuristics for finding

2See [43] for the role of w in BFS.
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optimal solutions. To make the comparisons meaningful, all the planners are implemented in Allegro
commonlisp, and share most of the critical data structures. The empirical studies are conducted on
a 500 MHz Pentium-IIT with 512 meg RAM, running Linux. All the times reported include both

heuristic computation time and search time, unless specified otherwise.

2.4.1 Extracting effective heuristics

We are now ready to extract heuristics from the planning graph. Unless stated otherwise, we will
assume that we have a serial planning graph that has been expanded until it has leveled off (without
doing any solution extraction). In this section, we will concentrate on the effectiveness, without
insisting on the admissibility of the heuristics.

Given a set S of propositions, denote lev(S) as the index of the first level in the leveled serial
planning graph in which all propositions in S appear and are non-mutexed with one another. If no
such level exists, then lev(S) = oo. Similarly, denote lev(p) as the index of the first level that a
proposition p comes into the planning graph. It takes only a small step from the observations made

in the previous section to arrive at our first heuristic:
Heuristic 4 (Set-level heuristic) h(S) := lev(S)

Consider the set-level heuristic in the context of the robot example in previous section. In
the planning graph, the subgoal key(2,2) first comes into the planning graph at the level 6, however
at that level this subgoal is mutexed with another subgoal at(0,0), and the planning graph has to
be expanded 4 more levels until both subgoals are present and non-mutex. Thus the cost estimate
yielded by this heuristic is 10, which is exactly the true cost achieving both subgoals.

It is easy to see that set-level heuristic is admissible. Secondly, it can be significantly more
informed than the max heuristic, because the max heuristic is only equivalent to the level that a
single proposition first comes into the planning graph. Thirdly, a by-product of the set-level heuristic
is that it already subsumes much of the static mutex information used by the Sum Mutex heuristic.

Moreover, the propagated mutexes in the planning graph wind up being more effective in detecting
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static mutexes that are missed by HSP-R. In the context of the robot example, HSP-R can only
detect that a robot cannot be at squares adjacent to its current square, but using planning graph,
we are able to detect that the robot cannot be at any square other than its current square.

Table 2.1 and 2.2 show that the set-level heuristic performs reasonably well in domains
such as grid, mystery, travel and 8-puzzle® compared to the standard Graphplan 4. Many of these
problems prove intractable for HSP-R’s sum-mutex heuristic. We attribute this performance of the
set-level heuristic to the way the negative interactions between subgoals are accounted for by the
level information.

Interestingly, the set-level heuristic fails in the domains that the sum heuristic typically does
well, such as rocket world and logistics, where the subgoals are fairly independent of each other.
Closely examining the heuristic values reveals that the set-level heuristic remains too conservative
and often underestimates the real cost in these domains. A related problem is that the range of
numbers that the cost of a set of propositions can take is limited to integers less than or equal to the
length of the planning graph. This range limitation leads to a practical problem as these heuristics
tend to attach the same numerical cost to many qualitatively distinct states, forcing the search to
resort to arbitrary tie breaking.

To overcome these limitations, we pursue two families of heuristics derived by generalizing the
set-level heuristic. The first family, called “partition-k” heuristics, attempt to improve the estimate
of the cost of a set in terms of costs of its partitions. The second family, called “adjusted sum”
heuristics attempt to improve the sum heuristic by considering the interactions among subgoals.

These are described in the next two subsections.

2.4.1.1 Partition-k heuristics

To avoid underestimating and at the same time keep track of the interaction between subgoals,

we want to partition the set S of propositions into subsets, each of which has k elements: S =

38puzzle-1, 8puzzle-2 and 8puzzle-3 are two hard and one easy eight puzzle problems of solution length 31, 30 and
20, respectively. Grid3 and grid4 are simplified from the grid problem at AIPS-98 competitions by reducing number
of keys and grid’s size.

4Graphplan implemented in Lisp by M. Peot and D. Smith.
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Problem | sum-mutex set-lev | adj-sum
bw-large-c >500000 | >500000 8224
rocket-ext-a 769 | >500000 658
att-log-a 2978 | >500000 2224
gripper 930 | >500000 840
8puzzle-2 1399 51561 1540
8puzzle-3 2899 1047 1384
travel-1 4122 25 40
grid3 >200000 49 1151
grid4 >200000 44 1148
aips-gridl >200000 108 835
mprime-1 >500000 125 96

Table 2.1. Number of nodes (states) generated by different heuristics, excluding those pruned by mutex
computation

S1USs...US,, (if k& does not divide |S|, one subset will have less than k elements). Ideally, we want
a partitioning such that elements within each subset S; may be interacting with each other, but the

subsets are independent of each other. Thus we have the following heuristic:

Heuristic 5 (Partition-k heuristic) h(S) := ) g lev(S;), where Si, ..., S are k-sized partitions

of S.

The question of deciding the partioning parameter k, and how to partition the set S when
1 < k < |S]| , however, is interesting. We find out that this knowledge may be largely domain-
dependent. For example, for k = 1, the partition-1 heuristic exhibits similar behavior compared to
sum-mutex heuristic in domains where the subgoals are fairly independent (e.g gripper, logistics,
rocket), and it is clearly better than sum-mutex in all other domains except the blocks world (see
table 2.2).

For k = |S|, we have the set-level heuristic, which is very good in a complementary set of
domains, compared with the sum-mutex heuristic.

For k = 2, we implemented a simple pairwise partition scheme as follows: The basic idea
is, in order to avoid underestimating, we put propositions of greatest levels into different partitions.

Given a set S = {p1,pa, ..., Pn }- Suppose lev(p;) < lev(ps) < ... < lev(py). We partition

S =A{p1,pn} U{p2,Pn-1} U ... U{P[(n-1) /2] P[(n+1) /21 }-
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As Table 2.2 shows, the resulting heuristic exhibits interesting behavior: It can solve many problems
that are either intractable by the sum heuristic or the set-level heuristic.

It would be interesting to have a fuller account of behavior of the family of partition-k
heuristics with respect to different problem domains. Another related idea is to consider “adaptive
partition” heuristics that do not insist on equal sized partitions. For example, p and ¢ are put in
the same partition if and only if they are mutexes in the planning graph. We intend to pursue these

ideas in future work.

2.4.1.2 Adjusted Sum Heuristics

We now consider improving the sum heuristic by considering both negative and positive interactions
among propositions. First of all, it is simple to embed the sum heuristic value into the planning
graph. We maintain a cost value for each new proposition. Whenever a new action is introduced
into the planning graph, we update the value for that proposition using the same updating rule 1 in
Section 2.

We are now interested in estimating the cost cost(S) for achieving a set S = {p1,p2,...,Pn}-
As before, suppose lev(py) < lev(pz) < ... < lev(p,). Under the assumption that all propositions are
independent, we have cost(S) := cost(S—p1)+cost(p1). Since lev(p) < lev(S—p1), proposition p; is
possibly achieved before the set S — p;. Now, we assume that there are still no positive interactions,
but there are negative interactions between the propositions. Therefore, upon achieving S — p1,
subgoal p; may have been deleted and needs to be achieved again. This information can be extracted
from the planning graph. According to the planning graph, set S — p; and S are possibly achieved
at level lev(S — p1) and level lev(S), respectively. If lev(S — p1) # lev(S) that means there is some
interaction between achieving S — p; and achieving p;, because the planning graph has to expand up

to lev(S) to achieve both S — p; and p;. To take this negative interaction into account, we assign:

cost(S) := cost(S — p1) + cost(p1) + (lev(S) — lev(S — p1)) (2.2)
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Applying this formula to S — p;, S — p1 — p2 and so on, we derive:
cost(S) = Z cost(p;) + lev(S) — lev(py,)
piE€ES

Since lev(p,) = maxp,es lev(p;) as per our setup, we have the following heuristic:

Heuristic 6 (Adjusted-sum heuristic)

h(S) 1=, es cost(p;) + lev(S) — maxy,es lev(p;)

Table 2.1 and 2.2 show that this heuristic does very well across all different types of problems
that we have considered. To understand the robustness of the heuristic, notice that the first term in
its formula is exactly the sum heuristic value, while the second term is the set-level heuristic, and

the third approximately the max heuristic. Therefore, we have
hadjsum(s) ~ hsum (S) + hlev (S) - hmam (S)

It is simple to see that when there is strictly no negative interactions among propositions, ke, (S) =
hmaz(S). Thus, in the formula for hggisum(S), hsum(S) is the estimated cost of achieving S under
the independence assumption, while hje, (S) — hmaz (S) accounts for the additional cost incurred by
the negative interactions.

Note that the solutions solved by adjusted sum are longer than those provided by other
heuristics in many problems. The reason for this is that the first term hsum(S) = 3, 5 cost(p;)
actually overestimates, because in many domains achieving some subgoal typically also helps achieve
others. We are interested in improving the adjusted-sum heuristic by replacing the first term in its
formula by another estimation cost,(S) that takes into account this type of positive interactions
while ignoring the negative interactions (which are anyway accounted for by other two terms).

Since there are no negative interactions, once a subgoal is achieved, it will never be deleted
again. Furthermore, the order of achievement of the subgoals p; € S would be roughly in the order
of lev(p;). Let ps be the proposition in S such that lev(ps) = max,,cs lev(p;). ps will possibly be

the last proposition that is achieved in S. Let ag be an action in the planning graph that achieves
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ps in the level lev(ps), where pg first appears. ( If there are more than one, none of them would be
noop actions, and we would select one randomly.)
By regressing S over action ag, we have state S + Prec(ag) — Add(ag). Thus, we have the

recurrent relation (assuming unit cost for the selected action ag)
costp(S) := 1+ costp(S + Prec(ag) — Add(as)) (2.3)

The positive interactions are accounted for by this regression in the sense that by subtracting
Add(ag) from S, any proposition that is co-achieved when pg is achieved is not counted in the cost
computation. Since lev(Prec(ag)) is strictly smaller than lev(ps), recursively applying equation 3
to its right hand side will eventually reduce to state Sp where lev(Sp) = 0, whose cost cost,(So) is
0.

It is interesting to note that the repeated reductions involved in computing cost,(S) indi-
rectly extract a sequence of actions (the ag selected at each reduction), which would have achieved
the set S from the initial state if there were no negative interactions. In this sense, cost,(S) is similar
in spirit to (and is inspired by) the “relaxed plan” heuristic recently proposed by Hoffman[21].

Replacing hgum(S) with costp(S) in the definition of hagjsum, we get an improved version
of adjusted sum heuristic that takes into account both positive and negative interactions among

propositions.

Heuristic 7 (Adjusted-sum2 heuristic) h(S) := cost,(S) + (lev(S) — maxp,cslev(p;)), where

cost,(S) is computed using equation (3).

Table 2.2 shows that adjusted-sum2 heuristic can solve all types of problem considered. The
heuristic is only slightly worse compared with the adjusted-sum in term of speed, but gives a much
better solution quality. In our experiments, with the exception of problems in the rocket domains,
the adjusted-sum2 heuristic value is usually admissible and often gives optimal or near optimal
solutions.

Finally, another way of viewing the adjusted-sum heuristic is that, it is composed of hgym (S),

which is good in domains where subgoals are fairly independent, and hje, (S), which is good in a
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Problem | Len max set-level w/ memo GP
Est | Time | Est | Time | Est | Time

8puzzle-1 31 - 14 | 4658 | 28 | 1801 || 2444

8puzzle-2 30 10 - 12 2411 28 891 || 1545

8puzzle-3 | 20 8 144 | 10 68 | 19 50 50
bw-large-a 12 6 34 8 21| 12 16 14

bw-large-b 18 8 -| 10| 10735 | 16 | 1818 433
bw-large-c | 28 | 12 - 14 -1 20 - -
grid3 16 | 16 13 ] 16 13| 16 5 4

grid4 18 | 10 33| 18 30| 18 22 22
rocket-ext-a - b) - 6 - 11 - -

Table 2.3. Column titled “Len” shows the length of the found optimal plan (in number of actions). Column
titled “Est” shows the heuristic value the distance from the initial state to the goal state. Column titled
“Time” shows CPU time in seconds. “GP” shows the CPU time for Serial Graphplan

complement set of domains (see table 2.2). Thus the summation of them may yield a combination
of differential power effective in wider range of problems, while discarding the third term hpqz(S)

may sacrifice the solution quality.

Heuristic 8 (Combo heuristic) h(S) := hsym(S) + hieo(S), where hgym (S) is the sum heuristic

value and hie, (S) is the set-level heuristic value.

Surprisingly, as shown in table 2.2 the Combo heuristic is even slightly faster than adjusted-sum

heuristic across all type of problems while the solution quality remains comparable.

2.4.2 Finding optimal plans with admissible heuristics

We now focus on admissible heuristics that can be used to produce optimal plans. Traditionally,
efficient generation of optimal plans has received little attention in the planning community. In [2§]
Kambhampati et. al. point out that Graphplan algorithm is guaranteed to find optimal plans when
the planning graph serial. In contrast, none of the known efficient state space planners [48, 6, 5, 52]
can guarantee optimal solutions.

In fact, it is very hard to find an admissible heuristic that is effective enough to be useful
across different planning domains. As mentioned earlier, in [6], Bonet et al. introduced the max

heuristic that is admissible. In the previous section, we introduced the set-level heuristic that is
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admissible and showed that it is significantly better than the max heuristic. We tested the set-level
heuristic on a variety of domains using A* search’s cost function f(S) = ¢g(S) + h(S). The results
are shown in table 2.3, and clearly establish that set-level heuristic is significantly more effective
than max heuristic. Grid, travel, mprime are domains where the set-level heuristic gives very close
estimates (see table 2.2). Optimal search is less effective in domains such as the 8-puzzle and blocks
world problem. Domains such as logistics, gripper remain intractable under reasonable limits in
time and memory.

