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tionary game theory (Smith, 1982; Weibull, 1995) looks at strategy drift over time: if your
opponent’s strategy is changing, how should you react? Textbooks on game theory from
an economics point of view include those by Myerson (1991), Fudenberg and Tirole (1991),
Osborne (2004), and Osborne and Rubinstein (1994); Mailathand Samuelson (2006) concen-
trate on repeated games. From an AI perspective we have Nisanet al. (2007), Leyton-Brown
and Shoham (2008), and Shoham and Leyton-Brown (2009).

The 2007 Nobel Memorial Prize in Economics went to Hurwicz, Maskin, and Myerson
“for having laid the foundations of mechanism design theory” (Hurwicz, 1973). The tragedy
of the commons, a motivating problem for the field, was presented by Hardin (1968). The rev-
elation principle is due to Myerson (1986), and the revenue equivalence theorem was devel-
oped independently by Myerson (1981) and Riley and Samuelson (1981). Two economists,
Milgrom (1997) and Klemperer (2002), write about the multibillion-dollar spectrum auctions
they were involved in.

Mechanism design is used in multiagent planning (Hunsberger and Grosz, 2000; Stone
et al., 2009) and scheduling (Rassentiet al., 1982). Varian (1995) gives a brief overview with
connections to the computer science literature, and Rosenschein and Zlotkin (1994) present a
book-length treatment with applications to distributed AI. Related work on distributed AI also
goes under other names, including collective intelligence(Tumer and Wolpert, 2000; Segaran,
2007) and market-based control (Clearwater, 1996). Since 2001 there has been an annual
Trading Agents Competition (TAC), in which agents try to make the best profit on a series
of auctions (Wellmanet al., 2001; Arunachalam and Sadeh, 2005). Papers on computational
issues in auctions often appear in the ACM Conferences on Electronic Commerce.

EXERCISES

17.1 For the4× 3 world shown in Figure 17.1, calculate which squares can be reached
from (1,1) by the action sequence[Up,Up,Right ,Right ,Right ] and with what probabilities.
Explain how this computation is related to the prediction task (see Section 15.2.1) for a hidden
Markov model.

17.2 Select a specific member of the set of policies that are optimal for R(s) > 0 as shown
in Figure 17.2(b), and calculate the fraction of time the agent spends in each state, in the limit,
if the policy is executed forever. (Hint: Construct the state-to-state transition probability
matrix corresponding to the policy and see Exercise 15.2.)

17.3 Suppose that we define the utility of a state sequence to be themaximumreward ob-
tained in any state in the sequence. Show that this utility function does not result in stationary
preferences between state sequences. Is it still possible to define a utility function on states
such that MEU decision making gives optimal behavior?

17.4 Sometimes MDPs are formulated with a reward functionR(s, a) that depends on the
action taken or with a reward functionR(s, a, s′) that also depends on the outcome state.

a. Write the Bellman equations for these formulations.
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b. Show how an MDP with reward functionR(s, a, s′) can be transformed into a different
MDP with reward functionR(s, a), such that optimal policies in the new MDP corre-
spond exactly to optimal policies in the original MDP.

c. Now do the same to convert MDPs withR(s, a) into MDPs withR(s).

17.5 For the environment shown in Figure 17.1, find all the threshold values forR(s) such
that the optimal policy changes when the threshold is crossed. You will need a way to calcu-
late the optimal policy and its value for fixedR(s). (Hint: Prove that the value of any fixed
policy varies linearly withR(s).)

17.6 Equation (17.7) on page 654 states that the Bellman operatoris a contraction.

a. Show that, for any functionsf andg,

|max
a

f(a)−max
a

g(a)| ≤ max
a
|f(a)− g(a)| .

b. Write out an expression for|(B Ui − B U ′
i)(s)| and then apply the result from (a) to

complete the proof that the Bellman operator is a contraction.

17.7 This exercise considers two-player MDPs that correspond tozero-sum, turn-taking
games like those in Chapter 5. Let the players beA andB, and letR(s) be the reward for
playerA in states. (The reward forB is always equal and opposite.)

a. Let UA(s) be the utility of states when it isA’s turn to move ins, and letUB(s) be the
utility of states when it isB’s turn to move ins. All rewards and utilities are calculated
from A’s point of view (just as in a minimax game tree). Write down Bellman equations
definingUA(s) andUB(s).

b. Explain how to do two-player value iteration with these equations, and define a suitable
termination criterion.

c. Consider the game described in Figure 5.17 on page 197. Drawthe state space (rather
than the game tree), showing the moves byA as solid lines and moves byB as dashed
lines. Mark each state withR(s). You will find it helpful to arrange the states(sA, sB)
on a two-dimensional grid, usingsA andsB as “coordinates.”

d. Now apply two-player value iteration to solve this game, and derive the optimal policy.

17.8 Consider the3 × 3 world shown in Figure 17.14(a). The transition model is the same
as in the4× 3 Figure 17.1: 80% of the time the agent goes in the direction itselects; the rest
of the time it moves at right angles to the intended direction.

Implement value iteration for this world for each value ofr below. Use discounted
rewards with a discount factor of 0.99. Show the policy obtained in each case. Explain
intuitively why the value ofr leads to each policy.

a. r = 100

b. r = −3

c. r = 0

d. r = +3
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Figure 17.14 (a) 3× 3 world for Exercise 17.8. The reward for each state is indicated.
The upper right square is a terminal state. (b)101×3 world for Exercise 17.9 (omitting 93
identical columns in the middle). The start state has reward0.

17.9 Consider the101 × 3 world shown in Figure 17.14(b). In the start state the agent has
a choice of two deterministic actions,Up or Down, but in the other states the agent has one
deterministic action,Right. Assuming a discounted reward function, for what values of the
discountγ should the agent chooseUp and for whichDown? Compute the utility of each
action as a function ofγ. (Note that this simple example actually reflects many real-world
situations in which one must weigh the value of an immediate action versus the potential
continual long-term consequences, such as choosing to dumppollutants into a lake.)

17.10 Consider an undiscounted MDP having three states, (1, 2, 3),with rewards−1, −2,
0, respectively. State 3 is a terminal state. In states 1 and 2 there are two possible actions:a
andb. The transition model is as follows:

• In state 1, actiona moves the agent to state 2 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In state 2, actiona moves the agent to state 1 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In either state 1 or state 2, actionb moves the agent to state 3 with probability 0.1 and
makes the agent stay put with probability 0.9.

Answer the following questions:

a. What can be determinedqualitativelyabout the optimal policy in states 1 and 2?

b. Apply policy iteration, showing each step in full, to determine the optimal policy and
the values of states 1 and 2. Assume that the initial policy has actionb in both states.

c. What happens to policy iteration if the initial policy has action a in both states? Does
discounting help? Does the optimal policy depend on the discount factor?

17.11 Consider the4× 3 world shown in Figure 17.1.

a. Implement an environment simulator for this environment,such that the specific geog-
raphy of the environment is easily altered. Some code for doing this is already in the
online code repository.


