15.1

(15.1)

Partially Observable Markov
Decision Processes

Motivation

This chapter discusses algorithms for the partially observable robot control
problem. These algorithms address both the uncertainty in measurement
and the uncertainty in control effects. They generalize the value iteration al-
gorithm discussed in the previous chapter, which was restricted to action ef-
tect uncertainty. The framework studied here is known as partially observable
Markov decision processes, or POMDPs. This name was coined in the opera-
tions research literature. The term partial indicates that the state of the world
cannot be sensed directly. Instead, the measurements received by the robot
are incomplete and usually noisy projections of this state.

As has been discussed in so many chapters of this book, partial observ-
ability implies that the robot has to estimate a posterior distribution over
possible world states. Algorithms for finding the optimal control policy exist
for finite worlds, where the state space, the action space, the space of obser-
vations, and the planning horizon 7" are all finite. Unfortunately, these exact
methods are computationally involved. For the more interesting continuous
case, the best known algorithms are approximate.

All algorithms studied in this chapter build on the value iteration ap-
proach discussed previously. Let us restate Equation (14.14), which is the
central update equation in value iteration in MDPs:

Vel) = 7 mex [rei) + [Vi) e)

with Vi(z) = ymax, 7(z,u). In POMDPs, we apply the very same idea.
However, the state z it not observable. The robot has to make its decision
in the belief state, which is the space of posterior distributions over states.

514

(15.2)

(15.3)

PIECEWISE LINEAR
FUNCTION

15 Partially Observable Markov Decision Processes

Throughout this and the next chaplers, we will abbreviate a belief by the
symbol b, instead of the more elaborate bel used in previous chapters.
POMDPs compute a value function over belief space:

Vp(b) = vymax {r(b,u) + /VT;l(b') p(| u,b) (lb'}

with Vi (b) = ~max, E,[(x,)]. The induced control policy is as follows:

np(b) = argmax \:T’((J,?L) +/VTﬁ1(b’) p(V | u,b) db’}
U

A belief is a probability distribution; thus, each value in a POMDP is a func-
tion of an entire probability distribution. This is problematic. If the state
space is finite, the belief space is continuous, since it is the space of all distri-
butions over the state space. Thus, there is a continuum of different values;
whereas there was only a finite number of different values in the MDP case.
The situation is even more delicate for continuous state spaces, where the
belief space is an infinitely-dimensional continuum.

An additional complication arises from the computational properties of
the value function calculation. Equations (15.2) and (15.3) integrate over all
beliefs I. Given the complex nature of the belief space, it is not at all obvious
that the integration can be carried out exactly, or that effective approxima-
tions can be found. It should therefore come at no surprise that calculating
the value function Vi is more complicated in belief space than it is in state
HI"Hth,

Luckily, an exact solution exists for the interesting special case of finite
wotlds, in which the state space, the action space, the space of observations,
and the planning horizon are all finite. This solution represents value func-
tions by piecewise linear functions over the belief space. As we shall see, the
linearity of this representation arises directly from the fact that the expecta-
tion is a linear operator. The piecewise nature is the result of the fact that
the robot has the ability to select controls, and in different parts of the belief
space it will select different controls. All these statements will be proven in
this chapter.

This chapter discusses the general POMDP algorithm for calculating poli-
cies defined over the space of all belief distributions. This algorithm is com-
putationally cumbersome but correct for finite POMDPs; although a variant
will be discussed that is highly tractable. The subsequent chapter will dis-
cuss a number of more efficient POMDP algorithms, which are ;-1p|_1ruxin'mtc
but scale to actual robotics problems.

15.2

15.2.1

(15.4)
(15.5)

(15.6)

15.2 An Ilustrative Example 515

measurements | state x, action u, state x,| ~ measurements
0.2 |
kT o 0TI

\ U actions u; U,

-100 100 100 —50

‘ payoff ‘ l payoff i

Figure 15.1 The two-state environment used to illustrate value iteration in belief

space.

An Illustrative Example

Setup
We illustrate value iteration in belief spaces through a numerical example.
This example is simplistic, but by discussing it we identify all major elements

of value iteration in belief spaces.
Our example is the two-state world in Figure 15.1. The states are labeled

z; and xz. The robot can choose among three different control actions, 1,
uy, and ug. Actions u; and ug are terminal: When executed, they result in the

following immediate payoff:

r(zy,w) = —100 r(zg,u1) = +100
7‘(331,“2) . +100 T($2,U2) = =50
The dilemma is that both actions provide opposite payoffs in each of the

states. Specifically, when in state z1, ug is the optimal action, whereas it is uy
in state zo. Thus, knowledge of the state translates directly into payoff when

selecting the optimal action.
To acquire such knowledge, the robot is provided with a third control ac-

tion, u3. Executing this control comes at a mild cost of —1:

r(z,us) = 7r(z2,usz) = —1

516

(15.7)
(15.8)

(15.9)
(15.10)

(15.11)

ili55222,

(15.12)

PAYOFF IN POMDPs

15 Partially Observable Markov Decision Processes

One might think of this as the cost of waiting, or the cost of sensing. Action
us affects the state of the world in a non-deterministic manner:

plel e, uz) = 0.2 p(ahlz,us) = 0.8
p(a ez, us) = 0.8 p(wplez,us) = 0.2

In other words, when the robot executes us, the state flips to the respective
other state with 0.8 probability, and the robot pays a unit cost.

Nevertheless, there is a benefit to executing action u;. Before each control
decision, the robot can sense. By sensing, the robot gains knowledge about
the state, and in turn it can make a better control decision that leads to higher
payoff in expectation. The action us lets the robot sense without committing
to a terminal action.

In our example, the measurement model is governed by the following
probability distribution:

p(alz) = 0.7 p(zlry) = 03
p(zlzy) = 0.3 plzelae) = 07

Put differently, if the robot measures z; its confidence increases for being in
z,, and the same is the case for 2z, relative to x».

The reason for selecting a two-state example is that it makes it easy to
graph functions over the belief space. In particular, a belief state b is charac-
terized by p1 = b(w1) and py = b(az). However, we know pa = 1 — p1, hence
it suffices to graph p1. The corresponding control policy is a function that
maps the unit interval [0; 1] to the space of all actions:

T [0;1] — u

Control Choice

In determining when to execute what control, let us start our consideration
with the immediate payoff for each of the three control choices, w1, ug, and
us. In the previous chapter, payoff was considered a function of state and
actions. Since we do not know the state, we have to generalize the notion
of a payoff to accommodate belief state. Specifically, for any given belief
b = (p1,p2), the expected payoff under this belief is given by the following
expectation:

r(byu) = Elr(z,u)] = m r(zy,u) + po (T2,)

The function (b, u) defines the payoff in POMDPs.