The main problem once again is that the set-level heuristic still hugely underestimates the
cost of a set of propositions. The reason for this is that there are many n-ary (n > 2) level-specific
mutex constraints present in the planning graph, that are never marked during planning graph
construction, and thus cannot be used by set-level heuristic. This suggests that identifying and
using higher-level mutexes can improve the effectiveness of the set-level heuristic.

Propagating all higher level mutexes is likely to be an infeasible idea [4, 28] (as it essentially
amounts to full consistency enforcement of the underlying CSP). A seemingly zanier idea is to use
a limited run of Graphplan’s own backward search, armed with EBL [30], to detect higher level
mutexes in the form of “memos”. We have done this by restricting the backward search to a limited
number of backtracks liém = 1000. This lim can be increased by a factor 4 > 1 as we expand the
planning graph to next level.

Table 2.3 shows the performance of the set-level heuristic using a planning graph adorned
with learned memos. We note that the heuristic value (of the goal state) as computed by this
heuristic is significantly better than the set-level heuristic operating on the vanilla planning graph.
For example in 8-puzzle2, the normal set-lev heuristic estimates the cost to achieve the goal as 12,
while using memos pushes the cost to 28, which is quite close to the true optimal value of 30. This
improved informedness results in a speedup in all problems we considered (up to 3x in the 8-puzzle2,
6x in bw-large-b), even after adding the time for memo computation using limited backward search.

We also compared the performance of the two set-level heuristics with the serial Graphplan,



Table 2.4. Total CPU time improvement from efficient heuristic computation for Combo heuristic

Problem | Normal PG | Bi-level PG | Speedup
bw-large-b 22/ 63.57 28/ 20.05 3x
bw-large-c | 30/ 444.79 38/ 114.88 4x
bw-large-d - | 44/11442.14 100x

rocket-ext-a 34/ 4.72 34/ 1.26 4x
rocket-ext-b 32/ 7.38 34/ 1.65 4x
att-log-a 65/11.96 64/ 2.27 5x
att-log-b 67/ 11.09 70/ 3.58 3x
gripper-20 59/ 20.92 59/ 7.26 3x
8puzzle-1 | 39/ 119.54 39/ 20.20 6x
Spuzzle-2 | 48/ 50.45 48] 7.42 x
8puzzle-3 20/ 63.23 20/ 10.95 6x
travel-1 9/ 0.44 11/ 0.12 ax
grid-3 | 19/ 18.82 17/ 3.04 6x
grid-4 18/ 37.12 18/ 14.15 3x
aips-grid-1 14/ 640.47 14/ 163.01 4x
mprime-1 4/ 79.55 4/ 67.75 1x

30

which also produces optimal plans. The set-level heuristic is better in the 8-puzzle problems, but

not as good in the blocks world problems (See table 2.3). Further analysis is needed to explain these

results.

2.5 Improving heuristic computation cost

There are a variety of techniques for improving the efficiency of planning graph construction in terms

of both time and space, including bi-level representations that exploit the structural redundancy in

the planning graph [45], as well as (ir)relevance detection techniques such as RIFO [49] that ignore

irrelevant literals and actions while constructing the planning graph. These techniques can be used

to improve the cost of our heuristic computation. In fact, in one of our recent experiments, we

have used a bi-level planning graph as a basis for our heuristics. Preliminary results show significant

speedups (up to 7x) in all problems, and we are also able to solve more problems than before because

our planning graph takes less memory (See table 2.4).
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2.6 Chapter Summary

In this chapter, we showed that the planning graph structure used by Graphplan provides a rich
source of effective as well as admissible heuristics. We described a variety of heuristic families,
that use the planning graph in different ways to estimate the cost of a set of propositions. Our
empirical studies show that many of our heuristics have attractive tradeoffs in comparison with
existing heuristics. In particular, we provided three heuristics— “adjusted-sum”, “adjusted-sum2”
and “combo” that are clearly superior to the sum mutex heuristic used by HSP-R across a large
range of problems, including those that have hither-to been intractable for HSP-R. State search
planners using these heuristics out-perform both HSP-R and Graphplan. We are also one of the
first to focus on finding effective and admissible heuristics for state search planners. We have shown
that the set-level heuristic working on the normal planning graph, or a planning graph adorned
with a limited number of higher level mutexes is able to provide quite reasonable speedups while
guaranteeing admissibility.

Our approach provides an interesting way of incorporating the strength of two different plan-
ning regimes (disjunctive vs. conjunctive search) [29] and views (planning as CSP vs. planning as
state search) that have hither-to been considered orthogonal. We use the efficient directed consis-
tency enforcement provided by the Graphplan’s planning graph construction to develop heuristics
capable of accounting for subgoal interactions. We then use the heuristics to guide a state search
engine. In contrast to Graphplan, our approach is able to avoid the costly CSP-style searches in the
non-solution bearing levels of the planning graph. In contrast to HSP-R and UNPOP, our approach
is able to provide much more informed heuristics that take subgoal interactions into account in a
systematic fashion.

Finally, the ideas developed in this chapter were implemented in C programming language by
the author and Romeo Sanchez-Nigenda in a state of the art state-space planner called AItAlt [39, 37].
AltAlt is very efficient in a large number of planning domains, and is shown to be very competitive

with the top 4 planning systems that competed at the AIPS-00 planning competition.



Chapter 3

Search Heuristics for Partial Order

Planning

In this chapter, we will introduce several novel search control heuristics drawn from state-
space and CSP search theory that help speedup a partial order planning algorithm dramatically.
These techniques are the use of distance-based heuristic estimator to rank partial plans, the use of
disjunctive ordering constraints for handling threat (unsafe links), and the use of reachability analysis
for early detection of inconsistent partial plans. Our ideas are implemented in a variant of UCPOP
called REPOP!. Our empirical results show that in addition to dominating UCPOP, REPOP also
convincingly outperforms Graphplan in several “parallel” domains. The plans generated by REPOP
also tend to be better than those generated by Graphplan and state search planners in terms of

execution flexibility.

lUCPOP [62] — TUNPOP [48] — REPOP. REPOP’s source code is available from
http://rakaposhi.eas.asu.edu/repop.html.
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3.1 Motivation

Most recent strides in scaling up planning have centered around two dominant themes - heuristic
state space planners, exemplified by UNPOP[48], HSP-R[5], and CSP-based planners, exemplified
by Graphplan[4] and SATPLAN [32] . This is in stark contrast to planning research up to five years
ago, when most of the efforts were focused on scaling up partial order planners[35, 62, 25, 56, 23, 17].
Despite such efforts, the partial order planners continue to be extremely slow and are not competitive
with the fastest state search-based and CSP-based planners. Indeed, the recent advances in plan
synthesis have generally been (mis)interpreted as establishing the supremacy of state space and
CSP-based approaches over POP approaches.

Despite its current scale-up problems, partial order planning remains attractive over state
space and CSP-based planning for several reasons. The least commitment inherent in partial order
planning makes it one of the more open planning frameworks. This is evidenced by the fact that most
existing architectures for integrating planning with execution, information gathering, and scheduling
are based on partial order planners. In [55], Smith argues that POP-based frameworks offer a
more promising approach for handling domains with durative actions, and temporal and resource
constraints as compared to other planning approaches. In fact, most of the known implementations
of planning systems capable of handling temporal and durative constraints —including IXTET [16)
as well as NASA’s RAX [22]-are based on the POP algorithms. Even for simpler planning domains,
partial order planners search for and output partially ordered plans that offer a higher degree of
execution flexibility. In contrast, none of the known state space planners can find parallel plans
efficiently [20], and CSP planners such as Graphplan only generate a very restricted class of parallel
plans (see Section 3.5).

The foregoing motivates the need for improving the efficiency of POP algorithms. We show
in this chapter that the insights and techniques responsible for the advances in plan synthesis made
in the recent years in the context of state-based and CSP-based planners are largely adaptable to

POP algorithms. In particular, we present novel methods for adapting distance based heuristics,
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reachability analysis and disjunctive constraint processing techniques to POP algorithms. Distance-
based heuristics are used as the basis for ranking partial plans and as flaw selection methods.
The other two techniques are used for efficiently enforcing the consistency of the partial plans—by
detecting implicit conflicts and resolving them.

Our methods help scale up POP algorithms dramatically-making them competitive with
respect to state space planners, while preserving their flexibility. We present empirical studies
showing that REPOP, a version of UCPOP [62] enhanced by our ideas, can perform competitively
with other existing approaches in many planning domains. In particular, REPOP appears to scale
up much better than Graphplan in the parallel domains we tried. More importantly, the solutions
REPOP generates are generally shorter in length, and provide significantly more execution flexibility
[55].

This chapter is organized as follows. In the next section we will briefly review the basics
of the POP algorithm. Section 3.3 describes how distance based heuristics can be adapted to rank
partial plans. Section 3.4 shows how unsafe links flaws can be generalized and resolved efficiently.

Section 3.5 reports empirical evaluations of the techniques that have been described.

3.2 Background on Partial Order Planning

In this chapter we consider the simple STRIPS representation of classical planning problems, in
which the initial world state I, goal state G and the set of deterministic actions 2 are given. Each
action a € (2 has a precondition list and an effect list, denoted respectively as Prec(a), Ef f(a). The
planning problem involves finding a plan that when executed from the initial state I will achieve
the goal G.

A tutorial introduction to POP algorithms can be found in [62]. We will provide a brief
review here. Most POP algorithms can be seen as searching in the space of partial plans. A partial

plan is a five-tuple: P = (A,0, L, OC,UL), where AC ) is a set of (ground) actions,? O is a set

2 Although partial order planners are capable of handling partially instantiated action instances, we restrict our
attention to ground action instances.
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of ordering constraints over A, and £ is a set of causal links over A.> A causal link is of the form
a; 2 aj, and denotes a commitment by the planner that the precondition p of action a; will be
supported by an effect of action a;. OC is a set of open conditions, and UL is a set of unsafe links.
An open condition is of the form (p,a), where p € Prec(a) and a € A, and there is no causal
link b2va € L. Loosely speaking, the open conditions are preconditions of actions in the partial
plan which have not yet been achieved in the current partial plan. A causal link a; i>aj is called
unsafe if there exists an action ay, € A such that (i) ~p € Ef f(ax) and (ii) OU{a; < ar < a;} is
consistent. In such a case, ay, is also said to threaten the causal link a; —— a;. Open conditions
and unsafe links are also called flaws in the partial plan. Therefore a solution plan can be seen as
a partial plan with no flaws (i.e., OC = ) and UL = 0).

The POP algorithm starts with a null partial plan P and keeps refining it until a solution plan
is found. The null partial plan contains two dummy actions ag < ac where the preconditions
of ay, correspond to the top level goals of the problem, and the effects of ag correspond to the
conditions in the initial state. The null plan has no causal links or unsafe link flaws, but has open
condition flaws corresponding to the preconditions of a, (top level goals).

A refinement step involves selecting a flaw in the partial plan P, and resolving it, resulting
in a new partial plan. When the flaw chosen is an open condition (p,a), an action b needs to be
selected that achieves p. b can be a new action in 2, or an action that is already in A. The sets
OC, O, £ and UL also need to be updated with respect to b. Secondly, when the flaw chosen is an
unsafe link a; —— a; that is threatened by action ay, it can be repaired by either promotion, i.e
adding ordering constraint aj < a; into O, or demotion, i.e adding a; < a; into O.

The efficiency of POP algorithms depends critically on the way partial plans are selected
from the search queue, and the strategies used to select and resolve the flaws. In Section 3.3 we
present several distance-based heuristics for ranking partial plans in the search queue. Section 3.4
introduces the disjunctive constraint representation for efficiently handling unsafe link flaws, and

reachability analysis for generalizing the notion of unsafe links to include implicit conflicts in the

3Strictly speaking A should be seen as a set of “steps”, where each step is mapped to an action instance [25].
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plan.

3.3 Heuristics for ranking partial plans

In choosing a plan from the search queue for further refinement, we are naturally interested in plans
that are likely to lead to a solution with a minimum number of refinements (flaw resolutions). As
we handle the unsafe links in a significantly different way than standard UCPOP (see Section 3.4),
the only remaining category of flaws to be resolved are open condition flaws. Consequently one way
of ranking plans in the search queue is to estimate the minimum number of new actions needed to

resolve all the open condition flaws.

Definition 3.1 (h*) Given a partial plan P, let h*(P) denote the minimum number of new actions

that need to be added to P to make it a solution plan.

h*(P) can be seen as the number of actions that, when executed from the initial state I in some
order, will achieve the set of subgoals S = {p|(p,a) € OC}. In this sense, this is similar to estimating
the number of actions needed to achieve a state from the given initial state in state search planners
[5, 38], but for two significant differences: (i) the propositions in S are not necessarily in the same
world state and (ii) the set of actions that achieve S cannot conflict with the set of actions and
causal links already present in P.

A well-known heuristic for estimating h* involves simply counting the number of open con-

ditions in the partial plan [17].
Heuristic 3.1 (Open conditions heuristic) h,.(P)= |OC|

This estimate is neither admissible nor informed in many domains, because it treats every
open condition equally. In particular, it is ineffective when some open conditions require more
actions to achieve than others.

We would like to have a closer estimate of A* function without insisting on admissibility.

