Directional Consistency

Law is order, and good law is good order.
Aristotle, Politics

How do we explain how people perform so well on tasks that are theoretically
intractable? One explanation is to assume that intelligent behavior is actually
grounded in approximation methods that are based on idealized, easy-to-solve
models. In other words, we assume people intuitively transform hard tasks into
a series of more manageable, simple tasks, which, taken together, approximate
the original task. Some real-life problems may naturally fall into such easy classes
and can thus be solved efficiently. Likewise, some difficult problems may be trans-
formed into simplified versions that are not too distant from the original problems.
Following this line of reasoning, one approach in artificial intelligence is to imitate
the assumed human reasoning process and find ways to idealize (i.e., simplify) the
task environment. These simplifications can then be used to provide either approxi-
mate solutions or heuristic advice to guide the search toward an exact solution of
the original problem. We will indeed see that although the general constraint satis-
faction problem is hard, there are many subclasses of constraint networks that are
easy to process (some of which we already saw in Chapter 3.)

In general, a problem class is considered easy when it allows a solution in
polynomial time. Because of the popularity of backtracking search as the primary
problem-solving method for constraint satisfaction problems, a CSP is considered
easy if it is backtrack-free, that is, if backtracking search (the focus of Chapters 5
and 6) can solve the problem without encountering any dead-ends. In such a case,
a solution is produced in time linear in the size of the problem, as defined by the
number of variables and the overall size of the constraints.

As mentioned in Chapter 3, the primary means by which a constraint problem
can avoid dead-ends is by making its representation more explicit via inference. If a
bounded, polynomial-time inference method generates a backtrack-free represen-
tation, the whole problem can be solved efficiently. This concept has prompted
a theoretical investigation into the level of local consistency that suffices for
ensuring a backtrack-free search, leading to topological and constraint properties

86 chapter 4 Directional Consistency

for which a restricted level of consistency enforcing is sufficient for transforming
such networks into backtrack-free representations.
Let’s first define the notion of backtrack-free search:

DEFINITION (backtrack-free search)

4.1

4.1

A constraint network is backtrack-free relative to a given ordering d =
(x1,...,%,) if for every i < n, every partial solution of (x1,...,%) can be
consistently extended to include x;41. o

The various successful approaches for identifying tractable classes of constraint
satisfaction problems can be divided into two main groups. The first is tractability
by restricted structure, which is based solely on the structure of the constraint graph
of the problem, independently of the actual constraint relations. This class will be
the focus of the current chapter, as well as Chapters 8 and 9. The second group,
tractability by restricted consiraint relations, or constraint languages that identify
classes that are tractable thanks to special properties of the constraint relations, is
the focus of Chapter 11.

Tractability due to restricted structure can be reasoned from the topological
properties of the constraint graph and its hypergraph. We will start by reviewing
relevant graph concepts.

Graph Concepts: Induced Width

Topological characterization is centered on the graphical parameter known as
induced width. Given an undirected graph G = (V, E), an ordered graph is a pair
(G,d), where V = {v1,...,vy} is the set of nodes, E is a set of arcs over V, and
d = (v1,...,v,) is an ordering of the nodes. The nodes adjacent to v that precede
it in the ordering are called its parents. The width of a node in an ordered graph
is its number of parents. The width of an ordering d, denoted w(d), is the maxi-
mum width over all nodes. The width of a graph is the minimum width over all the
orderings of the graph.

EXAMPLE Figure 4.1 presents a constraint graph G over six nodes, along with three

4.1

orderings of the graph: dy = (F,E, D, C, B, A), its reversed ordering d, =
(A,B,C,D,E,F), and d3 = (F,D,C,B,A,E). Note that we depict the
orderings from bottom to top, so that the first node is at the bottom of the
figure and the last node is at the top. The arcs of the graph are depicted
by the solid lines. The parents of A along d; are {B, C, E}. The width of A
along dy is 3, the width of C along d; is 1, and the width of A along d3
is 2. The width of these three orderings are w(d)) = 3, w(dz2) = 2, and
w(dz) = 2. The width of graph G is 2. °

Figure 4.1

EXAMPLE
4.2

4.1 Graph Concepts: Induced Width 87

A

F E
B c E A
D B

D
c c

E

F
B D
A F

(a) (b) (© (@

(a) Graph G, and three orderings of the graph: (b) dy = (F, E, D, C, B, A), (c) dp = (A, B, C,
D, E, F),and (d) d3 = (F, D, C, B, A, E). Broken lines indicate edges added in the induced
graph of each ordering.

The induced graph of an ordered graph (G,d) is an ordered graph (G*,d)
where G* is obtained from G as follows: The nodes of G are processed from last
to first (top to bottom) along d. When a node v is processed, all of its parents are
connected. The induced width of an ordered graph, (G, d), denoted w*(d), is the
width of the induced ordered graph (G*, d). The induced width of a graph, w*, is

the minimal induced width over all its orderings.

Consider again Figure 4.1. For each ordering d, (G, 4) is the graph depicted
without the broken edges, while (G* d) is the corresponding induced
graph that includes the broken edges. We see that the induced width of B
along d is 3, and that the overall induced width of this ordered graph is
3. The induced widths of the graph along orderings d; and d3 both remain
2, and, therefore, the induced width of the graph G is 2. °

A rather important observation is that a graph is a tree (has no cycles) if and
only if it has a width-1 ordering. The reason a width-1 graph cannot have a cycle
is that, for any ordering, at least one node on the cycle would have two parents,
thus contradicting the width-1 assumption. And vice versa: if a graph has no cycles,
it can always be converted into a rooted directed tree by directing all edges away
from a designated root node. In such a directed tree, every node has exactly one
node pointing to it—its parent. Therefore, any ordering in which every parent node
precedes its child nodes in the rooted tree has a width of 1. Furthermore, given

T

88 chapter 4 Directional Consistency

MIN-WIDTH {(MW) j
Input: A graph G = (V, E), V={wv,....voL

Output: A min-width ordering of the nodes d = (v4,...,Va).

1. forj=nto1by -1do

2. r < a node in G with smallest degree.
3. Put rin position jand G < G- .

(Delete from Vnode rand from E all its adjacent edges)
4, endfor

Figure 4.2 The MIN-WIDTH (MW) ordering procedure.

an ordering having a width of 1, its induced ordered graph has no additional arcs,
yielding an induced width of 1, as well. In summary, we have the following:

PROPOSITION A graph is a tree iff it has induced width of 1. o
4.1
4.1.1 Greedy Algorithms for Finding Induced Widths

Finding a minimum-width ordering of a graph can be accomplished by the greedy
algorithm MiN-wiDTH (see Figure 4.2). The algorithm orders variables from last to
first as follows: In the first step, a variable with a minimum number of neighbors
is selected and put last in the ordering. The variable and all its adjacent edges are
then eliminated from the original graph, and selection of the next variable continues
recursively with the remaining graph. Ordering d; of G in Figure 4.1(c) could have
been generated by a min-width ordering.

PROPOSITION Algorithm MiN-wIDTH (MW) finds a minimum-width ordering of a graph.

4.2

Proof See Exercise 2. °

Though finding the min-width ordering of a graph is easy, finding the minimum
induced width of a graph is hard (NP-complete). Nevertheless, deciding whether
there exists an ordering whose induced width is less than a constant k takes Oo(n*)
time.