- v

)CESSES

ction

ctive

ntrol
about
igher
itting

wing

ng in |

sy to
\arac-
hence
n that

ration
), and
e and
otion
belief
wing

152 An lllustrative Example

@ r(b,u1) for action u;

100

50

0 0.2 0.4 0.6 0.8 1
z2 P1 z1

(© r(b,u3) for action uz

100
50
0
|
%02 04 o6 o8 1
T P1 T1

517

(b) r(b,uz) for action ug

100
501
(0]
-5
-0 0.2 0.4 0.6 0.8 1
T2 21 T

(d VA(b) = maxr(b,u)

1) optimal ug optimal
I

50}
0
50/
100 02 04 06 08 1
L2 p1 T1

Figure 15.2 Diagrams (a), (b), and (c) depict the expected payoff r as a function of
the belief state parameter p1 = b(x1), for each of the three actions u1,uz, and us.
(d) The value function at horizon T' = 1 corresponds to the maximum of these three

linear functions.

Figure 15.2a graphs the expected payoff (b, u1) for control choice u;, pa-
rameterized by the parameter p;. On the leftmost end of this diagram, we
have p; = 0, hence the robot believes the world to be in state 2, with absolute
confidence. Executing action u; hence yields r(zy,u;) = 100, as specified in
Equation (15.4). On the rightmost end, we have p; = 1, hence the state is z;.
Consequently, control choice u; will result in r(z1,u1) = —100. In between,
the expectation provides a linear combination of these two values:

(15.13) r(b,uy) = —100p; +100p, =

This function is graphed in Figure 15.2a.
Figures Figure 15.2b&c show the corresponding functions for action u, and

~100 p; 4 100 (1 — py)

518

(15.14)

(15.15)

(15.16)

(15.17)

(15.18)

15 Partially Observable Markov Decision Processes

ug, respectively. For ug, we obtain

r(byug) = 100py —50 (1 — 1)

and for u3 we obtain the constant function
r(byus) = —-lpr—1(-p1) = —1

Our first exercise in understanding value iteration in belief spaces will focus
on the computation of the value function V;, which is the value function that
is optimal with regards to horizon T' = 1 decision processes. Within a single
decision cycle, our robot can choose among its three different control choices.
So which one should it choose?

The answer is easily read off the diagrams studied thus far. For any be-
lief state p1, the diagrams in Figures 15.2a-c graph the expected payoff for
ecach of the action choices. Since the goal is to maximize payoff, the robot
simply selects the action of highest expected payoff. This is visualized in
Figure 15.2d: This diagram superimposes all three expected payoff graphs.
In the left region, w4 is the optimal action, hence its value funciion dominates.
The transition occurs when (b, 1) = (b, u2), which resolves to p = % For
values p larger than 2, u, will be the better action. Thus the (T' = 1)-optimal
policy is

~lw

uy ifpr <
m(b) =

e

Uo ifp1 >

The corresponding value is then the thick upper graph in Figure 15.2d. This
graph is a piecewise lineat, convex function. It is the maximum of the indi-
vidual payoff functions in Figures 15.2a-c. Thus, we can write it as a maxi-
mum over 3 functions:

Vi(b) = max 7(bu)
100 p; 4100 (1 —p1) (*)
= max 100 p; =50 (1 —p1) (*)

-1

Obviously, only the linear functions marked (*) in (15.17) contribute. The
remaining linear function can safely be pruned away:

vi(h) = max{ —100p; +100(1—p1)}

100py =50 (1 —p1)

"eSses

Cus
that
1gle
ces.

for
bot
1in
hs.
tes.
For
mal

his
di-

1X1-

he

15.2.3

(15.19)

(15.20)

(15.21)

15.2 An Ilustrative Example 519

We will use this pruning trick repeatedly in our example. Prunable linear
constraints are shown as dashed lines in Figure 15.2d and many graphs to
follow.

Sensing

The next step in our reasoning involves perception. What if the robot can
sense before it chooses its control? How does this affect the optimal value
function? Obviously, sensing provides information about the state, hence
should enable the robot to choose a better control action. Specifically, for the
worst possible belief thus far, p; = 2, the expected payoff in our example
was 122 ~ 14.3, which is the value at the kink in Figure 15.2d. Clearly, if we
can sense first, we find ourselves in a different belief after sensing. The value
of this belief will be better than 14.3, but by how much?

The answer is surprising. Suppose we sense z;. Figure 15.3a shows the
belief after sensing z; as a function of the belief before sensing. Let us dissect
this function. If our pre-sensing belief is p; = 0, our post-sensing belief is
also p; = 0, regardless of the measurement. Similarly for p; = 1. Hence, at
the extreme ends, this function is the identity. In between, we are uncertain
as to what the state of the world is, and measuring z; does shift our beli'ef.
The amount it shifts is governed by Bayes rule:

P p(z1 | 2)

- p(z1 | z1) p(x1)
p(z1)

. 0.7 D1
B P(z1)

and

, 0.3(1—p1)
Py = p(zl) -

The normalizer p(z;) adds the non-linearity in Figure 15.3a. In our example,
it resolves to

0.7 pa

0T pri03" However, as we shall see below, this normalizer

and hence p] =

nicely cancels out. More on this in a minute.
Let us first study the effect of this non-linear transfer function on the
value function V;. Suppose we know that we observed z;, and then have

?————_

520 15 Partially Observable Markov Decision Processes

(@) p| after sensing 21

02 04 06 08 1
To p1 before sensing z1 i

(@ WVi(b|=1)

or
-50

~106 02 04 06 08 1
@2 p1 z1

(@ plz2) Vi(b] 22)

100

(b) Vi(b)

10€

0 02 04 06 08 1
D) P1 o

@ p(=) Vi(b]| z1)

02 04 06 08 1
&2 p1 Z1

® Vi) =>" plz) Vi(b]2)

10 . .
1y optimal ug opti mal

unclear
50
|
0
50F
100 92 04 06 08 1
T2 ”m x1

Figure 15.3 The effect of sensing on the value function: (a) The belief after sensing
21 as a function of the belief before sensing z1. Sensing z; makes the robot more con-
fident that the state is 1. Projecting the value function in (b) through this nonlinear
function results in the non-linear value function in (c). (d) Dividing this value ‘func-
tion by the probability of observing 21 results in a piecewise linear function. (e) The
same piecewise linear function for measurement 2. (f) The expected value function

after sensing.

(15.22)

(15.23)

(15.24)

15.2 An Illustrative Example 521

to make an action choice. What would that choice be, and what would the
corresponding value function look like? The answer is given graphically in
Figure 15.3c. This figure depicts the piecewise linear value function in Fig-
ure 15.3b, mapped through the nonlinear measurement function discussed
above (and shown in Figure 15.3a). The reader may take a moment to get
oriented here: Take a belief p;, map it to a corresponding belief p} according
to our non-linear function, and then read off its value in Figure 15.3b. This
procedure, for all p; € [0; 1], leads to the graph in Figure 15.3c.
Mathematically, this graph is given by

C0Tp 0.3 (1-py)
—100 - Ty H100 - =S

Vi(b| z1) max

100 - 9&7p —50 - 0.3 (1-p1)
p(z1)

1 —70py +30 (1 —p1) }
= —/—— ma
p(z1) X{ 0p —15(1—p1)

which is simply the result of replacing p; by p] in the value function V; spec-
ified in (15.18). We note in Figure 15.3¢ that the belief of “worst” value has
shifted to the left. Now the worst belief is the one that, after sensing z1,
makes us believe with 2 probability we are in state z;.