To do this, we need to take better account of subgoal interactions[38]. Accounting for the negative



37

interactions in estimating h* can be very tricky, and is complicated by the fact that the subgoals in
S may not be in the same state. Thus we will start by ignoring the negative interactions. This
has three immediate consequences: (i) the set of unsafe links /£ becomes empty. (ii) the actions
needed in achieving a set of subgoals S will have no conflicts with the set of actions A and and the
causal links £ already present in P. and (iii) a subgoal p once achieved from the initial state can
never become untrue. Given these consequences, it does not matter much that the subgoals in S are
not necessarily present in the same world state, since the minimum number of actions needed for
achieving such a set of subgoals in any given temporal ordering is the same as the minimum cost of
achieving a state comprising all those subgoals.

The foregoing justifies the adaptation of many heuristic estimators for ranking the goodness
of states in state search planners. Most of the early heuristic estimators used in state search not only
ignore negative interactions, but also make the stronger assumption of subgoal independence[5, 48].
A few of the recent ones, [38, 21] however account for the positive interactions among subgoals (while
still ignoring the negative interactions). It is this latter class of heuristics that we focus on for use
in partial order planning. Specifically, to account for the positive interactions, we exploit the ideas
for estimating the cost of achieving a set of subgoals S using a serial planning graph.*

Specifically, we build a planning graph starting from the initial state I. Let lev(p) be the
index of the level in the planning graph that a proposition p first appears, and lev(S) be the index
of the first level at which all propositions in S appear. Let ps be the proposition in S such that
lev(ps) = maxp,cslev(p;). ps will possibly be the last proposition in S that is achieved during
execution. Let ag be an action in the planning graph that achieves pg in the level lev(ps). We can
achieve pg by adding ag to the plan. Introduction of ag changes the set of goals to be achieved to

S'= S+ Prec(as) — Ef f(as). We can express the cost of S in terms of the cost of ag and S':

cost(S) := cost(ag) + cost(S + Prec(as) — Ef f(asg)) (3.1)

4We assume that the readers are familiar with the planning graph data structure, which is used in Graphplan
algorithm[4].
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where cost(as) =1 if ag ¢ A and 0 otherwise. Since lev(Prec(ag)) is strictly smaller than lev(ps),
recursively applying Equation 3.1 to its right hand side will eventually express cost(S) in terms of
cost(I) (which is zero), and the costs of actions ag. The process is quite efficient as the number of

applications is bounded by lev(S).

Heuristic 3.2 (Relax heuristic) hyeqr (P) = cost(S), where S = {p|(p,a) € OC}, and cost(S) is

computed using the recurrence relation 3.1.

Given such a heuristic estimate, plans in the search queue are ranked with the evaluation
function: f(P)= |A|+w x h(P). The parameter w is used to increase the greediness of the heuristic

search and is set to 5 by default.

3.4 Enforcing consistency of partial plans

The consistency of a partial plan is ensured through the handling of its unsafe links. In this section
we describe two ways of improving this phase. The first involves posting disjunctive constraints to
resolve unsafe links. The second involves detecting implicit conflicts (unsafe links) using reachability

analysis.

3.4.1 Disjunctive representation of ordering constraints

Normally, an unsafe link a; —— a; that is in conflict with action ay, is resolved by either promotion
or demotion, that is, splitting the current partial plan into two partial plans, one with the constraint
ar < a;, and the other with the constraint a; < ay. A problem with this premature splitting is that
a single failing plan gets unnecessarily multiplied into many descendant plans poisoning the search
queue significantly. A much better idea, first proposed in [26], is to resolve the unsafe link by posting
a disjunctive ordering constraint that captures both the promotion and demotion possibilities, and
incrementally simplify these constraints by propagation techniques. This way, we can detect many

failing plans before they get selected for refinement.
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Specifically, an unsafe causal link a; N a; that is in conflict with action aj can be resolved
by simply adding a disjunctive ordering constraint (ax < a;) V (a; < ax) to the plan.

We use the following procedure for simplifying the disjunctive orderings. Whenever an open
condition (p, a) is selected and resolved by either adding a new action or reusing an action b in the
partial plan, we add a new ordering constraint b < a to O, followed by repeated application of the

constraint propagation rules below:

° ((11 < a2) S O/\(a2 < a3) €EO0= 00 U(a1 < a3)
e (a1 <a2) € O A(az < a1) € O = False
e (a1 <a2) €EON(az <a1Vas <as) €0 =

O+ O U(az < as)

O+ O —(a2<a1Vas <as)

The first two propagation rules are already done as part of POP algorithm to ensure the
transitive consistency of ordering constraints. The third rule is a unit propagation rule over ordering
constraints. This propagation both reduces the disjunction and detects infeasible plans ahead of
time. When all the open conditions have already been established and there are still disjunctive
constraints left in the plan, the remaining disjunctive constraints are then split into the search space

[26].

3.4.2 Detecting and Resolving implicit conflicts through reachability

analysis

Although the unsafe link detection and resolution steps in the POP algorithm are meant to enforce
consistency of the partial plan, often times they are too weak to detect implicit inconsistencies. In
particular, the procedure assumes that a link a; -2 a; is threatened by an action a only if a has
an effect —p. Often a might have an effect ¢ (or precondition r) such that no legal state can have
p and ¢ (or p and r) true together. Detecting and resolving such implicit interactions can be quite

helpful in weeding out inconsistent partial plans from the search space.
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In order to do implicit conflict detection as described above, we need to have (partial)
information about the properties of reachable states. Interestingly, such reachability information
has played a significant role in the scale-up of state space planners, motivating the development of
procedures for identifying mutex constraints, state invariants and memos etc. [4, 18, 15] (we shall
henceforth use the term mutex to denote all these types of reachability information). One simple
way of producing reachability information is to expand Graphplan’s planning graph structure, armed
with mutex propagation procedure [4]. The mutexes present at the level where the graph levels off
are state invariants [38].

Exploiting the reachability information to check consistency of partial plans requires iden-
tifying the feasibility of the world states that any eventual execution of the partial plan must pass
through. Although partial order plans normally do not have explicit state information associated
with them, it is nevertheless possible to provide partial characterization of the states their execution

must pass through. Specifically, we define the general notion of cutsets as follows:

Definition 3.2 (Cutsets) Pre- and post- cutsets, C~ and C* of an action ay in a plan P are
defined as C~ (ay) = Prec(ax) U L(ay), and C*(ay) = Ef f(ax) U L(ay), where L(ay) is the set of
all conditions p such that there ezists a link a; — a; where a; is necessarily before ay, and a; is

necessarily after ay,

The pre- and post-cutsets of an action can be seen as partial description of world states that
must hold before and after the action ag. If these partial descriptions violate the properties of the

reachable states, then clearly the partial plan cannot be refined into an executable solution.

Proposition 3.1 If there exists a cutset that contains a mutex, then the partial plan is provably

inwalid and can be pruned from the search queue.

While this proposition allows us to detect and prune inconsistent plans, it is often inefficient
to wait until the plan becomes inconsistent. Detecting and resolving implicit conflicts is essentially
a more active approach that prevents a partial plan from becoming inconsistent by this proposition.

Specifically, we generalize the notion of unsafe links as follows:
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Definition 3.3 An action ay, is said to have a conflict with a causal link a; —— a; if (i) OU{a; <
ar < a;} is consistent and (ii) either Prec(ay) U {p} or Eff(ay) U{p} contains a mutex. A causal

link a; = a; is unsafe if it has a conflict with some action in the partial plan.

These notions of conflict and unsafe link subsume the original notions of threat and unsafe link
introduced in Section 3.2, because —p € Eff(a)) also implies that Eff(ar) U {p} is a mutex.
Therefore the generalized notion of unsafe links result in detecting a larger number of (implicit)
conflicts (unsafe links) present in a partial plan.

Once the implicit conflicts are detected, they are resolved by posting disjunctive orderings
as described in the previous subsection. As we shall see later, the combination of disjunctive con-
straints and detection of implicit conflicts through reachability information leads to quite robust

improvements in planning performance.

3.5 Empirical Evaluation (RePOP Planning Algorithm)

We have implemented the techniques introduced in this chapter on top of UCPOP[62], a popular
partial order planning algorithm. We call the resulting planner REP OP. As mentioned in Section 3.2,
both UCPOP and REPOP are given ground action instances, and thus neither of them have to deal
with variable binding constraints. Both UCPOP and REPOP use the LIFO as the order in which
open condition flaws are selected for resolution. Qur empirical studies compare REPOP to UCPOP
as well as Graphplan[4] and AltAlt[38], which represent two currently popular approaches (CSP
search and state space search) in plan synthesis. All these planners are written in Lisp. In the case
of Graphplan, we used the Lisp implementation of the original algorithm, enhanced with EBL and
DDB capabilities [27]. AltAlt [39] is a state-of-the-art heuristic regression state search planner, that
has been shown to be significantly faster than HSP-R [5]. The empirical studies are conducted on
a 500 MHz Pentium-III with 256 MB RAM, running Linux. The test suite of problems were taken

from several benchmark planning domains from the literature. Some of these, including gripper,
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rocket world, blocks world and logistics are ¢

‘parallel” domains which admit solutions with loosely
ordered steps, while others, such as grid world and travel world admit only serial solutions.
Efficiency of Synthesis: In Table 3.1, we report the total running times for the REPOP algo-
rithm, including the preprocessing time for computing the mutex constraints (using bi-level planning
graph structures [45]). Table 3.1 shows that REPOP exhibits dramatic improvements from its base
planner, UCPOP, in gripper, logistics and rocket domains—all of which are “parallel domains.” For
instance, REPOP is able to comfortably generate plans with up to 70 actions in logistics and grip-
per domains, a feat that has hither-to been significantly beyond the reach of partial order planners.
More interesting is the comparison between REPOP and the non-partial order planners. In the
parallel domains, REPOP manages to outperform Graphplan. Although REPOP still trails state
search planners such as AltAlt, these latter planners can only generate serial plans.

Despite the impressive performance of the REPOP over parallel domains, it remains inef-
fective in “serial” domains including the grid, 8-puzzle and travel world, which admit only totally
ordered plan solutions. We suspect that part of the reason for this may be the inability of our
heuristics to adequately account for negative interactions. Indeed, we found that the normal open
conditions heuristic h,. is better than our relaxed heuristic on these problems. It may also be possi-
ble that the least commitment strategies employed by the POP algorithms become a burden in serial
domains, since eventually all actions need to be ordered with respect to each other. One silverlining
in this matter is that most of the domains where POP algorithms are supposed to offer advantages
are likely to be parallel domains from the planner’s perspective—either because the actions will have
durations (making the serial/parallel distinction moot) or because we want solution output by the
planner to offer some degree of scheduling flexibility.

Plan Quality: We also evaluated the quality of plans generated by REPOP, since plan quality is
seen as an important issue favoring POP algorithms. To quantify the quality of plans generated, we
consider three metrics: (i) the cumulative cost of the actions included in the plan (ii) the minimum

time needed for executing the plan and (iii) the scheduling (execution) flexibility of the plan.
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For actions with uniform cost, the action cost is equal to the number of actions in the plan.
Table 3.1 shows that REPOP produces plans with lower action cost compared to both Graphplan
and AltAlt in all but one problem (rocket-ext-b).

We measure the minimum execution time in terms of the makespan of the plan, which is
loosely defined as the minimum number of time steps needed to execute the plan (taking the possi-
bility of concurrent execution into consideration). Makespan for the plans produced by Graphplan
is just the number of steps in the plan, while the makespan for plans produced by AltAlt (and other
state space planners) is equal to the number of actions in the plan. For a partially ordered plan
P generated by REPOP, the makespan is simply the length of the longest path between ay and
ac0- Specifically, makespan(P) = max,cp est(a), where est(a) is the earliest start time step for
the (instantaneous) action a. To compute est, we can start by initializing est to 0 for all a € P.
Next, we repeatedly update them until fixpoint using the following rule: For all (a; < a;) € O,
est(a;) := max{est(a;),1 + est(a;)}. Table 3.1 shows that the solution plans generated by REPOP
are highly parallel, since the makespans of these plans are significantly smaller than the total number
of actions. Graphplan’s solutions have smaller makespans in several problems, but at the expense

of having substantially larger number of actions.

PZ
[kl tabs,,
(a) A parallel plan gen- (b) A partially ordered
erated by Graphplan plan

Figure 3.1. Example illustrating the execution flexibility of partially ordered plans over (Graphplan’s)
parallel plans.

Finally, we measure the execution flexibility of a plan in terms of the number of actions
in the plan that do not have any precedence relations among them. The higher this measure, the
higher the number of orders in which a plan can be executed (“scheduled”). Figure 3.1 illustrates a

parallel plan P; and a partially ordered plan P, which are generated by Graphplan and REPOP,
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respectively. Both plans have 4 actions and a makespan value of 2, but P, is noticeably more flexible
than P, since P, implies ordering constraints such as a; < a4 and as < a3, but P, does not. To
capture this flexibility, we define, for each action a, flex(a) as the number of actions in the plan that
do not have any (direct or indirect) ordering constraint with a. flexz(P) is defined as the average
value of flex over all the actions in the plan. It is easy to see that for a serial plan P, V,cpflex(a)
= 0, and consequently flex(P) = 0. In our example in Figure 3.1, flex(a) = 1 for all a in P;, and
flex(a) = 2 for all a in P;. Thus, flex(P;) = 1 and flex(P;) = 2. It is easy to see that P, can be
executed in more ways than P;. Table 3.1 reports the flex() value for the solution plans. As can be
seen, plans generated by REPOP have substantially larger average values of flex than Graphplan
in blocks world and logistics, and similar values in gripper. Graphplan produces a more flexible plan

in only one problem in the rocket domain.

| Problem | UCPOP | +CE | +HP |  +HP+CE |
gripper-8 * 6557/ 3881 * 1299/ 698
gripper-10 * 11407/ 6642 * 2215/ 1175
gripper-12 * 1117628/ 10147 * 3380/ 1776
gripper-20 * * * 111097/ 5675
rocket-ext-a * * | 30110/ 17768 7638/ 4261
rocket-ext-b * * | 85316/ 51540 | 28282/ 16324
logistics.a * * 411/ 191 847/ 436
logistics.b * * 920/ 436 542/ 271
logistics.c * * 4939/ 2468 7424/ 4796
logistics.d * * * | 16572/ 10512

Table 3.2. Ablation studies to evaluate the individual effectiveness of the new techniques: heuristic for
ranking partial plans (HP) and consistency enforcement (CE). Each entry shows the number of partial plans
generated and expanded. Note that REPOP is essentially UCPOP with HP and CE. (*) means no solution
found after generating 100,000 nodes.