A decent greedy algorithm, obtained by a small modification to the MIN-WIDTH
algorithm, is the MIN-INDUCED-WIDTH (Miw) algorithm (Figure 4.3). It orders the
variables from last to first according to the following procedure: The algorithm
selects a variable with minimum degree and places it last in the ordering. The
algorithm next connects the node’s neighbors in the graph to each other, and only

4.1 Graph Concepts: Induced Width 89

MIN-INDUCED-WIDTH (MIW)

Input: A graph G=(V, E), V={w,...,vn}.

Output: An ordering of the nodes d = (v1,...,vp).

1. forj=nto 1 by -1do

2 r < a node in Vwith smallest degree.

3 Put rin position j.

4, Connect r's neighbors: E < EU {{v;, vj)|(v;, r) € E, (v, r) € E}.
5 Remove rfrom the resulting graph: V « V-{r}.

Figure 4.3 The MIN-INDUCED-WIDTH {MIw) procedure.

MIN-FILL {MF)

Input: A graph G=(V, E), V={v,...,vht

Output: An ordering of the nodes d = (v1,...,vp).

1. forj=nto1by -1do

r < a node in V with smallest fill edges for his parents.

Put rin position j.

Connect r's neighbors: E < EU{{v;, vj)|lvi, 1) € E(v;, r) € E}.
Remove rfrom the resulting graph: V < V- {r}.

ok DN

Figure 4.4 The MIN-FILL {MF) procedure.

then removes the selected node and its adjacent edges from the graph, continuing
recursively with the resulting graph. The ordered graph in Figure 4.1(¢c) could
have also been generated by a min-induced-width ordering of G. In this case, it
so happens that the algorithm achieves the overall minimum induced width of ’;he
graph, w*. Another variation yields a greedy algorithm known as MIN-FILL. Rather
than order the nodes in order of their min-degree, it uses the min-fill set, that is, the
number of edges needed to be filled so that its parent set is fully connected a;s an
ordering criterion. This min-fill heuristic, described in Figure 4.4, was demons:trated
empirically to be somewhat superior to the MIN-INDUCED-WIDTH algorithm. The
ordered graph in Figure 4.1(c) could have been generated by a min-fill ordering of
G, while the ordering d; or d3 in parts (a) and (d) could not.

The notions of width and induced width, and their relationships with various
graph parameters, have been studied extensively in the past two decades. Here we
will focus only on those aspects that are relevant to constraint processing.

e

90

chapter 4 Directional Consistency

4.1.2 Chordal Graphs

Computing the induced width for chordal graphs is easy. A graph is chordal if
every cycle of length at least 4 has a chord, that is, an edge connecting two non-
adjacent vertices. For example, G in Figure 4.1(a) is not chordal since the cycle
(A, B,D, C, A) does not have a chord. The graph can be made chordal if we add
the edge (B, C) or the edge (4, D).

Many difficult graph problems become easy on chordal graphs. For example,
finding all the maximal (largest) cliques (completely connected subgraphs) in a
graph—an NP-complete task on general graphs—is easy for chordal graphs. This
task (finding maximal cliques in chordal graphs) is facilitated by using yet another
ordering procedure called the max-cardinality ordering (Tarjan and Yannakakis
1984). A max-cardinality ordering of a graph orders the vertices from first to last
according to the following rule: The first node is chosen arbitrarily. From this point
on, a node that is connected to a maximal number of already ordered vertices is
selected, and so on. (See Figure 4.5.)

A max-cardinality ordering can be used to identify chordal graphs. Namely,
a graph is chordal iff in a max-cardinality ordering each vertex and all its parents
form a clique. You can thereby enumerate all maximal cliques associated with each
vertex (by listing the sets of each vertex and its parents, and then identifying the
maximal size of a clique). Notice that there are at most n cliques: each vertex
and its parents are one such clique. Consequently, when using a max-cardinality
ordering of a chordal graph, the ordered graph is identical to its induced graph, and
therefore its width is identical to its induced width. Also:

PROPOSITION If G* is the induced graph of a graph G, along some ordering, then G* is

chordal.

Proof See Exercise 3. °

MAX-CARDINALITY (MC)

Input: A graph G=(V, E), V= {V1,....val.
Output: An ordering of the nodes d={wv,...vn).
1. Place an arbitrary node in position 0.

2. forj=1tondo

3. r < anode in G that is connected to a largest subset of nodes
in positions 1 to j- 1, breaking ties arbitrarily.

4. endfor J

Figure 45 The MAX-CARDINALITY (MC) ordering procedure.

4.2 Directional Local Consistency 91

We see again that G in Figure 4.1(a) is not chordal since the parents of A
are not connected in the max-cardinality ordering in Figure 4.1(d). If we
connect B and C, the resulting induced graph is chordal. o

k-Trees

A subclass of chordal graphs is k-trees. A k-tree is a chordal graph whose maximal
cliques are of size k+ 1, and it can be defined recursively as follows: (1) A complete
graph with k vertices is a k-tree. (2) A k-tree with r vertices can be extended to
7+ 1 vertices by connecting the new vertex to all the vertices in any clique of size k.

k-trees were investigated extensively in the graph-theoretical literature. It was
shown, for example, that a graph can be embedded in a k-tree if and only if it has
an induced width w* < k (Arnborg 1985).

4.2 Directional Local Consistency

We now return to the primary target of this chapter: determining the amount of
inference that can guarantee a backtrack-free solution.

The level of inference applied to a given constraint network can be restricted
in a variety of ways. A general approach discussed in Chapter 3 is bounding the
number of variables that participate in an inference to yield propagation methods
such as arc-consistency or path-consistency. Another orthogonal approach is to
restrict inference relative to a given ordering of the variables, in anticipation of
subsequent processing by search.

Indeed, securing full arc-consistency, full path-consistency, and full i-
consistency is sometimes unnecessary if a solution is going to be generated by search
along a fixed variable ordering. Consider, for example, the task of applying search
on a problem whose ordered constraint graph is given in Figure 4.6. To ensure that
the search algorithm encounters no dead-ends when assigning values using ordering
d = (x1,%2,%3,x4), we need only make sure that any assignment to x; will have at

X4

X3

X2

x1

Figure 4.6 An ordered constraint graph.

88

()

4.2.1

4 Directional Consistency

one consistent corresponding value in x> and x3, and that, subsequently, any

\ment to x3 will have at least one consistent corresponding value in x4. This can
oe achieved by making x; arc-consistent relative to x, and x3, and x3 arc-consistent
relative to x4. We don’t need to ensure that x; and x3 are arc-consistent relative
to x, or that x4 is arc-consistent relative to x3. In other words, arc-consistency is
required only in the direction to be exploited by the search algorithm.

In this section we develop the idea of directional consistency—restricting infer-
ence to a given variable ordering. We present algorithms for enforcing varying levels
of directional consistency. We will see how graphical properties of the constraint
graph can shed light on the design and analysis of such algorithms. We will further
show that directional inference leads to a general and complete variable elimination
algorithm called ADAPTIVE-CONSISTENCY. In Chapter 8 these ideas are extended to
relational consistency.