However, this is the consideration for one of the two measurements only,
the value before sensing has to take both measurements into account. Specif-
ically, the value before sensing, denoted V;, is given by the following expec-
tation:

Vi(h) = E.Vi(b]2) = Z p(z) Vi(b | i)

We immediately notice that in this expectation, each contributing value func-
tion V1 (b | z) is multiplied by the probability p(z;), which was the cause of
the nonlinearity in the pre-measurement value function. Plugging (15.19)
into this expression gives us

L s bz)
Vi) = > p(z) VI(W)

S COF A ATCIENTY

(15.25)

(15.26)

(15.27)

15 Partially Observable Markov Decision Processes

This transformation is true because each element in V) is linear in 1/p(z;),
as illustrated by example in (15.22). There we were able to move the factor
1/p(z;) out of the maximization, since each term in the maximization is a
product of this factor. After restoring the terms accordingly, the term p(z;)
simply cancels out!

In our example, we have two measurements, hence we can compute the
expectation p(z;) Vi(b | z;) for each of these measurements. The reader may
recall that these terms are added in the expectation (15.23). For z1, we already
computed V(b | z;) in (15.22), hence

LN oy —70p; +30(1—p)
p(z) Vi(b] =) = max{ 0p1 —15 (1—p1)

This function is shown in Figure 15.3d: It is indeed the maximum of two
linear functions. Similarly, for 25 we obtain

—30p; +70 (1 —py) }

n(z) V{1 '
p(z2) V(b 30pi =35 (1L —m)

Zp) = max{

This function is depicted in Figure 15.3e.
The desired value function before sensing is then obtained by adding those
two terms, according to Equation (15.23):

“70pr 430 (1—pi) 30p1 +70 (1—p1))
‘/ fr— & X 1€ »
! mx{ 0 =15 (1=p) | U 30p 35 (1-p) J

This sum is shown in Figure 15.3f. It has a remarkable shape: Instead of a sin-
gle kink, it possesses two different kinks, separating the value function into
three different linear segments. For the left segment, v, is the optimal action,
no matter what additional information the robot may reap through future
sensing. Similarly for the right segment, u is the optimal control action no
matter what. In the center region, however, sensing matters. The optimal
action is determined by what the robot senses. In doing so, the center seg-
ment defines a value that is significantly higher than the corresponding value
without sensing, shown in Figure 15.2d. Essentially, the ability to sense lifted
an entire region in the value function to a higher level, in the region where
the robot was least certain about the state of the world. This remarkable find-
ing shows that value iteration in belief space indeed values sensing, but only
to the extent that it matters for future control choices. .

Let us return to computing this value function, since it may appear easier
than it is. Equation (15.27) requires us to compute the sum of two maxima
over linear functions. Bringing this into our canonical form—which is the

(15.28)

15.2.4

(15.29)

15.2 An Illustrative Example 523

maximum over linear functions without the sum—requires some thought.
Specifically, our new value function V; will be bounded below by any sum
that adds a linear function from the first max-expression to a linear function
from the second max-expression. This leaves us with four possible combina-
tions:

—~70p1 430 (1—p1) -30p1 +70(1—p1)
- —70 p1 +30 (1 — pl) +30 p1 -35 (1 — pl)
Vi(b) =
1() max 70 P1 —15 (1 — pl) -30 D1 -|—70 (1 . pl)
0p1 —15(1—p1) +30p1 —35(1—p1)
—100p1 4100 (1 — py) (%)
—40 1 -5 (1 —pl)
max
40p +55 (1—p1) (+)
100p; —50 (1—py) ()
—100 p; +100 (1 — p1)
max 40p; 455 (1 —p1)
100 p1 =50 (L —p1)

Once again, we use (*) to denote constraints that actually contribute to the
definition of the value function. As shown in Figure 15.3f, only three of these
four linear functions are required, and the fourth can safely be pruned away.

Prediction

Our final step concerns state transitions. When the robot selects an action, its
state changes. To plan at a horizon larger than 7' = 1, we have to take this into
consideration and project our value function accordingly. In our example, u;
and us are both terminal actions. Thus, we only have to consider the effect
of action ug.

Luckily, state transitions are not anywhere as intricate as measurements
in POMDPs. Figure 15.4a shows mapping of the belief upon executing us.
Specifically, suppose we start out in state z; with absolute certainty, hence
p1 = 1. Then according to our transition probability model in Equation
(15.7), we have p] = p(z}|z1,us) = 0.2. Similarly, for p1 = 0 we get
pi = p(a}|z2,us) = 0.8. In between the expectation is linear:

P = Elp(zi]z,us)]

= p(zh|zi, us) pi
A —ily

524

15 Partially Observable Markov Decision Processes

(@) pp after action us (b) Vi(b)
1 10
0.8 v
&0
0.6 ‘
0f
0.4
0.2 -50
% 02 04 06 08 1 ~10% 02 04 06 08 1
2 p1 1 T2 1 T
(© Va(b|us) (d) Va(b) = max Va(b|u)
u

100, 10 , .
| uy optimal wue optimal

50{ unclear i"l/ 50 unclear
of 0
—Eui —50:
|
100 "%2 04 o066 08 1 1% 02 04 06 08
z2 p1 1 2 b1 z1

Figure 15.4 (a) The belief state parameter p} after executing action us, as a function
of the parameter p; before the action. Propagating the belief shown in (b) through
the inverse of this mapping results in the belief shown in (c). (d) The value function
V» obtained by maximizing the propagated belief function, and the payoff of the two
remaining actions, u; and uz.

= 02p, +08(1—p1) = 08-06m

This is the function graphed in Figure 15.4a. If we now back-project the
value function in Figure 15.4b—which is equivalent to the one shown in Fig-
ure 15.3f—we obtain the value function in Figure 15.4c. This value function
is flatter than the one before the projection step, reflecting the loss of infor-
mation through the state transition. It is also mirrored, since in expectation
the state changes when executing ug.

Mathematically, this value function is computed by projecting (15.28)

(15.30)

(15.31)

(15.32)

15.2 An Ilustrative Example 525
through (15.29).
~100 (0.8 — 0.6 p1) +100 (1 — (0.8 — 0.6 p1))
Vi(b | ug) max 40 —06p;) +55(1—(0.8—0.60p1))
100 0(1-(0.8=06p1))

—100 (0.8 — 0.6 py
max 40 (0.8 — 0.6 py
100 (0.8 — 0.6 p1

+100
+55 (0.2 4 0.6 py)
—50

()
(0.8)
(08 —-0.6p1) —5
()
()

(
(
(
(0.24 0.6 p1)
(
(

60 py —60 (1 —p1)
= max 52p; +43 (1 —p1)
—20p; +70 (1 —p1)

These transformations are easily checked by hand. Figure 15.4c shows this
function, along with the optimal control actions.

