
Constraints, Parameters, and Replication Strategies for Supporting

Web Content Delivery

Chris Mayer, K. Selçuk Candan�, and Venkatesh Sangam
Computer Science and Engineering Department,

Arizona State University

Email: ���������	
�����
����
����
���������������

�

Abstract

A new class of network related services has become widely used in improving performance, response-time, and

scalability of Web-based applications. The basic premise of these services is that by replicating the content, user

requests may be served from a server that is in the network proximity of the user instead of routing it all the way

to the origin server. Replication, however, comes with update overhead. Although this overhead may be acceptable

if the replicated objects are small, when they are large, as in multimedia objects, the cost of the network resources

required for reflecting the update onto all replica servers may be prohibitively large. Secondly, in such systems

server failure is a function of the read load and the traditional assumption of failure independence does not hold.

Furthermore, there usually is a difference between read and write failures. In this paper, we propose a novel quorum-

based method to deal with these issues. We identify system constraints and parameters that govern the design of a

quorum structure with good load balancing behaviors and analyze them empirically.

Keywords: Content delivery networks, media replication, load balancing, quorums

1 Introduction

Web site performance is a key differentiation point among companies eager to reach, attract, and keep customers. This

performance is measured using various metrics, including system up-time, average response time, and the maximum

number of simultaneous users. Low performance, such as slowdowns, can be devastating for content providers, as

shown by recent studies [32], which indicate that even with response times of 12 seconds, web sites find ��� abandon-

ment rates (Table 1). Slowdowns observed by major web sites, especially during their peak access times, demonstrate

the difficulty companies face trying to handle large demand volumes. For e-commerce sites, such slowdowns mean

that potential customers are turned away from the electronic stores even before they have a chance to enter and see the

merchandise. Therefore, improving the scalability of web sites is essential to companies and e-commerce sites eager

to reach, attract, and keep customers.
�Contact author

1

Download time Abandonment rate

� � seconds ��

� seconds ���

�� seconds ���

Table 1: Relationship between the time required to download a page and the user abandonment rate

1.1 Content Distribution

Many e-commerce sites observe non-uniform request distributions; i.e., although most of the time the request load

they have is manageable, on certain occasions (for example during Christmas for e-shops and during breaking news

for news services) the load they receive surges to very high volumes. Consequently, for most companies, investing

in local infrastructure that can handle peak demand volumes, while sitting idle most other times, is not economically

meaningful. These companies usually opt for server farm- or edge-based commercial services to improve scalability.

Consequently, a new class of network related services has become a main ingredient to improve performance, response-

time, and scalability of Web-based applications. Several high-technology companies are competing feverishly with

each other to establish network infrastructures refered to as a content delivery networks (CDNs) [11, 4, 16, 27, 12].

The key technology underlying all CDNs is the deployment of network-wide caches which replicate the content held

by the origin server in different parts of the network: front-end caches, proxy caches, edge caches, and so on. The

basic premise of this architecture is that by replicating the content, user requests for a specific content may be served

from a cache that is in the network proximity of the user instead of routing it all the way to the origin server. In CDNs,

since the traffic is redirected intelligently to an appropriate replica, the system can be protected from traffic surges and

the users can observe fast response times. Furthermore, this approach can not only eliminate network delays, but it can

also be used to distribute the load on the servers more effectively. The CDN technology introduced new challenges in

object replication and replica placement [28, 5, 8, 22, 7].

CDNs deploy multitudes of servers. The content provided by the customers, i.e., by the companies that pay

CDNs for quality of service, are published into these servers. The requests of the end users, then, are routed to the

most appropriate servers depending on the current network and server conditions. In most current CDN deployments,

transactional semantics of the applications is not captured; all updates (data publishing) are performed by the CDN.

Furthermore, in most applications, it is not necessary to ensure that the mutual exclusion property holds.

Replication, i.e. publishing the content onto multiple sites, has two advantages. First of all, it prevents single points

of failures. Secondly, it enables distributionof the total system load across a set of servers. As long as the distribution is

performed in a balanced manner and there are enough servers to accommodate the total load in the system, replication

can ensure that every request is served in a timely manner.

1.2 Replication

Replication, however, comes with an update overhead. In the simplest case, if there are � replicas of an object �,

any update to this object must also be replicated on each one of the replicas. Although this may be acceptable if the

replicated objects are small, when these objects are large, as in video objects, the cost of the network resources required

for reflecting the update onto all � replica servers may be prohibitively large, unless appropriate multicasting models

2

are utilized. On the Internet, today, there are two approaches to multicasting: IP-multicasting and application level

multicasting. Currently, IP-multicasting is not a commonly available service. Application level multicasting, however,

is an expensive service provided by companies, such as FastForward Networks, and is not economically feasible for

most companies.

Quorum systems are one way to replicate data. Traditionally, a quorum system is a set, � � �� �� ��� � � � � ���, of

servers where the following conditions hold:

� (Read Quorums) �� � ���� ��� � � � � ���, where ���� �� � �� ;

� (Write Quorums) �� � ���� ��� � � � � ���, where ���� �� � �� ;

� (Read/Write Quorum Intersection Property) ������������ �� � �� 	�
; and

� (Write/Write Intersection Property) ������������ �� � �� 	�
.

When an object is to be updated, a write quorum, � � � �� , is selected and the update is performed in all servers in

�� . When an object is to be read, a read quorum, �� � ��, is selected and the object is read from one of the servers in

��. Since every write quorum has a non-empty intersection with every read quorum, the read operation is guaranteed

to find at least one server within the read quorum that contains an up-to-date copy of the object. The cost of a write

operation is limited by the size of the write quorum, � � , selected and the read load of the system is split between the

read quorums. Furthermore, as long as the read and write quorums can be selected without communicating with a

central authority, it is possible to have a completely non-central, distributed, management of the replicas.

As will be made clear later, we employ a quorum-based replication strategy as the basis for a CDN. In Section

10 we review related work in quorum systems and draw distinctions between the past work and quorum systems as

employed in this paper.

1.3 Challenges

Server failures can cause the failure of some of the read requests in the system. It is possible that when a read quorum

is chosen for the read operation, the only server which contains an up-to-date version of the object in that read quorum

may be a failed server. Traditional quorum systems assume that the probability of server failure (representing a system

failure, such as disk or CPU crash) is independent of other system parameters and the failure probabilities of other

servers. For example, in a related work [9], Cheung et al. studied the load sharing behavior of the grid protocol in

environments with high performance requirements and proposed a grid protocol with desirable properties. However,

they assumed independent server failures and they fine tuned their protocol to have good transactional (such as mutual

exclusion) behavior. As shown in Figure 1, however, in web servers, as well as in other server systems, failure is

actually a function of the request load; i.e., a system can fail to satisfy the requests even though it is physically up and

running.