Since we start with directional arc- and path-consistency that in their simplest
form are relevant only to binary constraints, we will initially assume that the net-
works in question are binary, and then generalize to arbitrary constraints, to include
the notions of generalized arc-consistency and relational consistency (in Chapter 8).

Directional Arc-Consistency

DEFINITION (directional arc-consistency)

4.2

A network is directional arc-consistent relative to order d = (x1, ..., %) iff
every variable x; is arc-consistent relative to every variable x; such that
i<j. °

An algorithm pAac for achieving directional arc-consistency along ordering
d = (x1,...,%,) is given in Figure 4.7. It processes the variables in reverse order of
d. When processing x;, all the binary constraints incident to x;, Ry; such that k < i,
are considered and the corresponding domains Dy, of x;, are tightened.

DAC(R)
Input: A network R = (X, D, C), its constraint graph G, and an ordering
d=1(x1,....xp).

Output: A directional arc-consistent network.

1. fori=nto1by -1do

2 for each j < isuch that Rj; € R, do

3. D/' <« Dj N 7 (Ffl',' X D)), (this is REVISE((X/'), x))).
4. endfor

Figure 4.7 Directional arc-consistency (DAC).

EXAMPLE

4.4

4.2 Directional Local Consistency 93

Assume that the constraints and the domains of the problem in Figure 4.6
are specified below.

Dy = {red, white, black}
D5 = {green, white, black}
D3 = {red, white, blue}
Dy = {white, blue, black}
Rip: x1=x
Riz: x1=x3
R3g: x3=2x4

Using the ordering d = (x1, %2, %3,%4), the algorithm processes the vari-
ables in the reverse order along the ordered graph in Figure 4.6. Starting
with x4, DAC first revises x3 relative to x4, deleting red from Dj3 (since
red of x3 has no match in Dy), yielding D3 = {white, blue}. Since x4
has only this one constraint, processing proceeds with x3, and the con-
straint Rj3 is tested to ensure that x) is arc-consistent relative to x3.
As a result, red and black are eliminated from D; since they have no
equals in the updated domain of D3. When x; is next processed, noth-
ing changes because x1, with its current domain Dy = {white}, is already
arc-consistent relative to x7. The final resulting domains are Dy = {white},
D, = {green, white, black}, D3 = {white, blue}, D4 = {white, blue, black},

yielding a directional arc-consistent network relative to the given ordering.

Is the resulting network also full arc-consistent? Checking the constraint
R31, we see a violation of arc-consistency: variable x3 is not arc-consistent
relative to x1; blue in D3 has no match in Dy. Nevertheless, if we now try
to assign values in the forward direction of ordering d = (x1,%2,x3,%4),
we will assign x) = white (the only value in x;’s domain), then x, = white
(the only way to satisfy the equality constraint between x; and x7), and
similarly, x3 = white and x4 = white. We see that despite lack of full arc-
consistency a consistent assignment was made to every variable, and that
no dead-end was encountered. ®

There is a distinct computational advantage to enforcing directional arc-
consistency rather than full arc-consistency: each constraint is processed exactly
once. Indeed, we have the following: ‘

PROPOSITION Given a network R, and an ordering of its variables d, algorithm pac

4.4

generates a directional arc-consistent network relative to d, with time com-
plexity of O(ek?), where e is the number of binary constraints (i.e., number
of arcs) and k bounds the domain size.

94 chapter 4 Directional Consistency

Proof Because of the processing order, once the arc-consistency of x; relative to a

EXAMPLE
4.5

4.2.2

later x; is enforced, the domain of x; will not be revised again. In addition,
even if the domain of x; is subsequently revised (in order to enforce arc-
consistency with another, intermediate variable), it can only shrink in size;
no new members will be added to the domain of x;, and therefore the
enforced arc-consistency of x; relative to x; will be maintained. Since there
are ¢ binary constraints, each processed just once, and since the complexity
of revist is O(k?), the complexity of pAc is bounded by O(ek?). .

Algorithm pAC seems optimal for achieving directional arc-consistency. To
merely verify directional arc-consistency, each constraint needs to be inspected at
least once, requiring O(ek?) consistency tests.

Let's now examine another constraint network. This time the constraints
are between every pair of variables and are all not-equal constraints (R;; :
x; # %,i # f), and the domains will all be {red, blue}. This network
is already full arc-consistent, and so, by definition, it is also directional
arc-consistent for any ordering. Therefore, applying DAC in any order will
not change the domains of the variables. Does the network’s directional
arc-consistent standing guarantee a backtrack-free search for a consistent
solution? Well, we see that it is possible to make the consistent partial
assignment ({(x1, red), {x2, blue)). However, there is no assignment to x3
that satisfies both Rp3 : % # x3 and R13 : x1 # x3, and therefore a dead-
end is encountered. We see that like full arc-consistency, DAC is insufficient
to guarantee that every problem will be backtrack-free; higher levels of
consistency may be necessary. o

Directional Path-Consistency

The same principle of restricting inference to a specific ordering can also be applied
to path-consistency and to i-consistency in general. These consistency properties
can be achieved more efficiently relative to one specific ordering than can the
corresponding full consistency.

DEFINITION (directional path-consistency)

43

EXAMPLE
4.6

A network R is directional path-consistent relative to order d = (x1, . .., %n)
iff for every k > i, j, the pair {x;, x;} is path-consistent relative to x;. °

Consider again the graph-coloring problem whose ordered constraint
graph along d = (x1, %2, %3, %4), having the domains {red, blue}, is depicted
in Figure 4.8(a). As we saw in Chapter 3, this network is arc-consistent,
but not path-consistent. For example, the (universal) constraint between

Figure 4.8

THEOREM

4.1

4.2 Directional Local Consistency 95

X4().D = {red, blue} X4

X3<

=

X1

(a) (b)

(a) An ordered constraint graph and () its induced graph.

x3 and x; allows the assignment x; = red and x3 = blue, while there is no
assignment to x4 that both satisfies the relevant constraints and agrees with
this instantiation. Enforcing full path-consistency on this network requires
adding the constraints Ri3 : x; = x3 and Ry4 : x2 = x4. However, for
directional path-consistency relative to d only, we only need to add the
constraint x; = x3. This allows a solution to be assembled along order d
without encountering dead-ends. o

As implied by the previous example, when the network is not directional
path-consistent, directional path-consistency can be enforced. Algorithm prC
(Figure 4.9) achieves strong directional path-consistency (namely, both directional
arc-consistency and directional path-consistency). The prc algorithm processes
the variables in reverse order of d. When processing variable x;, it makes all the
constraints Ry, i,j < k, path-consistent relative to x, and it also enforces arc-
consistency on all the variables x;, i < k, relative to x,. Step 3 of the algorithm
is equivalent to REVISE((x;), %), and performs directional arc-consistency. Step 5
is equivalent to rRevise-3((xi,%;), %;): recording or updating the binary constraints
inferred by a later third variable.

A new feature of this algorithm is its explicit reference to the underlying con-
straint graph; the algorithm manages not only the changes made to the constraints
but also the changes made to the constraint graph, namely, adding new arcs that
correspond to the added new constraints. ‘

Given a binary network R and an ordering d, algorithm DPC generates a
largest equivalent, strong, directional path-consistent network relative to
d. The time and space complexity of Drc is O(n3k3), where n is the number
of variables and k& bounds the domain sizes.