We have now almost completed the vale function V; with a planning hori-
zon of T = 2. Once again, the robot is given a choice whether to execute the
control ug, or to directly engage in any of the terminal actions u1 or us. As
before, this choice is implemented by adding two new options to our consid-
eration, in the form of the two linear functions r(b,u1) and r(b, u2). We also
must subtract the cost of executing action ug from the value function.

This leads to the diagram in Figure 15.4d, which is of the form

—100p; +100 (1 —p1) (*)
100p; =50 (1 —p1) (*)

B) = max{ S0p —61(1—py)
51pr +42(1—p) (%)

=21 py +69 (1 —p1)

Notice that we simply added the two options (lines one and two), and sub-
tracted the uniform cost of us from all other linear constraints (lines three
through five). Once again, only three of those constraints are needed, as
indicated by the (x)’s. The resulting value can thus be rewritten as

~100p1 +100 (1 —p1)
Vo(b) = max 100p; =50 (1 —p1)
51pr +42 (1—pi)

526 15 Partially Observable Markov Decision Processes

(@) Vio(b)athorizon T = 10 (b) Vao(b) athorizon T = 20

N/

)]

40| N\ 40

20 \ . 20
0 L N . [l .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T2 Dp1 1 x2 D1 xr1

Figure 15,5 The value function V for horizons 7' = 10 and T" = 20. Note that the
vertical axis in these plots differs in scale from previous depictions of value functions.

15.2.5 Deep Horizons and Pruning

BACKUP STEP IN BELIEE ~ We have now executed a full backup step in belief space. This algorithm is
SPACE easily recursed. Figure 15.5 shows the value function at horizon T" = 10 and
T = 20, respectively. Both of these value functions are seemingly similar.

With appropriate pruning, Vo has only 13 components

3

~100 p1 +100

100 p1 —50
64.1512 p; +65.9454
64.1513 p; +65.9454
64.1531 p1 +65.9442 (1 — py
68.7968 p1 +62.0658 (1 — p;

(1—p1)
(1-p1)
(1—p1)
(1-p1)
)
(15.33) Vgo(b) = max{ 68.7968 p; +62.0658 (1 —p1)
(1—p1)
(1—p1)
(1—p1)
(1—p1)
(1—p1)
)

b1
b1

1
1
1-p
1

69.0914 p; +61.5714 (1 —py
68.8167 p1 +62.0439 (1 —py
69.0369 p1 +61.6779 (1 —py
41.7249 p; +76.5944 (1 — py
39.8427 p; +77.1759 (1 — p1
30.8334p; +77.1786 (1 — py

1
1
1
1
1

We recognize the two familiar linear functions on the top; all others corre-
spond to specific sequences of measurements and action choices.

As simple consideration shows that pruning is of essence. Without prun-
ing, each update brings two new linear constraints (action choice), and then
squares the number of constraints (measurement). Thus, an unpruned value

he
1S.

d
\T.

(15.34)

15.3

(15.35)

(15.36)

15.3 The Finite World POMDP Algorithm 527

function for T' = 20 is defined over 1047864 linear functions; at T = 30 we
have 10561912337 Jinear constraints. The pruned value function, in compari-
son, contains only 13 such constraints.

This enormous explosion of linear pieces is a key reason why plain
POMDPs are impractical. Figure 15.6 compares side-by-side the steps that
led to the value function V5. The left column shows our pruned functions,
whereas the right row maintains all linear functions without pruning. While
we only have a single measurement update in this calculation, the number
of unused functions is already enormous. We will return to this point later,
when we will devise efficient approximate POMDP algorithms.

A final observation of our analysis is that the optimal value function for
any finite horizon is continuous, piecewise linear, and convex. Each linear
piece corresponds to a different action choice at some point in the future.
The convexity of the value function indicates the rather intuitive observation,
namely that knowing is always superior to not knowing. Given two belief
states b and o', the mixed value of the belief states is larger or equal to the
value of the mixed belief state, for some mixing parameter 5 with0 < g < 1:

VO + A =pBV({) = V(Bb+(1-p)0)

This characterization only applies to the finite horizon case. Under infinite
horizon, the value function can be discontinuous and nonlinear.

The Finite World POMDP?P Algorithm

The previous section showed, by example, how to calculate value functions
in finite worlds. Here we briefly discuss a general algorithm for calculating
a value function, before deriving it from first principles.

The algorithm POMDP is listed in Table 15.1. This algorithm accepts as
an input just a single parameter: T, the planning horizon for the POMDP. It
returns a set of parameter vectors, each of the form

(1}1,...,1)]\/)

Each of these parameters specifies a linear function over the belief space of
the form

Z'Ui Py
3

528

@ Vi(b) pruned

100

0l

~H

02 04 06 08 1
T2 P1 @1

(©) Vi(b) pruned

02 04 06 08 1
T2 P1 r1

(@) Va(b| ug) pruned

100 02 04 06 08 1

&£ro P1 T

Partially Observable Markov Decision Processes

(b) same without pruning

100

50

0 02 04 06 08 1
T2 Il Ty

(d) same without pruning

50

0 02 04 06 08 1
X2 P1 Ty

(f) same without pruning

o
—50F
_100| x i i a -
0 0.2 0.4 0.6 0.8 1
z2 P1 T1

Figure 15.6 Comparison of an exact pruning algorithm (left row) versus a non-
pruning POMDP algorithm (right row), for the first few steps of the POMDP planning
algorithm. Obviously, the number of linear constraints increases dramatically with-
out pruning. At T" = 20, the unpruned value function is defined over 10%*7:#%4 Jinear
functions, whereas the pruned one only uses 13 such functions.

*——

DCesses 15.3 The Finite World POMDP Algorithm 529
ng
1 Algorithm POMDP(7):
2 T =(0;0,...,0)
3: forr=1toT do
4: T =0
1 5: for all (v/;vf,...,v%) in T do
o 6: for all control actions u do
& 7 for all measurements » do
e 8: forjzlto]Xdo
o 9: vfj,z’j = Z Uf p(z | ;) p(z; | U, z;)
i=1
10: endfor
11: endfor
12: endfor
13: endfor
! 14: for all control actions u do
B 15: forall k(1),..., k(M) = (1,...,1) to (|T],...,|T|) do
16: fori=1toN do
r 17: v =7 [T(fvi,u) +> U:Z(zz)z}
a A
18: endfor
19: add (u;vf,...,v)y) to Y
20: endfor
21:; endfor
22: optional: prune Y’
: 23: YT =7
Ty 24: endfor
25: return T
on- ==
11’:;1% Table15.1 The POMDP algorithm for discrete worlds. This algorithm repreéents the

o optimal value function by a set of linear constraints, which are calculated recursively.
1

530

MAXIMUM OF LINEAR
FUNCTIONS

(15.37)

15 Partially Observable Markov Decision Processes

1l Algorithm policy_ POMDP(Y, b = (p1,...,PN):
N
2z {4 = argmax Z UZ'-”' i ‘

(’LL;’U‘f,.‘.,’U’;,)GT il ‘

3 return i

Table 152 The algorithm for determining the optimal action for a policy repre-
sented by the set of linear functions Y.

