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ABSTRACT

In this dissertation I develop a deep theory of temporal planning well-suited to an-

alyzing, understanding, and improving the state of the art implementations (as of

2012). At face-value the work is strictly theoretical; nonetheless its impact is en-

tirely real and practical. The easiest portion of that impact to highlight concerns

the notable improvements to the format of the temporal fragment of the Interna-

tional Planning Competitions (IPCs). Particularly: the theory I expound upon here

is the primary cause of—and justification for—the altered (i) selection of bench-

mark problems, and (ii) notion of “winning temporal planner”.

For higher level motivation: robotics, web service composition, industrial man-

ufacturing, business process management, cybersecurity, space exploration, deep

ocean exploration, and logistics all benefit from applying domain-independent au-

tomated planning technique. Naturally, actually carrying out such case studies has

much to offer. For example, we may extract the lesson that reasoning carefully

about deadlines is rather crucial to planning in practice. More generally, effectively

automating specifically temporal planning is well-motivated from applications. En-

tirely abstractly, the aim is to improve the theory of automated temporal planning

by distilling from its practice.

My thesis is that the key feature of computational interest is concurrency. To

support, I demonstrate by way of compilation methods, worst-case counting argu-

ments, and analysis of algorithmic properties such as completeness that the more

immediately pressing computational obstacles (facing would-be temporal general-

izations of classical planning systems) can be dealt with in theoretically efficient

manner. So more accurately the technical contribution here is to demonstrate: The

computationally significant obstacle to automated temporal planning that remains

is just concurrency.
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Chapter 1

Introduction

Over the past decade the computational performance of temporal planners has

steadily and considerably improved [36, 36, 37, 39, 54, 56, 57, 64, 85, 87, 93, 120,

129, 142, 146, 184, 198, 201, 208]. These successes pivot, in no small part, upon

the creation of a standard temporal planning language (PDDL) [71]; lacking a stan-

dard, empirical comparison is often “apples to oranges”. Of equal note are the tem-

poral tracks of the International Planning Competitions [60, 76, 81, 82, 105, 141].

In particular we may view the raw data as in-depth empirical evaluation. Finally,

we would be remiss if failing to consider the role that classical planning research

plays. Specifically, much of temporal planning research consists of no more—and

no less—than generalizing the techniques of classical planners [16, 20, 29, 87, 103,

116, 174]. In short, temporal planning has made great strides forward in terms of

computational performance.

As much as could be expected—for cramming a decade into a paragraph—that

story is true enough. Indeed, all throughout, we must bear in mind that the greatest

single truth is that temporal planning has come far. (There is, after all, nothing to

be said in favor of critical analysis of the insignificant!) With that said though, let

the critique commence. Two opposing attitudes upon temporal planning both go

too far: theory is too pessimistic, and practice is too optimistic.

From a theoretical standpoint, providing nice guarantees upon reasoning about

time (alongside action, change, and causality) is ‘impossible’. For example, even

guaranteeing merely sound conclusions is challenged from ancient times by the

1



paradoxes of Zeno of Elea [145]. Still today we have many competing mathematical

formulations of time and causality, by which we may conclude that none are more

than partially satisfactory; regarding automation the significant flaw is that most/all

carry grim computational properties [2, 4, 70, 88, 109, 112, 151, 165, 173, 175].

Specifically temporal planning is typically regarded as grossly infeasible at best (if

not downright undecidable) as it ‘has’ to deal with continuous time: O [151],

ZENO [168], temporal PDDL [71], and PDDL+ [70] all espouse such perspective.

Even without continuous time we still have daunting theoretical results such as

2EXPSPACE-completeness [148, 175].

Meanwhile, from a practical standpoint, it is abundantly clear that intelligent

real-world behavior is frequently accomplished despite its many theoretical com-

plexities (time, money, fuel, tools, uncertainty, sensing, communication, adver-

saries, . . . ). For example, dogs are fairly intelligent. To be sure, even the most real-

world of automated systems are rather more limited than even just dogs with respect

to general capability: Artificial Intelligence remains far from ‘solved’. Nonetheless

the highly specialized capabilities of existing applications of automated decision

making in particular (and Artificial Intelligence in general) are already quite im-

pressive and highly practical [1, 12, 37, 110, 137, 154, 168, 169, 183]. As far as

specifically temporal planning systems go, real-world or no: the state of the art

seems impressive enough, i.e., as just cited and introduced.

The truth, of course, lies between ‘solved’ and ‘impossible’. The meta-research

issue is that temporal planning has been associated with many different facets of a

planning problem, including durative actions, deadlines, concurrency, processes,

trajectory constraints, and continuous change. Lacking any particular standard,

researchers, naturally, cherry-picked their favorite features, giving rise to many fla-
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vors of temporal planning. Which renders empirical comparison virtually mean-

ingless. For analogy, consider “Alice got a B in History whereas Bob got an A in

Geometry.”: precious little of interest follows, i.e., it could also be, or not be, the

case that “Alice got an A in Geomtery whereas Bob got a C in History.”.

The issue applies to most automated planning research: previous to 1998. At

that time—the advent of the International Planning Competitions (IPCs)—the spec-

ification of PDDL (standing for Planning Domain Definition Language) was in-

tended to, and did, resolve much of the issue [152]. Specifically the effort was

a grand success with respect to so-called “Classical Planning”. Consider that, in

context, we may indeed fairly say just “Classical Planning”. In contrast is its small-

est name in broader context: “domain-independent automated single-agent deter-

ministic completely-modeled fully-observable closed-world discrete sequential . . .

planning”. That the smaller name is fair attests conformance to the PDDL stan-

dard, and so further attests significance of the empirical measurements. Said mea-

surements themselves attest the concrete value of performing meaningful empirical

evaluation [7, 60, 76, 82, 105, 141, 143]: the state-of-the-art in the computational

performance of classical planners has come far [66, 174].

Unfortunately, as we showed in 2007 [43], despite the temporal generalization

of PDDL circa 2002 [71], at least two formally distinct interpretations of “temporal

planning” remain at large: thinly veiled classical planning, and planning that copes

with required concurrency. To make matters worse (or ‘conveniently’ better), it is

the ‘classical’ approaches that perform best on the given benchmarks. Which means

precious little: We could instead just choose all the temporal benchmarks beyond

their grasp. The value of an experiment whose outcome may be fixed in advance

. . . is small at best.
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So about the only reasonably true conclusion of interest to be drawn from the

competition results, i.e., without recourse to far deeper analysis, is as follows. The

temporal competitions are ‘rigged’ in favor of a far simpler alternative to their

official specification. In particular the empirical results heavily discriminate against

any and all of the techniques implemented within the faithful entrants. So if we

use those results to judge the quality of the research, then we shall be fooled into

considering only the ideas of those who won chiefly by virtue of spiting the spirit of

the rules. That would be in contrast to winning only by virtue of implementing truly

—when evaluated fairly—more empirically effective temporal planning techniques.

So has temporal planning research really progressed far? There could very well

have been substantial progress in performance. Indeed, the research itself is com-

pelling enough on theoretical grounds. The existing empirical evidence, though,

leaves very much to be desired. This is not easily addressed. The flaw is not in the

experimental setup per se. Rather, the issue is that there are (at least) two camps

both claiming the right to define “Temporal Planning”: in logically contradictory—

and computationally meaningful—fashion.
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1.1 OVERVIEW OF THE DISSERTATION

The broad aim of the dissertation is to develop a deeper understanding of the rela-

tionship between temporal and classical planning. It grows out of our initial inquiry:

a too short treatment of this complex topic [43]. Interestingly enough—despite its

inevitable, and here fixed, flaws—the work already begins to have the desired im-

pact [76, 105].

The Thesis. The thesis we pursue is that concurrency is “The Feature” best char-

acterizing the computational relationship between the state-of-the-arts in Classical

Planning and Temporal Planning. More specifically, we all ought to, and here do,

sharply distinguish between three (rather than two) types of temporal planning (with

classical planning the degenerate case):

• In Sequential Planning, concurrency is forbidden.

• In Conservative Temporal Planning, concurrency is (strictly) optional.

• In Interleaved Temporal Planning, concurrency is (potentially) required.

The justification—demonstrating so is our mission throughout—is that each is com-

putationally more general than the preceding (so for pure theory), and each charac-

terizes well enough the capabilities of increasingly-capable and particular subsets

of state-of-the-art planners (so for a practical perspective).

Chapter 2. We begin the main matter, i.e., starting in Chapter 2, with a formal ac-

count of these three kinds of temporal planning, along with their underlying intu-

itions.
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Sequential Planning is just our particular notational spin on classical planning.

The name emphasizes the form of plans: sequences of actions.

Extending that to Conservative Temporal Planning (CTP) corresponds to prob-

lems where some additional temporal information (action durations) can (only)

be used to improve plan quality by better ‘packing’ the actions in time, i.e., by

(re)scheduling the sequences.

Finally, as far as the dissertation goes, extending to Interleaved Temporal Plan-

ning (ITP) allows for problems where concurrency of actions is causally necessary

(rather than necessary merely for improving plan quality). The name refers to the

specific mechanism: actions are permitted to be compound (i.e., to consist of mul-

tiple smaller parts), and all such causally interacting parts must be scheduled dis-

jointly in time (i.e., they must be “interleaved”).

Chapter 3. In Chapter 3 we continue by building up foundational theory for each

kind of planning in turn. Our focus is on studying the relations between them by

way of compiling/reducing all into a common, widely understood, form. Specif-

ically we concern ourselves with three crucial intuitions of great consequence to-

wards the implementation of effective temporal planners.

• It should be possible to ascribe clear semantics in terms of reduction to state

transition systems. In nondegenerate forms of temporal planning the naı̈ve

formulations will be infinitely large, due to explicitly encoding values of time.

It should also be possible to ascribe only slightly less clear semantics in terms

of finite state transition systems. In other words it should be ‘obvious’ how

to implement a correct and halfway-reasonable, i.e., brute-force, planner.

6



• It should be possible to, with great flexibility, reschedule plans without ef-

fecting feasibility.

It is this intuition that fuels the notion that brute-force temporal planning

could even be possible. In contrast are forms of temporal planning beyond

our scope; for example, in motor-control problems, such as the cart-pole

balancing problem, precise timing decisions have gross effect upon whether

plans actually work.

• It should be possible to freely reorder a planner’s thoughts concerning locally

independent actions.

For example, the order that a planner chooses to decide upon whether to in-

clude each of the activities “Alice feeds a cat in Boston.” and “Bob drives to

work in New York.” into a plan ought to be provably insignificant. It is this

intuition that fuels the notion that deeper research from the planning perspec-

tive is worthwhile: cleverer-than-brute-force approaches ought to exist. In

contrast are pure-search (a.k.a. puzzle-type) problems, where ‘merely brute-

force’ is far cleverer than it sounds [108, 130].

With two forms of nondegenerate temporal planning and three intuitions each: that

is six important theorems we shall formulate and prove. Three are key.

Our formalization of reduction for CTP, Theorem 3.17, establishes that Conser-

vative Temporal Planning Problems and Sequential Planning Problems both reduce

into the same underyling state-space. As far as practice goes, the result amounts to

saying that classical planners are ‘already’ general enough to support CTP. The

theoretically significant difference will concern finding fastest plans (i.e., plans

of minimum duration, a.k.a. makespan-optimal plans): ultimately we expect that
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generalizing to Multi-Objective Search, rather than Single-Objective Search as for

cheapest plans, will perform best. We shall take that as excuse enough to sharply

distinguish Conservative Temporal Planning from Sequential Planning.

For comparison, our reduction for ITP, Theorem 3.22, turns out nowhere near

as computationally promising—downright ugly does justice—as for Conservative

Temporal Planning. We shall take that as (yet greater) excuse to sharply distinguish

Interleaved Temporal Planning from both of its special cases.

While that angle turns out too ugly to be directly practical, there is still plenty

of reason to suppose that reasonable approaches do exist for Interleaved Temporal

Planning; it is only that the state-space perspective happens to be ill-suited to ef-

fective temporal reasoning. Among other reasons to remain hopeful—such as the

existence of a number of apparently effective, practical, implementations of tem-

poral planning—shall be our formulation and proof of reordering for ITP, Theo-

rem 3.21. Namely the theorem takes on the lion’s share of automatically abstracting

to CTP whenever those worst-case issues of theoretical significance just so happen

to be ‘coincidentally’ absent.1 More specifically note that, with respect to the thesis

(which stated here reads as roughly: “ITP is more challenging than CTP due to all

and only required concurrency.”), the technical significance goes toward automati-

cally exploiting absences of required concurrency.

Then up through Chapter 3 we shall have: (i) reimagined the specifications

of several forms of state-of-the-art temporal planning, (ii) armed ourselves with a

1A deep lesson that emerges from the practice of AI is that real-world problems only look tough
—i.e., the suggested worst-cases are daunting, but actual inputs overwhelmingly test just ‘best’-case
performance—or concisely, theory is almost always too pessimistic to be taken literally. The insight
crops up over and over again (do we ever fail to make the point?); a personal favorite is the phase
transition at 4 clauses to 3 propositions of random 3-SAT problems [181]. Closer to home, we may
study the why behind the impressive performance of the planner FF on classical benchmarks [114].
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deep understanding of several of their key theoretical properties, and in so doing

(iii) identified workable approaches to all but our most general case. Yet shorter:

we shall have constructed an elaborate theory of temporal planning. Next we will

turn our attention to evaluating the accuracy and utility of the theory as applied to

the practice of temporal planning. We will do so by analyzing (selected fragments

of) the underlying formal languages and algorithms.

Chapter 4. We shall start off the language analysis by noting that every so-called

implementation of the standard is, technically, distinct. Such differences all, ul-

timately, matter; but some are clearly far more significant than others, and many

are safely ignored until staring at code itself. For an obvious example, continuous

change is, hands-down, significant at ‘any’ level of abstraction. In contrast (and non

-obviously), deadlines can typically be ignored by satisficing temporal planners. At

least, that sacrifice, thus far, seems to be empirically tolerable. For a clearly in-

significant feature: expressibility of negative preconditions is widely recognized as

inconsequential.

With respect to temporal entrants of the IPCs: almost all points of distinction

are rather more interesting to ignore than they are to pay attention to. Roughly, we

shall prove that claim. In particular we shall characterize which temporal planners

can, and which cannot, understand required concurrency by examining how each

reinterprets the common syntax. Moreover we shall show that on either side of

the expressiveness divide all remaining points of distinction may be ‘dealt with’

by various compilation techniques. Then in the end we shall be able to conclude

that: Taking Conservative Temporal Planning and Interleaved Temporal Planning

as representatives of the temporal state-of-the-art is reasonable enough. (The so-
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called “classical planning” literature already establishes that a single name is indeed

reasonable enough for the degenerate case: we need not reprove similar statements

for Sequential Planning.)

Note the several potential meta-applications (design of future IPCs and revision

of temporal PDDL are the top two).

Chapter 5. Completing the main matter, we will evaluate several existing temporal

planning algorithms from our point of view, i.e., as if the dissertation was spec-

ification. Specifically we shall examine the ‘state-space’ approaches, which, we

note, presently dominate empirically. Of the ideas that have been tried we call

attention to three, which we dub: First-Fit Classical Planner (FFC Planner), De-

cision Epoch Planner (DE Planner), and Temporally Lifted Planner (TEMPO Plan-

ner) [6, 36, 54, 57, 64, 87]. The theoretical properties to-be-evaluated are complete-

ness and systematicity. Roughly: Does the approach consider every plan (i) at least

once, and (ii) at most once? These are highly valuable properties. For example,

in practice, we may deliberately sacrifice both as fuel towards improving computa-

tional performance (consider respectively: local search and macro execution).

To begin we will demonstrate that Conservative Temporal Planning poses rela-

tively little difficulty to algorithm designers; albeit there is one challenge of note. In

particular we shall see that approaches that rely on rescheduling the plans produced

by their classical planning cores (cf. MIPS- [57] and MIPS [58]), i.e., all

FFC planners, are complete and systematic for Conservative Temporal Planning—

sans deadlines. So in terms of implementation cost and computational performance

such systems are barely distinguishable from their classical planning cores.
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With deadlines, though, things become more interesting. As we shall have

proven in Chapter 3, completeness for deadlines, which is equivalent to attaining

duration-optimality, calls for generalizing to Multi-Objective Search. The smallest

implementation cost is negligible. Specifically, as we shall have already proven, it

suffices to turn off duplicate state elimination: the smallest implementation cost is a

few engineer-minutes. However, we should expect the computational consequences

of such a simple-minded approach to be large, perhaps intolerably so. (Because the

‘right’ way is to actually generalize, from Single-Objective Search, to Multi-Ob-

jective Search.) We cannot draw any firm conclusions, for there is no empirical

ground to stand upon, i.e., more or less: the PDDL standard excludes the expres-

sion of deadlines, and only one implementation (CPT) anyways shoots for duration

-optimality [202]. We can and shall, though, close the treatment with a rather more

theoretically reasonable, i.e., promising, approach: Theorem 5.4.

Then stepping beyond CTP, the difficulty that algorithm designers face is attain-

ing completeness for ITP, yet retaining the ability to leverage the recent advances

in classical planning technique. The difficulty is due to the emphasis on state-

space: as we will have seen in Chapter 3, that perspective is ill-suited to tempo-

ral reasoning. For contrast, the plan-space perspective is well-suited to temporal

reasoning [12, 84, 142, 146, 188, 208].

We shall see that the “key trick” is to twist our perspective from “state-space” to

“forward-chaining”. More specifically, both DE planners and TEMPO planners have

been advanced as attractive solutions: inasmuch as both rely on forward-chaining

they achieve the desire to leverage much of recent classical planning technique.

However, (once more [43, 147]) we shall see that DE planners leave much to be

desired: these are neither complete, Theorem 5.6, nor systematic, Theorem 5.10!
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(At the time, the incompleteness result contradicted widely held beliefs, and pub-

lished proofs, about the nature of the design.) We shall see that the reason for the

failings is that such planners rely on eagerly making all scheduling decisions.

To lazily make scheduling decisions, we may instead apply constraint reasoning

technique. Doing so is harder to implement, but still straightforward enough to be

taken seriously. In particular we shall prove that TEMPO planners are complete and

systematic, Theorem 5.13. In fact we shall go further by applying our Chapter 3 re-

sult regarding reordering, Theorem 3.21. Namely, we shall demonstrate the heart of

a method for having TEMPO planners automatically simplify to FFC-style planning

‘when possible’, Theorem 5.16. Specifically we shall be aiming at improving per-

formance when required concurrency could have—but coincidentally will not have

—appeared. So given our overarching theory: we will end our technical content

with, as desired, a theoretically reasonable approach towards effective Interleaved

Temporal Planning in practice.
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1.2 SUMMARY

A decade of practice has ensued since the introduction of a standard for temporal

planning. The experience makes clear that it is high time for a revision to the

standard. In particular, two generalizations from classical planning to temporal

planning have proven to be too distinct from one another, and too important in

their own right, to be lumped together. We shall investigate the technical issues,

ultimately answering the whats and whys for revision. Grossly over-simplifying—

use at your own risk—said reasons are all ‘the same’:

Concurrency is “The Feature”.
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1.3 ORGANIZATION OF BACKGROUND AND RELATED WORK

Section 1.4 is a brief survey of temporal planning systems. Roughly, no two speak

the same formal language: Section 1.5 surveys the various proposals for standard-

izing temporal planning language. Normally we shall restrict our attention to the

planning languages, domains, and systems of the IPCs. Section 1.6 takes a much

broader view in discussion of temporal planning applications. Specifically we take

pains to respect the significant gap between real applications of temporal planning,

which are domain-dependent, and the domain-independent systems of temporal

planning research.

The uninitiated in domain-independent automated planning literature are espe-

cially referred to our discussion of its applications (i.e., Section 1.6).

Appendix A covers technical background: mathematical notation and selected

automated planning techniques. Some aspects of the treatment here are notably

unconventional. For example, the notation reflects a strong bias favoring the func-

tional programming paradigm, i.e., to the point of taking sets to be mathematically

nonprimitive.2

2More abstractly, the convention is: if it is written down, then, with rare exception, its existence
is decidable and its identity computable.
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1.4 RELATED WORK: TEMPORAL PLANNING SYSTEMS

We categorize existing systems into one of four levels of temporal expressiveness,

the last level being a catch-all for everything beyond our scope.

1.4.1 S P

There are many icons of classical planning, noncomprehensively:

• STRIPS [66] is remembered for its input language (and sometimes for Trian-

gle Tables). It defines the paradigm.

• SNLP [149] adds nice theory to Partial-Order Causal-Link Planning. Specif-

ically, SNLP implements partially-ordered plans as an equivalence reduction

on totally-ordered plans. We shall apply that insight as well.

• SHOP [155, 156] is a (simple-)Heirarchical Task Network Planner. It is re-

garded as domain-dependent, as it relies on the heirarchies for search control.

It is perhaps better regarded as a qualitative kind of Interleaved Temporal

Planner.

• TL [6] applies Linear Temporal Logic for search control.

• GP [16] defines the eponymous Planning Graph. The level heuristics

with and without mutexes are the instantiations of hm(·) for m = 2 and m = 1.

• BB [128] reduces Planning Graphs to Boolean Satisfiability.

• GPCSP [52] reduces Planning Graphs to Constraint Satisfaction Program-

ming.
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• OPTIPLAN [196] reduces Planning/Causal Graphs to Integer Linear Program-

ming.

• LPG- [86] (our name) applies Stochastic Local Search to Planning

Graphs.

• FF [114, 116] derives a heuristic from Planning Graphs to guide State-Space

Search (a.k.a. forward-chaining). This, very effective, heuristic is called the

Relaxed Plan Heuristic; FF has many derivatives.

• HSP [20] applies h2(·) to guide Regression Search (also forward-chaining).

• AA [161] applies various Planning Graph Heuristics to guide Regression.

• MIPS [58] applies Symbolic Search (a.k.a. Inference) to State-Space.

• GAMER [130] extends MIPS, and is 2008 optimal state-of-the-art. It is noted

for eschewing admissible heuristics; these are, counter-intuitively, empiri-

cally ineffective on top of its symbolic search and ‘endgame database’.

• LAMA [174] adds landmarks to FD, and is 2008 satisficing state-of-the-art.

• FD [103] is to SAS [9] and the Causal Graph what FF is to STRIPS and the

Planning Graph. Extensions are 2011 state-of-the-art, optimal or satisficing.

1.4.2 C T P S

Syntactically, CTP-systems generalize by permitting action durations. Examples:

• TGP [188] appears to define the paradigm. It generalizes GP.

• TPSYS [77] generalizes the Planning Graph of GP to time in a different

manner than TGP. The result is reminiscent of SAPA’s heuristic (below).
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• CPT [202] applies/generalizes a Partial-Order Causal-Link perspective along-

side Constraint Satisfaction Programming technique.

• TP4 [100] applies/generalizes Regression Search, guided by h2(·).

• HSP∗a [96] extends TP4 by solving fragments of hm(·) for m > 2 prior to search.

• SGP [29] applies problem-decomposition and meta-planning. Caution is

required in interpreting its empirical results: it is typically regarded as a

domain-dependent planner given the nature of its preprocessingcode [105].

• The baseline in 2008 [105] is ‘FF’, more accurately MFF [115], along

with post-scheduling by First-Fit.

• YAHSP2 [201] and 2 [56] are 2011 state-of-the-art. The first applies

First-Fit to extend the classical planning core; the second further wraps that

with genetic programming techniques to find even better schedules.

• LPG- [84, 87] extends LPG by applying First-Fit.

• MIPS- [57] (our name) extends MIPS [58] by applying First-Fit.

• The authors of TFD, see below, place TFD in this category.

1.4.3 I T P S

Syntactically, ITP-systems permit access to subintervals. Examples:

• VAL [119] is the official plan validator for temporal PDDL.

• LPGP [142] is the first domain-independent complete approach to temporal

PDDL. It applies reduction to Linear Programming by way of a novel tempo-

ral generalization of Planning Graphs.
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• TLP-GP [146], similarly to LPGP, reduces to Disjunctive Temporal Networks.

• TM-LPSAT [184], similarly to LPGP, reduces to LPSAT [205].

• TL [6] introduces a viable approach (Decision Epochs) to forward-chain-

ing for temporally expressive planning. Using Linear Temporal Logic for

search control, its domain-dependent performance is quite impressive.

• TAL [135] is broadly similar to, and by report outperforms, TL. It

uses a different (non-modal) form of temporal logic.

• SAPA [54, 198], building on FF [116], applies the Decision Epoch idea from

Bacchus and Ady in TL [6] to domain-independent temporal planning.

Its contribution is a particular form of (Relaxed, Metric) Temporal Planning

Graph.

• S [129] is a fork of SAPA aiming at greater expressiveness regarding

invariants. Notably, it branches on unit time (also Decision Epochs).

• TFD [64] is to FD what SAPA is to FF.

• LMTD [120] extends TFD with better exploit of landmarks.

• LPG- [85] (our name) extends LPG- [84], using the LPGP [142]

approach to generalizing the Planning Graph to interleaved concurrency. By

virtue of inheriting stochastic local search, it obtains noteworthy empirical

performance.

• VHPOP [208] applies Partial-Order Causal-Link technique. It is notable for

being a convenient complete implementation.
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• CRIKEY [93] is likely the first complete forward-chaining approach to tem-

poral PDDL. It applies temporal lifting to delay scheduling decisions into

reasoning about Simple Temporal Networks.

• POPF2 [36] is the 2011 extension of CRIKEY [93], notable for applying the

insight of SNLP [149] in converse. (It uses theory of partial-orders to reduce

search effort.) For interleaved concurrency, it is 2011 state-of-the-art.

We shall not study such systems, but it is worth keeping in mind that there is

no particular ceiling for temporal expressiveness. That is, quite a few systems go

beyond mere interleaving, some, including some of the above, go well beyond; ex-

amples include EUROPA [12], HSTS [121], ASPEN [32], ITT [90], D [200],

FORBIN [46], O-P [40, 193], CIRCA [154], UPM [169], K [137],

PROTTLE [140], O [151], COLIN [37], and ZENO [168].
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1.5 RELATED WORK: TEMPORAL PLANNING LANGUAGES

It is difficult to overstate the significance of language/interface design and standard-

ization [50, 51]. The following reviews the various proposed formalisms towards

automated planning.

PDDL 1.2 [152] formalizes syntax for a certain interpretation of “classical plan-

ning”. Features include the following.

• All of ADL [166] is subsumed (so also STRIPS [66]). For example:

– parameterized propositions+actions:

(:predicates (loc ?x ?l) . . .),

(:action move :parameters (?s ?d) :precondition . . . :effect . . .),

– quantified boolean formula as preconditions:

:precondition (and (exists (?h) (and (available ?h) (hand ?h))) . . .), and

– quantified+conditional effects are all supported:

:effect (and (forall (?x) (when (in ?x B)

(and (not (loc ?x ?s)) (loc ?x ?d))))

. . .).

• The ADL subset of PDDL 1.2 is what later versions actually built upon [5].

For curiosity, the features dropped (some are reinvented) by later versions

are: numeric fluents, domain axioms, maintennance constraints, object cre-

ation+destruction, open worlds, action decompositions (HTNs), search con-

trol advice, and series+parallel length as notions of plan quality.

PDDL 2.1 [71] extends the ADL subset with:

• numeric fluents: (:functions (distance ?s ?d - city) (speed ?p - plane) . . .),
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• durative actions:

(:durative-action fly :parameters (?p - plane ?s ?d - city)

:duration (= ?duration (/ (distance ?s ?d) (speed ?p)))

:condition (and (over all . . .) (at start . . .) (at end . . .))

:effect (and 〈ContinuousEffects〉 (at start . . .) (at end . . .))),

which decompose (with subtleties) into all and only:

– (over all . . .) invariants and continuous effects,

– an (at start . . .) ADL-primitive, and

– an (at end . . .) ADL-primitive,

• continuous effects: :effect (and (decrease (fuel ?p) (* #t (fuel-burn-rate ?p))) . . .),

• durations as (numeric) parameters:

(:durative-action refuel :parameters (?p - plane ?s - city)

:duration (and )

:condition (and (at start (and (> ?duration 0)

(<= ?duration (/ (- (fuel-capacity ?p) (fuel ?p)) (fuel-fill-rate ?p)))

(<= ?duration (/ (fuel ?s) (fuel-fill-rate ?p)))

. . .)) . . .)

:effect . . .), and

• flexible plan quality metrics:

(:metric (minimize (+ (* total-time (money-over-time)) total-cost))).

In practice the most relevant sublanguages are Level 2 (numeric fluents) and Level

3 (durative actions and numeric fluents). That is more or less because every more

expressive planner supports different and differing formalisms. Our scope stops

here as well, i.e., at Level 3, so we (mostly) omit further examples of syntax.

PDDL 2.2 [59, 194] adds: timed initial literals, and derived predicates. Respec-

tively these are the poor man’s form of exogenous events and domain axioms.

21



PDDL+ [70] recasts the more expressive levels of PDDL 2.1 into a form better

suited to reduction to Hybrid Automata [111]. The additional syntax concerns:

processes and events.

O [151] also supports processes and events. Action decompositions, as in

HTN planning, are supported as well. Its semantics are based in Nonstandard Anal-

ysis [179]. Due to which, a key difference from PDDL+ is that infinitesimal is a

formally defined concept in O.

PDDL 3.0 [82] adds: preferences (i.e., soft constraints), and trajectory con-

straints (in a woefully impoverished, but quite useful, form of Linear Temporal

Logic).

PDDL 3.1 [9, 79] adds object-valued fluents, as in (= (loc spirit) waypoint-alpha).

The semantics are clear enough in simple cases, and may be compiled out by in-

troducing additional parameters. Precisely defining the meaning in all cases is

less straightforward. For example, consider a nested use, say (>= (sun-visibility

(loc ?rover)) . . .), within some larger quantified formula: adding myriad parameters

would be less than attractive.

It is also interesting to review systems/literature that implicitly/explicitly take a

stand on language:

• Smith and Weld, in defining TGP [188], implicitly define the natural exten-

sion (Durative-STRIPS) of STRIPS to nonuniform action durations. We could

surmise that (1) Durative-STRIPS ought to be considered important, and (2)

STRIPS ought to be considered as insisting upon the uniform+unit case.

• ZENO [168], TAL [135], Allen [3], and ITT [90] all prefer particular

—each differing—flavors of Temporal Logic for defining syntax and, espe-
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cially, semantics. The differences between them are irrelevant; the relevance

is that all are far more expressive than the ceiling we impose.

• ASPEN [32], and ANML [187] following it, propose ALGOL/C/block-struc-

tured syntax. For semantics, perhaps the most notable features are (1) access

to arbitrary subintervals of action executions, (2) access beyond intervals

of action executions, and (3) support for action decomposition as ‘syntactic

sugar’ standing for complex temporal relationships (i.e., reduce to (1) and

(2)).

• HSTS [121] and EUROPA [12] propose treating actions and fluents as indistin-

guishable for temporal planning purposes. There are compelling arguments

to be made in favor. Nonetheless, it seems that in practice more is lost than is

gained. In particular, that language (i.e., NDDL) fails to build in persistence

of fluents, meaning that the language formalizes the ‘worst’ solution (write

the axiom down explicitly) to the Frame Problem. At a more practical level,

the choice makes applying concepts such as reachability heuristics difficult.

An especially notable feature of real world applications is the support of resources.

That is, time and resources appear to go hand-in-hand in the real world:

• Geffner is hardly alone in taking the lack of resources in PDDL as a flaw [80].

• In favor of explicitly supporting all those variations on resource usage that

limit concurrency/parallelism are: IPP [132], Rintanen and Jungholt [177],

TP4 [100], PLAN [62], SIPE [204], MFF [115], and GRT [171, 172].
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• Proposals for building in complex theories of resources—particularly those

supporting temporary surplus—into the planning language include: Cesta

and Stella [26], O-P [55], ZENO [168], TAL [134], and ITT [90].
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1.6 RELATED WORK: TEMPORAL PLANNING APPLICATIONS

Every planner is a temporal planner.

Hence: every application of planning is an application of temporal planning. The

question to ask is, then: To what degree? It is important to divide that in two:

• What degree of temporal reasoning does the application itself call for?

• How responsible for temporal capabilities is the planning component?

The importance is firstly because the first answer is overwhelmingly that the real

world requires proficiency in temporal reasoning. Secondly, to be perfectly blunt,

the majority of real applications are quite successful without applying ‘significantly

temporal’ reasoning at the highest levels of deliberation (i.e., at the level of plan-

ning). Then for our purpose it is enough to glean just that the following research

question is well-motivated from real world applications.

What are the least forms of Temporal Planning?

We get ahead of ourselves, however. Let us examine several of these alluded to

real (or close enough) applications of planning:

• NASA stretches the meaning of remote control to outer space: automated

tools for supporting decision-making and execution-time control are essen-

tial. The research from specifically the automated planning community sees

some application in planetary robotic science (rovers) [1], ground-based as-

tronomy, satellite-based astronomy [186], solar-system scale networking, deep-

space probes [185], general space-station operations, and human factors in

space-station operations.
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• Underwater robotic exploration/science at the Monterey Bay Aquarium Re-

search Institute (MBARI) benefits from the ability to withstand pressures too

expensive to reinforce humans against. The downsides are many, mitigat-

ing which calls for the application of—and motivates deeper research in—

Artificial Intelligence technique. It is, for example, surprisingly easy to get

confused about which way is up, currents can drag one far off-course, and

currents take obstacle-avoidance to a whole new level of technical challenge.

Solutions that work on land (or air, or vacuum) to similar problems fail to

cross mediums; the Global Positioning System, for example, is not effective

even at shallow depth (simply because radio waves reflect, refract, and scat-

ter at the air+water boundary). Decidedly temporal forms of planning prove

useful [37, 138].

• Let us not dwell too long upon the frightening but inevitable subject of ap-

plying Robotics and Artificial Intelligence to warfare. Whether we say De-

partment of Defense, Department of Homeland Security, or, more aggres-

sively, Army/Navy/Airforce does not alter either the necessity or difficulty of

automating reasoning in battles of chiefly wit at life-or-death stakes. Recall

that the mere possibility of obtaining a technological advantage immediately

and always becomes a necessity. Specifically the ability to mass-produce

cheap and effective ‘brain-power’, given the extreme lethality of our weapons

once applied, is precisely such possibility-turned-necessity.

Let us first look at motivation from warfare to temporal planning. For the

sake of abstractness, consider that war puts in sharp relief the necessity of
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significant communication and coordination capabilities. From the single-

agent planning perspective:

– Established commitments to assisting team-members look like tempor-

ally extended goals (so consider soft trajectory constraints: PDDL 3.0).

– The flip-sides of such contracts are to receive the assistance, such look

like exogenous events when projecting down to a single-agent perspec-

tive (so consider timed initial literals: PDDL 2.2).

– Naturally: commitment follows negotiation follows generation of rea-

sonable proposals. Reasoning ahead of time about potential coordi-

nation opportunities can be approached from the angle of conditional

commitments. It may help to think of subtracting the exogenous out of

“exogenous events” and “temporally extended goals”. That is, the rea-

soning problem will feature: choices shall impose events and constraints

in complex—i.e., temporal—fashion. So consider that the commitment

to finish a durative action, once started, models the general case. In

other words, consider that an under-appreciated fact about PDDL 2.1 is

that it supports (barely, and cryptically, to be sure, but supports nonethe-

less) the single-agent side of proposing and later committing to coordi-

nation opportunities.

Then for the sake of concreteness, consider a soldier planning a route back to

base. Whether human or robotic, the soldier should be aware that planning to

travel through dangerous terrain involves considering the option, and cost, of

setting up covering fire. Furthermore the soldier should assess any compet-

ing longer—but safer—routes. Which route is best will naturally be highly
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situation-dependent (hence the importance of explicit modeling and deliber-

ation). (Incidentally, the greatest challenge in practice for this scenario is

called situational awareness: actually solving the model once obtained is, at

present time, much better understood.) Specifically this scenario—reasoning

about the advantage of scheduling covering fire over a specific subinterval of

a longer navigation activity—modeled abstractly enough (which is easily ar-

gued as better motivated than a detailed model), is the same up to renaming

of symbols3 as the less-obviously-useful scenario depicted in Figure 2.13.

So now let us look to warfare from planning. At present time—but it is,

indeed, only a matter of time—there are reasonably few real and direct ap-

plications of automated planning to warfare. (There are, though, plenty of

systems for such purposes as the training of soldiers.) The most directly rel-

evant (close enough to real) application is Boddy’s implementation of (what

is called the red team side of, or in that context, the black hat side of) cyber-

security [19]. Notably, Boddy heavily exploits FF [116].

Let that be enough consideration of automation towards the traditional sci-

ence fiction nightmare.

• Shipping (i.e., sending cargo by boat) poses many difficult, large-scale, opti-

mization subproblems. These are ripe for (semi-)automation: decisions have

impact in the millions of dollars, and there are too many for humans to man-

age effectively. The traditionally best approaches to automation in supply

chain management are from the scheduling, or Operations Research, side of

the fence. Recent work on specifically the Fleet Repositioning subproblem

3‘Domain-independent’ is impossible to nail down, but one feature widely agreed upon is this:
A domain-independent planner performs identically when symbols are arbitrarily renamed.

28



demonstrates notable success from the temporal planning side [195]. The

cited work is especially interesting at the technical level because it applies

both extremes and a hybrid middle-ground (which, as could be expected,

performs best empirically).

• It is natural to dismiss games, particularly videogames, as frivolous. So let us

be perfectly clear: Videogames are serious business. The videogame industry

is a multibillion dollar industry with worldwide impact.

As with any form of entertainment, customers are demanding: they take

their money elsewhere if the product is (noticeably) flawed. The upshot is

that videogame software is held to the highest standards (of quality, reliabil-

ity, functionality, etc.).4 In turn, such fact means: The application area of

videogames has been, and continues to be, pushing the forefront of technol-

ogy in each and every subdiscipline of applied Computer Science (not the sole

force, mind, but a strong one). For example, nowadays, much of the challenge

revolves upon networking and database issues, i.e., supporting massively—

3 million concurrent users, for example—multiplayer games. For another, a

decade past, the leaps and bounds in the areas of Visualization, Image Pro-

cessing, and Graphics (in general) were fueled in largest part by the industry.

We in particular should, because it is the ‘negative example’, consider the

videogame industry. That is, while “Applied Artificial Intelligence” certainly

exists in spades in videogames, such is largely separate from the research

4The only software arguably better tested/verified would be tiny pieces of functionality in the
area of, for example, aviation. Of course the quality bound for entertainment is lower than for preser-
vation of human life: but not by much. (The question is not objective value, but rather how tolerable
bugs are: intolerable in either setting.) The functionality demands are far higher for entertainment:
the overall task of Quality Assurance is reasonably said to be harder.
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(“Pure AI”). (At least, such is true regarding planning capability; perhaps

machine learning can claim some impact.) The reason is that videogames are

too hard: the research (miserably) fails to meet the computational constraints.

So instead videogame AI is a ‘black magic’, a.k.a. an engineering discipline:

a large set of ad hoc techniques that only experts apply with ease.

That ‘unprincipled’ approaches work well in practice is a deep and powerful

lesson about the nature of intelligence, as follows. Intelligent behavior is remark-

ably easy to generate in practice by apparently dumb method. In fact it requires

great cleverness (and enormous effort) to find the apparently dumb method that ac-

tually works: there are myriad ‘objectively’ simple methods, and most fail. For our

purposes, the takeaway is just as originally stated: It is compelling to pursue far

deeper understanding of the least forms of Temporal Planning.

The following is an opinion piece that is potentially useful to those uninitiated in

the domain-independent automated planning literature. It is only my opinion, surely

subject to change, and just as surely not even said particularly well (for example, it

may come off as critique, which is unintended). Still—taken with salt—it may help

to better place this work in, say, the broader context of all of Computer Science. For

setup: There is a certain complex abstract truth about the entire field that is quickly

grasped, rarely stated, and ultimately of little significance. To put it succinctly, the

entire field speaks at one level of interpretation removed from reality; to properly

place the research in broader context (at least) one meta- should be prefixed to every

claim.
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1.6.1 T AI E    T P R

There is a deep point about Artificial Intelligence, Applications, and Motivation that

we should make. AI has profoundly yet only subtly effected reality. In particular,

the field is justified in laying claim to ‘every’ fundamental advance—but not more

than that—in Computer Science.

If that appears false, then consider: Intelligence is a fundamentally mysterious

thing. As soon as an AI researcher invents a comprehensible method for endow-

ing machines with novel capability: it cannot be, or at least does not get to be,

called “intelligence”. That is just because we understand the method (“comprehen-

sible”), but do not—perhaps cannot—understand “intelligence”. So another term is

employed to label the novel capability, and some new discipline grows up around

it.

There is an interesting relationship to the point about dumb methods producing

intelligent behavior. Research in novel disciplines moves from the so-called princi-

pled to the measurably effective. Getting there involves rewriting/reimagining the

principles, and trying again; eventually, we find the (what becomes) conceptually

simple method to solve (what is no longer) the hard problem.

Regarding said novelty and following growth: It is a disservice to belittle the

enormous work that separates prototypes and real systems. Likewise is it a disser-

vice to belittle the enormous work that separates dreams and prototypes.

Then, regarding AI, Applications, and Motivation, the fact of the matter is as

follows. To be perfectly honest, direct motivation—of the kind powerful enough to

procure funding, shall we say—goes one way: from the real world to AI. That is

because, at the end of the day, AI can only be a mathematics (because when useful,

it gets renamed).
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As such, AI has ‘no value’, and researchers in AI ‘do nothing useful’. Engi-

neers, in contrast, create useful things. Out of all people that create or do useful

things, engineers are special to us: engineers take mathematics to be—at least a

little bit—useful. (Naturally, we may wear both hats.)

So if we want to be well and truly accurate about applications of the theory

herein: the ‘application’ is to clarify thought. Then we ‘should’ say everywhere at

least “meta-meta-practice” and “meta-practice”: it takes at least one more level of

interpretation to do something useful with the ideas here. That is because between

here and reality is at least one whole brain’s worth of complexity.

Realistically, the amount of blood, sweat, and tears it takes to field what is rec-

ognizably a real system with automated planning capability (say, the Mars Rovers)

is the product of several years and dozens, if not hundreds or yet greater, of peo-

ple (i.e., in dollars: several millions, if not billions, of dollars). To place things in

proper perspective then, neither this dissertation, nor any other, can possibly claim

more than a drop in such buckets. That is because disserations are ‘cheap’. For ex-

ample, this dissertation cost about a quarter million dollars to make: one graduate

student supported over 2006–2012 (discount to reflect more than one purpose).

Let us then recall, so as to better appreciate, the opening motivation: fixing

methodological flaws of the temporal tracks of the International Planning Compe-

titions. First of all, we should understand as point of fact that the competitions are

the largest-scale and best-executed ‘empirical evaluation’ of domain-independent

automated planning ‘systems’. To be realistic, that means:

The IPCs just so happen to be the best, or at least most visible, simula-

tion-based analysis of planning research prototypes. That the format is

a so-called competition is immaterial, and in particular the prize purse
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is—deliberately—laughably small. The real prize is that the field pays

attention to the authors of the top systems. So fame is the prize, and

deservedly so when we are exceedingly careful in the design and exe-

cution of the event. If so, the event is for the better. If not, the event

does more harm than good.

Secondly, we should understand that fixing methodological flaws is important, as

just strongly implied. That is because none of the competing systems are real, nor

are any of the so-called benchmarks. So there is no objective ground truth to the

numbers: the measurements do not amount to scientific observation of anything

physical. That does not make them useless! It just means that their value is contin-

gent upon further analysis. It also means that, given the lack of direct connection to

any sort of physical truth, it is especially important that the experiments be designed

as well as possible. They are already designed very well. I argue here that accept-

ing the thesis—the present state of the art taking part in the competition consists of

three kinds of temporal planning—would yield improved experimental design.
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Chapter 2

Definitions and Notation for Variations on Temporal Planning

This chapter formally specifies two practically-motivated temporal planning lan-

guages (as extensions of the basis in Sequential Planning): Conservative Temporal

Planning, and Interleaved Temporal Planning. The endeavor is interesting unto it-

self. Specifically, as a practical matter, carefully designing ones formal language is

an important step along the way to efficient implementation. Or, if you prefer: Here

we condense several lessons learned, from the practice of temporal planning, into

carefully circumscribed definitions of the task to be performed.

We focus on one aspect: the definition of permitted concurrency. At one ex-

treme is to entirely forbid concurrency, as in Sequential Planning [66, 103, 116,

149, 174]. At the other is to permit ‘everything’ [37, 110, 137, 151, 154, 168, 169].

In between are the implicit (i.e., procedurally-defined) semantics of a number of

implementations [6, 16, 29, 39, 54, 56, 58, 64, 85, 87, 100, 119, 135, 142, 146,

188, 202]. Truthfully these systems all differ from one another in minor details.

We pretend though that there are only two kinds of temporal planning between the

extremes, and, here, define them.

So, including the extremes, we distinguish four approaches: sequential, conser-

vative, interleaved, and synchronous. The sequential approach is the degenerate

case: define concurrency as impossible. The conservative approach is to permit

concurrent actions so long as the result is equivalent—but achieved sooner—to

some sequencing of them. The interleaved approach is to permit concurrent ac-

tions so long as a decomposition into their effects is effectively sequential; i.e., the
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approach is to decompose actions into the conservative perspective. The simplest

variation permits an action to decompose into only effects at its endpoints. Every-

thing more general is lumped under the heading “synchronous”, and is beyond our

scope. The cart-pole balancing problem is an example; all such forms of planning

involving continuum-many actions are beyond scope.

Organization. The definitions come in 3 main sections, followed by a summary of

the whole, Section 2.4. Our notation is not terribly unusual; that which is less

typical is discussed in Appendix A.

• Section 2.1 formalizes sequential planning problems. The key mechanisms

are state transition functions, which implement effects upon fluents.

• Section 2.2 formalizes conservative temporal planning problems. The key

mechanisms are vault transition functions, which implement locks (manage-

ment of mutual exclusions between effects) upon fluents.

• Section 2.3 formalizes interleaved temporal planning problems. The key

mechanisms are debt transition functions, which implement decomposition

of compound actions into effects.

The key mechanisms are independent of one another; each kind of planning directly

inherits from its special cases. Said inheritance is indeed meant as precisely as a

software engineer could hope: implementations may easily re-use code. Which

also means that the definitions may be re-read in any order.

The Standard Temporal Planning Language. Version 2.1 of the Planning Domain

Definition Language (PDDL 2.1) is proscriptive rather than descriptive, but other-

wise may be taken as roughly equivalent in purpose and, up to “Level 3”, roughly
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equivalent in scope [71]. One contribution here is to improve accuracy: certain

oddities of its temporal semantics are universally rejected in practice. The treat-

ment here is meant to be complementary. For example we skip formalizing, among

other things: syntax in general, parameters in particular, and the useful distinction

between domains and problems. Those familiar with the standard may very well be

able to infer all but the notation by skipping to the summary of the core concepts at

the end of the chapter (Page 80 as labeled, i.e., really twelve pages further along).

Formatting, Conventions and Emphasis. Emphasis with no particular connotation

is formatted thusly. Foreign words are identically formatted: exempli gratia. “We”

means “You and I”, and particularly “our contribution” is meant as credit to the

reader.

Notions whose precise technical meaning are being specifically called out are

formatted as foo, chiefly when said definition has yet to appear. An opposing con-

notation is conveyed with single-quotes (i.e., the technical meaning should be ig-

nored): classical planning is ‘feasible’.

Definitions may be highlighted as in: foo means nothing in particular. For vari-

ety, the following are perfect synonyms for definition: means, is, (precisely) when,

denotes, and written as. (We reserve iff and friends for propositions.) Plain x+0 = x

could refer to definition or proposition; to emphasize equality-by-definition write:

x + 0 B x.

Assignment is (dubiously) denoted by B as well. Equally dubiously treat as

synonymous all of: let, (re)define, assign, with, and where. Other texts write, for

example,← to draw the subtle distinction.
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Variables/fields/accessors are formatted as in: State(Initial) is the value of the

field called State in the structure denoted by Initial. Any more complicated compu-

tation on structures, such as the cost of a path, is formatted: cost(P) B
∑

e∈E(P) w(e).

Context is deemphasized by omitting, subscripting, or abbreviating arguments.

For example, vertex i of path P for some index i is preferably written just v, followed

closely by vi. Less preferable are the increasingly formal expressions: vP,i, vi ∈

V(P), v(P, i), and v(P(i)). Unimportant subexpressions are abbreviated by ·, as in:

max(·,∞) = ∞.

In general, our notation is only as formal/precise as rather detailed psuedocode.

Meaning that (ultimately significant) issues such as the many precise meanings of

equality are regarded as implementation details.
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2.1 SEQUENTIAL PLANNING DEFINITIONS

This section presents the semantics for sequential planning (a.k.a. classical plan-

ning). The basic idea is to reduce to state transition systems. Any complete defini-

tion of a planning language needs to answer three key questions:

• What is a plan?

• What does it mean to execute a plan from a given situation?

• When do a plan, and its execution, constitute a solution?

The presentation we give for sequential planning is non-standard in that it is not

based in STRIPS. (For completeness, we also reduce to STRIPS.) The intent is to

better support generalizing to temporal planning.

The remainder of the section consists of three parts. We begin with an alter-

native encoding of B highlighting some of the aspects of the definitions

following. We go on to develop the formal machinery of, and underlying, state tran-

sition functions. Finally, with machinery in place: What are plans, executions, and

solutions? Respectively: action-sequences, state-sequences, and goal-achieving ex-

ecutable plans.

2.1.1 I

The reader is hopefully familiar—perhaps all too painfully—with the concept of

stacking blocks on top of one another, and further with the standard formal en-

codings of B [76]. The following example is a less standard encoding

meant to portray, by contrast, some corresponding less standard aspects of the for-

mal treatment. In particular the treatment is inspired by SAS (and ADL) rather than

38



1: (constants a b c table
2: (Block {a, b, c})
3: (Place {a, b, c, table})
4: ((clear table) True))
5: (fluents (below x ∈ Block) ∈ Place
6: (clear x ∈ Block) ∈ B)
7: (action (move b ∈ Block y ∈ Place)
8: (let ((x (below b)) (v (= y table)))
9: (not (= b y))
10: (= (clear b) True)
11: (= (clear y) True)
12: (B (below b) y)
13: (B (clear x) True)
14: (B (clear y) v)))
15: (init (B (below a) table) (B (below b) table) (B (below c) a)
16: (B (clear a) False) (B (clear b) True) (B (clear c) True))
17: (goal (= (below a) b) (= (below b) c))

Figure 2.1: Sussman’s Anomaly in single action schema B.

(move c table) ; move block c to the table, so all blocks are on the table, then
(move b c) ; move block b on top of block c, achieving one of the goals, and finally
(move a b) ; move block a on top of block b, achieving the other goal.

Figure 2.2: The solution to Sussman’s Anomaly.

STRIPS [9, 66, 166]. As a result the treatment happens to better reflect the internals

of leading approaches to sequential planning [76, 103, 105, 174].

Example: Implicit-Hand B. Sussman’s anomaly [192] can be compactly

encoded as in Figure 2.1. The solution is given in Figure 2.2. Ultimately the mean-

ing of the problem comes down to finding a path through state space: which is

depicted in Figure 2.3. Walking through our psuedo-syntax (Figure 2.1):

1. We explicitly declare the existence of 4 objects: 3 blocks (called simply “a”

through “c”) and a table. In this encoding, the hand/gripper is implicit.
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(b. a)=t. (b. b)=t. (b. c)=t.

(b. c)=t.
(b. a)=b

(b. b)=t.
(move a b)

(b. b)=t.
(b. a)=c

(b. c)=t.
(move a c)

(b. a)=t.
(b. c)=b

(b. b)=t.
(move c b)

(b. b)=t.
(b. c)=a

(b. a)=t.
(move c a)

(b. c)=t.
(b. b)=a

(b. a)=t.

(move b a)

(b. a)=t.
(b. b)=c

(b. c)=t.

(move b c)

(move a t)

(move a c)
(b. c)=a

(b. a)=b

(b. b)=t.

(move c a)

(move a t) (move a b)

(b. b)=a

(b. a)=c

(b. c)=t.

(move b a)

(move c t)

(move c a)
(b. a)=c

(b. c)=b

(b. b)=t.

(move a c)

(move c t)
(move c b)

(b. b)=c

(b. c)=a

(b. a)=t.

(move b c)

(move b t)

(move b c)

(b. c)=b

(b. b)=a

(b. a)=t.

(move c b)

(move b t)

(move b a)

(b. a)=b

(b. b)=c

(b. c)=t.

(move a b)

(move c t)

(move b t)

(move a t)

(move b t)

(move a t)

(move c t)

Figure 2.3: The reachable component of the state space of Sussman’s Anomaly.
“t.” is for “table”, and “b.” is for “below”. “(clear x) = True” when x is a tower
top, e.g., all blocks are clear in the leftmost state. The solution path is highlighted.
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2. Then we declare two important subtypes of objects, i.e., the blocks, and

3. the places that blocks can rest (upon each other and the table).

4. Rounding out the declaration of constants is a dubious hack; the meta-effect

of declaring “(clear table)” as an always true constant is that any number of

blocks may rest upon the table.

5. The important fluents to track are the locations of each block: “(below x ∈

Block) ∈ Place”. The possible places are on top of another block (i.e., no

pyramids etc.), or, on the table. A tighter encoding would spell out that a

block cannot rest on itself: “(below a) ∈ {b, c, table}”, “(below b) ∈ {a, c,

table}”, and “(below c) ∈ {a, b, table}”.

6. We setup manual tracking of whether anything is above a block: “(clear x ∈

Block) ∈ B”. (In more expressive contexts, i.e., by exploiting quantified

formula, we could skip declaring these as independent fluents.)

7. Encoding movement comes down to updating the location of the object, as-

suming physical plausibility. Also we need to spell out each logical conse-

quence we care to track, namely, whether each block is clear [139].

8. First we setup two local variables: one for what is beneath the block, and

the other for whether moving the block to the destination will prevent other

blocks from also moving there. The formal definitions, and the state of the

art, are only this expressive in a loose sense: caveats apply [67, 104].1

1The formal definitions lack the power to setup local variables: these can be turned into param-
eters instead. The formal definitions also lack the capability to state parameters: so the distinction
is moot. To fake support for either/both we may appeal to grounding [71]. During grounding, for
the sake of exposition, silently drop supposed effects on constants. That is typically a poor way to
define the semantics of constants. Here it allows the example to consist of just 1 action schema.
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9. We must prevent moving a block onto itself: “(not (= b y))”.

10. Only the top blocks of towers may be manipulated, i.e., the block b must be

clear: “(= (clear b) True)”. Just “(clear b)” would have the same meaning.

11. The destination y must also be clear: “(= (clear y) True)”.

12. We declare the primary effect of moving b to y: “(B (below b) y)”.

13. Whatever was below block b (block x) becomes clear: “(B (clear x) True)”.

14. The destination y becomes not clear (v = False), except for the table (for

which v = True): “(B (clear y) v)”.

15. Initially, block “b” rests alone, while block “c” rests on top of block “a”.

16. We also initialize the clear/not-clear status of each block.

17. The goal is to build an alphabetical tower.

STRIPS versus SAS Encodings of B. For the sake of discussion, consider

the behavior of the ultimately naı̈ve approach to sequential planning: take reduction

to path-finding problems in state transition systems at face-value. The standard

PDDL representation of B in STRIPS-style uses (with b blocks): b2−b, or

less efficiently b2, booleans to encode “(on ?a ?b)”, b booleans to encode “(on-table

?a)”, b booleans to encode “(clear ?a)”, b booleans to encode “(holding ?a)”, and

finally 1 boolean to encode “(hand-empty)”, for a total of (b2 − b)+ b+ b+ b+ 1 =

b2 + 2b + 1, or b2 + 3b + 1, boolean fluents [7, 66]. So for three blocks, b = 3,

state descriptions consist of 16 boolean values. A literal interpretation as a state

transition system begins, then, by building a graph over 216 = 65536 states. In
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contrast, a reasonably powerful theorem-prover, along the lines of the translator in

FD [103], can first re-encode in SAS-style using only: b-many b-valued fluents, or

less efficiently (b + 1) many values, to encode what is below each block, and b

booleans to encode whether each block is clear. (Or we could just encode in SAS

-style to begin with.) For b = 3 that considerably improves the performance of

the ultimately naı̈ve approach by reducing the number of conceivable states (from

65536) to just 2bbb = 216 states.