96 chapter 4 Directional Consistency 4.2 Directional Local Consistency 97
DPC(R) With this approach, algorithm pac still yields a directional arc-consistent network,
Input: A binary network ® = (X, D, C) and its constraint graph G = (V, E), and Dpc yields a directional path-consistent network.
d=1{x1,...xn).

. . DEFINITION (directional i-consistency)
Output: A strong directional path-consistent network and its graph G'=(V, E'). 4.4

A network is directional i-consistent relative to order d = (x1,..., %) iff

Initialize: £’ « E. every i — 1 variables are i-consistent relative to every variable that succeeds

1. fork=nto1by -1do them in the ordering. A network is strong directional i-consistent if it is

2 (a) ¥ i < k such that x; is connected to xi in the graph, do directional j-consistent for every j < i. .

3 Dj < DiN i (Rik M Dy (REVISE (), xid) When extending directional consistency to i-consistency, we consider subnet-

4 (b) ¥ i,j < k such that (x;,x),{x;xx) € E' do works defined on i variables. Given a general constraint network, algorithms for

5. Rj < Ry N 7 (Rik M Dg X Rig) (REVISE-3((x;, X)), X¢) enforcing di.re':ctional i-cor%sistency can be obtained by generalizing DPC, r.ep!acing
, i the composition operator in DpC (step 5) by the REVISE-i operator. A description of

6 E'« E"Uxix) the generalized algorithm is given in Figure 4.10. Note that in this algorithm we

7. endfor . use a generic REVISE procedure that operates on any size set as its first parameter. If

8 return the revised constraint network R and G’ = (V, E"). the parent set of a variable has no more than i — 1 variables, the procedure records a

single constraint over the parent set (steps 2-4). Otherwise, we record a constraint

Figure 4.9 Directional path-consistency (orc). over every subset of size i — 1 of the parent set (step 6). Algorithm Dic; enforces

Proof To prove the above theorem, all we need to show is that when prc termi- Directional i-consistency (DIC; (R))
nates every pair (x;, x;) is path-consistent relative to xy,, assuming i < j < k

in d. We know that when x;, was processed (step 5), the pair (x;, x;) was Input: A network ® = (X, D, C), its constraint graph G = (V, £), d = {x1.....Xa)

made path-consistent relative to xj,. We also know that this condition may Output: A strong directional ~consistent network along d and its graph
be violated only if the domain of x;, is later reduced, or if the two binary G'=(VE).
constraints Ry, and Ry, are changed. However, by the time x, is processed, | Initialize: £' < E, C' < C.

these two constraints already have their final form determined because

they can be affected only when processing variables appearing later than xy, |
and those were all processed before x;,. Regarding complexity, the number 2. let P = parents(x;).

of times the inner loop (steps 4, 5, and 6) is executed for variable x; is at 3 if |P| <i-1then
most O(n?) (the number of different pairs of earlier neighbors of variable ' -

1.forj=nto1by -1do

x;), and each step is at most O(k®), yielding an overall complexity of 4. Revise (P, x)
O('ﬂ3k3). Since the computation of steps 2 and 3 is complctely dominated 5. else, for each subset of /-1 variables S, SC P, do
by the computation of steps 4, 5, and 6, we find that the overall complexity i
. 313 6. Revise (S, X))
is O(n’k>). o
7. endfor
4.2.3 Directional -Consistency 8. C' « C' U all generated constraints.
9. E' < E' U {{xk, Xm)|Xk. Xm € P} (connect all parents of x))
In the previous two subsections we restricted our attention to binary networks 10. endfor

because the constraints recorded were binary or unary only. Generalizing to direc-
tional i-consistency must account for constraints with larger scopes. We can lift the 11. return C" and E".
restriction of binary constraints and apply DAC or DPC to a general network, but we
must restrict operation of these two algorithms to their binary subnetworks only. Figure 4.10 Algorithm directional i-consistency (DIC;).

98 chapter 4 Directional Consistency

EXAMPLE
47

4.2.4

strong directional i-consistency (see Exercise 9). Its complexity will be addressed
later using induced width.

Applying pic3 to the network R = {Ryy,} in Example 3.9, along ordering
d = (x,y,z), will add the constraint Ry, = {((x, 0}(y, 0))} in addition to
the constraint R, = {((x, 0))}. o

Note that pic3 and Dpc are identical if the input network is binary, but they
handle ternary constraints differently.

Graph Aspects of Directional Consistency

Neither directional arc-consistency nor full arc-consistency can change the con-
straint graph. Higher levels of directional consistency do change the constraint
graph, although to a lesser extent than their nondirectional counterparts. For
example, applying DpC to the network whose ordered graph is given in Figure
4.8(a) results in a network having the graph in Figure 4.8(b), where arc (x1,x3) is
added. If we apply DPC to the problem in Figure 4.6, no constraint will be added,
since the changes are only those caused by arc-consistency. Full path-consistency,
on the other hand, will make the constraint graph of Figure 4.6 complete. Before
continuing with this section, you should refresh your memory of the graph concepts
defined in Section 4.1, if necessary.

During processing by DpC, a variable x;, only affects the constraint between a
pair of earlier variables when it is constrained via binary constraints! and is thus
connected to both earlier variables in the graph. In this case, a new constraint and
a corresponding new arc may be added to the graph. Algorithm DpC recursively
connects the parents of every two nodes in the ordered constraint graph, thus
generating the induced ordered graph. Indeed, the graph in Figure 4.8(b) is the
induced graph of the ordered graph in Figure 4.8(a).

PROPOSITION Let (G, d) be the ordered constraint graph of a binary network R. If DPC

4.5

is applied to R relative to order d, then the graph of the resulting constraint
network is subsumed by the induced graph (G*, d).

Proof Let G be the original constraint graph of R, and let G be the constraint

graph of the problem generated by applying Dpc to R along d. We prove
the above claim by induction on the variables along the reverse ordering
of d = (x1,...,%,). The induction hypothesis is that all the arcs incident
to %y, ..., % in Gy appear also in (G*,d). The claim is true for x, (the
induction base step), since its connectivity is equivalent in both graphs.

1. Remember that, as defined, Dpc manipulates only the binary constraints.

THEOREM
4.2

4.2 Directional Local Consistency 99

Assume that the claim is true for x,, . . ., x;, and we will show that it holds
alsofori—1 (i.e., forxy,...,x;_1). Namely, we will show that if (x;_1, x;),
j <i-—1,is an arc in Gy, then it is also in (G*,d). There are two cases:
either x;_; and x;j are connected in G1 (i.e., they have a binary constraint
in R, and therefore they will stay connected in (G*,d)), or a binary con-
straint over {x;_1, x;} was added by Dpc. In the second case, this new binary
constraint was obtained while processing some later variable x;, t > i — 1.
Since a constraint over x;_1 and x; is generated by ppc, both xj and x;_1
must be connected to x; in Gy and, following the induction hypothesis,
each will also be connected to x; in (G*,d). Therefore, x;_1 and x; will
become connected when generating the induced graph (G*, d) (i.e., when
connecting the parents of x;). °

The induced graph and its induced width can be used to refine the worst-case
complexity of Dpc along d. Since DPC processes only pairs of variables selected from
the set of current parents in the ordered constraint graph, the number of such pairs
can be bounded by the parent set size of each variable, namely, by w*(d). We
conclude the following:

Given a binary network R and an ordering d, the complexity of Dpc along
d is O((w*(d))? - n - k3), where w*(d) is the induced width of the ordered

constraint graph along d.

