Integrating Planning and Scheduling: Status and Prospects

Subbarao Kambhampati

Arizona State University rakaposhi.eas.asu.edu/yochan.html

Subbarao Kambhampai

Planning vs. Scheduling

Scheduling

- Set of jobs (may have of tasks in some (partial) order)
- Temporal constraints on jobs
 - » EST, LFT, Duration
- **Contention constraints**
 - » Each task can be done on a subset of machines

Find start times for jobs that are optimal (wrt make-spans, resource consumption etc)

Resource Reasoning

Planning

- Initial state & a set of Goals,
- A library of actions
 - » Preconditions/effects
 - Discrete/Continuous
 - » Resource requirements

Synthesize a sequence of actions capable of satisfying goals

Causal Reasoning

--Research into planning and scheduling methods has largely been de-coupled

Need for Integration

- Most existing schedulers concentrate only on resource allocation, ignoring action selection
 - E.g. HSTS operation scheduling
- Most existing planners concentrate on action selection, ignoring resource allocation
 - Plan-based interfaces
 - Interactive decision support
- Many real-world problems require both capabilities
 - Supply Chain Management problems
 - » I2, ILOG, Manugistics
 - Planning in domains with durative actions, continuous change
 - » NASA RAX experiment

Integrating Planning & Scheduling

Subbarao Kambhampai

Why now?

- Significant scale-up in plan synthesis in last 4-5 years
 - 5/6 action plans in minutes to 100 action plans in minutes
 - Breakthroughs in search space representation, heuristic and domain-specific
- Significant strides in our understanding of connections between planning and scheduling
 - Rich connections between planning and CSP/SAT/ILP
 - » Vanishing separation between planning techniques and scheduling techniques

Integrating Planning & Sahadular

Approaches for Integration

- Extend schedulers to handle action and resource choices
- Extend planners to deal with resources, durative actions and continuous quantities

- Coupled Architectures
 - De-coupled
 - Loosely Coupled (RealPlan System)

Integrating Planning & Scheduline

Subbarao Kambhampati

Overview

- ✓ Why integrate planning and scheduling?
- →Planning: The state of the art
- Scheduling: The state of the art
- Integrating Planning and Scheduling

Integrating Planning & Scheduling

Suhharan Kambhamnari

The (too) many brands of classical planners **Planning as Theorem Proving** Planning as Search (Green's planner) Search in the space of States Planning as Model Checking (progression, regression, MEA) (STRIPS, PRODIGY, TOPI, HSP, HSP-R, UNPOP, FF) Search in the space of Plans (total order, partial order, protections, MTC) (Interplan,SNLP,TOCL, UCPOP,TWEAK) Search in the space of Task networks (reduction of non-primitive tasks) (NOAH, NONLIN, O-Plan, SIPE) Planning as CSP/ILP/SAT/BDD (Graphplan, IPP, STAN, SATPLAN, BLackBOX,GP-CSP,BDDPlan) Integrating Planning & Scheduling

Plan Representation

Partial plan = (Steps, Orderings, Aux. Constraints)

Semantics in terms of Candidate sets

 --Candidate is an action sequence that satisfies all the plan constraints (but can have additional actions)
 Refinements split and prune candidate sets

Integrating Planning & Scheduline

Tradeoffs among Refinements

FSR and BSR must commit to both position and relevance of actions

- + Give state information (Easier plan validation)
- Leads to premature commitment
- Too many states when actions have durations

Plan-space refinement (PSR) avoids constraining position

- + Reduces commitment (large candidate set /branch)
- Increases plan-validation costs
- + Easily extendible to actions with duration

Subbarao Kambhampati

Integrating Planning & Scheduling

A flexible Split & Prune search for Refinement Planning

Refineplan(P: Plan)

- 0^* . If « \underline{P} » is empty, Fail.
- 1. If a minimal candidate of <u>P</u> is a solution, terminate.
- 2. Select a refinement strategy \underline{R} . Appply \underline{R} to \underline{P} to get a new plan set \underline{P}'
- 3. Split \underline{P}' into \underline{k} plansets
- 4. Non-deterministically select one of the plansets \underline{P}'_{i} Call Refine(\underline{P}'_{i})

Integrating Planning of Calcalat

Broad Themes in the Planning Renaissance Disjunctive Representations Reachability/Relevance Analysis Connections to combinatorial substrates Sophisticated domain pre-processing Techniques Tutorial on Recent Advances in Al Planning (UCAI-99.AAAI-OO) http://rakaposhi.eas.asu.edu/planning-tutorial