The performance of a server, ��, can usually be represented by its average response time and the maximum allow-

able request load, as shown in Figure 1. Beyond its capacity, the performance of the server deteriorates very quickly,

essentially failing to serve the requests it receives. This performance characteristic is very common in disks and, espe-

cially, web servers, which can support only a limited number of simultaneous connections. Once this limit is exceeded,

the response time of the server increases very quickly, rendering the server ineffective. Therefore, any web server

whose load exceeds its maximum capacity can be considered, for all practical purposes, a failed server. Note also that,

3

Figure 1: Performance of a server ��. 	��	
� represents the capacity, and
��� represents average response time

assuming that the number of requests in the system is pretty much constant over time, a failure in one of the servers in

the system may cause an increase in the request load of the other servers in the system, thereby increasing their failure

probability as well. Consequently, we can see that in web content distribution systems,
� the traditional assumption of failure independence does not hold. First of all, as the load in the system increases,

the probability failure of all servers increase together; therefore the failure rate is not independent. Secondly,

once a server is failed, the requests are likely to be redirected to the servers that are alive, increasing their loads

and hence their failure probabilities.
� there is a difference between read and write processes. Since, most of the time, read (by the users) and write (by

the CDN) processes use different mechanisms, an increased read load may or may not affect the write process.

Therefore, it is possible that a server is read-failed while it can serve writes and vice versa. Also, write policies

can be fine-tuned, whereas reads are randomly directed to servers by the users. Furthermore, since all writes are

performed by the CDN, the Write/Write intersection property does not need to be enforced.

Since our aim is to minimize the load on the servers (to prevent them from failing), it is desirable to have large write

quorums. However, since we also want to minimize the cost of writes, which may be prohibitive in the case of large

media objects, it is desirable to have small write quorums. In this paper, we will assume that there is an upperbound

on the number of servers that can be in a write quqorum. Given a set of servers, �, choosing the right set of write

and read quorums is essential for preventing failures. In this paper, we identify system constraints and parameters that

govern the design of appropriate quorum structures. We develop novel replication strategies, based on quorum systems,

to address challenges introduced by the nature of the web content distribution problem. In next section, we start by

defining the problem in more formal terms.

2 Problem Formulation

A major challenge in object replication using quorums is to identify the best way to select the read and write quorums

to be used. As discussed above, the way these quorums are selected has a big impact on the performance (in terms of

cost, response time, failure probability etc.) of the overall system. The assumptions and constraints that apply to the

problem of media distribution over the web by CDNs are different from the ones that are used in traditional quorum

work, necessitating the development of novel replication techniques.

4

2.1 Assumptions and Constraints

We can list the assumptions and constraints that govern the problem as follows:

Constraint I. The CDN employs a set of servers, � � ���� ��� � � � � ���, where the performance of each server, �� � �,

is represented by a 2-tuple �	��
 � �	��	
��
���� (load capacity and average response time, respectively). In this

paper, we will assume that, as long as the load on the servers are below their maximum load capacity, their response

times are virtually identical; i.e., ��
���	
��� �
���
. Therefore, the real factor that differentiates servers from each

other is the the load that they can accommodate. Note that, in a truly homogeneous setting, it is possible that all servers

will also have the same capacity (i.e., ��
���		��	
� � 	��	
�
), however, we refrain ourselves from making such an

assumption.

Constraint II. Write operations are performed by the CDNs; i.e., the CDN has a mechanism that chooses to which

quorum a given object will be published. In this paper, we assume that the criteria for the selection of the quorums for

the write operations will be to balance the resulting read load on the servers. Note that the average write time of the

system is defined as

���
� �
���
� ������ �����
��� �
���
� ��� ������� �� �������

For large media objects,
���
�

���
� ��� ������� �� ������. Also, there is an upper bound,��� ���
�, on the cost of

write operations; i.e., the size of the largest write quorum that CDN employs. Finally, since all writes are performed

by the CDN, the Write/Write intersection property does not need to be enforced.

Constraint III. Read operations are performed by the end-users through their browsers or their media players. It is the

responsibility of the CDN to redirect these requests to most suitable server. Therefore, the read protocol is as follows:

1. Client chooses a proxy server and delegates the task of identifying an appropriate data server to the proxy

2. The proxy server selects a read quorum among the ones to which it belongs

3. The proxy server identifies the server with the most up-to-date copy of the object, either using a directory server

or by communicating with the servers in the read quorum

4. The proxy server redirects the client to the appropriate server.

In this paper, we will assume that the probability with which initial, proxy servers are contacted by clients is uniformly

distributed. This makes sense, as the clients are unaware of the quorum structures used by the CDN. As such, the

average read time of the system can be defined as

���� �
���� ������ �����
��� �
���� ������ ������ �
���� ������ �����
��� �
���� ������ ������ �

where
���� ������ �����
��� is the average time to select a read quorum in ��,
���� ������ ������ is the average time

to access the selected read quorum and identify which of those have the most recent replica,
 ���� ������ �����
��� is the

average time to select the appropriate server among the candidate servers, and
���� ������ is the average time required

for accessing and retrieving the requested object from the selected server. When the retrieved objects are large media

objects,
����

���� ������ ������ .

Constraint IV. As we mentioned earlier, the traditional assumption of failure independence does not generally hold.

When the load on a server increases beyond a threshold, it fails; therefore the failure rate is a function of the load.

Furthermore, as the load in the system increases, the probability failure of all servers increase together; therefore the

failure rate of the servers are not independent. Note that independent failures due to disk or CPU crashes are still

possible.

5

Figure 2: Grid structure guarantees that the intersection property holds

Constraint V. There is a difference between read and write failures. Since, most of the time, read and write processes

use different mechanisms, an increased read load may or may not affect the write process. Therefore, it is possible that,

a server is read-failed while it can serve writes by the CDN and vice versa. In this paper, we will focus on preventing

the read failures. A read failure occurs if (a) the read quorum selection process, (b) the read server selection process,

or (c)the read server access process fails. In this paper, we assume that the read quorum selection process fails only if

the initial server is physically inaccessible. The read server selection and access processes however may fail if some of

the involved servers are overloaded and not accepting additional requests.

2.2 Task of the CDN

Given the above assumptions and constraints, the task of the CDN is to identify a quorum system� � �� �����, such

that the average failure rate and read time of the entire system is minimized. This task has two parts:

� Distributing the read load according to the server capacities. This will ensure that none of the servers is pushed

close/beyond their capacities.

� Ensuring that the system is capable of handling more than 1, say �, disk failures. This will ensure that the user

requests will be satisfied even if some of the servers in the system fail due to capacity overload or system failures.

Note that these tasks may conflict with each other; i.e., it may not be possible to achieve both tasks at the same time. In

this paper, we will focus on the first task: (1) we formally describe the task as an optimization problem, (2) we identify

parameters that capture the optimality of a solution, and (3) we report on experimental results that show the effects of

these parameters. We are currently working on the second task.

2.3 Quorum System Selection

Many quorum based object replication algorithms use a grid structure to select read and write quorums [20, 9, 21, 29,

19, 24]. In the basic grid approach, the given set of servers, � � ���� ��� � � � � ���, are placed into the nodes of a grid

of size � � �	� �
, where

� each of the � rows correspond to a write quorum: �� � ���� ��� � � � � ���, where ���� �� � �� and

� each of the � columns correspond to a read quorum: �� � ���� ��� � � � � ���, where ���� �� � �� .

6

(a) (b) (c) (d)

Figure 3: Various ways to mapping four servers onto grid structures

As shown in Figure 2, this structure guarantees that the intersection property holds; i.e. � ����������� �� � �� 	�
.