Now, no planner would really be so foolish as to write down, up-front, all those

states permitted merely by the fluent definitions.2 ‘Surely’ no planner would do

more work than considering just the 13 truly reachable states of this problem, how-

ever it is encoded (see Figure 2.3).3 In other words, the notion that representa-

tion matters because someone might take a naı̈ve approach is, clearly, a paper-

thin argument. Real issues and compelling arguments are much more complex

[14, 72, 78, 104, 106, 158, 162, 167, 189]. Still, in the end, the conclusion re-

mains the same. Namely, it remains compelling to consider representation lan-

guages that permit, as sketched here, the direct specification of useful/exploitable

domain knowledge (e.g., a block cannot be located in two places at once, and the

hand may be abstracted away).

2The anomaly is that some planners were unable to solve the problem given any amount of time.
Bounding foolishness of machines is non-trivial.

3With the hand abstracted away, the precise count of reachable states is given by counting the
number of ways to partition the set [b], representing the blocks, into lists, representing the towers.
So for b = 1 block there is just 1 reachable state, and the sequence continues with 3, 13, 73, and 501
reachable states. By 14 blocks the count already surpasses three trillion reachable states [163].

Then observe that the research challenge is to, in practice, solve the single-source cheapest-path
problem in sub-linear time. In other words, we must (have our planners), in practice, work above
the level of graphs. The notion with counting/bounding the worst-case sizes of the graphs is to stand
in for more practically useful relaxed queries, i.e.: heuristics.
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2.1.2 M: S T F

This section defines the supporting machinery for sequential planning semantics,

chiefly, we define the state transition function S ′a of each action a. A sequential

planning problem P = (FluentDefs,ActionDefs, Initial,Goal) consists of its:

• fluent definitions, FluentDefs,

• action definitions, ActionDefs,

• initial situation, Initial, and

• goal (expression), Goal.

The fluent definitions FluentDefs are a fluent-indexed collection over the pos-

sible values Values f of each fluent f : FluentDefs B (Values)Fluents. A state is a

simultaneous assignment of legal values to all fluents. The set of all states is de-

noted by States B
�

FluentDefs. In other words each S∈States is a fluent-indexed

tuple assigning legal values: S ( f ) ∈ Values f holds for all f ∈Fluents. An assignment

is just a partial state; the set of all assignments over a designated subset of fluents

F′ ⊆ Fluents is given by restricting to F′ before taking the product. That is, let

States(F′) B
�

FluentDefs�F′ denote all assignments over the fluents F′.

The initial situation Initial, a.k.a. the initial state, is a state: Initial ∈States.

The goal Goal is most generally some arbitrary boolean expression over the

propositions expressing that a given fluent currently has a given value. So the goal

is some boolean function over every “ f = v” (with v ∈Values f ). It is not uncommon

to consider much more restricted forms. We shall ignore the implementation and

simply regard the goal as a total truth-function on states, Goal ∈States
total
−→B, and accord-

ingly write Goal(S ) to mean that state S satisfies the goal Goal.
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The action definitions ActionDefs B
(
eff

)
Actions are an action-indexed family

of effects. The effect eff a
∈States(Dependsa)→States(Writesa) of action a is a function: from

assignments on the fluents Dependsa that a depends on, to assignments on the

fluents Writesa that a alters or writes to. The fluents that action a only reads from

are, then, denoted by Readsa B Dependsa \Writesa.

Definition 2.1 (State Transition Function). The state transition function S ′a of

action a maps a state S to the next state by overwriting the fluents Writesa with the

values specified by the effect eff a(S �Dependsa
). For notation, define S ′a

∈States→States by:

S ′a B
{
S 7→ S ⊕ eff a(S �Dependsa

)
}
. (2.1)

If the effect is in fact defined in state S , then say action a is executable in state S :

S ∈ Dom(S ′a) ⇐⇒ S �Dependsa
∈ Dom(eff a). (2.2)

We say that actions depend on the fluents they write to, regardless of whether or

not the value ultimately written, to that or any other fluent, actually depends on the

previous value in any way. In notation, we demand: Writesa ⊆ Dependsa. Likewise

effects always happen, and are in that sense not actually proper conditional effects

despite appearances [166]. In particular all the fluents in Writesa are considered

to be explicitly overwritten even if the value itself remains the same. This has no

bearing on strictly sequential plans. For the purpose of generalizing to temporal

planning though it is helpful to begin with this strong distinction between:

• the scope of an effect, and
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• the precise transition function it implements within that scope.

2.1.3 P, E,  S

With the machinery of state transition functions in place then we can address the

key semantic questions: What are plans, executions, and solutions? Continue to let

P = (FluentDefs,ActionDefs, Initial,Goal) denote a sequential planning problem.

Definition 2.2 (Plan). A sequential plan
(
a ∈Actions

)
[n]

of length n is a sequence of

actions. The type is written Actions∗ =
⋃

k≥0

{
(a)[k] | a ∈ Actions

}
.

Definition 2.3 (Execution). The exection
(
S ∈States

)
[0,n]

, a state-sequence, of an n-

length sequential plan X =
(
a ∈Actions

)
[n]

from state S 0 is given by applying each

action in turn. For each index i ∈[n], let a = ai for the current action, let X′ = X�[i−1]

for the plan thus far, and define the result Result(X′, S 0) B S i−1 of executing the

plan thus far as merely the current state. Then the execution is determined itera-

tively by applying the state transition function associated with the current action,

supposing the action is indeed executable:

S i B S ′a(S i−1). (2.3)

If every action is executable in turn, so the execution of X is indeed defined, then

say X is executable from S 0.

Definition 2.4 (Solution). A solution is a sequential plan X ∈Actions∗ , executable from

the initial state Initial, such that the final result Result(X, Initial) of the execution

satisfies the goal Goal. So X is a solution precisely when Goal(Result(X, Initial))
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holds. Let Solutions(P) denote the set of all solutions:

Solutions(P) B {X | Goal(Result(X, Initial))}. (2.4)

2.1.4 A STRIPS R  A D

We permit effects to be as general as partial functions of assignments; this has the

meta-effect of rolling together all the usual fields. For completeness we separate

out the more familiar fields, for each action a and state S :

• Let the proposition PreS ,a B S �Dependsa
∈ Dom(eff a), denoting executability,

be the precondition of a in S .

• Let the assignment DelS ,a B S �Writesa , the current fluent-value mappings, be

the deletes of a in S .

• Let the assignment AddS ,a B eff a(S �Dependsa
), the new fluent-value mappings,

be the adds of a in S .

The collection (Pre,Del,Add)States,Actions is a reasonably intuitive reformulation of

ActionDefs into ‘STRIPS’. More specifically, the state transition functions are iden-

tical. The state resulting from executing a STRIPS action (P,D, A) is typically de-

fined: So long as the precondition P holds, then the result is given by carrying out

the deletes D and adds A in that order.

Proposition 2.1. Let eff ∈States(Depends)→States(Writes) stand for the ‘SAS’ definition of

action a. Consider the corresponding ‘STRIPS’ definition for the action a with

respect to state S : (P,D, A) = (PreS ,a,DelS ,a,AddS ,a) as above.
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The two definitions of execution coincide:

S ′a(S ) = S \ D ∪ A iff P holds in S , (2.5)

= S ⊕ eff (S �Depends) iff defined. (2.6)

Proof. By definitions, verbosely: The precondition P = S �Depends ∈ Dom(eff ) is

the definition of whether the effect A = eff (S �Depends) is defined. So executability

coincides: it suffices to show that the results are also identical.

The fluents that change are Dom(A) = Writes. Then:

S ⊕ eff (S �Depends) = S ⊕ A by the definition of A.

= S �Writes ∪ A by the definition of overwriting,

= S \ S �Writes ∪ A by the definition of anti-restrictions,

= S \ D ∪ A by the definition of D. �

As-is the precondition has too complicated a form (i.e., disjunctive) for STRIPS

proper. To complete the reduction it suffices to split actions up over the individual

assignments that effects are defined upon. Which corresponds to the exponential

strategy for conditional effects; polynomial strategies are also possible [158].

Proposition 2.2. Let (Pre,Del,Add)States,Actions be the reformulation thus far. The

proposition PreS ,a expressing that action a is executable in state S naturally splits

into simple conjunctions of literals:

PreS ,a ⇐⇒ Q ∈ Dom(eff ) such that And f∈Depends(S ( f ) = Q( f )). (2.7)
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Proof. (1) The conjunction And f∈Dom(Y)(X( f ) = Y( f )) is equivalent to demanding

that Y be a restriction of X, written Y = X�Dom(Y). (2) Assignments in Dom(eff ) are

upon the fluents Depends. Then the proposition holds because the right-hand side

rewrites to the definition of PreS ,a:

PreS ,a ⇐⇒ Q ∈ Dom(eff ) such that Q = S �Dom(Q) by (1),

⇐⇒ S �Depends ∈ Dom(eff ) by (2). �

Corollary 2.3. Actions can be compiled into an equivalent, potentially exponen-

tially large, set of STRIPS-actions:

(
Prea,Q = Q, Dela,Q = Q�Writes , Adda,Q = eff (Q)

)
a∈Actions, Q∈Dom(eff ) (2.8)

encodes ActionDefs as STRIPS-actions.

Proof. Let a be an arbitrary action, Q ∈Dom(eff a) an assignment its effect is defined

upon, and S any extension of Q to a full state (so a state in which a is executable).

The corollary makes three claims. (Size) For even just all boolean fluents, Dom(eff )

could be as large as 2|Depends|. (Syntax) Each field Prea,Q, Dela,Q, and Adda,Q is a

partial state: hence equivalent to a set of atomic propositions [66]. (Semantics) The

deletes and adds are correct by the first proposition: Dela,Q = DelS ,a and Adda,Q =

AddS ,a hold. By the second proposition the preconditions Prea,Q = Q are correct.

�
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2.2 CONSERVATIVE TEMPORAL PLANNING DEFINITIONS

This section presents the semantics for conservative temporal planning (CTP). The

name emphasizes the definition of permitted concurrency between actions: actions

are permitted to be concurrent only when the outcome is entirely unambiguous.

The implementation is by locks, as in concurrent programming.

The remainder of the section consists of three parts. We elaborate on the mean-

ing of and motivations behind the conservative interpretation by way of two further

encodings of B. We go on to develop the additional machinery ground-

ing the high-level intuitions, specifically, we make precise the notions of vaults

(collections of locks) and vault transition functions. Finally, with machinery in

place: What are plans, executions, and solutions? Respectively: dispatch-sequen-

ces, (state, vault)-sequences, and deadline-goal-achieving executable plans.

2.2.1 I

The basic idea is to permit two actions to execute concurrently only if it is totally

implausible that they could interfere. Precisely, if action a writes to anything that

action b depends upon, or vice-versa, then say action a and action b are mutually

exclusive. Naturally, it is forbidden to concurrently execute mutually exclusive

actions. This is an extremely conservative stance to take. (For example, even com-

mutative actions are considered mutually exclusive.) Why should we take it?

Example: Sequential B within Temporal Planning.. Recall the encod-

ing of B given for sequential planning (Figure 2.1). We could adapt that

model to temporal planning by just ascribing a duration to movements, however, the

result would no longer correctly model our physical understanding of B:
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(constants a b c table hand (Block {a b c}) (Place {a b c table}) ((clear table) True))
(fluents (empty hand) ∈ {True} (clear b ∈ Block) ∈ B (below b ∈ Block) ∈ Place)

(action (move b y) [duration = 2] (let ((x (below b)) (v (= y table)))
(not (= b y)) (= (clear b) True) (= (clear y) True)
(B (below b) y) (B (clear x) True) (B (clear y) v)
;; Model the hand! Seems pointless, but. . .
(= (empty hand) True)

(B (empty hand) True) ))

Figure 2.4: A conservative temporal encoding of (Single Handed) B.

as follows. So long as we move disjoint blocks to disjoint places: the fluents in-

volved, with respect to the details of that encoding, are disjoint as well. Then it

is “totally implausible” that such actions could interfere. Which means that we

would end up permitting concurrency. But with only one hand it is impossible to

act concurrently!

The modeling mistake lies in entirely abstracting away that hand. To capture

the physical impossibility we should instead write as in Figure 2.4. The change is

to retain the constant-valued fluent “(empty hand)”. The effect of leaving behind

an explicit model of the hand, however trivial it is, is that every pair of actions is

considered to interact by virtue of reading from and writing to this common ‘fluent’.

Then, as desired, every pair of actions is considered mutually exclusive and so no

concurrency is permitted.

The point to note is that we resolved the issue without modeling at a signifi-

cantly more detailed level. So for example, the number of states remains the same

no matter how many constant-valued fluents we add. Then in short, a reason to take

the conservative interpretation is as just shown: so that we can enforce true mutual

exclusions—real physical constraints—that have been otherwise hidden due to the

level of abstraction, without having to significantly back down from said level.
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Constants and Constant-Valued. The reader might have noted the delicate point that

“(empty hand)” is said to be a fluent and “(clear table)” is said to be a constant.

While the formal definitions are unable to make this distinction (because constants

are discarded in a fully instantiated interpretation) the notion is that: in temporal

planning, while we may drop effects upon terms declared constant, we may not do

so for terms merely proven to be constant-valued when not changing. For contrast,

in sequential planning, it is perfectly legitimate to treat constant-valued fluents as

constants proper; such is the distinction between Figures 2.1 and 2.4.

(uses x). It matters little what such constant-valued ‘fluents’ are called, and even

less what their sole value is said to be. We find it less distracting, at the level

of examples,4 to write just “(uses x)” to convey that the enclosing action requires

exclusive access to object x for unstated reasons.

So: What of an example for permissible concurrency?

Example: Concurrency via Multiple Hands in B. In this example there

are two hands: “x” and “y”. Then concurrency is conceivable. Indeed, there would

seem to be no purpose to having two hands but for using them concurrently. The

intended task is to invert two towers each of height 2. The natural solution, using

a single hand per tower-to-be-inverted, is permitted even under the conservative

definition of concurrency. Of the 5 longest paths depicted in Figure 2.7, the first

3 are all duration-optimal variations upon the natural solution. The encoding is in

Figure 2.5, with a duration-optimal solution in Figure 2.6.

4Formally, we may drop constant-valued fluents from states yet retain their locks.
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(constants a b c d table (Block {a, b, c, d}) (Place {a, b, c, d, table}) ((clear table) True)
x y (Hand

{
x, y

}
) )

(fluents (clear b ∈ Block) ∈ B (below b ∈ Block) ∈ Place)
(action (move b ∈ Block y ∈ Place h ∈ Hand )[duration = 2]

(let ((x (below b)) (v (= y table)))
(uses h) (uses b) (uses x) (uses y)

(not (= b y)) (= (clear b) True) (= (clear y) True)
(B (below b) y) (B (clear x) True) (B (clear y) v)))

(init (B (below a) table) (B (below b) a) (B (below c) table) (B (below d) c)
(B (clear a) False) (B (clear b) True) (B (clear c) False) (B (clear d) True)))

(goal (= (below a) b) (= (below c) d))

Figure 2.5: A temporal encoding of Multi-Handed B.

0: (move b table x)[2] ; b, a, and x are all unavailable for 2 units,
0: (move d table y)[2] ; d, c, and y are all unavailable for 2 units,5

;; wait until all objects are available once more,
;; arrive at the state with all blocks on the table,

2: (move a b x)[2] ; a, b, and x are all unavailable for 2 units,
2: (move c d y)[2] ; c, d, and y are all unavailable for 2 units,

;; wait until all objects are available once more, and finally
;; arrive at the state with the two towers inverted as desired, at time 4.

Figure 2.6: A solution to the Inverting Towers Problem of Figure 2.5.

Applying Sequential Planners Anyways. It is interesting to observe a potential ‘mis-

take’ that a less temporally-aware planner could make on this problem. If ignoring

the possibility of concurrency altogether, a planner might choose to build a single

alphabetical tower: that also satisfies the goal. That solution has the same ‘cost’ of

4 actions, but, its duration is 8 time units (cf. the fourth of the longest paths in Fig-

ure 2.7). Then it is dominated by the natural solution; but in the eyes of a sequential

planner the two appear to be of the same quality. Whether or not the ‘mistake’ is

made, then, would be a toss-up.

5It is easy, but cumbersome, to ensure a lack of mutual exclusions regarding the table.
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Figure 2.7: A fragment of the infinite CTP-situation space for the B en-
coding of Figure 2.5. Vertex geometry represents the underlying state; the annota-
tions are the earliest times that each object may be used.
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Actually, though, a typical domain-independent sequential planner often prefers

exploiting concurrency—under rescheduling—despite being unaware of concur-

rency in the midst of planning.6 Especially LAMA is naturally biased in this man-

ner [174]. An accurate technical explanation is neither simple nor compelling;

clearly the supposed bias can be neither strong nor reliable. Perhaps it will suffice

to imagine that heuristics are naturally more accurate concerning non-interfering

actions. Regardless of ‘why’: That concurrency can be ‘ignored’ and yet success-

fully exploited nonetheless is a valuable observation in practice.

2.2.2 M: D, D, L  V T F

The additional machinery to be employed for tracking whether or not specific in-

stances of concurrency are to be permitted consists of locks. The protocol for ma-

nipulating locks is exceptionally—and deliberately—draconian. In part this is just

because a temporal planner can—and is expected to—schedule actions so as to

avoid all waiting/blocking. Informally:

Locking Protocol. There are two types of locks: read-locks, and write-locks. Read

-locks can be shared, write-locks are exclusive. If some action is to be dispatched

at some time, but other actions hold the locks needed to proceed, then the action

waits until such time as it can acquire all the locks it needs. Actions acquire any

locks they are waiting for (a.k.a., blocking on) as soon as those locks are released,

in first-come-first-served order. Only once an action holds all of its locks does it

commence its workload. When the workload is complete (the action’s duration has

elapsed), and no sooner, all locks held are released.

6Planners capable of creating looping plans—a rare breed—should, intuitively speaking, prefer
to build fewer, and taller, towers. These ought to prefer, rather than avoid, the ‘mistake’.
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The remainder of the section formally defines the structure of conservative tem-

poral planning problems and the associated machinery, locks and vault transition

functions, that ultimately support the formal interpretation of concurrent execution.

2.2.2.1 Problem Structures: Durations, Deadlines, and Situations

Let P = (FluentDefs,ActionDefs, Initial,Goal) denote a conservative temporal

planning problem, consisting of its fluent definitions FluentDefs, action defini-

tions ActionDefs, initial situation Initial, and goal (expression) Goal. Except for

those redefined in the following, P inherits all those definitions made for sequential

planning problems. Conceptually there are just two changes to problem structure:

we permit durations and deadlines.

The fluent definitions FluentDefs B (Values)Fluents are precisely as in sequen-

tial planning: a fluent-indexed collection over the possible values of each.

The action definitions ActionDefs B
(
eff , dur

)
Actions are an action-indexed col-

lection mapping each to its effect and its duration. The effect eff a of action a

is precisely as in sequential planning, namely, a partial function on assignments:

eff a
∈States(Dependsa)→States(Writesa). The duration dura of action a is, for simplicity, a

positive Rational: dura
∈Q+ .

Locks have yet to be defined, but we shall define situations here nonetheless.

Say:7 A situation, a.k.a. fortune, (State,Vault) consists of its state State, a fluent-

indexed collection of values, and its vault Vault, a fluent-indexed collection of locks.

Let Fortunes B States × Vaults denote the entirety of situations.

The initial situation Initial, a.k.a. initial fortune, is a fortune: Initial ∈Fortunes.

Usually the initial vault VaultInitial is trivial. That is, assume a beginning-of-action

7‘Clearly’ a collection of locks constitutes a vault; a vault containing value must be a fortune.
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time t0 (i.e., 0 or 1) when all initial locks are released (all of which are write-locks).

For convenience, also assume there is some canonical beginning-of-time t−∞ < t0

when all initial locks are acquired. (Non-uniform initial locks, which would be a

limited variation on timed initial literals [59, 194], pose no difficulties—it is simply

nice to have a default.)

The goal (expression) Goal is no more expressive than a negation-free boolean

expression over deadline-goals. A deadline-goal g = ( f , v, t) consists of its flu-

ent f , its value v ∈Values f , and its deadline t ∈Q∪{∞}. The intuitive interpretation is that

the fluent-value equality f = v is to be achieved no later than time t and remain

that way for the rest of time. Note that one is permitted to ask that f , v hold

by some deadline (i.e., as a disjunction over every other possible value of the flu-

ent). Forbidding negations only serves to prevent negation of the implied temporal

quantification. The restriction is to ensure that deadline-goal satisfaction can be

evaluated with respect to just final situations (rather than whole executions).

Deadline Goal Satisfaction. Rather than prove that a general temporal logic is un-

necessary we shall simply define so; then instead it will remain to prove that the

definition captures the intuition. Let g = ( f , v, t) be any deadline-goal. By fiat de-

clare that g takes value True with respect to an entire execution if and only if the

final situation alone, say (S ,V) ∈Fortunes, satisfies both:

S ( f ) = v and, (2.9)

Read-Time(V( f )) ≤ t (defined shortly). (2.10)
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As the underlying propositions are, by fiat, independent of all but the final situation,

then so too is any expression over them. Then we may regard the full goal expres-

sion itself as merely a (non-arbitrary!) truth-function on situations: Goal ∈Fortunes
total
−→B.

2.2.2.2 Interpretation Structures: Locks, Vaults, and Vault Transition Functions

Situations now additionally include collections of locks. So we need the (i) the

formal representation, and (ii) how actions effect change upon it.

Definition 2.5 (Locks and Vaults). A lock (Acquired,Released,Readable) ∈Locks is

given by its: acquisition-time Acquired ∈Q, which begins a right-half-open interval,

release-time Released ∈Q, which ends the interval at a strictly greater time, and

lock-type Readable ∈B, which is True for read-locks and False for write-locks.

Define the write-time of a lock as its release-time. Define the read-time of a

lock as its acquisition-time if readable, otherwise, as its release-time. So:

Write-Time(`) B Released`, and (2.11)

Read-Time(`) B if Readable` then Acquired` else Released`. (2.12)

A vault (Acquired,Released,Readable)Fluents is a fluent-indexed collection of locks.

Denote the type by Vaults B (Fluents
total
−→ Locks).

The changes in locks from applying an action—its vault transition function—

are to be given by: (1) acquiring read-locks at their read-times for all fluents only

read from, (2) acquiring write-locks at their write-times for all fluents written to,

(3) actually starting only after acquiring all locks, and finally (4) releasing all locks

at precisely the actual finish-time. We sketch the corresponding notation before the

definition proper. Consider any action and some current vault.
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The earliest start-time is given by the maximum over the read-times of the

fluents only read from, and the write-times of the fluents written to:

EST = max Read-Time(·) ∪Write-Time(·).

The earliest finish-time merely adds in the duration:

EFT = EST + dur.

Suppose an actual start-time and actual finish-time for the action, say:

AST ≥ EST, and

AFT = AST + dur.

The acquired write-locks are a collection of write-locks on the fluents written to,

held from their former write-times to the actual finish-time:

Acquired-Write-Locks = (Write-Time,AFT, False)Writes .

The acquired read-locks are a collection of read-locks on the fluents read from,

held from their former read-times to the latest actual finish-time of all of the actions

sharing each. Compute those release-times by just incrementally taking maximums,

with correctness to be shown shortly:

Acquired-Read-Locks = (Read-Time,max(Released,AFT), True)Reads .
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All of the acquired-locks are the union:

Acquired-Locks = Acquired-Read-Locks ∪ Acquired-Write-Locks.

So the new vault consists of replacing the old locks with the new:

V ′ = V ⊕ Acquired-Locks.

For correctness, consider that read-locks are supposed to be held from the ear-

liest acquisition-time to the latest actual finish-time of the actions sharing the lock.

So we need to verify that incrementally taking the maximum is the same as tracking

the whole set and taking the maximum later.

(Base Case:) The base case is read-locking a presently write-locked fluent. By

the exclusivity of write-locks, the action starts later than the current release-time:

Released ≤ AST. By positive durations, the action finishes yet later: AST < AFT.

Hence Released < AFT. So taking the maximum is harmless, because it will always

end up as just the actual finish-time of the sole action now read-locking the fluent:

max(Released,AFT) = max {AFT}, because

Released < AFT.

(Inductive Case for Sharing Read Locks:) The inductive case is read-locking

a presently read-locked fluent. By induction, the former release-time is equal to

maximizing over the former set of read-locking actions. By associativity and com-

mutativity of max, it is enough to set the new release-time by taking the maximum
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of the former release-time and the action’s actual finish-time:

max(Released,AFT) = max {AFTa | a shares the lock}.

To make all of the dependencies explicit:

Definition 2.6 (Vault Transition Function). Let vault V be arbitrary. The vault

transition function V ′a,t
∈Vaults

total
−→Vaults of a dispatch of action a for requested start-

time t is given by the following.

ESTa(V) B max Read-Time(V(Readsa))

∪Write-Time(V(Writesa)).
(2.13)

EFTa(V) B ESTa(V) + dura. (2.14)

ASTa,t(V) B max(ESTa(V), t). (2.15)

AFTa,t(V) B ASTa,t(V) + dura. (2.16)

Acquired-Read-Locksa,t(V) B


Read-Time(V f ),

max(Released(V f ),AFTa,t(V)),

True


f∈Readsa

. (2.17)

Acquired-Write-Locksa,t(V) B


Write-Time(V f ),

AFTa,t(V),

False


f∈Writesa

. (2.18)

Acquired-Locksa,t(V) B Acquired-Read-Locksa,t(V)

∪ Acquired-Write-Locksa,t(V).
(2.19)

V ′a,t(V) B V ⊕ Acquired-Locksa,t(V). (2.20)
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Finally define the earliest vault transition function V ′a
∈Vaults

total
−→Vaults by forcing the

actual start-time to the earliest start-time:

V ′a(V) B V ⊕ Acquired-Locksa,ESTa(V)(V). (2.21)

2.2.3 P, E,  S

So, with machinery in place, we can define plans, executions, and solutions.

Definition 2.7 (Plan). A plan is a schedule; a schedule (a, t)[n]
∈(Actions×Q)∗ of length

n is a sequence of dispatches, i.e., time-stamped actions. The time-stamps are

the requested dispatch-times, a.k.a. requested start-times, of the corresponding

actions. The time-stamps may be unsorted.

Definition 2.8 (Execution). The execution of a schedule X = (a, t)[n] of length n

from situation F0 = (S 0,V0) is the sequence of situations F = (S ,V)[0,n] given by

applying the associated state and vault transition functions iteratively (and indepen-

dently). The underlying state-sequence and vault-sequence are (S )[0,n] and (V)[0,n].

For each index i ∈[n], let a = ai be the current action, let t = ti be the current re-

quested start-time, and let X′ = X�[i−1] be the schedule thus far. Define the result

Result(X′, F0) B Fi−1 of executing the plan thus far as just the current situation. In

turn define the current situation by applying the associated transition functions:

S i B S ′a(S i−1), (2.22)

Vi B V ′a,t(Vi−1). (2.23)

When entirely defined, then say the schedule X is executable from situation F0.
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Definition 2.9 (Solution). A solution is a schedule X ∈(Actions×Q)∗ , executable from

Initial, such that the final result Result(X, Initial) of the execution satisfies the goal

Goal. So schedule X is a solution precisely when Goal(Result(X, Initial)) holds.

Let Solutions(P) denote the set of all solutions:

Solutions(P) B {X | Goal(Result(X, Initial))}. (2.24)
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2.3 INTERLEAVED TEMPORAL PLANNING DEFINITIONS

This section presents the semantics for interleaved temporal planning, building

upon both conservative temporal planning and sequential planning. The basic aim is

to weaken the draconian restrictions of the conservative interpretation. We should

want to, for example, be able to permit commutative actions to execute concur-

rently. (Or forbid: on a case-by-case basis.) The idea is to split up mutex actions

into smaller intervals, thereby allowing us to reduce the temporal scope of the var-

ious mutual exclusions concerned. That in turn then allows a temporal planner to

carefully weave the smaller intervals together without actually scheduling any two

still-mutex intervals concurrently. Simply, we shall sharply distinguish actions and

their effects:

• Interfering action may be concurrent.

• Interfering effects may not be concurrent.

Formally the semantics rest upon the notion that one is obliged, having begun an

action, to carry out all of its parts (i.e., effects). Situations then remember (in addi-

tion to a state and vault) also every outstanding obligation. Ultimately we have the

desired result that executions are by composition of transition functions.

The remainder of the section consists of three parts. We demonstrate the sig-

nificant relaxation of the interpretation of concurrency by way of a further psuedo

-encoding of Multi-handed B. Then we jump into the formal treatment,

building up the machinery of debt transition functions. Finally we make the seman-

tics precise:

• plans shall be either action-schedules or effect-schedules,
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• executions shall be actual (state, vault, debt)-sequences, and

• solutions shall be debt-free deadline-goal-achieving executable plans.

2.3.1 I

Let us begin by reexamining the potential for concurrency in B. Our con-

servative model overlooks an interesting ability that the normal (4 action schema)

version of B would have if given two hands. Consider the problem of

taking the bottom element of a 3-height tower and putting it on top:

(init (and (B (below a) b) (B (below b) c) (B (below c) table)
(B (clear a) True) (B (clear b) False) (B (clear c) False)))

(goal (= (below a) b) (= (below c) a))

Figure 2.8: Build the tower c-a-b, from the tower a-b-c.

In the hypothetical classical encoding of two hands we get to consider the plan

where one hand holds up the top block long enough to clear the bottom block,

thereby saving 2 actions:

(unstack a b x) ; hold block a in the air with hand x,
(unstack b c y) ; retrieve block b off of block c with the other hand y,
(putdown b y) ; immediately place it on the table,
(pickup c y) ; retrieve block c with hand y,
(stack a b x) ; have hand x stack block a on block b, meanwhile
(stack c a y) ; finish building the requested tower.

Figure 2.9: The smallest solution to the problem of Figure 2.8.

In contrast, a one-handed agent has to put down, and later pick up, block a: for

a total of 8, rather than 6, actions. How does the two-handed plan translate into

our abstraction? Considering that “move” is just a macro with respect to normal

B, it is straightforward to collect together the various pairs and infer

what ought to be the equivalent schedule: see Figure 2.10.

65



0: (move a b x)[4]
1: (move b table y)[2]
3: (move c a y)[2]

Figure 2.10: A schedule equivalent to the plan in Figure 2.9?

But unfortunately the conservative interpretation of concurrency would reject

this plan/schedule without a second thought: the (only) pair of concurrent actions

are clearly interfering with one another. Picture hand x stacking block a on block

b in mid-air. Will hand y really be able to handle setting both down at once? Still,

given our physical understanding of B, we already know that the concur-

rency, interpreted carefully, may be permitted. So: We seek a (i) domain encoding,

and a (ii) definition of concurrency, such that the formal interpretation is as desired.

Example: Multi-handed B with Interleaved Concurrency. As we shall

see, going beyond the conservative case, interleaved concurrency gives us the de-

sired capability (consider Figure 2.10 to be a solution to the problem of Figure 2.8).

Our encoding of the dynamics is in Figure 2.11. Figure 2.12 loosely depicts the

formal interpretation, which is as desired, of the schedule in Figure 2.10.

Discussion. The interleaved encoding is almost identical to the hypothetical exten-

sion to multiple hands of the classical 4-action-schema encoding of B.

(The comments in the temporal encoding are hopefully clear enough, e.g.: the be-

ginning of a movement is either a pickup or an unstack.) The only difference is that

the temporal version is able to express the constraint that a block cannot be held

up indefinitely. That constraint is not too important: we presume blocks can be

held up quite a while. So ignore the (quantitative aspects of the) temporal machin-

66



(constants a b c table (Block {a, b, c}) (Place {a, b, c, table}) ((clear table) True)
x y (Hand

{
x, y

}
))

(fluents (clear b ∈ Block) ∈ B (below b ∈ Block) ∈ Place)
(action (move b ∈ Block y ∈ Place h ∈ Hand)[duration ∈ {2, . . . , 20}]

(let ((x (below b)) (v (= y table)))
(uses h) (uses b) (not (= b y)) (= (clear b) True)
(B (below b) y)
(start [duration = 1] ; corresponds to the pickup/unstack part

(uses x)
(B (clear x) True))

;; When y is the table, assume the following does nothing.
(end [duration = 1] ; corresponds to the putdown/stack part

(uses y)
(= (clear y) True)
(B (clear y) v))))

Figure 2.11: An encoding of B for interleaved action concurrency.

ery, thereby obtaining a fully classical version of the problem. Do the same for the

conservative encoding of multiple hands.

Then we have two ways to think about multi-handed B from a strictly

classical perspective. One of them uses just full movement actions; the other breaks

those up into two parts each.

For single-handed B that distinction is computationally meaningless,

because having retrieved a block there is nothing else to do but to complete its

movement. With multiple hands though, the distinction is quite meaningful. To

start with, the number of interleavings of movements is much larger than the num-

ber of sequences of movements. (Suppose n independent actions and compare n!

permutations with
(

2n
n

)
n! interleavings: we can reasonably expect, e.g., heuristic

plateaus to be far larger from the latter perspective.) Moreover those extra plans

can be useful.

Specifically plans such as that depicted in Figure 2.12, costing 3 movements,

can only be found from the interleaved perspective. Whereas the best plan we may
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x-0 y-0

a-0
b-0
c-0

 

xa-4 y-0

b-1
c-0

fmabx4-3

allbgn-(move a b x)[4],0

xa-4 yb-3

c-2
fmabx4-3
fmbty2-2

allbgn-(move b t. y)[2],1

xa-4 y-3

b-3 c-2
fmabx4-3

fin-(move b t. y)[2],2

xa-4 yc-5

b-3
fmabx4-3
fmcay2-4

allbgn-(move c a y)[2],3

x-4 yc-5

a-4
b-4

fmcay2-4

fin-(move a b x)[4],3

x-4 y-5

c-5
a-5
b-4

 

fin-(move c a y)[2],4start
move a

end
move a

start
move b

end
move c

end
move b

start
move c

Figure 2.12: An ITP-plan and loosely its execution, solving the encoding of Fig-
ure 2.11. Compare with Figure 2.7. The extra structure for (i) vertices records
when unfinished actions must finish, and for (ii) edges interleaves actions’ parts.
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Figure 2.13: A variation on a motivating example for temporal PDDL.

find from the conservative perspective, as initially discussed, costs 4 movements

instead of 3. So here the engineering tradeoff is between quality (of the solution

plans) and runtime (of the planner).

It seems likely that the runtime advantage will be too large. That is, the con-

servative interpretation of concurrency seems to—in B—have quite the

upper hand. (Unless of course optimality is non-negotiable, as is sometimes the

case.) We considered the quintessential classical planning domain towards motiva-

tion in order to faciliate discussion of the technical connections between the various

forms of planning. In particular B lends itself nicely to abstraction by

pairing up the beginnings and endings of movements.

Naturally the better motivation towards favoring interleaved temporal planning

is to step notably further beyond the understanding of classical planners (i.e., further

beyond than the conservative interpretation of concurrency already does). Consider

the problem of repairing a broken fuse, as in Figure 2.13. Specifically note that, in

an extreme case, the only source of light to work by may be the paltry light of a
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match. Then concurrency is now much more important than merely plan quality.

Now concurrency is required.

2.3.2 M: C A, O, D T F

In this section we precisely define the extensions in low-level semantics called for

by the generalization to the interleaved interpretation of concurrency. The exten-

sions are to compound actions, obligations, and the machinery tying them together.

An obligation is a promise to enact every future part of a compound action on time.

Specifically an obligation is a structure mapping each part of a compound action to

the dispatch-time that each must begin execution at. A debt is just the collection of

all (outstanding) obligations. The debt transition functions are responsible for ac-

tually implementing the formal semantics. Most importantly these deliberately fail

to be executable if an obligation goes unmet.

LetP = (FluentDefs,ActionDefs, Initial,Goal) now denote an interleaved tem-

poral planning problem: these consist of their fluent definitions FluentDefs as in

Sequential Planning (Section 2.1), primitive definitions ActionDefs as in Conser-

vative Temporal Planning (Section 2.2), initial situation Initial, a debt-free situ-

ation, and goal (expression) Goal, regarded as a truth-function on debt-free situ-

ations. Concerning action definitions: A general treatment would ascribe deeper

structure in order to describe varying ways of composing compounds out of primi-

tives. However, and perhaps not for the best, it is overwhelmingly the case that, in

theory, only a single possibility is permitted.

An (endpoint-interleaving) (compound) action α ∈Compounds, the only kind of

compound permitted, permits effects over precisely three sub-intervals of its exe-

cutions, namely: the whole interval, a starting interval, and an ending interval. We
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use compound/action interchangeably. Let Intervals denote the set of names of the

sub-intervals (of executions) of an action that effects are permitted to occupy, here,

only: Intervals B {all, bgn, fin}. Also define the set of the (names of the) strict

sub-intervals (of executions etc.), here, only: StrictIntervals B {bgn, fin}. An

(endpoint-interleaving) (compound) action definition is implicitly given by the

definitions of its three primitive parts:

its all-part, formally named (α, all), written all-α,

its start-part, formally named (α, bgn), written bgn-α, and

its end-part, formally named (α, fin), written fin-α.

That is, consider the primitive names Primitives B Compounds × Intervals to

reveal the associated compound and sub-interval. The all-part is chiefly a notational

convenience: only a psuedo-part. The others are proper parts.

The primitive (action) definitions ActionDefs B
(
eff , dur

)
Primitives are a primi-

tive-indexed collection mapping each to an action definition of Conservative Tem-

poral Planning. So each such definition ActionDefsa of a primitive consists of its

effect eff a, a partial function from/to partial states, and its duration dura, a positive

Rational. We refer to parts/primitives/effects interchangeably, despite the subtle dif-

ferences. Naturally: Both the all-effect eff all-α and the start-effect eff bgn-α are to

start at the actual start-time of the action; Both the all-effect eff all-α and end-effect

eff fin-α are to end at the actual finish-time of the action.

Definition 2.10 (Obligation and Debt). An obligation is the collection of promised

start-times for each still future part of an action execution. Let Obligations B

StrictIntervals → Q denote the type. A debt is an action-indexed collection of

obligations. The type is written Debts B Compounds
total
−→ Obligations. The trivial

debt is denoted (∅)Compounds.
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A situation B = (State,Vault,Debt) ∈Balances (to distinguish from other defini-

tions say balance, i.e., Balances B States × Vaults × Debts) consists of its state

State, its vault Vault, and its debt Debt. A situation is debt-free when all obliga-

tions have been fulfilled: when its Debt = (∅)Compounds is trivial. We assume, but it

is of no consequence, that the initial debt DebtInitial is trivial. We demand that final

situations be debt-free; define (deadline-)goal-achievement Goal(B) to imply that

the situation B is debt-free:

Goal(B)⇒
(
DebtB = (∅)Compounds

)
. (2.25)

The state transition function of each primitive remains precisely as in Sequen-

tial Planning. Note that primitives here are, in formal terms, the actions of simpler

forms of planning. (However, the truer relationship is that compounds here corre-

spond to actions there.) So for cross-referencing, Primitives = Dom(ActionDefs)

and Dom(ActionDefs) = Actions both hold: but we shall always avoid the last name.

The vault transition function for each pair of a primitive a and demanded

start-time t ∈Q remains as in Conservative Temporal Planning: under mapping the

demands to requests. The distinction is that we shall no longer automatically fix

broken start-times. That is we shall insist that dispatches be actual, meaning

that the demands are for times weakly later than earliest possible. The restricted

vault transition function for each pair builds in that restriction. So, recalling

that the full collection of (unrestricted) vault transition functions may be written

V ′ ∈ Primitives × Q × Vaults, we may write:

V ′restricted B V ′�actual, where
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actual B {(a, t,V) | t ≥ ESTa(V)}.

The setup for debt transition functions is as follows. For our purposes there are

three types of obligations,8 respectively consisting of those promises that remain

after executing each part on-time. The order is fixed: denote the cycle by Oblige =

Obligationall 7→ Obligationbgn 7→ Obligationfin 7→. The promises themselves are

just to start the start-part immediately, PSTbgn B AST, and to start the end-part so

as to finish with the action, PFTfin B AFT, that is, PSTfin B AFT − durfin. Then,

with respect to a particular execution (fix AST, AFT):

Obligationall B (PST)StrictIntervals, (2.26)

= {bgn 7→ AST, fin 7→ AFT − durfin},

Obligationbgn B (PST)StrictIntervals\{bgn}, (2.27)

= {fin 7→ AFT − durfin}, and

Obligationfin B (PST)StrictIntervals\{bgn,fin}, (2.28)

= ∅;

Oblige B


Obligationall 7→ Obligationbgn,

Obligationbgn 7→ Obligationfin,

Obligationfin 7→ Obligationall.


(2.29)

Definition 2.11 (Debt Transition Function). The debt transition function of effect

a = (α, x) at actual start-time t is denoted by D′a, t
∈Debts→Debts and defined as follows.

8The obligation remaining after the all-part is ephemeral. In practice one may just alternate
between recording and erasing PSTfin.
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• For the all-part (x = all), let AST= t and AFT=AST + dura in order to:

record the associated promises, i.e., set Dα(y) B PSTy for y ∈StrictIntervals.

• For the start-part (x = bgn), recompute AST as AST= t in order to:

check+erase Dα(bgn) = t.

• For the end-part (x = fin), recompute AFT as AFT= t + durfin-α in order to:

check+erase Dα(fin) = t.

In short:

D′(α, x), t(D) B D ⊕
{
α 7→ Obligationx

}
, but only when: (2.30)

Dα = Oblige−1(Obligationx). (2.31)

2.3.3 P, E, S

Then (most of) the machinery is in place. Plans are normally given as action-sched-

ules. It is convenient to define plans as effect-schedules, and later support action

-schedules by another layer of interpretation. The technique, covered shortly, is

to induce a corresponding effect-schedule to serve as the interpretation. First we

define plans, executions, and solutions.

Definition 2.12 (Plan). A plan is either an effect-schedule, or an action-schedule.

An effect-schedule (a, t)[m] is an m-length sequence of effect-dispatches; each con-

sists of its effect a ∈Primitives and its demanded start-time t ∈Q. Likewise an action-

schedule (α, t)[n]
∈(Compounds×Q)∗ is an n-length sequence of action-dispatches.

Definition 2.13 (Execution). The execution of an effect-schedule X = (a, t)[m] of

length m from situation B0 is the sequence of situations B = (S ,V,D)
[0,m] given by
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iteratively applying the appropriate transition functions. We demand that dispatch

-times be actual: ti ≥ EST(ai,Vi−1) for i ∈[m]. When entirely defined, then say the

effect-schedule X is executable from the situation B0.

Drilling down, for each index i ∈[m]: let a = ai be the current effect, let t = ti

be the current demanded start-time, let X′ = X�[i−1] be the effect-schedule thus far,

and then firstly define the result Result(X′, B0) B Bi−1 of executing the plan thus

far as the current situation. Secondly define the current situation Bi B (S i,Vi,Di)

by applying the state, restricted vault, and debt transition functions, with actual B

{(a, t,V) | t ≥ ESTa(V)} supporting the restriction to actual dispatch-times:

Si B S′a(Si−1), (2.32)

Vi B V ′�actual(a, t,Vi−1), and (2.33)

Di B D′a, t(Di−1). (2.34)

The definition forces actual start-times and demanded start-times of executable

schedules to coincide. The reason is just to force the promised start-times to be

identical, and hence actual, as well. Which could be enforced in other ways; this

way the existences of the underlying sequences are independent of one another.

Definition 2.14 (Solution). A solution is an effect-schedule X ∈(Primitives×Q)∗ , exe-

cutable from Initial, such that the final result Result(X, Initial) of the execution

satisfies the goal Goal. So X is a solution precisely when Goal(Result(X, Initial))

holds. Let Solutions(P) denote the set of all solutions:

Solutions(P) B {X | Goal(Result(X, Initial))}. (2.35)
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The requirement that final situations be debt-free, which is folded into the defi-

nition of goal-achievement, means that all actions must finish for a plan to be con-

sidered complete. This is not easily generalized away: future parts of an action may

threaten satisfaction of the goal. These must be evaluated before checking the goal

expression means what it is supposed to.

2.3.3.1 Inducing Effect-Schedules from Action-Schedules

Then we come to formally defining, by reduction to induced effect-schedules, the

interpretation of action-schedules; any question about the meaning of an action-

schedule is to be answered by considering its induced effect-schedule instead. Con-

ceptually, to induce an effect-schedule from an action-schedule we replace the com-

pounds by their parts, and then simply sort by dispatch-times. For notation:

Definition 2.15 (Expansion). Let Y = (α, t)[n]
∈(Compounds×Q)∗ be an action-schedule.

Let the simple expansion Ŷ of action-schedule Y be the sequence obtained by sim-

ply expanding each compound in place:

Ŷ B



(
all-αi, t̂all,i = ti

)
,(

bgn-αi, t̂bgn,i = ti
)
,(

fin-αi, t̂fin,i = ti + durall-αi − durfin-αi

)


i∈[n]

. (2.36)

Each such action-expansion ensures the effects receive the correct dispatch-times.

While the all-part is generally convenient, here it is inconvenient: it and the start

-part have identical dispatch-time. There are any number of easy resolutions to the

technicality. For example we could just flatten the simple expansion and invoke a
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stable sort by dispatch-times. We could also just eliminate the all-parts by divvying

up their work between the respective start-parts and end-parts.

Instead we shuffle; shuffling is a useful piece of machinery in general. The

formalization captures and generalizes only the latter half of real-world shuffling of

cards, namely, the process of merging together several piles of cards by interleaving

their constituents. The property of interest is that the relative order of each such

pile is preserved. So for our purpose we consider the total-orders, “Order the all-

part before the start-part before the end-part.”, over the effects of each action. To

shuffle these total-orders is to interleave the effects of the actions in some potentially

executable fashion. In general that is interesting. Our use here is, though, only to

ensure the desired tie-breaking with respect to the almost-total order on start-times.

For any sequence X, define the sequence-order <X
∈Rng(X)×Rng(X)

total
−→B as the total

-order on its elements induced by their indices: X(i) <X X( j) iff i < j. (Distinguish

duplicates from one another.) Let Z be a collection of partial-orders over elements

Z′. A shuffle W ∈[|Z′ |]
total
−→Z′ of Z is a sequence with sequence-order extending every

partial-order in Z: for each z ∈Z, with w = (<W), w ⊇ z.

Definition 2.16 (Induced Effect-Schedule). Let Y = (α, t)[n] be an arbitrary action-

schedule with simple expansion Ŷ =
((
all-α, t̂all

)
,
(
bgn-α, t̂bgn

)
,
(
fin-α, t̂fin

))
[n].

Let the action-expansion orders
(
<Ŷi

)
i∈[n]

of the simple expansion Ŷ be the collection

of sequence-orders corresponding to each of the action-expansions. Let the effect

-dispatch order ≺Ŷ of the simple expansion Ŷ (partially) order effect-dispatches by

their start-times:
(
(αi, x), t̂x,i

)
≺Ŷ

(
(αi′ , x′), t̂x′,i′

)
precisely when t̂x,i < t̂x′,i′ (for any i

and i′ in [n] and for any x and x′ in Intervals).

The induced effect-schedule (a, t′)[3n]
∈(Primitives×Q)∗ , with respect to Y , is (any

choice of) a shuffle of the effect-dispatch order ≺Ŷ together with the action-expan-

77



sion orders
(
<Ŷ

)
[n] of the simple expansion Ŷ of Y: ‘the’ induced effect-schedule of

Y is any shuffle of
{
≺Ŷ

}
∪ Rng(

(
<Ŷ

)
[n]).

We ought to forcibly break the remaining ties in some canonical fashion, say,

alphabetically by action name. That the remaining ambiguity (simultaneous effects

of differing actions) is of no consequence will become clear in the next chapter.

For the moment, though, let us rephrase. Let there be only one question permitted

concerning the meaning of an action schedule, with answer: an action-schedule is

a solution if and only if all of its induced effect-schedules are solutions.

Remark 2.1. It should already be intuitively clear that, to begin with, tie-breaking

over the start-times should be insignificant. That we can and do formally prove

so can be taken as a slight improvement upon the temporal semantics of PDDL.

Specifically the relative order of a simultaneous all-part and start-part of differing

actions is, here, of no consequence. Stated differently, for the purpose of search, our

compounds may legitimately be treated as consisting of just two parts (hence the

distinction between proper parts and the psuedo-part): see Proposition 5.18. The

same is not true of PDDL, in theory: “(over all . . . )” names a proper part. Meaning

that, for the purpose of search, the specification requests (quite non-obviously) that

we treat every compound as consisting of three (rather than two) parts. The practice

rejects that particular nuance of the specification (cf. Figure 3.5 and Section 3.4.2).

For completeness, note that the reverse mapping is trivial. To be more interest-

ing let us generalize to inferring the minimal completion of an effect-schedule:

Definition 2.17 (Induced Action-Schedule). Let X = ((α, x), t)[m]
∈(Primitives×Q)∗ be an

effect-schedule with sequence-order <X. Let Z = (Compounds × {all}) × Q be the
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entirety of all-part dispatches. Let the filtered sequence X̂ =
(
(α̂, all), t̂

)
[n] remove

all but all-part dispatches, i.e., such that (<X̂) = (<X)�Z×Z holds.

The induced action-schedule
(
α̂, t̂

)
[n], with respect to effect-schedule X, is

given by transliteration from the filtered sequence, i.e., by replacing all-parts with

the actions themselves starting from the filtered sequence X̂.

So doubly-inducing gives the minimal completion(s), i.e., doing so finishes

(the interpretation of) all unfinished actions in the ‘obvious’ (time-sorted) way.
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2.4 SUMMARY

We have precisely defined the semantics of three planning languages. These neatly

nest within one another. Sequential Planning is a restriction of Conservative Tem-

poral Planning. Conservative Temporal Planning is a restriction of Interleaved Tem-

poral Planning. Then for reference, the following runs through through the basics

of Interleaved Temporal Planning.

An interleaved temporal planning problem is given by defining fluents, primi-

tives, an initial situation and a goal expression:

1. Fluents are defined by sets of possible values; an assignment to all fluents is

a state.

A fluent in the midst of change is locked and its value undefined.

2. Actions, i.e., compound actions, are defined implicitly by their three primitive

parts: the all-part, start-part, and end-part.

3. The primitives, i.e., the parts/effects, are defined by their effect, their dura-

tion, and their type (all, start, or end).

4. The initial situation is assumed to be equivalent to an ordinary state.

So no action is in the midst of execution nor is any fluent locked.

5. Situations satisfying the goal expression must also have no actions in the

midst of execution.

Deadline-goals are permitted only so long as a mere situation suffices to

check satisfaction.

The high-level interpretation of a planning problem is given by:
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1. A plan is a dispatch-sequence over either effects (i.e., primitives) or actions

(i.e., compounds).

2. An execution fills in the missing information: the situations between every

plan step.

3. A solution is a plan with goal-satisfying final situation.

The high-level interpretation ultimately grounds down to machinery equivalent to

the following.

There are four atomic fields per fluent per situation:

1. its perhaps inaccessible value,

2. when it got that value (the acquisition-time of the lock),

3. when it may first change (the release-time of the lock), and

4. whether or not the value is accessible (the lock-type).

There are three9 atomic fields per compound action per situation:

1. the promised start-time of its start-part,

2. the promised start-time of its end-part, and

3. the next part, with value cycling through: all-part, start-part, and end-part.

The all-part and start-part may be combined together for free, i.e., with no negative

computational consequences and an insignificantly more complicated implemen-

tation. (That reduces the representation to the promised start-time of the end-part
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and whether or not the action is presently executing.) In practice it is more com-

mon to instead implement support for effects over arbitrary sub-intervals of action

executions.

Finally the situation transition functions are the (disjoint) unions of three kinds of

underlying transition functions:

1. The state transition function of each primitive is defined in Section 2.1. These

update the values of fluents and verify classical executability of the primitive.

2. The (restricted) vault transition functions of each primitive, further indexed

by demanded start-time, are a minor modification to the unrestricted case

defined in Section 2.2. These update the acquisition-times, release-times,

and accessibility-flags of the per-fluent locks and verify that demanded and

actual start-times coincide.

3. The debt transition functions of each primitive, further indexed by demanded

start-time, are defined in Section 2.3. These update the promised start-times

of future effects and verify that demanded and promised start-times coincide.

9The formal definitions use a variable number of fields, because for example that generalizes
more naturally to, say, promises consisting of non-trivial constraints rather than start-times outright.
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Chapter 3

Foundational Theory for Temporal Planning

In this chapter we shall prove that:

Our temporal planning formalisms each meet certain minimum intuitions

regarding rescheduling, reordering, and reduction.

(Rescheduling:) It should be possible to consider (re)scheduling events with

significant leeway. That is, it should be possible to at least somewhat separate

planning from scheduling considerations. For example, every precise interpretation

of the start-time in “Bob drives to work starting around 8:00 o’clock.” ought to work

out to roughly the same result.

(Reordering:) On the more computational side of intuition: Ideally there should

not be a million different ways to formally say “the same thing”. But suppose

there are large numbers of intuitively equivalent formal statements. (This happens

chiefly when intuition is intolerably ambiguous/imprecise at the technical level.)

We should be able to formally prove the correctness of an appropriate equival-

ence relation. Which ought to be, moreover, readily computable. If not, finding

some other formalization is well worth the effort. There are lots of ways to for-

mally model the same intuitions—with significantly differing computational conse-

quences.1

In our case the issue is that the formal definitions demand that even indepen-

dent activities be ordered; a schedule is, counter-intuitively, defined as a sequence

of dispatches. So for example, formal plans demand that dispatches of “loading

a package into a truck in New York” and “painting a wall red in Los Angeles”
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be ordered. Intuitively speaking the order should be irrelevant, as the immediate

consequences are independent of one another. Then we should be able to find a

computational exploit. Towards that aim, in short, we demonstrate that: reordering

independent activities defines/preserves an appropriate equivalence relation.

(Reduction:) From an engineering standpoint, we should seek to streamline

the process of generalizing classical planning technique. Among other things that

entails demonstrating the correctness of some most-trivial non-ludicrous approach

to finding plans. Particularly we ought to, and do, reduce to finite state transition

systems (a.k.a., discrete finite state automata, single-source cheapest-path problems

in finite directed multi-graphs, . . . ). Which, for temporal planning, is much harder

than it sounds: time is, intuitively, infinite. In particular the truly obvious sound and

complete approach—just check every schedule individually—is computationally

ludicruous. So even ‘brute-force’ requires intelligence.

Discussion of Novelty and Significance. We regard these intuitions as crucial lit-

mus tests of whether a given formulation of temporal planning accurately describes

the state-of-the-art. As our particular treatment is novel in certain regards, if only

for form, we ought to reprove the foundational theorems. Beyond merely form

though: the details do meaningfully differ. For example, the formalization of re-

1An interesting example from general Computer Science concerns sorting. If we formalize
the notion based on providing a bunch of objects and an O(1)-testable total-order then sorting is
O(n lg n). If instead we formalize the notion as based on O(1)-queryable rank functions, then sort-
ing is O(n). That is, quick-sort/merge-sort are fast—radix-sort is, when possible, faster. The same
distinction (comparison versus ranking) becomes grossly more significant when comparing, say,
nested-loop versus hashing methods for computing joins in relational databases. Note that an under
-appreciated fact is that, properly speaking, each state in a PDDL problem is a (state of a) rela-
tional database. For example, computing the set of executable actions is precisely a join—iterating
which is, loosely, the right way to compute a relaxed planning graph. Indeed, precisely understand-
ing planner internals benefits considerably from at least a rough knowledge of relational database
theory [104, 116].
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scheduling for Conservative Temporal Planning ends up as a linear-time computa-

tion with respect to actions, whereas for Interleaved Temporal Planning the runtime

lies between quadratic and cubic (i.e., Single-Source Cheapest Path with Negative

Weights) with respect to actions’ effects. Then in that respect our efforts here are

worthwhile.

However, a strong case against significance may be levied. Namely: Developing

novel theory should be considered, by default, to be counterproductive. That is,

whenever possible, it is better to work with a standard rather than against it. So,

then, we should, and do, also prove the inadequacy of preexisting theory.