The actual value is governed by the maximuim of all these linear functions:

e Ehi) Z b

The algorithm POMDP computes this value function recursively. An initial
set for the pseudo-horizon T' = 0 is set in line 2 of Table 15.1. The algo-
rithm POMDP then recursively computes a new set in the nested loop of
lines 3-24. A key computational step takes place in line 9: Here, the coeffi-
cients vf _ ; of the linear functions needed to compute the next set of linear
constraints are computed. Each linear function results from executing con-
trol u, followed by observing measurement z, and then executing control u'.
The linear constraint corresponding to v’ was calculated in the previous iter-
ation for a smaller planning horizon (taken in line 5). Thus, upon reaching
line 14, the algorithm has generated one linear function for each combination
of control action, measurement, and linear constraint of the previous value
function.

The linear constraints of the new value function result by taking the expec-
tations over measurements, as done in lines 14-21. For each control action,
the algorithm generates K M guch linear constraints in line 15. This large
number is due to the fact that each expectation is taken over the M pos-
sible measurements, each of which can be “combined” with any of the K
constraints contained in the previous value function. Line 17 computes the
expectation for each such combination. The resulting constraint is added to
the new set of constraints in line 19.

The algorithm for finding the optimal control action is shown in Ta-
ble 15.2. The input to this algorithm is a belief state, parameterized by

V

€S

15.4

15.4.1

(15.38)

(15.39)

(15.40)

15.4 Mathematical Derivation of POMDPs 531

b = (p1,...,pn), along with the set of linear functions Y. The optimal ac-
tion is determined by search through all linear functions, and identifying the
one that maximizes its value for b. This value is returned in line 3 of the
algorithm policy_ POMDP:, Table 15.2.

Mathematical Derivation of POMDPs

Value Iteration in Belief Space

The general update for the value function implements (15.2), restated here
for convenience.

Vr(b) = ~ max [r(b, u)+/VT_1(b’) p(b' | u,b) db’

We begin by transforming this equation into a more practical form, one that
avoids integration over the space of all possible beliefs.

A key factor in this update is the conditional probability p(b’ | u,b). This
probability specifies a distribution over probability distributions. Given a
belief b and a control action u, the outcome is indeed a distribution over dis-
tributions. This is because the concrete belief b’ is also based on the next
measurement, the measurement itself is generated stochastically. Dealing
with distributions of distributions adds an element of complexity that is un-
desirable.

If we fix the measurement, the posterior ¥’ is unique and p(b’ | u, b) degen-
erate to a point-mass distribution. Why is this so? The answer is provided by
the Bayes filter. From the belief b before action execution, the action u, and
the subsequent observation z, the Bayes filter calculates a single, posterior
belief b" which is the single, correct belief. Thus, we conclude that if only we
knew z, the integration over all beliefs in (15.38) would be obsolete.

This insight can be exploited by re-expressing

p(t [u,b) = / p(t' | u,b,2) plz | u,b) dz

where p(b' | u,b, z) is a point-mass distribution focused on the single belief
calculated by the Bayes filter. Plugging this integral into Equation (15.38)
gives us '

Vr(b) = 7 max [r(b,u)+ / [/ Vo1 (V) p(t/ | u,b, 2) db’} p(z | u,b) dz]

532

(15.41)

(15.42)

(15.43)

(15.44)
(15.45)

15.4.2

15 Partially Observable Markov Decision Processes

The inner integral

/VT_l(b') p(b' | u,b,2) dv’

contains only one non-zero term. This is the term where b’ is the distribution
calculated from b, u, and z using the Bayes filter. Let us call this distribution
B(b,u,z):

B(b,u,z)(z") (' | z,u,b)
p(z | 2/, u,b) p(z' | u,b)
p(z | u, D)
1
= 1) [Twb) el ub) de
p(z | u,b)
1
= el o) ba)ds
The reader should recognize the familiar Bayes filter derivation that was ex-
tensively discussed in Chapter 2, this time with the normalizer made explicit.
We can now rewrite (15.40) as follows. Note that this expression no longer

integrates over b'.

o) = e [0 + [Ve (Bt)

This form is more convenient than the ori yinal one in (15.38), since it onl
g y

1l
|

requires integration over all possible measurements z, instead of all possible
belief distributions b'. This transformation was used implicitly in the ex-
ample above, where a new value function was obtained by mixing together
finitely many piecewise linear func tions.

Below, it will be convenient to split the maxi mization over actions from the
integration. Hence, we notice that (15.43) can be rewritten as the following
two equations:

Vr(b,u) = v [r(b,u) +/VT_1(B(b,u,z)) p(z | u,b) dz]
V(b)) = mEJXVT(b, u)

Here Vi (b, u) is the horizon T-value function over the belief b, assuming that
the immediate next action is .

Value Function Representation

As in our example, we represent the value function by a maximum of a set
of linear functions. We already discussed that any linear function over the

(15.46)

(15.47)

15.4.3

(15.48)

(15.49)

(15.50)

15.4 Mathematical Derivation of POMDPs 533
belief simplex can be represented by the set of coefficients vy, ..., Un:
N
Vi) = Z Vi Pi
i=1
where, as usual, p1, .. ., pn are the parameters of the belief distribution b. As

in our example, a piecewise linear and convex value function Vr(b) can be
represented by the maximum of a finite set of linear functions

N
ko
Vb)) = mngvi D
i=1
where ¥, ..., vk denotes the parameters of the k-th linear function. The
reader should quickly convince herself that the maximum of a finite set of

linear functions is indeed a convex, continuous, and piecewise linear func-
tion.

Calculating the Value Function

We will now derive a recursive equation for calculating the value function
Vir(b). We assume by induction that Vr—1 (b), the value function for horizon
T — 1, is represented by a piecewise linear function as specified above. As
part of the derivation, we will show that under the assumption that Vr—; (b)
is piecewise linear and convex, Vir(b) is also piecewise linear and convex.
Induction over the planning horizon 71" then proves that all value functions
with finite horizon are indeed piecewise linear and convex.

We begin with Equations (15.44) and (15.45). If the measurement space is
finite, we can replace the integration over z by a finite sum.

VT(by u) = 7 r(b,u) 1 Z VT—l(B<baua Z)) p(Z | u,b)

Vp(b) = maxVr(bu)

k12

The belief B(b, u, z) is obtained using the following expression, derived from
Equation (15.42) by replacing the integral with a finite sum.