Before ending the discussion on plan quality, we should mention that it is possible to use
post-processing techniques to improve the quality of plans produced by state-space and CSP-based
planners. However, such post-processing, in addition to being NP-hard in general [3], does not
provide a satisfactory solution for online integration of the planner with other modules such as
schedulers and executors [16, 55].

Ablation Studies: We now evaluate the individual effectiveness of each of the acceleration
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techniques, viz., heuristic functions for ranking partial plans (HP), and consistency enforcement
(CE).Table 3.2 shows the number of partial plans generated and expanded in the search when each
of these techniques is added into the original UCPOP. We restrict our focus to the parallel domains
where REPOP seems to offer significant advantages.

In the logistics and rocket domains, the use of h,..;q; heuristic accounts for the largest fraction
of the improvement from UCPOP. Interestingly, h,ejq, fails to help scale up UCPOP even on very
small problems in the gripper domain. We found that the search spends most of the time exploring
inconsistent partial plans for failing to realize that a left or right gripper can carry at most one
ball. This problem is alleviated by consistency enforcement (CE) techniques through detection and
resolution of implicit conflicts (e.g. the conflict between carry(balll,left) and carry(ball2,left)).
As a result, REPOP can comfortably solve large gripper problems, such as gripper-20.

Among the consistency enforcement techniques, both reachability analysis and disjunctive
constraint representation appear to complement each other. For instance, in problem logistics.d, if
only reachability analysis is used with the heuristic h;¢q4, a solution can be found after generating
255K nodes. When disjunctive representation is also used, the number of generated nodes is reduced

by more than 15 times to 16K.

3.6 Further Extension

There are several avenues for extending this work.

To begin with, our partial plan selection heuristics do not take negative interactions into
account. This may be one reason for the unsatisfactory performance of REPOP in serial domains.
We would like to be able to have a better account of subgoal interactions.

Secondly, we have been mostly interested in deriving a heuristic search strategy that can
find a partially ordered plan efficiently. Thus we would like to have an admissible heuristic that
guarantees the optimality of the solution plan. This of course depends on what type of solution

criteria that we consider.
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Finally, an interesting area worthwhile for future work involves the derivation of heuristics
for more general versions of POP algorithms —including those that handle partially instantiated
actions, as well as actions with conditional effects and durations. We will discuss some of these

directions in more details in the following subsections.

3.6.1 Admissible Heuristics

As discussed previously, there are at least two different objective criteria for a partially ordered plan.
One is in terms of the number of actions, and another is the makespan. In state space planning, our
previous work [39] as well as that by Haslum and Geffner[20] provide a good basis for computing a
spectrum of admissible distance-based heuristics whose accuracy can be arbitrarily achieved at the
cost of the heuristic computation.

It appears more difficult to compute admissible heuristics for POP algorithms. The main
problem is, again, that the set of open conditions are not necessarily in the same world state.
However, the existence of partial states in a partial plan makes it possible to exploit the admissible
heuristics developed in state space planning.

To begin with, let us consider optimizing the number of actions in a plan. In other words,
we are interested in an admissible estimate of h* (Section 3.3). Let lev(S) be the index of the level of
the serial planning graph in which all propositions in S first appear without mutex. Hence lev(S) is
an admissible estimate of the number of actions needed to achieve S when executed from the initial
state [39]. To estimate h*(P), we may consider an existing cutset C' in P that gives the maximum
lev value. lev(C) is an optimistic estimate of the cost for achieving C' from the initial state, but it
may not be admissible estimate for h*, because it may also count some actions already present in
the partial plan. Thus, to make this estimate admissible, we have to subtract it by the number of
existing actions in P that may possibly come before the achievement of C. As a result, we can have

the following admissible heuristic.

Heuristic 3.3 (State-based heuristic) hpq,(P) =
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max,e amax{lev(C (a)) — |Bef(a)|,lev(C*(a)) — |Bef(a)| — 1}, where Bef(a) is the set of actions

be A st (b=<a)UO is consistent.

Notice that lev(S) in a traditionally parallel planning graph would give an admissible esti-
mate of the makespan of a plan that can achieve S from the initial state. With a slight modification,
we can also derive an admissible heuristic with respect to the makespan criteria as well. In practice,

however, these heuristics are typically not informative enough to solve problems of reasonable size.

3.6.2 Capturing subgoal negative interactions

Our work on state space planning [39] suggests that the negative interactions involved in achieving

a partial state S from the initial state can be quantified as follows:

A(S) = max (lev(p, q) — max{lev(p), lev(q)}) (3.2)

P,gES

Since the information of partial states does exist in a partial plan, we conjecture that it is
possible to adopt a similar mechanism for estimating the negative interactions involved in refining an
initial partial plan into a partial plan P. Another promising idea applicable to both this subsection
and the previous one is that we can use n-ary state invariants (such as those detected in [15]) to

improve our heuristic estimate as well as to detect and resolve more indirect conflicts in the plan.

3.6.3 Heuristics for handling partially instantiated actions

One of the advantages of the POP algorithm has been the ability to find a plan with partially instan-
tiated actions. Dealing with partially instantiated actions may require several significant changes
in the POP algorithm. First of all, A partial plan becomes a 6-tuple P = (A,0,L,OC,UL,B),
where B is a set of binding constraints (see [62] for more details). Actions in A may be partially
instantiated, and as a result, the set of open conditions OC may also consist of propositions that

are not completely grounded.
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Several important issues need to be considered in dealing with these changes, such as how to
deal with causal link’s conflict and resolve it. However, here we will explore the question of how to
rank partial plans, which seems to be one of the most important factors in improving the algorithm
efficiency.

One naive way may be to ground a given partial plan P into a set of all grounded partial
plans P;,s; whose actions are completely instantiated according to the binding constraints. Given

the heuristic estimates of completely instantiated partial plans (Section 3.3), we assign

h(P) := min h(P) (3.3)

PEPins

A serious setback of this method is that there are potentially many grounded instances of
a partial plan, making the heuristic computation unjustifiably too costly. Another idea for getting
around this problem is that for each partial plan we will keep a set of variable bindings V;, whose
application to the partial plan P will result in a completely grounded partial plan P deemed to
have the smallest h value. This idea, while not guaranteeing optimality, is in fact very similar to
how A4, heuristic is computed, in the sense that we actually compute the cost of only one single
instantiated partial plan instead of minimizing over the set of all instantiated plans.

Now given a partial plan P, let P be the grounded partial plan resulting from applying the

bindings V4 to P. We assign

h(P) := h(P) (3.4)

During the plan refinement, the variable binding set V} can be updated incrementally. Given
a partial plan P and its binding set Vj, suppose that P is refined to become P’ by adding an action a
to P. Let ay,as,..,a; be all instances of a, and P|, Py, ..., P; be the corresponding grounded partial
plans of P'. Among t = 1,2,...,k, let P/ be a partial plan that has the smallest value of h, and v

be the bindings involved in refining a to a;. Thus, the binding set for the partial plan P’ can be
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updated as follows:

Vlb =V, U (3.5)

3.7 Chapter Summary

The successes in scaling up classical planning using CSP and state space search approaches have
generally been (mis)interpreted as a side-swipe on the scalability of partial order planning. Con-
sequently, in the last five years, work on POP paradigm has dwindled down, despite its known
flexibility advantages. In this chapter we challenged this trend by demonstrating that the very
techniques that are responsible for the effectiveness of state search and CSP approaches can also
be exploited to improve the efficiency of partial order planners dramatically. By applying the ideas
of distance based heuristics, disjunctive representations for planning constraints and reachability
analysis, we have achieved an impressive performance for a partial order planner, called REPOP,
across a number of “parallel” planning domains. Our empirical studies show that not only does
REPOP convincingly outperform Graphplan in parallel domains, the plans generated by REPOP
have more execution flexibility. This is very interesting for two reasons. First of all, most of the
real-world planning domains tend to have loose ordering among actions. Secondly, the ability for
generating loosely ordered plans is very important in hybrid methods that involve on-line integration

of planning with scheduling.



Chapter 4

Search Heuristics for Dynamic
Constraint Satisfaction Problems
and their relations to partial order

planning

4.1 Motivation

In the previous chapter we have demonstrated the usefulness of several search heuristics in a partial
order planning algorithm. These techniques were shown to be inspired from the search heuristics
developed in state-space search and constraint satisfaction theories. The successful application of
state space and CSP search heuristics to the POP algorithm, while encouraging enough, still leaves us
feeling uneasy and puzzled. An inevitable question comes to mind: What if we want to generalize the
techniques we developed to dealing with more complex type of constraints, such as those involving

time and resources? CSP and state-space provides different facets of a POP algorithm, but they
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are clearly not the most suitable model for generalizing such techniques. What is the more suitable
model? A study of heuristic search control in such model — in addition to being interesting in its
own right — will undoubtedly provide invaluable insights into how heuristic search control should be
devised in the like of POP algorithms.

In this chapter we are set to embark on this ambitious task. We will use dynamic con-
straint satisfaction problem (DCSP) [36] as a general model based on which our study of search
control for POP algorithms is pushed further. That POP search can be seen as DCSP is not much
of a discovery. This connection was first remarked by Kambhampati [25] in the context of refine-
ment search. However, we are not aware of any work that actually exploits this connection to study
heuristic search control for POP algorithms. In fact, as far as we know, while work on both CSP
and state space search are plentiful, there were no significant work on search heuristics for the DCSP
model, which was first formalized only very recently by Mittal and Falkenhainer [36].

Briefly, a DCSP is a generalization of a, CSP instance. In addition to the logical constraints
among variables as in CSP, which is to be called compatibility constraints, there also is another
type of constraint called activity constraints. An activity constraint says that given certain true
logical conditions, a new variable is activated. A compatibility constraint is valid (applicable) only
if all the variables involved in the constraint are active. We will present in this thesis a simple DCSP
formulation of a POP algorithm, and point out that with some extension, one can come up with
a DCSP formulation that includes time and resource constraints as well. This also demonstrates
that the DCSP model appears to be powerful enough to handle a wide variety of constraint-based
synthesis tasks, as argued in [36].

There are two main ways for solving a DCSP. The first one involves putting a bound on the set
of all active variables and compile the DCSP into a CSP. This method has the important advantage
of exploiting the extensive theory developed in the CSP literature. However, in many problems it
is often impossible to know in advance the size of the DCSP solution, and the CSP approach would

end up unnecessarily searching in solutionless bounds many times before finally reaching a solution.



53

As evidenced from the CSP approach to state-space planning, the CSP compilation may require a
large amount of memory that a machine can afford, especially for problems whose solution’s size
is very large. In addition, the CSP compilation approach essentially ignores the difference between
the nature of activity and compatibility constraints existing in the original problem that may have
been more gainfully exploited. In this thesis, we follows the second way for solving a DCSP, by
incrementally activating variables and assigning values for these variables until a solution is found.
This method overcomes the disadvantages presented above for a CSP solving method. In particular,
by discerning the different natures of activity and compatibility constraints, we may be able to come
up with more suitable search heuristics and algorithms.

The heuristic search control in a general DCSP is divided into two main issues similar to
that of a CSP: value ordering and variable ordering. The investigation of DCSP value and variable
ordering heuristics is based on the close connection of both CSP search and state-space search. That
DCSP is closely connected to CSP is trivial by definition: A DCSP without activity constraints is
exactly a CSP. Alternatively, a DCSP without any compatibility constraints can be seen as a state-
space search problem. A DCSP search algorithm can be seen as searching in a space of states, where
the transformation from one state to another is triggered by the activity constraints. In general, a
DCSP with both types of constraint can also be seen as search in a space of states, where each state
is a constrained network made up of the DCSP active variables and the compatibility constraints
between them.

The dual connections discussed in the foregoing allow us to come up with several general
heuristics for value and variable ordering for DCSP. Briefly, we will point out that the value ordering
can be done by a ranking function that ranks DCSP “states” in the search space. This ranking
function is closely related to the distance-based function used in state-space search. The main work,
however, lies in how to come up with an efficient and accurate approximation of this distance-based
function. We present a general heuristic estimator for approximating the distance-based function

based on the ideas of relaxing some of the constraints in the DCSP. The connection between this
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heuristic estimator and that of the POP’s distance-based heuristic estimator developed in the first
part of this thesis is also examined.

Variable ordering heuristics in a DCSP are also quite interesting, and draw many insight from
CSP’s variable ordering heuristics. We divide the set of DCSP’s variables to two, one consisting of
fertile variables, and the other infertile variables. A variable is called fertile if its value assignment
may activate new variables, and infertile otherwise. The difference between DCSP and CSP is that
CSP has only infertile variables. Thus we propose to use CSP’s variable ordering heuristics to deal
with infertile variables in CSP. This characterization of DCSP variables allow us to investigate a
number of different variable ordering heuristics. We also are able to show that the techniques used
in REPOP (e.g the use of disjunctive ordering constraints and LIFO strategy of subgoal ordering)
reflect one of the most promising general variable ordering strategies we have devised for DCSP.