In a sense we may prove sufficient excuse in one fell swoop. Chapter 2 makes

the claim that our definitions are descriptive of current practice (rather than pro-

scriptive). If true, then in a sense that is motivation enough. So consider the fol-

lowing. The PDDL standard claims [71], and VAL verifies [119], but virtually all

other implementations reject, that the following schedule is a solution to the ab-

stract problem shown in Figure 3.1.

1: (A)[5]

1: (B)[5]

The semantic question here concerns mainly whether a simultaneous “at start”

effect may achieve an “over all” condition of another action. In the example, both

actions A and B require that they be contained by the other. For action A that

is by requiring that “(doing B)” be true “over all”, and conversely for action B.

(Those fluents are only true while each action is in fact executing.) So in order to

accomplish either/both actions it is necessary that they start and end simultaneously.

Whether dispatching the actions simultaneously actually suffices is an interest-

ing question: the standard affirms, implementations deny. Even those implemen-
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tations we regard as faithful still reject solvability, for one of the first two of the

following three related reasons. (The unfaithful simplify to Conservative Tempo-

ral Planning, in which case unsolvability is immediate: temporary effects cannot be

expressed, so achieving the conditions “(doing ·)” ends up as inconceivable.)

1. Effects are taken to be ε > 0 long despite their specification as instantaneous.

Hence the effect “(at start (doing A))” of action A starting at time 1 can only

establish a condition upon such at time 1 + ε > 1 or later, and in particular

the condition “(over all (doing A))” of action B also starting at time 1 fails.

2. The “all” interval is taken to contain the “start” and “end” intervals, whereas

the specification states that the “all” interval contains neither.2 If the “all”

interval is taken to contain either endpoint-effect, then the problem is unsolv-

able: “(over all (doing ·))” will fail at time 1 or time 6 (or both).

3. The plan is clearly not robust to perturbation. Meaning: there does not exist

ε > 0 such that all for all δ1, δ2 ≤ ε the following rescheduling of the plan is

also executable and goal-achieving.

1+δ1: (A)[5]

1+δ2: (B)[5]

So note: our definitions insist that (1) effects are durative, and (2) “all” means all.

That our treatment concerns the de facto, and distinct, semantics of PDDL is

reasonably compelling of itself. Nonetheless, we would not follow were everyone

to “jump off a bridge”. That is, it is surely conceivable that the specification made

2To be less inaccurate, the specification takes “all” to include the conditions of “end” yet exclude
everything else. To be 100% accurate is not worth our trouble here, given there exist zero correct
implementations, which claim is left as an exercise for the reader.
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(define (domain Simul-Domain)

(:requirements :durative-actions)

(:constants A B)

(:predicates (done ?act) (doable ?act) (doing ?act))

(:durative-action A :parameters ()

:duration (= ?duration 5)

:condition (and

(at start (doable A))

(over all (doing B)) )

:effect (and

(at start (doing A))

(at start (not (doable A)))

(at end (not (doing A)))

(at end (done A)) ))

(:durative-action B :parameters ()

:duration (= ?duration 5)

:condition (and

(at start (doable B))

(over all (doing A)) )

:effect (and

(at start (doing B))

(at start (not (doable B)))

(at end (not (doing B)))

(at end (done B)) )) )

(define (problem Simul-Problem) (:domain Simul-Domain)

(:objects )

(:init (doable A)

(doable B) )

(:goal (and

(done A)

(done B) )) )

Figure 3.1: Implementations reject solvability of this PDDL-syntax.

better choices, in which case we would go on: with sad fact being that the insight

eluded its readers.3 On the other hand, much of the value of implementation and

3Indeed, concerning what we take as the aims of Long and Fox, their design choices do appear
superior. What went unforeseen is the value to be had by best formalizing less ambitious aims.
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empirical evaluation goes directly to discovering that which went unforeseen: cer-

tainly we expect that regularities of practice point to truth. In short we take the

issue highlighted by Figure 3.1 as yet greater excuse for our efforts here. Namely,

beyond more accurately describing the state-of-the-art, we also seek to justify those

deviations: we also seek to distill the lessons learned.

For example: Should we have defined a schedule as a set, as a multi-set, or,

which is the case, as a sequence? Our choice seems poor. Until, that is, we come

to leveraging classical planning technique to the hilt. At that time (cf. Proposi-

tion 3.5): appreciate well the beauty of the formalization of rescheduling. Specif-

ically, our mapping from the best schedules of Conservative Temporal Planning to

the best plans of Classical Planning is trivial. A merit is that the treatment here

leaves ‘painfully obvious’ that every classical planner ‘already is’ a decent, albeit

imperfect, approach to an interesting form of temporal planning.

It seems similarly obvious that we ought to have temporal situations declare a

current time, but we do not. The reason is that instituting such greatly weakens the

utility of the reordering intuition. Perhaps the following mental picture will serve.

Consider any given fluent in isolation. For example each might be the local state-

space of an agent (and then we are about to consider some centralized multi-agent

planning problem, i.e., a multi-body problem). Go ahead and give it a current time.

Plan for many such fluents—each as independently as possible. Then note that

there is no compelling technical advantage, when taking the global perspective, to

demanding synchronization everywhere. Indeed, it just inserts a pointless obstacle

in the way of a rather compelling motivation: decentralizing/factoring/parallelizing

the planning effort [65]. So we avoid the trap. Which has the consequence that
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we need to prove that it suffices to consider only time-sorted plans/executions/etc.,

Corollary 3.15.

Far more abstractly, in general, our treatment is odd but useful: we partially

invert the role of definitions and theorems. Our definitions bend over backwards to

the limited minds of the machines (the planners). Our theorems then, in part, serve

to establish that the definitions actually make sense, i.e., to the humans. At the

same time they serve to establish (possible) optimizations to implementations. In

contrast, normally one defines the problem so as to obviously agree with intuition,

and then prove that correct+efficient implementation is possible.

The technical motivation for the abnormal perspective stems from the follow-

ing. Consider that we could characterize Chapter 2 as: ‘we wrote out the internal

representations of temporal planning employed by the state-of-the-art’, or in short,

‘we formalized the right datastructures’.4 The approach is a natural way to go about

understanding, and learning from, deliberate non-conformance with the specifica-

tion of temporal PDDL.

We shall close the chapter with a continuation of this discussion.

Technical Results and Organization. Section 3.1 first, briefly, presents the reduc-

tion of Sequential Planning to State Transition Systems. Later, in Chapter 4, we

shall have use for deep analysis of reachability in state-space in service of optimiz-

ing temporal planning. As the lemma in question may be stated within Sequential

Planning, next, we formulate it. More specifically the result is an interesting con-

sequence of combining the notions of forward-checking and landmarks. Incredibly

4Of course the state of the art disagrees well before the level of datastructures! In truth our
definitions make a complex trade between mathematical convenience, technical accuracy, and com-
putational promise.
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it seems the potential optimization has a slight chance of having been overlooked

by even LAMA (classical planning’s state-of-the-art in exploitation of landmark

analysis) [174]. (So perhaps Lemma 3.3 should be counted as novel rather than

foundational.) Its real promise, though, lies strictly beyond the classical context.

Section 3.2 proves the correctness of a reduction of Conservative Temporal

Planning to the same state transition system as for Sequential Planning; the dif-

ference is only the notion of the quality of a plan/path. Two significant theorems

serve as tools in the reduction: the Completeness Theorem for TGP, and likewise the

Completeness Theorem for Totally Unambiguous Partially-Ordered Plans (equiva-

lently, Backström’s Deordering Theorem) [8, 153, 188].

Section 3.3 covers Interleaved Temporal Planning, which is where our largest

deviations are (from similar existing formal treatments, discounting implementa-

tions). We prove three theorems. First we prove a weakened form of the Com-

pleteness Theorem for TGP. Second we prove the correctness of pruning based

on Deordering. Third we present the astronomically large reduction of Interleaved

Temporal Planning to State Transition Systems. The combinatorial explosion is

due to distinguishing vertices by time values, of which there are nominally in-

finitely many possibilities, but in fact only finitely many need be considered. Keep-

ing the result, and time in particular, finite entails proving the existence of a unit

time [188], that STRIPS can ‘handle’ bounded arithmetic [24], and that the number

of times an action can be executed concurrently with itself is bounded (in our case,

by 1) [35, 63, 175].

Wrapping up the chapter is a lengthy discussion of its raison d’être, Section 4.5.
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3.1 SEQUENTIAL PLANNING THEORY: STATE TRANSITION SYSTEMS

AND LANDMARKS

We (briefly) carry out the exercise of reducing to state transition systems in order

to better highlight the differences in the later reductions of variants of temporal

planning—i.e., only for completeness.

Subsequently we immediately jump all the way to the bleeding edge: landmark

analysis [174]. In particular we develop an interesting pruning rule that should

serve temporal planners well.

3.1.1 F R   S T S

Let P = (FluentDefs,ActionDefs, Initial,Goal) denote a sequential planning prob-

lem. Construct its corresponding state transition system as follows. Let:

V = States denote the set of vertices/states. (3.1)

E =
{(

u ∈V , v ∈V , a ∈Actions
)
| v = S ′a(u)

}
denote the transitions. (3.2)

Σ = Actions denote the set of labels/actions. (3.3)

R = (u, v)E =
{
(u, v, a) ∈E

7→ (u, v)
}

map edges to their endpoints. (3.4)

` = (a)E =
{
(u, v, a) ∈E

7→ a
}

map edges to their labels/actions. (3.5)

s0 = Initial denote the initial vertex/state. (3.6)

T =
{
v ∈V | Goal(v)

}
denote the set of accepting vertices, a.k.a. goal states. (3.7)

• Define the state-space of the problem P as the graph G B (V, E,R).

• Define the state transition system of the problem P as the the extension

of its state-space by (correctly) designating the labels, edge-labeling, initial

vertex, and accepting vertices. In notation: M B (V, E,Σ,R, `, s0,T ).
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Then observe:

Theorem 3.1. The solutions to a sequential planning problem P are the words of

its state transition system M:

Solutions(P) = L(M). (3.8)

Moreover the words of M are isomorphic to the labeled walks of its state-space

from the initial vertex to any accepting vertex.

Proof. For the moreover, the isomorphism is just by reading the edge labels rather

than the edge names; by determinism and the fixed initial vertex the result follows.

Let ResultP denote the intermediate results of execution underyling the defi-

nition of Solutions(P); let ResultM denote the hypothetically distinct function un-

derlying the definition of L(M). It suffices to show that the functions coincide,

the inputs coincide, and the constraints on output coincide, because, by definition,

Solutions(P) = L(M) iff for all X:

Goal(ResultP(X, Initial)) = ResultM(X, s0) ∈ T.

The inputs coincide: s0 = Initial. Output constraints coincide: T = {S | Goal(S )}.

Hence it remains only to show ResultP = ResultM.

Observe that both ResultM and ResultP are fully determined by just the single-

step transition functions R′a and S ′a for all a ∈(Σ=Actions). So we need only show that

the individual transition functions R′a = S ′a coincide for each label/action a in turn.5

5Demonstrating this, because the state transition functions S ′a are indeed functions, incidentally
addresses the technicality that ResultM has not been defined, by us, unless M is deterministic.
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Fix such an arbitrary choice x ∈(Σ=Actions). Then demonstrating R′x = S ′x suffices:

R′x = Rng(R�`−1(x)) (by definition),

= Rng(
{
e ∈E 7→ R(e) | `(e) = x

}
) (apply the domain restriction),

= Rng(
{
(u, v, x) ∈E

7→ (u, v)
}
) (` and R just select parts of edges),

= Rng(
{
(u, v, x) 7→ (u, v) | v = S ′x(u)

}
) (E is the union over S ′a),

=
{(

u, S ′x(u)
)
| u ∈ Dom(S ′x)

}
(simplify away v, apply Rng()),

= S ′x (set/function correspondence). �

Discussion.. Naturally, all else being equal, shorter or cheaper plans are better. That

is, in terms of theory, finding good/best sequential plans corresponds to the Short-

est Path Problem for (Edge-Weighted, Directed, Multi-)Graphs. (Which is poly-

time.) However the reduction involves a combinatorial explosion: state-space is

exponentially large. Nonetheless the reduction can be practical, when treated care-

fully. Indeed variations on state-space search are the dominant approach to every

flavor of domain-independent planning [7, 60, 76, 82, 105, 141].

3.1.2 L A  S  F C

Consider a special sort of action:

Suppose that an executable action is an hm-detectable landmark separating the

current situation from every action it is mutex with.

Setup. Two actions are mutex if either writes to fluents the other depends upon. The

mutex-order of an action-sequence is the transitive closure of orienting each mu-

tex as per the sequence. Two plans are behavior-equivalent if their mutex-orders
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are identical. Take it for granted (for now) that behavior-equivalent plans are result

-equivalent (i.e., Result(P, Initial) = Result(Q, Initial) for result-equivalent P and

Q), and hence also solution-equivalent.6 So it suffices to prune all but one represen-

tative of every behavior-equivalence class. Take any such choice as identifying the

canonical representatives of behavior-equivalence classes. Suppose the choice of

representatives is consistent with a partial-order on actions in the following sense.

Say an action a is higher priority than a non-mutex action b if whenever the two

are adjacent in a canonical plan, a precedes b. Allow that notion to be conditioned

on a given subset of plans (i.e., subtrees of a search tree).

Suppose we have a plan P and are investigating its forward-chaining extensions

X. Let A be the set of actions executable in the final state of an execution of P.

Let Â denote the special subset of A. Let Âa denote all those special actions higher

priority than a ∈A. Take every unspecial action as lower priority with respect to

extensions of P: if b < Â then Âb = Â. Let Pa denote the (immediate) extension of

P by some executable action a, and Xa all further extensions thereof. Let Yb denote

the set of extensions of P such that b occurs at least once.

Proposition 3.2. Consider the highest priority special action. Suppose this most

special action is furthermore an hm-detectable landmark separating the current

situation from satisfaction of the goal. Then all canonical solutions immediately

execute it—every other choice may be pruned without loss. For notation, with a∗ ∈

Â denoting said highest-priority special action hm-necessary for goal achievement:

retaining only Xa∗ retains all canonical solutions extending P.

6The assumption that behavior-equivalence implies result-equivalence is the same as assuming
that POCL Planners are sound.
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In general, every extension of a plan by some action either (i) never again ex-

ecutes the special actions higher priority than the choice, or (ii) is non-canonical.

With notation as above: all Xa ∩
⋃

b∈Âa
Yb are non-canonical.

Proof. The claims are a combination of the definition of a landmark—a necessary

condition for reachability—and that it suffices to retain just the canonical represen-

tatives of behavior-equivalence classes.

Landmarks for the goal must be included in the plan, so there is at least one a∗

in every extension to a solution. Landmarks for anything else that should happen

to occur are similarly forced, so everything mutex with an a∗ is preceded by an a∗

in every extension. Therefore everything between the first such a∗ and now is non-

mutex. By assumption (or Theorem 3.14, or [8, 149, 153]), it would be equivalent to

swap this first instance of an a∗ backwards through any such extension until it occurs

(just after) now. Then the first claim is shown. As far as implementation goes: Note

that one may arbitrarily declare any such special action as highest priority (one need

not settle on canonical representatives ahead of time).

For the generalization: nothing mutex with a special action can occur until it

does, by the definition of special. Consider any special actions that do end up

occuring in some extension. Then these could have occurred right now, instead of

then, without altering behavior. Force such: define them as higher priority than all

non-special actions with respect to all extensions of P. (Among themselves pick

an arbitrary order.) Then any special action to ever occur must occur sooner than

every lower priority choice in every canonical extension. For notation, with b ∈ Âa,

Xa ∩ Yb are non-canonical. �
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Being a landmark for everything one is mutex with is indeed quite special. Con-

sider, though, that in the context of compilation: such would occur regularly. That

is, when one is carrying out a compilation one forces a planner to carry out some

amount of auxiliary computation/book-keeping. Such forcing is not necessarily im-

mediately noticed by the planner—it can easily be that the forcing is in the form

of an eventuality. Then the proposition is getting at a mechanism that one could

add to planners to make them more effective when fed compiled models. Which is

important enough to be called a Lemma:

Lemma 3.3. Assume compilation is in the restricted form of merely altering def-

initions and adding virtual actions/fluents. If every virtual action, whenever truly

reachable, is:

• the sole remaining action hm-reachable, from the last unforced choice, be-

longing to

• the cut-set of a disjunctive action-landmark, hm-detected in preprocessing,

separating

• executability of itself, from

• executability of every mutually exclusive action, and from

• satisfiability of the goal, such that also

• the current situation falls on the wrong (non-goal) side of the separation,

then:

The compilation is forcing—with respect to any forward-chaining approach sophis-

ticated enough to find those landmarks.
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Proof. The meaning is just to demonstrate that even weakest forms of the hypoth-

esis are strong enough to satisfy the definition of forcing directly. (Strongest forms

of the hypothesis are not at all interesting; computing all h∗-detectable landmarks,

for example, ‘during preprocessing’, is not an interesting definition for “prepro-

cessing”.) There is nominally very little to show. Proposition 3.2 already covers

the details of how landmarks can lead one to infer that pruning all but one option

preserves completeness. We do need to show, though, that subsequent choices can

also be forced without further deep analysis of unreachability. Argue by induction.

Base Case: No virtual action is possible. So the choice is only over real actions.

We assume there is nothing to show.

(First Caveat:) That is, define/assume that every distinct permutation of real

actions is a canonical representative, so no pruning needs to occur and no heuristic

evaluations need be suppressed in the base case. Alternatively we may assume

that any analysis powerful enough to guarantee the hypothesis concerning virtual

actions could find the same independence relationships among real actions. (Clearly

the target of a compilation should be unaware of the virtual/real distinction—as

otherwise it amounts to a direct approach.) The ultimate fall-back position is just

to weaken the definition of forcing. After all, considering at most all executable

permutations of real actions is still a far and away stronger result than considering

also pointless ordering decisions regarding virtual actions.

Inductive Case: A virtual action is possible. By hypothesis, the hypothesis

of Proposition 3.2 is met without recourse to further analysis of unreachability.

Specifically, of the possible actions there exists one immediately identifiable as (i)

necessary for everything mutex with it, and (ii) necessary for the goal. Then by

the Proposition it suffices to prune every other choice. Should there be multiple
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possible virtual actions it does not matter which is taken as highest priority. That is,

define priority by whatever choice the target planner happens to make. (Which is

legitimate because there are no relevant constraints upon the meaning of “priority”.)

Note that heuristic evaluation is unnecessary: the forcing is identifiable without

it. (And it would be reasonable to take the forced child as precisely ‘good’ as its

parent, i.e., re-use the parent’s heuristic evaluation.) A target planner clever enough

to suppress heuristic evaluation until arriving at an unforced choice will be notably

faster; e.g., if the compilation doubles the apparent size of plans then suppressing

heuristics along forced paths will be a speedup of about a factor of 2.

As the plan is made longer we can more or less assume that the distance to the

nearest unforced choice has decreased. Then by induction every unforced choice

is only over real actions, completeness is retained, and as a bonus one heuristic

evaluation is suppressed per instance of forced virtual action. So we are done—

unless the distance to the nearest unforced choice is not actually smaller.

(Second Caveat:) The only way for the induction measure to fail to decrease is if

the measure was infinite to begin with. Which means that all future choices continue

to be forced—infinitely. Infinite behaviors are not equal to finite behaviors. As the

pruning is completeness-preserving with respect to behavior-equivalence: then no

solution in the entire sub-tree before pruning was finite to begin with. To say that

every solution is infinite is to say that no solutions exist. (Solutions must be finite

by our definitions.) So the last unforced choice lead to a dead-end. Moreover the

dead-end is almost detected by the landmark analysis: all but a single infinite path

is pruned (without heuristic evaluation, to boot).

All in all the possibility of such infinite paths is highly unlikely in the first place,

and anyways not that problematic if appropriate search algorithms are employed.
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That is, let us say that such infinite paths count as well-formed/canonical for the

purposes of what must be pruned. (I.e., define away the requirement to prune the

infinite path.) Alternatively invoke transfinite induction (in order to reach the in-

finitely far away unforced choice, again eliminating the need to prune). Or just

assume that infinite paths simply don’t exist. By whichever resolution (further dis-

cussion following): The result is shown. �

Regarding the possibility of infinities, for concreteness, the typical sort of ex-

ample is:

• In this sub-tree, the only reachable (and always executable) action ever rele-

vant to some numeric fluent halves its value.

• Elsewhere, finite plans for achieving 0 remain.

In our setup: If only linear operations are permitted upon the numeric fluent, the

planner might have very well chosen to infer at the initial state that suppressing

every decreasing action ensures the fluent monotonically grows. Hence it could

know that the fluent never reaches 0 if positive with decreasing actions suppressed.

If furthermore every decreasing action but specifically halving has been rendered

hm-unreachable at the last unforced choice,7 then the planner could end up in this

situation of realizing that halving is necessary, and doing so immediately is suf-

ficient. Note that if we were to permit infinite plans, then the infinite plan really

would be a solution: limn→∞ 1/2n = 0. (Which is meaningful in practice if said

action of halving also becomes multiplicatively faster each time.)

Naturally, it would also have been possible to infer that the only way to finitely

reach 0 by multiplicative operations is to multiply by 0 specifically. Then the whole

7Initially, reaching 0 would have been a large disjunctive landmark over all decreasing actions.
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sub-tree would be pruned by landmark analysis, instead of all but one path. But

anyways pruning down to just one path is already far superior to leaving the whole

sub-tree intact. Whether the remaining difference between an empty tree and an

infinite forced path is at all significant depends upon the overall search strategy.

Lookahead. So long as the search algorithm is fair (meaning only that it visits every

infinite path infinitely often), then the existence of an infinite path in the search tree

is relatively harmless [48]. For reference the ‘right’ implementation of generating

children is to: (1) compute possible actions, (2) prune them by permutation/land-

mark considerations, (3) if multiple remain continue normally (evaluate heuristics

and submit the children to the overall search), (4) otherwise skip evaluating the

heuristic for the sole remaining child, (4’) i.e., pretend it works out as small as

possible consistent with the parent’s heuristic value, finally (5) submit it to con-

sideration by the search algorithm as normal (as if it had siblings). In particular

if guaranteeing fairness involves imposing a depth penalty, then do so in (4’). In-

tuitively we would prefer to look ahead as far as possible to an unforced choice:

(5’) go back to (1). As long as such lookahead puts a bound upon how deep one

looks before falling back to the principled approach of allowing the search algo-

rithm to make exploration choices, then lookahead still preserves fairness and thus

also completeness. (Moreover we still have our desired property: no heuristic need

be computed during lookahead.) So: (5”) go back to (1) at most N times, else (5).

In practice the issue is presumably moot (because infinite paths are presumably

ruled out in some other fashion). But for a counter-example (naı̈ve lookahead gone

awry on even a finitely solvable problem): If someone hands you a 100-disk Towers

of Hanoi problem, and even the algorithm for solving it as well, it is still better to
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walk away from the puzzle than to even attempt to compute the exponentially long

forced sequence solving it.

Discussion. All theoretical caveats aside—the interesting issue here is whether or

not this style of pruning would be useful in practice. For classical planners, util-

ity is unlikely without significant further generalization. Generalization itself is

straightforward. Whether one can find an exploitable pattern that actually occurs in

planning benchmarks is the rather harder part of such an endeavor.

As far as temporal planning goes: Lemma 3.3 is almost surely beneficial. Par-

ticularly so for PDDL-style temporal planning, as we shall see in Chapter 4 (specif-

ically concerning Theorem 4.12).
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3.2 CONSERVATIVE TEMPORAL PLANNING THEORY:

RESCHEDULING, REORDERING, AND REDUCTION

In this section we reduce Conservative Temporal Planning to Graph Theory, by way

of a remarkably efficient reduction to Sequential Planning. The key techniques are

left-shifting and deordering. Left-shifting serves to render all quantitative aspects

of time irrelevant by implementing a dominance reduction from temporal to classi-

cal plans. Deordering aims at extending the reduction to classical situations proper

(rather than just plans). Unfortunately deadlines leave perfection beyond reach, for-

mally: Conservative Temporal Planning reduces to the Multi-Objective Path Prob-

lem. In contrast, “Classical Planning” usually refers to the Single-Objective Path

Problem.

Perspective. The brute-force approach to reducing to Graphs would be to use one

vertex per (temporal) situation, as in Figure 2.7. This is a useful way to define the

semantics, but a hopeless perspective in practice; i.e., temporal situations can dif-

fer from one another in just values of time. Distinguishing these is both a pointless

and hopeless explosion of the difficulty of the task the planner faces. For this vari-

ant of temporal planning the highly attractive, and perhaps obvious, reduction is

possible—use but one vertex per (classical) state—chiefly by left-shifting. Indeed,

extremely fortunately, left-shifting takes linear-time: we may successfully apply

the state-of-the-art from Classical Planning with little to no thought required. Bear

in mind that this is how the temporal planning competitions have been won every

single time. That is, minor extension of classical planners with trivial scheduling

techniques has been and continues to be the empirically dominant strategy. Then

here we have the beginnings of an explanation.
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At a technical level: We adapt, to our formal definitions, the Completeness

Theorem for TGP [188], then, prove it. More specifically we prove that, under con-

servative semantics, dispatch-sequences efficiently reduce to action-sequences by

way of First-Fit/left-shifting; to reverse the mapping is just to throw away dispatch

-times. So we have an efficient mapping, in both directions, between the plans of

Conservative Temporal Planning and Sequential Planning (and a theorem guaran-

teeing that solutions aren’t lost by exploiting it). Then the search-trees, before any

pruning, are identical. While a great result, a perfect reduction must also be able

to survive subsequent pruning. Then the issue is that duplicate state elimination is

widely employed by classical planners. That is, it is easily said that a perfect reduc-

tion ought to be an efficient mapping between situations rather than plans. This we

cannot achieve.

In lieu of a perfect reduction we adapt and prove Backström’s Deordering The-

orem, or equivalently the Completeness Theorem for Totally Unambiguous Partial

Orders [8, 153]. So deordering serves as a sufficiently weak replacement for du-

plicate state elimination (which prunes too much). Specifically we prove the ‘def-

inition’ of non-mutex: the sequencing of non-mutex dispatches is irrelevant. The

technical upshot here is an efficient pruning rule making even state-space planners

consider such sequencing to be irrelevant. Note that avoiding pointless ordering

decisions is the guiding principle of Partial-Order Planning. Then in short: Deord-

ering allows us to fool Sequential Planners into performing a kind of Partial-Order

Planning.

Motivation in Two-Handed B. For the sake of concreteness, recall the

example two-handed B problem concerning inverting two towers each
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of height two. Intuitively there is just one natural solution (one hand and two ac-

tions per tower). Formally though we could state infinitely many variations by

inserting pointless delays. Fortunately, by left-shifting, we can efficiently avoid any

consideration of pointless delays.

However even after left-shifting there still remain six ways of formally stating

the natural solution (there are six ways to interleave the activities of the two hands).

Six hardly inspires fear; so consider scaling up to two towers each of height ten.

There remains just one natural solution, now consisting of twenty actions, ten per

tower. But now there are nearly two-hundred thousand uselessly distinct formal

variations upon it. To be precise, choose 10 out of 20 positions of the dispatch-

sequence for the ‘right’ hand (with the remaining 10 positions going to the ‘left’

hand): there are
(

20
10

)
= 184, 756 identically behaving shuffles of the twenty dis-

patches. Deordering, in theory, gives our planners an efficient mechanism for con-

sidering just one.

Organization. So the remainder proves two standard results concerning reschedul-

ing and reordering in support of the reduction to Sequential Planning and then to

Graph Theory:

1. Section 3.2.1 proves that left-shifted plans dominate [188].

2. Section 3.2.2 proves that deordering characterizes behavior-equivalence [8].

3. Section 3.2.3 applies the techniques to reduce to the Multi-Objective Path

Problem.

Finally Section 3.2.4 summarizes the key high-level points.
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3.2.1 R: L-S, E,  D-G

S

For Conservative Temporal Planning it is always best to start everything as soon as

possible, because doing so (1) has no impact on executability, and (2) is superior in

terms of achieving deadline-goals. Formally:

Theorem 3.4 (Left-Shifting/First-Fit/TGP is Complete[188]). If any schedule in an

action-sequence equivalence class is a solution, then the action-sequence equival-

ent left-shifted schedule is as well.

So it is completeness-preserving, and thus also optimality-preserving,8 to prune

away all but left-shifted schedules. A left-shifted schedule is the result of running

First-Fit: There is at most one left-shifted schedule per sequence of actions, and it

is by definition computed in linear-time. It would be hard to overstate the practical

utility of a linear-time reduction from schedules of actions to sequences of actions.

Unfortunately the theorem fails for Interleaved Temporal Planning. The failure

is easy enough to see if we remember to check. It is also equally easy to just

mistakenly assume that faster/sooner is always better. So in a sense it pays to be

extra careful here. A sketch is straightforward:

(Proof Sketch:) The locking protocol immediately gives every action the locks

it is waiting on as soon as those become available. Hence starting an action any

later than necessary only results in further constraining the timeline. That is, by the

protocol, delaying an action does not ‘make room’ for other actions to ‘sneak’ in.

So it is best to always dispatch actions as early as possible. Then note that earli-

est vault transition functions are everywhere defined and determined solely by the

8For the sake of analysis directly express metrics and quality bounds as fluents and goals, i.e.,
so that poor quality plans become non-solutions instead.
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choice of action-sequence. Therefore, having picked an action-sequence: all else

is determined. In particular if an action-sequence has an assignment of dispatch-

times resulting in a solution, then that assignment produced by applying the earliest

vault transition functions instead results in a (better) solution. ‘QED’.

Even a detailed sketch is deceptive: the fault in applying the argument to Inter-

leaved Temporal Planning is subtle. Next is a far more detailed sketch.

3.2.1.1 Sketch of Left-Shifted Dominance: Preserve Executability and Dominate

Deadline-Goal Satisfaction

A left-shifted schedule starts every action at its earliest start-time. Two schedules

are action-sequence equivalent if they dispatch the same actions in the same order,

i.e., two schedules differing only in dispatch-times are action-sequence equivalent.

One schedule dominates, in terms of deadline-goal satisfaction, another when—

for every hypothetical goal at once—the dominating schedule satisfies the goal if

the dominated schedule does. Then the idea is to break the theorem down into three

parts: show that left-shifting (0) preserves action-sequence equivalence (which is

by definition), (1) preserves executability, and (2) dominates in terms of deadline-

goal satisfaction.

To begin: Rescheduling has, counter-intuitively, no impact on executability.

The reason is just that the machinery permits only requests. Then attempting to

dispatch an action too early merely results in that action automatically waiting till

its earliest start-time. So in particular preserving executability amounts only to

preserving action-sequence equivalence:

106



Proposition 3.5 (Executability). A schedule is executable from a situation if and

only if the underlying sequential plan is executable from the underlying state. More-

over the state-sequences of the two executions are identical.

Proof. The scheduler, namely the collection (V ′)Actions,Q of all vault transition func-

tions is, by inspection, itself a total function: V ′ ∈Actions×Q×Vaults
total
−→Vaults. That is, every

individual vault transition function is total. Hence their compositions remain total:

the entire vault-sequence of every hypothetical execution exists (even if the execu-

tion does not). Executions of schedules consist of nothing more than the underlying

vault-sequences and state-sequences. Then we are done, for the state-sequence of

a schedule simply is the execution of its underlying sequential plan. Well, techni-

cally, we wrote out the definition twice. There was no mistake. �

Then it remains to argue for dominance with respect to deadlines. Consider

first equivalence with respect to satisfying deadlines. Say that two action-sequence

equivalent schedules are moreover execution-identical (rather than literally identi-

cal) if merely their actual, rather than requested, start-times match:

Proposition 3.6. Replacing a requested start-time with the actual start-time has no

effect. That is, for any action a, vault V, and requested start-time s, with actual

start-time t = ASTa,s(V), the results of attempting to dispatch the action at either

the requested time s or the actual time t are identical:

V ′a,s(V) = V ′a,t(V). (3.9)
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Moreover, if the requested start-time is not already actual, then the actual start-time

is earliest:

V ′a,s(V) = V ′a(V) (if s < ESTa(V)). (3.10)

Proof. Trivial: ASTa,s(V) = max(ESTa(V), s) holds by definition. For complete-

ness: If s = t there is nothing to show, and otherwise the only possibility is s < t =

ESTa(V) = ASTa,s(V). Then V ′a(V) = V ′a,t=ESTa(V)(V) and V ′a,s(V) = V ′a,t=ASTa,s(V)(V)

hold by definition. Hence V ′a(V) = V ′a,t(V) = V ′a,s(V) holds. �

Action-sequence equivalent schedules not execution-identical to one another

execute in the same way but for the precise times that changes actually take place.

In particular the final situations may differ—only in the final collection of locks—

and then it is possible that one is a solution and the other is not. Deadlines behave

intuitively: sooner is indeed better. Formally:

Proposition 3.7 (Deadline-Goal Satisfaction (part 1)). The set of true primitive

deadline-goals is increasing as the read-times of locks decrease.

Proof. For notation: Let state S , vaults X and X′, and primitive deadline-goal g =

( f , v, t) be arbitrary. Say situation Y = (S , X) is the completion of X, situation

Y ′ = (S , X′) is the completion of X′, g(Y) is the truth-value of g in Y , and g(Y ′) is

the truth-value of g in Y ′.

Increasing for sets refers, of course, to the partial-order by set inclusion (and

decreasing for times to the total-order by magnitude). Then it suffices to show: If

we decrease the read-time of f , (*) Read-Time(X′f ) ≤ Read-Time(X f ), then any

deadline-goal upon f can only be ‘more true’, (†) g(Y)⇒ g(Y ′).
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By definition, for any (final) situation B = (S ,V): g(B) = (S ( f ) = v) and

(Read-Time(V f ) ≤ t). Since the states of Y and Y ′ are identical then (†) simplifies

to: (‡) (Read-Time(X f ) ≤ t)⇒ (Read-Time(X′f ) ≤ t). If the read-time in X is small

enough (less than t), then certainly the yet smaller read-time of X′ is also small

enough: (*) implies (‡) and hence (†) as well. �

In short: Satisfaction of deadline-goals is monotone. Then we desire that satis-

faction of full goal expressions be monotone as well. Goal expressions are restricted

to be negation-free: hence satisfaction is—by design—monotone.

Proposition 3.8 (Deadline-Goal Satisfaction (part 2)). Satisfaction of negation-free

boolean expressions is monotone in increasing sets of true propositions.

Proof. By “negation-free” we mean of course compositions of just “and” and “or”.

Compositions of monotone functions remain monotone in general. Then note that

“and” and “or” are monotone, i.e., flipping inputs from false to true make their

results ‘more true’: (and x y . . .) implies (and True y . . .), and, trivially, (or x y . . .)

implies (or True y . . .). �

Then one schedule can dominate another with respect to all hypothetical goal

expressions at once, by simply accomplishing everything faster. Naturally there

is no earlier than earliest: hence left-shifted plans dominate their action-sequence

equivalence classes. So the sketch is complete.

Discussion. The sketch has a few small holes here and there. None are difficult to

address. For example: What does it really mean to reschedule every action to its

earliest start-time? What if two mutually exclusive actions could both start ‘now’?

Even just a cursory attempt to apply the machinery has no choice in answer. The
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locking protocol forces the later-in-dispatch-sequence of the two to wait, regardless

of requested start-times given. That is, whichever is currently scheduled to occur

first must remain that way; the definitions permit nothing else.

Then let us reflect for a moment on what it means to prove the theorem. In Se-

quential Planning all effects are permanent. But in reality all effects are temporary

(the sun sets; all things die; entropy increases without bound; etc.). Coordinating

the lifetimes of multiple effects is the usual story. For a random example: Only

a novice begins cooking mushrooms and potatoes at the same time. So cooking a

fine meal requires careful temporal coordination of concurrent processes. Realis-

tically, the proper event to be astonished and impressed by is when the paradigm

of purely sequential decision making actually performs well on some real-world

task. This is no longer, of course, in fact astonishing; success stories abound. But

nonetheless the notion that it should suffice to think only about sequences of ac-

tions is still worth meeting with a healthy dose of skepticism. The proof may very

well go through—but then the planning language can hardly be said to directly ap-

ply to a plethora of real world applications. Conversely, a planning language may

very well be rather expressive—but then the proof must fail.

Either way the language may be of significant practical utility, insofar as the

definitions themselves may successfully address ‘half’ of the technical challenges.

In other words, there are two extremes to language design, characterized by the

remaining technical challenge:

• sufficiently optimize the implementation of the system, and

• wrap the system in sufficient layers of expressiveness-enhancing techniques.
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So the question here is not really about the truth of the theorem. Whether the

theorem holds ‘merely’ distinguishes simpler from more general forms of tempo-

ral planning. As we are interested in both kinds, we are as interested in disproving

the theorem as we are in proving it. Put another way, our definition of Conservative

Temporal Planning is designed (by ruling out specifically required concurrency), to

collapse to Sequential Planning. Provability is then a foregone conclusion. Like-

wise Interleaved Temporal Planning generalizes only far enough to break the theo-

rem.

So the (more) interesting matter is the proof itself, rather than the status of

the theorem. Specifically we should investigate proof as robust to generalization

as possible. ‘Failure’ is inevitable: we can hardly prove the theorem when it is

false. But the fantastic nature of the optimization the theorem legitimizes—conduct

temporal planning by straight-up application of a classical planner instead—is far

too attractive to give up without a fight.

Long story short, the aim behind the level of rigour of our formal proof is to

better support the salvaging of useful lesser results subsequent to failure of the

theorem itself. Understandably the full proof, given in Appendix B, may not be of

immediate interest. Indeed, it is likely more valuable to independently prove the

theorem; one of our meta-claims is that our definitions streamline well and truly

taking care of every little detail.

So next we move on to reordering the dispatches, leaving the time-stamps alone,

which is converse to our notion of rescheduling.
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3.2.2 R: D  B-E

In this section we reformulate, more intuitively, the notion of execution—say be-

havior versus execution—and show that the original reduces to it. The formal no-

tion of execution reflects unfortunate realities of implementation difficult to effi-

ciently address in general, but usually greatly mitigated by duplicate state elim-

ination. Duplicate state elimination is only correct under certain assumptions—

assumptions not met in application to Conservative Temporal Planning. So among

other things the reduction serves to describe a correct alternative.

Formally, we prove that one of Backström’s theorems continues to hold when

adapted [8]. For reference, Backström’s Deordering Theorem is that eliminating

unnecessary ordering relationships in a partial-order plan is poly-time. In contrast

his Reordering Theorem is that finding the minimum number of ordering relation-

ships on the same set of actions is NP-complete.

For our purposes, we adapt the theorem so as to motivate and prove correct the

following pruning rule.

Deordering-motivated Pruning. Ascribe any canonical total-ordering to all actions.

When considering adding some dispatch of an action to the end of an executable

plan, first collect together the suffix of its non-mutex ancestors. Prune the dispatch

if it is canonically less than any element of that suffix.

The rule is dead simple, but, important. So, reiterating: Give every action an

arbitrary ID. When generating a child, scan backwards till encountering a mutex

action. Compare IDs along the way. Skip to generating the next child if the current

ID isn’t biggest.
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The pruning preserves completeness (and optimality if one records plan quality

as an explicit fluent). The proof is that at least one permutation of that suffix (the

sorted one) is retained, and the behaviors of all of them are identical. Roughly:

Theorem. Deordering preserves behavior.

The treatment is closest to that of Backström [8], but we could equally well

attribute: POCL-soundness, Completeness of Totally Unambiguous Partially-Or-

dered Plans, GP-completeness and soundness, and Completeness of Strati-

fied Planning [8, 16, 30, 149, 153].

Organization. We begin with a longer account of the underlying motivations be-

fore moving on to the proof proper. The technical treatment starts by defining the

alternative notion of execution (behavior and behavior-equivalence), continues by

building tools (mutexes and reordering), and finishes with the promised equival-

ence reduction. We conclude with a longer discussion of the opportunities and

issues surrounding deordering.

Duplicate State Elimination is Incomplete. Slow and steady wins the race. Exhaust-

ing resources to ‘win’ a half-race, a pointless endeavor, immediately loses the race

itself—fastest solutions do not necessarily, nor even usually, consist of fastest solu-

tions to sub-problems. Then consider, as has been suggested, indeed blindly hand-

ing temporal problems to a state-of-the-art classical planner (perhaps extended by

First-Fit so it can at least evaluate the actual plan quality metric [i.e., duration]).

Figuratively, the planner might attempt a dead-sprint through the whole problem—

and keel over dead half-way through. At a technical level: duplicate state elimi-

nation could, at least in theory, prevent us from finding a fast/fastest solution if it
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happens to consist of locally non-fastest sequences (because duplicate state elimi-

nation prunes locally sub-optimal sequences whenever the sub-optimality becomes

known). If deadlines are tight enough, then we might fail to solve the temporal

problem.

The flaw is easily ‘addressed’ in practice. For example, we can always just

disable duplicate state elimination—or just forbid the use of deadline-goals. Can

we do better? At a minimum, we should be able to prove that it suffices to consider

paths rather than walks; disabling duplicate state elimination shouldn’t mean we

cannot even replace it with mere cycle-checking. Just cycle-checking is, though, a

far cry from the power of duplicate state elimination.

Applying Deordering to Logistics. Consider search-trees on up to 10 load actions

(of different packages). Loading is pairwise non-mutex, so the order is irrele-

vant; that is, every way of ordering a given subset results in the same final state.

Mere cycle-checking does not see that, and so considers the full search-tree: 10! =

3, 628, 800 leaves,
(

10
9

)
9! parents of leaves,

(
10
8

)
8! grandparents, . . . , and 1 root for

the empty plan. (If also the futility of unloading goes unnoticed then
∑10

i=0 10i is the

right expression.) Duplicate state elimination perceives that only 210 = 1024 dis-

tinct states are possible (one per subset of 10 packages), and so prunes accordingly.

The deordering-motivated pruning rule forces pairwise non-mutex sets of actions to

occur in an arbitrary but fixed order. Then only one path per subset of the 10 load

actions survives pruning. So again the search tree consists of 1024 vertices, for a

subtly different reason.

Here the pruning rule is actually significantly superior to duplicate state elimi-

nation. Its operation is search-order independent and it needs only enough memory
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at any given moment to represent the plan in question. Duplicate elimination, in

contrast, requires exponential memory and anyways only prunes down to 1024 ver-

tices as its best case; if suboptimal paths are found first, even duplicates may need

to be re-expanded. Of course sets of pairwise non-mutex actions are the ideal case

for deordering. In general duplicate elimination is a far stronger filter (in fact too

strong for our purposes). Nonetheless, somewhat surprisingly, the two may be used

in tandem even in the context of classical planning [30], which we attribute largely

to the search-order dependence of duplicate state elimination.
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3.2.2.1 Timelines, Behaviors, and Behavior-Equivalence

The natural notion of an execution (or execution trace) is that such gives every fluent

a single value per time. That is, in notation, our temptation is to write f (t) = v to

denote the value v of fluent f at time t with respect to the execution of interest.

When many are of interest we would write instead along the lines: Z( f , t) = v

denotes that f = v holds at time t with respect to Z. As we have already defined ex-

ecutions as a rather different structure, to distinguish, let us say behavior denotes

the natural notion; so behaviors are such that each behavior Z ∈Fluents×Q→Values is a

function mapping fluents and times to values. Precisely:

Definition 3.1 (Fluent Timelines and Behaviors). A timeline of a fluent f is written

Z f
∈Q→Values f , and means that Z f (t), if defined, is the value of f at time t in the time-

line Z f . A behavior collects all timelines together and is written
(
Z ∈Q→Values

)
Fluents

.

So Z f (t) = Z( f , t), if defined, is the value of fluent f at time t in the behavior Z.

For mapping from formal executions, i.e., from situation-sequences, to corre-

sponding behaviors we first define the notion of what (temporal) assertions are

made by any given (temporal) situation.

Definition 3.2 (Temporal Assertion). A situation Y asserts that each fluent f has

the value StateY( f ) specified by its state StateY for each time that its lock VaultY( f )

asserts definition for. When readable, the interval of definition of a lock is the

closed interval from its acquisition time through its release time; when unreadable,

its interval of definition is just the release time of the lock. For notation, write t ∈̃ `
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to denote that lock ` asserts definition for time t:

(∈̃) B {(t, `) | t ∈ if T` then [A`,R`] else [R`,R`]}, where (3.11)

(A`,R`,T`) = (Acquired`,Released`,Readable`).

Then to derive the corresponding behavior of an execution, just collect together

all the assertions from each situation in turn. In principle such might contradict one

another: say temporally inconsistent or that the behavior does not exist. For said

principle we ought to define corresponding behaviors as relations (relating fluent

and time pairs to all values asserted by the execution for that pair). However, the

chief responsibility of the machinery of vault transition functions is to ensure lack

of such inconsistency beyond a shadow of doubt. So let us define corresponding

behaviors as functions:

Definition 3.3. The behavior corresponding to an execution is given by:

Behavior(X) B
{
( f , t) 7→ StateY( f ) | t ∈̃ VaultY( f ) and Y ∈ Rng(X)

}
. (3.12)

The behavior corresponding to executable schedules is that of their executions. En-

tities are behavior-equivalent when their corresponding behaviors are identical.

As a sanity check, where time-sorted means that time-stamps weakly increase:

Proposition 3.9. The behaviors of time-sorted, executable, schedules exist.

Proof. Argue by induction on the length, n, of the execution.

Base Case: n = 0. The behavior of the trivial execution exists trivially:

Behavior(Initial) = ({t 7→ StateInitial( f ) | t = Released(VaultInitial( f ))}) f∈Fluents.
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Inductive Case: n > 0. Let an be the last action of the schedule in question,

with actual start-time tn, in turn yielding the last situation (S n,Vn) of the execution.

By induction a behavior, Z′ = Zn−1, exists for the execution omitting the last situa-

tion. It suffices to guarantee that the temporal assertions of the last situation do not

contradict those already made. So consider, in turn, any arbitrary fluent f and its

by-induction temporally consistent previous timeline Zn−1( f ).

Case: The fluent is uneffected by an. Then so too is its timeline uneffected, and

thus trivially remains temporally consistent: Zn( f ) = Zn−1( f ).

Case: The fluent is read by an. So the former value and new value are identical:

S n( f ) = S n−1( f ). Inconsistency requires differing assertions, so, temporal consis-

tency is trivial. At most the new timeline is defined at more times: Zn( f ) ⊇ Zn−1( f ).

Case: The fluent is written to by an. All prior assertions concerning the fluent f

are for times prior to (or at) the previously greatest release time Released(Vn−1( f ))

by time-sortedness. The only new assertion, from the write-lock on f , is only for the

now greatest release time Released(Vn( f )), which is larger by positivity of action

durations. As inconsistency requires temporally intersecting assertions: the new

timeline remains temporally consistent.

Elaborating, more than simply starting last, the action begins weakly after ev-

ery other interacting action: tn ≥ Acquired(Vn( f )) = Released(Vn−1( f )) by the

definition of acquired write-locks. So furthermore it finished strictly last: (*)

Released(Vn( f )) > tn ≥ Released(Vn−1( f )) as action durations are strictly posi-

tive. As the lock in question is a write-lock it asserts a value for the fluent only

at its release time (by the definition of ∈̃), which by (*) is strictly larger than

Released(Vn−1( f )). Hence the only new assertion is temporally disjoint from ev-

ery prior assertion, which suffices. �
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More usefully:

Proposition 3.10. Behavior-equivalence implies result-equivalence.

More specifically, behavior-equivalent executions share final state and vault.

Proof. Let Z be the identical, corresponding, behavior of two executions with final

situations (A,C) and (B,D). So we must show (A,C) = (B,D). Note that executions

are finite, ergo so too are corresponding behaviors, meaning there are greatest times

(and intervals) for which each timeline is defined. Specifically let t∗f be the last time

in the timeline Z f for which the fluent f has a value. Then the final states are

identical: A f = B f = Z f (t∗f ).

If the value Z f (t′) is undefined for times t′ arbitrarily close to t∗f , then the fluent

f must be write-locked in both of the final vaults C and D. In this case let t†f be the

penultimate time for which fluent f has a value in behavior Z. So the penultimate

time t†f is the acquisition time of those write-locks (and the ultimate time is the

release time): (t†f , t
∗
f , False) = C f = D f .

Otherwise the final interval for which the value of fluent f is defined is proper

(i.e., not just [t∗f , t
∗
f ]). The only possibility is that both final vaults C and D read-

lock the fluent f . In this case let t†f be the beginning of said final interval over which

fluent f has a value in behavior Z. So t†f is the acquisition time of those read-locks:

(t†f , t
∗
f , True) = C f = D f .

Hence the final situations are identical. �

The proposition does not close under induction to the notion that behavior and

execution mean the same thing. (Behavior-equivalence does not imply execution-

equivalence.) Indeed, the whole point is that the former captures the smaller/effi-

cient intuitive notion and the latter the larger/convenient formal notion.
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3.2.2.2 (Not) Mutually Exclusive and Behavior-Preserving Reordering

The formal notion of execution is the way it is in order to bow to the needs of

planners. Specifically planners need to structure the candidate space of plans into

search-trees with usefully bounded branching factors. (Planning by reduction to

some other combinatorial substrate does not really change that reality, i.e.: SAT-

solvers still search.) Branching over individual actions is a useful enough bound;

for contrast, branching over sets of actions is not. So formally it is most convenient

for semantics to be defined by sequences.

However, we then have the unfortunate side-effect that pointless ordering of

independent activities is formally significant. One way to mitigate that is to notice,

a posteriori, that the results of executing two plans are identical. This is not terribly

useful in temporal planning, because two situations can differ in just the precise

values of times. The way we pursue here is to notice, a priori, that reordering of

independent activities will lead to identical results.

In short, the heart of the theorem is to reorder non-mutex actions:

Lemma 3.11. Swapping adjacent non-mutex dispatches preserves behavior.

For notation, let (a, b) ∈Actions2
be a pair of non-mutex actions, meaning neither

writes to fluents the other depends on: Dependsa∩Writesb = Dependsb∩Writesa =

∅. Let (r, s) ∈Q
2

be a pair of start-times for the two. Let F0 = (S 0,V0) be an arbitrary

situation. Let X = (F0, Fa, Fab) and Y = (F0, Fb, Fba) be the executions of the

schedules ((a, r), (b, s)) and ((b, s), (a, r)) from situation F0. Suppose both start-

times are actual with respect to V0, i.e., satisfying r ≥ ESTa(V0) and s ≥ ESTb(V0).

Then the swap preserves behavior, actualness, and moreover final situations:

Behavior(X) = Behavior(Y), (3.13)
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r ≥ ESTa(Vault(Fb)), (3.14)

s ≥ ESTb(Vault(Fa)), and moreover (3.15)

Fab = Fba. (3.16)

(Proof Sketch:) Intuitively speaking, swapping independent actions ought to

have zero impact. Non-mutex, though, is not as strong as independence: the two

actions could both read from the same fluent. If so, then neither writes to it. So

both see the same value: it seems the result should follow easily. However, the

concerned locks do not enjoy the same independence that the values do.

Proof. So long as every part a situation is altered at most once, i.e., rather than

twice, the result is trivial (as sketched). However, shared read locks are updated

twice, complicating matters. First we setup sufficient notation, then easily capture

order independence with respect to the values of fluents, and finally argue for their

locks. There are 5 situations/executions of interest, let:

(S 0( f ),V0( f )) = F0( f ),

(S a( f ),Va( f )) = Fa( f ), (S b( f ),Vb( f )) = Fb( f ),

(S ab( f ),Vab( f )) = Fab( f ), and (S ba( f ),Vba( f )) = Fba( f ).

Abbreviate with vα = S α( f ) denoting the value and `α = Vα( f ) denoting the lock

for fluent f with respect to each of the 5 executions α. Likewise abbreviate with

Zα( f ) = Behaviorα( f ) denoting the corresponding timelines of fluent f . So Zab( f ) =

Behavior(X)( f ) and Zba( f ) = Behavior(Y)( f ).

Neither action writes to fluents the other depends on, by the definition of non-

mutex. Therefore both see the same partial state when applied, i.e., for the case of
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action a:

S 0�Dependsa
= S b�Dependsa

, because

S b�Writesb
= S 0�Writesb

, and

Dependsa ⊆ Writesb.

So let Qa B S 0�Dependsa
and Qb B S 0�Dependsb

denote the partial states each action

sees regardless of order. Then the assignments thus computed are likewise inde-

pendent of order. So let (*a) Ra B eff a(Qa) be the assignment applied to either S 0

to arrive at S a = S 0 ⊕ Ra, or to S b to arrive at S ba = S b ⊕ Ra. Likewise let (*b)

Rb B eff b(Qb) be the assignment applied to either S 0 to arrive at S b = S 0 ⊕ Rb, or

to S a to arrive at S ab = S a ⊕ Rb.

Then argue for each fluent timeline as separately as possible, with cases for how

the two actions jointly effect each such fluent.

Case f < Dependsa. Then applying a affects neither the value of f nor its

lock, hence: v0 = va, `0 = `a, vb = vba, and `b = `ba. In particular whenever b

is applied, the input lock is always the same. Therefore the output lock is as well:

`b = `ba = `ab. Then regardless of order, the final sets of temporal assertions remain

the same, i.e., the two timelines Zab( f ) and Zba( f ) are identical.

Elaborating: By the definition of vault transition functions, the dependencies

are on the prior lock, the action, and the actual finish-time. The last also depends

upon the prior lock as well as the action’s duration and whether the requested start

-time is actual. By the case, the prior lock is the same whether action a is applied

first or second. Action durations are constant, in particular, the duration of action

b is the same whenever applied. The requested start-time is actual with respect to
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the initial vault Vault(F0) by hypothesis. Should action a be applied first then the

requested start-time is conditionally actual: inasmuch as the computation of earliest

start-time depends on this particular f then the condition s ≥ ESTb(Vault(Fa)) is

preserved. (By which we mean that `0 = `a holds for this f ; if such holds for every

f ∈ Dependsb then its earliest start-time is uneffected by action a.) In short the

dependencies of the output lock are all constant with respect to the order, so, the

output lock is itself constant as well.

Recall that, by (*b), the new values are all the same: vb = vba = vab = Rb( f ).

Therefore, as expected, both final behaviors are oblivious to anything besides the (at

most) one change wrought by b: at most the locks `0 and `b are distinct, regardless

of order, so the timelines consist of the assertions from t ∈̃ `0 and t ∈̃ `b whether

a precedes b or not, and in particular v0 = Zab( f , t) = Zba( f , t) holds when t ∈̃ `0,

while for t ∈̃ `b then vb = Zab( f , t) = Zba( f , t).

Case f < Dependsb. Argue symmetrically with the prior case. I.e., the new

lock is the same whenever obtained (as b does not touch the lock), as is the new

value (by (*a)), hence the final timelines are identical. Hiding in the details is the

need to moreover verify that the start-time (i.e., r) remains (conditionally) actual:

with respect to this fluent f , the earliest start-time of action a is clearly unaltered

whether action b precedes or not.

Then we come to the non-trivial case.

Case f ∈ Dependsa ∩ Dependsb. As actions a and b are non-mutex the only

possibility is that both read-lock: f ∈ Readsa ∩ Readsb. Note that the intermediate

timelines are not identical: Za( f ) and Zb( f ) potentially differ. The reason is that read

-locking a fluent extends the definition of its behavior further forward in time. So at

least one of Za( f ) or Zb( f ) is identical to the final behavior: whichever has the later

123



actual finish-time. (Alternatively all the timelines Zα( f ) are equal because the fluent

f was already read-locked for longer than either of the actions a or b require.) For

notation, by the definition of acquired read-locks, verifying which in detail estab-

lishes actualness (i.e., r = ASTa(V0) = ASTa(Vb) and s = ASTb(V0) = ASTb(Va)

because ESTa(V0) = ESTa(Vb) and ESTb(V0) = ESTb(Vb)), the two important locks

are given by:

`ab = (Read-Time(`0),max(max(Released(`0), r + dura), s + durb), True);

`ba = (Read-Time(`0),max(max(Released(`0), s + durb), r + dura), True).

As taking maximums is associative and commutative, they are equal:

`ba = `ab, so trivially:(
t ∈̃ `ab

)
⇔

(
t ∈̃ `ba

)
.

Therefore the timelines are independent of the order of the actions, in particular:

(
t ∈̃ `ab

)
⇒

(
v0 = Zab( f , t) = Zba( f , t)

)
.