Proof Proposition 4.5 asserts that when a variable x is being processed by prc it

is connected to at most w*(d) parents. Therefore the number of triplets
that a variable can share with its parents is O(w*(d)%). Since processing
each triplet is O(k3), and since there are n variables altogether, we get the
complexity bound claimed above. o

Consequently, orderings with a small induced width allow Dpc to be more effi-
cient. Rather than being governed by cubic complexity, Dpc is linear in the number
of variables for networks whose constraint graph has bounded induced width.

The complexity of general DIC; can be bounded using the induced width as
well. Given a general network whose constraint scopes are bounded by i, applying
DIC; in any ordering connects the parents of every node in the ordered primal
constraint graph (restricted to constraints of arity i or less), yielding again its
induced graph. We can now extend Proposition 4.5 and Theorem 4.2 to the general
i-consistency case.

PROPOSITION Given a network R whose constraint arity is bounded by i, if Dic; is applied

4.6

to R relative to order d, then the primal graph of the resulting constraint
network is subsumed by the induced graph (G*,d).

Proof See Exercise 8, °

100 chapter 4 Directional Consistency

THEOREM
4.3

4.3

4.3.1

The complexity of the algorithm is determined by the ReVISE procedure. If the
algorithm records a constraint on a set of size j, its complexity is O((2k)’). Since
the size of the parent set is bounded by w*(d), and the number of its subsets of
size i is bounded by O((w*(d))?), we conclude the following:

Given a general constraint network R whose constraints’ arity is bounded
by i, and an ordering d, the complexity of pic; along d is O(n(w*(d))" -
(28)1). .

Width versus Local Consistency

In Example 4.6, we saw that ppc changed the network so that a solution could
be found in a backtrack-free manner. However, it is easy to come up with examples
where DpC (or even full path-consistency) would not suffice for making the network
backtrack-free. Clearly, it would be highly desirable to have a criterion that could
identify, in advance, the level of consistency sufficient for generating a backtrack-
free representation for a given constraint network. Such a criterion can be provided,
based on the induced width of the network’s graph. Let’s start with the special case
of width 1.

Solving Trees: Case of Width 1

In the example graph of Figure 4.6, we saw that directional arc-consistency gen-
erated a backtrack-free network. However, it will not generate a backtrack-free
network when we add a not-equal constraint between x; and x4 augmenting Exam-
ple 4.4. Notice also that the graph of Figure 4.6 did not have cycles, although it
did once we added the constraint. Indeed these examples illustrate the general
characteristics that any arc-consistent tree-structured binary network is backtrack-
free for a variety of orderings. Moreover, if a tree network is not arc-consistent,
arc-consistency can be enforced. We will use the concept of width to express this
relationship between graphs and local consistency. Remember (from Section 4.1)
that a graph is a tree iff it has a width-1 ordering.

However, as we observed before, attaining full arc-consistency is not neces-
sary for achieving backtrack-free solutions on trees. For example, if the constraint
network in Figure 4.11 is assigned values (by backtrack search) along ordering
d1 = (x1,%2,%3,%4, %5, X6, %7), we need only make sure that any value assigned to
variable x1 will have at least one consistent value in x;. Notice that the tree in
Figure 4.11, along di = (x1,x2, %3, x4, %5, Xg, x7), has a width of 1, while along
the ordering d> = (x4, x5, X6, %7, %2, %3, %1), the width is 2. We can conclude the
following.

4.3 Width versus Local Consistency 101

Xy

Figure 4.11 A tree network.

TREE-SOLVING
Input: A tree network T = (X, D, C).
Output: A backtrack-free network along an ordering d.
Generate a width-1 ordering, d = x1,...,X, along a rooted tree.
let x,(;) denote the parent of x; in the rooted ordered tree.
fori=nto1do

REVISE ((Xp (1)), X);

if the domain of x;(;) is empty, exit (no solution exists).

o o~ W=

endfor

Figure 4.12 TREE-SOLVING algorithm.

THEOREM (width 1 and directional arc-consistency)

e Let d be a width-1 ordering of a constraint tree T. If T is directional arc-

consistent relative to d, then the network is backtrack-free along 4.

Proof Consider a width-1 ordering d = (x1,...,%y). Let’s assume that a subset
of variables x7, . . ., x; was instantiated consistently and that we now need
to instantiate x;.1. Since d is a width-1 ordering, there is only one parent
variable x; (j < i) that may constrain x;,1. Since x; is arc-consistent relative
to x;4 1, it must have a legal value consistent with the current assignment to
xj, and this value provides a consistent extension to the partial solution. e

So, if we have a width-1 ordering of a binary constraint network, we
can apply algorithm DAC along that ordering, thus enforcing directional arc-
consistency, and then find a backtrack-free solution. The tree-solving algorithm
in Figure 4.12 presents these steps explicitly. Step 1 generates a rooted-directed

102 chap

4.3.2

THEOREM
4.5

ter 4 Directional Consistency

tree that corresponds to various width-1 orderings. Steps 3-5 apply directional arc-
consistency. Clearly (from Theorem 4.4) the tree-solving algorithm is complete for
trees, and its complexity is O(nk?), the complexity of pac.

Interestingly enough, if we apply DAC relative to a width-1 order d and then
apply DAC relative to the reverse order of d, we will achieve full arc-consistency
for binary trees in O(nk?) steps. In contrast, if algorithm Ac-3 had been applied
to a tree, its worst-case performance is O(nk?). If algorithm Ac-4 is applied to
trees, it also has a complexity of O(nk?), but at the cost of a much more involved
implementation.

Solving Width-2 Problems

Can we also make a width-2 network backtrack-free? To some extent, the answer
is yes. Let’s extend the relationship observed in Theorem 4.4:
{(width 2 and directional path-consistency)

If R is directional arc- and path-consistent along d, and if it also has width
2 along d, then it is backtrack-free along d.

Proof To ensure that a width-2 ordered constraint network is backtrack-free, it is

THEOREM
4.6

required that each variable selected for instantiation will have some values
in its domain that are consistent with all previously chosen values. Suppose
that x1,x2, .. .,%;, were already instantiated. Having a width-2 ordering
implies that variable x;,; is constrained with at most two previous vari-
ables, x; and;, 1, j < k. Since the problem is directional path-consistent, for
any assignment of values to x; and x;, there exists a consistent assignment
for xp.1. If x4, is constrained by only one previous variable, directional
arc-consistency ensures the existence of a consistent extension to x4
as well. .

If a problem has a width-2 ordering but is not directional path-consistent,
then we may consider enforcing directional path-consistency by prc. However,
as we saw in Section 4.2.2, applying ppc may add arcs to the problem’s graph
and increase its width, now its induced width w*(d), above 2. Therefore, apply-
ing DPC to width-2 problems does not guarantee a backtrack-free solution, unless
w*(d) = 2. Aring s a good example of a problem whose width and induced width
is 2. Figure 4.13 shows an ordered ring and its induced graph. Both graphs have a
width of 2.

A binary constraint network R having an induced width of 2 can be solved
in linear time in the number of variables namely in O(nk>).