L

Bl) = o

) p(z | o) Y pla’ | u,x) b(x)

If the belief b is represented by the parameters {p1,...,pn}, and the belief
B(b,u,z) by {p1,- - , Py }, it follows that the j-th parameter of the belief ¥’ is

534

(15.51)

(15.52)

(15.53)

(15.54)

15 Partially Observable Markov Decision Processes

computed as follows:

N
1
B petu M) Lpe e b

To compute the value function update (15.48), let us now find more practi-
cal expressions for the term Vi (13(b, u, 2)), using the finite sums described

above, Our derivation starts with the definition of V¢_ 1 and substitutes the
p; according to Equation (15.51):

N

. ok
1”;.'.“\ ﬁ: vi P

J=1

N N
- ; 1 - .
3 '

Vip_1(B(byw, z)) =

(*)

The term marked (*) is independent of the belief. Hence, the function labeled
(xx) is a linear function in the parameters of the belief space, p1, ..., py. The
term 1/p(z | u, b) is both nonlinear and difficult to compute, since it contains
an entire belief b as conditioning variable. However, the beauty of POMDPs
is that this expression cancels out. In particular, substituting this expression
back into (15.48) yields the following update equation:

N N
k
Vr(bu) = v |r(buw) +Z m’?,XZ piz vi p(z | z5) p(x; | u,2:)
z i=1 J=1
Hence, despite the non-linearity arising from the measurement update,
Vr(b,u) is once again piecewise linear. ‘

Finally, we note that (b, u) is given by the expectation

r(byu) =

N
E.lr(z,u)] = Zpi r(zi,u)
i=1

(15.55)

(15.56)

(15.57)

(15.58)

15.4 Mathematical Derivation of POMDPs 535

Here we assumed that the belief b is represented by the parameters

{p1,-- N}
The desired value function Vr is now obtained by maximizing Vr(b, u)
over all actions u, as stated in (15.49):

Vr(b) = max Vp(b,u)
N
W A ({; pi (@i, u)| -+ Z max
N N
> opedy vhp(z] ($J|1LL)>

=1 j=1

N
7 max ({Z i T(4, 1)
i=1

with

N
5,2,1' - Z ~ | ’Uj (l] | ’U/,.’L‘i)

(]

as indicated. This expression is not yet in the form of a maximum of lin-
ear functions. In particular, we now need to change the sum-max-sum ex-
pression labeled (x) in (15.55) into a max-sum-sum expression, which is the
familiar form of a maximum over a set of linear functions.

We utilize the same transformation as in our example, Chapter 15.2.3.
Specifically, suppose we would like to compute the maximum

max{ai (), ..., a,(z)} + max{bi(x),...,bu(x)}

for some functions a1(z),...,a,(z) and b1(x),...,b,(x) over a variable .
This maximum is attained at

max max [a;(x) + b;(z)]

i J

This follows from the fact that each a; + b; is indeed a lower bound. Further
for any x there must exist an i and j such that a;(z)+b;(z) defines the maxi-
mum. By including all such potential pairs in (15.58) we obtain a tight lower
bound, i.e., the solution.

536

(15.59)

(15.60)

(15.61)

15.5

15 Partially Observable Markov Decision Processes

This is now easily generalized into arbitrary sums over max expressions:

m

N N N
D i aisle) = g e - Z it
We apply now this “trick” to our POMDP Value function calculation and
obtain for the expression (*) in (15.55). Let M be the total number of mea-
surements.

N N
k k(z)
max i UV : = max max --+ max i U ;
XZ: k ; Pi Pz, k(1) k(2) k(M) zZ: Z Pi Buzi
k(z)

= max max --+ max
k(1) K(2) k(M) pl Z Va2,

Here each k() is a separate variable, each of Wthh takes on the values of the
variable k on the left hand side. There are as many such variables as there
are measurements. As a result, the desired value function is now obtained as
follows:

N
Vr(b) = « max [Zpi r(z;,w) | + max max --- max Dy Z v,
i=1

k(1) k(2)

j— PR k(Z)
- g g X [”Z]

In other words, each combination

([T1,u +Z vu“] [r(z2,u +Z vuw}--l r(zN,u +Z vﬁ(j?ND

makes for a new linear constraint in the value function Vr.

There will be one such constraint for each unique joint setting of the vari-
ables k(1), k(2),. .., k(M). Obviously, the maximum of these linear functions
is once again piecewise linear and convex, which proves that this represen-
tation indeed is sufficient to represent the correct value function over the
underlying continuous belief space. Further, the number of linear pieces will
be doubly exponential in the size of the measurement space, at least for our
naive implementation that retains all such constraints.

Practical Considerations

The value iteration algorithm discussed thus far is far from practical. For
any reasonable number of distinct states, measurements, and controls, the

S 15.5 Practical Considerations 537

(a) pruned value function Vg (b) (b) PBVI value function Vzo(b)

1
Figure 15.7 The benefit of point-based value iteration over general value iteration:
Shown in (a) is the exact value function at horizon 7' = 30 for a different example,
which consists of 120 constraints, after pruning. On the right is the result of the PBVI
algorithm retaining only 11 linear functions. Both functions yield virtually indistin-
s guishable results when applied to control.

complexity of the value function is prohibitive, even for relatively beginning
planning horizons.

There exists a number of opportunities to implement more efficient algo-
rithms. One was already discussed in our example: The number of linear
constraints rapidly grows prohibitively large. Fortunately, a good number of
linear constraints can safely be ignored, since they do not participate in the

) definition of the maximum.

Another related shortcoming of the value iteration algorithm is that it com-
putes value functions for all belief states, not just for the relevant ones. When

= a robot starts at a well-defined belief state, the set of reachable belief states

N is often much smaller. For example, if the robot seeks to move through two

- doors for which it is uncertain as to whether they are open or closed, it surely

N knows the state of the first when reaching the second. Thus, a belief state

I in which the second door’s state is known but the first one is not is physi-

T cally unattainable. In many domains, huge subspaces of the belief space are
unattainable.

Even for the attainable beliefs, some might only be attained with small
probability; others may be plainly undesirable so that the robot will generally
avoid them. Value iteration makes no such distinctions. In fact, the time and

¢ resources invested in value computations are independent of the odds that a
e belief state will actually be relevant.

538

POINT-BASED VALUE
ITERATION

15 Partially Observable Markov Decision Processes

23 24 |25

20 ‘21 22

[o Tu ‘12 13 ‘14 15?‘& 17 |18

Figure 15.8 Indoor environment, in which we seek a control policy for finding a
moving intruder. (a) Occupancy grid map, and (b) discrete state set used by the
POMDP. The robot tracks its own pose sufficiently well that the pose uncertainty
can be ignored. The remaining uncertainty pertains to the location of the person.
Courtesy of Joelle Pineau, McGill University.

There exists a flurry of algorithms that are more selective with regards to
the subspace of the belief state for which a value function is computed. One
of them is point-based value iteration, or PBVI. It is based on the idea of main-
taining a set of exemplary belief states, and restricting the value function to
constraints that maximize the value function for at least one of these belief
states. More specifically, imagine we are given a set B = {1, by, ...} of belief
states, called belief points. Then the reduced value function V with respect to
B is the set of constraints v € V for which we can find at least one b; € B
such that v(b;) = V(b;). In other words, linear segments that do not coin-
cide with any of the discrete belief points in B are discarded. The original
PBVI algorithm calculates the value function efficiently by not even gener-
ating constraints that are not supported by any of the points; however, the
same idea can also be implemented by pruning away all line segments after
generating them in a standard POMDP backup.