The case analysis is exhaustive, so we are done but for the moreover. That the

final situations are identical follows directly from demonstrating that the behaviors

are identical, i.e., finish by Proposition 3.10. �

Then we can prove the theorem by simply closing the lemma under induction,

more or less. Some additional machinery is useful.
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Definition 3.4 (Mutex-Order of a Plan). The mutex-order of a dispatch-sequence

is the partial-order given by orienting each mutual exclusion so as to be consistent

with the sequence. So (ai, ti) is before (a j, t j) in the mutex-order of (a, t)[n] when

ai and a j are mutex and i < j. More accurately, with ≺mutex-X denoting the mutex-

order (of X = (a, t)[n]), define:

(≺mutex-X) B Transitively-Close:


X(i), X( j) 7→ i < j | (ai, a j) are mutex;

· , · 7→ False

.
(3.17)

Reordering, Permutations, Chains, etc.. Let σ(X) denote the reordering of the

schedule X = (a, t)[n] reached by permuting its dispatches in the manner dictated

by the permutation σ (a permutation of [n]): σ(X) B {i 7→ X(σ(i))}. (A permuta-

tion is a bijection from and to its domain: Dom(σ) = Rng(σ).) A (weak) descent

in time-stamps is any index k ∈[n] such that tk−1 ≥ tk; a (weak) inversion in time-

stamps is any index k ∈[n] such that t j ≥ tk for any prior index 1 ≤ j < k. A run

in time-stamps is a subsequence, say from index k′ to k, of increasing time-stamps:

tk′ < tk′+1 < . . . < tk. Define a chain from k′ to k as a run in time-stamps further sat-

isfying that: ti + durai ≤ ti+1 holds for each i ∈[k
′,k−1]. That is, a chain is a sequence

of dispatches that would execute sequentially supposing actual and requested start-

times coincide. In contrast define a causal chain as moreover satisfying that every

adjacent pair of dispatches is mutex. Such surely execute sequentially:

Proposition 3.12. The dispatch and execution orders of mutually exclusive dis-

patches agree. Meaning that mutually exclusive actions execute strictly sequen-

tially, in the order dispatched.
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Corollary 3.13. An inversion in time-stamps of an actual schedule consists of non

-mutex dispatches.

Proof. In short the locking protocol is, first of all, implemented correctly: (i) write-

locks may never be concurrent with any other lock upon the same fluent. Secondly

the protocol is enforced forwards through time: (ii) acquiring new locks always oc-

curs in the future with respect to existing locks. Finally, for a pair of effects/action-

s/dispatches to be mutex, both must lock a common fluent, one of them employing

a write-lock. Therefore the two must execute sequentially, by (i), and in the same

order as dispatched, by (ii). The corollary is just the contrapositive (mutex implies

agreement, so disagreement implies non-mutex).

For notation let dispatches (a, s) = X(i) and (b, t) = X( j) occur in that order

(i < j) in some plan X where actions a and b are mutually exclusive: there exists a

fluent f in Writesa ∩Dependsb ∪Writesb ∩Dependsa. Consider any vault-sequence

(V)[0,|X|] of some execution of the plan. Then the task is demonstrate that b starts no

sooner than a finishes: ASTb,s(V j−1) ≥ AFTa,t(Vi−1). Always locks are held for at

least the whole duration of an action execution: AST ≥ Acquired (with equality for

a witness to AST = EST) and AFT ≤ Released (with equality for write-locks, for

example). So it suffices to show ASTb ≥ Acquired(`b) ≥ Released(`a) ≥ AFTa for

any such appropriate pair of locks on f —let `a = Vi( f ) and `b = V j( f ).

By persistence through actions not locking f it suffices to consider just actions

locking f in between a and b. Then by induction through actions locking f , each

of which is mutex with whichever of a and b is writing to f (perhaps both), the

lock just prior to the one acquired by b, say `′a = V j−1( f ), is only more constraining

(i.e., its read-time and write-time are weakly greater) than `a is. (The base case
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of the induction is `′a = `a and there is nothing to show.) Precisely, say: (*w)

Write-Time(`′a) ≥Write-Time(`a) and (*r) Read-Time(`′a) ≥ Read-Time(`a).

Case f ∈ Writesb. Then `b is a write-lock, thus by the definition of acquired

write-locks: Acquired(`b) = Write-Time(`′a). Always Write-Time = Released, by

definition, so: Write-Time(`a) = Released(`a) and Write-Time(`′a) = Released(`′a).

Hence, which suffices, by (*w): Acquired(`b) ≥ Released(`′a) ≥ Released(`a).

Case f < Writesb. So f ∈ Writesa is the only possibility, as the two are mutex by

hypothesis. Then `a is a write-lock, hence: Read-Time(`a) = Released(`a). By the

definition of acquired locks, acquisition times are always weakly greater than read

times, so, regardless of how b locks f : Acquired(`b) ≥ Read-Time(`′a). Therefore,

which suffices, by (*r): Acquired(`b) ≥ Read-Time(`′a) ≥ Released(`a). �
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3.2.2.3 Formal Proof of the Deordering Theorem

To deorder a plan is to reorder it, preserving its mutex-order. Our theorem is that

deordering is an equivalence reduction; it suffices to consider at most every distinct

mutex-order (which is fewer than all total-orders). Precisely:

Theorem 3.14 (Deordering). Deordering preserves corresponding behavior, actu-

alness, and result. For notation, with X = (a, s)[n] a schedule executable from situ-

ation F0 and Y = (b, t)[n] = σ(X) a reordering of X such that (≺mutex-X) = (≺mutex-Y):

Behavior(X, F0) = Behavior(Y, F0), (3.18)

(s)[n] � (EST(ai))i∈[n] ⇐⇒ (t)[n] � (EST(bi))i∈[n], (3.19)

Result(X, F0) = Result(Y, F0). (3.20)

Proof. Say an X-descent of schedule Y is an adjacent pair of dispatches Y(i) and

Y(i + 1) such that schedule X dispatches them in the other order: Y(i + 1) <X Y(i).

If such a descent were mutex, then the mutex-orders of X and Y would differ, for

which there is nothing to show. So every X-descent of schedule Y is non-mutex. By

Lemma 3.11, swapping any of them preserves behavior, actualness, and result (i.e.,

final situation). Then by induction on X-inversions, the result follows. �

3.2.2.4 Significant Corollaries of Deordering/Behavior-Equivalence

What matters here is that we have decoupled search order from the flow of time.

Forward-chaining temporal planning still makes sense even if decisions are not

wholly sorted in time. In particular it suffices merely to explicitly consider only

interfering actions in strictly ascending temporal order; non-interfering (i.e., non-

mutex) actions may be considered out of temporal order if desired. Then, for exam-
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ple, we can, at any point during a forward-chaining search, slap on an independent

problem and start planning for it from the initial time. (I.e., we can do so with-

out undermining the properties key to any sensible notion of “forward-chaining”.)

Which is far better than, say, merely ensuring that any given set of concurrent load-

ing operations are considered just once. Not that the difference between k! and 1

should be taken lightly; the promise of the theorem is simply far better, even, than

that. That such follows is perhaps not immediately clear. Consider that we could

prune down to just time-sorted schedules:

Corollary 3.15. The behavior of a schedule is not effected by sorting the schedule

in ascending order of actual start-times.

Proof. Consider any descent in actual start-times: by Proposition 3.12, the pair are

non-mutex. So by induction on the number of inversions, time-sorting preserves

the mutex-order. Then the result follows by the theorem. �

Corollary 3.16. Every schedule deorders into only causal chains. (Hence it is

completeness-preserving to prune accordingly.)

Proof. With respect to actual start-times, consider any (strict) ascent, the opposite

of a weak descent. If non-mutex with its predecessor, then swap. Continue until

impossible. First note that the process obtains a deordering. Second the result

satisfies: (†) Every ascent is mutex with its predecessor.

Recall that, by Proposition 3.12, mutually exclusive dispatches execute sequen-

tially. So concerning mutex ascents, the latter of the pair starts after the former

finishes. In other words, schedules meeting (†) also, by the proposition, satisfy:

Every run is a chain.
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For a chain to be causal every adjacent pair need be mutex, which is had directly

from (†). So every schedule meeting (†) also satisfies: (‡) Every chain is causal.

Then to recap: There exists a deordering of every schedule into one satisfying

(‡). By the Theorem, it suffices to consider all and only such schedules. �

Specifically the Corollary justifies: It is completeness-preserving to demand

that every dispatch be either (1) directly causally related to the prior dispatch, or (2)

scheduled weakly earlier in time.

Generalizing, the Left-Shifting and Deordering Theorems together justify:

1. Every dispatch should be scheduled for immediately after its most recent mu-

tex ancestor by left-shifting (Theorem 3.4).

2. Moreover, by deordering (Theorem 3.14), every dispatch should be of an

action considered greater than all of its most recent non-mutex ancestors, for

any notion of “greater” whatsoever.

Firstly this ensures we can branch over sequences of actions yet secretly be consid-

ering only plans differing in their mutex-orders. In other words we can fake some-

thing resembling Partial-Order Planning whilst forward-chaining [36, 124, 149].

Secondly all totally-ordered interpretations of “greatest” achieve the same pruning

power. (Technically neither corollary above does sufficient tie-breaking: sets of

simultaneous dispatches should be tie-broken.) As not all variations upon “great-

est” are equally convenient to implement in any given context, it is worthwhile to

recognize the flexibility.
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3.2.3 F R  C T P  

M-O P P  S-S

In this section we apply left-shifting and deordering in order to complete the for-

mal reduction to the Multi-Objective Path Problem. In short: A solution is any path

(or walk, but paths are always better), from the initial vertex to a goal vertex, fur-

ther meeting the multi-dimensional bound (the deadlines) on the multi-dimensional

costs (the current read-times of every fluent). Technically left-shifting takes care of

the whole reduction; we discuss the significance of deordering following the proof.

Theorem 3.17. Conservative Temporal Planning amounts to nothing more—and

nothing less—than ascribing a (complex) notion of cost to Sequential Planning.

For notation, let P = (FluentDefs,ActionDefs, Initial,Goal) denote a Conser-

vative Temporal Planning Problem, P̂ =
(
FluentDefs,

(
eff

)
Actions, StateInitial, Ĝoal

)
its underlying Sequential Planning Problem (i.e., throw away durations and dead-

lines), and M̂ = (V, E,Σ,R, `, s0,T ) the state transition system of P̂. Then:

Left-Shifted(Solutions(P)) = First-Fit(Cost-Bounded(L(M̂))). (3.21)

Where:

Cost-Bounded(L(M̂)) =

`(P = s0, . . . , en, sn)

∣∣∣∣∣∣∣∣∣∣
P is an s0-T path and

costs(P) � bounds.

 ,
Left-Shifted(Solutions(P)) =

P = (a, t)[n]

∣∣∣∣∣∣∣∣∣∣
Goal(Result(P, Initial)) and

ti = EST(ai)

 .
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V = States, E =
{(

s, s′, a
)
| s′ = S ′a(s)

}
, R = {(s, s′, a) 7→ (s, s′)},

Σ = Actions, ` =
{
(s, s′, a) 7→ a ; P = s0, . . . , en, sn 7→ (`(ei))i∈[n]

}
,

s0 = StateInitial, T = Ĝoal
−1

(True),

costs(P) = Read-Time(Vault(Result(`(P), Initial))),

bounds = { f 7→ d | d is the deadline of f in Goal}.

Proof. Nominally there is precious little to show relative to Theorem 3.4 and The-

orem 3.1. Firstly: it suffices to consider only left-shifted schedules, which are iso-

morphic to action-sequences, by Theorem 3.4. Secondly: action-sequences are the

citizens of Sequential Planning. Hence the result is a special case of reducing such

to state transition systems: Theorem 3.1. Specifically the result is special insofar as

it ascribes a particular notion of cost to the plans of Sequential Planning. Naturally,

said costs are just read-times with bounds as the corresponding deadlines (infinite

if a fluent is unconstrained by the goal). The following greatly elaborates.

Intuitively speaking, edge-weights/edge-costs are just the durations of the ac-

tions in question. However, to make the details work out we need to also keep track

of which fluents are actually effected by the action, and in what sense (read/write).

So, actually, path costs are full-blown collections of locks, i.e., vaults. In other

words, we effect a powerful equivalence reduction on the obviously correct (but in-

finitely large) transition system consisting of situations as vertices by contracting

together all situations with identical first component (states). Then vaults are rele-

gated to second-class status, i.e.: vaults are converted into the quality/cost metric.

The resulting graph remains obviously correct relative to Theorem 3.4; the infor-

mation lost is easily recovered whenever desired by applying First-Fit. To make the
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connection with the Multi-Objective Path Problem abundantly clear, consider the

following.

Plan/Path Cost in General. Denote by c(·), or g(·) in the context of A∗ [95], a cost

function upon walks. There are precious few constraints upon cost functions in

general. Usually one insists that they at least grow monotonically. So if Q extends

P then c(Q) ≥ c(P). Sometimes it is enough that cost functions merely grow with-

out bound: limn→+∞min {c(P) | |P| = n} = +∞ [48]. The most important thing is

that minimum be a well-defined notion; if there is some absolute lower bound on

all walks, then we can ensure termination of appropriate path-finding algorithms.

For our purposes we note that cost functions may be multi-dimensional, i.e., write

c(P) =
(
c ∈Costs

)
Dimensions

. In which case, comparison/minimality/etc. is by Pareto-

dominance: (a)X � (b)X ⇐⇒ ax ≥ bx for all x ∈X.

In practice one normally insists that if Q extends P by a single edge e, then

there is some simple rule for calculating the cost c(Q) of Q as an ‘increase’ upon

the former cost c(P) by a weight w(e) associated with the edge e. The default is of

course to sum: c(P+e) = c(P)+w(e), also written g(P+e) = g(P)+w(e). In general

there are many possibilities besides summation, say c(P + e) = c′(c(P),w(e)) for

some ‘reasonably well-behaved’ cost transition function c′.

Costs in the Reduction. For our purposes, at the most detailed level, let costs be

the vaults resulting from executing the corresponding plans. More specifically say

that costs increase by applying earliest vault transition functions. Then for nota-

tion, transliterate the computation of earliest start-times into the vocabulary of cost
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functions as:

w(e = (s, s′, a)) B (Readsa,Writesa, dura), (3.22)

c((e)[n]) B c′(c((e)[n−1]),w(en)), (3.23)

c′(c((e)[n−1]),w(en)) = V ′a(en) ◦ V ′a(en−1) ◦ · · · ◦ V ′a(e1)((−∞, 0, False)Fluents); (3.24)

that is, with:

c = c((e)[n−1]), w = w(en),

c f = (x, y,T ), w = (R,W, d), and

EFT = d +max Read-Time(c(R)) ∪Write-Time(c(W)),

then:

c′(c,w) B



f 7→ c f | f < R ∪W;

f 7→ (y,EFT, False) | f ∈ W;

f 7→ (x,max(y,EFT), True) | T and f ∈ R;

f 7→ (y,EFT, True) | ¬T and f ∈ R


. (3.25)

Remark 3.1. Which, we note, defines a monotone (multi-dimensional) cost func-

tion. That, however, is only the lower bar upon ‘politeness’. It is important to

realize that the cost function above is far better behaved than mere monotonicity.

In particular it is useful to note that computing the cost of the extension of a path

by an edge is constant-time: c′, above, is constant-time. So for all that the notation

may be imposing: the update rule is nonetheless properly regarded as simple.
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Bounds in the Reduction and the Subtlety of Disjunctive Deadlines. Technically we

allow goals to be disjunctive. Consider the goal “Have laundry done by 11am

and rooms cleaned by noon, or vice versa.”; so we cannot actually give a unique

deadline to either task without first picking which of the two possibilities to satisfy.

The standard manipulation suffices; so pretend the goal expression is limited to

a simple conjunction of primitive deadline goals. Then denote the collection of

the deadlines over each such primitive deadline goal by: (bounds)Fluents. (With

bounds f = ∞ if f lacks a deadline.) Likewise denote throwing away all the book-

keeping surrounding costs by: costs(P) = Read-Time(c(P)). So costs(P) � bounds

is another way of writing the definition of satisfaction of deadlines, Equation (2.10).

(The Standard Manipulation:) Compile testing of disjunctive deadlines into ad-

ditional one-way paths of the graph in front of the goal vertices proper. In particular,

explode the goal expression out into disjunctive normal form and setup a separate

goal-test action/edge for each disjunct; the explosion is ‘harmless’ in context as

we have (nominally) already paid the price of writing out every state. (In practice

though disjunctive deadlines would surely go very far towards ruining the effec-

tiveness of domain-independent heuristics.) Have these special goal-test actions

subtract the relevant disjunct-specific deadlines from each acquisition time and re-

lease time of a fluent. Regarding the example: subtracting 11 hours from clean-

laundry and 12 hours from clean-rooms is the effect of the weight upon one edge

leaving the original set of goal vertices, the other subtracts 12 hours from clean-

laundry and 11 hours from clean-rooms. Recall that negative weights are unprob-

lematic if they can only be collected once, i.e., when cycles are of no concern. Then

we can legitimately assert a single/global multi-dimensional bound upon cost: all

zeros. A similar manipulation addresses non-uniform initial locks.
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Summarizing: There is a touch of subtlety to the details that would likely end

up being practically significant, particularly if deadlines are set very tightly. Which

is interesting. Details aside though, the reduction is merely the transliteration of

Theorem 3.4 into Graph Theory. �

Significance of Deordering to the Reduction. The motivation to take the reduction

rather more seriously (i.e., as closely related to practical approaches to performing

Conservative Temporal Planning) is, or is closely related to, deordering. That is,

we would much prefer to reduce to the Single-Objective Path Problem if possible.

There it suffices, for optimality/completeness, to track single best known paths to

each state, rather than Pareto-sets of best known paths. Then results serving to more

efficiently recognize dominated or equivalent possibilities can be seen as something

like making progress on reducing to the simpler setting of a single objective.

In practice the significance has more to do with how much quality one expects

to lose by applying an incomplete/suboptimal approach instead. For example, if we

desire neither explicit deadlines, nor implicit deadlines in the form of demanding

optimality, then a solution is a mere initial vertex to goal vertex path. In this case

Conservative Temporal Planning does reduce perfectly to the view upon Sequen-

tial Planning taken by the state-of-the-art classical planners. Which is far from a

random hypothetical:

• the benchmarks lack deadlines,

• optimality is optional by definition in the satisficing tracks, although making

some attempt at quality is certainly worthwhile, and
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• the optimal version of the temporal track has never in fact taken place—only

CPT even tries [202].

Plainly, so far as the present benchmarks are concerned: One need not even turn off

duplicate state elimination. (Albeit, it is not a foregone conclusion that leaving it

on will always do better.)

Hence it is, at present, difficult to say how large the significance of deorder-

ing may be; the benchmarks do not force us to consider the one way in which

Conservative Temporal Planning is legitimately different from Classical Planning.

Then, at this point in the dissertation, it is perhaps best said that the significance

of deordering is largely meta. (Later, we shall have greater use for deordering.)

In particular, the more practically significant we take deordering to be—the fur-

ther apart we imagine Conservative Temporal Planning and Classical Planning to

be. Conversely, the greater we take deordering to be of strictly theoretical signifi-

cance, then the closer the two forms of planning become. Whether we view these

as same or different has all sorts of interesting real-world consequences. For ex-

ample: Should there even be separate tracks for them in the International Planning

Competition?
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3.2.4 D: C T P  S()

So what have we proven?

• The precise time-stamps are irrelevant, by left-shifting.

• The qualitative model of time remaining is no more expressive than the partial

-orders of Partial-Order Planning, by deordering.

• Finding best solutions is computationally equivalent to an NP-complete prob-

lem in state-space, by the reduction.

With respect to “Classical Planning”:

• Older interpretations of “Classical Planning” sometimes consider the NP-

complete variations on path-finding.

For example, finding best partially-ordered plans constitutes a multiobjective

problem in state-space.

• Modern interpretations of “Classical Planning” always face the poly-time

variants.

Even merely sum of edge weights is sometimes considered beyond classi-

cal planners; sum of edges weights is enough to capture the “Net Benefit”

fragment of “Partial-Satisfaction Planning”.

It is difficult to take the computational complexity class result entirely seriously in

any truly practical context. If we are really considering, individually, so many ver-

tices of state-space that its computational properties are relevant, we have already

failed, in any practical context, for its computational properties are already beyond

atrocious.
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Elaborating, if some application demands optimality (or anything else forcing

exploration of fractions of state-space), then it must be actually possible to some-

how find optimal answers for that application. Whatever the domain knowledge

is that converts the miraculous into the feasible is, clearly, knowledge that can-

not be ignored. Who can say what it will take to make good on such knowledge?

Will state-space really be appropriate? Will domain-independent techniques such

as planning graphs remain relevant—or be entirely overshadowed? These are diffi-

cult questions.

In contrast, an easy question: Is Time Important? If we are going to seriously

discuss applications, then, clearly: the system as a whole will need to do some-

thing with temporal reasoning. If even the simplest kinds force us to consider the

complexities of Multi-Objective Search, then that is simply the lower bar for most

realistic applications. In which case pining for Single-Objective Search is simply

wishful thinking. The real world requires complex tradeoffs in multiple dimensions

of quality and that is really just the end of the story. (Or is it the beginning? In any

case, taking the issue of quality seriously forces multiple objectives.)

So in other words, realistic side-by-side evaluations/comparisons of Conserva-

tive Temporal Planning and Classical Planning need to further specify, at least, how

the latter is to be wrapped (or otherwise easily modified) so as to deal with time in

some less-than-ludicrous fashion. That at least puts both equally close/far from real

world problems.9

9Yet more realistic evaluations would further specify how both are to be wrapped by techniques
for addressing uncertainty (etc.), but there are too many such dimensions of real-world significance.
One hopes, i.e., the basic premise of the research agenda supposes, that the technical issues are
orthogonal ‘enough’ in general. In particular we hope that conclusions with regards to temporal
reasoning wrapped inside of, say, a replanning approach will be similar enough with regards to tem-
poral reasoning wrapped inside of, say, a limited contingency approach to dealing with uncertainty.
Note that FFR won the first probabilistic planning competition.
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It is hard to imagine any more simple-minded method of dealing with Classical

Planning’s lack of a realistic approach to time than applying First-Fit. One could

do that as a one-shot post-processing step: winning the 2008 temporal track [105].

Or one could wrap it inside of some anytime approach to planning, post-processing

multiple times: winning the 2006 and 2011 temporal tracks [29, 56]. One-upping an

anytime approach is to throw some amount of temporal reasoning into the heuristic

itself (‘post’-processing per search node): perhaps, then again perhpaps not, besting

every temporal track winner for the last decade [87].10 The techniques continue

on [17].

Is the problem ever changing? It seems all of these are but usefully distinct

approaches to a common problem. Should we call it Classical Planning? Sequential

Planning? Conservative Temporal Planning? Whatever we name it: The technical

challenges remain the same. That is, the degree to which technical challenges are

simpler in Classical Planning seems to us to be due only to ignoring them.

It should be said that such is an entirely valid approach to research. At the

same time, practical applications cannot wish away issues. The lesson, then, is

that meaningful empirical evaluation of so-called “domain-independent” planners

needs to be especialy careful regarding time. Specifically, when faster is better we

must realize that classical planners, despite appearances, ‘already are’ a reasonable

enough approach. That is, some trivial modification really ought to be taken as

a baseline. Otherwise the claim that we are making empirical progress holds no

water.
10Albeit, that LPG is relatively fast concerns chiefly its use of local search techniques. Note that

LPG’s absence should not be interpreted as admission of defeat.
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However, to avoid provoking too much argument, rather than simply say that

one is just the other in disguise, or that the differences are but illusions, etc., we

shall summarize thusly.

Summary. We have proven that Conservative Temporal Planning formally captures

what appears to be the computationally simplest kind of (nondegenerate) Temporal

Planning conceivable. It is, at the very most, a small step past Classical Planning,

but that is neither here nor there in the grand scheme of things. Nonetheless at

the technical level the precise relationship matters greatly: leveraging the state-of

-the-art in Classical Planning is a great strategy. Then insofar as future work is

concerned, we have attempted to contribute in this section by considering: a very

detailed account of what the precise relationship is, limited examples of what does

and does not readily transfer, and, to a certain extent, why.

Concerning the rest of the dissertation, the key observation complementing the

relative simplicity of Conservative Temporal Planning is just:

Conservative Temporal Planning, despite deadlines, does not ever nontrivially

require concurrency.11

The thesis is that the relationship is causal: Conservative Temporal Planning enjoys

relative computational simplicity because it rules out required concurrency.

11The only concurrency ever required in Conservative Temporal Planning is for the trivial reason
of simply having deadlines. Deadlines are not trivial themselves, but the concurrency forced by
deadlines efficiently reduces to reasoning about mere action-sequences.
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3.3 INTERLEAVED TEMPORAL PLANNING: SLACKLESS

RESCHEDULING, BEHAVIOR EQUIVALENCE BY DEORDERING,

AND REDUCTION TO STATE TRANSITION SYSTEMS

Here:

1. We demonstrate that much of the rescheduling flexibility of Conservative

Temporal Planning is retained, i.e., we adapt the Left-Shifting Theorem (The-

orem 3.4). So, as desired, time remains largely qualitative.

2. We borrow/generalize the Deordering Theorem (Theorem 3.14) for free. The

result is crucial to the thesis. Specifically, the formalization of ‘trivial’ versus

‘nontrivial’ reasons for requiring concurrency appeal to the theorem.

3. We brute-force reduce Interleaved Temporal Planning to Sequential Plan-

ning. The reduction illustrates that the technical challenge, relative to classi-

cal planning, is what it is supposed to be: reasoning about time.

3.3.1 R: D  S S

The intuition here is that we should still be able to exploit the independence of

effects from the precise times at which they take place. (If not, we may as well

allow the dependency!) So it remains the case that effects may be rescheduled

relatively freely. The new constraint is that the multiple effects of an action all must

occur at fixed offsets from one another in time. To take care of this constraint we

generalize to Simple Temporal Networks [47].

So to begin: The new reason that some effect may be unable to start earlier is

that some future effect of the same action is more directly unable to do so. Then we

have two notions of earliest: earliest with respect to just the current situation (the
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direct reason), and earliest with respect to the plan as a whole (the indirect reason).

Say an effect is slackless if it is impossible to make it start any sooner. An action is

slackless if any of its effects are. Formally:

Setup. Let X = (a)[n], the ‘plan’, be a sequence of effects, Initial be an initial situa-

tion, and consider all ways of scheduling X:

Z =
{
Y = (a, t)[n] | Y is executable from Initial

}
. (3.26)

Then say that the earliest actual start-time of effect i is the least start-time ti it

could receive in any possible scheduling of the plan:

EASTZ(i) B min {ti | (ai, ti) ∈ Y ∈ Z}. (3.27)

Define the global slack of dispatch i in an effect-schedule Y = (a, t)[n]
∈Z as the

difference between the given start-time and the earliest possible:

SlackY(i) B ti − EASTZ(i) (Global). (3.28)

LetZ(i) denote the schedules globally slackless at dispatch i:

Z(i) =
{
Y ∈Z | SlackY(i) = 0

}
. (3.29)
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Achieving an entirely slackless schedule in the global sense should be ‘incredible’.

In contrast, the local slack of an effect is the difference between its given start-time

and the earliest that the locking protocol would have locally permitted:

SlackY(i) B ti − ESTai(Vi−1) (Local). (3.30)

That is, the intuition is to make sure that at least one effect of every action has a local

slack of 0. (Achievability of which should be at least plausible, if not obvious.) For

notation, with ai = (α, all) serving to stand for the whole, then minimize:

SlackY,α(i) B min
{
SlackY( j) | a j = (α, x) with minimal j ≥ i

}
. (3.31)

Ensuring that every action is locally slackless would be a local maxima of resched-

uling. Intuitively speaking there is just one maxima. Technically the local no-

tion permits ‘bootstrapping’; we could have sets of actions reschedulable earlier en

masse, but no single one can be rescheduled earlier without breaking executability.

As the global notion exists and is easily computed we shall typically ignore such.

So:

Theorem 3.18 (Eliminating Slack is Complete). Let Z be the set of all executable

schedulings of an effect-sequence and let Z(i) denote the subset slackless at dis-

patch i. Assume the effect-sequence is executable under some scheduling: Z , ∅.

There exists an entirely slackless member:

⋂
i

Z(i) , ∅. (3.32)
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The result readily reduces to a property of Simple Temporal Networks [47]. We

setup the STN, reiterate from first principles the proof of the corresponding property,

and finally restate and prove the theorem.

Definition 3.5. The Simple Temporal Network of an effect-sequence consists of:

• two vertices per effect, one for its start-time and one for its finish-time,

• pairs of weighted edges modeling the corresponding duration constraints, and

• 0-weighted edges modeling the mutex-order of the effect-sequence.

The following, up to the lemma, elaborates the definition in great detail. Let

X = (a)[n] denote the sequence of effects in question. Let starti and endi be two

vertices per index; say S ∪ E denotes all the vertices. Let index 0 denote the initial

situation. Assume the initial situation finishes at time 0 (force t0 = 0).12 (Likewise

take dura0 to be −t−∞.)

Optionally consider deadline goals by modeling them as special effects. Say

there are m of them; let a−i, for i ∈ [m], stand for each of the deadline goals. Then

for each, i.e., with ( fi, vi, ti) and i ∈[m], let: W−i B ∅, R−i B
{
end j∈[0,n] | fi ∈ Writesa j

}
,

and dura−i = ti. Ensure the last, the deadlines, are interpreted correctly by identify-

ing start0 = start−1 = · · · = start−m.

Rather than say there are 6 vertices per (execution of an) action identify those

required to be simultaneous. I.e., identify starti = start j for any α, i, and least

j > i satisfying ai = all-α and a j = bgn-α. (Presumably the start-part occurred

12Compile non-uniform initial situations into several actions implementing the initialization [72].
Also, normalize the earliest such release time to value 0 by adding/subtracting some constant. Here
normalization is easy because action definitions cannot access the absolute value of time; in more
general contexts normalization involves surgery on action definitions to dynamically determine the
denormalized value.
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immediately: j = i + 1.) Likewise identify endi = end j for any α, i, and least j > i

satisfying ai = all-α and a j = fin-α. Reducing to one vertex per action is also

possible, as all parts are at deterministic offsets from one another. This way is just

to simplify the presentation of the constraints.

Then let D denote the duration constraints in the form of pairs of directed

weighted edges, i.e., as pairs of inequalities enforcing the desired equalities:

D B


(starti, endi, −durai) | i ∈ [−m, n];

(endi, starti, +durai) | i ∈ [−m, n]

.
Moving on to the precedence constraints, let P model the mutex-order of the

plan as directed 0-weighted edges, with Ri and Wi being the finish-times in question:

P B
{
(end j, starti, 0) | end j ∈ Ri ∪Wi and i ∈ [−m, n]

}
.

Specifically, and somewhat more accurately, compute the vertices correspond-

ing to the finish-times delaying action i’s aquisition of locks as:

Ri B
{
end j | Readsai ∩Writesa j , ∅ and (i < 0 or j < i)

}
,

Wi B
{
end j | Writesai ∩ Dependsa j

, ∅ and (i < 0 or j < i)
}
.

Then define the corresponding Simple Temporal Network as:

STN(X) B (V = S ∪ E, E = D∪ P,R,w),

with R = {(x, y, ·) 7→ (x, y)},

and w = {(·, ·, x) 7→ x} merely serving to formally pull apart edges.
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The meaning of an STN is in terms of what assignments of times to its vertices

are considered to satisfy it. Say τ ∈S∪E→Q is such a candidate assignment of times.

(Force τ(start0) = 0, i.e., pin the initial situation to the right time.) The meaning of a

directed weighted edge e = (u, v,w) ∈D∪P is that the constraint τ(u)−τ(v) ≤ w should

hold. If so, then the candidate satisfies that edge. If the candidate satisfies every

edge, then it satisfies the whole network. The ‘intended’ usage is that edges point to

successors in time and negated weights denote minimum separations: τ(v)− τ(u) ≥

−w. Also an edge may point to a predecessor in time and the weight then denotes a

maximum separation (which is how the notation reads). Then:

Lemma 3.19. The set of executable schedules of a given sequence of effects is all13

and only the schedulings permitted by its corresponding Simple Temporal Network.

Proof. Continue with the notation from above, excluding consideration of deadline

goals (m = 0), because such have nothing to do with executability. Consider the

scheduling Y = (ai, ti = τ(starti))i ∈[n] of a given effect-sequence X by a candidate

solution τ to its corresponding Simple Temporal Network STN(X). Then the claim

is that executability of Y is equivalent to satisfaction of STN(X) by τ. It suffices to

demonstrate that each of the underlying sequences of an execution are all defined

(iff the STN is solvable). Only the underlying debt-sequence and vault-sequence are

relevant. That is, counter-intuitively, because scheduling does not change the order

that effects are interpreted in, it is harmless to assume:

(S) The underlying state-sequence is defined, in either direction.

(Claim) The choice ofD, and the identification of those vertices required to be

simultaneous, correctly encodes verification of durations and obligations. That is,

13Ignore sequences of effects never executable, i.e., due to failing the state-sequence constraints.
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firstly, start-times and finish-times mean what they are supposed to: (0) To satisfy

Dmeans that τ(starti)+durai = τ(endi) holds for every i, so effect durations are en-

coded correctly. With that prerequisite fulfilled, then note that the three constraints

verified by the machinery of debt-sequences are likewise fulfilled, as follows. (1)

The ordering of parts has not changed, so still the parts of every action occur in the

right order. (2) The construction identified starti = start j for i and j the indices of

the all-part and start-part of (the execution of any given) action, so all-parts and start

-parts start at the same time as required. (3) The construction identified endi = end j

for i and j the indices of the all-part and end-part (etc.), so all-parts and end-parts

finish at the same time as required. Incidentally, we need (0) most specifically in

order to ensure that finish-times translate correctly in either direction, i.e., so that

the details of (3) hold. That is, the literal constraint of the STN implied by the iden-

tification of the vertices endi = end j, and the then four relevant edges/inequalities,

is: τ(starti) + durall-α = τ(start j) + durfin-α (with all-α = ai and fin-α = a j).

From the machinery side the equivalent constraint is more literally written (i.e., the

calculations are of both sides of): ti+durall-α−durfin-α = t j, where equivalence fol-

lows by recalling ti = τ(starti) defines the mapping between executable schedules

and solutions to the STN. So:

(D) The duration constraints are satisfied iff the debt-sequence exists.

(Claim) The constraint that dispatch-times be actual is met by the choice of P.

That is, the construction of P guarantees that any dispatch i required to follow dis-

patch j in time does so. Specifically, by the construction of Ri and P, the constraint

τ(end j) ≤ τ(starti) exists for every dispatch j writing to a fluent read from by some

later dispatch i; in fact only the last such j is relevant, and this last is the estab-

lisher of that precondition at i being fulfilled, but the definition is correct (shown
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below) whether one maximizes j or not. (Not maximizing j is analogous to Chap-

man’s white knight condition [28].) Likewise, by the construction of Wi and P, the

constraint τ(end j) ≤ τ(starti) exists for every dispatch j being clobbered/threatened

by dispatch i. Here the whole set Wi is relevent, at least, that subset which concern

read-locks is. That is because the last read-lock to expire can change under resched-

uling (i.e., the prior dispatch most delaying dispatch i is unclear from the sequence

alone). So in short, the precedence constraints faithfully encode the definition of

earliest start-times.

For notation, satisfaction of:

ti ≥ ESTVi−1(ai),

≥ max Read-Time(Vi−1(Readsai))

∪Write-Time(Vi−1(Writesai)),
and (a)

0 ≥ τ(end j) − τ(starti) for all end j ∈ Ri ∪Wi, are equivalent; (b)

Because (b) rearranges to:

ti = τ(starti),

≥ max
end j∈Ri∪Wi

τ(end j),

which expands to (a) by the definition of acquired locks:

max
end j∈Ri∪Wi

τ(end j) = max
{
Read-Time(Vi−1( f )) | f ∈ Readsai

}
∪

{
Write-Time(Vi−1( f )) | f ∈ Writesai

}
.
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Hence satisfaction of P implies that start-times are actual:

τ(starti) ≥ ESTVi−1(ai).

For yet greater detail regarding the appeal to acquired locks, consider:

tw B max Write-Time(Vi−1(Writesai)),

= max Released(Vi−1(Writesai)) by definition,

= max


AFTV j−1(a j)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
j < i and

f ∈ Writesai ∩ Dependsa j
with

k ≤ j max subject to f ∈ Writesai ∩Writesak


,

by induction on the definition of acquired locks. Base case: The last write-lock on

f . Induction: Through changes to the lock. By the same induction, we can skip

explicitly finding the greatest such k, i.e., the last finish-time in the sequence is

necessarily greatest, so:

= max
{
AFTV j−1(a j) | j < i and f ∈ Writesai ∩ Dependsa j

}
,

= max
{
τ(end j) | j ∈ Wi

}
by the definition of Wi. (w)

Similarly for read-locks:

tr B max Read-Time(Vi−1(Readsai)),

= max
{

if Readable(`) then Acquired(`) else Released(`) | ` = Vi−1( f ∈Readsai )
}
,

150



= max

Released(V j( f ∈Readsai ))

∣∣∣∣∣∣∣∣∣∣
j < i max subject to

Readable(V j( f )) = False

 ,
because (i.e., by a similar easy induction argument) the acquisition-time of a read-

lock is just the release-time of the last write-lock preceding it. Hence:

= max
{
AFTV j−1(a j) | j < i and f ∈ Readsai ∩Writesa j

}
,

= max
{
τ(end j) | j ∈ Ri

}
. (r)

Therefore, as (a) is just max(tr, tw) and that in turn rewrites to (b) by (r) and (w),

the claim is shown. Namely, all the dispatch-times are actual. As that is the only

constraint upon the vault-sequences of executions that need be satisfied:

(P) The vault-sequence exists iff the precedence constraints are satisfied.

Then finally, as D and P are the entirety of the edges of the corresponding

Simple Temporal Network, by (S), (D), and (P): Assume executability and conclude

satisfaction, or assume satisfaction and conclude executability. �

So the theorem reduces to a well-known result about solving Simple Temporal

Networks—they are, indeed, simple. Precisely, solving a Simple Temporal Net-

work comes down merely to the negatively weighted variation on the Shortest-Path

Problem. In detail:

Lemma 3.20. Satisfaction of a Simple Temporal Network is equivalent to checking

for absence of negative-weight cycles. Moreover, the optimal assignment is that

computed by setting the time of every vertex to the duration of its critical path.
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Proof. SayT denotes all τ satisfying the constraints of a Simple Temporal Network

with initial vertex s.

Observe transitivity: if e1 and e2 connect x to z through y, then for τ ∈ T to hold

means that τ(x)− τ(y) ≤ w(e1) and τ(y)− τ(z) ≤ w(e2) do, so furthermore their sum

τ(x)− τ(z) ≤ w(e1)+w(e2) holds. Then by induction the same holds of every walk:

τ(x) − τ(y) ≤
∑

e∈Z w(e) for any walk Z.

For a cycle the constraint reduces to 0 ≤
∑

w. So negative-weight cycles guar-

antee unsatisfiability. Then only the the satisfiable half of the claim remains, i.e.,

that absence of negative-weight cycles guarantees satisfiability. Specifically, indeed

assuming their absence, it suffices to demonstrate the moreover.

Let wx = min
∑

e∈ s-x walk w(e) denote the minimum weight of a walk to x from

the initial vertex. Note that x cannot possibly be scheduled sooner than −wx by tran-

sitivity (recall τ(s) = 0): τ(s) − τ(x) ≤ wx. Further note, by the absence of negative

cycles: such walks are paths. Hence the witnesses are called critical paths. In gen-

eral it is egregiously optimistic to simultaneously assign all variables their greatest

lower-bounds. (The Moreover:) For STNs it does suffice to take τ∗(x) = −wx.

For a contradiction suppose otherwise. That is, suppose there exists an edge

e = (u, v,w) such that τ∗(u) − τ∗(v) ≤ w is false. Then τ∗(u) − τ∗(v) > w, which

can be written: (†) −τ∗(u) + w < −τ∗(v). Recall that the lightest walk from s

to u has weight −τ∗(u) = wu, and that the lightest walk from s to v has weight

−τ∗(v) = wv. Then the weight of one particular walk—i.e., through u—from s

to v is wu + w = −τ∗(u) + w. Plugging into (†) yields the desired contradiction,

wu + w < wv, i.e., there cannot be a lighter-than-lightest walk to v. Then by virtue

of contradiction: τ∗ is a solution. �

So finally:
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Theorem (Eliminating Slack is Complete). Let Z(i) denote the set of executable

schedules, slackless at dispatch i, of some effect-sequence. A slackless executable

schedule exists:
⋂

iZ(i) , ∅. (AssumeZ , ∅.)

Proof of Theorem 3.18. Let X = (a)[n] be the given effect-sequence and STN(X)

the corresponding STN, which is solvable by assumption. By Lemma 3.19, the

executable schedules of X are all and only the solutions to STN(X). By the moreover

of Lemma 3.20, the optimal solution to STN(X) gives every dispatch its earliest

conceivable time. (I.e., (ai, τ
∗(starti))i∈[n] ∈

⋂
iZ(i) is said optimal solution.) In

other words, setting the dispatch-time of every effect to the duration of its greatest-

duration critical path yields the (globally) slackless scheduling of any given effect-

sequence. �

Discussion. The result is not, of course, surprising. It is interesting to note how

fragile it is, though. Consider rescheduling of commutative but nonetheless mutu-

ally exclusive effects: scheduling of classroom usage, for example. Then it is cer-

tainly impossible to dispatch every effect at its earliest conceivable time. (In such

a setting one would surely define slack by the local notion, as the global notion

would be useless.) At the technical level the scheduling problem then generalizes

to Disjunctive Temporal Networks instead. Which are not simple.

It is also interesting to note that deadline goals are largely irrelevant to schedul-

ing considerations. Including them could render an STN unsolvable; but besides

that they have no impact. This is because the optimal solution to the STN is the

same whether the deadlines are included or not. If it were possible to request that

goals be accomplished by a certain time, but held true only for some finite interval

after that, then including such (“temporally extended goals”) could certainly impact
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scheduling considerations. That is, then it would be possible for goals to partici-

pate in critical paths. So, oddly enough, deadlines are most relevant to planning-

level considerations. Which is because unsolvability of the corresponding STN is

certainly grounds for pruning; adding further vertices and edges will never change

that the STN is unsolvable.

Moving on, we come to formalizing reordering for Interleaved Temporal Plan-

ning, which, in contrast with rescheduling, amounts to little more than borrowing

from Conservative Temporal Planning.
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3.3.2 R: D  B-E

The generalization considered by Interleaved Temporal Planning has precious little

impact upon deordering dispatch-sequences. That is because all reordering specifi-

cally leaves dispatch-times alone (converse to rescheduling leaving the order alone).

As the ‘only’ new constraint concerns those, then the theorem transfers more or less

directly from Conservative Temporal Planning. We sketch the proof.

The various definitions remain essentially the same, keeping in mind that effect-

s/primitives here are the actions of simpler forms of planning.

Definition 3.6 (Mutex-Order/Deordering of a Plan). Two effect-dispatches are mu-

tually exclusive (mutex for short) if the underlying effects write to the other’s de-

pendencies. The mutex-order of an effect-schedule is the partial-order given by

orienting each mutual exclusion so as to be consistent with the sequence in which

the effects are dispatched. So (ai, ti) is before (a j, t j) in the mutex-order of (a, t)[n] if

ai and a j are mutex and i < j. For notation let ≺mutex-X denote the mutex-order (of

X = (a, t)[n]), defined by:

(≺mutex-X) B Transitively-Close:


X(i), X( j) 7→ i < j | (ai, a j) are mutex;

· , · 7→ False

.
Define the deorder ≺deorder-X by additionally stipulating that effects of the same

action be ordered correctly. With α(a) = α′ when a = (α′, ·) denoting the action

owning the effect a:

(≺deorder-X) B Transitively-Close:
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
X(i), X( j) 7→ i < j | α(ai) = α(a j) or (ai, a j) are mutex;

· , · 7→ False

 . (3.33)

Recall:

Definition (Behavior). An execution’s corresponding behavior is given by:

Behavior(X) B
{
( f , t) 7→ StateY( f ) | t ∈̃ VaultY( f ) and Y ∈ Rng(X)

}
.

With:

(∈̃) B
{
(t, `) | t ∈ if Readable` then [Acquired`,Released`] else {Released`}

}
.

Theorem 3.21 (Deordering). Deordering preserves corresponding behaviors. More-

over, deordering preserves result-equivalence.

Proof Sketch. Argue by reduction to the proof of Theorem 3.14, Page 128. There

are two key changes from Conservative Temporal Planning.

The first change is to restrict vault transition functions to be defined only for

actual dispatch-times. That is irrelevant, as we may freely restrict Theorem 3.14 to

actual schedules.

The second change is to add debts to the structure of situations. That directly

impacts the notions of result and execution. It also indirectly impacts the notion

of corresponding behavior, but only in the trivial sense of altering the structure of

its domain. In other words, note: the mapping rule (i.e., ∈̃) remains the same. So

Proposition 3.10 holds in the sense that behavior-equivalence nets us final state and
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final vault equivalence. Then it remains to net final debt equivalence and to reduce

the notion of execution.

Final debt equivalence is straightforward, as follows. Note that debt transition

functions operate only on a per-compound basis: each updates only the structure

associated with its compound. Deordering does not add, remove, or reorder the

parts of each compound, so, the final debt remains the same.

The debt-sequences underlying executions serve to check two kinds of con-

straints: (i) the various parts of actions must occur in order, and (ii) the dispatch

-times of the various parts of an action must be at fixed offsets from one another.

Reordering leaves dispatch-times alone, so (ii) is irrelevant.

So only (i) is an obstacle. There are two directions to take care of. If we

were to swap the order in which two parts of the same action are dispatched, then

immediately the underlying debt-sequence fails to be defined due to violating (i),

and will remain so until said swap is undone. Conversely, if we never swap the

order in which parts occur, then (i) remains satisfied. As (i) and (ii) are all and only

the constraints that need be met: the underlying debt-sequence remains defined iff

the relative order of the parts of actions is maintained. So the qualification added

in (≺deorder), i.e., above and beyond the definition of (≺mutex), takes care of the only

relevant difference with Theorem 3.14 (regarding its dependency on the notion of

execution). That is, we redefine deordering so as to preserve (≺deorder) rather than

the mutex-order; that doing so has no bearing on the proof of Theorem 3.14 is

simply by regarding all parts of an action as pairwise mutex with regard to what

may be swapped.

So finish by the proof of Theorem 3.14. �
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Discussion. Depending on ones taste for formality, the above perhaps counts as a

proof. In any case it should be clear that the theorem is true. Which, so far as

the thesis goes, is enough. For that matter, even truth/proof of this specific no-

tion of equivalence is relatively unimportant. (However, ‘every’ remaining formal

argument appeals to this specific theorem, so in a formal sense it is crucial to under-

stand and believe.) All that we truly desire are equivalence/dominance reductions

powerful enough to notice that a given probem is failing to exercise the facilities

of Interleaved Temporal Planning. In other words, we just want a notion powerful

enough to reasonably ground whether a problem really belongs to just Conservative

Temporal Planning (or anything more general).

Then, getting ahead of ourselves for a bit, consider the following. What if

we could always reorder (preserving completeness and optimality of course) to

sequences that immediately carry out every part of an action? Well, then it would

lose ‘nothing’ to abstract back to the perspective that actions lack parts. Such would

be a win: getting away with abstraction for free is always a win. Then to understand

the significance of Theorem 3.21: We say that a problem (causally/nontrivially)

requires concurrency when such abstraction is non-free.

Returning to the present purpose: so we come to formalizing reduction to finite

state transition systems.
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3.3.3 F R  I T P  T

S

Simply taking a state transition system view upon Interleaved Temporal Planning

is entirely straightforward. What is tricky, due to the infinity of time, is to keep the

result finite. Particularly values of time make reducing to a state space, even for

expanded notions of state, awkward at best.

Organization. First we present the naı̈ve reduction, which is unacceptable by virtue

of being infinite. Second we present a reasonable take on a brute-force reduction,

by exploiting the fact that time is effectively discrete. Third and fourth we examine

more deeply two particular technical obstacles overcome by the latter reduction.

The Naı̈ve Reduction. As far as clarifying semantics is concerned it may be use-

ful to consider the straight-up reduction to state transition systems. However, the

reduction has a number of difficulties, most importantly, each neighborhood of a

vertex is infinite. For reference, the naı̈ve reduction M = (V, E,Σ,R, `, s0,T ) is:

V = Balances, E =
{(

(s, v, d),
(
S ′a(s),V ′a,t(v),D′a,t(d)

)
, (a, t)

) ∣∣∣∣∣ (a, t) ∈ Σ
}
,

Σ = Primitives × Q, R = {(b, b′, ·) 7→ (b, b′)}, ` = {(·, ·, x) 7→ x},

s0 = Initial, T = {b | Goal(b)}.

This is far from acceptable for our purposes, as we aim to compare planning lan-

guages to one another by way of reduction to a common setting. Comparing the

finite to the infinite is apples to oranges.
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To ensure comparability we take the perspective of reducing via sequential plan-

ning.14 That imposes a number of syntactic and semantic constraints; two are es-

pecially relevant. The significant obstacle is that infinities, i.e., time, cannot be

represented (i.e., solving the reduction must fit in PSPACE). The other (minor) ob-

stacle concerns the relationship between compounds and primitives.

Theorem 3.22. There exists a (brute-force) reduction to State Transition Systems

of Interleaved Temporal Planning Problems via Sequential Planning. More specif-

ically the mapped-to graph is at worst exponentially large with polynomially large

neighborhoods. For notation, let:

• P = (FluentDefs,ActionDefs, Initial,Goal) denote the problem,

• µ = gcd {dura | a ∈ Primitives} denote its natural unit of time,

• Times B [0, 2m − 1] denote all of the relevant temporal coefficients of µ,

• σ−1 denote the decoding of words into plans, and

• M denote its unit-time reduced state transition system as follows.

Loosely, define:

M B (V, E,Σ,R, `, s0,T ),

V B States × Vaults × Debts × Times,

E B



((
s, v, d, k

)
,
(
S ′a(s),V ′a,t(v),D′a,t(d), 0

)
, a

) ∣∣∣∣ a ∈ Primitives and t = kµ;((
s, v, d, k

)
,
(
s, v, d, 2k

)
, a

) ∣∣∣∣ a = (push-0 k);((
s, v, d, k

)
,
(
s, v, d, 2k + 1

)
, a

) ∣∣∣∣ a = (push-1 k)


,

14We omit real explanation for how the brute-force reduction comes through Sequential Planning.
The reader could invert Theorem 3.1 in application to Theorem 3.22 to obtain the representation.
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Σ B Primitives ∪
{
(push-0 k), (push-1 k)

}
,

R B {(b, b′, ·) 7→ (b, b′)}, ` B {(·, ·, a) 7→ a},

s0 B
(
StateInitial, VaultInitial, DebtInitial, 0

)
, T B

{
(s, v, d, k) | Goal

(
(s, v, d)

)}
;

σ−1B

k1, . . . , km′ , a 7→ (a, kµ)

∣∣∣∣∣∣∣ k =
∑

i∈[m′]

2m′−i(ki = (push-1 k)
) .

Then, the language encodes all slackless15 solutions, and encodes only solutions:

Slackless(Solutions(P)) ⊆ σ−1(L(M)) ⊆ Solutions(P). (3.34)

Proof Sketch. To be more formal we should write along the lines of V ′a,kµ(vµ)/µ

to denote multiplying in and dividing out by the unit-time. Likewise we should

write something like V = States × (Vaults/µ) × (Debts/µ) × Times to denote that

the number of vertices is bounded by using at most the coefficients of µ to encode

values of time inside the vaults and debts. In short the result amounts chiefly to

applying the observation that time is effectively discrete, Corollary 3.23.

The additional fine point, also discussed below, is to encode (in big-endian bi-

nary) the selection of dispatch-times using the virtual actions/transitions “(push-0

k)” and “(push-1 k)”. This serves to structure the exponentially many edges leav-

ing a vertex of the naı̈ve reduction into poly-many choices (the bits of the dispatch

-times) over poly-many options (number of ground actions plus two). �

The following usefully elaborates, but we do not in fact formally complete the

exercise of verifying the theorem.

15For reference, roughly Slackless(X) B
{
(a, t)[n] ∈ X

∣∣∣ (a, t′)[n] ∈ X ⇒ (t′)[n] � (t)[n]

}
.
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3.3.3.1 Time is Discrete

Time values occur in both the representation of situations and plans, i.e., as the

acquisition-times and release-times of locks, and as the dispatch-times of plan steps.

For encoding values of time we need to somehow bound the number of relevant

values to at most exponentially many; then one boolean fluent per bit will encode

time using polynomially many fluents. That alone is not enough to address dispatch

-times; an exponentially large neighborhood (i.e., branching factor) at a vertex is

little better than an infinite neighborhood. We cannot actually get rid of any of

those choices—a perfect reduction does need to preserve all plans, and each such

choice of a dispatch-time is legitimate. We can, though, hide the exponential by

restructuring the space.

Bounding to Exponentially Many Values of Time. While Theorem 3.18 (slackless

schedules dominate) is not nearly so strong as Theorem 3.4 (left-shifted schedules

dominate), it is still strong enough to support a mildly useful corollary:

Corollary 3.23 (of Theorem 3.18). Taking the greatest common denominator of all

effect durations as the unit of time is completeness-preserving.

Proof. Let µ denote the greatest common denominator of all effect durations.16 In a

slackless effect-schedule, by the proof of Theorem 3.18, every effect of every action

starts, and finishes, at a time that is a sum of edge weights of the corresponding

Simple Temporal Network. These are all either 0, an effect duration, or the negation

of an effect duration. Sums of such are, then, multiples of µ. Hence restricting to

multiples of µ as start-times retains all slackless schedules. So the corollary follows

by the statement of Theorem 3.18. �
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In other words, the effective domain of time is Natural numbers. Then it re-

mains only to impose an upper bound. It is possible to prove the existence of a

bound [175]. Also, a mere 64 bits counts out a half millenia in nanoseconds; for

that matter, a century in seconds fits comfortably in 32 bits. Automated planning is

in zero danger of supporting such scale any time soon. Anyways essentially any im-

plementation will just use a hardware type for bounded arithmetic; ‘only’ a S

programmer might accidentally default to unbounded arithmetic.

Then let us take it as true, for whichever reason seems best (proof or fact), that

certainly polynomially (if not simply constantly) many bits suffice. Note that, in

more general settings, specifically when durations of primitives are variable, it is

not so simple to derive a maximum necessary precision [25]. It is then likewise not

so simple to derive a realistically bounded encoding of relevant values of time. That

here the semantics remain simple enough to readily do so is useful/convenient (and

of course quite deliberate).

Encoding Numeric Fluents and Arithmetic. We assume that planners can directly

represent numeric fluents, bounded to exponentially many possible values, and per-

form basic arithmetic operations upon them. In practice one extends the code to

literally do so [12, 37, 103, 110, 115, 137, 154, 169, 174].

Formally the assumption is justified by polynomially-space-bounded Turing-

completeness [24]. Technically this means one can make classical planners sim-

ulate every feasible computation, indeed, a good bit more than that. However, in

16As elsewhere, for the sake of argument assume the initial situation and goal are temporally uni-
form; in practice, use compilation tricks to ensure that quantities such as the effective unit of time
are defined correctly. In this particular context, by Theorem 3.18, it is unnecessary to address dead-
lines; deadlines can be rounded down to the nearest multiple of the g.c.d. of every other duration.
For more general forms of temporal logic it is necessary to take into account the goal expression.
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practice, (a) it is extremely awkward to implement algorithms in a planning lan-

guage, and (b) planners are anyways highly ineffective virtual machines, in the

sense that moreover achieving effective performance typically requires deep knowl-

edge of the internals of the planner to be applied. (So, usually, it is simplest and

best to just modify the code directly.) Still it is worth keeping in mind that, with

deep knowledge and great care, it is sometimes possible to take the PSPACE-com-

pleteness result at face value [11, 74, 75, 164]. Less atypically the utility in this

sort of formal exercise lies in determining why the planner would fail, using such

insight to guide direct extension of its implementation.