Proof Let d be an ordering of a binary constraint network R for which

DIV k(AN — 9 Quch a mrohlem can he colved by first anplving DPC

Figure 4.13

4.3.3

THEOREM
4.7

4.3 Width versus Local Consistency 103

Increasing
order

An induced width-2 graph. {a) Width-2. (b} lts induced width-2 graph.

relative to d, followed by a backtrack-free value assignment. For problems
having an induced width of 2, ppc is bounded by O(nk3) steps. o

How easy is it to determine if a graph has an ordering with an induced width
of 2?7 Clearly, enumerating all orderings may be hard. Fortunately there is a linear
time algorithm for recognizing such graphs: the MIN-INDUCED-WIDTH (MIW) algorithm
described in Section 4.1. Remember, Miw orders the nodes in decreasing order. It
selects a node with smallest degree, places it last in the ordering, connects its
neighbors, removes it from the graph, and continues recursively. If at anytime a
selected node’s degree is larger than 2, the graph must have an induced width
higher than 2 (see Exercise 14).

Solving Width-i Problems

The relationship between graph width and the tractability of the problem can be
extended to general nonbinary networks. A problem is backtrack-free along d if the
level of its directional strong consistency along this order is greater than the width
of the ordered constraint graph.

The intuition behind this claim rests on the fact that when backtracking works
along a given ordering, it only tests the consistency of the relevant constraints
among past and current variables. If these past constraints already ensure that a
locally consistent partial solution will remain consistent relative to future variables,
a dead-end will not occur. When a future variable is constrained with many past
variables (i.e., when it has a high width) the required level of local consistency on
past variables is higher. Generalizing previous theorems yields the following:

(Width i — 1 and directional i-consistency)

Given a general network R, if its ordered constraint graph along d has a
width of i — 1, and if it is also strong directional i-consistent, then R is
backtrack-free along d.

104

chapter 4 Directional Consistency

Proof Assume a network with width i — 1 along d that is strong i-consistent.

4.4

Then, given any partial solution & = ((x1,a1), ..., (xi-1,4;_1)) and given
the next variable x;, because the width is i—1, x; is connected to a subset of
variables S;, S; € {x1,...,%}, of at most i — 1 variables. Because of strong
i-consistency, the partial assignment a restricted to S;, a[S;], which is of
length i — 1 or less, is consistent with some value of x;. Therefore, there
exists a consistent extension of a to x;. °

Because most problem instances do not satisfy the desired relationship between
width and local consistency, we may want to increase the level of strong directional
consistency until it matches the width of the problem. Specifically, if a width-(i—1)
problem is not i-consistent, algorithms enforcing directional i-consistency should
be applied.

However, as in the case of width 2, algorithm Dic; augments the network
with additional constraints (either binary or nonbinary), yielding a denser con-
straint graph. The resulting graph is identical to (or subsumed by) the induced
ordered graph along the processed ordering. In other words, enforcing directional
i-consistency guarantees a backtrack-free solution if the network’s induced width
along the processed order is i — 1. This leads us to a simple procedure. Given a
problem, select an ordering having a small width w(d), compute its induced width
w*(d), and then apply strong directional (w*(d) + 1)-consistency. The resulting
network must satisfy the desired relationship—and is therefore backtrack-free.

Adaptive Consistency and Bucket
Elimination

Algorithm ADAPTIVE-CONSISTENCY (ADC]) in Figure 4.14 implements the adaptive
procedure suggested at the end of the previous section. Given an ordering d, ADC]
establishes directional i-consistency recursively, changing levels from node to node
to adapt to the changing width of nodes at the time of processing. The algorithm
is just pic;, when i is adaptive, This approach works because by the time a node
is processed, its final induced width is determined, and the matching level of con-
sistency can be achieved. The procedure may impose new constraints over certain
subsets of variables, as well as tighten existing constraints.

Another way to look at adaptive consistency is as a variable elimination algo-
rithm. That is, at each step, one variable and all its related constraints are solved,
and a constraint is inferred on all the rest of the participating variables. We next pro-
vide an alternative description of adaptive consistency that employs a data structure,
called buckets, which provides a convenient way for describing variable elimination
algorithms, avoiding an explicit reference to the constraint graph. This description
highlights important properties of the algorithm and unifies variable elimination
algorithms for a variety of tasks. The idea is to associate a bucket with each variable

Figure 4.14

4.4 Adaptive Consistency and Bucket Elimination 105

ADAPTIVE-CONSISTENCY (ADC1)

Input: A constraint network R = (X, D, C), its constraint graph G = (V. E),
d=1{x1,....xp).

output: A backtrack-free network along d.
Initialize: C' <~ C, E' < E

1.forj=nto 1 do

2. Let S «— parents (x;).

3. Rs < REVISE (S, X)) (generate all partial solutions over S that can be
extended to x).

4, C'«< C'URg

5. E' < E" U {lxk, xplxk, xr € parents (x))} (connect all parents of X;)

6. endfor

Algorithm ADAPTIVE-CONSISTENCY—vVersion 1.

and, given an ordering, to place each constraint into the bucket of the variable
that appears latest in its scope. By doing so, we will have collected in the various
buckets all the constraints that share the same latest variable in their scope. Subse-
quently, buckets are processed in reverse order. Processing a bucket means solving
a subproblem and recording its solutions as a new constraint. This operation is
equivalent to the REVISE procedure. The newly generated constraint is placed in the
bucket of its latest variable. The bucket elimination algorithm adaptive consistency
ADC in Figure 4.15 does precisely this. You can verify that the two descriptions of
adaptive consistency coincide. From our earlier discussion, we obtain the following:

PROPOSITION Let R be a constraint network and d an ordering for which w*(d) = i. Then

4.7

THEOREM
4.8

(.1) applying adaptive consistency is identical to applying strong directional
(i + 1)-consistency along d, and (2) the constraint graph of the resulting
network has width bounded by i. o

Given a network R, adaptive consistency (either version apcl or ADC)
determines the consistency of R, and if the network is consistent, it

aiso g;nerates an equivalent representation E;(R) that is backtrack-free
along d. '

Proof From Proposition 4.7 it follows that ADC generates a width-i problem that

is (i + 1)-consistent, for some i, and thus, from Proposition 4.7, it fol-

lows that the resulting network E;(®R) is backtrack-free along the order of

processing. °

106 chapter 4 Directional Consistency

ADAPTIVE-CONSISTENCY (ADC)

Input: A constraint network R, an ordering d = (x1,...,Xp).

Output: A backtrack-free network, denoted E4(R), along d, if the empty

1.

© ~

constraint was not generated. Else, the problem is inconsistent.
Partition constraints into buckety,...,bucket, as follows:

for i <~ ndownto 1, put in bucket; all unplaced constraints mentioning x;.
for p < ndownto 1 do

for all the constraints Rs1 ,...,st in buckety, do
A< Uiy Si- e
J
Ra < malX;_, RS,-)
if Ry is not the empty relation then add R4 to the bucket
of the latest variable in scope A,
else exit and return the empty network

return £4(R) = (X, D, bucket1U bucket, U - - - U bucketn)

Figure 4.15 ADAPTIVE-CONSISTENCY as a bucket elimination algorithm.