Heuristics based on the Planning Graph

- lev(S): index of the first level where all props in S appear nonmutexed.
 - If there is no such level, then
 If the graph is grown to level off, then ∞
 Else k+1 (k is the current length of the graph)

Set-Level heuristic: h(S) = lev(S)
Admissible but not very informed

Sum heuristic: $h(S) = \sum p \in S$ lev $(\{p\})$ Inadmissible Assumes that sub-goals are independent

Adjusted Sum heuristic: [Sanchez et. al., 2000]

 $HAdjSum2M(S) = length(RelaxedPlan(S)) + max p,q \in S \delta(p,q)$ Inadmissible where $\delta(p,q) = lev(\{p,q\}) - max\{lev(p), lev(q)\}$

Integrating Planning & Scheduling

Subbarao Kambhampat

Planning as Plangraph Solution Extraction

If there exists a k-length plan, it will be a subgraph of the k-length planning graph.

Planning is thus searching for a "valid" subgraph of the planning graph.

Combinatorial search.
Can be cast into any
combinatorial substrate
(e.g. CSP, SAT, ILP...)

Integrating Planning & Schoduling

- ♦ Constraint Satisfaction Problem (CSP)
 - Given
 - » A set of discrete variables
 - » Legal domains for each of the variables
 - » A set of constraints on values groups of variables can take
 - Find an assignment of values to all the variables so that none of the constraints are violated
- SAT Problem = CSP with boolean variables
- ♦ TCSP = CSP where variables are time points and constraints describe allowed distances
 N_S (x=)

A solution: x=B, y=C, u=D, v=E, w=D, l=B

Integrating Planning & Scheduline

Subbarao Kambhampati

Important ideas in solving CSPs

Variable order heuristics:

Pick the most constrained variable

--Smallest domain, connected to most other variables, causes most unit propagation, causes most resource contention, has the most distance etc...

Value ordering heuristics
Pick the least constraining value

Consistency enforcement

k-consistency; adaptive consistency. (pre-processing)
Forward Checking, unit propagation during search (dynamic)

x,y,u,v: {A,B,C,D,E} w: {D,E} I : {A,B} x=A ⇒ w≠E y=B ⇒ u≠D u=C ⇒ I≠A v=D ⇒ I≠B

Search/Backtracking

DDB/EBL: Remember and use interior node failure explanations Randomized search

Integrating Planning & Scheduling

Posing Plangraph Solution Extraction as a CSP/SAT

Variables: literals in proposition lists Values: actions supporting them

Constraints: Mutex and Activation constraints

Variables: Domains

~cl-B-2: { #, St-A-B-2, Pick-B-2} {#, St-A-B-2, St-B-A-2, Ptdn-A-2,Ptdn-B-2}

h-A-1: {#, Pick-A-1} h-B-1: {#,Pick-B-1}

Constraints:

he-2 = St-A-B-2 => h-A-1 !=# {activation}

On-A-B-2 = St-A-B-2

=> On-B-A-2 != St-B-A-2 {mutex constraints}

Goals:

~cl-B-2 != # he-2 !=#

Subbarao Kambhampa

Integrating Planning & Schedulin

Compilation to Integer Linear Programming

ILP: Given a set of real valued variables, a linear objective function on the variables. a set of linear inequalities on the variables, and a set of integrality restrictions on the variables, Find the values of the feasible variables for which the objective function attains the maximum value

-- o/1 integer programming corresponds closely to SAT problem

Motivations

- Ability to handle numeric quantities, and do optimization
- Heuristic value of the LP relaxation of ILP problems

Conversion

- Convert a SAT/CSP encoding to ILP inequalities

» E.g.
$$X \vee Y \vee Z => x + (1 - y) + z >= 1$$

- Explicitly set up tighter ILP inequalities
 - » If X,Y,Z are pairwise mutex, we can write x+y+z <= 1

(instead of x+y <=1; y+z <=1; z+x <=1)

Voccen et de Ormopolous Water & Karke

Integrating Planning & Schodulin

Relative Tradeoffs Offered by the various compilation substrates

- **CSP** encodings support implicit representations
 - More compact encodings [Do & Kambhampati, 2000]
 - Easier integration with Scheduling techniques
- ♦ ILP encodings support numeric quantities
 - Seamless integration of numeric resource constraints [Walser & Kautz, 1999]
 - Not competitive with CSP/SAT for problems without numeric constraints
- SAT encodings support axioms in propositional logic form
 - May be more natural to add (for whom ;-)
- BDDs are very popular in CAD community
 - Commercial interest may spur effective algorithms (which we can use)