The rest of this chapter is organized as follows. Section 4.2 provides a brief background on
DCSP, with an emphasis on the dual view of both CSP and state space search. Section 4.3 presents
a DCSP formulation for the partial order planning algorithm. In section 4.4 we present a general
algorithm for solving DCSP. The value ordering heuristics are presented in section 4.5 in which we
introduce the powerful distance-based function. The details on implementing such a distance-based
heuristic is discussed in section 4.6, and the connection to POP’s value ordering heuristics are also
discussed. Section 4.7 covers the variable ordering heuristics for DCSP, and their relations to POP’s
variable ordering heuristics. Finally, section 4.9 discusses the limitations and outlines some future

work.

4.2 Dynamic Constraint Satisfaction Problem

4.2.1 Definition of DCSP

Our definition of DCSP borrows some notations from [36]. A DCSP is a tuple desp(V,Vy,D,C =

C U C4) such that:
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Set of variables V' represents all variable that may potentially become active and may appear

in a solution (V needs not be explicitly pre-enumerated)!.

Vi = {v1,...,0r} is a non-empty set of initial variables, which is a subset of V.

D is a set of discrete, finite domains D1, ..., Dy, ... with each domain D; representing the set

of possible values for each variables v; € V.

e CC is a set of compatibility constraints on subsets of V limiting the values they may take
on. Often, a compatibility on a subset of variables vy, vs,...,v, is expressed in terms of a
logical formulae P(vy,vs,...,v,). Furthermore, a compatible constraint (or a logical formulae
for that matter), is applicable if and only if all variables involved in the constraint are
active. In other words, for each compatibility constraint P(vy,...,v,), the following is true:

active : v1 A ... A active : v, = P(v1, ..., 0n).

e C4 is a set of activity constraints of the form: P(v1,...,v,) = active : v; (vj # V1, ..., Up)-
An activity constraint is applicable if and only if its left hand side logical formulae is appli-

cable.

A solution to a DCSP is an assignment A which meets two criteria: (1) The variables and
assignments in A satisfy C¢ U C4 (2) No subset of A is a solution.

We do not consider deactivate constraints in this work. In other words, an active variable will
always remain active. It is useful to also have an objective function on the solution of a DCSP. For
instance, one may be interested in a solution with a minimum number of variables being activated.
A general linear objective function of a DCSP solution can be written in the following form:

F(A)= 3 f([v.a) (4.1)

[v,a]€eA

where [v,a] corresponds to an assignment of value a € D, to variable v in the assignment A, and f(.)

is a pre-defined non-negative cost function on such an assignment. Note that function f is applicable

1By definition, V may have infinite number of elements.
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to only active variables, e.g f([v,a]) = 0 for any non-active v € V. In case of an objective function
of the number of (active) variables, f([v,a]) =1 for all active v, and 0 otherwise.

Even if such an objective function is not required in a given DCSP, keeping one in mind can
be useful in devising appropriate heuristic for the search, as it will turn out. For the time being, we

will limit to DCSP with finite discrete domains.

4.2.2 DCSP as constrained state space search

In this subsection, we will construct a state space view of DCSP. The main idea is that since activity
constraints essentially introduce new variables into the problem, the current set of active variables
and their constraints can be seen as constituting a state. We will be more precise in the following
definitions. In all cases, we are presumably given a DCSP desp(V, Vi, D,C = C€ U C4) as defined

above.

Definition 4.1 (State) The underlying state S of the DCSP consists of a set of all active variables
and their (not necessarily complete) assignments in the DCSP. The set of constraints C's = Cj.;“ UCg,
where Cs denotes the subset of constraint set C' involving only state variables in S, is implicitly
considered as part of state S. A state S is consistent if none of the applicable compatibility and

activity constraints in C is violated.

Before dwelling into next concepts, we will briefly review a very important notion in the
CSP literature, namely, constraint propagation [61]. Simply speaking, this is a procedure that
aims to reduce the set of possible value assignments (i.e domain) for each variable without losing
any legal solution of the CSP. This is often done by adding new constraints to the set of constraints,
deducing new value assignment and/or reducing the domain size for each variable.

Constraint propagation for compatible constraints in a DCSP is exactly the same as that in
a CSP. Constraint propagation for activity constraints is quite simple, and is done in conjunction
with the constraint propagation for compatibility constraints. Briefly, it is a repeated application of

the following two steps:
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1. For each applicable activity constraint of the form
P(vy,v2,...,0n) = active : vj (vj # V1, ..., Un)

it P(v1,...,vp) is true in S, then v; is added to the set of active variables in S, which may in

turn cause more compatibility constraints to be applicable.

2. Applying compatibility constraint propagation to add more constraints and/or value assign-

ment.

As in CSPs, there are many different ways of enforcing the DCSP’s consistency through
different constraint propagation procedures, which carry different impacts on the overall performance
of a DCSP solver. We do not consider constraint propagation techniques in this work, however. From
now on, we will use the term “constraint propagation” to imply a particular constraint propagation

CP that is chosen for our DCSP algorithm.

Assumption 4.1 Unless otherwise noted in this thesis, by “constraint propagation” we mean any
particular constraint propagation procedure, simply named CP, that is chosen for the algorithms in

consideration.

We have seen that through the means of constraint propagation, one can transform the
underlying state of a DCSP by changing its set of active variables, value assignments and the set of
constraints. A constraint propagation procedure is typically triggered by a new value assignment of

a DCSP variable. This leads to the notion of operator defined as follows.

Definition 4.2 (Operator) An operator is a value assignment to an active variable, namely,
op is of the form assign[v,a]. The preconditions of op are active : v, v remains unassigned and
a € D,. The effects of the application of op to state S are new active variables, value assignment

and constraints resulting from propagating v = a through state S.

In addition, the initial state of the DCSP is simply So = V;. The goal state G 4 is a state
that has no active variables remaining unassigned, and all constraints in C* satisfied. In short,

G4 = {v,[v,d]|[v,a] € A}. It is simple to prove the following.
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Figure 4.1. Illustration of DCSP’s states.

Proposition 4.1 Let A be a solution (i.e set of value assignments) to a DCSP. There exists at least
one sequence of operators of the form op = [v,al|[v,a] € A such that when applied to the initial state

So will results in the goal state G 4.

Figure 4.1 provides a simplified example of DCSP states. In the figure, S is the set of all
possible state variables, each of which is represented by a squared point. The initial state is So. The
variables’ value assignments, each of which corresponds to applying an value assignment operator
of variables in Sy, results in the activation of new state variables that make up state S;, and so
on. For each point v € S;, a set of arrows pointing to v from points in S;_; represents an activity
constraint for variable v. What is not shown in the figure is the compatibility constraints among

active variables in each S;.

4.2.3 Some useful DCSP concepts

In this subsection we introduce several DCSP concepts that will prove useful later on.
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1. Fertile/Infertile variables: The presense of activity constraints in DCSP allows us to char-
acterize the set of DCSP variables into two categories that we call fertile and infertile variables.
A variable is fertile in a current DCSP state S if at least one of its value assignment will add
one or more new active variables to S through constraint propagation. Otherwise, it is called

infertile variable. In addition, any variable after assigned a value will also become infertile.

2. Descendent graph: We call the new active variables propagated from value assignment of a
fertile variable v children of v. A fertile variable may have one or more children, some of which
may be fertile variables and have children themselves and so on. We use the term descendent
graph to capture the set of all descendents of a fertile variable v. More precisely, a descendent
graph G for a fertile variable v is a directed acyclic graph whose nodes are different DCSP
variables starting with root node v. Each directed arc (z,y) in G corresponds to a constraint
by which some value assignment of z results in the activation of . To distinguish between two
different types of constraint, the arcs corresponding to activity constraints are drawn as solid

arrows, and arcs corresponding to compatibility constraints are dotted arrows.

3. Productive/Unproductive constraints: A constraint is productive if it corresponds to
some arc in a descendent graph for a fertile variable. Otherwise, it is unproductive. Ob-
viously, all activity constraints, when applicable, are productive. On the other hand, some

(applicable) compatibility constraints are and some are not.

Finally, it is important to note that the nature of the variables, constraints and the descendent
graph as defined above does depend on the specific constraint propagation procedure CP being
used. Figure 4.2 shows a taxonomy of different types of constraints that are applicable to the
fertile/infertile variables at the time each of them is assigned some value. These concepts will be

illustrated in details in the next section on a DCSP formulation of a POP algorithm.
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Figure 4.2. A taxonomy of DCSP constraints that are applicable to fertile and infertile variables
when these variables are assigned values.

4.3 A DCSP formulation of POP algorithm

Plan synthesis problems are excellent domains for the DCSP model formulated in the previous
section can be applied. We will make this connection explicitly in this section.

Consider a planning problem P= (I,, &), where I and G are initial and goal state, respec-
tively, and Q is a set of possible actions. For each action a € €2, denote Prec(a), Ef f(a) as the set
of preconditions and effects of action a, respectively. Denote P as the set of all propositions p and
—p about the world. The planning problem is concerned with finding a set of (totally or partially)
temporally ordered actions such that when executed from the initial state I will achieve goal state
G.

All classical planning approaches fall under the category of DCSP. Forward state space search
planners [48, 5], as the name indicates, corresponds to DCSP with no compatibility constraints, i.e
any new state being propagated already satisfies C¢. Graphplan’s[4] backward search was shown to
be a simple DCSP instance as well[28, 27]. Here, the presence of mutex constraint makes up the C¢
set. The readers are referred to Appendix A for DCSP formulations of both forward and backward
state-space search. In the following we will present a DCSP formulation of a partial order planning

algorithm.
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4.3.1 Partial-order (plan-space) planning as DCSP

We will examine a partial order planning (POP) algorithm, which is most closely resemble to the
full-fledged DCSP model. Briefly, POP algorithm searches in the space of partial plans, each of
which can be seen as a set of variable and constraints. In each partial plan (i.e “state” in the
terminology in section 4.2), variables are the set of open conditions, and the set of actions. Only
open conditions are active variables remained to be assigned. An open condition can be assigned
by a new action, which in turn activates further open conditions, and propagating more unsafe link

induced disjunctive ordering constraints and causal link constraints.

e Set of variables V' consist of the following:

— Set of steps {s_1, S0, 51, $2, .- }-

— Set of open conditions {openc(s;,p)[i > 0;p € P}, where P is the set of all atomic

propositions about the world.
— Set of precedence constraints {(s; < s;)|i,j = —1,0,1,...}.

— Set of causal links {causal(s;, sj,p)|i > —1,7 <0,p € P}.

e Domains:
For each variable s;(i > 0), Ds, = Q. Dy, = D;_, = {null}.
For each variable openc(s, D), Dopenc(sy,p) = {5-1,850,51,--, 81}, Wwhere M is the maximum
length of the plan we would like to find.
For each variable causal(si, $,P), Dcausai(si,s;,p) = {true, false}.

For each variable (s; < s;), D(,, <s;) = {true, false}

e Initial state: Including the following active variables:
s—1 = null; so = null, corresponding to two null first and last step, respectively.
openc(so,p) = true for all p € G.

(s-1 < 8;) = true; (s; < so) = true for all i > 0; (s; < s;) for i # j for all other variables of
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this type.

causal(si, sj,p) for all i # j and p € P.
e Constraints: For k£ =0,1,2, ...
— Activity constraints

xSk = a; = active : openc(sk,p) Vp € Prec(a;)  (4.2)
openc(sy,p) = $; = active : s; A active : causal(s;, Sk, p) A active : (8; < Sg)

Vi=—1,0,1,..,M. (4.3)
— Compatibility Constraints

openc(sg,p) = s; = (1 # k) A (si < sk) A causal(s;, sk, D)
Vi=—1,0,1,..,M. (4.4)
causal(si, sk, p) = \/ si=qV(E=—-1Apel) (4.5)
ar€{acQ(peEf f(a)}
causal(s;,sj,p) AN (sk =ar) N\—p € Eff(ar) = (sk, <s;)V(s; <sx) Vpe P  (4.6)

(Sz' < Sj) N (Sj < Sk) = (Si < Sk) (47)

(Si < Sj) = —|(8j < Si) (4.8)

Constraint 4.2, 4.3, 4.4 and 4.5 are concerned with the causal effects of actions. Con-
straint 4.6 makes sure that the plan is correct in the face of actions’ negative effects.

Constraints 4.7 and 4.8 take care of basic properties of the ordering relations.

e Objective function is of the form 4.1, where function f(.) is pre-defined as follows: f([sk,a;]) =
1 for all k, j, and O for all other assignments. As will be shown in the next section, an optimal
solution to this DCSP corresponds to a solution partial order plan with minimum number of

actions.

In the DCSP formulation above, it is simple to see that each “state” of the DCSP instance

represents exactly a partial plan in the POP algorithm. Also notice that only activate constraints are
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needed to encode the planning problem. It is also simple to see that that other types of constraints
such as resource and temporal constraints can be added to this DCSP formulation as well (see
Appendix A for more details). For instance, the introduction of (discrete) resource constraints will
only result in partial plans with more ordering constraints. The introduction of temporal constraints
will likely require effective handling of DCSP with numerical domains.

The readers will notice that the DCSP formulation above is very similar to the causal
encoding provided by Kautz and Selman [32]. Essentially, if we translate the active:v into just
another value for variable v, we will get an encoding like that of Kautz et al’s. Again, it is reminded
that we are pursuing the direct approach to solving DCSP rather than solving its CSP translation.

