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Chapter 17. Making Complex Decisions

tionary game theory (Smith, 1982; Weibull, 1995) looks atteigy drift over time: if your
opponent’s strategy is changing, how should you react? bdekis on game theory from
an economics point of view include those by Myerson (1990iidhberg and Tirole (1991),
Osborne (2004), and Osborne and Rubinstein (1994); MalathSamuelson (2006) concen-
trate on repeated games. From an Al perspective we have Bisdn(2007), Leyton-Brown
and Shoham (2008), and Shoham and Leyton-Brown (2009).

The 2007 Nobel Memorial Prize in Economics went to Hurwicadin, and Myerson
“for having laid the foundations of mechanism design thédHurwicz, 1973). The tragedy
of the commons, a motivating problem for the field, was pressby Hardin (1968). The rev-
elation principle is due to Myerson (1986), and the reverguévalence theorem was devel-
oped independently by Myerson (1981) and Riley and Samo€k@81). Two economists,
Milgrom (1997) and Klemperer (2002), write about the muilliik;n-dollar spectrum auctions
they were involved in.

Mechanism design is used in multiagent planning (Hunshemge Grosz, 2000; Stone
et al, 2009) and scheduling (Rassesitial., 1982). Varian (1995) gives a brief overview with
connections to the computer science literature, and Robeirsand Zlotkin (1994) present a
book-length treatment with applications to distributed Reélated work on distributed Al also
goes under other names, including collective intelliggfiecemer and Wolpert, 2000; Segaran,
2007) and market-based control (Clearwater, 1996). Sil0€d Zhere has been an annual
Trading Agents Competition (TAC), in which agents try to raake best profit on a series
of auctions (Wellmaret al,, 2001; Arunachalam and Sadeh, 2005). Papers on computhtion
issues in auctions often appear in the ACM Conferences actreléc Commerce.

EXERCISES

17.1 For the4 x 3 world shown in Figure 17.1, calculate which squares can behed
from (1,1) by the action sequent€p, Up, Right, Right, Right] and with what probabilities.
Explain how this computation is related to the predictiagktgsee Section 15.2.1) for a hidden
Markov model.

17.2 Select a specific member of the set of policies that are opfona?(s) > 0 as shown

in Figure 17.2(b), and calculate the fraction of time therd@pends in each state, in the limit,
if the policy is executed forever. Hint: Construct the state-to-state transition probability
matrix corresponding to the policy and see Exercise 15.2.)

17.3 Suppose that we define the utility of a state sequence to baaxenunreward ob-
tained in any state in the sequence. Show that this utilitgtion does not result in stationary
preferences between state sequences. Is it still possildefine a utility function on states
such that MEU decision making gives optimal behavior?

17.4 Sometimes MDPs are formulated with a reward functi®(s, a) that depends on the
action taken or with a reward functiafi(s, a, s’) that also depends on the outcome state.

a. Write the Bellman equations for these formulations.
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b. Show how an MDP with reward functioR(s, a, s") can be transformed into a different
MDP with reward functionR(s, a), such that optimal policies in the new MDP corre-
spond exactly to optimal policies in the original MDP.

c. Now do the same to convert MDPs wift(s, a) into MDPs with R(s).

17.5 For the environment shown in Figure 17.1, find all the thrés$values forR(s) such
that the optimal policy changes when the threshold is cobsgeu will need a way to calcu-
late the optimal policy and its value for fixel(s). (Hint: Prove that the value of any fixed
policy varies linearly withR(s).)

17.6 Equation (17.7) on page 654 states that the Bellman opasaéotontraction.
a. Show that, for any functiong andg,
| max f(a) — maxg(a)| < max|f(a) - g(a)] .

b. Write out an expression fd{B U; — B U/)(s)| and then apply the result from (a) to
complete the proof that the Bellman operator is a contractio

17.7 This exercise considers two-player MDPs that corresponzeto-sum, turn-taking
games like those in Chapter 5. Let the playersdand B, and letR(s) be the reward for
player A in states. (The reward forB is always equal and opposite.)

a. LetUy(s) be the utility of states when itisA’s turn to move ins, and letUg(s) be the
utility of states when itisB’s turn to move ins. All rewards and utilities are calculated
from A’s point of view (just as in a minimax game tree). Write dowrllB&n equations
definingU(s) andUp(s).

b. Explain how to do two-player value iteration with these &tipns, and define a suitable
termination criterion.

c. Consider the game described in Figure 5.17 on page 197. thestate space (rather
than the game tree), showing the moves4wgs solid lines and moves by as dashed
lines. Mark each state witR(s). You will find it helpful to arrange the stat€s 4, sp)
on a two-dimensional grid, usingy andsg as “coordinates.”

d. Now apply two-player value iteration to solve this game] derive the optimal policy.

17.8 Consider the x 3 world shown in Figure 17.14(a). The transition model is tame
as in thed x 3 Figure 17.1: 80% of the time the agent goes in the directigelécts; the rest
of the time it moves at right angles to the intended direction

Implement value iteration for this world for each valuerobelow. Use discounted
rewards with a discount factor of 0.99. Show the policy aldi in each case. Explain
intuitively why the value of- leads to each policy.

a. r =100
b.r=-3
c.r=20

d. r=+43
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(a) (b)

Figure 17.14 (a) 3 x 3 world for Exercise 17.8. The reward for each state is in@idat
The upper right square is a terminal state. {B) x 3 world for Exercise 17.9 (omitting 93
identical columns in the middle). The start state has reWward

17.9 Consider thel01 x 3 world shown in Figure 17.14(b). In the start state the agast h
a choice of two deterministic actiongp or Down, but in the other states the agent has one
deterministic actionRight Assuming a discounted reward function, for what valueshef t
discount~y should the agent choodép and for whichDowr? Compute the utility of each
action as a function of.. (Note that this simple example actually reflects many veadld
situations in which one must weigh the value of an immediatea versus the potential
continual long-term consequences, such as choosing to goifytants into a lake.)

17.10 Consider an undiscounted MDP having three states, (1, %iB)rewards—1, —2,
0, respectively. State 3 is a terminal state. In states 1 ahér2 tare two possible actions:
andb. The transition model is as follows:

¢ In state 1, actiorm moves the agent to state 2 with probability 0.8 and makesdhata
stay put with probability 0.2.

e |n state 2, actiom moves the agent to state 1 with probability 0.8 and makesdhata
stay put with probability 0.2.

¢ In either state 1 or state 2, actibmoves the agent to state 3 with probability 0.1 and
makes the agent stay put with probability 0.9.
Answer the following questions:

a. What can be determineglialitativelyabout the optimal policy in states 1 and 27?

b. Apply policy iteration, showing each step in full, to detene the optimal policy and
the values of states 1 and 2. Assume that the initial policyaudiond in both states.

c. What happens to policy iteration if the initial policy hagtian a in both states? Does
discounting help? Does the optimal policy depend on theodiscfactor?

17.11 Consider thel x 3 world shown in Figure 17.1.

a. Implement an environment simulator for this environmenich that the specific geog-
raphy of the environment is easily altered. Some code fonglthis is already in the
online code repository.