Note that the grid-based quorum systems proposed elsewhere are variants of the approach just presented and are aimed

to increasing system availability, assuming independent server failure probabilities. In this paper, we formulate our

solution using this basic definition of a grid quorum structure. However, in order to capture the specific requirements

of the problem we are trying to solve, we augment the basic algorithm and protocol. Given this protocol, we would like

to distribute the overall read load on the servers in a way that reflects the maximum number of simultaneous requests

they can handle. In the next section, we will discuss the factors affecting server load distribution.

3 Server Read Load Distribution

It is not hard to see that an arbitrary mapping of servers onto a grid will not distribute the load relative to server

capacities. Let us consider the following example:

Example 3.1 Let us be given four servers, ������ and �. Let us assume that 	��	
� � ���, 	��	
� � ���,

	��	
� � ���, and 	��	
� � ���. For the sake of this example, let us assume that these servers are placed onto a

grid as shown in Figure 3(a). Assuming that writes are distributed uniformly across the two write quorums � � and ��

and that initial contacts are uniformly distributed across all four servers, we can find the total load on these servers as

follows:

� The read load on server � can be calculated as follows: Let us assume that the total read load in the system is

	. Then, on the average, �� � �
� of these requests will initially access server � and �� � �

� of these requests

will initially access server �. Again, on the average, half of the requests that initially arrive at server � will need

to be served by � and the other half will need to be redirected to �. Similarly, half of the requests that initially

arrive at server � will need to be served by � and the other half will need to be redirected to �. Consequently,

the total load on server � is

�� � ��� � �� � ��� �
	

� ��� �

	

� ��� �

	

�

� The read loads on the other servers, ���� and �, can also be calculated in the same way. In this example, they

are each equal to �
� .

7

This means that, if this particular server to grid mapping is used, the overall read load will be uniformly distributed

among the available servers. However, thismeans that as the overall load increases, server�which has a lower capacity

compared to the other servers, will become overloaded while other servers still have enough resources to accommodate

more requests. Consequently, the system is limited by the capacity of the weakest server in the system. Clearly, in this

example, a more desirable load distribution would be proportional the capacities of the servers:

	� �
	

�
� 	� �

�	

�
� 	� �

�	

�
� ��� 	� �

�	

�
�

This distributionwould ensure that the load is distributed according to the capacities of the servers, thereby preventing

the weakest server from becoming a bottleneck. �

4 Partitioning and Virtual Servers

One intuitive way to achieve a more fine-grained capacity distribution is to split/partition each server into multiple

servers. Note that fragmentation of data has been proposed for reducing storage requirements in grid structures [1].

This is not the same thing we are proposing. Our focus in this paper is to use partitioning to achieve a desirable load

balancing behavior. That is, given a set of servers � � ���� ��� � � � � ���, where (a) each server �� has a maximum

capacity of 	��	
�, and (b) the weakest server in the set has a capacity of 	���� , we can split each server �� into

�� � �
������

�����
� virtual servers, � 	��
 � ���
�� ��
�� � � � � ��
���, and place them onto a larger grid.

Example 4.1 Let us reconsider the servers, ������ and �, in the previous example. Since, we have 	��	
� �

���, 	��	
� � ���, 	��	
� � ���, and 	��	
� � ���, the weakest server, �, has a capacity of, 	���� � ���.

Consequently, we can split� into �, � and � each into �, and� into � virtual servers. Figure 3(b) shows one possible

mapping of these virtual servers onto a grid with � columns; i.e. with write quorums of size two. �

In the context of grid structures, partitioning of servers can have various effects on the performance. These effects have

to be studied carefully to prevent unexpected consequences.

Multiple quorum intersections. One major consequence of this new mapping strategy is that a write quorum and

a read quorum can intersect at multiple cells of the grid. For example, as shown in Figure 3(c), the write quorum

�� which involves servers � and � intersects the read quorum � � at all four cells of the corresponding column.

Consequently, if an object is written to write quorum � �, and read quorum �� is chosen for the read operation, server

� is � times as likely as server � to serve the object.

Write load as a function of the read capacity. Another consequence of this strategy is that, assuming that the write

quorums are selected in an evenly distributed manner, each server will have an object write load that is a function of

its read capacity. In this example, server � is in � write quorum, server � is in � write quorums, server � is in � write

quorums, and server � is in � write quorums. Note, however, that it is also possible to have more than one virtual

server of the same physical server be placed on the same write quorum. In such a case, as in Figure 3(d), a server

may have a lower object write load relative to its read capacity: server � is in � write quorum, server � is in � write

quorum, server � is in � write quorums, and server � is in � write quorums.

Uneven read quorum selection. Since a server may have two or more virtual servers each in a different read quorum,

when a server receives an initial request for an object, it has to choose which of the read quorums it is involved in

8

will be used for delivering the object. For instance, in both Figures 3(c) and (d), server � has virtual servers in read

quorums �� and ��. Therefore, server � can choose either one of the read quorums to serve a given request (we will

study the effects of this selection in Section 6). If on the other hand, server � receives a request, then the only read

quorum it can use for serving the object is ��.

Multiple quorum intersections and uneven read quorum selection properties complicate the load balancing task. In

the next section, we formally study the effects of these properties on the load distribution.

5 Constraints Governing the Server-to-Grid Mapping

We can intuitively see that the read load of a server can be controlled by selecting an appropriate server-to-gridmapping.

Before discussing how to select mappings, in this section, we discuss the constraints that govern the loads on the

servers. This section introducea relevant terminology, provides appropriate tools and parameters to define mappings,

and sheds light on the solutions we develop in the following sections. Let us have

� a set of servers � � ���� ��� � � � � ���, where each server �� is split into a set of virtual servers, � 	� �
 �

���
�� ��
�� � � � � ��
���. Let � be the set of all virtual servers;

� a grid ���� � ���
�� � � � � ��
�� ��
�� � � � � ��
�� which denotes the set of cells of a grid with � rows and � columns;

and

� a mapping � � � � ���� , that maps each one of the virtual servers into a cell of a grid, such that no two virtual

servers occupy the same cell and all cells are occupied by a virtual server.

Given a total system read load, 	, the read load of server �� can be found as follows:

		��
 � 	�
�

��
��

�
�����

����	�� �������� ��� ��������� ������
�

����	�
 �� ������ ��� ���� � �� �������� ��� ��������� ������
�

����	�� �� �������� �� ��� � ��� ������ � �
 �� ������ ��� ���� �

�� �������� ������
 	�

In Equation 1, �� denotes a write quorum and �
 denotes a read quorum. Since we assume that the read quorum

selection is performed in a way that is unaware of which write quorum has an updated copy of the object, the read

quorum selection is independent of the write quorum that contains the object. We can rewrite Equation 1 as

		��
 � 	�
�

��
��

����	�
 �� ������ ��� ����
�

�
�����

����	�� �������� ��� ��������� ������
�

����	�� �� �������� �� ��� � ��� ������ � �
 �� ������ ��� ���� �

�� �������� ������
 	�

Furthermore, since we assume that updates are distributed uniformly across all write quorums, we can further refine

the equation as

		��
 �
	

�
�
�

��
��

����	�
 �� ������ ��� ����
�

9

�
�����

����	�� �� �������� �� ��� � ��� ������ � �
 �� ������ ��� ���� �

�� �������� ������
 	�

Note that, in general, we would like to ensure that the mapping, �, chosen by the CDN, distributes the total read load

onto individual servers, relative to their read capacities:

		��
 � 	�
	��	
��

�	��
	��	
�

� 	�
	��	
�

� � � � 	����

�
	� ��
� � �

�

Assuming that � is chosen to ensure that this condition holds, we can rewrite Equation 3 as

��

�
�

�
��
��

����	�
 �� ������ ��� ����
�

�
�����

����	�� �� �������� �� ��� � ��� ������ � �
 �� ������ ��� ���� �

�� �������� ������
 	�

Equation 4 gives us the main condition that the CDN should observe while choosing a mapping, �. Although it does

not specify how an appropriate mapping can be constructed, we can benefit from this constraint to extract properties of

good mappings. But, first, we need to introduce some shorthand to simplify the rest of the discussion. Let

� ��
 be the set of servers that have virtual servers in write quorum, � �; i.e., ��
 � ����� 	��
 � ��
��;

� ��� be the set of servers that have virtual servers in read quorum, �
; i.e., ��� � ����� 	��
 � ��

�;

� ��

 be the set of virtual servers in read quorum
 that have a corresponding server in write quorum �; i.e.,

��

 � ��� � �� � � 	��
� �	��
 � ��

 � �� � ��
�.

Then, if an object is in write quorum, ��, and a read quorum �
 is chosen for the read operation, assuming that servers

are selected as a function of their presence in the read quorums, the probability of � � being selected for the read

operation will be equal to �� ����	�
���
��
���

. Hence, we have

��� � ��
��

�
�

�
��
��

����	�
 �� ������ ��� ����
�
�

�����

�� 	��
 � ��

�

���

�
� 	�

Finding a mapping, �, that satisfies the above constraint for all servers is not trivial. However, we can simplify this

task by carefully reducing the size of the search space using appropriate assumptions. In Section 9.1, we will study the

effects of these assumptions and show that they can be relaxed without significantly affecting the quality of the result.

Simplifying Assumption 1 Let us assume that, we can choose � such that

���
��� ����	�
 �� ������ ��� ����
 �
�

�

�
Therefore, the first parameter we will consider is the read quorum load distribution. We will denote this parameter

as �	�

, where �
 is a read quorum, and we state that, for all read quorums, the ideal value for �	�

 is �
�
. Note

that, as we informally discussed in Section 4, it is not trivial to ensure that this assumption holds. In Section 6, we

will formally study the properties of parameter � and in Section 9.1 we will experimentally evaluate its effect on the

10

optimality of grid mappings. For now, though, we will assume that this simplifying assumption holds. Then, we can

see that Equation 5 reduces to,

��� � ��
�

��
��

�
�����

�
�� 	��
 � ��

�

���

�
� ��� 	�

Although this assumption reduces the solution space significantly, finding a mapping, �, that satisfies Equation 6

for all servers is not trivial either. However, if, in addition to the simplifying assumption 1, we assert the following

assumption, then the CDN can guarantee a desirable server load distribution.

Simplifying Assumption 2 ��������
��������
�� 	��
 � ��

�

���

�
�

��

� � �
������

�

To see that the simplifying assumption 2 is a sufficient condition for Equation 6, consider the following:

�
��
��

�
�����

�
�� 	��
 � ��

�

���

�
�
�

��
��

�
�����

��

� � �
�

��

� � �
�
�

��
��

�
�����

� �
��

� � �
� � � � � ���

Therefore, the second parameter we will consider is the read and write quorum intersection. We will denote this

parameter as 	��
 �
�

��
��

�
������

�� ����	�
���
��
���

, where �� is a server. We state that, for all servers, the ideal value

for 	��
 is ��.

Note that, although the simplifying assumptions enable us to reduce the search space significantly by allowing us

concentrate on two parameters, read quorum load distribution and read and write quorum intersection, we need to

further study these parameters to understand their exact effects on the server-to-grid mapping and whether they can

be used for developing efficient mapping strategies. In the next sections, we will study these assumptions and the

conditions under which they are expected to hold in greater detail.

6 Properties of �: Read Quorum Load

When a server, which has two or more virtual servers, each placed in a different read quorum, receives an initial request

for an object, it has to choose one of the read quorums for delivering the object. Since at the time when it receives the

request, the initial server may not know which write quorum or which servers have the most up-to-date copy of the

object being requested, it can not use a priori knowledge to select the most suitable read quorum among the candidates.

In this section, we will present two strategies that an initial server can use to choose a read quorumwithout any external

knowledge, and we will calculate the resulting read quorum loads.

6.1 Calculating � under Weighted Server Participation Strategy

The first strategy that initial server, � �, can use is to assume that, since the client initially accessed server, � �, it would

prefer to receive the object from server � � if possible. Although � � does not know whether it has the latest version of

the object or not, it can maximize its own chances of serving the object by giving preference to the read quorums that it

has high participation (i.e., more virtual servers of � �) over those read quorums that it has low participation. In order to

implement this strategy, the only information � � needs is the list of read quorums in which its virtual servers are located

and, for each such read quorum, the number of its virtual servers located in it.

11

Figure 4: An example quorum structure with varying server participations on read quorums

Example 6.1 Let us consider the quorum structure given in Figure 4 and let us assume that a client initially accessed

server � to request an object. Server � is present in two read quorums, ��, and ��: its participation in �� is with �

virtual servers and its participation in � � is with � virtual servers. Consequently, under this strategy,� will select read

quorum, ��, with �
� probability and read quorum, ��, with

�
� probability. �

We can generalize this example as follows: Given an initial server � � which has a set of virtual servers, � 	��
 �

���
�� ��
�� � � � � ��
��� and a mapping � � � � ����, we can calculate the likelihood of a read quorum �� to serve the

request as follows:

����	�� �� ������ ��� ���� � ������ ��������! �������� ��� �� ��
 �
��!�	�� � � 	��
 � 	�	��
 � ��
�
��

��

Consequently, the total load on a given read quorum, � �, due to the requests initially received by server, � �, can be

calculated as

	

�
�
��!�	�� � � 	��
 � 	�	��
 � ��
�
��

��
��

	

� � ��
� 	��"��� �� ������ ��� ��� �� �� �� ���� �����" ��
�

Hence, we can calculate the total read load, 	�	��
, of a given read quorum, �� , under weighted server participation

and the parameter ��	��
 (
����	�

�
) as

	�	��
 �
�

�
����
�	���	�

#�� � � 	��
$�
	

� � ��
��� ��	��
 �

�

�
����
�	���	�

#�� � � 	��
$

�� ��
	�

respectively.

6.2 Calculating � under Flat Server Participation Strategy

Note that the initial server, ��, can further refrain itself frommaking any assumptions. In this case, it gives no preference

to any of the quorums it is involved in; i.e., it randomly chooses among all the quorums that it belongs to. In order to

implement this strategy, the only information � � needs is the list of read quorums in which it has virtual servers.