For an example of taking PSPACE-completeness literally, note that even STRIPS

-style planning formally permits such operations as multiplication by 2: see Fig-

ure 3.2 for an ADL description. (Recall that conditional effects may be compiled

down to STRIPS in a polynomial fashion [158], indeed, much as we are about to do

for dispatch-times.) Of course, multiplication by 2 is one of the easy cases. Also

one can implement non-linear operations, see Figure 3.3. Naturally, simulating al-

ways hardware-available operations should be taken strictly figuratively.

Reducing Numeric Parameters to Numeric Fluents. To address numeric parameters

(the dispatch-times), encode them as numeric fluents under complete control of

the planner. For concreteness let us say we encode the planner’s ability to pick

a dispatch-time as follows; many other schemes are possible. Let (push-1 f ) and

(push-0 f ) be couplets of book-keeping primitives (per f ) for manipulating the

encoding of some numeric parameter as a numeric fluent f . Respectively these

set the value of f by the effects: f B 2 f + 1 and f B 2 f . More formally, set

eff (push-1 f ) B
{{

f 7→ x ∈[0,2
m−1]

}
7→

{
f 7→ (2x + 1) ∈[0,2

m−1]
}}

for some large enough
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;;;; How NOT to make classical planners do arithmetic.

;;;; Problem file insertions.

(:init (next b0 b1) (next b1 b2) ... (next b30 b31)

...)

;;;; Domain file insertions.

;; uint32: unsigned 32-bit integer; bit: one of the 32 bits.

(:types uint32 bit ...)

(:constants b0 b1 b2 b3 b4 ... b31 - bit ...)

;; value: true->1, false- >0.

(:predicates (value ?f - uint32 ?i - bit) ...)

;; Double the value of f, encoded as an array of bits:

(:action push-0 :parameters (?f - uint32)

:precondition (and (not (value ?f b31))) ; forbid overflow

:effect (and (forall (?i ?j - bit) (when (next ?i ?j)

(and ; so j=i+1

;; conceptually , for each i, set f[i+1] = f[i]:

(when (value ?f ?i) (value ?f ?j))

(when (not (value ?f ?i)) (not (value ?f ?j))))))

(not (value ?f b0)))) ; set f[0]=0

Figure 3.2: How to implement a left-shift by 1 bit in the ADL-fragment of PDDL.

bound 2m; likewise define pushing 0 into the least significant bit. Then for example

the sequence (push-1 k), (push-0 k), and (push-0 k) leaves the (book-keeping) fluent

named “k” with the value 4.

Let “k” be special in that it stands for dispatch times specifically; have every

compiled representation of a real effect reset “k” (set all of its bits to 0). Then

the compiled plans are a rather faithful transliteration of effect-schedules, i.e., with

dispatch-times coded in big-endian. That has a certain appeal in theoretical terms,

for example, it does not increase the worst-case number of possibilities.

It is also interesting to consider dedicating separate virtual actions to each bit

(i.e., “(set-bit-1 f i)” and “(set-bit-0 f i)”), as that would behave better under sub-

sequent relaxation of the problem. A downside is that there would be many ways

of naming the same dispatch time. A further possibility is to write out a number
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(:init (larger b31 b30) (larger b31 b29) ... (larger b1 b0)

...)

(:predicates (larger ?j ?i - bit) ...)

(:action max :parameters (?a ?b ?c - uint32)

:precondition (and )

:effect (and

;; if a is larger than b then set c to a:

(when (exists (?i - bit) (and

(value ?a ?i) (not (value ?b ?i))

(forall (?j - bit) (implies (larger ?j ?i) (and

(implies (value ?a ?j) (value ?b ?j))

(implies (value ?b ?j) (value ?a ?j)))))))

(forall (?i - bit) (and

(when (value ?a ?i) (value ?c ?i))

(when (not (value ?a ?i)) (not (value ?c ?i))))))

;; if b is larger than a then set c to b:

(when (exists (?i - bit) (and

(not (value ?a ?i)) (value ?b ?i)

(forall (?j - bit) (implies (larger ?j ?i) (and

(implies (value ?a ?j) (value ?b ?j))

(implies (value ?b ?j) (value ?a ?j)))))))

(forall (?i - bit) (and

(when (value ?b ?i) (value ?c ?i))

(when (not (value ?b ?i)) (not (value ?c ?i))))))

;; if a and b are equal then set c to b:

(when (forall (?j - bit) (and

(implies (value ?a ?j) (value ?b ?j))

(implies (value ?b ?j) (value ?a ?j))))

(forall (?i - bit) (and

(when (value ?b ?i) (value ?c ?i))

(when (not (value ?b ?i)) (not (value ?c ?i))))))))

Figure 3.3: How to implement c B max(a, b), see Figure 3.2.
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of operators for adding by 20, 21, 22, and so forth [175]. That is likely a supe-

rior option in a language allowing one access to addition as a primitive operation.

For one thing, the heuristics will likely have been designed with that operation in

mind [37, 115].

All three are extremely similar both in what formal constraint is satisfied and

how so: they all ensure that plan length increases only polynomially, likewise for

branching factor, in order to represent selection of dispatch-times. None do so in a

particularly clever manner. That is much of the challenge of developing an effec-

tive temporal planner, relative to classical planning: cleverly structure the choice

of dispatch-times. So it is somewhat interesting to approach the issue from the re-

duction angle as seriously as Figures 3.2 and 3.3 begin to. However, it is more or

less strictly superior to approach the technical issue directly. At least, all state-of-

the-art strategies for choosing numeric parameters in general and values of time in

particular seem to hail from a direct perspective [6, 93, 137].

Long story short: Time is, effectively, finite. So the greatest obstacle to reduc-

tion to transition systems via classical planning is eliminated. There is one other

matter that is significant if generalizing the treatment here.

3.3.3.2 PDDL-style Decomposition Is Simple

It is easy to imagine generalizing to compund actions that decompose into other

compounds [187], and very quickly it becomes ‘impossible’ (but see [74, 75]) to

reduce to classical planning [63]. The highly restricted case of decomposition here

though is easily reduced. The limitation that must be worked around is that cre-

ation and destruction of fluents is not permitted: variable-size structures cannot be

reduced entirely literally.
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The only portions of a situation that are effected by the limitation are obliga-

tions. These record the promised start-times of parts not yet dispatched, so, vary in

size from empty up to the number of proper parts.

In general one would need to take the varying size seriously. Meaning we would

be discussing the reuse of storage for differing purposes at differing times. However,

for our purposes, implementing full-blown memory management within the model

would be overkill. Doing so, incidentally, is how one shows that even complex

forms of HTN-planning reduce to classical planning under the relatively harmless

assumption of a bound on maximum stack depth [74, 75].

Here we can just preallocate storage for the largest case, using extra bits to en-

code what portions are presently in use. We make one very small optimization.

As the parts of a compound are totally-ordered, it suffices to count how many re-

main in order to know which ones remain. In the partially-ordered case, one would

associate a dedicated flag to each part instead.

Proposition 3.24 (Encoding Obligations). Map an obligation O into the signature

Ô =
(
k ∈[0,2], bgn ∈Q, fin ∈Q

)
by the rule:

Ô B
(
|Dom(O)|, Obgn if defined else garbage, Ofin if defined else garbage

)
.

Reachable obligations may be recovered by the inverse rule:

O =


bgn 7→ Ôbgn | Ôk = 2;

fin 7→ Ôfin | Ôk ≥ 1

.
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Proof. The assertion holds by induction on the definition of debt transition func-

tions. That is, the form O = {bgn 7→ ·} is never reachable, and hence the case

Ôk = 1 is not, in fact, ambiguous. �

Significance of Fixed Size Representation to Temporal Planners. Note the direct

relevence of the proposition to differing ways of implementing representation of

temporal situations within temporal planners proper. That is, some literal reading

of the definitions might make the ‘mistake’ of using complex memory management

just to track promised start-times. For more general forms of temporal planning one

does need such mechanisms. It is, for example, not so simple to usefully bound the

maximum size of an event-queue [54], not even theoretically speaking [175]. Here

we have stipulated that actions may not execute concurrently with themselves—pre-

cisely so that full-blown event-queues become unnecessary. This restriction upon

semantics is virtually ‘free’, in practice. There is one, mild, downside: see [35].

Albeit even for such domains it is possible to argue that forcing domain modelers

to employ the workaround is actually better for everyone involved.
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3.4 DISCUSSION OF NOVELTY AND SIGNIFICANCE

So we have reinvented several wheels: Left-Shifted, Deordered, Slackless, STNs,

Unit-Time, and several reductions to State Transition Systems [8, 47, 188]. The

first two results are so basic we consider them to be litmus tests of the correctness

of definitions purporting to capture the spirit of Conservative Temporal Planning.

Likewise, we take the sufficiency of Simple Temporal Networks for capturing the

induced scheduling problems of Interleaved Temporal Planning as, more or less,

a defining characteristic. There is no dearth of formal treatments and published

proofs that we could have—nominally—simply reused.

• For example, we have claimed that the Completeness Theorem for Totally

Unambiguous Partially Ordered Plans is equivalent enough to Backström’s

Deordering Theorem [8, 153].

• In a sense, even merely the notion that POCL-planning is at all sound is equiv-

alent enough to the reordering insight [28, 149].

• As far as the use of First-Fit in temporal planning goes, we could just cite the

greedy post-processing of SAPA [53].

• Indeed, it is surely easy to find a great many citations for the use of First-Fit

in generalizing to temporal planning. It is the obvious first step to take.

• . . . and so forth and so on [2, 4, 25, 30, 70, 71, 109, 112, 151].17

That others reinvent is a poor excuse. The question is begged:

Why reinvent?

17Dubiously, we could even take code itself to be ‘theory’.
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Answering the question is interesting, but hardly crucial. For example, lack

of novelty is anyways at most a weak criticism: independent verification is the

hallmark of good science. In fact—though we shall offer arguably little evidence—

the work through Chapter 3 does possess a certain degree of technical novelty (and

significance). The short of the matter is that we differ technically from the closely

related work in (at least) two core issues:

• Regarding chiefly Conservative Temporal Planning: our definition of mutual

exclusion differs subtly, in useful fashion, from that of TGP [188]. For ref-

erence, we assert that effects are mutex when one writes to a dependency

of the other; TGP ‘declares’ instead that effects are mutex when one contra-

dicts either a precondition or a postcondition of the other. The difference is

that TGP assumes that whenever the value of a fluent before and after an ac-

tion executes are surely the same, then the action only read-locked the fluent.

We however distinguish between only reading from a fluent and subsequently

writing back the value it already has.

• Regarding chiefly Interleaved Temporal Planning: our treatment of change

more accurately reflects the practice of so-called PDDL-planning [71]. For

reference, we permit only durative effects and durative conditions; PDDL

nominally permits only instantaneous effects, instantaneous conditions, and

durative conditions. So for example, faithful syntax for ITP problems permits

expressions such as “(over [start,start+3) 〈foo〉)”, but never expressions like

“(at start 〈foo〉)”.

The following lengthy discussion attempts to ‘prove’ that these differences are, as

claimed, both (i) meaningful, and (ii) for the better. That is, to appreciate the fol-
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lowing, we must take it as rebuttal to an undeserved criticism: one could hypothet-

ically take the work here to lack novelty and/or significance. Lacking such doubt,

we should instead just continue along the main line, to Chapter 4, Page 227.

Organization. We discuss in depth two particular issues distinguishing our treat-

ment here, respectively concerning novelty of CTP and ITP. To be (arguably) quite

unfair to the related work, we paraphrase as:

• (Section 3.4.1) Parallelism and Concurrency are distinct, hence:

– TGP is suboptimal, incomplete, unsound, and so forth for CTP [188].

– Partial-Order Planners typically just improve runtime in SP [8, 28, 149].

– Petri-Nets likewise relate better to Sequential Planning [112, 113].

– Even HTN-planners presumably fail to make the distinction [63, 155,

156].

• (Section 3.4.2) Discrete and Discontinuous are distinct, hence:

– VAL corroborates, and so exacerbates, the difficulties of PDDL [71,

119].

– Hybrid Automata only weakly relate to discrete temporal planning [111].

– ZENO and friends fail to subsume ITP [12, 70, 137, 151, 154, 168].

We could, but will not, also examine several easily mustered generic excuses:

• Duplication of effort is at most a small crime. Mitigating which, we have

sequestered all that could even be acccused of a lack of novelty.

• Anyways, to non-experts, a self-contained reference is a contribution.
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• Albeit the treatment here arguably misses that ineffable sweet spot of both

simplicity and generality. Still it seems reasonable to claim progress towards

a textbook-level understanding of the issues.

• Coming up with proofs from several angles is important. In that respect, the

strong bias here from forward-chaining is a novel enough take on the insights

of Partial-Order Planning. E.g., there are ‘but two’ references to give for

tricking forward-chaining into performing partial-order planning [30, 36].18

– The connection of the former reference to temporal planning (and per-

haps even to partial-order planning) is surely unclear.

– The latter directly concerns temporal planning (and to a lesser extent

partial-order planning). We can surely claim that some readers find that

treatment notably denser than ours (equally surely the converse holds).

18Regarding connections between differing search paradigms we should also consider at least
Kambhampati’s theory of Refinement Planning [124], and McAllester and Rosenblitt’s planner:
SNLP [149]. The adjacency constraint, a ∗ b, from Kambhampati is an interesting way to fold both
forward-chaining and backward-chaining perspectives together. It is far more constraining than it
need be though (it was not designed for computational promise, mind): the deorder relation, ≺deorder,
we build here is computationally far superior.

The insight of SNLP was that partial-order planning is ‘really’ about effecting an equivalence
reduction on totally-ordered plans. (For a contrary, we feel mistaken, view upon partial-order plan-
ning we refer to Chapman’s TWEAK [28], which takes optimizing partially-ordered plans as an end
unto itself; specifically Backström’s distinction between parallelism ¬(a ≺ b ∨ b ≺ a) and con-
currency ¬(a # b), which we also discuss, is a strong rebuttal [8].) We work from the converse
direction: deordering totally-ordered plans goes towards a different implementation of the same no-
tion. Specifically we work from the canonical representative side of the coin; SNLP focuses on
direct representation of the equivalence classes.

The converse direction has an interesting advantage. In particular we may achieve the same gross
benefit with respect to reducing the size of the search space, at the same time, we may also easily
connect up the classes/representatives via forward-chaining. Forward-chaining is nice, because it
lends itself quite well to techniques such as state-based reachability heuristics. So we take our
work here as akin to, if not an improvement upon, the same-in-spirit achievement of Nguyen and
Kambhampati’s RPOP [160], which improves upon SNLP precisely by leveraging such heuristics.

To be accurate the SNLP constraint (a
p
→ b ∧ a

¬p
→ b) defines a different reduction than our con-

straint (i.e., ≺deorder). Its notion is ‘better’ in that it is coarser/weaker, i.e., leads to fewer equivalence
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classes; the relationship is the same as that between the SNLP-space and the space of Totally Un-
ambiguous Plans [153]. Of course the SNLP view upon equivalence is not in fact better than ours:
specifically it is too coarse for Temporal Planning. That fact may be had by analogy with duplicate
state elimination, or closer to home, TGP’s too weak notion of mutex.

We mention all this work in classical planning only because many of the notions are tightly linked
at the technical level. It is worth keeping in mind though that the higher level contexts differ, as do
the low-level details. Then for as much as we may point to similarities, the work here cannot, for
example, be held to lack novelty due to its relationship with SNLP.
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3.4.1 P  C, O: TGP  S

We differ in our approach, from Smith and Weld in their development of Temporal

GraphPlan (TGP) [188], to defining the meaning of mutual exclusion. Note that the

precise formal meaning of the Left-Shifting Theorem hinges upon that definition

(as does everything else). So while we attribute their work, our theories certainly

differ meaningfully (at a sufficiently technical level): their proof does not, formally,

establish our theorem. The philosophical distinction to be made is between com-

mutativity/parallelism and nonmutex/concurrency [8].

We begin with a high level demonstration of our claimed superiority. Next we

recap the two formal definitions of mutex for the special case of STRIPS-style. Then

we demonstrate how the wrong definition leads TGP to suboptimality in an entirely

fleshed out B (counter-)example. Finally we touch upon a great many

technical and philosophical points and counterpoints.

3.4.1.1 Intuition: Lecture Scheduling

To partially demonstrate our claim, at a high level: Consider scheduling classroom

usage. Surely it matters relatively little whether Physics is taught from 9:00am–

9:45am, with Biology following at 9:55am, or vice versa. That is, presumably,

qualitatively speaking, both orders are feasible and leave us in the same final situa-

tion. Even clearer: scheduling them both for the same time and place will fail.

Now, given numerous constraints on who teaches what, who (wishes to) attend

what, availability of rooms, cost of electricity, etc., we might very well find it inter-

esting to automate such scheduling of classroom usage. For our purpose, the key

point is that, while leaving the ordering of lectures in each room up to the scheduler,

we specifically wish to explicitly rule out scheduling two classes for the same time
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and place. Such is half of the distinction between parallel and concurrent: two lec-

tures for the same room are parallelizable—either order has identical result—but

not concurrently executable.19 So our question is: How temporally expressive must

our planners be in order to allow us to model the distinction?

Given the theory developed, it would seem that Conservative Temporal Planners

are inadequate: these more or less lack the power to distinguish between more than

every sequence of actions (Theorem 3.4). More abstractly, temporary effects are

what lie beyond their understanding. So for contrast, note that an interleaved model

of classroom usage is to state that availability of the classroom is false for the

duration of the lecture.

However, this particular kind of temporary effect does lie within the power of

CTP. That is because the interaction is strictly ‘negative’. Indeed, the ability to

model temporary negative interactions is all and only what our definition of mutex

is concerned with. Specifically, to model temporary negative interactions, we need

to have the concerned activities (1) write-lock some common fluent (i.e., declare

exclusive access to a shared resource), but actually (2) leave it alone (i.e., write

back the value already there).

Our preferred psuedosyntax resembles “uses r” for some model r of a shared

resource (i.e., r = room). Which is largely because the syntax dodges the se-

mantic question. For the nuts and bolts: the first runner-up for modeling shared

resources resembles “r B r”, which (a state-dependent assignment) is within the

power of ADL. The second runner-up further compiles that down into state-inde-

pendent effects (so resembles “r = v, r B v” for any/each—ideally unique—legal

19Neither parallelism nor concurrency imply each other. Required concurrency is where concur-
rency succeeds despite failure of every sequence. The section discusses the reverse non-implication.
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value v ∈ Valuesr). In STRIPS-style, with u denoting the proposition “r = v”, to

model the usage one extends the action description as in (P ∪ {u},D, A ∪ {u}).

Then let us consider TGP. The technical issue is that TGP regards, we claim er-

roneously, as ‘mutex’ only those primitives asserting distinct values of some com-

mon fluent (either before or after they execute). (In STRIPS-style, TGP says that a

and b are mutex iff {x, y} = {a, b} are such that x deletes either a precondition or

add of y.) That would make sense if formalizing parallelism and/or commutativity

of primitives. Reflect though upon (two instances of) “r = v, r B v”, our model for

a shared resource (within STRIPS-context, which TGP is limited to). In particular

note that all copies are TGP-nonmutex: the TGP notion of mutual exclusion fails to

recognize our intent. Meaning, when all is said and done, that TGP can be taken as

unsound:

TGP will schedule lectures for the same time and place!

3.4.1.2 Definitions

Towards a formal demonstration, recall our definition of mutual exclusion:

Definition. Two primitives are mutex when either writes to a dependency of the

other.

Restricted to STRIPS primitives (Pa,Da, Ab) and (Pb,Db, Ab), we say a and b are

mutex precisely when either:

(Da ∪ Aa) ∩ (Pb ∪ Db ∪ Ab) , ∅, or (vice versa)

(Db ∪ Ab) ∩ (Pa ∪ Da ∪ Aa) , ∅.
(3.35)
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It is not in fact clear what mutex truly means to TGP in anything besides a

procedural sense [188].20 The notion from GP, though, is entirely clear. So

let us pretend that TGP mutex means what it ought to given generalization from

GP.

Definition 3.7. Two primitives are GP-mutex when either (i) one contra-

dicts a precondition of the other, or (ii) one contradicts a postcondition of the other.

For STRIPS primitives (Pa,Da, Ab) and (Pb,Db, Ab), GP asserts that a

and b are mutex precisely when either:

Da ∩ (Pb ∪ Ab) , ∅, or (vice versa)

Db ∩ (Pa ∪ Aa) , ∅.
(3.36)

So in short we are contrasting:(
(Da ∪ Aa) ∩ (Pb ∪ Db ∪ Ab)

)
∪

(
(Db ∪ Ab) ∩ (Pa ∪ Da ∪ Aa)

)
, ∅, versus:(

(Da) ∩ (Pb ∪ Ab)
)

∪
(
(Db) ∩ (Pa ∪ Aa)

)
, ∅;

For futher comparison, drawing from SNLP yields approximately:21

(
(Da ∪ Aa) ∩ (Pb ∪ Ab)

)
∪

(
(Db ∪ Ab) ∩ (Pa ∪ Aa)

)
, ∅.

Which definition is right? Well, that depends entirely on context. For temporal

planning, we use mutex to control whether primitives are allowed to be concurrent.

Due to that the right definition is ours (the most constraining one), which point we

20Smith and Weld disagree under detailed interrogation: ambiguity is entirely fair.
21POCL planners define threats, not mutexes. Ignoring the distinction is natural, but conflates the

interesting and related difference between SNLP-plans and Totally Unambiguous Plans [153].
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(init (B (below a) d) (B (below d) table)
(B (clear a) True) (B (clear d) False)
(B (below c) b) (B (below b) table)
(B (clear c) True) (B (clear b) False))

(goal (= (below a) b) (= (below c) d))

Figure 3.4: Swap block a and block c.

are about to elaborate upon. For partial-order planning, the notion is to use mu-

tex to control whether primitives are allowed to be parallel: the least constraining

definition is, there, philosophically correct. (The SNLP definition, the middle road,

has interesting computational merits, i.e., towards its namesake: systematicity.)

3.4.1.3 A Counterexample in B to Optimality of TGP

To drive the point home: Consider the B model on Page 51. Observe

that in TGP syntax the model of the hand fits the pattern considered non-mutex by

TGP: a precondition upon, and add, of “(empty hand)”. TGP continues to make

the mistake a sequential planner would, despite our attempt to fix the model for the

temporal context. For further detail, consider specifically the problem depicted in

Figure 3.4 (and add one block to the domain). The problem is to take the top blocks

of two towers and have them switch places, using one hand.

The in-truth duration-optimal solution, also size-optimal, takes 6 time units and

3 movements. Specifically, use the table as temporary storage for one of the two

blocks. So one of the two optimal plans is to move:

1. block a from block d to the table,

2. block c from block b to block d, and finally

3. block a from the table to block b.
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In contrast, TGP will select a duration-suboptimal solution. Specifically TGP

will move both blocks to the table, and then move both blocks to their destinations.

Doing so with one hand takes 8 time units and 4 movements. There are six concrete

variations, one is to move:

1. block a from block d to the table,

2. block c from block b to the table,

3. block a from the table to block b, and

4. block c from the table to block d.

The reason that TGP will choose a duration sub-optimal option is that, in its

mind, those options are faster. Specifically, TGP mistakenly imagines such plans to

require 4 time units: 2 parallel steps of duration 2 each. (In GP parlance, the

4-action plans consist of 2 parallel steps, and in particular are optimal with respect

to minimizing parallel length.) Formally:

Proposition 3.25. Consider Single-Handed B. Any pair, say (a, b), of

movements of distinct blocks to and from distinct places, with “the table” under-

stood as an infinite set of distinct places, are GP-nonmutex. For notation:

∅ =
(
(Da) ∩ (Pb ∪ Ab)

)
∪

(
(Db) ∩ (Pa ∪ Aa)

)
. (3.37)

Proof. The only fluent common to any movements of disjoint blocks to and from

disjoint-or-table places is “(empty hand)”:
{
(empty hand)

}
= (Pa∪Da∪Aa)∩ (Pb∪

Db ∪ Ab) for such (a, b). The fluent is never set to false: (empty hand) < Da ∪ Db.

So the actions are GP-nonmutex: Da ∩ (Pb ∪ Ab) = ∅ and vice versa. �
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In contrast:

Proposition 3.26. Every pair, say (a, b), of movements in Single-Handed B

are mutex, by virtue of writing to “(empty hand)”. For notation:

∅ ,
(
(Da ∪ Aa) ∩ (Pb ∪ Db ∪ Ab)

)
∪

(
(Db ∪ Ab) ∩ (Pa ∪ Da ∪ Aa)

)
;

(3.38)

more specifically,

(empty hand) ∈ (Writesa ∩ Dependsb), and symmetrically

(empty hand) ∈ (Writesb ∩ Dependsa).

Proof. The fluent “(empty hand)” is common to every pair of movements. Indeed,

every movement writes to it: (empty hand) ∈ Writes. Hence all are mutex. �

Then, despite Smith and Weld’s duration-optimality theorem for TGP [188]:

Theorem 3.27 (TGP-suboptimality). GP is certainly a duration-suboptimal

temporal planner; presumably TGP is also.

In general any so-called temporal planner failing to distinguish parallelism

from concurrency may be called suboptimal, incomplete, unsound, and so forth.

Corollary 3.28. Partial-Order Planners ‘never’ address the unit-duration special-

case of anything rightly called “Temporal Planning”.

Proof. See the preceding counterexample for the initial claim. The following dis-

cussion should help clarify the sweeping generalizations. �
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From suboptimality: hence TGP is incomplete (i.e., if we impose deadlines).

Indeed, we could even call TGP unsound: its literal output would schedule the

first pair of movements concurrently (likewise for the second pair). As such is

physically impossible, attempting to execute the schedule must indeed encounter

an error eventually.

Presumably, though, the severity of that error would turn out to be mild. For

example, the definitions we give for Conservative Temporal Planning themselves

fold in an automated validation and rescheduling of any given set of requests. (Be-

cause such is easy to do.) Feeding that machinery the broken output of TGP would

automatically result in a physically plausible/possible set of actual dispatch-times.

Specifically, the machinery would automatically reschedule the 4 movements so as

to take place sequentially. So among all the theoretical charges we may at least

somewhat reasonably level: we prefer to call TGP suboptimal.

The real issue to remember though is the root cause. Namely, TGP (likely) has

the wrong definition of mutex.22 That is, (definitely) the natural generalization from

GP’s notion is wrong: parallelizable and concurrently executable are, while

quite similar, nonetheless meaningfully distinct.

Observe, that, having seen one example, it is easy to construct many more. For

example, with 2 pipes to a liquid container, one may concurrently fill and empty.

With only 1 access pipe, such activities are (perhaps) commutative but nonetheless

(certainly) mutually exclusive.

22Note that from an erroneous definition we may derive ‘endless’ theoretical complaints.
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3.4.1.4 Discussion: Pros/Cons

The over-arching point is that, in contrast, our formal treatment leads to the right

conclusion in ‘every’ case. That is, our notion for mutual exclusion in temporal

planning, which we draw from Backström, Fox, and Long [8, 71], seems best ‘in

general’. Unfortunately, nothing is ever clear-cut. At a fairly technical level:

– Our notion has the unfortunate consequence that turning on distinct lights

must be scheduled sequentially. That is because we forbid concurrently up-

dating some common fluent encoding whether the room is lit. Of course there

are unnatural models that bypass the issue.

+ A similar issue, but this time in our favor, concerns concurrent attempts to

turn on the same light. Perhaps it seems that such ought to succeed in general?

In fact the kitchen light of my childhood home is such that (i) concurrency is

possible, but (ii) does not have the desired result. Specifically, flipping both

switches in an attempt to turn the light on instead results in it toggling on and

then off again (very quickly).

Humans, of course, respond robustly to such failure: only one of the two

parties proceeds to remedy the situation. In fact, usually it is understood

ahead of time who ‘owns’ the right/responsibility to manipulate the light. So

the failure rarely occurs in the first place. Our whole apparatus of locks, etc.,

is towards getting automated systems to behave likewise (as is desirable).

– Technically one can exploit a quirk of STRIPS semantics in order to get TGP

to do the right thing. We view such as an egregious hack, discussed next.

For reference though, we could make every action precondition upon, add,

and delete availability of the hand. The quirk is that the add effect takes
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precedence, which means nothing to STRIPS: omitting the delete means, to

STRIPS, the same thing. To GP, the distinction is that, with the ‘shad-

owed’ delete in place, any pair of movements are, as desired, considered

mutually exclusive.

+ First of all the domain modeling hack does not address the point that TGP

behaves erroneously on an entirely reasonable model.

To go further, suppose we slightly rework STRIPS semantics as follows (which

is quite natural). Let (P, E, F) stand for precondition, effect, and frame. The

meaning is that the deletes are to be had by a closed ‘world’ assumption with

respect to the frame. That is, say that the deletes are frame minus effects

D = F \ E, and the adds are just the effects A = E. (Then state transitions

may be written: P ⊆ S ⇒ S ′ = S \ (F \ E) ∪ E.) The point is to render con-

tradictory postconditions nonexpressible. In other words we finesse a tricky

semantic question: D ∩ A = ∅ is forced.

Consider that there are at least three reasonable ways to define what hap-

pens when we say that a proposition is both deleted and added (D ∩ A , ∅).

We could have the add take precedence (which abstracts a use), or the delete

could take precedence (which abstracts its opposite, a lend), or the entire op-

eration might be regarded as self-contradictory (so, never executable). (Al-

ternatively we might regard the result as nondeterministic rather than outright

self-contradictory, which difference is, here, moot.)

The last interpretation is sometimes convenient when considering conditional

effects [139, 166]. Specifically consider an action stating both “when p then

set r true” and “when q then set r false”. Such simplifies to asserting that
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fluent r will be made either/both true/false, in the case that “p and q” holds

before. Taking such as ‘too ambiguous to live’ is natural.

Meaning we have another piece of evidence in support of the view that per-

mitting D∩A , ∅ so as to permit neatly fixing TGP’s behavior in B

is a kludge.

– A principled fix begins by observing a tendency. When TGP’s definition of

concurrency is erroneous we may often observe the existence of a shareable

—but only unit capacity—resource at a more detailed level of understanding

of the planning domain. We can, in general, fix such models by breaking the

task up into an acquisition-piece and a use+release-piece.

E.g., in B, the normal 4 action schema encoding generalized to

TGP definitions works just fine; then it is possible to delete availability of the

hand during the now separately modeled halves of a movement.

+ Note the relationship of the suggested manipulation to Interleaved Temporal

Planning. Specifically two points are (somewhat) in our favor: (i) our ap-

proach ultimately permits a slightly better version of the manipulation (we

can bound how long a shareable resource is exclusively held), and (ii) the

principled fix for TGP has significant negative computational consequences

(unlike strengthening the notion of mutex).

– Concerning (i), as TGP is duration-optimal so long as we respect its seman-

tics: that unabstracting loses the ability to bound the amount of time shared

resources are held is interesting, but, relatively unimportant. That is, the con-

straint that a block cannot be held up indefinitely is less important when the

planner is anyways going to minimize such intervals automatically.
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– TGP’s more permissive notion is of itself something of a computational ad-

vantage. (The associated equivalence relation is coarser, i.e., ‘better’.) It

is interesting to compare with classical planning, where similar computa-

tional advantages are easily sought (as the semantic differences are irrele-

vant) [114, 149, 196, 203].

Furthermore, with several hands, the weaker interpretation of mutual exclu-

sion lends itself towards modeling all the hands as a simple counter [189].

(Such is a related, but far more significant, computational boon.) In contrast,

lacking any notion of a shareable write-lock, more or less each hand would

need to be modeled as a full fledged entity in its own right (cf. [35]). Inso-

far as such fails to support useful abstraction, then the point is counterpoint

to (ii).

+ There is, of course, no impediment to generalizing our treatment to share-

able write-locks. Note that starting from entirely exclusive write-locks, the

simpler case, is the ‘right’ way.

Indeed, in general, the advantages for TGP can instead be sought as explicit

generalizations from a simpler workable case. Our treatment is such.

For philosophy instead: Even, perhaps especially, shades of meaning matter.

• From a user/domain-modeler perspective, ‘errors’ are significant regardless

of the engineering-difficulty of remedying the code. At a minimum—if an ex-

ternal workaround is possible/reasonable—such errors are “annoying”: “an-

noying” is, for example, commercially significant.

• To be more realistic, which only increases significance, planning technology,

particularly domain-independent planning technology, cannot really claim
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application status: planners are, at present, only typically useful as compo-

nent technology. So note that differences in formal meaning greatly hamper

treating software as components of a larger system. In other words, tools in

service of machines must be far more robust than tools in service of humans

(because machines are, as of yet, not nearly so intelligent as humans).

• Furthermore, to call this difference in the definition of mutex an “error” goes

too far. Both definitions are ‘right’: for subtly different purpose. So it would

be ‘wrong’ to pretend that the distinction in meaning is just some ‘bug’ (and

hence better left swept under the rug).

• In particular recall (from Brooks [122]) that the nastiest of bugs to find—in

a sense the most significant bugs of all—are those arising from perfectly rea-

sonable disagreement across the two sides of an interface. (Generally speak-

ing, two sides of an interface are easily consistent/reasonable in isolation, but

inconsistent when brought together.) In other words—a mere corollary of the

seminal software engineering theory of Brooks—shades of meaning are the

leading cause of project failures/delays.

• Then to be specific about our contribution here, by contrast with a ‘miscon-

tribution’ of Smith and Weld, consider the following. To say that “TGP is

duration-optimal” begs would-be users (humans or programmers) to substi-

tute concurrency for what in truth is a perfectly functional (generalization to

nonuniform durations of GP’s) formalization of parallelism. Such is
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a significant meta-problem, because the two notions are easily confused, and

the subtlety does in fact manifest on real-world23 problems.

• To boldy state that prior art is “miscontribution” requires elaboration. Partic-

ularly it is—extremely—unfair to evaluate algorithms designed for specified

formal semantics against differing semantics. To be more specific, first note

there are many ways to disambiguate concepts as vague as “parallelism” and

“concurrency”. Such disambiguation is crucial, because the various inter-

pretations are, naturally, logically contradictory. Then to criticize TGP for

implementing some interpretation differing from our own is—in form—an

empty criticism: our work (or any work whatsoever) may be, automatically,

criticized in symmetric/converse fashion.

In this particular case the criticism is at least halfway legitimate, and we can

prove so. The defense against this form of criticism is to be precise (and inter-

nally consistent): merely formalizing semantics goes a very long way towards

nullifying philosophical dispute. It is, then, a crucial piece of evidence that

the semantics of TGP are ambiguous. That point is especially telling when

the question is as foundational as the one asked here, which may be stated as

“Are effects mutex with the conditions they establish?”. The authors them-

selves disagreed upon the answer to that question: for at least a span of hours,

in person, with full recourse to whiteboards (etc.). Indeed, perhaps they still

disagree. We could, of course, determine easily enough the behavior of the

implementation. However, such point does nothing towards defense, in fact:

we can think of no cleaner way to prove that TGP-semantics may be legiti-

23B is not a “real-world” application, but it has proven itself to be a good benchmark:
issues apparent in B are, often enough, real-world issues.
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mately criticized as procedural (rather than declarative). In short there can

be no case in support of unambiguity of TGP-semantics.

Is our treatment any better? Naturally, we say yes. To evaluate that: realize

the significance of proving the correctness of the naı̈ve reductions to Graph

Theory (Theorems 3.1, 3.17, and 3.22). The proofs are trivial—the theorems

obvious—and that is why we may legitimately criticize TGP by evaluating it

against our philosophy/axioms/definitions: its are demonstrably ambiguous,

and ours are demonstrably unambiguous (that is, unambiguous relative to

sufficient background in Graph Theory).

• We may also, finally and arguably least significantly, point out significant

computational implications of the distinction between parallelism and con-

currency. Such tend to command, or at least receive, attention; however,

in the grand scheme of things, such tendency is slightly unfortunate. (The

disproof of direct significance of computational issues is irrefutable: human

computation is far and away more expensive than machine computation.) So,

with slight hesitation, we remark that parallelism versus concurrency here

correspond closely enough to: (1) reordering versus deordering of Back-

ström [8], and (2) Disjunctive Temporal Networks versus Simple Temporal

Networks [47]; in particular the computational difference in each case is the

same as (3) NP-complete versus polytime-solvable [125].

The superiority here is not face-value. We are ‘better’ here only in the sense

of simpler, for a reasonably objective definition of such (which is nice).

Simpler is better, though, only when sufficient. Hence the technical discus-

sion above of shareable write-locks. Specifically, for problems featuring con-

189



current modification of fluents (sometimes called “true concurrency”), our

treatment is more or less insufficient. In contrast, TGP can—in extremely

limited fashion—model shared write-locks (i.e., TGP permits shared write-

locks for the special case when all writers write the same value). Then, for

such problems, TGP is better by default: the treatment here is too simplistic

to compete.

Can we sum up? Well, perhaps the balance favors us. Still we cannot in good

faith claim that our Conservative Temporal Planning is hands-down better than TGP

-semantics. It is, at least, meaningfully different: better in some ways, worse in

others. Which is excuse enough to revisit the basic theory.

Then to conclude discussion of the relationship to TGP: The formalization of

“Conservative Temporal Planning” developed here is, to a certain degree, novel in

its particular approach to defining the precise relations between interference, mutual

exclusion, parallelism, and concurrency. We have opted for clarity/simplicity over

flexibility/generality. Such suits our purpose better in several ways: the two greatest

advantages follow. Our stance is better suited to a domain-independent perspective

(i.e., it ‘does the right thing’ without domain-modeling ‘hacks’). Furthermore it

better serves subsequent generalization (i.e., to the interleaved interpretation, which

shoulders responsibility for taking a less simplistic view upon action interference).

TGP aside, i.e., in general: It is worth our while to appreciate the distinction

between parallelism and concurrency.
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Figure 3.5: The bomb explodes whenever the two wires differ.
Enforcing that is awkward but possible in PDDL. In PDDL theory, simultaneously
cutting works. In practice, planners agree that some other method must be sought.

3.4.2 D  D, O: PDDL  U

To set the stage, consider the numerous puzzles in selecting temporal semantics.

Time Type Is time discrete or continuous?

Real-time Guarantees How is time measured? Are delays bounded [109, 154]?

Instantaneous Change Does reality obey a speed limit?

Divided Moment What happens while a fluent changes [2, 4, 71]?

Achilles and the Tortoise How do we prevent infinite action in finite time [145]?

Calculus Must we really insist upon sparseness of change?

Buridan’s Ass How do we prevent infinitely precise action? [136]?

Soup Bowl Must we really insist that agents have bounded precision [182]?

There tend to be quite a few reasonable answers to each, all worth investigating.

A tricky thing is to develop reasonable joint anwers (because the questions are

hardly logically independent of one another). It can also be tricky just to reasonably
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formalize what appears straightforward at the level of philosophy. At least, we

claim that the temporal semantics of PDDL possess such flaws (which our formal

treatment remedies).

(Jumping ahead:) Somewhat fairer is to claim only that most so-called imple-

mentations of temporal PDDL are flawed. Accordingly, temporal PDDL itself is

only meta-flawed: meaning we improve by picking easier to implement semantics.

Given the following level of hair-splitting, there is a fine point about our own

theory we should clarify up front. First we shall discuss the basic philosophy un-

derlying the design of our formal languages. Then we shall look deeper at the only

strikingly dubious aspect of the formal treatment not elsewhere discussed. Namely,

the definition of corresponding behaviors is easily taken as flawed with respect to

the machinery of vault transition functions.

Following that we discuss temporal PDDL from top to bottom (in relation to

our ITP). First we review the key philosophical points underlying temporal PDDL

specifically. Secondly we discuss the yet more abstract purpose—mixed discrete-

continuous planning—that temporal PDDL truly aims for. That sets the right con-

text for, third, poking a few holes in the specifics of the philosophy as applied to the

special case of discrete temporal planning. Fourth we ground some of those crit-

icisms into a specific counterexample (having to do with nuetralization of bombs)

of soundness of VAL. Later work, by that group and others, resolves (procedurally)

the issue, namely: “Bounded Precision”. We have built into our Interleaved Tempo-

ral Planning formalism what we take to be the equivalent declarative solution: fifth,

we elaborate upon the nature of this resolution both abstractly and with respect to

the example problem of nuetralizing bombs.
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Finally, when all is said and done, the lesson (or at least our claim) is just

that our ITP is a better way of naming, and reasoning about, the class of discrete

temporal planners that, for lack of better label, are termed temporal PDDL-planners.

Our specific recommendation is that official formal syntax be altered to better reflect

the implemented semantics.

1. Permit the use of “(over all . . . )” within “:effect”, i.e., permit durative dis-

crete change.

2. Forbid the use of “(at start . . . )”, “(at end . . . )”, and in general everything

purporting to be instantaneous.

The length of exposition far exceeds apparent significance. Indeed, the point we

are making here is relatively insignificant. We must desire to carry out truly formal

proof, equivalently to develop implementation, for the details being discussed to

matter. If otherwise, then continue to Page 227.

If so: for formal intents, the issues being discussed are rather non-obvious, and

thus, at that point, quite important. That is, it is easy to waste a great deal of effort in

general working with internally inconsistent definitions, and specifically the nature

of time and change are easily formalized in inconsistent fashion. Particularly for an

upper bound on temporal expressiveness equal to the intuition “discrete temporal

planning”: the points we are making here are quite worthwhile. Albeit, our informal

discussion in support is perhaps no better than simply baldly claiming authority; for

greater formality, the reader might prefer to investigate the stage initially set.
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3.4.2.1 Our Philosophy

We take reality to be Fundamentally Continuous. However, we take formal models

thereof to be Strictly Discrete. This is not a contradiction.

Let Z denote the (sole) behavior of a plan in the mind of a (deterministic) dis-

crete temporal planner, roughly: Z ∈Fluents
total
−→Q→Values· with each timeline Z f

∈Q→Values f

encodeable finitely (e.g., say each fluent changes finitely many times with respect to

the size of the plan) for each known fluent f ∈ Fluents (so for one thing
∣∣∣Values f

∣∣∣ ∈
N). Let Z∗ denote one possible ‘ground truth’ of behavior, i.e., as we imagine

it: Z ∈Fluents∗
total
−→R

total
−→R∗ with each real timeline Z∗f

∈R
total
−→R

k f being continuous, Z∗f (t) =

limx→t Z∗f (x), for each real fluent f ∈ Fluents∗ ⊃ Fluents (a superset of those mod-

eled), each taking value in some k f -dimensional Real vector space.

Let σ f ∈ R
k f → Values f denote the partial mapping of the true values of each

fluent into modeled values. For apparently ‘truly’ categorical fluents such as “the

color of Bob’s shirt”, the true value can be taken as the whole concerned distribu-

tion of electromagnetic wavelength, or if making the distinction, then instead the

true value can be taken as the entire electrochemical state of the observer’s brain.

Clearly we cannot expect to obtain even remotely perfect computational access to

such notions. Assume our imagination is at least halfway realistic: assume the

mapping σ—up to finite accuracy and precision—may be physically realized as a

analog-to-digital conversion from sensors. A little known fact, the study of which

refers to Buridan’s ass, is that it is best to assume, among other deeper properties,

that σ cannot be total [136].

Extend the discrete abstraction (σ) to whole timelines (by skipping over any

true values lacking discrete counterpart). So σ f (Z∗f ) is some hypothetical discrete

timeline a model might conceivably be able to represent and reason about.

194



For a model to be correct (i.e., sound) it must satisfy, for every plan it considers

executable, for each known fluent f ∈ Fluents, for every ‘ground truth’ behavior

Z∗f , with Z the modeled behavior of the plan:

Z f ⊆ σ f (Z∗f ), equivalently: (3.39)

Z f = σ f (Z∗f )�Dom(Z f ); (3.40)

it is also useful to keep in mind the reverse direction, as of course even just imagined

ground truth should still be kept separate from the planner’s grasp:

(
⋃
σ−1

f (Z f )) ∪ ((R \ Dom(Z f )) × R) ⊇ Z∗f . (3.41)

What the left-hand side of the last ‘looks like’ is a relation from values of time to

plausible Real values of each fluent at that time; when the model declines to take a

guess, then every value for the fluent is plausible. The notation is all very baroque

for stating such a notion so very far from earth-shattering as what it means for a

model to be correct. Indeed, it barely looks like the notation has said anything of

significance at all. Consider the following claims though.

Lemma 3.29. Keep in mind the assumptions that discrete abstractions be phys-

ically realizable, and operate in time-independent fashion. Discrete and sound

models of continuous change are never instantaneous.

Corollary 3.30. Well-motivated, discrete, sound models allow for—and consist

mostly of—durative change. In other words, instantaneous discrete sound changes

never abstract—in the limited sense of abstraction above—a continuous reality.
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Proof. For simplicity ignore the vector space issue (assume k f = 1). Argue by

contradiction. So assume a witness of instantaneous change in a discrete model

corresponding to a continuous reality.

For notation, let Z f (s) = u and Z f (t) = v be two discrete values of fluent f with

timeline Z f that hold over meeting intervals, i.e., with s ∈ S and t ∈ T such that

intervals S and T meet at time t∗. Consider any true timeline Z∗f of the fluent, which

is by assumption both continuous and not a counterexample to soundness of the

model (so Z f ⊆ σ f (Z∗f )).

From Lamport [136], we may assume that the pre-images of the fluent values,

σ−1(u) = U∗ and σ−1(v) = V∗, are non-meeting proper intervals (i.e., the plausible

Real values of the fluent before and after the change are intervals, but, non-meet-

ing). The core reason is that it is impossible to build a device that decides in finite

time whether a given Real value is, or is not, greater than any particular threshold.

Such devices are called arbiters, and Lamport proves that arbiters are as mythical

as deciders of the halting problem. The statement of the associated semantic puzzle

begins: Place Buridan’s ass precisely equidistant from food and water. Buridan’s

ass is (fatally) lazy. In particular, the hypothetical animal dies whilst contemplat-

ing forever which of the food and water is closer (for notation, Buridan’s ass dies

while trying to push sensor readings through a physical realization of σ to obtain

the value of the fluent proposition “Is the food or water closer?”). It sounds as if

the animal is simply too dumb to live, and that it is easy to circumvent the difficulty

of deciding which is closer. Like most such puzzles the truth goes far deeper: see

Lamport’s excellent treatment.

So there exists a non-empty (perhaps degenerate) interval W∗ such that U∗, V∗,

and W∗ are disjoint and their union is an interval (with W∗ lying between U∗ and
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V∗). Then note that the left-limit at t∗ belongs to at most U∗ ∪ W∗; the right-limit

belongs to at most V∗ ∪W∗. (Without loss of generality, because our aim is only to

demonstrate non-existence of the two-sided limit, assume that both one-sided limits

exist.) In particular note that the limit at the meeting time only exists if both the left

-limit and right-limit belong to W∗ (which will mean that W∗ is indeed degenerate).

At least one of S or T contains t∗. Then either the left-limit ` = lim−x→t∗ Z∗f (t
∗) ∈

U∗ is a pre-image of the before-value u—and so not in W∗—because it is the

earlier interval S that contains the meeting time (t∗ ∈ S ), or the right-limit r =

lim+x→t∗ Z∗f (t
∗) ∈ V∗ is a pre-image of the after-value v—and so not in W∗—because

it is the later interval T that contains the meeting time (t∗ ∈ T ). That is, one of the

two limits is just the direct value of the fluent at that time, which the model declares

as corresponding to only one of u or v. Therefore the two limits are not equal, ` , r,

as at least one of them does not belong to W∗.

Hence the limit at the meeting time is undefined: contradicting, which suffices,

the assumed continuity of ground truth. �

This perspective allows us to be confident that our semantics will always be,

more or less, sound with respect to the real world. That is, taking the real world to

be fundamentally continuous goes a very long way towards getting every question

correct to high precision. Then the semantics are conservative/pessimistic. (If we

deem something a solution there really is every reason to suppose it could work in

truth.) On the plus side that means such planners will reach the desired conclusion

in domains such as the bomb-defusing domain depicted in Figure 3.5: trying to

cut two wires perfectly simultaneously is physically impossible (failing to realize

which leads to explosion).
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The downside concerns reasonably natural models we would rather, in contrast,

call solvable. Namely, in the soup-bowl domain, we would like to say that a bowl

of soup may be lifted from both sides without spilling its contents [182]. Unfortu-

nately, in essense, entirely reasonable and natural formal models of the two domains

are easily the same up to renaming of symbols. (Lifting two sides of a bowl and cut-

ting two wires easily look identical to a domain-independent planner.) That is, we

want to label the two domains differently, but our hands are tied: we must consider

them equally solvable/unsolvable.

Note that either choice may be extended to a logically consistent formal the-

ory. Hence it is important to make this choice of semantics abundantly clear, and,

as much as possible, evident in external syntax. That is, it should be obvious to a

domain modeler whether this is the kind of language that makes the bomb-defus-

ing domain easy to model correctly, or the kind favoring the soup-bowl domain.

In other words, we should aim for formal syntax exposing the idea that reality is

fundamentally continuous.

The exactly opposite alternative is of course to imagine that reality is fundamen-

tally discontinuous (a.k.a. discrete, quantum, digital). This is the sort of philosophy

that favors the soup-bowl domain. Now, we can still model any domain in any for-

malism: it is just that we pay a price. Then it is interesting to look a little deeper at

the price we pay here. Perhaps the single best counter-to-continuous-and-vaguely-

realistic application of planning technique is the domain of digital electronics.

Digital Electronics Viewed Continuously. For digial electronics, a/the natural phi-

losophy concerns square waves. (Piecewise-constant functions with values only 0

or 1, changing at most at, and instantaneously at, multiples of some constant Real
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µ.) Our philosophy, and formal languages, forbid the modeling of square waves:

all changes to fluents must have positive duration. We can, though, at the level of

philosophy, permit, for example, trapezoidal waves. (Continuous, piecewise-lin-

ear, bounded by 0 and 1, non-zero slope only in kµ + [x, y] for arbitrary Integer

k, and constant Reals x, y, and µ, with y − x ≤ µ.) Subsequently we can blank

out the sloping regions, yielding something almost like a square wave. (Piecewise,

0 or 1, continuous where defined, undefined at most for handfuls of gate delays

surrounding clock ticks.) In other words, what were instantaneous transitions be-

come instead very short duration transitions; replacing degenerate intervals by tiny

intervals everywhere is a straightforward manipulation. Interestingly enough, the

model thereby obtained is a (i) more accurate description of circuit dynamics (we

could, for example, consider calculating the optimal clock frequency, or even per-

haps have the machine dynamically adjust clock frequency [can we clock branch

-free machine code faster?]), and (ii) essentially no more difficult to reason with

(we anyways had to reason about proper intervals, if anything, it is only easier to

address always nonzero duration intervals).

The hypothetical sacrifice seems, then, to be bounded by the loss that stems

from simply being nonconventional. So, that the sacrifice (of applying a fundamen-

tally continuous view to a/the canonically discrete domain) is tolerable, perhaps

interesting, is a significant point in favor of our treatment.

Naturally, that we claim we have a particular philosophy hardly guarantees that

the formal theory is in fact faithful. There are indeed quite a few dubious oddities

of the formal definitions to consider carefully; we briefly discussed several, for

example, at the beginning of this chapter. One particular oddity is not elsewhere

resolved, and thematically fits well here, i.e., next.
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3.4.2.2 Intervals of Definition versus Extent

A striking oddity of the formal definitions concerns corresponding behaviors. More

specifically the interval of definition of a lock, denoted by the relation ∈̃, would ap-

pear to conflict with the definition of vault transition functions. That is, elsewhere

and intitally we say locks have right-half-open temporal extents, i.e., regarding the

precise hand-off between when one releases and the next acquires. Such statement

renders the later definition of ∈̃ (perhaps) counter-intuitive. In notation, an ‘obvi-

ous’ relation to write in support of corresponding behavior is:

(∈̃) ,
{
(t, `) | Readable` and t ∈ [Acquired`,Released`)

}
,

because that matches the notion that locks have right-half-open temporal extent

from their acquisition-time to their release-time. (That is, intuitively speaking, from

one angle, the interval of definition for a read-lock ‘should be’ its interval of extent,

and, for a write-lock, empty.) Then in contrast, consider the relation we in fact

define:

(∈̃) B
{
(t, `) | t ∈ if Readable` then [Acquired`,Released`] else {Released`}

}
.

There is a perfectly reasonable explanation for why the expressions differ. The in-

terval of extent of a lock is just what it sounds like: when the fluent must not

be further accessed (because further concurrent access would be formally ambigu-

ous/unpredictable), i.e., when locked. The interval of definition of a lock is also

what it purports to be: when the fluent’s value is surely known/predictable, i.e.,

when unambiguously defined by the formal model. The two differ notably because
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we assume continuity, so, in particular and short: the interval of definition is, es-

sentially, the closure of the interval of extent with respect to the limiting equation

( f (t) = limx→t f (x)) defining continuity of functions.

Incidentally, correctness here is in regards to intuition: we already went through

the exercise of demonstrating internal/logical consistency of the definition of cor-

responding behaviors (see Propositions 3.9 and 3.10). This exercise is about exter-

nal/physical consistency with the claimed philosophy. The proof is long only to be

at a sufficiently precise level that similar attempt for temporal PDDL would fail. The

property itself is supposed to be intuitively clear, relative to grasping the arguably

subtle distinction between reality, philosophy, and formalism.

Lemma 3.31. Corresponding behaviors of CTP and ITP are discrete abstractions of

continuous functions, in the sense of Lemma 3.29. Moreover, such are ‘maximally

assertive’ as defined in the proof, meaning: the structures encode all and only those

predictions that are formally warranted.

Proof. Recall the definition of the behavior corresponding to a formal execution

X: Behavior(X) =
{
( f , t)→ StateY | t ∈̃ VaultY( f ) and Y ∈ Rng(X)

}
. The claims are

that ‘any’ other such mapping from an exection X to a function of that type—the

intuitive type for the ‘meaning’ of a plan—asserts either too much or too little. To

assert too much would be to violate abstraction from a continuous ‘reality’. To

assert too little would be to say anything less than maximally possible subject to

that.

Maximally Assertive up to Decomposability. We should first clarify a methodolog-

ical meta-constraint: we desire that these intuitive semantics for formal executions

be compositional. At first pass that means just that the behavior of an execu-
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tion must always be a superfunction of the behavior of any of its prefixes. More

specifically we mean that any competing definition must be incrementally com-

putable in the sense that there exist an update rule r such that: Behavior((X)[0,n]) =

r(Behavior((X)[0,n−1]), Xn). It follows—upon considerable reflection—that our only

competing choices for the definition of corresponding behaviors vary just the mean-

ing of the relation (∈̃).

So the task comes down to identifying the maximal expression for the so-called

“interval of definition”, (∈̃). To be more precise the task is to deduce from the

current lock the largest set of times for which the current value (as recorded in

the corresponding state) is guaranteed—by the domain modeler—to be an accurate

discrete abstraction of the imagined, continuous, behavior.

Then recall, from above, the two candidate expressions for the interval of def-

inition. The former is the ‘minimal’ candidate: ‘clearly’ whenever a fluent is read

-locked we could (and so must) assert that the fluent’s value is predictable. Then

it suffices to demonstrate that the maximal candidate is as is written, namely: the

interval of definition consists of adding in just the release times of locks. (That is

all and only the difference between the expressions; particularly, even write-locks,

perhaps counter-intuitively, possess an interval of definition.) First let us elaborate

correctness of all but the slightly tricky part, and second discuss what is happening

with the behaviors of fluents at the release times of locks.

Keep in mind that the value stored in the corresponding state by the machinery

is the value that will persist after the lock is released. In other words, the “current

value” as recorded by the machinery is, in particular, the left-limit of value at the

release time of the current lock.
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Case: Read-locks, [Acquired,Released).. During the extent of a read-lock there is

no issue in asserting that: the true behavior of the fluent really will correspond to

that constant value the formal model ensures over that interval. In short, the full

extent of read-locks can, and so must, be included in (∈̃).

To be exceedingly precise, first note that read-locks ensure no other situation

of the formal execution will ever declare a write-lock on those times read-locked.

So no change will ever said to be occurring at those times: the formal value of

the fluent is had by persistence. Hence—by the Frame Axiom—(1) we may assert

that (2) the domain modeler means to guarantee that (3) the real behavior of the

fluent will also merely persist. The two notions of persistence, in turn, mean most

precisely that the true behavior will be ‘sufficiently constant’ with respect to the

formal behavior: in the sense that it is the domain modeler that guarantees that

whenever the formal value is had by persistence, and so is constant, then indeed

the real value is had by persistence, meaning “constant up to some tolerance”, i.e.,

meaning that the real behavior lies strictly within the preimage (with respect to the

domain modeler’s notion of discrete abstraction) of the formal value. In short the

‘contract’ of domain modeling simply includes, in our formalisms, satisfaction of

the Frame Axiom: from which immediately follows the case.