Integrating Planning & Scheduline

Subbarao Kambhampat

Disjunctive Planning

- Idea: Consider Partial plans with disjunctive step, ordering, and auxiliary constraints
- Motivation: Provides a lifted search space, avoids regenerating the same failures multiple times (also, rich connections to combinatorial problems)
- Issues:
 - Refining disjunctive plans
 - » Graphplan (Blum & Furst, 95)
 - Solution extraction in disjunctive plans
 - » Direct combinatorial search
 - » Compilation to CSP/SAT/ILP

Solution Extraction
is a combinatorial
problem

Integrating Planning & Schedulin

Scheduling: Brief Overview

Jobshop scheduling

- Set of jobs
 - » Each job consists of tasks in some (partial) order
- Temporal constraints on jobs
 - » EST, LFT, Duration
- Contention constraints
 - » Each task can be done on a subset of machines

Integrating Planning & Scheduline

CSP Models

- Time point model
 - » Tasks as variables, Time points as values
 - » EST, LFT, Machine contention as constraints
- Inter-task precedences as variables (PCP model)

CSP Techniques

- Customized consistency enforcement techniques
 - » ARC-B consistency
 - » Edge-finding
- Customized variable/value ordering heuristics
 - » Contention-based
 - » Slack-based
- MaxCSP; B&B searches

Subbarao Kambhampat

Job Shop Scheduling as a CSP

Start Point Representation

Integrating Planning & Schedulis

PCP Representation

<u>Variables</u>: Ordering(i,j,R) for task i and j contending for resource R.

<u>Domain</u>: {i-before-j, j-before-i}

<u>Constraints</u>: Posting and propagation in the underlying temporal constraint network (time points and intervals)

More Flexible

Slack-based Ordering Heuristic

[Cheng&Smith, 1996]

(Precedence constraint-posting slack)

- ♦ For two unordered operations I and J
 - Slack(I → J) = Lft_i Est_i (Dur_i + Dur_i)
 - Bslack(I \rightarrow J) = Slack (I \rightarrow J) / f(S), (f(S) is similarity measure)
- Min-Slack Selection (Variable Ordering)
 - Choose opeations pairs with minimum value of Min (Bslack(L→ J), Bslack(J I))
- ♦ Max-Slack Posting (Value Ordering)
 - Select the precedent constraint that leaves maximum remaining slack Max(Bslack(I) J), Bslack(J I))
- This slack-based heuristic performs competitively with contention-based heuristic
- Significantly improved by combining with consistency enforcement methods (Baptiste, Le Pape, Nuijten, 1995)

Integrating Planning & Scheduling

Subbarao Kambhampat

Current State of Scheduling as CSP

- Constraint-based scheduling techniques are an integral part of the scheduling suites by ILOG/I2
 - Optimization results comparable to best approximation algorithms currently known on standard benchmark problems.
 - Best known solutions to more idiosyncratic, "multiproduct hoist scheduling" application (PCB electroplating).
- ♦ Better in most large-scale problems than IP formulations

Integrating Planning of Calcalat

Suhharan Kambhamnari

Integrating Planning & Scheduling

Integrating Planning & Schedulina

Subbarao Kambhampati

Approaches

- ♦ Decoupled
 - Existing approaches
- ♦ Monolithic
 - Extend Planners to handle time and resources
 - Extend Schedulers to handle choice
- Loosely Coupled
 - Making planners and schedulers interact

Integrating Planning & Schoduline

Suhharao Kambhamnari

Decoupled approaches (which is how Project Mgmt Done now)

Extending Planners

- ZENO [Penberthy & Weld], IxTET [Ghallab & Laborie],
 HSTS/RAX [Muscettola] extend a conjunctive plan-space planner with temporal and numeric constraint reasoners
- LPSAT [Wolfman & Weld] integrates a disjunctive statespace planner with an LP solver to support numeric quantities
- IPPlan [Kautz & Walser; 99] constructs ILP encodings with numeric constraints

Integrating Planning & Scheduline

Suhharao Kambhamnari

Actions with Resources and Duration

Load(P:package, R:rocket, L:location)

Resources: ?h:robot hand

Preconditions: Position(?h,L) [?s, ?e]

Free(?h) ?s Charge(?h) > 5 ?s

Effects: holding(?h, P) [?s, ?t1]

Hold(?h,P)

Free(?h)

Busy(?h)

Constraints: ?t1 < ?t2

Integrating Planning & Schedulin

?e - ?s in [1.0, 2.0]

Capacity(robot) = 3

Suhharao Kambhamnaei

Free(?h)

dep(?h,P)

What planners are good for handling resources and time?