Example 6.2 Let us reconsider the quorum structure given in Figure 4 and again assume that a client initially accessed

server � to request an object. Server � is present in two read quorums, ��, and ��. Consequently, irrespective of its

varying participation in these two read quorums, under this strategy,� will select read quorum, � �, with �
� probability

and read quorum, ��, with �
� probability. �

12

We can generalize this as follows: Given a server � � which has a set of virtual servers, � 	��
 � ���
�� ��
�� � � � � ��
���

and a mapping � � � � ����, we can calculate the total load on a given read quorum, ��, due to the requests initially

received by server, ��, as

����	�� �� ������ ��� ���� � ������ ��������! �������� ��� �� ��
 �
#��
�� ����	�	��
 � ��
�
$

��"��� � � 	��
 � 	�	��
 � ��
�
��

Consequently, the total load on a given read quorum, � �, due to the requests initially received by server, � �, can be

calculated as

	

�
�

#��
�� ����	�	��
 � ��
�
$

��"��� � � 	��
 � 	�	��
 � ��
�
��

or, equivalently, as

� �� �� ���� ��� ������� � ������ ��� �� �� ��

	

�� ��"��� � � 	��
 � 	�	��
 � ��
�
��
�� �� �������� � ������ ��� �� �� ��

This means that we can calculate the total read load of a given, 	 	��
, read quorum, �� , under flat server participation

as

	 	��
 �
�

������� ���� � �����	���	�

	

� � ��!��� � � 	��
 � 	�	��
 � ��
�
��
�

Therefore, the value of the parameter � 	��
 �
�
 ��	�

�
, under flat server participation strategy can be calculated as

� 	��
 �
�

������� ���� � �����	���	�

�

� � ��!��� � � 	��
 � 	�	��
 � ��
�
��
� 	�

6.3 Summary

Both strategies are very simple to implement in a distributed environment. However, finding a mapping thatwill provide

evenly distributed access rates for the read quorums using these strategies is not trivial. Fortunately, as Section 9.5

explains, having evenly distributed read quorum load is not totally essential to low server load.

7 Properties of � : Read and Write Quorum Intersection

In Section 5, we stated that, if an object is placed in write quorum, � �, and a read quorum �
 is chosen for the read

operation, then assuming that servers are selected as a function of their presence in the read quorums, the probability

of �� being selected for the read operation will be equal to
�� ����	�
���

��
���
. Note that this assumes that it is possible for the

proxy server to know (1) which write quorum was the object placed in and (2) what is the virtual server intersection

between the corresponding read and write quorums. This can be achieved as follows: for every cell location, the

intersection, ��

, between the corresponding read and write quorums are computed at the mapping time and this

information is written into the servers. Each time an object is published into a write quorum, the ID (row number)

13

(a) (b)

Figure 5: (a) Each write quorum and read quorum intersects at a single server, and (b) we can extend the result from

one single server to a set of servers (the diagonal pattern is not necessary). The shaded areas in the figure are the

horizontal and vertical shadows of the cluster.

of the quorum is also written along with the timestamp. Then, when a read quorum is chosen to serve the content,

the virtual server located at the intersection cell sends the � �

 information to the proxy. This way, the entire mapping

information does not need to be knownglobally by all servers, and the � �

 information can be recovered in a distributed

manner. With this understanding, there are various ways to ensure that simplifying assumption 2,

��������
��������
�� 	��
 � ��

�

���

�
�

��

� � �
�

holds. In this section, we try to identify these ways using constraints imposed on the intersections of quorums.

7.1 Single Server Intersection Constraint

One way to ensure that the second simlifying assumption holds is to require that each write quorum and read quorum

intersects at a single server �� � � (Figure 5(a)):

��������
��������	� 	��
 � ��

 � ��

� 	� 	��
 � ��

 �

%

or, equivalently,

���
�����������
 � ���� � ��

7.2 Set Intersection Constraint

Single server intersection constraint, however, can be very over restrictive in the design of quorum systems. We can

generalize it to sets of servers. Let us assume that we are given a set of servers �
, such that each server in �
 has the

same number of virtual servers as the others in �
. Let also � 	�

 denote ��	���� 	��
. Then, if

���
��������	� 	�

� ��

 � ��

 � 	� 	�

 � ��

 �

14

or, equivalently,

���
��������	��
 � ��� � �

 � 	��
 � ��� � �
 �

�

then the constraint holds for all servers in �
. This means that, we can extend the constraint from one single server to

a set of servers. The consequence of this constraint is that, as shown in Figure 5(b), given a cluster of virtual servers,

� 	�

, that are placed onto the grid, the horizontal and vertical shadows of the cluster (as shown in Figure 5(b)) are

constrained in terms of the servers that can be placed without violating the constraint.

7.3 Optimal Cluster Dimensions based on the Set Intersection Constraint

This constraint can be used for reducing the search space. The optimal dimensions of a server cluster of dimensions

��# can be found by minimizing the product of its horizontal and vertical shodows. Intuitively, for every grid position

in the horizontal shadow, all grid positions in the vertical shadow are constrained. Therefore, we can find optimal

dimensions, � and #, by solving

������$��		�� �
� #
� 		�� #
� �

��

where, � is the number of read quorums covered by the cluster, # is the number of write quorums covered by it, and

�� # � �� 	�

�. It can be shown that the optimal cluster dimensions are

�

�
�

�
� �� 	�

� ��% #

�
�

�
� �� 	�

��

7.4 Summary

Note that the second assumption and the corresponding design parameter can also be used to limit the search space.

The corresponding constraints can be based on individual servers or on sets of servers. In the next section, we will

discuss how these constraints can be used in developing mappings.

8 Mapping Algorithms

In this section, we will introduce two algorithms to generate server-to-grid mappings based on the design parameters.

The first of these algorithms uses the optimal cluster dimensions to create a mapping. Due to the complexity of this

algorithm, we also provide a very efficient second algorithm. The disadvantage of the second algorithm is that, in case

independent failures are common, its availability can be low.

8.1 Using Optimal Cluster Dimensions for Obtaining Good Mappings

We have seen above that the optimal dimensions of a server cluster of size �� 	�

� can be found as

�

�
�

�
� �� 	�

� ��% #

�
�

�
� �� 	�

�

One can translate this result into an algorithm whose pseudo-code is presented in Figure 6. Intuitively, the algorithm

tries to create optimal size clusters and, then, fill the grid with these clusters. Since it promotes grid-locality of virtual

servers, intuitively, the resulting grid will have high read availability.

15

Algorithm:
1. Put the servers into groups such that the servers in each group have the same number of virtual servers.
2. Identify optimal cluster dimensions for each group
3. Try to fill the grid with the given clusters
4. If such a filling is not possible, break some of the clusters into multiple pieces to obtain a final mapping.

Figure 6: Cluster-based mapping algorithm pseudocode

Input:
� A sequence � �� ���� ���� � � � � ���� ��� � of (��	
�	 ��, �
���	 ��
�	�
�� ��	
�	�) pairs and
� An upperbound on the size of write quorums, �.

Output: A server to grid mapping, � � � � � ���.

Algorithm:
1. Sort � in increasing order by �� and store the result in �����	

2. Replace each (��, ��) pair with a sequence of ����� ����� . . . ����� , where each ���
 is a virtual server of ��. Note

that �����	
 is now an ordered list of virtual servers grouped by server name.

3. Construct a grid of
�

�

���
����

�
rows and � columns.

4. Fill the grid in circular row-major order using successive elements of �����	
:

(a) Fill rows �� �� �� � � � left-to-right and

(b) Fill rows �� 	�
� � � � right-to-left.

Figure 7: SH-map algorithm

Although this solutionwould reduce the search space for finding good grid mappings significantly, its computation

can still be costly. In the next section, we provide another solution (snake heuristic) based on constrained placement

of servers to ensure minimal overlapping of the horizontal and vertical extensions of the clusters.