Case: Write-locks, (Acquired,Released).. From the preceding discussion of philos-

ophy, i.e., for continuity, we know that any periods of change must be modeled as

proper intervals of undefined value. Meaning that, during at least the interior of

a write-lock, we must not assert that the corresponding behavior of the fluent is

defined. In short, the interior of write-locks must be excluded from (∈̃).
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To be precise, the technical point to be verified is: the machinery ensures that

existence of a write-lock in the midst of an execution ensures that no other situation

of that execution will ever declare any other locks on those times lying within the

extent of the write-lock. Hence the formal value of the fluent over the extent of a

write-lock is had by the definition of assignment. Then it is the responsibility of

the domain modeler to ensure that the true value is also had by the corresponding

notion. So for reference, the meaning of an assignment—an axiom of our intuitive

semantics—with respect to true behaviors is: the true behavior of the fluent during

an assignment is some arbitrary continuous function, connecting the arbitrary initial

value it had at the time the effect began, to some unknown final value it will have

at the time the effect finishes, for which it is guaranteed—by the domain modeler

—that the discrete abstraction of the unknown final value will indeed be as given in

the formal assignment statement. Therefore the case: we cannot, and so must not,

make any definite predictions about the strict interior of the interval over which

write-locks hold.

Case: Write-locks, [Acquired].. By the time locks are acquired the former value is

forgotten/overwritten. So the acquisition-time of a write-lock must also be excluded

from (∈̃).

To be precise, we can predict (at a higher level of understanding), due to conti-

nuity, the value of a fluent at the acquisition time of a write-lock. However, due to

the specifics of asking that semantics be compositional, we lack the requisite flex-

ibility to make that prediction from this case. Instead it is the former lock that can

and so shall take responsibility for making the prediction.
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Case: [Released].. To be perfectly clear: The release time of a lock does not ‘be-

long’ to that lock. Rather it is the next lock that ‘owns’ the time. Nonetheless we

can and must include release times in (∈̃).

Consider for a moment that the next lock could be either a read-lock or a write

-lock. As it so happens, the type is immaterial: i.e., just recall continuity. Specif-

ically, even though the fluent might be changing at that time, i.e., write-locked at

that time, it is also true that the fluent cannot possibly—by the assumption of con-

tinuity—immediately change its value. So regardless of the types of locks either

before or after the release time in question, the release time can, and so must, be

included in (∈̃).

To be more precise note that always the left-limit, right-limit, and actual value

must all be the same in the true behavior. Then in particular we know the discrete

abstraction of the left-limit of the release-time: such is the current value as recorded

by the machinery. Hence we know, too, the (discrete abstractions of the) actual

value and right-limit at the release-time. Therefore we may correctly assert—and

so must—that the fluent’s value will be predictable/defined at that time. �

Is such fuss over grabbing a single extra point in time really warranted? Indeed:

a behavior is supposed to be a complete account of what humans intuitively perceive

to be the meaning of temporal plans.

So consider automatically generating driving directions. Driving is an inher-

ently uncertain activity. Then we cannot view directions as a naı̈ve schedule of

actions by start-times. That said, we could think of directions as consisting of ac-

tions scheduled by a far more abstract notion of the set of ‘clocks’ that emit a single

tick when each senses the appropriate road signage (landmark, etc.).
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We can generate such structures starting from even our simple sort of temporal

planning (a CTP-planner would make sense, in particular). First we would generate

a nominal temporal plan, based off of expected durations.

Secretly, i.e., outside the planner, we know full well about the uncertainty. (Re-

garding that uncertainty: the hypothetical system as a whole would do exactly what

real navigation systems do, which is replan when things go wrong.) So secondly we

would take the plan it produces, calculate its behavior, and extract from that those

changes in fluent values that are simultaneous with the nominal start-times.

Thirdly we would apply background knowledge about what fluents humans can

and cannot readily sense, and so filter the set of expected observations down. If

that was still too many observations per time point, then we might rank them by

usefulness and just pick the top k or some such.

In the end we would take the expected, filtered, observations and substitute for

the start-times. The result is a set of driving actions ‘scheduled’ by observations,

i.e.: driving directions.

Then reflect carefully on what the behavior of a driving plan would look like.

A driving plan is a sequence of actions. Each immediately write-locks, in particu-

lar, the location of the car: in general all fluents are changing at essentially all times

(particularly the location of the car is always changing). So essentially the only

predictions we will be able to model—in a strictly discrete model—are those in-

stantaneous values that these fluents have at the precise instants that control of each

gets handed off between each pair of temporally adjacent driving actions. Hence

∈̃: to ensure that when write-locks meet, we declare that the value in the instant

between them is known.

To wrapup:
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• Our philosophy is that reality is fundamentally continuous.

• Our strictly discrete formalization thereof is entirely faithful.

• We can prove that claim—when pressed—down to the smallest of details.

Such is a nice little improvement upon existing theory for an important niche.

Specifically our formal treatment is rather convenient for better working with that

fragment of temporal planning closest to classical planning.

It is hard to appreciate the value of the contribution without considering the

meta-problem resolved. So next we shall harangue temporal PDDL. The balance of

the matter, is, of course, that its merits far outstrip its flaws. Indeed, our treatment

cannot stand apart; formally defining syntax is, for example, quite important, and

we do not. Note that it is easy to read semantics as more important than syntax: that

is false. In practice, concrete example communicates meaning far more effectively

than abstract notation. (Syntax is the 80%; semantics is the 20%.) In short our aim

is merely to improve upon select pieces of temporal PDDL, not to supplant it. Then

to understand the following critique, keep in mind that the intent is only to reflect

well upon the value of our contribution. In particular, the following is nothing like

a fair and balanced discussion of the merits and flaws of temporal PDDL.

3.4.2.3 Selected Philosophy of Temporal PDDL

The following is a reasonably accurate portrayal of several of the key semantic

choices underlying the formal details of temporal PDDL [71].24

24The specification, to be accurate, defines 5 languages. The syntactic features are durative
actions, numeric fluents, and continuous effects. The last are only possible/interesting with both of
the former (so 5, not 8, possibilities). Support for continuous effects, particularly in any general
fashion (i.e., more than strictly linear change), is notably lacking (so 4 possibilities remain). First-
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No Moving Targets The value of a fluent is undefined while changing, i.e., “is a

moving target”. The upshot is that mutex means essentially the same thing

here and there: primitives are mutually exclusive when either writes to a

dependency of the other.

Nonzero Separation Mutually exclusive (dispatches of) primitives must be sepa-

rated from one another (in time) by a proper interval.

Bounded Precision No physical agent can guarantee dispatching a primitive arbi-

trarily precisely.

Then for one thing, guaranteeing that one primitive occur strictly after, yet

arbitrarily close to, another is considered deific. Formally: so there must

exist some constant ε > 0 such that the separations between mutex primitives

are at least ε long. By “constant” we mean that a planner’s task is to find a

plan for a fixed agent: ε, i.e., the inverse of a clock frequency, is chosen prior

to planning.

Instantaneous Primitives All primitives (effects, changes, transitions, events, “to

do”, . . . ) are, ‘without loss of generality’, instantaneous.

Durative Constraints Constraints (invariants, states, “to be”, . . . ), but not effects,

may be durative. Durative entities are not “primitive”: hence exempt from

the rules governing primitives.

Note that any dispute is philosophical: these statements amount to axioms.

class numeric fluents—in contrast with, say, using numbers only to track (complex) notions of plan
quality—introduce difficult computational issues [101]. For example, first-class treatment easily
permits encoding/simulating arbitrary Turing Machines (i.e., write out the number in binary). Much
of the state of the art understandably avoids such unbounded use of numbers. So in short we, by and
large, pretend the specification defines just 2 languages: without, and with, durative actions.
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3.4.2.4 A Practical Shortcoming of Mixed Discrete-Continuous Planning

Abstractly enough, the philosophy underlying temporal PDDL is—in isolation—

entirely reasonable. Specifically, imagine the reality of causality to consist of just

continuous and durative processes separated by discrete and instantaneous events.

For example, movement is easily perceived as the durative and continuous process

of navigating from here to there:

1. decide to start navigating, subsequently

2. while time passes, actually carry out said process, and finally

3. decide to stop navigating.

In general we could always model reality this way, which is what is meant by “rea-

sonable”; Hybrid Automata, and moreso PDDL+, are formal treatments [70, 111].

That said, there is a significant drawback to mixed discrete-continuous plan-

ning: its computational characteristics. Particularly, formal treatments of such are

too general, relative to present domain-independent automated planning technique,

to permit effective implementation. (Implementations are domain-dependent or in-

effective [12, 137, 154, 168].)

Oddly enough, at the same time as being overly general, said formalisms fail

to subsume present technique. By which we mean that the details fail to permit

natural expression of a key special case: discrete temporal planning problems. Such

is a notable shortcoming. A specific negative consequence is that many so-called

temporal PDDL planners deliberately alter its semantics, procedurally, in order to

address the shortcoming. That greatly hampers the value of empirical analysis.

To fix this, it is theory that needs to change: the deviations are too pronounced

to label as ‘bugs’. Specifically, the lesson here that emerges from practice is that

209



durative discrete change is too important to ignore (that is, too important to support

only via compilation). So for concreteness:

“(over all . . . )” should be legal syntax within “:effect”.

Formally the (nonobviously) relevant theoretical point to be made is:

Proposition 3.32. The labeled graphs called Hybrid Automata (which best formal-

ize temporal PDDL, see PDDL+ [70]) are disjoint from both (1) the labeled graphs

that serve as formal semantics for Conservative Temporal Planning, as well as (2)

the labeled graphs that serve as formal semantics for Interleaved Temporal Plan-

ning.

Proof. Discrete change must occur instantaneously in Hybrid Automata (which is

also true of temporal PDDL and PDDL+). Discrete change must occur non-instan-

taneously in both Conservative Temporal Planning and Interleaved Temporal Plan-

ning. �

In other words, Hybrid Automata associate (proper) intervals of time with only

vertices; conversely, we associate (proper) intervals of time with only edges.

In a sense the choice is arbitrary. So in isolation, the formal semantics of Hybrid

Automata are entirely reasonable. However, for the purpose of temporally gener-

alizing classical planning technique, it is evidentally (i.e., in practice) significantly

preferable to ascribe durations to edges/actions.

At least, such seems to us to be a/the right way to reconcile temporal planning

theory with the current practice concerning the precise meaning of discrete and

continuous. Specifically, in theory, the two are taken as perfect antonyms. How-

ever, in truth—the truth that practice recognizes—neither discrete nor discontinu-

ous need imply one another. Explaining such is our real purpose here (in contrast
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with the means, haranguing PDDL, to that end). Particularly the notion that dis-

crete (to a planner) need not imply discontinuous (to a domain modeler) calls for

the significant mental gymnastics we began with (i.e., we must separate the lev-

els of interpretation, because indeed discrete does imply discontinuous within one

level of interpretation).

3.4.2.5 Selected Semantic Flaws of Temporal PDDL

While the most basic philosophy underlying Temporal PDDL (“mixed discrete-con-

tinuous planning”) is entirely reasonable, the specializations made by the specifi-

cation are dubious in certain respects. That is particularly true when we consider a

key special case: exclude continuous change. We take issue with:

• It is dubious to insist that all effects be primitive and instantaneous, cf. “Du-

rative Constraints” and “Instantaneous Primitives”, as such loses natural ex-

pression of processes.

We could ‘express’ processes by compiling into just events and invariants.

However, modeling causality as just invariants+events is notably less well-

motivated than modeling causality as just processes+events.

• Taking invariants (“over all” conditions) to have the semantics of processes

(cf. “Durative Constraints”), that is, exempt from the rules governing primi-

tives, is dubious. Such is especially true when invariants are the only syntax

that ends up with process semantics.25

25By “process semantics” we mean, expressed syntactically, that the specification implicitly asks
us to reread “(over all . . . )” conditions as “(over all (left-limit . . . ))” conditions. So more formally
the PDDL-syntax “(over all φ)” in theory has meaning resembling “∀t : φ(lim−x→t Z(·, x))”, instead
of the conceptually simpler expression “∀t : φ(Z(·, t))”. (By “Z(·, t)” we mean the partially defined
state, i.e., skip over any undefined fluents, at time t with respect to the behavior Z of the plan of

211



For example, two actions, starting simultaneously, respectively with condi-

tion “(at start (or p q))” and effect “(at start p)” are said to violate the “No

Moving Targets” rule. Yet the quite similar condition “(over all (or p q))” is

held to be exempt; PDDL permits that invariant to be concurrent with instan-

taneous effects on “p” or “q”. Such exemption is dubious at best.

Consider that it is natural to interpret “(over all . . . )” as meaning something

like “(forall (?t - all) (at ?t . . . ))”.26 That is, it is natural to interpret durative

conditions as being equivalent to the corresponding infinite set of instanta-

neous conditions. Such is, counter-intuitively, and to no technical advantage

in context, false of PDDL. In short it seems strictly better to just call invariants

“primitive”: treat instantaneous and durative conditions the same.

• Insisting that plans be plausibly executable by physical agents (“Bounded

Precision”) subsumes “Nonzero Separation”. Usually we prefer to omit re-

dundant axioms.

• The “No Moving Targets” rule is dubious given “Instantaneous Primitives”,

doubly so given “Bounded Precision”. Intuitively speaking, when all change

is instantaneous, there is no “moving” to speak of. The relevance of bounded

precision is as follows.

• An additional consequence—besides ε-separation—of “Bounded Precision”

is that physical agents cannot guarantee simultaneity. To hit both birds with

one stone: temporal planners ought to verify that the nominal schedule will

interest.) Note that, while exempting limits from the “No Moving Targets” rule does make sense,
excluding expression of the conceptually simpler kind of invariant does not.

26Quantifying through time values, and specifying intervals besides start/end/all, is not legal
PDDL-syntax. ZENO is perfectly happy with such notions [168].
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work even with tiny errors (a.k.a. perturbations/delays) introduced through-

out. Firstly: efficiently and correctly enforcing that constraint is tricky, to

say the least. Secondly: if/when enforcing that constraint, the “No Moving

Targets” rule becomes meaningless (indeed, detrimental), as follows.

Consider any two instantaneous effects scheduled closer than ε to one an-

other. It is natural to suppose that the space of perturbations the planner

should consider may be usefully divided in half: one half for each of the two

possible orders the effects occur in. Which is to say that it is natural to ex-

clude the third possibility: the effects occur in neither order, i.e., they occur

simultaneously.27 For analogy, let us pretend that flipping a coin has only two

possible outcomes. In short, there is no value, in practice, to worrying about

perfect simultaneity of instantaneous effects.

Then note that, given both “Instantaneous Primitives” and “Bounded Pre-

cision”, the “No Moving Targets” rule is at best irrelevant (if we exclude

consideration of perfect simultaneity), and at worst detrimental (when con-

sideration thereof leads to rejecting reasonable plans).

3.4.2.6 Counterexample to VAL-Soundness: The Bomb-Defusing Domain

It is challenging to merely formalize, let alone (correctly) implement, the philos-

ophy of Temporal PDDL. Here we shall show that, indeed, even the specification

fails to correctly formalize its own philosophy: Temporal PDDL is unsound with re-

27A formal argument against simultaneity leverages: independently chosen Reals are precisely
equal, i.e., to infinitely many significant figures, with probability 0. Clearly infinitely improbable is
close enough to impossible for any practical purpose. As it turns out (typically counterintuitively),
even for pure theory it makes sense to define (1/2)∞ B limk(1/2)k = 0. I.e., infinitely improbable and
impossible are perfect synonyms in Real Analysis. Nonstandard Analysis permits distinguishing,
i.e., there “0 < (1/2)∞ < (1/2)k” holds for finite k.
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spect to ‘itself’. (So we find it especially compelling to forgive, and work towards

understanding, noncomformance of so-called implementations.)

For concreteness, consider a compelling potential application of planning tech-

nology to modern warfare: Semi-Autonomous Robotic Nuetralization of Improvised

Explosives. Fielding such an application involves numerous challenges, easily far

beyond the scope we consider, only the least of which concern temporal reasoning.

So the motivation is one-way. Specifically consider the super-special case where

we have a perfect model of the bomb in question, perfect motors, perfect sensors,

devil-may-care human operator(s), and so forth.

Now, some bombs are such that water nuetralizes the fuse, rendering the bomb

useless; alternatively water might nuetralize the explosive material itself. So some-

times the best plan is to dunk the bomb in the nearest toilet. Other bombs are low

-power enough that the best plan is to deliberately detonate them in a reinforced

chamber. Occasionally physical access to an electronic fuse is possible (always so

in Hollywood): the best plan could be to cut (and/or short) wires.

Any wrong choice, though, of plan is typically fatal (achieving that is of course

a large part of the goal of the bomb-designer). For example, cutting the wrong wire

is fatal. Moving bombs with fuses containing accelerometers is surely also a bad

idea. Any chemist worth her salt could name explosives that react despite, or even

because of, aqueous environment.

So making the right choice is crucial. In particular a technical challenge that

would really matter is making the best possible choice given uncertainty about the

nature of the bomb. (Robots are especially compelling here insofar as few, if any,

are willing to declare a dollar figure on human life.) That is, it is—of course—en-

tirely unrealistic to suppose that we might, in general, have perfect (or near-perfect)
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knowledge of a bomb’s design. But just suppose we were so fortunate. (Perhaps

that is because the larger system is choosing to individually reason about a limited

number of especially plausible designs, i.e., given, say, background/expert/opera-

tor-provided knowledge on likely fuses.) Surely, given a perfect model, we wish to

(have our planners automatically and) perfectly evaluate which nuetralization plans

succeed and which fail.

Specifically consider the following anti-nuetralization-motivated modification

of an electronic fuse. Take the original design (say red), duplicate it (say blue), and

everywhere insert additional circuitry to check that each (red) wire and its (blue)

twin are always equal. So if ever the equality check fails, then immediately deto-

nate.

Then counter-terrorist plans working from physical modification of the circuitry

(i.e., cutting and shorting wires) are greatly hampered by the modification. Partic-

ularly, such plans must somehow preserve all these invariants equating the digital

logic values of the red and blue wires: to cut any wire, we must cut its twin pre-

cisely simultaneously. Such is a conclusion we want the planner to automatically

reach on its own power (meaning we wish to model the domain without exploit-

ing the problem-specific observation), and, from there, make the correct follow-up:

cutting wires is a very poor approach to disarming such a bomb.

Well and truly modeling the domain and problem in temporal PDDL is no simple

thing. One particularly vexing syntactic shortcoming is effective support for mod-

eling of domain invariants/trajectory constraints in general. Let us claim without

proof that it is possible to pull the feat off.

To give some small taste of the details, see Figure 3.5. The figure is attempt-

ing to sketch a planner’s perspective on the behavior of two candidate plans: (1)

215



cut a red wire and its blue twin precisely simultaneously (at a moment when the

compilation of the invariant-checking—red wires must equal blue wires, else ex-

plosion—could surely28 formally permit access) versus (2) dunk the bomb in water

(which, suppose, bypasses relevance of the circuitry, because the explosive itself

is nuetralized). So the point here is just that PDDL planners ought to consider the

perturbations of the wire-cutting plan; it is not enough to gaze at just the nominal

behavior depicted.

Particularly, while the nominal behavior passes all the formal tests, no perturba-

tion would. Then as long as the planner considers such perturbations, it will realize

the superiority of dunking over wire-cutting for this particular bomb, and so surely

make the correct choice. Otherwise the planner will mistakenly sign off on cor-

rectness of the wire-cutting plan, perhaps even preferring it. Let us abstract the

mistake: the wire-cutting plan is incorrect because it requires precise simultaneity

of instantaneous effects belonging to distinct actions.

Very long story short: the philosophical point named “Bounded Precision” is

indeed well-motivated. In particular, physical agents cannot, in general, guarantee

simultaneity of instantaneous effects. This should all be relatively unsurprising.

What is astonishing however is that the specification—despite similar discussion—

28In a sense the detail of Figure 3.5 regarding compilation of invariant-checking is unnecessary.
That is because invariants are already supposed to permit concurrent modification of the underlying
fluents, i.e., to possess “process semantics”. However, such point is preciously fine and quite counter
-intuitive to boot. In particular, implementations do not respect such reading of “(over all . . . )”: nor
do we. While such semantics are not, in practice, directly expressible, we can nonetheless exploit
compilation techniques to obtain (close enough) expression thereof. We note that, in the design-
space of temporal PDDL, appeal to even rather nasty compilation (for lack of syntax) is legitimate,
if not encouraged. Specifically the figure is sketching the general solution—following Halsey [72]
—to reducing limit calculations into non-limit calculations in the context of only discrete change.
Doing so is conceptually easy, because with only discrete change, functions of time are piecewise-
constant (and limits of constants are just the constants themselves). The details, though, are messy
enough to take note of, as similarly discussed at far greater length by Smith [186].
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fails to correctly formalize this particular consequence of “Bounded Precision”. We

can more or less formally prove that in reasonable space. Indeed, we already have,

long ago: at the beginning of this chapter. To recap:

Theorem 3.33 (PDDL is Unsound). The given formalization of temporal PDDL is

unsound with respect to its own philosophy: it permits problems solvable only by

scheduling independent actions precisely simultaneously, in violation of “Bounded

Precision”. As manually validating plans against the formal semantics of temporal

PDDL is arguably too lengthy to be reasonable, consider instead the behavior of

VAL [119], which exists precisely to automate such validation. Then formally:

There exists a temporal planning domain and problem in PDDL-syntax such

that every VAL-solution schedules instantaneous effects of distinct actions precisely

simultaneously.

Proof Sketch. Specifically, Figure 3.1 witnesses. In setting up that initial motiva-

tion we claimed that implementations reject solvability of the syntax. That is only

almost true. VAL, in particular, accepts solvability of the given problem, which the

reader may verify readily: the syntax of the figure is entirely legitimate (so copy-

/paste the domain, problem and plan into separate files, and run the program on

them). That every perturbation is a nonsolution is easily seen.29

The reader may also of course just manually simulate the formal specification,

which result will further confirm. �

29Technically VAL preprocesses plans in an odd manner regarding events closer than ε/c together
(it rounds the later dispatch-time down to the earlier one), for c = 10 as I recall, which is plainly a
bug (i.e., has no basis in the specification, and precious little basis in philosophy). Particularly we
may exploit the behavior to convince VAL to sign off on plans that it would (and should) normally
reject due to violating ε-separation. In short that is because ε-separation is not a transitive concept,
and the design assumes it is. Entirely disabling that preprocessing has unclear downstream effect
in general. As far as the proof that VAL is unsound goes though, such disabling is fine as far as
the counterexample goes, because the flaw has to do with “(over all . . . )” conditions, which are
anyways supposed to be exempt from the details of ε-separation.
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3.4.2.7 Discussion: Explanation and Resolution of Unsoundness of VAL/PDDL

The ‘reason’ that VAL fails here is straightforward enough: to correctly formal-

ize/implement “Bounded Precision” we must start by distinguishing between the

nominal and perturbed behaviors of schedules. However, the official plan validator

(and for that matter the formal side of the specification) only associate plans/sched-

ules with a nominal behavior. This is no simple oversight: calculating infinitely

many (perturbed) behaviors is hardly feasible. So we should desire formalization

and proof of rescheduling flexibility: to implement “Bounded Precision” we could

aim for constraining nominal behaviors far enough that of necessity all perturbed

behaviors would pass muster as well. At that point we could justify checking plan

correctness by calculating only a single behavior.

Then we explain the error of the formal specification by saying that it skips

proper demonstration of “Bounded Precision”. To be specific, the specification as-

sumes, falsely, that, in the absence of continuous effects, the appropriate theorem

follows just from its formalization of ε-separation between establishers of instan-

taneous conditions and the conditions themselves.30 However, the desired theorem

only almost follows.

The easiest way to disprove is just to exploit the exemption of durative con-

ditions from the rules regarding primitives (i.e., as Figure 3.1 does). As it turns

out, that exploit is a bit of red herring: the desired theorem remains false even

30The details of ε-separation are, incidentally, far from entirely clear, even subsequent to under-
standing the source code of VAL. That is because it is apparent that the code is buggy with respect
to ε, hence sheds no light. Which brings up the point that, unfortunately, such bugs greatly under-
mine the proof strategy of our theorem (appeal to the behavior of VAL). So for one thing there really
is some value to manual verification. Slightly more realistically we refer the reader to Haslum’s In-
dependent VALidator (IVAL) [98]. Haslum’s contribution is straightforward and quite significant
practically: we can be rather more confident in our conclusions about PDDL when manual simula-
tion of the specification, VAL, and IVAL all appear to agree. Unfortunately, IVAL does not support
temporal plans (future work?).
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when interpreting durative conditions as subject to ε-separation requirements. We

emphasize the semantic detail anyways, because later work by that group imple-

ments different semantics regarding durative conditions. Namely, POPF enforces

ε-separation with respect to durative conditions, and so in particular rejects solv-

ability of Figure 3.1 [36].

That does not imply that POPF correctly implements “Bounded Precision”: only

that it avoids counterexamples of the kind given in the figure. Which is also not

to say that POPF fails to correctly implement “Bounded Precision”. Altering the

interpretation of “(over all . . . )” is simply inconclusive with respect to “Bounded

Precision”.

In fact POPF is reasonably held to correctly implement “Bounded Precision”;

such is due to yet further reinterpretation of PDDL-syntax. To really demonstrate

so we would need to first invent the missing formalization that it is in fact correct

for, which technically involves substantial revision of many details (as could be

expected from our preceding discussion). We would like to pretend that our ITP is

said “missing formalization”. To do so is patently unfair: we cannot complain about

VAL’s interpretation of Figure 3.1, yet in the next breath take POPF as implementing

ITP.

Still, to capture the essence of the matter, albeit the authors of POPF surely

(and rightly) disagree, what POPF does is to reinterpret PDDL-syntax by forbidding

instantaneous change. So more specifically we prefer to perceive POPF as reinter-

preting syntax as follows.

• “(at start . . . )” is reread as roughly “(over [start, start + ε〉 . . . )”,

• “(at end . . . )” is reread as roughly “(over [end − ε, end〉 . . . )”, and
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• “(over all . . . )” is reread as roughly “(over [start, end〉 . . . )”.

This last has quite notable exception: when reading “all” as all creates a

self-mutex action, then instead POPF shortens the interval by excluding the

concerned endpoint(s). So also possible are the readings:

– “(over [start, end − ε〉 . . . )”,

– “(over [start + ε, end〉 . . . )”, and

– “(over [start + ε, end − ε〉 . . . )”.

We prefer this view as it permits a short story for correctness/soundness/reason-

ableness of POPF. Namely, we see POPF as correctly implementing a slight general-

ization of our Interleaved Temporal Planning. That, in turn, we take as soundly for-

malizing our philosophy upon reality (which naturally we call “reasonable”). Said

philosophy is just that reality is fundamentally continuous; the key consequence is

that instantaneous change is forbidden. Such is key as it directly ensures inexpress-

ibility of simultaneous, instantaneous, change; with that ruled out we can take a

different approach to the semantic puzzle that “Bounded Precision” refers to.

Our Resolution to Physicality. We take durations as upper bounds on the inherent

uncertainty of real values of time. So our model for physicality of agency is not

that start-times of schedules are to be perturbed. Rather, we view the inherent un-

certainty of physical clocks as implicit in the statement of every proper interval. In

other words, what we suppose will really take place is some rather faster change

over some unknown, likely smaller, subinterval. To be certain the agent will suc-

ceed, we model the interval of change as pessimistically as necessary. In particular,
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to ensure physicality across the whole language, we build into the language the

assumption that intervals must be proper.

Which means that we ‘force’ domain modelers to obey the paradigm. That is, by

having the formal language rule out instantaneous change we guarantee that every

formal model that may be expressed can be plausibly interpreted as pessimistically

bounding physical agency. Of course, an unaware domain modeler might put the

‘wrong’ numbers, still leading a planner to sign off on impossible plans. That can-

not be helped: there is nothing magical to be done to ensure that models actually

describe reality (without really taking observations, i.e., trying, failing, and learn-

ing). However, we take this manifestation of the error as ‘self-correcting’. Consider

once more the example of bomb-disarmament.

To model the bomb-disarmament domain in ITP we will have had to place a

nonzero duration on the time it takes to cut a wire. If we take a general approach to

compiling in process-style invariants—which is painful, but possible—then we will

be able to pull off modeling the operation of arbitrary electronic fuses, in particular

we will be able to model the fuse of interest, which forces each pair of red wire

and blue twin to be ‘always’ equal.31 In particular we will have been forced to

assert a nonzero duration for the maximum time the equality of a red and blue wire

can be ‘violated’ without actually failing.32 Should what is presumably an error

31Bounded maintennance constraints may be expressed in Real Time Logic by saying “∞-
Always e-Eventually r-Always φ” to mean that φ must be ‘always’ true but for any number of at
most e-duration witneses of exceptions separated by r-duration witnesses of satisfaction. (A weaker
but interesting consequence is that φ will be satisfied at least r/e frequently.) Forcing ITP-planners
to enforce such constraints via domain-modeling shenanigans is possible, in large part because we
only ask that plans be finite (in general Real Time Logic is undecidable).

32It is also possible to tie the checking of equality to particular clock ticks, i.e., physically by
feeding the equality gate into a (clocked) latch (rather than by asynchronously debouncing the gate).
For modeling, we could start with a different expression in Real Time Logic (albeit a modal logic
is not ideal for modeling clocked digital logic). Note that voltages will naturally differ briefly and
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have been made in specifying those numbers, then the model might permit the wire

-cutting plan. That is because the model would say that the agent can guarantee

the precision of independent wire-cutting actions (the first nonzero duration) to

faster than the electronic circuitry can detect (the second nonzero duration). Such

is “presumably an error” as the detection of the (quasi-)invariant by the electronic

circuit will be precise to the level of gate delays (just one?): detecting when the two

wires differ is lightning fast. That said, there do exist physical agents faster than

lightning: just precious few.

Then, that the model is somewhat dubious is not a strong critique; it is just

barely plausible in domain-independent context, and, when implausible in real ap-

plication, then fixing it is straightforward (just fix the numbers). In contrast, fixing

the same sort of modeling error starting from PDDL-syntax is far more involved.

That is because durative discrete change is not legitimate PDDL-syntax. So we

might have begun with instantaneous changes, because such is the only syntac-

tic possibility. Then, only belatedly, we might come to realize that instantaneous

change is indeed a very error-prone concept. At that point we shall be confronted

with a conundrum. The nice way to fix the error would be to enlarge the durations

of the not-actually-instantaneous changes. Temporal PDDL, however, syntactically

clamps the durations of all changes to 0.

Naturally, there is a workaround (there is always a workaround, all planning for-

malisms are at a minimum PSPACE-complete), but we cannot muster the motivation

to employ workarounds to model ‘every’ real world application. That is, we would

prefer to use compilation techniques to fake instantaneous change rather than use

slightly (due to ambient magnetic fields, for example): the bomb designer will have had to build in
some tolerance.
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compilation techniques to fake durative change. By “we”, note that “we”, in effect,

includes the author of every truly serious attempt at implementing an empirically

effective discrete temporal PDDL-planner. We claim such, because, while several

pretend at length that changes are instantaneous, the rules used to enforce “Bounded

Precision”, ‘whenever’ correct, are (we claim without proof) formally isomorphic

to asserting that all are actually ε-duration, durative, discrete changes [25].33

3.4.2.8 Conclusions on ITP versus PDDL

Towards rounding out the picture: there is, of course, rebuttal. The war we wage

here is a language war: there are no winners in (language) war. (We can formally

prove that, perhaps surprisingly, by consideration of Kolgmogorov-Chaitin Com-

plexity, the No Free Lunch Theorems, and so forth [27, 206].) For metaphor: Ham-

mers suffice, but such hardly makes them the right tool for the job. In this case, the

key question regarding purpose is the distinction between:

1. Mixed Discrete-Continuous Planning, Control Theory, Operations Research,

Real Time Verification, (. . . ,) i.e., Algebraic/Analytic Mathematics, and

2. Discrete Planning, Situation Calculus, Discrete Finite Automata, Linear Tem-

poral Logic, (etc.,) i.e., Combinatorial/Finite Mathematics.

Or in short, a crucial question to ask and answer is:

Is time discrete or continuous?

33Isomorphism here is meant in a very particular sense far stronger than asserting Turing com-
pleteness subject to polytime-reductions and polyspace-bounds. Proposition 3.32 might shed light.
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For us, time is, effectively, discrete (Corollary 3.23). Hence effects must be durative

and, effectively, discrete.34

In contrast, for generalizing to continuous change it is convenient (but slightly

fallacious) to retain expressibility of discrete effects by calling them discontinuous

and instantaneous. That is, for such context, (experience proves) it is better to

permit the expression of instantaneous discrete change [37, 70, 110, 137, 151]. We

conjecture it would be better still to retain expression of durative discrete change

(however there is no particularly apparent empirical evidence either way). Such is

neither here nor there, as for us continuous change is well beyond scope. Still, for

a bit of formalism, we find it compelling to approximate continuous equations such

as:

fc(t ∈R) =
∫ t

0
x +

1
2

dx =

(
t
2

)
, by the discrete: (3.42)

fd(k ∈N) =
k∑

i=0

i =

(
k
2

)
, i.e., it is the case that: (3.43)

fd ⊂ fc. (3.44)

Then we note that languages such as Hybrid Automata typically prevent discrete

fluents from ever having the form of fd. The closest one may say is (note the

rounding, the function is a step function):

f̂d(t ∈R) =
btc∑
i=0

i, (3.45)

34Continuous effects in discrete time can be simplified without loss by forgetting the intermedi-
ate, inaccessible, behavior.
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Or in PDDL the closest approximation arguably better resembles:

f̂d(t ∈R\N) =
btc∑
i=0

i; (3.46)

either way, it seems unfortunate that inclusion fails:

f̂d 1 fc. (3.47)

Then let us close our long discussion of the relationship between our ITP and

PDDL/VAL/POPF [36, 71, 119]. To a first-order approximation, and perhaps the

fairest statement overall: we have reinvented the theoretical work of Fox, Long,

Halsey, Coles, and Coles. Our differences are fairly slight, and by and large consist

of ‘merely’ smoothing out any details less than widely supported in practice. The

most concrete point is easily highlighted:

We take durations (i.e., of conditions, effects, and actions) as strictly positive.

So, for future work, formal syntax best reflecting our semantics would differ no-

tably. The ‘why’—as whys are wont to be—is far from simple. We can, though,

sharply bound the scope of the debate. All issues trace back to a single core seman-

tic puzzle regarding time that must be answered by any formal theory. Namely:

The Type of Time: Is time discrete or continuous?

It should be clear that the answer has far-reaching consequence. That said, the

choice is also arbitrary in that neither answer dominates the other. So we cer-

tainly cannot fairly say that ITP is hands-down better than temporal PDDL. At least,

we cannot say such without first clarifying what precisely we mean by “temporal
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PDDL”. The true purpose of that line of work aims to reach mixed discrete-con-

tinuous planning: a promise delivered upon in the form of COLIN [37]. Naturally

such purpose is perfectly reasonable; there are certainly compelling real-world ap-

plications of temporal planning at that level of expressiveness. For smaller/differing

ambition it makes sense to use more specialized tools. In the end, such is the sense

in which it is fair to say that ITP is contribution.

Then to put all specifics aside, in general, the points discussed here worth re-

membering are:

• We need to be clear about the nature of time and change.

• In making that choice, it is worth keeping in mind that just because change is

discrete does not mean it need be instantaneous.

• Nor is it the case that just because we imagine reality to be continuous do we

need to model it continuously.

• In particular the natural abstraction from continous to discrete is to take dis-

crete change as durative.

• For short, in terms of graphs:

– durations go to edges when edges model the bulk of change, and

– durations go to vertices when vertices model the bulk of change.
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Chapter 4

Analysis of Expressiveness of Temporal Planning Languages

In this chapter we aim to establish that the languages of Interleaved Temporal

Planning and Conservative Temporal Planning well capture the theoretical capa-

bilities of the state-of-the-art. What we actually show is only a piece of the puz-

zle [11, 24, 72, 74, 75, 78, 158, 186, 187]. Abstractly, we setup a large space of

temporal planning languages possessing various syntactic capabilities . . . and then

proceed to demonstrate that only one such feature ‘really matters’.

Theorem 4.1 A language expresses required concurrency ‘iff’ causally compound

actions are permitted.

Theorem 4.10 If all actions are causally primitive, then the language is isomorphic

to Conservative Temporal Planning.

Theorem 4.12 ‘All’ languages permitting causally compound actions compile into

one another—arguably—well enough.

So Interleaved Temporal Planning can be taken as representative.

Motivation. Many different modeling languages have been proposed for planning

with durative actions, and we are interested in their relative expressiveness. The

language of TGP [188], for example, requires that an action’s effects take place

during its entire execution. In contrast PDDL demands that effects take place in-

stantaneously at just the endpoints of actions; meanwhile conditions are permitted

to constrain all of an action’s execution (or just its endpoints). Many other sys-
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Figure 4.1: A natural pattern for required concurrency: action A provides tempo-
rary access to a resource R, which action B utilizes to achieve G.

tems (ITT, SAPA, TAL, ZENO, . . . ) permit varying degrees of access to

subintervals of an action’s execution. In some settings action definitions are even

permitted to reach beyond their intervals of execution [12].

Here we examine a number of sublanguages of Interleaved Temporal Planning

formed by permitting or forbidding access to various such subintervals; we also

consider restricting what sorts of statements may be made over permitted subinter-

vals. The goal is to characterize what makes temporal planning difficult relative

to classical planning. To the extent that can be accomplished at the language level

we shall have tools for more easily classifying whether a given temporal planner

is going to be enjoying an unfair advantage relative to another, more temporally

expressive, planner. (Or fail utterly should we instead pick a problem beyond its

understanding.) The difficult part is that not all differences in syntax are created

equal—some matter much more than others. So in other words, we wish to sepa-

rate the temporal syntactic sugar from the really temporal feature(s).

The hypothesis is that required concurrency is the key semantic feature. To

make this more concrete consider the special case depicted in Figure 4.1: exploit

an only temporarily available resource (R) so as to achieve some desirable result
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(G). Specifically note that thinking of action A as a primitive misses all solutions;

the only lasting effect of action A is to delete the resource R. To model temporary

availability of resources as state transitions, we need to think of them as consisting

of at least two parts: a beginning and an end. However, adding detail to a model

makes it larger—and so more difficult to solve—i.e., doing so is precisely the oppo-

site of abstraction [131]. So then, after breaking action definitions into (effectively)

two pieces each, ‘double’ the number of decisions must be made in order to make

plans. Figuratively: Taking required concurrency as plausible detonates a combi-

natorial explosion.

So: required concurrency matters. Does anything else?

Organization. Section 4.2: We completely characterize expressibility of required

concurrency within the particular scope of inquiry setup. Figure 4.2 depicts the

result, in words: Expressibility of compound actions characterizes required concur-

rency. The latter two theorems aim to support the notion that required concurrency

is, in the first place, the right feature to be examining. Section 4.3: We elaborate

upon why the guaranteed absence of required concurrency makes planning easier.

Section 4.4: We argue that all ways of permitting required concurrency are equally

hard. (So anything else that matters may be understood as significant through the

lens of required concurrency.) Wrapping up the chapter is Section 4.5. First:
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4.1 DEFINITIONS: REQUIRED CONCURRENCY, CAUSALLY

COMPOUND, AND SUBLANGUAGES

There is a twist to the sense of “required” in “required concurrency”. Intuitively the

meaning is just that all solutions schedule at least two actions concurrently: then

a planner is ‘forced’ to generalize beyond considering mere sequences of actions.

However, as we have already seen, deadlines contradict that intuition. Namely,

Conservative Temporal Planning permits deadlines, yet, does not force generalizing

beyond action-sequences, Theorem 3.17. So we need a better notion of “forced”.

We appeal to causality:

Definition 4.1 (Required Concurrency). A (solvable) problem (causally) requires

concurrency if every solution is causally concurrent. A problem is causally se-

quential if every executable effect-schedule is causally sequential.

Definition 4.2 (Causally Sequential/Concurrent). An effect-schedule is causally

sequential when deordered-equivalent to a classically-sorted effect-schedule. In-

versely, an effect-schedule is causally concurrent when not deordered-equivalent

to a classically-sorted effect-schedule.

A classically-sorted effect-schedule always immediately dispatches every part

of a compound action.1 For notation, the effect-schedule (a, t)[n] is classically-sorted

when: for every i ∈[n] such that ai = fin-α holds then both ai−1 = bgn-α and

ai−2 = all-α hold.

So a classically-sorted effect-schedule is literally sequential, i.e., more or less

the same as an action-sequence; every way of reordering it, respecting mutual ex-

clusions, is causally sequential. If every schedule can be had by such reordering,

1If all parts of an action appear contiguously in an effect-sequence or effect-schedule, then we
could say the plan/schedule compresses the action [38].
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then it would suffice to apply a Conservative Temporal Planner. Such simplification

is of great note—so define:

Definition 4.3 (Temporal Expressiveness). A language is temporally expressive

when some permitted (solvable) problem (causally) requires concurrency. A lan-

guage is temporally simple when every permitted problem is causally sequential.

The sacrifice here is the definition of causally sequential. The—much too ambi-

tious—intuition is: Problems somehow reducing to Sequential Planning with negli-

gible consequences are causally sequential. Even adequate formalization is of itself

nontrivial [158]. Subsequently proving our intended theorems would be ‘impossi-

ble’—i.e., much the same as proving NP , P.Then we limit our ambition to consid-

ering just the reduction by deordered-equivalence (cf., Theorem 3.14, Page 128).

Intuitively speaking, a witness to required concurrency amounts to a single ac-

tion whose parts cannot be brought together via deordering with respect to some

larger plan. For that to happen it would seem that two of its effects need to be sep-

arated by a mutex effect of some other action. Actually though, the character of

a witness to required concurrency can be somewhat more three dimensional. Sup-

pose the (only) mutual exclusions between the effects of two actions α and β are

such that the following partial-order characterizes a deordered-equivalence class.

bgn-α < fin-β,

bgn-β < fin-α.

In words: so both must start before either can finish, and all ways of doing so are

causally equivalent. Note that we can bring together α without altering behavior:

begin β, do all of α, finish β. Symmetrically we can bring together β: begin α, do
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all of β, finish α. What is impossible is to do so for both at once; neither classically

-sorted permutation is consistent with the given partial-order. That being said, it is

still the case that the intuition more or less gets the formal definition right.

Definition 4.4 (Causally Compound/Primitive). An action is causally compound if

two of its nontrivial effects are temporally disjoint. Otherwise the action is causally

primitive: all of its nontrivial effects temporally intersect.

For notation, define the critical region of an action as the intersection of the

relative temporal extents of its nontrivial effects; so causally primitive actions are

those possessing nonempty critical regions:2

∅ ,
⋂

eff (α,x),{{}7→{}}

{
t − ASTα | AST(α,x) ≤ t < AFT(α,x)

}
. (4.1)

Less generally and inversely, an action is causally compound precisely when the

start-part and end-part are nontrivial and nonintersecting:

eff bgn-α , {{} 7→ {}}, (4.2)

eff fin-α , {{} 7→ {}}, and (4.3)

durall-α ≥ durbgn-α + durfin-α. (4.4)

Details: A dispatch/part/effect is trivial if it is executable in every state and

writes to no fluent. (The canonical trivial effect is denoted by {{} 7→ {}}.) The (ab-

solute) temporal extent of a dispatch at time s of duration d is all those times at

2A causally primitive action is much like a unique main subaction [207].
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which a mutually exclusive dispatch may not start: the interval [s, s + d).3 A rela-

tive temporal extent takes the start-time of the dispatch of the action as the origin

of time. Durations are constants; so, an end-part of duration d belonging to an

action of duration D always has relative temporal extent [D − d,D).

Remark 4.1. More generally we would say that an action is effectively primitive

when, for all plans of interest (executable/solution/optimal/. . . ) including it, if one

of its parts is causally ordered before some x, then none of its parts are causally

ordered after x, and vice versa (if one must be after, then all could be after). An

upshot is that, if that condition is met by every action, then, by induction, every plan

of interest may be classically-sorted—it would suffice, for planning, to abstract to

treating every action as primitive. In particular note that, by Corollary 3.15 (every

executable plan is deordered-equivalent to a time-sorted reordering), checking that

every nontrivial part temporally intersects gives the desired property.

Wrapping up the definitions, consider the generic concept of imposing syntax

constraints. For examples, we might consider permitting or forbidding any of: con-

ditional effects, deadlines, numeric fluents, negative preconditions, action costs,

variable durations, continuous but nonlinear change, disjunction, quantifiers, pa-

rameters, and so forth [11, 24, 72, 74, 75, 78, 133, 158, 186, 187]. Given such

background—let us forbid all but the essentials.

Specifically consider the 64 = (2 × 2) (2 × 2) (2 × 2) languages obtained by

independently permitting/forbidding equality/assignment statements in each of the

three parts of an action. A degenerate planning language forbids all change (i.e.,

no assignment statements). Any self-respecting planner solves such ‘problems’

3Less naturally, define temporal extents by when mutually exclusive locks cannot be released
(rather than cannot be acquired), thereby obtaining left-half-open intervals instead.
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without search. So rule out the degenerate cases, leaving 56 = 64 − 8 languages of

interest:

Definition 4.5 (Syntactic Restrictions). Our top-level language for now will be

syntactically restricted to L(pre, eff; pre, eff; pre, eff), meaning: every part

may have any effect in the relatively limited set (pre | eff)∗ consisting of merely

equality tests against, and assignments from, constants.4 More generally denote by

L(γ; α; ω) the sublanguage of Interleaved Temporal Planning restricting the form

of action definitions by stipulating that each satisfy: the effect of the all-part is in

the set γ∗, the effect of the start-part is in the set α∗, and the effect of the end-part is

in the set ω∗.

Definition 4.6 ((Psuedo-)Syntax). A condition is an ‘effect’ that writes nowhere (a

proper effect writes somewhere); a primitive condition verifies that a given fluent

presently has the desired, constant, value (by failing to be executable if otherwise).

Say “ f = v” is shorthand for {{ f 7→ v} 7→ {}}, and let pre stand for all such primitive

conditions.

A primitive assignment unconditionally writes a given constant value to a

given fluent. Abbreviate
{
{ f 7→ u} 7→ { f 7→ v} | u ∈ Values f

}
as “ f B v”, and let

eff be the entire set of such primitive assignments.

A primitive transition is the result of stating both a primitive precondition and

primitive assignment upon the same fluent: for convenience, let “ f = u B v”, or

“ f = u, f B v”, stand for {{ f 7→ u} 7→ { f 7→ v}}.

Say concatenation of representations of effects is defined by parallel composi-

tion of their interpretations. Dropping the distinction between syntax/semantics, for

4Restricting to constant values is equivalent to insisting upon STRIPS-style.
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x and y two effects, so long as Writesx ∩ Writesy = ∅, define concatenation (x, y)

as parallel-composition ‘(x, y) B (x | y)’; with Writesx,y B Writesx ∪ Writesy and

Dependsx,y B Dependsx ∪ Dependsy define parallel-composition by:

(x | y) B
{
A ∈States(Dependsx,y) 7→ A′ | A′ = (x(A�Dependsx

) ∪ y(A�Dependsy
)) ∈States(Writesx,y)

}
.

Applicability to the State of the Art. What matters most is for the space of lan-

guages setup to capture ‘common denominators’ of current practice. That seems

true enough. For examples (the semantics of several systems are ambiguous, hence

repeats): The actions permitted by the top-level, L(pre, eff; pre, eff; pre, eff),

are particularly compatible with one ‘obvious’ generalization of SAS to time [9, 64,

103]. The sublanguage L(pre; pre, eff; pre, eff) is a slightly more precise car-

icature of the sorts of actions the discrete temporal fragment of PDDL considers,

because PDDL only permits changes at endpoints [71]. So that sublanguage cap-

tures a fragment of the capabilities of many temporal planners [54, 64, 85, 93, 137,

142, 208]. The sublanguage L(pre, eff; ∅; ∅) describes TGP reasonably well, as

TGP demands that all statements be with respect to the whole action [188]. Then

more generally that sublanguage serves to describe reasonably well ‘any’ remaining

temporal planner [6, 54, 57, 64, 87, 105, 115, 135, 202].
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Figure 4.2: The taxonomy of temporal sublanguages, see Section 4.2.1.
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Figure 4.3: Minimal nondegenerate languages permitting causally compound ac-
tions are temporally expressive. See Propositions 4.6 through 4.9.

4.2 CAUSALLY COMPOUND ACTIONS CHARACTERIZE REQUIRED

CONCURRENCY

In short: Figures 4.4 and 4.3 prove Figure 4.2.

Theorem 4.1. Planning languages forbidding causally compound actions are tem-

porally simple: if restricted to sublanguages of Interleaved Temporal Planning.

Planning languages permitting causally compound actions are temporally ex-

pressive: if restricted to specifically those sublanguages named in Figure 4.2.

Proof. The proof is by reduction to various lemmas and propositions, as follows.

(First Claim) The definition of a temporally simple language is that every per-

mitted problem satisfies: Every executable plan is causally sequential. Lemma 4.3

establishes that absence of causally compound actions guarantees such, ergo proves

the claim.

(Second Claim) By definition, it suffices to demonstrate just one permitted solv-

able problem requiring concurrency per language. As superlanguages permit su-

persets of problems, it suffices to consider just the minimal cases. Concerning

the Figure, removing all those languages forbidding causally compound actions

leaves, by inspection (or by Lemma 4.4), four minimal elements. Propositions 4.6

through 4.9 prove that the four are temporally expressive, and hence further prove

the entire claim. �
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4.2.1 B D  F 4.2

The figure—a depiction of the lattice of syntactic restrictions—has a lot of detail

so as to assist in following the machinations of the proofs. That is, it is meant as a

visual aid to keep with us while carrying them out. It is also useful as a device for

doublechecking.

To really walk through its meaning is just to walk through the proofs. Then up

-front let us clarify just a few bits, primarily: the mapping between the notation.

(Writing out the verbose notation of the proofs would have the figure span multiple

pages, defeating the point.) The vertex labels encode the syntax restrictions as

triplets in base 4. For example, “123” stands for L(eff; pre; pre, eff).

Note that there are two different ways in which elements of the lattice can de-

generate. One is to forbid effects altogether. The other is to forbid conditions

altogether. Those two sublattices extend past the line that is the technical definition

of causally compound.

Hence it is incorrect to say that causally compound actions characterize re-

quired concurrency. For abstractness: there is a syntactic line, a semantic line, and

the two almost, but do not quite, coincide. The figure serves to visually delineate

the caveats.

The formal arguments serve to much more precisely define what those caveats

are. Their precise identity is meaningless within the lattice depicted. However, the

scope of the figure is certainly not the scope of interest. It is merely a surrogate for

our interest: one small enough to completely investigate.

So precise understanding is worthwhile. In other words, the proofs matter be-

cause the particular lattice is only a tiny piece of the full puzzle. The full puzzle

includes relational representation, quantifiers, object-valued fluents, conditional ef-
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fects, arithmetic, calculus, trajectory constraints, preferences, uncertainty, sensing,

execution, learning, and so forth onwards to infinity.

4.2.2 F C: N

It is interesting to first distinguish a weaker necessary condition (necessary for ex-

pressiveness, sufficient for simplicity). The natural necessary condition amounts

to checking whether any compound action actually is compound; if an action has

only one nontrivial part there is no point in calling it compound. In other words

L(pre, eff; ∅; ∅) merely adds excess baggage to Conservative Temporal Plan-

ning:

Proposition 4.2. The language L(pre, eff; ∅; ∅) is temporally simple. It is more-

over the natural embedding into Interleaved Temporal Planning of Conservative

Temporal Planning restricted to STRIPS-style.

Proof. We may assume by deordered-equivalence that all parts of every compound

are contiguous in every executable effect-schedule; i.e., the trivial parts are mu-

tex with nothing and so may be freely moved into the desired positions by Theo-

rem 3.21. Therefore every executable plan is causally sequential (i.e., deordered-

equivalent to a classically-sorted effect-schedule). Which suffices. For the more-

over just transliterate between actions and all-parts; the omitted details are easily

addressed. �

This is interesting insofar as we may consider substituting a far more sophisti-

cated analysis of unreachability as justification for the desired sorting. (As alluded

to in Remark 4.1.) For present purpose though it suffices to consider just a guaran-

tee of critical regions.
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Figure 4.4: With actions’ effects all concurrent, we may reduce to action-sequences.
The earlier hypothetical mutex, which would be problematic, is impossible given
the assumption that the later effects have soonest critical region.

Consider any two mutex effects. They must occur in some order, implying their

critical regions do as well. Those critical regions are the common intersections

of all the ‘sibling’ effects; all other effects of the respective actions must already

conform to the same order. So no two mutex effects ever need cross paths in order

to bring together all parts of every action. See Figure 4.4; precisely:

Lemma 4.3. If all actions possess critical regions then every plan is causally se-

quential.

Proof. So we aim to classically-sort any given plan without breaking deordered-

equivalence.

1. Pick any critical point within each critical region.5

2. Sort the plan by iteratively moving to the front of the unsorted suffix the

dispatches of all parts of that action with earliest critical point, among those

remaining.

3. Break ties arbitrarily.

Then the increasingly long prefix sorted by critical-points is more specifically clas-

sically-sorted.

5If when effects occur is not constant, then some modifications are called for.
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Therefore, if the sorting completes without breaking deordered-equivalence,

then we are done. For a contradiction, suppose not.

In order to break deordered-equivalence, moving some dispatch to the front

of the unsorted suffix must at some interim point swap positions with a mutually

exclusive dispatch (by definition). Consider the first such move, for notation:

• the still deordered-equivalent plan is sorted up to just before index i,

• dispatch (b, t) at some index k of duration e has an earliest critical point y,

• dispatch (a, s) at some index i ≤ j < k of duration d is mutex with b, and

• (for emphasis:) the critical point of a, say x, is no earlier: y ≤ x.

Mutually exclusive dispatches occur in time in the order dispatched (i.e., by the

locking protocol; cf. Proposition 3.12, which remains true in ITP). So s + d ≤ t,

because j < k. Temporal extents are right-half-open, and contain the critical points:

s ≤ x < s+ d and t ≤ y < t+ e. Then the critical point of the dispatch of a is strictly

earlier than that of b: x < s + d ≤ t ≤ y. Which contradicts the assumption of a

counterexample, i.e., the dispatch of b was chosen for the virtue of having earliest

critical point: but x < y contradicts y ≤ x. �

4.2.3 S C: S

It is clear that the sufficiency direction of the theorem extends far beyond the stated

scope; if for no other reason, then simply because expressiveness is a ‘poisonous’

property. There are more interesting reasons to consider. It is almost, but not quite,

true that sufficiency holds ‘in general’. In particular, as long as the case analysis of

the proof remains exhaustive, then sufficiency continues to hold: the propositions

proving each case are unshakeable.
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So in other words the only way that generalization could break sufficiency is

to introduce new minimal cases. Moreover such must turn out to be, surprisingly

(as we shall see), temporally simple despite permitting causally compound actions.

Neither introducing new minimal cases nor having such be temporally simple is an

easy feat. Consider:

Any part executable in every state and altering no fluent is trivial by definition.

Then in general a part is nontrivial for one of two reasons: not always executable, or

sometimes altering fluents. So in the ‘simplest’ cases a nontrivial part permits either

primitive conditions, or primitive assignments. Hence, as a witness to a causally

compound action needs two nontrivial parts, there are just four minimal cases even

‘in general’. Namely the possibilities are: two disjoint primitive assignments, a

primitive condition preceding a primitive assignment, a primitive assignment pre-

ceding a primitive condition, and two disjoint primitive conditions. Or, within the

narrower vision of the Figure, the intuitive minimal cases are: L(∅; eff; eff),

L(∅; pre; eff), L(∅; eff; pre), and L(∅; pre; pre).

Then we have our exception proving the rule: L(∅; pre; pre) permits causally

compound actions but is nonetheless temporally simple. This is, of course, only

because it permits no proper effects whatsoever; all solvable problems it permits are

solvable by the empty plan. Such is not the only exception; one way of generalizing

to continuous change can be taken as admitting appropriate counterexamples. Still,

at the high-level, the accurate view is that the theorem is true in general.