Before ending this section, we would like to relate this DCSP formulation to some of the

DCSP-specific concepts introduced in subsection 4.2.3.

o Fertile/Infertile variables: All variables appear in the left hand side of activity constraints are
fertile variables (sy,openc(sg,p)). The value assignments of these variables are also triggered
through constraint propagation by constraint 4.5, whose left hand side is a value assignment
of causal(s;, sg,p). Thus causal(s;, sk, p) also is a fertile variable. The only variables left are

of the form s; < s;, which is infertile.

e Productive/Unproductive constraints: All activity constraints ( 4.2, 4.3) are productive.
Compatibility constraints whose right hand side consists of value assignments for fertile vari-
ables ( 4.4, 4.5), and thus are productive. The rest (constraints 4.6, 4.7, 4.8) are unproductive

constraints.

e Descendent Graph: Figure 4.3 illustrates a descendent graph for fertile variable s;. Of
course, the subgraph starting with the root openc(sg,p) corresponds to a descendent graph
for openc(sg,p), and so on. In each edge of the graph we mark the corresponding constraints,
where (1),(2),(3),...,(7) correspond to constraints 4.2, 4.3,..., 4.8, respectively. The constraints
most responsible for generating new variables are marked (1),(2),(3) and (4). The other last 3

constraints marked as (5,6,7) do not appear in the graph. Apparently they are unproductive
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Figure 4.3. Descendent graph for a fertile variable in the DCSP formulation of a POP algorithm.

constraints that do not contribute to the activation of any new variables.

4.4 A general algorithm for solving DCSP

There are two main ways for solving a DCSP. The first one involves putting a bound on the set of
all active variables and compile the DCSP into a CSP. This method has the important advantage
of exploiting the extensive theory developed in the CSP literature. However, in many problems it
is often impossible to guess in advance the size of the DCSP solution, and the CSP approach may
end up unnecessarily searching in solutionless bounds many times before finally reaching a solution,
or it may search under a bound that is much greater than the optimal size of the solution. In
addition, as evidenced by the CSP approach to state-space planning, CSP encodings may require
a large amount of memory that a machine cannot afford, especially for problems whose solution’s
size is very large. In addition, the CSP compilation approach essentially ignores the difference

between the nature of activity and compatibility constraints existing in the original problem that
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may have been more gainfully exploited. In this thesis, we follows the second way for solving a
DCSP, by incrementally activating variables and assigning values for these variables until a solution
is found. This method overcomes the disadvantages presented above for the CSP solving method.
In particular, by discerning the different natures of activity and compatibility constraints, we may
be able to come up with more suitable search heuristics and algorithms. In this section we present
a general and simple algorithm that follows this idea.

The algorithm consists of a main choose/ propagate cycle. Each choose step selects an
active, unassigned variable and assigns it a value that has not been previously ruled out. Each
propagate step checks the constraints relevant to the new variable value assignment and propagates

their consequences and dependencies.

Algorithm 4.1 (General DCSP algorithm)
1. LetV = V.
2. Repeat
3. Choose an active variable v remains in V.
4. Choose a value a to assign to v.
5. Repeat
6. Propagate v = a through all activity and compatibility
constraint relevant to v
7. Add all new variables and new assignments to V.
8. Until no new active variables or constraints are added.
9. Return NULL if one constraint is violated.
10. Until every active variable in V is assigned a value

11. Return'V

A lot of specific details are left out in the algorithm template above. By “choose” we mean
a nondeterministic choice is made. In practice, these choices on variable ordering (line 3) and (line

4) play the ultimate role in the algorithm’s efficiency. There may be different strategies for dealing
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with these choices. Since we generally cannot make a right choice that leads to a solution every
time, different backtracking schemes may also have different impacts on the algorithm performance.
In addition, different levels of constraint propagation routines (lines 6 and 7) result in different new
sets of variables and value assignment. Finally, we haven’t talked about how the solution’s objective
function is taken into account.

In this chapter we will be mainly interested in the variable and value ordering in a DCSP,
and somewhat in the account of solution’s quality. As before, we will assume that a particular
constraint propagation procedure, namely CP, is used in our algorithm.

In traditional CSPs, effective variable ordering strategies are generally thought to reduce the
number of backtracks encountered by the search [61]. Often, these heuristic are devised by analyzing
the underlying graph that captures the constrain-based relationship among variables. For example,
a strategy such as Minimal width ordering (MWO) heuristic exploits the topology of the nodes in
the underlying graph of the problem to come up with an ordering whose intention is to reduce the
need for backtracking. A strategy such as most constrained variable first heuristic aims to detect
the failure as early as possible for backtracking.

On the other hand, when choosing a value to assign a variable, value ordering strategies in
traditional CSPS tend to choose the value that is most likely to succeed, because failure in this case
would cause backtracking. There may be many ways to evaluate the likelihood of success of a value.
For instance, one heuristic called min-conflict heuristic, which basically orders the values according
to the conflicts which they are involved with the unassigned variables.

Although it seems that in the CSP literature more attention is paid to finding effective
variable ordering strategies in comparison to value ordering strategies, it should be noted that a
good value ordering heuristic plays very important role in solving a CSP. To see this, imagine a
perfect heuristic for value ordering, which would render any variable ordering strategies irrelevant
and unnecessary. One the other hand, a good variable ordering strategy alone does not guarantee

that a solution be found quickly. More often, it is impossible to come up with perfect heuristics for
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both variable and value ordering, and these two heuristics are likely to complement each other.

4.5 Value ordering heuristic for DCSP

In traditional CSPs, values deemed most likely to succeed will be chosen. For example, the min-
conflict heuristic states that a value assignment that results in least number of “conflicts” with
other unassigned variables will be favored. The number of conflicts are estimated based on the set
of (compatible) constraints present in the CSP. In a DCSP, it is not enough to choose a value that is
most likely to satisfy all current compatibility constraints. Note that a value assignment may result
in activation of one or more new variables. Therefore, it is also important to make sure that these
new variables have a high likelihood of being part of a final solution.

This section is concerned with value ordering strategies for DCSP. Given a variable v, we
have to choose which value to assign to v. There are two possibilities, v can be either fertile or
infertile variable. If v is an infertile variable, by definition its value assignment does not activate
any new variables. Thus the only measure one can use to evaluate the chance of success of a value
is based on the set of compatibility constraints. We can use traditional CSP techniques for dealing
with this. For the rest of this section, we will consider value ordering strategies for fertile variables.

Once a given fertile variable v is assigned with a value a € D,, the operator op = assign|v, a]
triggers a transformation from a current underlying state of the DCSP to another state made of new
variable assignments. Therefore, a value ordering strategy for DCSP can be done on the basis of
ranking the underlying states using some ranking function.

For each operator op = assign|v, a], define

felop) = > f([u, b]) (4.9)

Assign[u=b]EE f(op)

where Ef f(op) is the set of value assignments u = b resulting as effects from executing op and v
was previously unassigned. f(.) is a cost function defined in equation 4.1. Denote Res(S,op) as the

resulting state of applying op to S.
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Definition 4.3 (Distance-based function) Given a sequence of operators OP = opy,0pa, ..., 0pn

that are applied to a state Sy resulting in a sequence of states Si,Sa, ..., Sn, let Res(S;, 0p;) = Sit1

for alli. A distance-based function with respect to operator sequence OP is defined recursively as:
h(So, So,OP) =0, and

h(So, Si+1,OP) = h(So, Si, OP) + f.(op;) fori=1,2,...,n.
The following equation follows immediately

h(So, Res(So, OP),0P) = ) fc(op:) (4.10)

op; EOP

h(So, Res(So,OP),OP) is called the distance-based function between two states Sp and

Res(So, OP).

Proposition 4.2 Let A be a solution (e.g a set of variable assignments) to a given DCSP. Let OP
be a sequence of operators corresponding to the assignments in A, and G4 be a goal state obtained

by applying OP to the initial state So = Vi, we have F(A) = h(Sp,Ga,0P)

Proof. Simple by induction on the number of operators n in sequence OP.

Proposition 4.2 makes explicit the connection between DCSP and search in the space of
states made of constraint networks. To be specific, it shows that the value of objective function
of a solution A is equal to the ”distance” — which is measured by the distance-based function A —
between the underlying initial state and a goal state of the DCSP.

The distance-based function h provides a powerful basis for heuristic search control of the
DCSP. Consider the algorithm template given in [36], which basically starts with the initial state
So and systematically finds a sequence of operators OP that leads Sy to a goal state G4. Assume

that we have an admissible estimate h*(S) that satisfies the following:

h*(S) < H(S) (4.11)

where H(S) is defined as the minimum “distance” between S and a goal state G4

H(S) = gmin h(S,G,0P) (4.12)
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for any applicable sequence of operators OP that can transform state S to some goal state G4. We
will choose value whose assignment to a given variable would result in a state of smallest value of
> fe(op;) + h*(S), where op; are the operators applied so far. The following proposition follows

immediately from Proposition 4.2 and the theory of admissible state space heuristic.

Proposition 4.3 The h* heuristic function for ranking states is admissible and thus ensuring that

the solution found to be optimal in terms of objective function F(A). Furthermore, F(A) = H(Sy).

When optimality is not insisted on, a close approximation of H(S) can be used to find a

solution fast, while the solution’s quality is typically close to being optimal.

4.6 Estimating distance-based heuristic function

The general way in approximating H(S) is by constructing a sequence of operators “connecting” S
and G4 under the relaxation of certain constraints in C = C¢ U C4. Since our concentration is on
a class of DCSP were C# is very dominant as well as C¢, we have to selectively account for both
types of constraints.

We will present here a distance approximation that, while not being admissible, may yield
very close estimate of H(S). The basic idea is simply find one single set of operators that can be
applied to a state S to become a goal state G4, under the assumption that some of the constraints

in C are relaxed.

Heuristic 4.1 (Constraint-relaxed heuristic h.(S))
1. Let C' be a pre-defined subset of C.
2. Let Sy = S
3. Repeat
4. Deterministically choose an active variable v remains in Sy.

5. Deterministically choose an action op = assign|v,a).

6. Let Sy := Res(St, op).
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7. Make sure no constraint in C' is violated as
v = a is propagated though C'.
8-he(S) = he(S) + fe(op).

9. Until every active variables in S; is assigned a value

10. Return h.(S)

Obviously, there are two issues that play the most important roles in the effectiveness of this
heuristic. The first issue asks which constraints are to be relaxed and which are not (e.g what is C").
The second issue involves finding a specific scheme for selecting variables and value assignments so
that the heuristic estimation procedure above will terminate and return good heuristic estimates.
We do not have a general answer for the second issue. It is likely that such a scheme has to be
derived from the specific problem.

To find a solution for the first answer, an analysis on the set of constraints given in the
DCSP is needed. Intuitively, we do not want to relax too much, because the more constraints we
relax, the less informed the heuristic estimate will be. On the other hand, if we relax too little, the
estimation will probably be almost just as hard as solving the original problem.

The descendent graphs (defined in subsection 4.2.3) provide important information on the
relative significance of different constraints with respect to the size of the solution (which can be
quantified in terms of the total number of active variables making up the final solution). Specifically,
since unproductive constraints do not contribute to the activation of variables, it is likely that
relaxing these constraints do not lose us any important variables in the correct solution. Thus we

have the following heuristic:

Unproductive constraints are relazed in estimating distance-based function H, namely,

C' consists of only productive constraints in C in constraint-relax heuristic h.(S).

The relaxation of unproductive constraints may come at a price depending on the tightness of

these constraints. While productive constraints’ main “responsibility” is in producing new variables
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for the solution, unproductive constraints’ main job is in limiting the set of possible assignments of
such variables in the solution. In problem that the set of unproductive constraints are very tight,

h.(S) will be inaccurate unless some of the unproductive constraints are taken into account.

4.7 Variable Ordering for DCSP

In Section 4.2.3 we defined two types of DCSP variables: fertile and infertile variables. It is clear
by now that these two types have different characteristics, and it is also likely that they have to
be treated differently in our variable ordering strategies. We will have to confront three different

heuristic issues:
1. How to order among infertile variables.
2. How to we order among fertile variables.
3. How to order between the 2 sets of infertile variables and fertile variables.

The reader may be quick to point out that, the third issue already precludes a variable ordering
heuristic that does not distinguish between fertile and infertile variables. It is likely that such a
heuristic would be more effective for certain class of problems where both activity and compatibility
constraints interact in very complex ways that it becomes a burden to distinguish between fertile
and infertile variables. Fortunately, it seems that in most planning problem specification these two
types of constraint are quite loosely coupled. Therefore in this work we will only consider ordering
heuristics that exploit the different characteristics of fertile and infertile variables.

We now turn to the second issue first, and for good reasons. For infertile variables, the
only applicable constraints are unproductive (compatibility) constraints. Like traditional CSPs
which have essentially only infertile variables, the general purpose of variable ordering for infertile
variables in a DCSP is to reduce the number of backtracks in the search algorithm. A backtrack
occurs only when at least one unproductive constraint is violated. Clearly we may exploit many

variable ordering heuristics in the CSP literature to the set of infertile variables here.
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Figure 4.4. A simplified asymptotic evaluation of each fertile variable’s search space.

We will now consider ordering strategies for fertile variables. When a fertile variable is chosen
and assigned a value, through constraint propagation we will get more active variables into the
DCSP state, which may in turn add more active variables, unproductive constraints, and productive
constraints to the DCSP state. As discussed before, only productive constraints are responsible for
generating new variables. Thus, let us not worry about the productive constraints by assuming that
only productive constraints are present in the problem. It is intuitive to favor a fertile variable whose
value assignment would activate the smallest number of successor variables that are part of the final
solution. This is because the smaller the descendent graph, the less amount of search will be needed
until all of the variable’s children become infertile.