8.2 Algorithm: SH-Map

The snake heuristic mapping algorithm (SH-Map) attempts to balance server load and minimize the maximum over-

loading experienced any server in the system. The name comes from the way virtual servers are mapped into the grid.

The algorithm is depicted in Figure 7. We explain how SH-Map works using an example.

Example 8.1 Let, �, the number of columns in the grid, be 6 and let us be given the following sequence of pairs:�	�� �
�

	��

� 	�� �
� 	�� �
� 	&� �
� 	'� �
� 	�� �
� 	(� �
�. After sorting the sequence and replacing the servers with virtual

servers, we get ���� (�� '�� '�� ��� ��� ��� &�� &�� &�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���.

The final grid is:

�� (� '� '� �� ��

�� �� &� &� &� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

�

16

Note that SH-map tends to minimize unwanted intersections between read and write quorums. Therefore, this

solution has a good load-balancing property. However, if independent failures are common and if write quorum sizes

are relatively small,this algorithm can suffer from low availability (in the above example, if server � goes down, 4

out of 6 read quorums are lost). In the next section, we first show that SH-Map algorithm provides close to optimal

load balancing, and then use SH-Map to study the properties of the � and parameters. Note that SH-Map could

still be highly useful in environments with low independent failure probability. Furthermore, it is possible to combine

the clustering and SH-mapping algorithms to overcome their shortcomings. Finally, we are currently investigating

�-failure quorum systems which can significantly increase the availability. We omit detailed discussions as the focus

of this paper is to study the effects of the parameters.

9 Simulations and Experiments

In order to observe the performance of the SH-map algorithm and the effects of the two design parameters we have

identified, � and , we have designed and conducted a set of simulations and experiments. Simulation software

provides a controlled environment where we can carry on various tests. Experiments using real servers, on the other

hand, are used for validating that the simulation results indeed reflect the real system performance. In this section, we

describe the simulation and experiment architectures, provide results, and discuss their interpretations.

9.1 Experiment Architecture

Our experiment architecture, whichmodels a CDN, consists of a collection of Tomcat and Apache web servers. Apache

servers receive requests and pass them onto Tomcat servers that will handle quorum formation and data delivery tasks.

We implemented two types of servlet programs, (1) ����������	�
 for quorum formation and (2) ���
����	�
 for

serving data. A delay value is passed to ���
����	�
 each time it is invoked to enable it simulate the appropriate

backend data access delay. Each server starts with a specified capacity, i.e., the number of simultaneous requests is can

handle. Client requests are processed as follows:
1. The client selects a server, �, and contacts it as a proxy for read quorum formation. This request is handled by

the ����������	�
. Since � can have multiple virtual servers, ����������	�
 selects a read quorum using

the flat server participation strategy.

2. � then contacts all servers in the corresponding read quorum and gets a timestamp from each one of them. If a

server is read-overloaded, then it returns a ���� signal. In this case, the quorum formation fails and the client

is informed of the failure. If none of the servers are overloaded, then the IP address of the server with the most

up-to-date copy of the requested object is returned to the client. If more than one server in the read quorum has

an up-to-date copy, then one of them is selected randomly based on virtual server representation in the quorum.

3. After receiving the address of the appropriate server, the client sends a data request to the corresponding

���
����	�
. The ���
����	�
 sleeps for the specified amount to simulate the backend delay. The total

amount of time taken to serve the request (including the queuing time) is recorded. Note that if it takes more

than a threshold value to serve the request, then the server declares itself read-overloaded and the read fails.

4. For our experiments the number of read operations served by each server is recorded into logs.

We used Java 2.0 for implementation and ran the framework on a set of Pentium III machines running a combination

of Windows NT and Windows 2000.

17

9.2 Using Experiments for Validating the Simulation Environment

We have also used software simulations, based on the equations described in Section 5, to explore various system

parameters and mapping strategies. To verify that the simulation environment produces results matching those obtained

in a real experimental setup, we ran a series of tests on both frameworks and compared the results.

The simulation environment was configured for grids of dimensions
�&, &�
, and ���. We randomly created �

grids for each dimensions, with the following relative server capacity distributions: on the average
�� of the servers

have 1, ��� have 2, ��� have 3, ��� have 4, and ��� have 5 virtual servers. The number of servers ranged between

� and ��. In line with the experimental framework, the flat server participation strategy was used to pick read quorums.

For each grid, expected server loads were calculated using the equation

		��
 �
	

�
�
�

��
��

����	�
 �� ������ ��� ����
�
�

�����

�� 	��
 � ��

�

���

�
�

Each grid setup was also run on the experimental framework. The minumum server capacity was �� simultaneous

connections and a backend delay of 10 seconds. We generated 2 requests per second, for a total of ��� requests. Note

that none of the servers failed in the experiments, but this load was enough to observe the load distribution.

The cumulative results obtained from the simulation and experimental frameworks were compared in a t-test and

an f-test. A t-test compares two datasets (samples) for equal means and returns the confidence level that the sample

means are equal. Similar to a t-test, the f-test compares the variances of two samples and returns a confidence value

that the variances are equal. Note that we could have used other tests for comparing our results, however, since we

have insight into how the experimental environment and simulation operate, we are confident that the t-test and f-test

are sufficient. We observed that the confidence levels were '��'� for the t-test and ��� for the f-test. Furthermore,

the corrolation was '����. Thus we are very confident that the simulation results, and hence the equations presented

in Section 5, match the real implementation.

9.3 The Effect of the Parameter � on the Grid Performance

In the second set of experiments, we observed the effect of the second simplifying assumption, the read and write quo-

rum intersections, on the performance of the quorum structure. As discussed earlier, we can capture this assumption,

using the parameter . We ran a set of simulations to observe the correlation between and the performance of

the quorum structure under various mapping strategies. We used large numbers of randomly mapped grids to observe

how server load optimality and are corrolated. In the rest of the paper, we refer to these mappings as the random

mapping strategy. We then used SH-mapping to see if (1) SH-mapping provides good results and if (2) it benefits from

the correlation between and the optimality in this process. Figure 8 shows the load and values for servers in 100

small, �� �, grids:

� Figure 8(a) shows the results obtained using the random mapping strategy. Under this strategy, the loads of

the servers diverge from their ideal values as large as ����. Note that Figure 8(b) shows that, under optimal

mapping strategies, as expected, the worst case error in the loads of the servers vary less than ��� from their

ideal values.

� More importantly, these figures also show that there indeed is a correlation between the load performance of the

servers and their values; as the error in the values increase, the error in the load also increase. The best-fit

18

(a) (b)

(c)

Figure 8:

lines in both figures pass nearly through the origin, illustrating that when a server has the expected value, then

it is also likely to have the expected ideal load.

� Figure 8(c) shows the performance of the SH-mapping: the worst-case error in the load varies between �
��.

This is a significant reduction from the worst case (����) of the random mapping, but the same as the worst-case

of the optimal mapping. The average behavior of these two mapping strategies show the same pattern.

� The results also show a parallel trend in the values, further validating the correlation between values and

the performance of the grid structure. Note that, unlike the optimal and random mapping strategies, which are

asymmetric around the origin, the SH-mapping is symmetric, providing an overall better load distribution. Note

that the optimal strategy, which does not have such a symmetry, provides the best load distribution. Therefore,

such a symmetry is not a necessary condition for optimality.