EXAMPLE
48

Consider the graph-coloring problem depicted in Figure 4.16 (domains are
numbers). The figure shows a schematic execution of adaptive consistency
using the bucket data structure for the two orderings dy = (E, B, C, D, A)
and d» =(A, B, C, D, E). The initial constraints, partitioned into buckets
for both orderings, are displayed in the figure to the left of the double
bars, while the constraints generated by the algorithm are displayed to the
right of the double bars, in their respective buckets. Focusing on ordering
d>, adaptive consistency proceeds from E to A and imposes constraints on
the parents of each processed variable, which are those variables appear-
ing in its bucket. Processing the bucket of E, the problem, composed of
three constraints in the buckets, is solved and the solution is projected
over D, C, B, recording the ternary constraint Rpcg, which is placed in the
bucket of D. Next, the algorithm processes D’s bucket, which contains
D # A and the new constraint Rpcp. Joining these two constraints and
projecting out D yields a constraint R4cp, which is placed in the bucket
of C, and so on. Processing the buckets along ordering d; causes the gen-
eration of a different set of constraints. Observe that while only binary
constraints are created along order d, it is possible that ternary constraints
are generated along ordering d5. Notice also that along ordering d; two

4.4 Adaptive Consistency and Bucket Elimination

{1,2}

{1,2} {1,2}
Ordering d,

Bucket(A): A+ D,A# B
Bucket(D): D# E | Rpp
Bucket(C). C# B, C# E
Bucket(B): B#E | Ry Rie
Bucket(E): || Rg

Ordering d,

Bucket(E):. E+ D,E+ C,E+ B
Bucket(D): D # A || Rpcs
Bucket(C): C# B || Rycs
Bucket(B): B# E || Rup
Bucket(A): || R4

Figure 4.16 Execution of ADC along two orderings.

constraints on scope B and E are generated, in the bucket of C and in the
bucket of D, denoted R}, and R3, respectively, in the figure.

Furthermore, the constraint R}, means B # E and is displayed—for illus-
tration only—in the bucket of B, since there is already an identical original
constraint. Also, the constraint R%?E is the universal constraint and should
therefore not be recorded at all; we chose to display it only to illustrate
the general case. When processing along ordering 4>, we only indicated
the scheme of the constraints (i.e., their scope), leaving out their explicit
description. o

107

108 chapter 4 Directional Consistency

{1,2}
A=1

Figure 4.17

gyt i
A

p—

e el i |

B=2---»D=2-""

A schematic variable elimination and solution generation process is backtrack-free.

An alternative graphical illustration of the algorithm’s performance along d>
is given in Figure 4.17. The figure shows, through the changing graph, how con-
straints are generated in one ordering, and how a solution is created in the reverse
order.

Generating the induced graph along the orderings dy = E,B,C, D, Aand d5 =
A, B, C, D, E leads to the two graphs in Figure 4.18. The broken arcs are the new.vly
added arcs. The induced width along 41 and d; are 3 and 2, respectively, suggesting
different complexity bounds for adaptive consistency. Algorithm ADC is linear in
the number of buckets 7 and in the time to process each bucket. However, since
processing each bucket amounts to generating all the solutions of a subproblem, its
complexity is exponential in the number of variables appearing in the bucket. The
important observation is that the number of variables in a bucket is bounded by

4.4 Adaptive Consistency and Bucket Elimination 109

(£) (4)
(D) (D)
W (D) =3 W' D)y=2
(c] ()
(87 (8)

@) (&)

W' (d)=3 W d)=2

Figure 4.18 The induced width along the orderings: dy = A, B, C, D, E and do=E,B,C,D,A.

the number of parents of the corresponding variable in the induced ordered graph,
namely, by the induced width.

THEOREM The time and space complexity of ADAPTIVE-CONSISTENCY is O(n - (2k)“*+1)

4.9

and O(n - k"*), respectively, where n is the number of variables, k bounds
the domain size, and ws is the induced width along the order of processing.

When r bounds the number of constraints, the complexity can be bounded
by O(rk“"(d)"‘" 1).

Proof The number of constraints (relations) in each bucket will increase to at

most 2¥"(A+1 relations. because there are at most w* + 1 variables in a
bucket. Therefore testing that many constraints over all O((k)**+!) tuples
yields the overall complexity of O(n - (2k)**(+1), Alternatively, since the
total number of function input and those generated is bounded by 27, and
since the computation in a bucket is O(r;k%"(D+1), where r; is the number
of functions in a bucket, the total over-all buckets is O(rk%" (+1), o

The analysis in this chapter yields a class of tractable problems based on the
induced width of the constraint graph. Problems having bounded induced width
(w* <b) for some constant b can be solved in polynomial time. In particular,
when applied to trees, ADC coincides with pac (directional arc-consistency), as
demonstrated in Figure 4.19. Since the graph is cycle-free, when ordered along
d = (A,B,C,D,E,F, G), its width and induced width are 1. Indeed, as demon-

strated by the schematic execution along d in Figure 4.19, ADC generates only unary
relationships.

110 chapter 4 Directional Consistency

Figure 4.19

THEOREM
4.10

4.5

Bucket(G) Rcg—=--~. N
Bucket(F) Rep*===~._ ™,
A \
Bucket(E) Rpp ==~ Voo
U () R \:‘ B ! '_! 5
Bucket(D) RDB -\\ft \‘ D{l: D?‘ ’

Bucket(C) Res ,’; ; !
Bucket(B) RMNJ}] Dy,
’

Bucket(A))'DA D,

-~

Ay
~

-

Schematic execution of ADAPTIVE-CONSISTENCY on a tree network. Dy denotes unary con-
straints over X.

Although finding the induced width of a graph is hard, deciding if the width is
less than a constant b can be done in polynomial time. Consequently, w* yields a
characterization of a subclass of constraint networks that is tractable. In summary,
we have the following:

(w*-based tractability)

The class of constraint problems whose induced width is bounded by a
constant b is solvable in polynomial time and space. o

ADAPTIVE-CONSISTENCY should be evaluated not merely as a procedure for
deciding consistency, but also as a compilation algorithm since it transforms the
constraint problem into an equivalent network from which every solution can be
assembled in linear time. Therefore, when the output network can be substantially
compacted, ADC may be cost-effective for compilation, even if it takes substantial
time to generate the compiled network. However, when the worst-case space com-
plexity reflects the actual output network, the value of adaptive consistency—both
as a one-time solution process and as a compilation algorithm—is governed by the
same induced-width parameter.

Summary

This chapter introduced the notion of bounded directional consistency algorithms
such as directional arc-, path-, and i-consistency. These are incomplete inference
algorithms that can sometimes decide inconsistency and that are designed as pre-
processing algorithms to be used before backtracking search. As we'll see in the
next chapter, such algorithms can also be interleaved with search. We also pre-
sented a relationship between induced width and consistency levels that guarantees

4.6 Bibliographical Notes 111

a backtrack-free solution: if the problem has width i and it is (i + 1)-consistent,
then it is backtrack-free. This condition yields the identification of tractable prob-
lem classes based on the induced width: if a problem has induced width b,
then it can be made backtrack-free by DIC(341), which coincides with adaptive
consistency.