Practical Considerations

(a)
(b)
(c)
(ch)
(@) t=29| :

i

A successiul search policy. FHere the tracking of the intruder is imple-

le filter, which is then projected into a histogram represent:

mented via a part

suitable for the POMDP. The robot first clears the room on ihe top, then proceeds

down the hallway. Courtesy of Joelle Pineau, McGill University.

J

540

15 Partially Observable Markov Decision Processes

The idea of maintaining a belief point set B can make value iteration sig-
nificantly more efficient. Figure 15.7a shows the value function for a prob-
lem that differs from our example in Chapter 15.2 by only one aspect: The
state transition function is deterministic (simply replace 0.8 by 1.0 in (15.7)
and (15.8)). The value function in Figure 15.7a is optimal with respect to
the horizon T = 30. Careful pruning along the way reduced it to 120
constraints, instead of the 10561012337 that a non-pruning implementation
would give us—assuming the necessary patience. With a simple point set
B={p =00,pp=01Lp = 0.2,...,p1 = 1}, we obtain the value function
shown on the right side of Figure 15.7b. This value function is approximate,
and it consists of only 11 linear functions. More importantly, its calculation
is more than 1,000 times faster.

The use of belief points has a second important implication: The prob-
Jem solver can select belief points deemed relevant for the planning pro-
cess. There exists a number of heuristics to determine a set of belief points.
Chief among them are to identify reachable beliefs (e.g., through simulating
the robot in the POMDP), and to find beliefs that are spaced reasonably far
apart from each other. By doing so it is usually possible to get many or-
ders of magnitude faster POMDP algorithms. In fact, it is possible to grow
the set B incrementally, and to therefore build up the set of value functions
V1,02, VT incrementally, by adding new linear constraints to all of them
whenever a new belief point is added. In this way, the planning algorithm
becomes anytime, in that it produces increasingly better results as time goes
on.

An emerging view in robotics is that the number of plausible belief states
exceeds that of the number of states only by a constant factor. As a conse-
quence, techniques that actively select appropriate regions in belief space for
updating during planning have fundamentally different scaling properties
than the flat, unselective value iteration approach.

A typical robotics result of PBVI is shown in Figures 15.8 and 15.9. Fig-
ure 15.8a depicts an occupancy grid map of an indoor environment that con-
sists of a long corridor and a room. The robot starts on the right side of the
diagram. Its task is to find an intruder that moves according to Brownian
motion. To make this task amenable to PBVI planning, a low-dimensional
state space is required. The state space used here is shown in Figure 15.8b. It
tessellates the grid map into 22 discrete regions. The granularity of this rep-
resentation is sufficient to solve this task, while it makes computing the PBVI
value function computationally feasible. The task of finding such an intruder
is inherently probabilistic. Any control policy has to be aware of the uncer-

Ses

g-
b-

et
on
te,
On

b-
ts.
g
ar

-

ns

8 B

es

es
{od
or
es

15.6

15.6 Summary 541

tainty in the environment, and seek its reduction. Further, it is inherently
dynamic. Just moving to spaces not covered yet is generally insufficient.
Figure 15.9 shows a typical result of POMDP planning. Here the robot has
determined a control sequence that first explores the relatively small room,
then progresses down the corridor. This control policy exploits the fact that
while the robot clears the room, the intruder has insufficient time to pass
through the corridor. Hence, this policy succeeds with high probability.

This example is paradigmatic of applying POMDP value iteration to ac-
tual robot control problem. Even when using aggressive pruning as in PBVI,
the resulting value functions are still limited to a few dozen states. How-
ever, if such a low-dimensional state representation can be found, POMDYP
techniques yield excellent results through accommodating the inherent un-
certainty in robotics.

Summary

In this section, we introduced the basic value iteration algorithm for robot
control under uncertainty.

¢ POMDPs are characterized by multiple types of uncertainty: Uncertainty
in the control effects, uncertainty in perception, and uncertainty with re-
gards to the environment dynamics. However, POMDPs assume that we
are given a probabilistic model of action and perception.

e The value function in POMDPs is defined over the space of all beliefs
robots might have about the state of the world. For worlds with N states,
this belief is defined over the (N — 1)-dimensional belief simplex, charac-
terized by the probability assigned to each of the N states.

e For finite horizons, the value function is piecewise linear in the belief
space parameters. It is also continuous and convex. Thus, it can be rep-
resented as a maximum of a collection of finitely many linear functions.
Further, these linear constraints are easily calculated.

¢ The POMDP planning algorithm computes a sequence of value func-
tions, for increasing planning horizons. Each such calculation is recursive:
Given the optimal value function at horizon T'— 1, the algorithm proceeds
to computing the optimal value function at horizon 7. ‘

e Each recursive iteration combines a number of elements: The action
choice is implemented by maximizing over sets of linear constraints,

542

15.7

EXPERIMENTAL DESIGN

15 Partially Observable Markov Decision Processes

where each action carries its own set. The anticipated measurement is
incorporated by combining sets of linear constraints, one for each mea-
surement. The prediction is then implemented by linearly manipulating
the set of linear constraints. Payoff is generalized into the belief space by
calculating its expectation, which once again is linear in the belief space
parameters. The result is a value backup routine that manipulates linear
constraints.

e We find that the basic update produces intractably many linear con-
straints. Specifically, in each individual backup the measurement step
increases the number of constraints by a factor that is exponential in the
number of possible measurements. Most of these constraints are usually
passive, and omitting them does not change the value function at all.

e Point-based value iteration (PBVI) is an approximate algorithm that main-
tains only constraints that are needed to support a finite set of representa-
tive belief states. In doing so, the number of constraints remains constant
instead of growing doubly exponentially (in the worst case). Empirically
PBVI provides good results when points are chosen to be representative
and well-separated in the belief space.

In many ways, the material presented in this chapter is of theoretical interest.
The value iteration algorithm defines the basic update mechanism that un-
derlies a great number of efficient decision making algorithms. However, it
in itself is not computationally tractable. Efficient implementations therefore
resort to approximations, such as the PBVI technique we just discussed.

Bibliographical Remarks

The topic of decision making under uncertainty has been studied extensively in statistics, where
it is known as experimental desigh. Key textbooks in this area include those by Winer et al. (1971)
and Kirk and Kirk (1995); more recent work can be found in Cohn (1994). '

The value iteration algorithm described in this paper goes back to Sondik (1971) and Small-
wood and Sondik (1973), who were among the first to study the POMDP problem. Other early
work can be found in Monahan (1982), with an early grid-based approximation in Lovejoy
(1991). Finding policies for POMDPs was long deemed infeasible due to the enormous compula-
tional complexity involved, The problem was introduced into the field of Artificial Intelligence
by Kaelbling et al. (1998). The pruning algorithms in Cassandra et al. (1997) and Littman et al.
(1995) led to signiflicant improvements over previous algorithms, Paired with remarkable in-
crease of computer speed and memory available, their work enabled TOMDPs to grow into a
tool for solving small Al problems. Hauskrecht (1997) provided bounds on the complexity of
POMDP problem solving.