As far as formality goes: So we come to exhaustiveness of the case analysis.
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Lemma 4.4. The minimal nondegenerate sublanguages of the top-level permitting

causally compound actions are:

L(∅; eff; eff),

L(∅; pre; eff),

L(∅; eff; pre), and

L(eff; pre; pre).

Proof. A witness of a causally compound action needs two nontrivial parts. So

there are four minimal languages permitting causally compound actions. The first

three are L(∅; eff; eff), L(∅; pre; eff), and L(∅; eff; pre). By inspection,

each is nondegenerate. So only the final putative witness remains: L(∅; pre; pre),

which is degenerate. As that is the only additional constraint it suffices to account

for the degeneracy. Then consider replacing the degenerate ‘witness’ by its nonde-

generate superlanguages: permit assignments in one of the three parts. We break

the three specific possibilities up into two kinds.

The first kind permits an assignment temporally disjoint from one of the given

pair of disjoint conditions. So, we could instead regard the case as an instance of

an assignment before a condition or vice versa. Either way the form is already con-

sidered: such superlanguages are non-minimal. Specifically L(∅; pre; pre, eff)

and L(∅; pre, eff; pre) are superlanguages of the witnesses L(∅; pre; eff) and

L(∅; eff; pre).

The second kind is the negation of the first: no assignment may be temporally

disjoint from any condition. (So even ‘in general’, proper effects are permitted only
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over whole actions, more or less.) Specifically the language L(eff; pre; pre) fills

the shoes left vacant by the degeneracy of L(∅; pre; pre). �

So with that said, it suffices to prove the existence of a single problem requiring

concurrency per minimal language. While all of our examples are small enough to

just brute-force check ‘every’ executable plan, which perhaps yields simpler proofs,

it is more interesting to consider a proof method amenable to implementation. Let

us illustrate the details. Consider Figure 4.3 and Figure 4.1. Actions are drawn

by their 3 parts, in each is shorthand, geared towards boolean fluents, for the con-

ditions/assignments meant. In particular “+P” denotes P B True, “-P” denotes

P B False, and “?P” denotes P = True. Each depiction of this kind is supposed

to concern a ‘uniquely’ solvable problem, with the picture indicating the equiv-

alent nature of all minimal solutions. So all of the following details concerning

specifically the abstract problem depicted in Figure 4.1 are supposed to be ‘obvi-

ous’ and/or largely irrelevant; for a change let us drop all the way down to a purely

functional notation:

FluentDefs = {G 7→ B; R 7→ B}.

ActionDefs(all-A) =
({
{}
∈States(∅)

7→ {}
∈States(∅)

}
, 4

)
.

ActionDefs(bgn-A) =
({
· ∈States({R}) 7→ {R 7→ True} ∈States({R})

}
, 1

)
.

ActionDefs(fin-A) =
({
· ∈States({R}) 7→ {R 7→ False} ∈States({R})

}
, 1

)
.

ActionDefs(all-B) =
({
{R 7→ True} ∈States({R})

7→ {}
∈States(∅)

}
, 2

)
.

ActionDefs(bgn-B) =
({
{}
∈States(∅)

7→ {}
∈States(∅)

}
, 1

)
.

ActionDefs(fin-B) =
({
· ∈States({G}) 7→ {G 7→ True} ∈States({G})

}
, 1

)
.

Initial =
({

f ∈Fluents 7→ False
}
, { f 7→ (t−∞, 0, False)}, {α 7→ {}}

)
.
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Goal =
{
(S ,V,D) ∈Balances

7→ (S (G) = True and D = {α 7→ {}})
}
.

Proposition 4.5. Our analogue for PDDL is temporally expressive.

Proof. The problem depicted in Figure 4.1 satisfies the syntactic restrictions defin-

ing L(pre; pre, eff; pre, eff): it suffices to demonstrate that specifically this

problem requires concurrency. Technically solvability should be demonstrated.

That ((all-A, 0), (bgn-A, 0), (all-B, 1), (bgn-B, 1), (fin-B, 3), (fin-A, 4)) is a so-

lution is easily verified.

The claim which matters is: No solution is causally sequential. This is easily

seen. Treating A sequentially renders it useless, and then B cannot ever begin, so the

goal can never be achieved. Applying planning graphs (or similar) in the following

fashion is a powerful technique for having machines arrive at the same conclusion

as a special case.

Setup. By Theorem 3.21, deordered-equivalence implies solution-equivalence. So

to verify the absence of causally sequential solutions it suffices to consider merely

their canonical representatives: the classically-sorted effect-schedules. That is, it

suffices to show that no classically-sorted effect-schedule could possibly be a so-

lution. Consider just failure of the classical constraints, as follows. Compute the

net effects of each action upon states (by sequential composition of the associated

state transition functions), and treat those as primitives of a projection/abstraction

to Sequential Planning. Note that if the projection is unsolvable, then the original

problem cannot be solved by classically-sorted effect-schedules. For completeness:

LetP′ = (F = FluentDefs,A,I = (RBFalse,GBFalse),G = (G=True)) denote

the projection to Sequential Planning. Concerning A, its net effect is just to delete
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R, i.e.,A(A) = (RBFalse):

S ′A B S ′fin-A ◦ S ′bgn-A ◦ S ′all-A = {S 7→ (S ⊕ {R 7→ False})}.

Concerning B, in net it needs R and gives G, i.e.,A(B) = (R=True,GBTrue):

S ′B B S ′fin-B ◦ S ′bgn-B ◦ S ′all-B = {S 7→ (S ⊕ {G 7→ True}) | S (R) = True}.

Relaxed Reachability. Then consider the following analysis of (un)reachability in

the projected problem. No reachable effect establishes R = True, indeed, no effect

whatsoever includes R B True. So R is monotonically decreasing in truth-value.

As it starts false, it is false in every reachable state of P′. Therefore B always fails

to be executable as its precondition is never satisfied. Hence no reachable effect

establishes G = True, as the effect of B is the only effect to include G B True.

So G is monotonically decreasing in truth-value. As G, which is the goal, starts

false, it is false in every reachable state of P′. Therefore the goal is unachievable by

executable plans: unsolvability of the projection to Sequential Planning is verified.

�

Then for the following let us treat the details lightly; that is, for the details adapt the

above proof of Proposition 4.5.

Proposition 4.6. The minimal language witnessing permitted causally compound

actions between pre/post-assignments is temporally expressive:

L(∅; eff; eff) permits a problem requiring concurrency.

Proof. The problem depicted in Figure 4.3(a) witnesses: achieving “?A, ?B” from

“-A, -B” requires action B to wrap the end-part of action A. �
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Proposition 4.7. The minimal language witnessing permitted causally compound

actions between preconditions and postassignments is temporally expressive:

L(∅; pre; eff) permits a problem requiring concurrency.

Proof. The problem depicted in Figure 4.3(b) witnesses: achieving A = False and

B = False from “+A, +B” requires both actions A and B to begin before either

may end. �

Proposition 4.8. The minimal language witnessing permitted causally compound

actions between preassignments and postconditions is temporally expressive:

L(∅; eff; pre) permits a problem requiring concurrency.

Proof. The problem depicted in Figure 4.3(c) witnesses: achieving “?A, ?B” from

“-A, -B” requires both actions A and B to begin before either may end. �

Proposition 4.9. The minimal language witnessing permitted causally compound

actions between pre/post-conditions is temporally expressive:

L(eff; pre; pre) permits a problem requiring concurrency.

Proof. The problem depicted in Figure 4.3(d) witnesses: achieving A = True,

B = False, and C = True from “-A, +B, -C” requires action B to contain action

A. �
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4.3 SEQUENTIAL PLANNING ‘SUPPORTS’ (ALL FORMS OF) OPTIONAL

CONCURRENCY:

SLACKLESS CLASSICALLY-SORTED EFFECT-SCHEDULES ARE

ACTION-SEQUENCES

Conservative Temporal Planning is a relatively mild generalization of Sequential

Planning: adapting some classical planner to work reasonably well is more or less

straightforward. Namely it suffices to integrate with First-Fit Scheduling. The same

(for an insignificantly-relaxed notion of “First-Fit”) is true in general of any tem-

porally simple language. We prove so by generalizing Theorem 3.4 (left-shifting

dominates).

Two effect-schedules are slack-equivalent when (i) the underlying effect-se-

quences are identical, and (ii) both are actual. Two effect-schedules are deorder-

equivalent when their deorders are identical (i.e., ≺deorder-X′ = ≺deorder-Y). Two effect

-schedules X and Y are deorder-slack-equivalent when there exists an X′ slack-

equivalent to X such that X′ is deorder-equivalent to Y . Alternatively, define deorder

-slack-equivalent in the other order, i.e., by existence of an X′′ deorder-equivalent

to X such that X′′ is slack-equivalent to Y . That the relation is an equivalence-re-

lation, and that the two definitions really are the same, is straightforward relative

to Chapter 3. It may be helpful to visualize a third definition: verify that (1) their

corresponding STNs are isomorphic as weighted graphs, and (2) both correspond to

solutions thereof.

Theorem 4.10. Assume any effect-schedule solving a problem of a temporally sim-

ple language. There exists a deorder-slack-equivalent solution that is more specif-

ically: classically-sorted, slackless, unique up to tie-breaking, and greedily com-

putable.
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Corollary 4.11. Considering every action-sequence is a complete approach to any

temporally simple language.

Proof. Assume an effect-schedule X solving some causally sequential problem. By

previous definitions and theorems: There is a (weakly) better solution Y that is

slackless, classically-sorted, and unique up to tie-breaking. Then here we addition-

ally show greedy computability and the corollary.

Before that though let us elaborate on existence of the better solution Y . By

the definition of temporally simple, the effect-schedule X is deorder-equivalent to a

classically-sorted (i.e., all action parts contiguous) X′. Any such deorder-equivalent

X′ is moreover a solution, by the following.

• Theorem 3.21, specifically: deorder-equivalence implies behavior-equival-

ence.

• Proposition 3.10, specifically: behavior-equivalence implies result-equival-

ence.

• Definition 2.14, specifically: result-equivalence implies solution-equivalence.

By Theorem 3.18, i.e., that slackless effect-schedules dominate their slack-equival-

ence classes, there exists a (weakly) better (slack-equivalent) rescheduling Y of the

reordering X′ of the schedule X. From the proof of that theorem (more specifically

from Lemma 3.20), the choice of a slackless rescheduling is unique up to the choice

of underlying effect-sequence. So tie-break the choice of the classically-sorted re-

ordering X′ arbitrarily. Therefore the schedule Y is deorder-slack-equivalent to the

assumed solution X and is moreover: classically-sorted, slackless, and unique up to

tie-breaking.
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For the corollary: classically-sorted effect-sequences are in trivially-computable

bijection with action-sequences. Then the corollary follows by the already estab-

lished uniqueness of slackless schedulings.

For greed, argue by induction on prefixes of the action-sequence induced from

the effect-sequence (a)[3n] underlying X = (a, s)[3n]. First note that said inducing

may itself be greedily computed: discard elements of X until arriving at the next

dispatch of an all-part. The induction hypotheses are trivially satisfied by the empty

prefix. For the inductive case then: let Z′ = Zk+1 = (Zk, αk+1) be some prefix with

smaller prefix Zk = (α)[k]. Recall the notion of simply expanding action-schedules:

replace each action with all of its parts, in place. Specifically let Ẑk+1 = (b)[3(k+1)] =

(all-α, bgn-α, fin-α)[k+1] and Ẑk = (b)[3k] = (all-α, bgn-α, fin-α)[k] denote the

classically-sorted effect-sequences that are the simple expansions of Zk+1 and Zk.

(IH-greed-(k):) By induction the optimal solution Yk = (b, t)[3k] to the simple

temporal network STN(Ẑk) corresponding to the simple expansion Ẑk of the smaller

prefix Zk may be greedily computed. Let Y ′ = Yk+1 = (b, t)[3(k+1)] denote the optimal

solution to the simple temporal network STN(Ẑk+1) corresponding to the simple

expansion Ẑk+1 of the larger prefix Zk+1. (IH-greed-(k + 1):) It suffices to prove that

(greed) holds, meaning (1) Y ′ merely extends the smaller schedule by (2) assigning

dispatch-times to the parts (b3k+1, b3k+2, b3k+3) of just αk+1 in constant-bounded

computation.

There are only two kinds of edges in the corresponding STNs: precedence and

duration. These are themselves defined by induction, in particular, STN(Ẑk) is a

sub-STN of STN(Ẑk+1). Then consider that the precedence edges are all directed

forwards. The duration edges, some of which travel backwards, travel only between

parts of the same action. So all paths leaving STN(Ẑk) in STN(Ẑk+1) never return
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(because Ẑk is classically-sorted). In particular the critical paths to the vertices in

STN(Ẑk) are the same with respect to either network. Then the prefix of the larger

schedule is indeed identical to the smaller schedule: (1) Yk = Y ′�[3k].

We need only remember all of the weights of the prefixes of all critical paths

crossing any given cut in order to later compute (without reexamining the graph

prior to the cut) the weights of the longer ones. So consider again the cut separating

STN(Ẑk) and STN(Ẑk+1). Again, all prefixes of critical paths cross the cut only once,

meaning that: all edges that ever will be critical already are. While the number

of crossing critical edges is not itself precisely constant, because read-locks are

shareable, the number of weights we actually need to remember is. Specifically it

suffices to remember just the current read-time and write-time of every fluent (in

the form of the weights up to the vertices standing for the finish-times of the last

effect to write to any given fluent and that yet later effect that just so happens to

read last in the slackless schedule Y of Zk).

That does not work in general when reasoning about STNs. We may get away

with such here because we have already established (1): meaning we already know

which of the read effects will be ending last as we extend the STN. In turn (1) holds

only because of the special assumption that we are building STNs corresponding to

just classically-sorted effect-sequences.

Then let us extend the induction hypothesis. For notation, let W = (r,w)Fluents

denote the weights of the lightest weight vertices of STN(Ẑk) that read from (r f )

and write to (w f ) each fluent f . (IH-cut-(k):) By induction, it suffices to remember

at most two lightest weights per fluent (W = (r,w)Fluents) in order to compute the

weights of every critical path ever leaving STN(Ẑk), and moreover the collection

may be had in amortized constant runtime. Firstly: (2) the slackless dispatch-times
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of the parts of αk+1 may be had in constant-bounded computation by referring to W

and the duration constraints of those parts. So we have the first induction hypothesis

fulfilled (IH-greed-(k + 1)).

The computation is polynomial in the number of fluents accessed by the parts:

poly-time in a constant is still a constant. Then likewise and secondly, even if the

parts of αk+1 were to end up writing to and reading from every fluent last: updating

W to W ′ = (r′,w′)Fluents is still a constant-bounded amount of work. (IH-cut-(k+1):)

So it still suffices to remember just the two lightest weights per fluent in order to

get away with forgetting the internals of STN(Ẑk+1); moreover said memory (W ′) is

had in constant space and constant amortized runtime. �
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4.4 TEMPORALLY EXPRESSIVE LANGUAGES ARE EQUIVALENT

UNDER COMPILATION

In general there are certainly more than two degrees of temporal expressiveness.

For example, permitting continuous effects certainly complicates matters [37, 137,

154, 169]. Even restricted all the way down to the scope of Figure 4.2 there are still

some interesting distinctions that could be made. For example, reasoning about

preconditions is easier than reasoning about conditional effects in general. Then in

some sense L(eff; pre; pre) is easier than L(pre; eff; eff). In a different sense

the two are equivalent. Namely both may be compiled into each other. The debate

then is whether the consequences of such compilation are significant.

We examine the issue, with emphasis on the conclusion that our restricted scope

contains only two degrees of difficulty. The notion is that whether compilation is

a valid excuse for denying syntax depends upon the cleverness of state-of-the-art

heuristic techniques. (More generally the dependency is upon the relative sophisti-

cation of any sort of inference in service of planning, not merely heuristics.) With

respect to PDDL the matter is especially relevant [71, 72, 186]. We more or less

side with Halsey, Long, and Fox: Compilation, in this case, resembles harmless.

The reason is that the computationally related criticisms of Smith are, to a point,

nearly addressed by the state-of-the-art. These criticisms are significant practical

concerns: not to be taken lightly. Hence proofs. Naturally the proofs only go so far;

in the end the conclusion is a compromise. Namely:

• The only recently popular paradigm for planning implements inference (al-

most) powerful enough to see through the particular compilations.
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• However, it is at best unclear whether more traditional—also more philosoph-

ically sophisticated—paradigms are able to see as clearly.

For example we strongly suspect that, at present, Smith’s technical concerns hold

rather strongly in the context of temporal generalizations of Partial-Order Plan-

ning [208]. Then a promising direction for future work (in any paradigm) is to

extend the degree to which the open problem is closed; the issues are significant,

and, attackable (in contrast to, say, NP , P). Let us clarify the motivations.

Make Forced ‘Choices’ Obvious. At its core, the technical flaw of compilations be-

tween declarative languages is that they introduce apparent choices that are ulti-

mately forced—perhaps non-obviously. If the forcing is too subtle, it might only

be discovered by trial-and-error: search. It is not unheard of to implement tech-

niques such as Explanation Based Learning/Generalization and Dependency-Di-

rected Backtracking in the context of planning [123, 209]. But it is unusual. With-

out such techniques: The inability to see the forcing, but for exhausting the wrong

values of the apparent choices, will happen over and over again throughout the

space of decisions. At best, that is a constant-factor slowdown. Even ‘small’ con-

stants are already bleak: a slowdown by a factor of 10 is hardly palatable. At worst,

and not atypically, it will be reasonably accurate to estimate the run-time as depen-

dent on the number of apparent, rather than real, choices: the slow-down will be

exponential. However, careful compilation, particularly with knowledge of the in-

ternals of the solver to be applied, may avoid the flaw entirely. The essence is to

produce poly-time machine-verifiable proofs of the correctness of the compilation.

In particular the requirement is to fit the proof within those poly-time inference
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schemes already employed (presumably for more well-motivated purposes than ad-

dressing compiled problems).

Obvious to an Automated Planner Means Planning Graphs. A fundamental of auto-

mated planning is to implement poly-time procedures for relaxed analysis of reach-

ability. The relaxations are all quite particular: If some proposition can ever be

made true, then it remains true forevermore. The details differ in what proposi-

tions are investigated. For example, in the Context Enhanced Additive Heuristic

the propositions in question are compound statements resembling “An inadmissi-

ble estimate of the cost of achieving f = v from S ⊕ ( f B u) is x.”, with S the state

of interest, f ranging over all fluents, and so forth [106]. As it so happens, if one

encodes a domain using only boolean-valued fluents, then theory based in Causal

Graphs becomes equivalent to theory based in Planning Graphs; the former is a

strict generalization [106]. In other words, it casts a very wide net to assume that

the internals of a planner are at least as powerful as reasoning about STRIPS-style

actions using Planning Graphs [16]. Indeed, the net captures even ‘non-search’

approaches to planning [52, 126, 128, 176, 196].

In short the notion is to compile every temporally expressive language into one

another, along the way demonstrating that planning graph based analysis is enough

to perceive the forcing. There are caveats and exceptions. Call a language syntac-

tically super-classical when it permits direct expression of B. Then:

Theorem 4.12. Every pair of syntactically super-classical temporally expressive

languages in the scope of Figure 4.2 permits a forcing compilation in either direc-

tion.
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Proof in Outline. Given any problem in a source language the existence of a forcing

compilation to a target language is witnessed by instead demonstrating a forcing

compilation from any convenient super-language of the source to any convenient

sub-language of the target. I.e., it suffices to compile the maximum language into

each of the minimal languages. Lemma 4.14 establishes the minimal languages, of

which there are four. Lemma 4.15 completes the argument by compiling the top-

level into each of the four. �

Caveat. The state-of-the-art is not quite sophisticated enough for our purpose. In

particular temporally expressive planners fail, by and large, to implement any sort

of reduction by consideration of causal independencies. To be able to construct

forcing compilations we need such. In particular, for the forcing arguments to work,

the state-of-the-art needs to advance by implementing a particular and interesting

synergy between deordering and landmark analysis. For a placeholder:

Conjecture 4.13. Relatively powerful forms of deordering and landmark analy-

sis, as in Lemma 3.3, will prove empirically effective within temporally expressive

planning.

4.4.1 S

Some of the languages presently within scope are simply too restricted to be of

practical interest. Specifically languages permitting preconditions nowhere would

require us to invoke compilation to address even causally sequential problems. At a

minimum it should be easy to state B. Let us take as a baseline only those

languages for which the abstraction into Conservative Temporal Planning (i.e., into

its image L(pre, eff; ∅; ∅)) also encompasses it. Call a language syntactically
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strictly sub-classical if otherwise; a language is syntactically super-classical if it

permits (i) primitive preconditions over at least one subinterval, and (ii) primitive

assignments over at least one subinterval. (One may regard this as a better definition

for degeneracy in the first place.) So L(∅; pre; eff) is a natural example of a

super-classical language within scope. Naturally this is all an ‘elaborate excuse’ to

ignore the temporally expressive cases we cannot compile to: L(∅; eff; eff) and

L(eff; eff; eff).6

Lemma 4.14. The languages of interest allow actions to depend upon fluents, al-

ter fluents, and most importantly, state problems requiring concurrency of actions.

6The two temporally expressive, syntactically sub-classical, sublanguages of ITP appear to be
counterexamples to the spirit of the theorem, insofar as being only NP-complete, rather than PSPACE-
complete. Proof of NP-completeness of L(eff; eff; eff): Take a POCL planning view. The only
open conditions are top-level goals. Each needs/permits just one causal link. So the size of a set
of minimal witnesses is bounded from above. Hence the appropriate variables are bounded by a
polynomial (conceptually, # goals times # actions). The constraints for threat resolution should be
polynomial as well, i.e., no worse than quadratic in the variables. Then membership in NP is shown.

For hardness: Consider Satisfiability in Propositional Logic of arbitrary formulas in Conjunctive
Normal Form. Setup a pair of complementary actions (i.e., make-p-true, make-p-false) per propo-
sition, a goal+fluent (i.e., set-p) per proposition, and a goal+fluent (i.e., check-c) per clause. Have
each start-part refute the satisfaction of every clause (i.e., delete every check-c). Have each end-part
witness the satisfaction of the appropriate clauses (i.e., e.g., make-p-false adds check-c for every c
such that ¬p ∈ c). Have each all-part indirectly witness that the corresponding proposition is given
just one truth value (i.e., add set-p), as follows.

Some action starts last (in the dispatch-order, the dispatch-times are largely irrelevant). Any
action that ends before will have all of its useful effects overwritten, rendering it (largely) irrelevant.
Otherwise an action starts before and ends after the key point (by maximality). Therefore all relevant
actions are concurrent. Hence the relevant set includes at most one out of every complementary pair
of actions (by the choice of all-parts and Proposition 3.12, i.e., by the very strict locking protocol).

Then, by construction, if, and only if, the problem is solvable, the final set of pairwise concurrent
actions names a partial assignment satisfying the formula. (The final start-part, all-false initial state,
and all-true goal together ensure every clause is checked; the final set of end-parts witness the
specific literals satisfying each clause; the final set of all-parts witness consistency of the set of
literals chosen; in reverse, any partial assignment witnesses executability; any satisfying assignment
further witnesses goal-achievement.) So hardness is shown, above and beyond membership, thus:
NP-completeness of L(eff; eff; eff) is proven. �

Presumably L(∅; eff; eff) is also NP-complete; it suffices to find an encoding of the key mutual
exclusion obtained ‘for free’ above. A theoretically interesting detail is that the ideal plan orders
the decision concerning any irrelevant proposition before the key point. Optimizing the metric “the
cost of a plan is the largest set of mutually concurrent actions” will result in a solution encoding a
smallest conjunction entailing the formula.
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There are 32 cases in the scope of Figure 4.2. There are 4 minimal cases:

L(∅; pre; eff), L(∅; eff; pre),

L(pre; eff; eff), and L(eff; pre; pre).

Proof. There are 8 = 23 languages within scope forbidding effects proper alto-

gether: permit/forbid preconditions only, in 3 parts. Likewise 8 languages for-

bid preconditions altogether. Counting both double-counts the 1 language forbid-

ding conditions and assignments altogether (i.e., permitting nothing). So there are

15 = 8 + 8 − 1 ‘boring’ languages: 49 = 64 − 15 languages remain.

Of these, there are 17 = 3 + 14 ways to forbid causally compound actions (as

follows). By Theorem 4.1, to forbid causally compound actions is all and only the

way to be temporally simple (within scope at least). Therefore there are 32 = 49−17

syntactically super-classical temporally expressive languages.

Elaborating, let us count the super-classical languages permitting only causally

primitive actions. There are 0 ways to allow precisely 0 temporally intersecting

nontrivial parts. There are 3 ways to allow precisely 1 temporally intersecting non-

trivial parts, e.g. L(∅; ∅; pre, eff). With precisely 1 forbidden part, to achieve

super-classical: there are (i) 2 ways to permit preconditions once and to permit ef-

fects once (picking one forces the other, in order to avoid forbidding 2 parts), (ii)

2 ways to permit preconditions twice and to permit effects once, (iii) 2 ways to

permit preconditions once and to permit effects twice, and (iv) 1 way to permit pre-

conditions and effects twice each. So there are 14 = 7 + 7 ways to allow precisely

2 temporally intersecting nontrivial parts, in two symmetric groups of 7: forbid

the start-part, or forbid the end-part (forbidding the all-part would force permitting
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temporally disjoint parts). There are 0 ways to allow precisely 3 temporally inter-

secting nontrivial parts, because permitting all of them permits temporally disjoint

parts.

For the minimal cases: only one of the four minimal nondegenerate temporally

expressive languages (see Lemma 4.4) is sub-classical: L(∅; eff; eff). There-

fore minimality of the other three is shown: L(∅; pre; eff), L(∅; eff; pre), and

L(eff; pre; pre) are minimal witnesses. It suffices to additionally enumerate

just those super-languages of L(∅; eff; eff) that minimally achieve super-clas-

sical status, i.e., permit preconditions somewhere. Of the three possibilities, two

are super-languages of the above witnesses, i.e., the two non-minimal possibilities

are: L(∅; pre, eff; eff) and L(∅; eff; pre, eff). The sole remaining possibil-

ity, L(pre; eff; eff), is, by inspection, not a super-language of the other three,

hence, is the fourth and final witness. �

4.4.2 C

So it remains only to prove that each of the four minimal cases captures the whole.

There is just one syntactic ability that the minimal cases ‘truly’ lack: the ability to

state primitive transitions. The game plan is to:

1. compile out primitive transitions by introducing extra parts per action, and

2. compile out the extra parts by introducing auxiliary actions and fluents.

In particular it is convenient to work in an intermediate form permitting any

number of parts over arbitrary subintervals. It should be clear how to extend the

machinery to directly support all the details. In any case we may adapt the compi-

lation techniques of Halsey, Fox, and Long [72], also discussed by Smith [186].
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Definition 4.7. Let PDDL∗ denote a discrete temporal planning language general-

izing Interleaved Temporal Planning in the intended manner: allow actions access

to arbitrary sub-intervals of their executions. Loosely, say:

• A compound action is given by a time-sorted sequence of parts.

• A part is given by an effect and its relative temporal extent.

• A relative temporal extent is a right half-open interval denoted by its start-

time and duration.

So for notation, write that compound α is given by (with i ∈ [0, n]):

α =
(
eff , ST , dur

)
[0,n], (4.5)

ST0 ≤ ST1 ≤ · · · ≤ STn, (4.6)

0 < duri, and (4.7)

dur0 ≥ ST i + duri. (4.8)

Here n abbreviates the number of proper parts, for disambiguation write: n =

Partsα. Further disambiguate if necessary by writing STβ,2 for the relative start-

time of the 2nd proper part of compound β. Part 0 is the all-part.

The definition leaves in the hands of the reader a number of easily addressed

details, some consequences of which are surely not immediately obvious. For ex-

ample, the effective unit of time (cf., Corollary 3.23) is no longer the g.c.d. of du-

rations. Rather “The g.c.d. of relative start-times and finish-times can be taken

as the unit of time.” is the accurate statement: µ = gcd
{
STα,i | i ∈ [0,Partsα]

}
∪{

FTα,i | i ∈ [0,Partsα]
}

is the right computation (with, of course, FT B ST + dur).
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If we first accept that the following compilations are indeed correct, then a (painful)

way to derive the formula would be to work backwards through the compilations.

Of course an entirely proper formal account needs to independently and completely

specify the semantics of PDDL∗ before proving that working backwards through

the compilations ends up with equivalent definitions. As far as future work is con-

cerned the upshot is that filling the gaps in the following proofs amounts to finishing

the definition of PDDL∗ and proving the relevent generalizations of the fundamental

propositions/lemmas/theorems.

In the course of the proof what we actually need is a restricted form: Say PDDL†

denotes the sublanguage of PDDL∗ restricting to just primitive conditions and prim-

itive assignments, i.e.: excluding primitive transitions. So each effect stipulates at

most one of f = v or f B v per fluent: never both. (Slightly abusively we could

write eff ∈ (pre|eff)Fluents.) From a semantic perspective, effects of this kind are

of the form {P ∪ E′ 7→ E | Dom(E′) = Dom(E)} subject to Dom(P)∩Dom(E) = ∅.

Then the theorem, as already outlined, reduces to:

Lemma 4.15. The top-level permits a forcing compilation into the minimal cases.

Proof in Outline. By Lemma 4.16 we may compile the ‘top-level’ (but PDDL∗ is, of

course, more general) into the intermediate form (PDDL†). By Lemma 4.17 we may

compile the intermediate form into each of the minimal super-classical temporally

expressive languages (as enumerated in Lemma 4.14). �

As a (necessary) precaution, let us begin by making sure that all of our various

book-keeping manipulations will not collide with themselves in time. For every

action α:

• Declare a (virtual) fluent αparity; assume αparity = even initially.
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• Duplicate α—name one αodd and the other αeven—and call both “real”.

• Add αparity = odd B even as a primitive transition to the all-part of αeven.

• Add αparity = even B odd as a primitive transition to the all-part of αodd.

Now observe that every two executions of a real action are quite separated in time

(i.e., the twin of each must intervene). For the following let us assume this manip-

ulation has been done (whenever needed), and let us forget about it. That is, simply

assume:

No two executions of the same real action are ever too close in time.

Note that we can assert any constant as the definition of “too close”, e.g., by count-

ing executions of α modulo some number larger than 2. We view the manipulation

as harmless for various reasons, for example, it does not alter the number of exe-

cutable plans.7

4.4.2.1 Compiling Out Primitive Transitions

So the first problem to solve here is that the minimal languages no longer guarantee

us the ability to state primitive transitions. Abstractly, a key difficulty is that we

cannot check that something is true and immediately delete that fact; at some later

or earlier time in the action we may effect the fluent, but, not quite immediately. So

for example, L(∅; pre; eff) places great obstacles in the way of modeling even

7Technically, counting parity of executions of actions could increase the number of reachable
situations. (This occurs when two schedules for reaching the same situation, prior to the manipu-
lation, nonetheless differ in some parity.) Let us emphasize situation: the read-times, write-times,
lock-types, and remaining obligations must all be identical as well. Which is relatively unlikely,
to the point that: temporally expressive planners do not bother to implement duplicate situation
elimination. Hence there is little practical significance to counting reachable situations.
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just simple movement. The natural attempt is something like: at start check that

the source and destination are connected, (and that the object is in fact presently

located at the given source,) then, at end, assign the location of the object to the

given destination. The problem with this is that nothing actually changes at the

start of the action. So we could leave a given location in any number of directions;

later on the formal model will (incorrectly) conclude that we successfully visit the

whole neighborhood in a rapid series of ‘teleports’. A correct model must redo the

work undertaken by the machinery of locks: manually enforce the desired mutual

exclusions. A fair amount of surgery is called for.

This may seem to be of little significance beyond serving as a step towards

Theorem 4.12. Actually though it is not at all uncommon for temporal planning

systems to differ upon fine details of mutual exclusion. So, while a relatively simple

exercise, it does turn out to be of some practical significance to work out how

to ‘jitter’ such fine details around in time. At least, as far as airtight empirical

comparison is concerned we ought to ensure that the formal problems considered

by two systems are ‘as equivalent as possible’. A typical notion of equivalence

would be to ensure that the precise count of solutions remains the same. Less usual

from a theoretical stance is to prefer to compare systems when they work with

graphs of similar size (presuming reduction to graphs . . . ): even when of notably

differing structure. (Which would mean that the formal semantics differ notably,

but the comparison may nonetheless be interesting, perhaps because the intuitive

semantics do not so differ.) Regardless of specific notion: detailed understanding of

the various formal interpretations, and how to map between them, is surely useful.

Without further ado:

Lemma 4.16. The top-level permits a forcing compilation into the language PDDL†.
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Proof. We have three subtasks: define the compilation, prove it correct, and demon-

strate forcing. The compilation involves three surgical steps: double the number of

fluents, stipulate particular effects upon them, and split primitive transitions upon

the original fluents in two. Then we prove correctness, focusing on the direction of

showing that (non-)executability of the compilation implies (non-)executability of

the original. We gloss over the reverse direction; it is more interesting to prove a

stronger result, namely, forcing.

The Compilation. Let µ stand for the unit-time of the original problem. Set the unit-

time of the compiled problem as: µ̂ B µ/2. So we split every original unit of time in

two. The first half serves to simulate the read/load half of a transition; completing

the simulation, the second half simulates write/store. Then a portion of the book-

keeping is dedicated to ensuring that only said book-keeping peers into these faster

-than-µ changes.

Firstly, double the number of fluents: associate every real fluent f with a virtual

fluent flock. These auxiliary fluents are surrogates, specifically, they serve to indi-

rectly enforce the correct temporal constraints. They are unary—their only legal

value is True.

Secondly, replicate, onto flock, the temporal constraints upon f , in detail:

1. For every primitive transition f = u B v, insert flock B True.

2. For every primitive condition f = u, insert flock = True.

3. For every primitive assignment f B v, insert flock B True.
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Clarifying, the first case takes precedence. So for example if the only thing some

part of an action does to a fluent is to check f = u, then apply the second case. On

a further technical note, call the insertions virtual (in opposition to real).

Thirdly, fake the semantics of primitive transitions. Say the original interval

of change on f is from time s to time t. That is, in notation, say the temporal

extent of the part is the right-half-open interval [s, t). Then, to compile out primitive

transitions, achieve the following (which PDDL† permits):

• Leave flock B True over [s, t) as-is.

• Check f = u over [s, s + µ/2).

• Carry out f B v over [s + µ/2, t).

(Leave primitive conditions and primitive assignments as-is.) Call the last part real

(and the others virtual). As far as mapping between obligations goes, consider the

first of the three parts above to be the image of the original.

Correctness. (Claim) The compilation is correct. That is, despite the compiled rep-

resentation being sometimes ‘wrong’ about when the change in f occurs/begins

(s + µ/2 rather than s), still every plan ends up with effectively the same interpre-

tation. Recall that the surgery ensures that every effect asserts read-locks or write-

locks (as appropriate) upon the surrogates flock—for the correct intervals of time—

and in the first two cases the manipulations end there: the locks upon f are merely

copied to flock. So only the last case is of concern.

In the case that we have compiled out a primitive transition: (Claim) only the

book-keeping surrounding the sole effect in question may observe the behavior of

the fluent over the concerned interval. That is because write-locks are exclusive
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and said interval is, indirectly, locked. Therefore it is of ‘no concern’ when we

check f = u and when we carry out f B v. We could, for example, have chosen to

split the original interval into [s, s + (t − s)/2) and [s + (t − s)/2, t) instead.8 Hence

correctness is, roughly, shown.

For much greater detail, consider deducing the uncompiled form of an execution

from the compiled form. Specifically, elide the various sequences in the following

manner, with σ the mapping between dispatches:

• Let Ŝ σ(0), Ŝ σ(1), . . . , Ŝ σ(n) be the states just after the image of any real effect

is applied (with the first for the initial state).

• Let V̂σ(0), V̂σ(1), . . . , V̂σ(n) be the vaults indexed in the same manner.

• Let D̂σ(0), D̂σ(1), . . . , D̂σ(n) again elide changes wrought by virtual effects.

Furthermore reduce their internal structure by throwing out all the book-keeping:

details following. As observed above, only primitive transitions are of any signifi-

cant concern.

(Case: State-sequences.) In the compiled problem we check the condition f = u

between states Ŝ i and Ŝ i+1 (i.e., of executions) and carry out the change between

later states Ŝ j and Ŝ j+1. From the preceding high-level argument, nothing between

i and j can touch f (besides the compilation of the single effect): Ŝ i( f ) = Ŝ j( f ) =

u. In the original problem we merely carry out both computations at once. So

8For t = s+µ as fast as possible, splitting the original interval in half is, entirely uncoincidentally,
exactly the same as picking s + µ/2 for the endpoint of the read portion. That is, the significance is
that for every choice of x splitting [s, t) into [s, s + x) and [s + x, t) then both x and t − (s + x) are
weakly larger than the new unit of time: x ≥ gcd

{
STa,FTa | a ∈ ̂Primitives

}
= µ̂ and t − s − x ≥ µ̂.

So considering t− s = µ as small as possible: x = µ/2 is ‘optimal’. If, though, t > s+µ is not as fast
as possible, then it would be possible and perhaps better to split into [s, s + µ) and [s + µ, t) instead.
There are naturally a great many such potential optimizations ignored by the argument.
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set σ(k) = i and σ(k + 1) = j + 1. Then more precisely, the point is that the

equalities S k = Ŝ σ(k)�Fluents and S k+1 = Ŝ σ(k+1)�Fluents are easily verified. In words:

The state-sequences of the original executions are subsequences of the compiled

forms, throwing away the book-keeping.

(Case: Vault-sequences.) Let decompile-vault(V̂) ignore the locks on real flu-

ents f ; instead, take the lock upon f to be the lock upon its surrogate, flock. So, with

V = decompile-vault(V̂), then define:

V B
{
f 7→ V̂( flock)

}
. (4.9)

Formally we ought to now check that the formal machinery of vault transition func-

tions computes identical structures. (I.e., check Vi = decompile-vault(V̂σ(i)).) We

skip the exercise, but there is an interesting assumption worth extracting from those

details. Specifically we assume: the identity of vault transition functions are in-

dependent of the precise definition of an effect. That is, all that matters is which

fluents are read from, and which written to; the values themselves are irrelevent

(cf., Chapter 2). In other words, the correctness of the duplication-surgery follows

chiefly from the (by design) independence of the locking behavior upon f from the

behavior of f itself.

(Case: Debt-sequences.) We have left generalization of debt-sequences to the

context of PDDL∗ in the hands of the reader; from any proper definition it should

be apparent that Di(α) = D̂σ(i)(α)�StrictIntervals holds. Which more or less merely

comes down to saying that: after applying the (compiled) all-part we should have

some structure such that the substructure excluding book-keeping directly records

the promised start-times of the start-part and end-part.
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Then to summarize, roughly, the compilation of problems:

• Inject (into PDDL∗) the various transition functions ‘unaltered’ but for exten-

sions to larger domains.

• Use the surrogate fluents to decouple the injections of state transition func-

tions and vault transition functions.

• Tweak the state transition functions by splitting f = u and f B v apart

(thereby achieving the restriction to PDDL†).

Likewise summarizing the decompilation of executions of plans:

• Set σ(i) B j when dispatch j of the compiled plan is the ith real dispatch.

• Set S i B Ŝ σ(i)�Fluents.

• Set Vi B decompile-vault(V̂σ(i)).

• Set Di(α) B D̂σ(i)(α)�StrictIntervals for every α ∈ Compounds.

Verifying that the alternative way of computing executions (compile, solve, de-

compile) is equivalent is one direction (i.e., soundness) of a proof of correctness.

We should also demonstrate the reverse direction (i.e., completeness): there does

in fact exist some compiled representation/interpretation of any given original plan.

Which is ‘obvious’: simply expand any original sequence of dispatches in place.

Specifically, expand parts containing primitive transitions into their three compiled

parts, say: lock, read, and write.

More formally, call a compiled plan endpoint-interleaving-sorted (in anal-

ogy to classically-sorted), for the following just say canonical, if all parts of any
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compiled action appear as two contiguous subsequences of the plan. Then, as iden-

tifying a witness demonstrates existence, observe: for every executable plan of the

original, the corresponding canonical compiled plan is also executable. Perceiving

such is straightforward, i.e., compose together the various subsequences of transi-

tion functions guaranteed to be contiguous in any canonical plan.

The practical upshot is that a target planner could prune away (preserving com-

pleteness, etc.) consideration of, more or less, all but the canonical plans. Achiev-

ing such pruning thereby defeats (some of) the criticisms of Smith [186]. The

strongest possible form of such a rebuttal is for the planner to automatically pro-

duce a proof (of the correctness of the pruning) based on just the compiled problem

it is given. That is, we want a planner to realize that a problem is the result of hav-

ing carried out a compilation: without being told so. This is a tall order. There is

a world of difference between verifying that a given equivalence reduction is cor-

rect, and finding one without being told to look for it. In other words, we come to

demonstrating forcing.

Forcing. We first reiterate that the point is a matter of conjecture. Specifically we

conjecture that temporally expressive planners will be able to effectively opera-

tionalize Theorem 3.21, i.e., effectively operationalize the notion of deordered-

equivalence. Which is perhaps a significant leap of faith. Having done so, then, for

the present purpose it suffices to show that precisely one member of every deord-

ered-equivalence class is canonical in the precise sense of “endpoint-interleaving-

sorted”.
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We shall do so in the spirit of Lemma 3.3. Namely, it suffices to demonstrate

that: a planner could prove to itself that: having begun the “lock part” of the com-

piled form of a primitive transition, it is:

1. necessary to carry out the “read part” and “write part” in that order, and

2. sufficient to do so immediately.

This is because such are the only new parts introduced by the compilation, i.e., these

are the only parts that need to be reordered in order to reach the desired canonical

form. Then, for the only case of interest, the last dispatch, say `, added to the plan

is of the “lock part” of the compilation of some primitive transition f = u B v. Let

r and w stand for the respective dispatches of the “read part” and “write part”.

In the context of PDDL∗, (1) is free: Having begun any part of an action one is

obligated to carry out its entirety.

For (2), for analogy, consider Proposition 3.2; consider the property that nothing

mutually exclusive can intervene (between ‘now’ and when the remaining parts

are added to the plan). Then each of the following (true) propositions/assertions

is readily seen from examination of just the compiled problem. (And arguably

worthy of investigation themselves, or as necessary consequences of more general

observations, i.e., worth analyzing without being told that the problem is the result

of compilation.)

• The only things mutually exclusive with r or w touch f .

• Everything touching f is concurrent with something, say `′, touching the

surrogate flock.

Moreover such `′ are ` only for r and w. That is, anything mutually exclusive

with r or w is concurrent with something (a) not `, and (b) touching flock.
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• The last dispatch, `, more specifically acquired a write-lock upon flock over

[AST(`),AFT(`)).

As write-locks are exclusive, it follows: Everything mutually exclusive with

r or w starts no sooner than AFT(`).

• The machinery gives us for free that ` contains r and w, i.e., more specifically

AFT(r) ≤ AFT(`) and AFT(w) ≤ AFT(`) can be read off from the current

situation.

It follows that nothing mutually exclusive with r or w may be added to

the plan before they are. (For example, AFT(r) ≤ AFT(`) ≤ AST(`′) <

AFT(`′) ≤ AST(r) < AFT(r) would be a contradiction.)

• In other words, the dispatches of the remaining parts of the compilation of a

primitive transition are ‘temporal landmarks’ for everything they are mutually

exclusive with, in every situation where they are possible (cf., Lemma 3.3).

Hence, if they are ever to be included it suffices to do so immediately, con-

firming (2) as desired.

Then to bring the argument to a close, we: compiled out primitive transitions,

verified correctness, and demonstrated forcing relative to conjectured generaliza-

tions of standard technique. �

Discussion of Related/Future Work. The future work here is to entirely ground the

preceding argument into an implementation. This is far from trivial. It is interest-

ing to highlight some of the challenges to be tackled, relative to generalizing the

techniques of classical planning.
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The problem analysis needed here will be at least at the level of h2(·) analy-

sis over multi-valued fluents, in order to see the binary relationship between f and

flock. As far as such generalization of planning graphs to non-boolean fluents is con-

cerned, it is useful to consider the work in and surrounding Fast Downward [102].

More likely the analysis will need to go as deep as h4(·) to see the quaternary re-

lationship between, for example: the “write part”, its ‘container’ (the “lock part”),

any hypothetical future primitive also touching the fluent, and its ‘container’. Here

the work in fluent merging is a somewhat promising approach [97, 197]. That is

because, intuitively speaking, the relationship is binary between just the two prim-

itive transitions; that understanding is in theory recoverable via fluent merging. In

particular by merging the fluents and their surrogates together, and then conducting

h2(·) analysis on that, one could also discover the truth of the particular propositions

needed for the proof.

It is furthermore interesting to note that the analysis depends, somewhat, upon

the temporal details/constraints. That is, what the machinery gives us for free as

necessary is a particular dispatch of a particular primitive. Likewise, that it is suf-

ficient to dispatch immediately concerns an analysis of (the impossibility of) all

mutually exclusive dispatches. In contrast, Lemma 3.3 is stated for plans consist-

ing of primitives. So the point is that the existing work in classical planning must

be generalized to better address the distinction between primitives and dispatches

thereof.9) Some significant work in this direction considers combining the tech-

9Consider compiling all the way down to classical planning. To sieze the pruning opportu-
nity here points to an analysis of at least six entities: a primitive, its dispatch-time, an associated
containing primitive, a hypothetical mutex primitive, its dispatch-time, and another associated con-
taining primitive. For that matter it would be unsurprising if the dispatch-times of the containers
were equally crucial. Consideration of h6(·), or greater, over multi-valued and numeric fluents to
boot, is, shall we say, less than promising.
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niques of Linear Programming with Planning Graphs [37]. The work in Temporal

Fast Downward (TFD) is also certainly worth investigation [64]. Especially the

work of Bernadini and Smith within TFD considers quite specifically automated

analysis of temporal planning problems [14].

4.4.2.2 Compiling Many Parts into Few

Our last, and hardest, sub-problem is to compile out the accesses to arbitrary sub

-intervals of action executions. This is a bit trickier than usual [72, 186]. That is

because the syntax restrictions of the minimal cases are quite excessive. Primarily,

the details complete our formal analysis of how far the notion of merely two levels

of temporal expressiveness can be taken.

The ulterior significance here is in regard to promising approaches to extend-

ing the state-of-the-art. Firstly, defeating the mechanisms—proving their absence

—works toward proving that particular subsets of primitives may be abstracted into

primitives without loss. (Which amounts to ‘solving’ causally required concur-

rency.) Secondly, implementing the analysis in support of forcing works towards

proper justification of deliberately limiting, internally, to ITP rather than imple-

menting direct support for, say, PDDL∗ (which is more well-motivated in practice).

Conversely, the difficulty of doing so effectively may be taken as justification for

(rather than justification against) directly implementing support for PDDL∗.

For analogy, that compilation to SAT can be, and often is, an effective way to

solve a breathtaking variety of problems turns on the sophisticated inference be-

ing carried out by such solvers in the name of efficiently inferring forced decisions

(i.e., unit-propagation, clause-learning, and variable-(re-)ordering are all quite im-

portant to the effectiveness of SAT as a combinatorial substrate for many kinds of
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problems). Likewise, whether ITP can be taken as well-motivated turns on the so-

phistication of implementations of discrete temporal planning. More specifically,

part of the significance here goes towards fleshing out the technical meaning of

Conjecture 4.13: an effective implementation would happen to be strong enough to

see through the following—and so also many other more well-motivated—compi-

lations.

Then without further ado: the heart of the proof of Theorem 4.12 lies in demon-

strating the following.

Lemma 4.17. The intermediate form PDDL† permits forcing compilations into the

minimal cases of Lemma 4.14.

Proof. We have four minimal languages to compile into. For each we need to (a)

define the compilation, and (b) prove it correct. We also argue towards (c) forcing,

but there are technical holes remaining, discussion of which is inline. The general

idea is to:

• split up any given action (α) into a chain-decomposition (β),

• compile each piece into its own action (β̂ for all of them),

• setup an envelope to contain them all (do), and

• use two matched pairs of virtual actions to workaround the syntax restrictions

that render difficult the expression of the conceptually simple relationship

between the envelope and its contents.

The compilations are broadly similar, beginning with the fact that all separate

over actions; the compilation of a problem is the result of separately compiling each
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action. (In contrast, eliminating primitive transitions called for global surgery.) So

let α =
(
eff , ST , dur

)
[0,n] be some compound action consisting of a time-sorted

sequence of parts. Then intuitively speaking the idea is to break this up into a

sequence of PDDL-style compounds α̂i: one per part. Further book-keeping then

serves only the purpose of ensuring that dispatches of the whole sequence end up

contiguous in time, and, ideally, contiguous in dispatch-order as well.

(α to β). More accurately, the compilations need to account for overlapping parts.

Consider the natural partial-order on the parts of α: αi � α j whenever FT i ≤ ST j

(where of course FT B ST + dur). Let (1) β denote a chain decomposition of this

partial-order, (2) augmented by inserting do-nothing struts between parts adjacent

in a chain but not contiguous in time, (3) presented more or less as a reformulation

into a set of compound actions. That is, let β1 =
(
eff , ST , dur

)
[k1] partition the

interval [0, durα,0) into a k1-length sequence of parts, each either with trivial effect,

or, equal to some arbitrary choice of a proper part of α. Then let β2 do the same,

but exclude those parts of α already covered by β1. Say by βk we exhaust all of α

but for its all-part, α0. Let β0,1 B
(
eff α,0, STα,0, durα,0

)
finish off the decomposition

(by picking just the all-part of α). So among other things we have k + 1 chains,

of lengths ki (k0 = 1), such that the n + 1 parts of α all appear precisely once.

Then, refining the outline view: The bulk of each of the compilations consists of

converting each such part βi, j of the decomposition/partition into its own action β̂i, j,

with some additional work to ensure that the latter are forced to occur contiguously

in time.

Discussion of Durative Effects/Conditions. We shall exploit a feature of our seman-

tics with ‘no support whatsoever’ in current practice; precious few temporal plan-
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ners permit one to specify the durations of discrete effects. Indeed, most pretend

that such are instantaneous. Given that the truth of the matter is that such do have

duration within the formal semantics of the planners (i.e., as implemented), and

in particular that such durations effectively dictate the domain of time, it seems to

us to be a self-defeating limitation of existing practice to insist that such intervals

be ‘as small as possible’. Instead it seems that such systems should benefit, or at

least be unharmed, by taking effects at endpoints to be of significantly longer dura-

tion. In support of that point, consider that at the extreme (the effects anchored at

endpoints occupying the whole interval of the action), we recover the semantics of

Conservative Temporal Planning (i.e., we simplify to the setting of TGP).

So we have some preference for permitting direct specification of the durations

of effects. In any case we do not really have to exploit this feature of our definitions;

there are other ways to get the job done in paradigms of instantaneous or nigh-

instantaneous effects [72]. As we do not anyways expect our compilations to be of

direct practical significance, let us simply take the route at present most formally

convenient. Namely, we exploit—in the following manner—setting the durations

of the start-part, end-part, and all-part of an action to be the same.

(β to β̂). Long story short, we may indeed achieve the picture painted above, in any

of the minimal cases, despite their severely restricted form. Which means that, in

every minimal case, we do literally take β̂i, j to be an action (with every part of equal

duration) encoding part βi, j of the decomposition/partition β of the original action

α. The manipulation here is to take the conditions of βi, j and place them in a syn-

tactically valid part of β̂i, j, likewise for its effects. By Lemma 4.16, we have already

ensured that doing so does not result in patently self-mutex/self-contradictory ac-
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tions. For notation, let us setup the formal definition sans book-keeping initially,

and then add in the book-keeping by redefinition (i.e., yet more formally we would

separately name the intermediate structures). So, with:

• i ∈ [0, k] the index of a chain of the decomposition/partition of α,

• j ∈ [ki] the index of a part along that chain,

• b = βi, j =
(
eff b, STb, durb

)
the part of α (or strut) in question,

• b̂ = β̂i, j the compilation of the part into a ‘compound’ action,

• p naming a part permitted to express primitive conditions,

• e naming a part permitted to express primitive assignments,

• x naming any other parts,

• {P ∪ E′ 7→ E | Dom(E′)} = eff b destructuring the effect of b,

initially set, in the case that p and e are distinct:

̂ActionDefs((b̂, p)) B ({P 7→ {}}, durb), (4.10)

̂ActionDefs((b̂, e)) B
(
{E′ 7→ E | Dom(E′) = Dom(E)}, durb

)
, (4.11)

̂ActionDefs((b̂, x)) B ({{} 7→ {}}, durb), (4.12)

or, in some non-minimal case where p = e is possible then initially set:

̂ActionDefs((b̂, p)) B
(
{P ∪ E′ 7→ E | Dom(E′) = Dom(E)}, durb

)
,

̂ActionDefs((b̂, x)) B ({{} 7→ {}}, durb), (for both x).
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Observe: To ensure the compilation is correct it suffices to guarantee that if any β̂i, j

occurs, then they all do: contiguously in time.

For uniformity through the cases let us use something resembling an envelope

to ensure the temporal constraint [72, 186]. As a warm-up, consider ensuring that

all of some set X only ever occurs after x and before x′ (in the dispatch-order):

• Create a boolean fluent executingX, always initially and finally false.

• Add executingX = True to each element of X.

• Add executingX B True to x.

• Add executingX B False to x′.

If, as we may freely assume (by Theorem 3.21), the dispatch-order is time-sorted,

then also we have the desired containment relationship in time as well. As far as

intuition goes that is how envelopes work. Accurately though, we can, and usually

do, omit the above manipulation. The reason is that, rather than a set, we have a

partial-order; enforcing the ordering constraints, as it so happens, goes a long way

towards enforcing containment.

(Book-keeping: Ordering Constraints). For the following, continue to let µ̂ denote

an effective unit of time for the compiled problem (half of the original unit); much

of the book-keeping consists of such unit-duration parts or actions. Enforce the

partial-order on which β is based, for i ∈ [0, k] and j ∈ [ki], by the following

manipulations.

• Create boolean fluents (token i j), always initially and finally false.

• Add (token i j) = True to β̂i, j.
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• Add (token i ( j + 1)) B True to β̂i, j.

• Add (token i ( j − 1)) B False to β̂i, j.

• Create book-keeping actions setup and reset.

• Create boolean fluents (token i 0), always initially and finally true.

• Create boolean fluents (token i (ki + 1)), always initially and finally true.

• Add (token i 0) = True to setup.

• Add (token i 1) B True to setup.

• Add (token i (ki + 1)) B False to setup.

• Add (token i (ki + 1)) = True to reset.

• Add (token i 0) B True to reset.

• Add (token i ki) B False to reset.

(To add statements to such actions, without qualification, add it to whatever part

in fact permits statements of that kind, as detailed above.) We may check that no

fluent is accessed twice at any given point in time, which is enough to ensure that

the book-keeping will be able to meet the syntax restrictions of the minimal cases

(without running afoul of mutual exclusions).

As far as correctness goes the first observation to make is that: the sums of the

durations of the compilations of each part along each chain is the correct relative

start-time of the next part. For notation: STβi, j =
∑

1≤k< j dur(β̂i,k). This holds by

the construction of β, specifically we demanded that each chain be augmented by

inserting do-nothing struts of the proper durations. So fastest dispatches of the
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chains start all the parts at the right times. Then all we need to do, as far as ensuring

that the relative start times are correct, is to ensure that the fastest dispatch is the

only legal dispatch.

If the minimal cases permitted us to downgrade the setup and reset actions into

mere primitives then we would be immediately done. (Here is where related com-

pilation arguments stop, more or less.) Specifically we would finish by making

these into the start-part and end-part of an action with appropriately limited dura-

tion. However, as each uses both conditions and assignments, in the minimal cases

they are syntactically invalid as mere primitives.

The second observation to make is that the book-keeping is employing a stan-

dard manipulation for ensuring that any given chain occurs uniquely: a token is

passed along each. Normally one would require and immediately delete the prior

token, making uniqueness very clear. Here we (sortof) delete the tokens too late.