We will give a simplified asymptotic estimate of the descendent graph’s size. By removing
all edges in the graph that corresponds to compatibility constraints, we have a graph whose edges
are activity constraints only. Since a variable gets activated only once ( by the last value assignment
of variables in the left hand side of an activity constraint), there are no cycles in this graph. Thus
we get a subgraph, which we would call a descendent tree, with the same number of nodes as the
descendent graph. Consider a fertile variable v. Let d be the average depth of the descendent tree
needed to be reached until all successor variables of v become infertile. Let k is the average number
of child variables activated when a fertile variable is assigned value. Let b be average number of

possible values for each variable, then the search space involved is of the size b (see Figure 4.4.)
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According to the foregoing asymptotic analysis, b has the more important role in reducing
the search space w.r.t. a fertile variable, followed by k and then d. Estimating b,d and k may be
difficult. d can be estimated using a procedure similar to the distance-based function developed in
Section 4.12 (with each operator’s cost would be 1, since we essentially count only the number of
operators). The knowledge of b and k may depend on a particular problem domain. In practice, we
may simply want to favor variable that has small value of either b or k or d, assuming the rest are
unknown or equal.

Finally, we turn our discussion to the third issue: How to order between the set of fertile
variables and infertile variables. One may either favor fertile variables over infertile ones or vice

versa. Thus we have the following two heuristics:

1. Always favor fertile variables over infertile ones. Among fertile variables, choose the one whose
corresponding b%* is smallest. When there is no longer fertile variables, traditional variable

ordering heuristics for CSP can be applied to infertile variables.

2. Always favor infertile variables over fertile ones. The ordering heuristic among infertile vari-
ables may follow any traditional CSP’s heuristic, while the ordering among fertile variables

may be based on the asymptotic analysis above.

Recall that the value assignment for fertile variables will increase the size of the solution
by introducing additional variables, whereas value assignment for infertile variables will narrow the
set of possible solution. When the compatibility constraints (among infertile variables) are tight,
favoring infertile variables may be a good idea, because the early commitment may give us early
“rewards”. On the other hand, when the compatibility constraints are loose, the first heuristic would
be more helpful.

In the next section, we will show that the search strategy in our planner RePOP is closely
resemble to the first strategy, and is empirically proven to be quite effective in a large class of

planning problems in comparision to the second strategy.
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4.8 Relations to variable and value ordering heuristics in
POP algorithms

Having investigated a number of search heuristics for DCSP (Sections 4.5 and 4.7), and discussed
the “partial-order planning as DCSP” view (Section 4.3), we are ready to review the heuristics
developed in the previous chapter in the context of DCSP, and to discuss possible avenues where
the heuristics can be further improved.

In the DCSP formulation of the POP algorithm, we have four types of variables
si, openc(s;, p), causal(s;, $5,p), (s; < sp). Among these, variable of the form causal(s;,s;,p) is
always assigned to be true as soon as it is activated (according to constraints 4.2 and 4.4), so there
is no search involved w.r.t this variable. Thus we will only be concerned with 3 types of variables
s, 0penc(s;, p), (s; < sg)-

In a POP algorithm like REPOP, there are several choice points:
1. Flaw selection: A flaw can be an open condition or an unsafe link.

2. Flaw resolution: If a flaw is an open condition, we have to find a step to support that open
condition. The step can be any old step, or it can be a new one. If the flaw is an unsafe link,

there are two choices (promotion or demotion).

Each flaw in REPOP can be seen as a variable in a DCSP formulation. There are two types
of variables, open condition and unsafe link. Thus, flaw selection is directly connected to the issue
of variable ordering, while flaw resolution is essentially a matter of value ordering.

One can easily draw a parallel between the REPOP algorithm with that of the DCSP
formulation presented in Section 4.3. For instance, dealing with open conditions in REPOP is
parallel to dealing with two variables openc(s;,p) and s;. That is because a value assignment for
openc(s;,p) immediately activates a new variable s whose possible values are limited to the set
of actions that can achieve p. Dealing with unsafe link flaw in REPOP is parallel to dealing with

ordering variable s; < s;, whose only constraints of disjunctive nature (where search is needed) are
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of the form s; < s; V s < s;.

Lest the DCSP formality obscures the intuition, the following investigation of REPOP
heuristics will be done directly within the context of the REPOP algorithm without referring to
the specific DCSP formulation presented in Section 4.3. After all, our main purpose of studying the
DCSP model is to gain a better understanding of its heuristics, and maybe to apply new heuristics
to our planning algorithms. It is quite plausible to solve a planning problem by simply generating

it into a DCSP models but that is not in our main interest in this work.

4.8.1 Variable ordering for REPOP

Recall that there are two kinds of flaws (variables) in the REPOP algorithm. They are open con-
ditions and unsafe links. Open conditions can be seen as fertile variables, because their assignment
(of a new action step) introduce new flaws into the partial plan. On the other hand the resolution
of unsafe link flaws do not introduce any new flaw.

In REPOP as long as other open conditions exist, all unsafe link flaws are simply represented
in terms of disjunctive ordering constraints s; < s; Vs < s; without splitting these disjunctions into
search space. This is an application of the fertile-first variable ordering strategy discussed
in Section 4.7.

Now we consider the variable ordering among infertile variables, i.e unsafe links. It turns
out in our experiment with REPOP that through a simple constraint propagation procedure, all
disjunctive constraints s; < s; V s; < s; disappear by the time all open conditions are assigned an
action. This shows that the unproductive (compatibility) constraints wrt infertile variables s; < s;
is not tight in a large number of planning domain.

Of particular interest is the ordering of the set of open conditions (i.e fertile variables) in
REPOP. A strategy called LIFO [17] is used. Briefly, when a new open conditions are added into the
partial plan, they are put into an open condition stack. The last open condition entering the stack

will be chosen for resolution. It can be argued that the LIFO ordering strategy can be seen
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Figure 4.5. LIFO ordering strategy typically favoring fertile variables with small b and d

as favoring fertile variables with small b and d, according to the above asymptotic analysis.

Indeed, consider two open conditions p and ¢ whose corresponding steps are s; and ss,
respectively. In addition, suppose that p is selected before ¢ according to the LIFO scheme. It can
be proven that s; < s, must be true. 2 Now, d; and d», defined as the depth of the descendent tree
for p and ¢, respectively, can be roughly measured by the distance from the initial state to action
step s1 and ss. Since s; precedes s2, d; < ds (See Figure 4.5 for an illustration).

To compare the branching factor b; and by for p and ¢, respectively, we would make an
assumption that the number of action instances in the given planning domain that can achieve p
and ¢ are the same. For an open condition p, b; is the number of new action step that can achieve
p, plus the number of old steps in the partial plan that can be reused. The same can be said about
the branching factor b, for q. They are almost the same by our assumption, except for the fact that
there may be additional action steps s such that s; < s < sz that can be reused for achieving gq.
This implies that b; < bs.

The above analysis allows us to suggest several possible avenue for further improvement
for the variable ordering heuristic. To begin with, we may want to take k (defined as the average

number of children for a fertile variables) into consideration. In fact, ¥ was shown to be more

2Since p is selected before q according to the LIFO scheme, p must be activated after g was activated. This implies
that there exist another open condition ¢’ in the same action step s2 as ¢. According to LIFO again, a partial plan
that achieves ¢’ must be completely constructed before ¢ can be chosen, because any open condition activated as
children of ¢’ must be chosen before q. It follows that p must be one of ¢’’s children or ¢’ itself. This implies that the
step that p belongs to must precede or equal the step that g belongs to. Thus s1 < sa.
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important than d. In REPOP, k is the average number of preconditions for each action instance,
thus depends directly to the specific problem domain. This suggests that action with fewer number
of preconditions may be favored in conjunction with the other heuristics. The derivation above of
b1 < bs is unlikely to hold when assumption involved is no longer true. For example, it is likely
that some open condition has more possible achieving action instances than other according to the

specific problem domain. This can be taken into account to create a more robust heuristic.

4.8.2 Value ordering heuristics for REPOP

The relax heuristic presented in Section 3.3 for a partial order planning algorithm (REPOP) is
a special case of the general heuristic estimator presented in this section. Indeed, in this general
heuristic estimator, the current state S; (line 2) corresponds to the current partial plan in the POP
algorithm. Line 4 corresponds to choosing an open condition (subgoal) in the current partial plan.
Line 5 corresponds to choosing an action that can support the chosen subgoal. The loop (line 3-9)
terminates when there are no more active variables unassigned, corresponding to having no more
open conditions. Line 8 corresponds to the recurrent equation 3.1.

Several important pieces are specific to the POP algorithm that need further clarification.

e The first technique specific to POP algorithm’s heuristic is the use of planning graphs to guide
the selection of of variables and value asignments and to terminate the estimation procedure.
A planning graph, which is built from the planning problem’s initial state, provides a sort of
relevance based analysis, which helps narrow the set of value for assignment, and can be used

to influence to choice of variable (see Section 3).

e The choice of which constraints are relaxed in the estimation of H function. Figure 4.6 provides
useful information of different types of constraints in the DCSP formulation. It shows that only
constraints marked as (1),(2),(3) and (4) (corresponding respectively to constraints 4.2, 4.3,
4.4, 4.5) are productive constraints that are responsible to producing new variables for the

solution. According to the productive constraints-only strategy (Section 4.5), unproductive
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Figure 4.6. Descendent graph for a fertile variable in the DCSP formulation of a POP algorithm.

constraints such as 4.6, 4.7, 4.8 are relaxed in the estimation of H function. These constraints
are mainly concerned with the negative effects of actions. This is exactly the type of constraints

that get relaxed in the REPOP’s relax heuristic.

In domains where the unproductive constraints are tight, relaxing all of them will render the
heuristic estimate inaccurate. For instance, domains such as blocks world, grid worlds, 8-puzzle all
belong to this type of domain. This suggests that it may be useful to account for certain unproductive

constraints in dealing with this type of domain.

4.9 Limitations and Future Work

We have shown the connection between search strategies in partial order planning with that of a
dynamic constraint satisfaction problem, and emphasized the importance of studying general search
strategies for the general DCSPs. Our presentation of value and variable ordering heuristics for

DCSP remains preliminary, however. A more rigorous and comprehensive study of DCSP’s search
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control heuristics is more desirable but unfortunately out of the scope of this thesis. We believe that
such a study would constitute a main direction for future work of this thesis. In particular, it would

be worth addressing the following issues.

1. We barely touched the issues of estimating admissible heuristics for a DCSP. Not coincidentally,
there is no known effective admissible heuristics for POP up to this writing, either. We
would like to have a family of admissible value ordering heuristics for DCSP and partial order
planning, whose effectiveness can be traded by the heuristic computation efficiency. The
much better understood theory of admissible heuristics for state space planning [39, 20] would

probably provide some guidance in this interesting research problem.

2. While the connection between the heuristic estimators developed in Section 4.6 and that of
relax heuristics for ranking partial plans (Section 3.3) is clear, much details are missing on
how the termination of the repeat loop in procedure 4.1 and how certain constraints and
variables in the DCSP get relaxed are less than obvious. An investigation into the structure

of the DCSP to solve this issue would be worthwhile.

3. A more rigorous development of variable ordering heuristics is clearly needed. It is expected
that many insights from the plethora of CSP’s variable ordering heuristics that deal with only
compatible constraints can be generalized to handle activity constraints as well. (Our notions

of fertile/infertile variables would probably continue to be useful).

4. The objective function 4.1 is general enough to capture most types of resource-based constraints
and action costs in a planning problem, but it is not natural enough to capture the time
(makespan) in planning. Temporal CSPs[10] have been devised to deal with time, and we can
imagine a framework such as “temporal DCSP” that would be useful for dealing with temporal

constraints.

5. More empirical analysis is needed. In addition, good heuristics should also be tested in con-

junction with other intelligent backtracking techniques, and constraint propagations and so
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Chapter 5

Related Work

5.1 Heuristics for State-space Planning

The work on state-space planning heuristics has strong connections to that in the AI search lit-
erature [51]. For example, the “sum” heuristics used in UNPOP [48] and HSP/HSP-R [6, 5] are
connected to the Manhattan heuristic in the simple 8-puzzle problem well-known in the search lit-
erature. Similarly to the sum heuristic, the Manhattan heuristic also makes the assumption that
the cost of achieving a set of subgoals is equal to the sum of the cost of achieving each individual
subgoal. Several important developments in the state-space heuristic such as the idea of pattern
dababases [8] and linear-conflict [19] also bear some traits of similarity to our family of set-level and
adjusted-sum heuristics, but see [39] for a more thorough analysis.

The set of mutex constraints plays very important role in improving the informedness of
our graph-based heuristics. The level-specific mutexes can be used to give finer (longer) distance
estimates, while static mutexes help prune more invalid and/or unreachable states. Thus, our
heuristics can be improved by detecting more mutexes. Indeed, more level-specific mutexes can be
discovered through more sophisticated mutex propagation rules [11] , while binary and/or higher

order static mutexes can be discovered using a variety of different techniques[18, 53, 15].
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Several researchers [21, 52] have considered the positive interactions while ignoring the neg-
ative interactions among subgoals to improve the heuristics in many problem domains. Hoffman
[21] uses the length of the first relaxed plan found in a relaxed planning graph (without mutex
computation) as the heuristic value. Refanidis [52] essentially extracts the co-achieveness relation
among subgoals from the first relaxed plan to account for the positive interactions. These heuristics
were reported to provide both significant speedups and improved solution quality.