= D = UY

-

w

l_
it

re
1)

ly
Yy
o=
ce
al.

a
of

15.7 Bibliographical Remarks 543

The most significant wave of progress came with the advent of approximate techniques—
some of which will be discussed in the next chapter. An improved grid approximation of
POMDP belief spaces was devised by Hauskrecht (2000); variable resolution grids were intro-
duced by Brafman (1997). Reachability analysis began to play a role in computing policies. Poon
(2001) and Zhang and Zhang (2001) developed point-based POMDP techniques, in which the
set of belief states were limited. Unlike Hauskrecht’s (2000) work, these techniques relied on
piecewise linear functions for representing value functions. This work culminated in the defini-
tion of the point based value iteration algorithm by Pineau et al. (2003b), who developed new
any-time techniques for finding relevant belief space for solving POMDPs. Their work was later
extended using tree-based representations (Pineau et al. 2003a).

Geffner and Bonet (1998) solved a number of challenge problems using dynamic program-
ming applied to a discrete version of the belief space. This work was extended by Likhachev
et al. (2004), who applied the A* algorithm (Nilsson 1982) to a restricted type of POMDP. Fergu-
son et al. (2004) extended this to D* planning for dynamic environments (Stentz 1995).

Another family of techniques used particles to compute policies, paired with nearest neigh-
bor in particle set space to define approximations to the value function (Thrun 2000a). Particles
were also used for POMDP monitoring by Poupart et al. (2001). Poupart and Boutilier (2000)
devised an algorithm for approximating the value function using a technique sensitive to the
value itself, which led to state-of-the-art results. A technique by Dearden and Boutilier (1994)
gained efficiency through interleaving planning and execution of partial policies; see Smith and
Simmons (2004) for additional research on interleaving heuristic search-type planning and exe-
cution. Exploiting domain knowledge was discussed in Pineau et al. (2003c), and Washington
(1997) provided incremental techniques with bounds. Additional work on approximate POMDP
solving is discussed in Aberdeen (2002); Murphy (2000b). One of the few fielded systems con-
trolled by POMDP value iteration is the CMU Nursebot, whose high-level controller and dialog
manager is a POMDP (Pineau et al. 2003d; Roy et al. 200C).

An alternative approach to finding POMDP control policies is to search directly in the space
of policies, without computing a value function. This idea goes back to Williams (1992), who
developed the idea of policy gradient search in the context of MDPs. Contemporary techniques
for policy gradient search is described in Baxter et al. (2001) and Ng and Jordan (2000). Bagnell
and Schneider (2001) and Ng et al. {2003) successfully applied this approach to the control of
hovering an autonomous helicopter; in fact, Ng et al. (2003) reports that it took only 11 days
to design such a controller using POMDP techniques, using a learned model. In more recent
work, Ng et al. (2004) used these techniques to identify a controller capable of sustained in-
verted helicopter flight, a previously open problem. Roy and Thrun (2002) applied policy search
techniques to mobile robot navigation, and discuss the combination of policy search and value
iteration techniques.

Relatively little progress has been made on learning POMDP models. Early attempts to learn
the model of a POMDP from interaction with an environment essentially failed (Lin and Mitchell
1992; Chrisman 1992), due to the hardness of the problem. Some more recent work on learning
hierarchical models shows more promise (Theocharous et al. 2001). Recent work has moved
away from learning HMM-style models, into alternative representations. Techniques for repre-
senting and learning the structure of partially observable stochastic environments can be found
in Jaeger (2000); Littman et al. (2001); James and Singh. (2004); Rosencrantz et al. (2004). While
none of these papers fully solve the POMDP problem, they nevertheless are intellectually rele-
vant and promise new insights into the largely open problem of probabilistic robot control.

544

15 Partially Observable Markov Decision Processes

15.8 Exercises

TIGER PROBLEM

1. This problem is known as the tiger problem and is due to Cassandra,

Littman and Kaelbling (Cassandra et al. 1994). A person faces two doors.
Behind one is a tiger, behind the other a reward of +10. The person can
either listen or open one of the doors. When opening the door with a
tiger, the person will be eaten, which has an associated cost of —20. Lis-
tening costs —1. When listening, the person will hear a roaring noise that
indicates the presence of the tiger, but only with 0.85 probability will the
person be able to localize the noise correctly. With 0.15 probability, the
noise will appear as if it came from the door hiding the reward.

Your questions:

‘(a) Provide the formal model of the POMDP, in which you define the state,
action, and measurement spaces, the cost function, and the associated
probability functions.

(b) What is the expected cumulative payoff/cost of the open-loop action
sequence: “Listen, listen, open door 1”? Explain your calculation.

(c) What is the expected cumulative payoff/cost of the open-loop action
sequence: “Listen, then open the door for which we did not hear a
noise”? Again, explain your calculation.

(d) Manually perform the one-step backup operation of the POMDP. Plot
the resulting linear functions in a diagram just like the ones in Chap-
ter 15.2. Provide diagrams of all intermediate steps, and don’t forget to
add units to your diagrams.

(e) Manually perform the second backup, and provide all diagrams and
explanations.

(f) Implement the problem, and compute the solution for the planning
horizons T' = 1,2,...,8. Make sure you prune the space of all linear
functions. For what sequences of measurements would a person still
choose to listen, even after 8 consecutive listening actions?

2. Show the correctness of Equation (15.26).

3. What is the worst-case computational complexity of a single POMDP
value function backup? Provide your answer using the O() notation,
where arguments may include the number of linear functions before a
backup, and the number of states, actions, and measurements in a discrete
POMDP.

15.8 Exercises 545

4 The POMDP literature often introduces a discount factor, which is analo-
gous to the discount factor discussed in the previous section. Show that
oven with a discount factor, the resulting value functions are still piece-
wise linear.

5. Consider POMDP problems with finite state, action, and measurement
space, but for which the horizon T 1 co.

(a) Will the value function still be piecewise linear?
(b) Will the value function still be continuous?

(c) Will the value function still be convex?

For all three questions, argue why the answer is positive, or provide a
counterexample in case it is negative.

6. On page 28, we provided an example of a robot sensing and opening a
door. In this exercise, you are as ked to implement a POMDP algorithm for
an optimal control policy. Most information can be found in the example
on page 28. To turn this into a control task, let us assume that the robot
has a third action: go. When it goes, it receives 10 payoff if the door is
open, and —100 ¢ it is closed. The action go terminates the episode. The
action do_nothing costs the robot —1, and push costs the robot —b. Plot
value functions for different time horizons up to 7" = 10, and explain the

optimal policy.

© SEBASTIAN THRUN

WOLFRAM BURGARD

DIETER FOX