- State-space approaches have an edge in terms of ease of monitoring resource usage
 - Time-point based representations are known to be better for multicapacity resource constraints in scheduling
- Plan-space approaches have an edge in terms of durative actions and continuous change
 - Notion of state not well defined in such cases (Too many states)
 - PCP representations are known to be better for scheduling with single-capacity resources

Integrating Planning & Schedulin

Loosely Coupled Architectures

Schedulers already routinely handle resources and metric/temporal constraints.

- Let the "planner" concentrate on causal reasoning
- Let the "scheduler" concentrate on resource allocation, sequencing and numeric constraints for the generated causal plan

Need better coupling to avoid inter-module thrashing....

Integrating Planning & Scheduling

Subbarao Kambhampat

Making Loose Coupling Work

- ♦ How can the Planner keep track of consistency?
 - Low level constraint propagation
 - » Loose path consistency on TCSPs
 - » Bounds on resource consumption,
 - » LP relaxations of metric constraints
 - Pre-emptive conflict resolution

The more aggressive you do this, the less need for a scheduler..

- How do the modules interact?
 - Failure explanations; Partial results

neggrating Planning of Calcalat

Suhharan Kambhamnati

Master-Slave

(RealPlan-MS)

Р

S

Planner does causal reasoning.

Scheduler attempts resource allocation

If scheduler fails, planner has to restart

Integrating Planning & Schedulin

Level	Actions by level			Maintain concurrency	
Lever		# Robots		(Class INFRES)	$PA_i = i$, $PA_j = j$, $RA_i = RA_j = \{1_x, N\}$
1	Unstack R blkF blkE\	1			$PF_{ij} = PU_{ij} =$ $RF_{ij} = RU_{ij} = \pm$
2	Unstack R blkE blkD	2		Serialize plan	$PA_i = \{i, L^{MAX}_{-1}\},\ PA_j = \{j, L^{MAX}_{-1}\},\$
3	Unstack_R_blkD_blkC	3			$RA_i = RA_j = \{1,N\}$ $PF_{ij} = PU_{ij} =$
4 /	/ Unstack_R_blkC_blkB	4	N	Introduce Free/	$RF_{ij} = RE_{ij} = \pm$
5	Putdown_R_blkC			Reallocate action	(Class FINRES)
5 1	Unstack_R_blkB_blkA	5		Class FIX	$PA_i = i$, $PA_j = j$,
6	Stack R blkF blkC				$RA_i = RA_j = \{1,N\}$ $PF_{ij} = \{\perp, i+1\},$
6	Pickup_R_blkA \	5	,		$PU_{ij} = \{ \pm_{ij}, 1 \},$ $RF_{ii} = RU_{ii} = \{ \pm_{i}, 1, N \}$
7	Stack_R_blkB_blkF	4		Class SAMELEN	$PA_{i} = \{i_{i}, L-1\},$
8	Stack R blkE blkB	3		Ciao Gilinasari	$PA_j = \{j_s, L\},\ RA_i = RA_j = \{1_s, N\}$
9	Stack_R_blkA_blkE	2			$PF_{ii} = \{\bot, i+1, L-2\},$
10	Stack R blkD blkA	1			$PU_{ij} = \{ \pm_n j_{-1}, l_{-1} \},$ $RF_{ij} = RU_{ij} = \{ \pm_n 1, N \}$
	Suck_R_OND_ONE		J	Class INCRLEN	$PA_i = \{i_{i}, L^{3OX}_{-1}\}_i$
					$PA:=\{i_n,L^{MAX}\},$
					$RA_i = RA_j = \{1_x, N\}$ $PF_{ij} = \{\pm, j+1_x, L^{3/3X_x}2\},$ $PU_{ij} = \{\pm, j-1_x, L^{3/3X_x}1\},$
					$RF_{ij} = RU_{ij} = \{\perp, 1,N\}$

Summary & Conclusion

- Motivated the need for integrating Planning and Scheduling
- Discussed the state of the art in Planning and Scheduling
- ⋄ Discussed approaches for Integrating them
 - Loosely coupled architectures are a promising approach

ntegrating Planning & Scheduling