Concomitant with our work, Haslum & Geflner [20] considered computing admissible state
space heuristic based on dynamic programming approach. Interestingly, their most effective max-
pair heuristic is closely related to our admissible set-level heuristic. Specifically, the heuristic value
updating rule in max-pair heuristic has an effect similar to that of the mutex propagation procedure
in the planning graph.

Finally, we concentrated on using the heuristics extracted from the planning graph to drive
a state search procedure. In contrast, [31] considers the possibility of using such heuristics to drive
Graphplan’s own backward search. Their results show that some of the same ideas can be used to

derive effective variable and value ordering strategies for Graphplan.

5.2 Heuristics for Partial Order Planning

Several previous research efforts have been aimed at accelerating partial order planners (c.f. [23,
24, 17, 26, 56, 57, 16]). While none of these techniques approach the current level of performance
offered by REPOP, many important ideas separately introduced in these previous efforts are either
related to or are complementary to our techniques.

IxTeT [16] was the first to use distance based heuristic estimates to select among the pos-
sible resolutions of a given open condition flaw. Unfortunately, there was no systematic evaluation
of the effectiveness of the IxTeT heuristic. It is interesting to note that IxTeT’s use of distance
based heuristics precedes their independent re-discovery in the context of state-search planners by

McDermott [48] and Bonet and Geffner [5]. The main difference our IxTeT’s heuristic and ours
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is the way the distance-based function is estimated. The first difference is that the IxTeT heuris-
tic makes the subgoal independence assumption, which in effect relaxs more constraints than our
heuristic estimate. The second difference is the way the variable and value are chosen in the heuristic
estimation. Both heuristics pick open conditions (variables) and then actions (values) to support
the open conditions until the initial state is reached. However, we use a planning graph to improve
the reachability of the value selection in the heuristic computation, and thus result in arguably more
accurate estimate.

The idea of postponing the resolution of unsafe links by posting disjunctive constraints
has been pursued by Smith and Peot in [56] as well as by Kambhampati and Yang in [26]. Our
work shows that the effectiveness of this idea is enhanced significantly by generalizing the notion
of conflicts to include indirect conflicts. The notion of action-proposition mutexes defined in Smith
and Weld’s work on temporal graphplan [58] is related to our notion of indirect conflicts introduced
in Section 3.4.

Finally, there is a significant amount of work on flaw selection strategies (e.g., the order in
which open condition flaws are selected to be resolved) [23] that may be fruitfully combined with
REPOP. In particular, Joslin and Pollack [23] explicitly considers the issues of flaw selection and
flaw resolution as variable and value ordering issues in a CSP. However they completely overlooked
the state-space nature of the POP algorithm and the use of distance-based heuristics prevalent in

state-space search.

5.3 Dynamic Constraint Satisfaction Problem

Dynamic constraint satisfaction problems was first formulated by Mittal and Falkenhainer [36]. In
their paper, the authors consider several variable and value ordering heuristics that are adapted
from CSP heuristics in a straightforward manner. For example, the value was ordered simply by the
number variables being activated by that choice.

The state-space view of DCSP argued in this paper is closely related to a model called
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“constrained heuristic search”, which was independently proposed one year earlier. by Fox et al [14].
In this paper the authors proposed a number of heuritics that can also be seen as an adaptation from
the CSP literature based on the variable tightness, constraint reliance and constraint tightness. Our
work departs from both work in emphasizing both the CSP and state-space nature inherent in the
DCSP problem. This is done by exploring different roles of compatibility and activity constraints in
the DCSP. Other than these two early work, we are not aware of any significant advance in the area
of search heuristic. This is perhaps attributed to the relatively lack of research areas where DCSP
models can be applied at the time it was introduced.

As mentioned, the connection of search control in partial order planning algorithm to that of
CSP was explored by several researchers such as Joslin and Pollack [23], who also adapted CSP style
search control heuristics to their DESCARTES planning system. While these ideas were shown to
improve the efficiency of their planner significantly, the level of performance by DESCARTES was no
where near that of Graphplan [4] which was about to arrive at the scene. Kambhampati was one of
the first researchers who remarked the deep connection between DCSP and both POP algorithm and
Graphplan’s [25, 27]. As the enthusiasm of the field for POP were switched toward the Graphplan
algorithm, much research efforts were focused on improving search heuristics for Graphplan search.

Interestingly, the connection of Graphplan’s search to DCSP is often construed to its con-
nection to CSP. As a result, most of the heuristics that were considered for Graphplan were simple
adaptation of CSP style heuristics [27]. In our more recent work [39], we pointed out the ineffec-
tiveness of these CSP style heuristics, and introduced distance-based heuristic for Graphplan search
that is empirically proven to be much more effective.

A different approach to solving DCSP that was not considered in this paper is by solving
a CSP instance that was translated from the DCSP by putting a bound on the size of the set of
activated variables [36]. In the context of plan synthesis, this approach was pursuied in GP-CSP
[12] and to a large extent SATPLAN([32] planners. The attractiveness of this approach is that it can

effectively exploit search techniques from the CSP literature without worrying about the synthesis
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nature of DCSP. However, these planners tend to run into trouble when the size of the solution is
large that the planners are unable to estimate in advance. In addition, the failure to discern the
state-space nature from the CSP nature in the underlying DCSP problem implies that the CSP-style

heuristics are not always the most effective.



Chapter 6

Conclusion

The main issue that we studied in this thesis is heuristic search control for state-space and
partial order planning algorithms. The close relation between partial order planning and both CSP
and state-space search theory motivated us to study heuristic search control for dynamic constraint
satisfaction, with a hope that a good understanding of this model may provide valuable insights into
the heuristics for partial order planning, and the possible generalization of these heuristics to the
more complex problems.

Our work on search control heuristic estimators for state-space planning algorithms con-
tributed to increased understanding of heuristics for state-space planning. In particular, we showed
that the effectiveness of the heuristics can be significantly by taking into account the complex inter-
actions (in the forms of subgoal positive and negative interactions) inherent the problem structure.
We showed that the planning graph, for all its causal structures and mutual exclusion constraints,
provides a rich source for systematically accounting for such subgoal interactions.

We presented a family of highly effective heuristics extracted planning graphs. Our empirical
results showed that a state-space planning algorithm armed with these heuristics is very competitive
with some of the fastest planners in the literature. We were also one of the first to focus on

finding effective and admissible heuristics for state-space planners. We have shown that the set-



87

level heuristic working on the normal planning graph, or a planning graph adorned with a limited
number of higher-order mutexes is able to provide quite reasonable speedups while guaranteeing
admissibility.

Our work on search control heuristics for a partial order planning algorithm helps bring
POP back to the realm of effective planning algorithms. The techniques that we introduced include
a novel heuristic estimator for ranking partial plans, using disjunctive representation for ordering
constraints, and exploiting reachability analysis for early detection of inconsistent partial plans. The
former technique was shown to draw from the connection of POP algorithm with that of state-space
search, and the latter techniques draw from heuristic control for CSP. We have implemented these
ideas in a variant of UCPOP [62], which we call REPOP. Our empirical studies show that in addition
to dominating UCPOP, RePOP also convincingly outperforms Graphplan in parallel domains, and
the plans generated by REPOP have more execution flexibility and very good solution quality.

In seeking to have a better understanding and useful generalization of the techniques that
we had developed, we focused on the connection between partial order planning algorithm and
dynamic contrainst satisfaction Problems. We showed that DCSP is an excellent computational
model studying partial order planning as well as other planning algorithms by presenting simple
DCSP formulation of these algorithms. We also pointed out that a POP algorithm that handles
more complex type of constraints related to time and resource can also be integrated naturally into
the DCSP framework.

Several general heuristics for value and variable ordering for DCSP were introduced in this
thesis. Value ordering heuristics were tied to the ranking of the DCSP’s underlying states using
a distance based function. We introduced a general way for approximating such function through
partial relaxation of certain contraints. Variable ordering heuristics were tied to a useful characteri-
zation of DCSP variables as either fertile or infertile. We presented a number of different heuristics
for dealing with each type of variables.

Finally, we drawed interesting parallels between the heuristic search controls for our planner
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REPOP and that of general DCSP. For example, the relax heuristic for ranking partial plans is
closely connected to the value ordering heuristics developed for DCSP. In addition, seeming disparate
techniques such as the handling of unsafe link through disjunctive ordering constraints and the use
LIFO scheme for subgoal selection become different aspects of a single variable ordering heuristic in
the DCSP. We also discussed the short coming of the REPOP’s heuristics and possible avenues for
further improvements.

There remain several limitations in this work that need to be addressed in the future. To
summarize, devising admissible heuristics for POP remains a challenge. And so is devising effective
heuristics for POP algorithms with time and resources. We believe that such challenging tasks
may be benefited from a better understanding of search heuristics for general DCSP, of whom the
treatment in this thesis remains preliminary rather than comprehensive, intuition-based rather than
theoretically rigorous. Combining different types of value and variable ordering heuristics in DCSPs

with respect to the problem differences will continue to be an important area for future research.
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APPENDIX A

A.1 DCSP formulation of POP with resource constraints

Consider the planning problem P = (I,Q,G,R,U). I,Q,G are the same as in classical planning
problem. R specifies a list of resources r. For each r € R, denote ¢(r) as the capacity of resource r.
Function U specifies the usages of resources and of the following form: U : R x Q — R, where U(r, a)
specifies the amount of resource r used by action a. In addition, one may want to also specify the
cost of resources by a cost function cost : R x 8 — R, wherein cost(r,z) is the cost for using an
amount z of resource r.

In addition to the set of constraints specified in Section 4.3, we have to specify constraints
related to resources. The main constraint for this type of (sharable-reusable) resource says that no

usage can exceed the resource capacity, and can be specified as follows:

o Additional Resource Constraints: For each r € R
For every minimal subset of different action instances ay,,ai,,..,a;, € € such that
20 Ulai,r) > c(r):

Si, =ap N...\Ns;, = ap, = V1<k<m<n(8ik < Sim)\/ (S,’m < Sik) forany 1 <4y <ig <..< M.

e Modified Objective function: The introduction of resources may nececitate a new objection
function based on the resource usage. The objective function is still of the form 4.1, whereas

f(.) is modified such that f([s,a]) = >, . cost(r,U(r,a)), and f = 0 otherwise.
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A.2 DCSP formulation of POP with temporal constraints

The specification of a temporal planning problem P has several extension to accommodate temporal
constraints. For each action a € 2, denote dur(a) as the duration of a. I is the initial state
of the world (at time point 0). G is a set of goals g. Different types of temporal goal may be
desirable: Deadline goal requires different goals g to be true by different time points ¢; Maintainance
goal requires g to be true during a specific temporal interval [t1,%2], and so on. In this work we
will specifically consider the objective of minimizing the makespan of the solution plan. While
the encoding is very simple, it requires extending the DCSP model to be able to handle numerical

domains.
e Additional variables are et; for each i = —1,0, 1, ... for end time of each action s;.

e For each variable et;, 0 < et; < Ty, Where T, is the maximum makespan allowed for the

solution plan.

e Additional (temporal) constraints

(i <85) A (s; =) = et; —et; > dur(ay), (Vi # j,1 #0) (A1)
et_1 =0. (A2)
(si = ;) = etg — et; < dur(a;)(Vi > 0) (A.3)

e Modified objective function: F(A) = etq.

A.3 Forward state-space search planning as DCSP

e Variables:
Set of steps s1, 2, 83, .... Domain for each variable is (.

pr(k=0,1,2,3,...) for each p € P. Domain for each variable is {true, false}.



e Initial state:
po = true for all p € I, and false otherwise.

active : sg.
e Activity Constraints: For £k =0,1,2, ...

\/ (pr, =true A —p € G) V (pr, = false Ap € G) = active : sy,

pEP
Sp = a; = /\ active : pgy1 A /\ pr = true A /\ pr = false
peEP pEPrec(ar) —p€EPrec(ar)
A /\ Pk+1 = true A /\ Pr+1 = false A /\ Prk+1 = true
pEES f(ar) —pEES f(a1) pr=trueA—pg€Ef f(a1)

A /\ Pr+1 = false.
pr=FalseApZEf f(a1)

e Objective function: Same as in form 4.1, where f([sr,a;]) =1 and f(.) = 0 for the rest.
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(A.5)

In this formulation, each state of the DCSP is the set of assignments for {p|p € P}U{s;|0 <

i <k —1} U {active : sy} for a given k.

A.4 Backward State search planning as DCSP

e Variables:
Set of steps s1, 82, 3, .... Domain for each variable is €.

pr(k=0,1,2,3,...) for each p € P. Domain for each variable is {true, false}.

e Initial state:
po =true for all p € G

po = false for all —p € G. active : sg.

e Activity Constraints: For £k =0, 1,2, ... (for indexing the steps backward)

\/(Pk =true A—-p € I)V (py = false Ap € I)
peP
= active : s,

(A.6)
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Sk =a; = /\ pr = true A /\ pr, = false A

pEES f(a1) —pEEf f(ar)
/\ (active : pry1 A pry1 = true) A /\ (active : pgy1 A pry1 = false) A
pE€Prec(ar) —pEPrec(ar)
/\ (active : pgy1 A prt1 = true) A
pr=trueA—~pZEf f(ai)
/\ (active : pry1 A pr41 = false) (A.7)

pr=FalseApZEf f(ai)

e Objective function: Same as in form 4.1, where f([sg,a;]) =1 and f(.) = 0 for the rest.

In this formulation, each state of the DCSP is the set of assignments for {py|p € P}U{s;|0 <

i <k —1} U {active : sy} for a given k.
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