While finding the induced width of a problem is NP-complete, determining if
the induced width of a graph is less than a constant b can be done in polynomial
time, exponential in b (Arnborg 1985), and therefore the induced width indeed
identifies tractability classes for constraint satisfaction problems. In particular, trees
and problems having induced width 2 can be solved linearly. Finally, the inference
algorithm ADAPTIVE-CONSISTENCY (ADC) was shown to make any problem backtrack-
free relative to a given variable ordering. It is described as a variable elimination
algorithm using the bucket data structure.

The chapter also provides a background section to graph concepts such as width

_ and induced width. Related graph concepts (e.g., tree width) will be presented in

4.6

Chapter 9. Chapter 8 extends algorithms appearing in this chapter to the more
general consistency notion of relational consistency.

Bibliographical Notes

The fundamental relationship between width and consistency level that guaran-
tees a backtrack-free solution was introduced by Freuder (1982). This relationship
was extended by Dechter and Pearl (1987b) to the more restricted concept
of directional consistency. It also led to algorithm ADAPTIVE-CONSISTENCY and to
the identification of the induced width as the principal graph parameter that
controls the algorithms’s complexity. A similar elimination algorithm was intro-
duced earlier by Seidel (1981). It was observed that these algorithms belong
to the class of dynamic programming algorithms as presented in Bertele and
Brioschi (1972). In Dechter and Pearl (1989), the connection between ADAPTIVE-
CONSISTENCY and tree-clustering algorithms was made explicit, as will be shown in
Chapter 9.

The analysis of the role of graph-based parameters in the complexity of various
variable elimination algorithms, and the connection between tree width, induced
width, hypertrees, and join-trees was observed independently in the areas of rela-
tional databases (Maier 1983), dynamic programming (Bertele and Brioschi 1972),
and graph theory (Arnborg 1985; Corneil, Arnborg, and Proskourowski 1987;
Arnborg and Proskourowski 1989). ‘

In their book on nonserial dynamic programming, Bertele and Brioschi (1972)
show the dependence of variable elimination algorithms for solving optimiza-
tion tasks on a graph parameter (which they called “dimension” and what we
call “induced width”). They suggest several greedy heuristics, including the mMIN-
INDUCED-WIDTH (not under this name) ordering, and show that it is complete for

112

chapter 4 Directional Consistency

graphs having an induced width of 2. Montanari (1974) also observes that series-
parallel binary constraint networks are tractable, a class that is identical to networks
having an induced width of 2. In the field of relational databases the concept of
join-tree was defined and observed as a desired representation. The connection
between join-trees and chordal graphs was identified (Beeri et al. 1983), and the
max-cardinality order was shown to be an identifier of chordal graphs by Tarjan
and Yannakakis (1984). The practical value of the min-fill heuristic has been
experimentally shown to produce elimination orders with small induced width
by Kjaerulff, (1990, 1992).

Finally an extensive analysis of related concepts defined over hypertrees and the
notion of tree width, and their connection with a variety of graph properties, were
comprehensively analyzed in several papers by Arnborg and his colleagues (Arnborg
1985; Corneil, Arnborg, and Proskourowski 1987; Arnbourg and Proskourowski
1989). In particular, Arnborg proved that finding the tree width of an arbitrary
graph is NP-complete. Nevertheless, deciding whether there exists an ordering
whose induced width is less than a constant b takes O(n?) time. A more recent
analysis is given by Bodlaender (1997). Approximation algorithms with some good
guarantees have been and continue to be developed (Bar-Yehuda, Becker, and
Geiger 1999; Shoiket and Geiger 1997).

4.7 Exercises

1. (*) Show that it takes O(n?) time to decide whether a graph G has an ordering
whose induced width is less than a constant b.2

2. Prove that algorithm MIN-WIDTH achieves min-width ordering of a graph.
3. Let (G* d) be an ordered induced graph. Prove that G* is chordal.

4. Prove that if you apply arc-consistency on a tree, from leaves to root and back,
you get an arc-consistent network.

5. Prove that the tree-solving algorithm in Figure 4.12 is optimal.

6. Generate a directional path-consistent 4-queens problem along the columns
ordered from left to right.

7. Consider the graph in Figure 4.20.

(a) What is the induced width of the graph? Provide an ordering having
minimum induced width.

(b) Assume that the graph expresses a binary constraint network with some
arbitrary constraints (e.g., not-equal). Provide a complexity bound using

2. An asterisk (*) indicates a relatively difficult problem.

4.7 Exercises 113

A B c
Cr O O

D E F
O O O

G tl; Hl O

Figure 4.20 Grid with nine nodes.

the induced width for applying algorithm Dpc along the optimal induced-
width ordering of this problem.

(c) Can algorithm Dpc always determine consistency of every constraint
problem having an n x n grid constraint graph?

8. Prove Proposition 4.6.

9. Prove that algorithm DIC; generates a strong directional i-consistent network.

10.

1.

12.

Consider 2-CNF formulas (conjunction of clauses of length 2).

(a) Describe a DAC-type algorithm for enforcing directional arc-consistency of
2-CNF formulas using resolution.

(b) Describe a Dpc-type algorithm for enforcing directional path-consistency
on 2-CNFs using resolution.

Consider the graph-coloring problem given in Figure 4.21. The constraints are
not-equal constraints and the domains are indicated inside the nodes in the
graph.

(a) Generate a directional strong path-consistent network for this problem.
(b) Generate a backtrack-free problem using adaptive consistency.
(c) Find a solution to the problem.

Consider the crossword puzzle in Figure 4.22.

(a) Model the problem as a binary CSP with the words as variables. Draw its
constraint graph.

(b) Generate a min-induced-width and max-cardinality ordering of the con-
straint graph. Generate the induced graph along these orderings. What is
the w* of this problem?

R

114 chapter 4 Directional Consistency ‘ 4.7 Exercises 115

x1 x7

‘ iii. adaptive consistency (in this case, show the constraint subsets gener-
ated for all buckets, and also the actual constraints generated when
processing the first three buckets)

red, blue, green red, blue

x2

i /

13. Consider the crypto-arithmetic problem TA + DB = GBA when using the
formulation of the problem with carries.

red, green, teal

(a) Draw the primal constraint graph of the problem.

(b) Find an ordering of the variables using the MIN-INDUCED-WIDTH and MIN-FILL
algorithms. What is the width of the orderings you generated? Compute
the induced graph and the induced width of the orderings generated.

(c) Hand-simulate algorithm ADAPTIVE-CONSISTENCY on the ordering you cre-

red, blue blue, green

red, blue

x4 ated in (b). First describe the schemes of the initial partitioning into
buckets, then show how new relations are created. Describe only the
Figure 4.21 A coloring problem. scopes of the relations.
(d) Bound the complexity of the algorithm on the ordering of your choice.
1 5 3 Word list (€) Code algorithm ADAPTIVE-CONSISTENCY and apply it to this problem.
aft laser 14. Prove that the Miw algorithm (Figure 4.3} can decide if a graph has an induced
ale lee width of 2.
eel line
heel sails
4 5 hike sheet
hoses steer
keel tie
6 g knot
8

Figure 4.22 A crossword puzzle.

() What level of directional i-consistency is guaranteed to generate a
backtrack-free representation for the ordered graphs that you picked,
assuming you know nothing about the constraints themselves?

(d) Using the min-induced-width ordering, show the constraints that will be
recorded for this problem when applying

i. directional arc-consistency

ii. directional path-consistency