Although these results show that is a significant parameter in the design of grid structures, it does not show its

effects on larger grid structures. In order to observe these effects as the grid size changes, we have experimented with

various grid structures. These grids are filled with servers such that on the average
�� of the servers have 1 , ���

have 2 , ��� have 3, ��� have 4 , and ��� have 5 virtual servers.

Figure 9 shows the observations for two grid dimensions: ��� �� and ��� ��. As clearly seen in the figures,

19

(a) (b)

(c) (d)

Figure 9:

� in both cases, SH-mapping significantly outperforms random mapping;

� correlations between and the load performance are clear in all result sets,

� the balancing effect of SH-mapping is visible in both grid dimensions.

Note that the figure also shows that both random and SH-mappings give better results in �� � �� dimensional grids

than �� � �� dimensional grids. Although this difference is subtle in random mappings, it is more pronounced on

SH-mappings (less than ��� overload in ��� �� grids versus
�� in ��� �� grids). This means that the approach is

suitable to CDN applications, where the write quorum size is constrained by the content publication (write) cost.

9.4 The Effect of Optimal Cluster Size

In the third set of experiments, we aimed at observing the effect of optimal cluster size. We have created a set of 8

servers, each with two virtual servers, and placed them in various shaped clusters in a ��� �� grid. The rest of the grid

is filled with randomly generated servers. The results of this experiment are shown in Figure 10.

The results show that clustering alone helps the servers in the given set. The servers in the cluster were underloaded

with respect to the other randomly placed servers in the grid, in all cluster dimensions. Furthermore, as the dimensions

of the clusters approach the optimal dimension (in this case
 �
), their load decreases. This means that, given a set

of similar servers, their best placement on the grid is in a clustered fashion.

20

Cluster dimensions Cluster Underload�

�&� � �����

�� �& �����

�� � ���
�

�� � �����

�
 �����

Figure 10: Cluster dimension vs. Percentage underload

(a) (b)

Figure 11:

9.5 The Effect of � on the Grid Performance

In the fourth set of experiments, we observed the effect of the first simplifying assumption, the read quorum load

distribution, on the performance of the quorum structure. As discussed earlier, this assumption is captured usign the

parameter �, which states that given � read quorums, each read quorum should have equal, �
�
, selection probability.

Figure 11(a) shows how server loads are related to the standard deviation in the read quorum load distribution in

various randomly created mappings. Note that, we can not observe a strong correlation between the server overload

and the standard deviation. This means that the worst-case effect of the first simplifying assumption is not large. This

is actually very desirable, as it means that we do not need to worry about ensuring that all read quorums have the same

load distribution.

We have also observed the relationship between server loads and the standard deviation in the read quorum load

distribution in SH-mapped grids (Figure 11(b)). The worst-case overload when SH-mapping is used is around ��� and

is significantly lower than when a random mapping is used () ����). This is due to even load distribution provided

by SH-mapping, as visible in the symmetry of the server loads wih respect to the � axis. Also, please note that, the

correlation between the standard deviation value and the server loads is more visible in SH-mapped grids. Although

for small standard deviations, the server loads are clustered closer to the � axis, they tend to become more widely

distributed for larger standard deviations.

Finally, we ran another set of experiments, where we observed how server loads are related to the �s of the specific

read quorums that they are located in. Figures 12(a) and (b) shows the results in random and SH-mapped grids:

21

(a) (b)

Figure 12:

� First of all, results show that SH-mapping significantly reduces both the deviation in the read quorum loads and

the amount overload.
� Secondly, both figures show a correlation between the parameter � and the server load balance. In the randomly

generated mappings, this correlation is overshadowed by the inherent randomness. SH-mapping, however, shows

perfect correlation, meaning that it indeed chooses mappings using the first assumption. The reason why there

are multiple lines in the graph is that, each value difference shows itself as a separate line for the parameter �

and that, by its construction, SH-mapping limits the number of possible value differences.
� Finally, results also show that, as in other observations, SH-mapping induces a symmetry.

9.6 Time Complexity

The time needed to map a set of virtual servers to a grid is of key concern. However, as the number of servers increases

and the variation in the number of virtual servers each server has increases, it gets harder to find an optimal mapping.

The two algorithms we have used in this paper are exhaustive search and SH-Map. The complexity of each is described

below.

The exhaustive search method tries all possiblemappings for a grid and returns the mappings which have the lowest

maximum overloaded server. It is easy to see that the computational complexity of this method is*	�(
 (we have only

used it to verify the optimality of other algorithms). On a G4 processor at 450MHz, we need 145 seconds for an

average 9-element grid and 1500 seconds (25 minutes) for 10-element grids.

SH-Map, on the contrary, has a low computational complexity and works very fast. The basic operation of SH-Map

is to sort the set of servers and the running time is *	���������
. Using the same hardware used for exhaustive search,

SH-Map can fill a 2000-cell grid in approximately 0.01 milliseconds (averaged over 100 runs).

10 RelatedWork in Quorum Systems

Quorum systems have been widely proposed for years as a means of sharing load, enhancing system availability, and

providing consistency in distributed file and database systems. In this section we briefly review properties of quorum

systems and explain how our quorum scheme compares to others presented in the literature. First we present an

22

overview of quorum systems. Then we explain the general method in which quorum systems operate. Finally, we

discuss how our CDN quorum solution differs from what has been seen in the past. Recall that equations defining

quorums and quorum intersection properties were given in Section 1.2.

Quorum systems are roughly divided into two types. The first type of quorum system uses some kind of voting

mechanism to determine when a quorum has been established. In voting systems, each node is given a vote with a

certain weight. A quorum is established when the votes of the member nodes surpass some threshold value. The

threshold value is set such that the quorum properties hold. Examples of voting protocols include weighted voting

[14, 30] and dynamic voting [15, 10]. The second type of quorum systems organizes nodes into a logical structure.

Quorums are constructed by selecting nodes from the structure based on some property of the structure. Examples of

logically structured systems are Crumbling Walls [25, 26], tree-based protocols [2, 3, 17, 24], hierarchical quorum

consensus systems [18], hybrid hierarchical systems [20], the triangular lattice [31], diamond quorums [13], grid-

based systems [9, 21, 29, 19, 24], and plane-based systems [23, 6].

For most, if not all, quorum systems proposed to date, read and write operations occur in a similar fashion. It

is assumed that some sort of locking protocol is used to control access to an object and that some version control

mechanism, like timestamps, is used to identify different versions of the same object. Note that quorum protocols

usually enforce mutually exclusive access to objects. Typical read and write operations are as follows. When an object

is to be read, a read quorum, �� � ��, is selected and a message requesting access to the object is sent to each server in

the quorum. If a server is available, it returns a confirmation message and a copy of the object. When all servers in the

quorum have responded positively, the requestor takes for its result the most recent version of the object returned. If

one or more servers fails to respond to the request (the operation times out) or responds negatively (the object is locked

by another operation), the requestor cancels the read, selects another quorum, and tries again. When an object is to be

written, a write quorum, �� � �� , is selected and the update is attempted on all servers in � � . The data to be written

accompanies the write request. As for reads, if a server does not respond or responds negatively to a write request, the

write is cancelled and rolled back if needed, another write quorum selected, and the write is attempted again.

The media object replication scheme proposed in this paper is based on a basic version of the grid-based protocols.

Since the application we are addressing is CDN-driven object replication, with potentially heterogeous servers, we can

ignore and must change some conditions that are typically found in quorum systems, such as

� In a CDN all updates (writes) are performed by a single writer and the mutual exclusion property does not need

to hold for most applications. However, generic quorum systems attempt to enforce mutual exclusion while

allowing for multiple writers. Thus Write/Write intersection property does not need to hold for quorum-based

object replication in CDNs.

� Quorum operations usually assume that readers have full knowledge of available read quorums. Since readers are

not part of the CDN system and should not worry about how CDN works, we can not have such an assumption.

Thus, in Constraint III, propose way to make a quorum system work when the readers (the clients) are ignorant

of the inner workings of the system.

� The systems referenced above usually assume that servers fail independently of their load. Moreover failures are

due to either to network partitions or to server hardware failures. As we mentioned in Section 1.3 this assumption

is contrary to actual system behavior.

23

11 Conclusions

In this paper, we provided an overview of the new challenges associated with replicating large media object over the

web. We have highlighted the fact that the replication cost for reflecting the update onto a large number of replica

servers may be prohibitively large. We have also discussed why in such systems the traditional assumption of failure

independence does not hold and that read and write failures are independent of each other. Given these properties of

the Web content replication task, we identified constraints and design parameters to ensure good content replication.

We showed the effects of the parameters using theoretical, experimental, and simulation results.

References

[1] D. Agrawal and A. E. Abbadi. Reducing storage for quorum consensus algorithms. In Fourteenth International

Conference on Very Large Data Bases, pages 419–430, 1988.

[2] D. Agrawal and A. E. Abbadi. The tree quorum protocol: An efficient approach for managing replicated data. In

Proceedings of the 16th VLDB Conference, pages 243–254, 1990.

[3] D. Agrawal and A. E. Abbadi. The generalized tree quorum protocol: An efficient approach for managing

replicated data. In ACM Transactions on Database Systems, Vol. 17, No. 4, pages 689–717, 1992.

[4] Akamai Technologies. http://www.akamai.com.

[5] M. K. anf M. Dahlin. Coordinated Placement and Replacement for Large-Scale Distributed Caches. In IEEE

Workshop on Internet Applications, pages 62–71, 1999.

[6] R. Bazzi. Planar quorums. In Proceedings of the 10th InternationalWorkshop on Distributed Algorithms, pages

251–268, 1996.

[7] K. S. Candan and W.-S. Li. Integration of database and internet technologies for scalable end-to-end e-commerce

systems. invited chapter submission to Architectural Issues of Web-Enabled Electronic Business, 2001.

[8] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, andD. Agrawal. EnablingDynamic Content Caching for Database-

Driven Web Sites. In Proceedings of the 2001 ACM SIGMOD , Santa Barbara, CA, USA, May 2001. ACM.

[9] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid protocol: A high performance scheme for maintaining

replicated data. In Transactions on Knowledge and Data Engineering, Vol. 4, Num. 6, pages 582–592, 1992.

[10] D. Davcev and W. A. Burkhard. Consistency and recovery control for replicated files. In Proceedings of the 10th

ACM Symposium on Operating System Principles, pages 87–96, 1985.

[11] Digital Island, Ltd. http://www.digitalisland.com/.

[12] Z. Fei. A novel approach to managing consistency in content distribution networks. In Proceedings of the 6th

International Workshop on Web Caching Caching and Content Distribution, 2001.

24

[13] A. W.-C. Fu, Y. S. Wong, and M. H. Wong. Diamond quorum consensus for high capacity and efficiency in a

replicated database system. In Distributed and Parallel Databases, Vol. 8, No. 4, pages 471–492, 2000.

[14] D. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh ACM SIGOPS Symposium on

Operating Systems Principles, pages 150–159, 1979.

[15] S. Jajodia and D. Muthcler. Dynamic voting algorithms for maintaining the consistency of a replicated database.

In ACM Transactions on Database Systems, Vol 15, No. 2, pages 230–280, 1990.

[16] J. Kangasharju, J. Roberts, and K. W. Ross. Object replication strategies in content distribution networks. In

Proceedings of the 6th InternationalWorkshop on Web Caching and Content Distribution, 2001.

[17] H. Koch. An efficient replication protocol exploiting logical tree structures. In 23rd Int. Conf. on Fault-Tolerant

Computing (FTCS-23), pages 382–391, 1993.

[18] A. Kumar. Hierarchical quorum consensus: A new algorithm for managing replicated data. In IEEE Tranactions

on Computers, Vol. 40, No. 9, pages 996–1004, 1991.

[19] A. Kumar. An efficient supergrid protocol for high availability and load balancing. In IEEE Transactions on

Computers, Vol. 49, No. 10, pages 1126–1133, 2000.

[20] A. Kumar and S. Y. Cheung. A high availability sqrt(n) hierarchical grid algorithm for replicated data. In

Information Processing Letters, No. 40(6), pages 311–316, 1991.

[21] A. Kumar, M. Rabinovich, and R. K. Sinha. A performance study of general grid structures for replicated data.

In International Conference on Distributed Computing Systems, pages 178–185, 1993.

[22] W.-S. Li, K. S. Candan, W.-P. Hsiung, O. Po, D. Agrawal, Q. Luo, W.-K. W. Huang, Y. Akça, and C. Yilmaz.

CachePortal: Technology for accelerating database-driven e-commerce web sites. In Demo. at the Very Large

Data Bases (VLDB) Conference, pages 699–700, 2001.

[23] M. Maekawa. A sqrt(n) algorithm for mutual exclusion in decentralized systems. In ACM Trans. Comput. Syst.

3, 2, pages 145–159, 1985.

[24] M. Naor and A. Wool. The load capacity and availability of quorum systems. In SIAM Journal on Computing,

27(2), pages 423–447, 1998.

[25] D. Peleg and A. Wool. Crumbling walls: A class of practical and efficient quorum systems (extended abstract).

In Proceedings of the 14th ACM Symposium on the Principles of Distributed Computing (PODC 95), pages

120–129, 1995.

[26] D. Peleg and A. Wool. The availability of crumbling wall quorum systems. In Discrete Applied Math, 74(1),

pages 69–83, 1997.

[27] P. Radoslavov, R. Govindan, and D. Estrin. Topology-informed internet replica placement. In Proceedings of the

6th InternationalWorkshop on Web Caching and Content Distribution, 2001.

25

[28] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond Hierarchies: Design Considerations for Distribued Caching on

the Internet. In ICDCS, 1999.

[29] O. E. Theel and H. Pagnia-Koch. General design of grid-based data replication schemes using graphs and a few

rules. In International Conference on Distributed Computing Systems, pages 395–403, 1995.

[30] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy databases. In ACM

Transactions on Database Systems, Vol. 4, No. 2, pages 190–209, June 1979.

[31] C. Wu and G. G. Belford. The triangular lattice protocol: A highly fault tolerant protocol for replicated data. In

Proceedings of the 11th IEEE Symposium on Reliable Data Systems, pages 66–73, 1992.

[32] Zona Research. http://www.zonaresearch.com/.

26