That is, at a purely propositional/classical level the machinery does not, entirely,

prevent unwanted repeats of the various parts. As it turns out, merely ensuring the

temporal correctness (by making the fastest dispatch be the only dispatch) also en-

sures the classical correctness (in particular, that each part of the simulation occurs

once and only once per simulation). That is, ensuring that each part starts at the

right time also ensures that copies of parts cannot appear within a single simula-

tion of the entire action; copies are mutex with one another, so, forcing all copies to

start at the same time means that no copies actually exist. For the present purpose

then it suffices merely to enforce the temporal constraint: the uniqueness property

follows.
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More generally the uniqueness property is of interest regardless of the temporal

constraints. That is, besides correctness of this compilation, the uniqueness prop-

erty is of direct interest towards search-space reductions as in Lemma 3.3.

In short, we demonstrate correctness of the compilation(s) in four parts: exis-

tence, ordering, duration, and uniqueness (which is implied by duration). Roughly,

we show that if any part occurs then every part:

• (existence) exists at least once,

• (ordering) is ordered correctly, and

• (duration) is dispatched as fast as possible; it follows that

• (uniqueness) every part ‘exists at most once’, more precisely, it follows that

every part is included at most once (and so exactly once by (existence)) per

simulated instance of the action α.

Moreover we desire a proof amenable to implementation, i.e., we desire to demon-

strate something resembling forcing.

(Existence and Ordering by Landmarks). Then we begin by noting a number of

easily inferred landmarks, with i ∈ [0, k]:

• The reset action separates those states where the setup action is not executable

from those states where it is. Precisely, the reset action separates states satis-

fying (token i 0) = False from states satisfying (token i 0) = True; because

no other action has the effect (token i 0) B True. For notation:

Each (¬(token i 0), reset, (token i 0)) is an action landmark.

281



• The setup action likewise separates executability of β̂i,1. For notation:

Each (¬(token i 1), setup, (token i 1)) is an action landmark.

• For each j ∈ [ki], the action β̂i, j separates executability of β̂i, j+1. For notation:

Each (¬(token i ( j + 1)), β̂i, j, (token i ( j + 1))) is an action landmark.

Or, taking j ∈ [0, ki + 1], performing the arithmetic on j modulo (ki + 1) + 1,

understanding β̂i,ki+1 as the reset action, and understanding β̂i,0 as the setup action,

then we may write just: Each (¬(token i ( j + 1)), β̂i, j, (token i ( j + 1))) is a trivially

inferrable action landmark. We may likewise note the uniqueness of the delete

effects, continuing with i ∈ [0, k], j ∈ [0, ki + 1], and the modular arithmetic (etc.):

• Each action β̂i, j separates ‘relevance’ of its (intended) predecessor β̂i, j−1. By

which we mean only that each ((token i ( j − 1)), β̂i, j,¬(token i ( j − 1))) is an

action landmark.

Summarizing: the only way to make the token at some particular index true is to

execute its intended predecessor, similarly the only way to then make the same

token false is to execute its intended successor. Which is obvious—even to rather

naı̈ve automated planners—as the statements merely formalize the uniqueness of

the add and delete effects on the tokens.

Far less obvious is the inductive closure: the following landmarks. For all a ≤ b,

b < c, a′ ≡ a, b′ ≡ b, c′ ≡ c, under equivalence modulo ki + 2, then:

((token i a′), β̂i,b′ , (token i c′)) are each action landmarks. (4.13)

Which means: If some token is true now, and later some other token within the

same chain is true, then every operator along the directed cycle between those two
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tokens occurs (in order). For an example, if the third token is true now, and the

first token is true later, then: understanding 1 ≡ ki + 3, infer that every β̂i, j occurs

between now and then (in order) except for β̂i,1 and β̂i,2. In other words, to perceive

the truth of Equation (4.13) is to perceive (existence) and (ordering).

Perhaps these landmarks are intuitively clear enough; perhaps not. Regardless:

How hard are they to prove? Consider the following invariant analysis.

(Invariant Detection in Support of Forcing). It is true that, for all original actions α,

for all reachable states S , and for all i ∈ [0, k]:

|{ f | f = (token i j) and S ( f ) = True}| = 2.

The fact almost follows just by noting that every relevant operator deletes one mem-

ber of the set and adds another (i.e., is balanced in the sense of Bernadini and

Smith [14]). The tricky aspect to proving the invariant is to guarantee that the

delete effects are only ever applied when there is something to delete. To notice

such more or less requires the refined observation, for all b . a ± 1:

S ((token i a)) = False or S ((token i b)) = False.

That would follow from, again for b . a ± 1, the hypothetically true:

h2((token i a) = True and (token i b)) = ∞.

Whether a straight up planning graph (with mutex propagation) might indeed notice

the invariant is an interesting question [16, 99]. Our point here is just that significant
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negative interactions may be detected by standard technique, even if not precisely

as above: motivating the following deeper, more expensive, analysis.

Let Xi = {(token i j) | j ∈ [0, ki + 1]} be the propositions relevent to chain i.

Consider the state-space graph of the temporal problem; i.e., ignore all the tempo-

ral aspects, focusing only on the classical constraints. Naturally, only the reachable

component is of interest. For any given i: Contract together every vertex of the

reachable component differing only in the values of fluents outside of Xi. The re-

sulting graph is called a Domain Transition Graph: write, say, DTG(Xi).

Such graphs may be built in poly-time with respect to their size, by exploiting

a logically equivalent definition.10 Namely, we may project/abstract the original

problem onto the fluents Xi, the meaning of which with respect to state-independent

effects is just to erase every statement concerning unrelated fluents. (Supporting the

general case, state-dependent effects, is more complicated, but in principle remains

straightforward enough.) We care for the contraction viewpoint because it makes

the relationship to the original problem very clear. Specifically: if we cannot find

paths in a Domain Transition Graph, then we cannot find paths in the full state-

space, so we certainly cannot furthermore find schedules solving the full temporal

problem.

Then consider the following fact, which we claim without further (meta-)proof.

The state of the art in exploiting Domain Transition Graphs can prove [107], pro-

vided the set of fluents Xi encoding the state of the token, that, for all i ∈ [0, k]:

DTG(Xi)
iso
= Cki+2 + Lki+2,

10To be accurate, building a DTG in practice is not precisely identical to contracting the reach-
able component of state-space. To make the proof work all that we require are sufficiently tight
overestimates of reachability, which does here hold.
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where C` denotes the directed cycle on ` vertices:

C` = ([`], [`], {x 7→ (x, x′ + 1) | x′ ≡ x (mod `)}), and

where L` denotes the graph on ` vertices consisting solely of directed loops:

L` = ([`], [`], {x 7→ (x, x)}).

Discussion of Domain Transition Graphs for Automated Detection of the Token-

Passing. The claim here is that, given the identity of the right fluents to consider,

subsequently writing out the corresponding contracted state-space is a mechanical,

feasible, exercise. Doing so results in said augmented/loopy cycle, which the reader

may readily verify; the only hypothetically tricky part to full automation is guess-

ing which fluents to consider. That guess is somewhat important, because proof

of the invariant fails if one considers anything less than all of the tokens along a

given chain. (For Y ⊂ Xi, in general |V(DTG(Y))| = 2|Y |; only for Z ⊃ Xi do we

have |V(DTG(Z))| ≤ 2|Z\Xi ||Xi|, and so only by guessing Xi correctly will automated

analysis be feasible.) However, it seems not too large a stretch to suppose that an

automated planner could (feasibly) manage to figure out on its own that these chains

of tokens are all quite relevant to one another, i.e., worthy of deeper analyis. (By,

for example, building h2 and taking the presence of many negative interactions as

motivation for merging the fluents together.) We say so, in large part, because the

machine is free to make many wrong guesses: just not exponentially many. For an

example of a closely related working implementation, see the work of Bernadini

and Smith [14].
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Detecting the loopy cycles plays into landmark analysis very nicely, because

every non-loop edge is a cut (i.e., a landmark). (In the general case one looks not

for cycles but rather for domain transition graphs with many small cuts; especially

interesting from the point of view of forcing are those vertices with just 1 leaving

edge.) Specifically, all the landmarks described by Equation (4.13) fall directly out

of the cuts of a loopy cycle. In other words, as every solution always projects onto

a (legal) walk through any given Domain Transition Graph, and the graphs we have

describe the right orderings for the pieces of the simulation of α, we already have

that every solution looks quite close to 0 or more correct simulations of α. What is

missing is to prove that the loops can be pruned away (for (uniqueness)), and that

the temporal constraints are satisfied (for (duration)).

(Regular Expressions for Denoting Complex Landmark Knowledge). We may view

Domain Transition Graphs as Deterministic Finite Automata, and hence as regu-

lar expressions. Let us indeed take regular expressions as inspiration for notation,

with some small liberties for the sake of simplicity. In particular let us denote our

knowledge of the token-passing by writing, for each i:

(setup+, β̂i+, reset+) ∗ . (4.14)

The liberty we take here is with respect to the contents. To be accurate we should

express that each β̂i, j may individualy repeat in isolation (rather than implying that

each chain can internally repeat as a whole). That is, to be formal we should roll

out the notation as in, for each i:

(setup+, β̂i,1+, β̂i,2+, . . . , reset+) ∗ . (4.15)
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Allow the abuse, but just for the following and just for the compiled view β̂ of the

action α.

(Duration/Uniqueness by an Envelope). What has yet to be shown is (duration): the

fastest dispatch is the only dispatch. We need this for two reasons; doing so ensures

that all the various parts of the simulation are dispatched at the correct relative

times, as well as ensuring that all the various parts of the simulation occur only

once per iteration, i.e., for (uniqueness).

Regarding the latter, for motivation, consider say β̂1,2 and β̂1,3, and suppose

some x elsewhere in the full problem writes to a fluent that β̂1,2 also does. Sup-

pose further we take into account only the classical constraints (the state-sequences

of executions). Then we will fail to notice non-solutionness of plans with subse-

quences such as: β̂1,2, x, β̂1,2, β̂1,3. In particular note that the latter instance of β̂1,2 is

potentially useful, rather than a no-op. (Typically we will exclude the immediate

repetitions based on inferring their uselessness.) Also note that, thus far, there is no

constraint preventing such unintended double use of pieces of the compilation. So

we need to extend the book-keeping to exclude such internal repetitions.

To exclude internal repetitions, we wrap all of setup, β̂, and reset inside of an

envelope with duration too short to permit repeats. Specifically, say do is a new

book-keeping action of duration durα,0 + 4µ̂. To deal with the particulars of the

minimal cases, we need another matched pair of book-keeping actions (i.e., very

much like setup/reset). So say before and after are book-keeping actions (of dura-

tions µ̂), serving to separate (desirable) repeats of do. The details differ somewhat

in each case, but the general idea is the same. Namely, we want to force plans to
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look like (when viewed in DTG(Xi), for each i):

(before, bgn-do, setup, β̂i, reset, fin-do, after) ∗ .

The strategy is to—per language, problem, and original action instance—en-

sure:

1. (before+, setup+, reset+, after+)∗.

2. (before+, do+, after+)∗.

3. Every envelope starts between the last before and first setup.

That is, with (1) and (2): (before+, bgn-do+, setup+, reset+, after+)∗.

4. Every envelope ends between the last reset and first after.

That is, with (1) and (2): (before+, setup+, reset+, fin-do+, after+)∗.

Given such guarantees (deferred to Appendix C) the rest follows. Specifically, com-

plete demonstration of the correctness of the compilation by:

• Deduce first, since actions are self-mutex, from the last two guarantees, that

one and only one instance of the envelope occurs per nearest instances of

before and after. Write: (before+, bgn-do, setup+, reset+, fin-do, after+)∗.

• Recalling (setup+, β̂i+, reset+)∗, further infer that the rest of the intended

contents are indeed contained, i.e., for each i:

(before+, bgn-do, setup+, β̂i+, reset+, fin-do, after+) ∗ .
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(‡) By construction, the duration of the envelope is too short to permit any repeats

of its contents (and just long enough to actually fit them all). So, for each i:

(before+, bgn-do, setup, β̂i, reset, fin-do, after+) ∗ .

Eliminating the internal repetitions of before and after is all that remains.

• It shall be the case that before is mutex with only: do, setup, reset, and after.

Hence nothing mutex will be able to occur between the repeats we are con-

cerned about, by (1) and (2). So by Proposition 3.2 we may assume the rep-

etitions occur immediately; note that immediate repetitions are no-ops. Then

prune, and hence deduce that, for each i:

(before, bgn-do, setup, β̂i, reset, fin-do, after+) ∗ .

• Likewise and finally, concerning after, deduce that, for each i:

(before, bgn-do, setup, β̂i, reset, fin-do, after) ∗ .

Elaborating on the last, the meaning is as follows. Up to certain equivalence and

dominance reductions (e.g., pruning no-ops), with respect to each original action:

• projecting each solution of the compiled problems onto

• all and only those primitives comprising its (intended) compilation

• (indeed) yields just zero or more repetitions of the whole set

• with each such repetition ordered as intended.
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Or for short: (existence), (uniqueness), and (ordering) hold. Moreover those

guarantees were had by way of ensuring the temporal constraints—see (‡) and (du-

ration)—hence correctness follows.

So we are done but for forcing and the case analysis. Whether a target planner

can generate this proof is merely conjecture—meaning future work—and further

discussion follows. The details of the book-keeping needed for each case are de-

ferred to Appendix C. �

As far as forcing goes the question (Conjecture 4.13) amounts to whether the

target planner can generate the proof. Certainly present implementations are not

strong enough.

Regarding the temporal reasoning, note that restricting the number of parts per

compound is ill-motivated in the first place should the target planner fail to grok

the mechanics of envelopes and similar [186]. So either the temporal inference can

be automated effectively, or we should just implement direct support for PDDL∗ to

begin with.

For the longer term, pursuing the former is the better research goal; it is also

close enough to take seriously. Specifically the supporting, purely classical, land-

mark-style inference up to the temporal reasoning is well within the near-term grasp

of present technique [174]. (Note that generalizing “must occur” to “must occur by

time t” is entirely natural.) For that matter, there is promising related work to draw

from regarding temporal generalizations of problem specific inference.

Indeed, in some sense, any temporal planner is quite relevant: temporal infer-

ence is just a basic necessity for performing (nondegenerate) temporal planning

in practice. (That is because enumerating all schedules is futile, which heuristics

alone cannot remedy, hence the requirement for something resembling temporal
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inference.) Perhaps the two best systems to consider in depth regarding forced

choices are EUROPA and CPT [12, 202]. That is because both are rooted firmly in

(temporal) constraint satisfaction, which is a particularly apt perspective.

EUROPA, for example, uses a most-constrained-decision-first meta-heuristic in

selecting the precise form of its search-tree: significantly, “decision” can concern

any temporal interval. Particularly, in the extreme case that knowledge of the kind

employed in the above proof is available, this flexibility of the search-tree con-

struction permits immediate exploitation of that knowledge in the precise sense of

forcing. Note that we may regard such (nonbacktracking) meta-choices over search

decisions as a kind of ‘automated inference’. As the reader might expect, EUROPA

presently lacks any especially sophisticated notion of ‘most-constrained’. Then fix-

ing that by integrating the rather more sophisticated work of Bernadini and Smith

on temporal invariant analysis into EUROPA (and/or CPT) is a promising research

direction [14].
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4.5 CONCLUSIONS UPON THE ANALYSIS OF TEMPORAL PLANNING

LANGUAGES

What should a temporal planner be able to do? Reasoning about temporarily avail-

able resources is surely important (cf., Figure 4.1):

• fix a fuse by matchlight,

• explore a cave by torchlight,

• navigate a crater on battery power,

• operate an instrument while it retains enough heat to avoid damage,

• overclock a cpu while it remains cool enough to avoid damage,

• achieve happiness in this lifetime,

• hold a meeting while the conference room is available,

• legally cross a traffic intersection,

• and so on.

Yet TGP—and a number of so-called temporal planners following suit—cannot

even model (let alone solve) such problems! For such a fault to be discovered

by an end-user would be embarassing, to say the least. Still, bugs are to be ex-

pected. How technically significant is the limitation? This is the mystery we have

set out to investigate.
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Summary. In this chapter we proved that Required Concurrency is a key dividing

line in the space of temporal planning languages. On the one side are the temporally

simple languages—unable to express problems requiring concurrency. “Simple” is

entirely deserved (indeed, “degenerate” is not far off): such languages are unable to

express any problem fundamentally beyond the understanding of classical planners

(cf., Theorem 4.10). On the other side are the temporally expressive languages—

able to express some problems requiring concurrency, and as it turns out all (cf.,

Theorem 4.12). A single syntactic facility is sufficient (cf., Theorem 4.1):

• If a language demands that every effect of an action intersect over some crit-

ical region in time then it cannot express required concurrency.

• Otherwise a language permits causally compound actions and as a result ex-

presses required concurrency.

Consider: It is a straightforward syntactic manipulation to stretch out the effects of

every action so as to eliminate causally compound actions [58, 87]. Such abstrac-

tion dramatically reduces the decision complexity of planning. So much so that

the winners of the temporal planning competitions all do [60, 76, 82, 105, 141].

The meaning of the abstraction: Assume that everything temporary is insignificant.

Then perhaps the rules were followed [29, 105], but the spirit died long ago. In

other words, one possible conclusion is that the competition winners, and every

other temporally simple planner, are not really temporal planners.

Perspective. Realistically though, the temporal tracks simply never asked for much

beyond classical planning abilities. One needs no rule to bar the entry of classical

planners—benchmarks requiring concurrency would have served. Which the de-

signers were perfectly well aware of (e.g., examine the short-match domain of the
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specification) [71]. So backpedaling: It is true that the difference between tempor-

ally simple planning and classical planning is relatively small. However, that is a

good thing. It means we know, or almost know, how to effectively automate that

kind of planning. The extension is even theoretically meaningful to a point (cf.,

Theorem 3.17). More importantly, having planners be willing to integrate more

closely with scheduling techniques is just downright practical [17]. Meaning: In

practice the most relevant form of temporal planning is temporally simple planning.

Put yet another way, temporal planning includes classical planning. The difference

is required concurrency, but an effective temporal planner still needs to be able to

do everything a classical planner can do. Then for a balanced conclusion:

• The right theoretical question is how to generalize to required concurrency—

without sacrificing the fundamentals from classical planning.

• The right practical question is how to workaround the present theoretical gap:

use sequential planning on temporal domains despite the ‘impossibility’.

Contributions. The contribution of this chapter in support of that perspective, and

towards those ends, is, in abstract, to ground the high-level intuitions concerning

expressibility of required concurrency into solid technical results. Specifically we

took the perspective of deliberate limitation of language expressiveness. The inves-

tigation most deeply concerned the relative feasibility of performing temporal plan-

ning by reduction/compilation to sequential/classical planning instead. We found

that Required Concurrency neatly divides the problems that classical planners are

already strong enough to handle from those that at present lie beyond their reach.

The key results are:
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Theorem 4.1 Causally Compound Actions characterize expressibility of Required

Concurrency.

Theorem 4.10 Temporally Simple languages efficiently reduce to classical plan-

ning, augmented by first-fit.

Theorem 4.12 Temporally Expressive languages efficiently reduce to one another

—assuming sophisticated landmark analysis.

“Classical Planning” is a moving target. Some day it may grow to encompass these

problems we consider presently beyond its reach. That the technical challenge

could be solved is precisely why it matters.

So now we, finally, turn our attention to the obvious approach. Namely: Per-

form temporal planning by direct application of a temporal planning algorithm

proper. We shall immediately stumble upon a surprise. Even (some of) the plan-

ners that can model problems requiring concurrency still cannot solve them—in

any amount of time.
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Chapter 5

Worst-Case Analysis of Forward-Chaining Search Algorithms for Temporal

Planning

Our primary aims in this chapter are to: (i) further clarify the computational re-

lationship between Sequential Planning and Conservative Temporal Planning, (ii)

debunk any form of direct search through the situations of Interleaved Temporal

Planning, and (iii) support planning for such problems by temporally-lifted forward

-chaining instead. The motivation is simple.

Motivation. Mausam and Weld surprise us with a proof that many state-of-the-art

temporal planners are incomplete [147]: contradicting, for example, the Complete-

ness Theorem for SAPA [54]. Indeed:

Competition winners fail to solve the motivating examples of the specification!

To be able to solve benchmarks well and yet fail on toy-size problems is already

bizarre; of itself that sort of observation is always cause for concern (cf. Sussman’s

Anomaly [192]). To moreover fail to solve the motivating examples for the specific

extension of the semantics to temporal planning is downright troubling [71]. (As

for decision epoch planners in particular, these technically work on the motivating

examples, but fail upon even slight modifications: see Figure 2.13.) To then sub-

sequently take home the title of victor is alarming indeed [60, 76, 82, 105, 141].

There seems to be as many culprits as suspects; for continued drama:

• The benchmarks fail to address the spirit—required concurrency—of the tem-

poral track [42].
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• The letter of the formal specification is nigh impossible to implement cor-

rectly (which Chapter 2 aims to rectify).

• The empirical results are skewed by the use of domain-dependent search-

control knowledge [29, 105].

• Less egregiously, the results are skewed by blind abstraction to conservative

temporal planning [56, 58, 87, 105, 201].

• Even several of the good-faith implementations fail to appreciate the full nu-

ances of required concurrency [6, 54, 64, 135].

• Those remaining by and large take the significance of required concurrency

too literally, and pay dearly for it [142, 146, 184, 208].

The underlying facts are now reasonably well-known to the relevant experts; this

state of affairs is due in no small part to our prior work [42, 43]. Here we delve into

demonstrating the extent to which the truth of the algorithm-specific (i.e., the last

three) statements may be justified technically—or undermined, i.e., for the contrary,

which we shall also be.

Technical Approach and Organization. As always the ultimate aim is to answer:

How can we obtain the strengths, and eliminate the weaknesses, of both the

efficient and principled approaches?

Towards such ends within Temporal Planning we conduct a worst-case analysis of

abstractions of the forward-chaining fragment of the state-of-the-art implementa-

tions. Each kind is defined precisely in its own section, outlined below. For each
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we investigate whether guarantees of completeness and systematicity may be given.

(I.e., interpret “principled” as complete, and “efficient” as systematic.) Both com-

pleteness and systematicity require qualification in the context of temporal plan-

ning, due to the infinity of time. We take both with respect to equivalence/domi-

nance reductions.

Recall: A dominance reduction is an equivalence relation on plans such that if

any member of an equivalence class is a solution, then some canonical representa-

tive is as well. An equivalence reduction is an equivalence relation on plans such

that either every member of each equivalence class is a solution, or none are. Both

must also satisfy appropriate computability constraints. For example, it should be

reasonably easy to compute the canonical form of arbitrary plans.

Then say a planner is (strongly) complete with respect to some reduction when

every solution-bearing equivalence class is covered at least once by the underlying

search space. It is convenient to have a notion better suited to a kautz1999 per-

spective. So also say: a planner is weakly complete when it is guaranteed to solve

every solvable problem. We assume that, in practice, a guarantee of the weaker

notion is only ever achieved by way of the stronger notion. To see why, imagine

repeatedly strengthening the goal just as a solution is about to be found (so as to

rule it, and all variations upon it considered equivalent, out). Formally the con-

nection breaks down, in part because the goal sublanguage is too limited, and also

because planners use analysis of goals in order to guide search. However, we know

of no implementation outright contradicting the higher level intuition. That is, ev-

ery weakly complete planner that comes to mind is easily understood as strongly

complete. Note that deliberate loss of completeness is not a concern. So for ex-

ample, we prefer to see LPG- [85], a planner employing local search, as
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(strongly) complete, because it defines a complete search space prior to applying

local search.

A planner is systematic with respect to some reduction when every equival-

ence class is covered at most once by the underlying search space. So systematic

planners consider every ‘meaningfully distinct possibility’ at most once. Deliberate

loss of systematicity is hardly troubling. For example, that a sequential portfolio of

systematic planners is no longer systematic is no concern. Accidental loss of sys-

tematicity is what we are concerned about: when the notion of equivalence fails to

be implemented correctly.

Section 5.1 briefly recaps that Chapter 3 already implies a number of effective

approaches to Conservative Temporal Planning. Then the remainder concerns pri-

marily our general case: ITP. Section 5.2 critically examines the approaches based

upon a priori selection of dispatch-times. Section 5.3 proves the theoretical mer-

its of delaying those choices by way of temporal constraint reasoning. Section 5.4

concludes by way of a re-examination of our high-level understanding from a more

pragmatic point of view.
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5.1 FIRST-FIT CLASSICAL PLANNERS

The winners of the temporal planning competitions are all disconcertingly similar

in one regard—they are all incremental modifications to underlying classical plan-

ners [29, 56, 60, 76, 82, 84, 105, 141]. Specifically each is an integration of the most

-trivial scheduler into a classical planner [17]; by First-Fit Classical Planner (FFC

Planner) we mean any such ‘generalization’ of a classical planner to time. News of

their empirical effectiveness is good and bad. On one hand, it is a valuable insight

that a number of reasonably compelling temporal planning problems nonetheless

lie within the immediate reach of classical planners. On the other, it serves no pur-

pose to dilute empirical evaluations by taking temporal syntactic sugar as compu-

tationally meaningful. Towards resolving the dilemma we have throughout drawn

a sharp boundary around the middle ground: Conservative Temporal Planning. In

Chapter 2 we developed formal definitions supporting plans as sequential compo-

sitions of transition functions; in Chapter 3 we reduced those semantics to either

the Single-Objective or Multi-Objective Path Problem; in Chapter 4 we identified

the key language feature as whether actions are compound or primitive; finally we

take a direct algorithmic perspective, wherein it is the size and shape of theoreti-

cally pristine search-trees that are of interest, and we shall further confirm that both

the nature of plan quality and the structure of actions are key.

To set apart conservative temporal planners from everything more general we

examine here a formal characterization of an adequate forward-chaining search-tree

for the former; following sections examine symmetrical treatments for interleaved

temporal planners. So by contrasting, we may perceive computationally substan-

tive differences between Conservative Temporal Planning and Interleaved Temporal

Planning. Then the other side remains: separating Conservative Temporal Plan-
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ning from Sequential Planning. More specifically we elaborate upon the relevant

demonstration of Chapter 3 (Theorem 3.17): here it is enough to extend a classical

planner to multi-objective search. Doing so may be reasonably taken as either triv-

ial or difficult. For triviality we would say only: Merely turning off duplicate state

elimination is enough to attain completeness. However, fully attaining theoretical

‘perfection’—completeness and systematicity together—is notably more involved.

The following formally fills the foundation; thereby we have ground to stand on in

closing with further discussion.

Let us begin by formalizing a complete and systematic approach to Sequential

Planning:

Definition 5.1 (Brute-Force Search for (Abstractions to) Sequential Planning). A

forward-chaining action-sequence search node N = (parent, op; State) is named

by (a reference to) its parent node (parent) and the action (op ∈Actions) labeling the

implicit edge from the parent to itself; following are any book-keeping structures

worth remembering, given sufficient memory, such as the state (State) resulting

from executing the action-sequence from the root to the search node. When the

parent is null, the search node is the root of its search-tree and represents both the

empty plan and some initial state: write along the lines N0 B (∅, init; StateInitial).

Everything else must satisfy (or be deemed illegal) at least the notion of incremen-

tally executing action-sequences; supposing actions are primitive as in SP and CTP,

then with op = a ∈Primitives:

State B S ′a(Stateparent), (5.1)
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else, supposing compounds may be taken as sequences of primitives, so with op =

(a, . . . ) ∈ Primitives∗, then automatically and naturally abstract by:

State B · · · ◦ S ′a(Stateparent). (5.2)

For ITP in particular:

State = S ′fin-α ◦ S ′bgn-α ◦ S ′all-α(Stateparent).

Conflate problems and search-trees: let SP denote the type, i.e., the entire forest.

Classical planners (but not their creators), even those employing different par-

adigms for search, tend to falsely assume that this forest may, without noteworthy

consequence, be severely pruned as follows. The duplicate-reduction is the domi-

nance reduction on plans that (result-equivalence) holds as equivalent all plans with

equal final situations after execution, and (best-quality) holds as canonical (tie-bro-

ken choices of) those plans maximizing the notion of quality (i.e., canonical means

optimal with respect to the equivalence class). (Where situations and states differ,

then we write duplicate-state-elimination to mean that we keep enforcing the im-

plementation from the classical context; it is unlikely that such will implement some

correct reduction.) This is only well-defined, in the first place, if we (falsely) as-

sume that the notion of plan quality will be at least totally ordered; otherwise there

may exist incomparable optima of plan quality (i.e., the Pareto dominating set), and

so it becomes ‘impossible’ to make a unique choice (i.e., throwing away any max-

ima will sacrifice optimality/completeness). For our purposes, because achieving

302



deadlines is an insufficiently simple notion of plan quality, such is the greatest flaw

of the putative reduction.

In order to perfectly operationalize we also need at least Bellman’s principle

of sub-problem optimality, in other words, for systematicity, “canonical” and “the

search-tree” must be together chosen so that: every ancestor of a canonical plan

is canonical. Moreover, of course, the notion of canonical must be readily com-

putable. However, as optimality is actually a property of a whole set of plans (in

contrast to a plan in isolation, as for, say, executability), that (i.e., implemented sys-

tematicity with respect to duplicate-reduction) typically implies computational dif-

ficulties too significant to entirely ignore. Specifically, for theory, one must, more

or less [48], endure all of: (1) severely restricting the notion of plan quality, (2)

exploring the search-tree using specifically A∗, (3) employing a consistent heuris-

tic, and moreover (4) keeping the entirety of the corresponding explored portion of

state-space in memory. Such are “the standard caveats”, and are indeed significant

enough to warrant attention—at some level. For example, rather than just enduring,

a realistic implementation runs a portfolio for which only the last-ditch approach

literally implements the theory. Everything prior is then free to employ a transposi-

tion table in contrast to a closed list, an informed rather than consistent heuristic, et

cetera. Meaning that, at higher levels, it is enough to maintain only dim awareness:

issues exist, but so too do resolutions.

So, keeping that in mind, we can take (and properly appreciate) classical plan-

ners as complete and systematic, i.e.:

Proposition 5.1. SP may be taken as covering all and only, with the standard

caveats, the duplicate-state-reduction of Sequential Planning.

Proof. The result is standard, e.g., it merely restates Theorem 3.1. �
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The significant caveat as far as our purposes go is that duration-optimality is,

perhaps counter-intuitively, not a ‘legitimate’ notion of plan quality in the eyes of a

classical planner. Intuitively, the total duration of a plan is ‘a single objective’—but

such is not the technical meaning. For a counterexample, consider the subproblem

of having a truck transport two packages to distinct depots. Whatever route is cho-

sen, the state after following the route is the same. Which depot was passed through

first, though, matters. That is, which continuation will permit the globally fastest

scheduling of the overall plan is dependent on the choice of route. In contrast, a

‘legitimate’ notion of quality would display independence.

Of course it is not the place of a planner to dictate the desires of its users—we

cannot really allow a planner to define “legitimacy” of notions of plan quality. A

planner is certainly free, though, to declare an upper bound on its ability to under-

stand. From a theoretical standpoint, it is best to say that a planner can only under-

stand those notions of quality had by softening already expressible hard constraints.

(Penalize any soft constraint to the point where it becomes effectively hard: ergo,

for parsimony, insist that literal expression as a hard constraint be possible.) For

example, whether optimizing the duration of a plan is said to be understood should

amount to no more and no less than guaranteeing completeness for deadlines.

Albeit, from a practical standpoint, it is certainly worthwhile to distinguish op-

timality from completeness. We recognize that in the form:

Lemma 5.2. To be complete for CTP, with respect to any reduction, is to be duration

-optimal and complete, with respect to the same reduction, for Sequential Planning.

Conversely, to be complete for CTP sans deadlines, with respect to any reduction, is

to be possibly duration-suboptimal and complete, with respect to the same reduc-

tion, for Sequential Planning. In fact, CTP sans deadlines is entirely isomorphic to
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Sequential Planning; in particular duplicate-state-elimination implements a dom-

inance-reduction for either/both. Either way, systematicity goes towards ensuring

that minimal search nodes are considered.

Proof. See Theorem 3.4 and Proposition 3.5 for the lemma up to systematicity.

The discussion preceding Proposition 5.1 clarifies the relationship of systematicity

to optimality. �

So deadlines are the key feature distinguishing Sequential Planning from Con-

servative Temporal Planning, and a specific substantive difference is whether du-

plicate-state-elimination need be, ultimately, disabled in order to, eventually, find

the very best of schedules. Naturally we would substitute at least the minimal rea-

sonable reduction of Conservative Temporal Planning: the left-shifted-reduction

(Theorem 3.4). That at least should take us down to all action-sequences (rather

than action-schedules). For contrast, the naı̈ve, and grossly infeasible, perspective:

Definition 5.2 (Brute Force for Action-Schedules). A forward-chaining action-

schedule search node N = (parent, op, dispatch; State,Vault) is named by (a refer-

ence to) its parent node (parent), the action op ∈Actions and time dispatch ∈Q labeling

the implicit edge from the parent to itself; following is the situation resulting from

executing the action-schedule from the root to the search node.

When the parent is null, the search node is the root of its search-tree. Such

represent both the empty plan and some initial situation. Write along the lines

N0 B (∅, init, t0; StateInitial,VaultInitial).

Everything else must satisfy (or be deemed illegal) at least the notion of in-

crementally executing action-schedules; supposing actions are primitive as in CTP,
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then with op = a ∈Primitives and dispatch = t:

State B S ′a(Stateparent), (5.3)

Vault B V ′a,t(Vaultparent), (5.4)

else, supposing compounds may be taken as sequences of relative dispatches, so

with op = ((a, s), . . . ) ∈ (Primitives × Q)∗ and dispatch = t, then automatically and

naturally abstract by:

State B · · · ◦ S ′a(Stateparent), (5.5)

Vault B · · · ◦ V ′a,t+s(Vaultparent). (5.6)

For ITP in particular, with op = α, dispatch = t, and the relative start-time of the

end-part denoted by x = durall-α − durfin-α:

State = S ′fin-α ◦ S ′bgn-α ◦ S ′all-α(Stateparent),

Vault = V ′fin-α,t+x ◦ V ′bgn-α,t ◦ V ′all-α,t(Vaultparent).

Then consider forcing the dispatch-times so as to reduce to action-sequences.

That is, consider (and contrast with above) loosely integrating First-Fit into a clas-

sical planner:

Definition 5.3 (The FFC Planning Search Forest). A first-fit forward-chaining

action-sequence search node (parent, op; State,Vault) is named by (a reference

to) its parent node (parent) and the action (op ∈Actions) labeling the implicit edge

from the parent to itself; following is the situation, (State,Vault), resulting from

first greedily scheduling and subsequently executing the action-sequence from the
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root to the search node. When the parent is null, the search node is the root of

its search-tree and represents both the empty plan and some initial situation: write

along the lines N0 B (∅, init; StateInitial,VaultInitial). Everything else must satisfy (or

be deemed illegal) at least the notion of incrementally scheduling and executing;

supposing actions are primitive as in CTP, then with op = a ∈Primitives:

State B S ′a(Stateparent), (5.7)

Vault B V ′a(Vaultparent) = V ′a,ESTa(Vaultparent)(Vaultparent), (5.8)

else, supposing compounds may be taken as sequences of relative dispatches, so

with op = ((a, s), . . . ) ∈ (Primitives × Q)∗, then greedily select t so that at least the

computation of resulting vault succeeds:

State B · · · ◦ S ′a(Stateparent), (5.9)

Vault B argminV

{
t | V = · · · ◦ V ′a,t+s(Vaultparent)

}
. (5.10)

For ITP in particular, with op = α ∈Compounds and the relative start-time of the end-

part denoted by x = durall-α − durfin-α:

State = S ′fin-α ◦ S ′bgn-α ◦ S ′all-α(Stateparent),

Vault = argminV

{
t | V = V ′fin-α,t+x ◦ V ′bgn-α,t ◦ V ′all-α,t(Vaultparent)

}
.

(5.11)

Let FFC (without duplicate-state-elimination) denote, in whatever context, the en-

tire forest; in practice, the more likely assumption is that duplicate-state-elimination

remains enabled.
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So we have many, more or less reasonable, baseline approaches to both optimal

and satisficing versions of Conservative Temporal Planning:

Theorem 5.3. Any FFC planner disabling duplicate-state-elimination is, or may be

taken to be, complete and systematic for the left-shifted-reduction of Conservative

Temporal Planning.

Any FFC planner enforcing duplicate-state-elimination is, or may be taken to

be, complete and systematic for the duplicate-reduction of Conservative Temporal

Planning sans deadlines (which is isomorphic to Sequential Planning); however,

such planners are duration-suboptimal.

Proof. The first result ‘merely’ recasts Theorem 3.4 in an explicitly algorithmic

form. Technically the difference from Theorem 3.4 is that we need to check that

pruning non-canonical nodes preserves all canonical nodes, said pruning is read-

ily computable, and the resulting search-forest is isomorphic to FFC. So observe:

(i) Every prefix of a left-shifted schedule is left-shifted, (ii) First-Fit is fast, and

(iii) the search-forest FFC just implements the left-shifted-reduction by its classes

(action-sequences) rather than by its canonical representatives (left-shifted action-

schedules).

The second result is by Lemma 5.2 and Proposition 5.1. �

A significant limitation is that the left-shifted-reduction is merely the weakest

reasonable reduction to apply. Unfortunately, as far as achieving tight deadlines go,

duplicate-state-elimination goes too far. It would be nice to have a rather more rea-

sonable, i.e., far stronger, substitute for its absence than the left-shifted-reduction.

For example, it is unfortunate that Theorem 5.3 leaves us with temporal planners

that perceive k! ways of simultaneously loading k packages onto as many trucks;
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supposing it can be done cheaply enough, clearly it would be better to have just 1

search node for simultaneously loading k packages.

Define the deordered-left-shifted-reduction by further applying the equival-

ence-reduction from Theorem 3.14 (the order of the reductions is irrelevant). It is

possible to pick canonical representatives in such a way as to permit pruning away

all non-canonical plans. The details are not substantially different from the simi-

lar, later, implementation of the deordered-slackless-reduction for TEMPO: actions

here are primitives/effects there, and left-shifted here is slackless there. In particu-

lar the pruning rule remains the same: (i) compute the rank of each plan step in the

mutex-order of the plan, (ii) insist that ranks increase monotonically, and (iii) break

ties any which way, e.g., alphabetically. Leaving the details, then, to the reader:

Theorem 5.4. FFC planners may be made complete and systematic for the deord-

ered-left-shifted-reduction of Conservative Temporal Planning.

Proof Strategy. The key tools are Theorems 3.4, 3.14, and 5.16; it suffices to sim-

plify the proof of the last from ITP to CTP. For such mapping between CTP and ITP

it may be helpful to refer to the proof of Theorem 3.21. �

5.1.1 D

The final theorem is extremely powerful—and seems to be, as of yet, unimple-

mented—i.e., we conjecture here a relatively easy improvement upon the state-of-

the-art. First among its strengths, shared by Theorem 5.3, is simply the clear path

to leveraging the state-of-the-art in classical planning.
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• Importantly, it does not suffer from the limitations of its more general com-

patriot, Theorem 5.16. Indeed, here is exactly what there aspires to automat-

ically simplify to: action-sequences in preference to effect-sequences.

• Locally we can note that enforcing deordering via the suggested pruning rule

has much of the power—but none of the drawbacks—of duplicate state elim-

ination. Specifically, it is independent of quality metric, search-order, and

thus also heuristic; furthermore it is ludicrously cheap (e.g., implementing

the pruning rule does not require exponentially large memory). Yet such

planners nonetheless think about (for example) loading packages in the right

way: as sets, not sequences.

• To be sure, deordering leaves undisturbed any qualitatively distinct methods

for bringing about the same state of affairs (which is how it is weaker than

duplicate state elimination). Consider though that, especially for temporal

planning, it is well-motivated to care about the journey as much as the desti-

nation. So perhaps even the weakness is a strength.

As to our larger purpose, contrasting Theorems 5.4 and 5.16 precisely captures

the computationally meaningful difference between Conservative Temporal Plan-

ning and Interleaved Temporal Planning: compounds versus primitives. That is,

so long as actions are useful exclusively for their long-term effects (so are effec-

tively primitive), then we can expect Conservative Temporal Planners in general

(and FFC planners in particular) to enjoy a substantial advantage. Specifically we

may predict by comparing (executable, deordered) action-sequences to (executable,

deordered) effect-sequences: the latter are exponentially greater in number. On the

other side, if even one short-term aspect of executing an action should be crucial,
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then such planners fail by definition—specifically, Definition 5.3 dictates that all

actions be treated as primitives regardless of the truth of the matter. Experiment,

i.e., the planning competition, corroborates: Conservative Temporal Planners per-

form best, presuming causally sequential problems, else utter failure.

Delving deeper we find additional relevant advantage. Namely, when optimiz-

ing the duration of plans is purely optional, then Theorem 5.3 comes into full force.

Abstracting: Sequential Planning and Conservative Temporal Planning differ mean-

ingfully all and only to the extent that duration-optimality is meaningful. Then ob-

serve that the benchmarks indeed lack deadlines, and the temporal planning tracks

have never demanded any form of optimality. There can be little mystery left to

who wins and why. Albeit, the theory does permit better than the baselines—sprin-

kle temporal syntactic sugar on a classical planner—but the baselines are mov-

ing targets. Then so long as classical planning research continues to yield signifi-

cant performance improvements, provided also that temporal benchmarks maintain

their present character (sugar-coated classical benchmarks), we can expect tempo-

ral planning state-of-the-art to remain with the baselines.

The insight is neither good nor bad: just useful (e.g., towards design of em-

pirical evaluation). Thus we conclude our examination of abstract algorithms for

Conservative Temporal Planning: the scope stops at forward-chaining, complete,

and systematic search-trees, for which little else may be said without saying a great

deal more. Next we shall treat Interleaved Temporal Planning in reasonably sym-

metric fashion, as promised; attaining the desired properties is though, as we shall

see, rather more challenging.
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Figure 5.1: An abstract look at FFC versus DE search-trees. Interesting im-
provements such as writing end-parts rather than advances are possible. See Sec-
tion 5.2.1.
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5.2 DECISION EPOCH PLANNERS

Many effective temporal planners (as judged by the IPCs) are so-called ‘state-space’

temporal planners, where “state” is meant in the sense of situation. Those that aim

at supporting required concurrency face, then, an infinity of choice. In this section

we look in detail at the decision epoch solution to the infinity, exposing discon-

certing weaknesses: incompleteness and nonsystematicity. SAPA [54], TL [6],

TP4 [100], and HSP∗a [96], among others, are all examples of Decision Epoch Plan-

ners (DE Planners) [6].

Rather than consider each in isolation, we abstract the essential element of their

search-trees. The essential element is the definition of successor nodes, i.e., the

definition of generating children. There are two kinds of children: fattening and

advancing. The former are vanilla: these are just normal dispatches and follow

normal rules for transitioning between situations. The special children advance the

decision epoch to some selected, later, time; search nodes carry that along, using

it as the only permitted dispatch-time for normal children. The particular (and

only) selection rule that is widely implemented is referred to as advance-time:

advance time to just after the soonest-to-finish pending effect indeed finishes. So,

unqualified, assume the advance-time rule for selecting decision epochs.

5.2.1 D  F 5.1

The relationship between a classical planner and a decision epoch planner is that

the latter has an additional branch at just about every search node. (The exception

is when no action is in the midst of execution.) An extra branch is a very painful

thing; there are many more opportunities to waste computation. Especially this

particular branching is extremely wasteful.
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What is happening is that scheduling decisions are being made eagerly. So in

particular note the relationship concerning the search vertices labeled (1) and (2).

These are the same schedules found in very different ways. As far as these sort

of scheduless go: the classical planner has the upper hand by far. That is because

making extra search decisions (pushing disjunctions into the tree) is an exponential

cost. In contrast, running First-Fit is linear.

That said, the DE planner is considering a larger space for a reason. There could

be sneaky ways of exploiting concurrency that an FFC planner simply cannot find.

Then perhaps we could tolerate higher computational cost.

If so, then it is interesting to note the considerably greater pruning opportunities

afforded by exploiting the reordering and resheduling insights. Specifically the

marked subtrees, on reflection, demonstrate reasonably well that, as we generalize,

the opportunity for the theorems of Chapter 3 to really prove their significance

increases rapidly.

There is one last subtle point being made by the Figure. Such is better ap-

preciated upon returning from consideration of temporally lifting (TEMPO). For

reference, note that it is equivalent to (a) call the extra branches by the common

name “advance-time”, or to (b) name them by the specific action whose end-part is

there carried out.

Until then, our goal is to demonstrate that DE planners are fundamentally in-

complete and nonsystematic.

5.2.2 S

Unfortunately our formal account will encounter difficulty. Let us first sketch

slightly deeper the traditional approach to formalizing. The traditional treatment
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labels vertices by: (3) the decision epoch, (4) the (classical) state, (5) some struc-

ture for maintaining invariants (for us, locks/vaults), and (6) some structure, “the

event queue”, for tracking the pending effects (for us, obligations/debts). The edges

between such are labeled by either an action name, or by the special search-only

operation “advance-time”. It is common, particularly for implementations, to fold

together the edges and vertices of search-trees into search nodes; a search node is

just a vertex extended by: (1) a reference to its parent, and (2) the label of the now

implicit edge.

Our notation is not crafted towards, and is slightly ill-suited for, elegantly de-

scribing this style of algorithm in the traditional manner. (That is largely because

an event queue and a debt are not quite the same.) For the sake of cross-referencing

we will eventually give a thorough formal account, i.e., comparable to those of the

other sections.

As far as our direct aims are concerned though, we do not require such heavy

-duty support. Demonstrating incompleteness and nonsystematicity is far simpler

than demonstrating their inverses. So instead we rely on the correctness of a rel-

atively lightweight definition and proposition concerning decision epoch planners.

That is, for our purposes, we need only rely on the correctness of:

Definition 5.4. Call a (time-sorted) action-schedule X = (α, t)[n] decision-epoch

when (epoch-explainable) each action start-time is the finish-time of an effect of an

action earlier in the dispatch-order, and (quasi-executable) it is executable but for

some suffix of only end-parts (as follows). That is, more precisely, it should be the

case that every induced effect-schedule Y = (a, s)[3n] of X, (suffix-canonical) with a

maximal m-suffix consisting of only end-parts (maximize m such that Y�[3n−m+1,3n]
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‘is an event queue’), satisfies that (prefix-executable) its prefix Y�[3n−m] is exe-

cutable, and optionally (suffix-plausible) its entire vault-sequence exists.

So for notation, X is decision-epoch precisely when the following holds; take

a0 = (α0, all) as a dummy effect standing for the initial situation (and s0 + dura0 =

t0 = 0). The/every time-sorted execution (S ,V,D)[0,3n−m] holding out a maximal

suffix of m end-parts, of appropriate effect-schedules Y = (a, s)[3n] induced from

X, must exist. Moreover, for every action index i ∈ [n], there must exist an earlier

effect ak = (α j, ι), i.e., where j ∈ [0, i − 1] and k ∈ [0, 3 j], such that:

ti−1 ≤ ti, (5.12)

ti = sk + durak . (5.13)

Proposition 5.5. The search space of a Decision Epoch Planner is all and only the

decision-epoch action-schedules.

Proof. For the only direction: By definition, the decision epoch always advances

to the (soonest) finish-time of one of the effects of one of the actions selected prior

to advancing time. So epoch-explainable is necessary, as is time-sorted. During the

advance, each pending end-part passed over is applied. We assume, but it is of lit-

tle consequence, that the order of application is time-sorted. If one should fail to

be executable, then the entire attempt to advance time fails. (End-parts that coinci-

dentally begin at precisely the time advanced to may or may not be applied, for our

purposes it is simpler to suppose not; one way or the other only changes which ad-

vance-time will check the constraints.) Fattening choices check executability of the

beginning of the action (all-part + start-part), but, do not insist that the end-part be

executable quite yet; later fattening choices might be required in order to succeed
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at advancing time past its end-part. (Hence the complications of the definition to-

wards holding out a suffix of end-parts.) So quasi-executable is necessary. In short

the only direction is straightforward.

Recall that advance-time always advances to the soonest finish-time: none are

skipped. So read through any given time-sorted epoch-explainable quasi-executable

action-schedule, re-interpreting it as a sequence of fattening and advancing choices.

Specifically insert as many advance-times as necessary between the dispatches of

actions in order to find the corresponding search path of a DE planner. By the as-

sumptions of epoch-explainable and time-sorted, some number of inserted advance

-times shall indeed suffice to (precisely) advance the epoch to each dispatch-time.

By the assumption of quasi-executability the whole process will be executable up to

and through the beginning of the last action. That establishes that a Decision Epoch

Planner indeed examines the possibility. In other words the all direction holds. �

The key property is of course just the selection of decision epochs, that is, the

rule for advancing time. In order for decision epoch planners to branch over action

selection at any given time point, time, i.e., the decision epoch, must have advanced

to that point. The advance-time rule always advances to the finish-times of effects.

So those are the times at which an action could begin. The significance of which is

the inability to start actions at any other time.

5.2.3 DE P  I  N

Consider first that starting actions ‘in the middle of nowhere’ is easily made neces-

sary: Figure 2.13 depicts an example. So incompleteness is clear: How incomplete?

In general, decision epoch planners are incomplete.
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Theorem 5.6. Decision epoch planners are incomplete for any syntactically super

-classical language further permitting required concurrency.

Proof. It suffices to show incompleteness for the four minimal syntactically super-

classical temporally expressive languages (cf., Lemma 4.14); for each it suffices to

demonstrate a single solvable problem that decision epoch planners cannot solve.

Specific durations are not important; say endpoint-effects are all duration 1, and

actions have much larger durations. Write A = (γ;α; β) to mean that the all-part of

A has effect γ, etc., i.e., omit the durations.

In each case we force action A to begin ‘in the middle of nowhere’. Which

suffices (by Proposition 5.5 and the definition of epoch-explainable).

Case. L(∅; pre; eff). Consider A = (∅; IA = True; GA B True, IA B False),

and B = (∅; IB = True; GB B True, IB B False,GA B False, IA B False).

Both A and B must occur, to meet the goal GA = True and GB = True. Both can

only occur once due to each deleting its own precondition (which are initially true).

So there are just six possibilities. It is easily checked that only one is potentially a

solution: initiate B, initiate A, terminate B, terminate A. As long as the duration of

A is even a little bit shorter than that of B, then A must begin when nothing else is

happening.

Case. L(∅; eff; pre). Consider A = (∅; GA B True; GB = True,GC = True),

B = (∅; GB B True; GA = True, P = True), and C = (∅; GC B True, P B

False; ∅). All propositions start false but for P, which starts true. Each action

must occur, to meet the goal GA = True and GB = True and GC = True. Each

proposition is monotonic: it is causally fruitless to repeat any action/effect, so each
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occurs more or less uniquely. To be precise though, by “the C” we mean the first

instance of action C.

The A ends after both the B and the C begin: {fin-A > bgn-B, fin-A > bgn-C}

is a ‘subset’ of the mutex-order (≺mutex-X) of each solution X. The B ends after the

A begins, but before the C begins: bgn-C > fin-B > bgn-A et cetera. Then the A,

due to the C, must wrap the end of the B: fin-A > bgn-C > fin-B > bgn-A

follows, so simplifying, bgn-A < fin-B < fin-A. Therefore, as long as the

duration of A is slighty shorter than the duration of B, the A will start some-

what later than the B starts: for all solutions X, min
{
s | (bgn-A, s) ∈ Rng(X)

}
−

min
{
t | (bgn-B, t) ∈ Rng(X)

}
> 0. We already know that the first C must wait until

the first B ends: bgn-C > fin-B. Then, as also actions may not be concurrent with

themselves and by the minimality of the first dispatches of A, B, and C: no action,

in particular C, may start or end between the start of B and the start of A (if the goal

is to ever be achieved). So no actions are available to gain access (i.e., in the form

of a decision epoch) to when the A must start. In short, A must begin when nothing

else is happening.

Case. L(pre; eff; eff). Conceptually the counter-example is just: A = (∅; G1 B

False; G2 B True), and B = (∅; ∅; G1 B True,G2 B False). However,

DE planners can solve that problem, by throwing in junk repeats of A in order to

gain access to an appropriate time. So consider: A = (∅; G1 B False; G2 B

True, P B False), and B = (P = True; ∅; G1 B True,G2 B False). Both

A and B must occur, to meet the goal GA = True and GB = True. After the first

A ends no instance of B could begin, for that matter, no instance of B could cross

that time point; any number of instances of B could come earlier, and at least one
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does (but of course none are concurrent with themselves). In particular between the

beginning of the last B and the end of the first A no other effects occur. As A must

begin before that last B ends, in order to achieve the goal, as long as its duration is

slightly shorter than that of B, then A must begin when nothing else is happening.

Case.L(eff; pre; pre). Consider: A = (GA B True; GC = 0; GC = 2),

B = (GB B True; GC = 0; GC = 1), and C = (GC B GC + 1; ∅; ∅). The

goal is GA = True and GB = True and GC = 2, with initial values of false and

zero. The fluents are all monotonic, in particular, action C occurs precisely twice.

Every A starts before and ends after both instances of C: so A is unique. Every B

starts before and ends after the first C: so B is unique. Then it is clear that the only

solution looks like: initiate B, initiate A, do C, terminate B, do C, terminate A. In

particular no effects can intervene between the beginning of the B and the A. So

have C be short duration, A be medium duration, and B be long duration. Then A

must begin when nothing else is happening.

�

In fact, the incompleteness runs deeper, even, than required concurrency; some-

what loosely:

Theorem 5.7. Decision epoch planners are duration-optimal if and only if all ef-

fects of each action begin simultaneously.

Corollary 5.8. So with deadlines, DE planners are complete iff delayed effects are

forbidden.

Corollary 5.9. DE planners are complete (and duration-optimal) for Conservative

Temporal Planning.
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Proof. If always every effect begins at the start-time, then it is completeness-pre-

serving to consider just the classically-sorted effect-schedules (by Theorem 4.1).

Slackless schedulings of which, by definition, start at least one effect of every ac-

tion at the finish-time of some other effect. Moreover, by Theorem 4.10, the depen-

dencies will be linearly ordered: at least one effect of every action will begin at the

finish-time of an effect of an action earlier in dispatch-order. By hypothesis, where

one effect starts, all do. So it is guaranteed: Every (effect of each) action starts at

the finish-time of some effect of some action earlier in dispatch-order. Which is the

definition of epoch-explainable. So by Proposition 5.5, the if direction is shown.

For a contrapositive, suppose a single delayed effect, negatively interacting with

anything else in the problem domain. Force that particular effect to occur along

a critical path of every solution by appropriate selection of initial situation and

goal; if necessary expand the problem domain (i.e., perform surgery as in the proof

above) on the off-chance that somehow such selection is impossible. DE planners

do not take such negative interactions into account when dispatching the action

containing the delayed effect (discussion follows the proof); the dispatch-time must

be the epoch, and the epoch-advancement is independent of subsequent fattening

decisions. So if a DE planner does find a solution, it would be sheer coincidence

(which we may surely eliminate with yet further surgery) for the delayed effect

to end up scheduled slacklessly. Then assume slack. Slack along a critical path

means duration-suboptimal. Hence the only if direction holds with respect to the

mentioned caveats.

The corollaries are straightforward. �

The significance of required concurrency in regards to the above two theorems

lies in defeating the lookahead rebuttal to the point that DE planners totally ig-
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nore delayed effects in making scheduling decisions. See the discussion of “DEP+”

in [43]. Suppose, by looking ahead, one can guarantee that just the right set of times

are considered for dispatching an action. (Of course, if the lookahead is unbounded,

then the ‘lookahead’ is in fact responsible for planning itself.) If the guarantee is

had by bounded lookahead, then required concurrency is somehow not expressible

in anything remotely resembling a general fashion: study Theorem 4.12 and its

proof. So consider the extreme case where required concurrency is entirely forbid-

den. Then, by Theorem 4.10, it is superior to use First-Fit to lazily schedule action

-sequences whenever the temporal information would be useful to have. In other

words, in the complete absence of required concurrency, it is inferior to be trying to

select the dispatch-times up-front (whether by use of a decision epoch, or any other

means). Let us take a leap of faith to where required concurrency is no longer ille-

gal, but still onerously restricted. So: If we can guarantee that bounded lookahead

allows us to nail down dispatch-times with impunity, then by analogy we ‘ought’ to

be able to guarantee that it would be better still to entirely forego selecting dispatch

-times up-front. (In particular attempting to convert any such bounded lookahead

into some form of on-demand scheduling seems quite promising.) Then in short, in

the direction of temporally simple planning, to ‘fix’ Decision Epoch Planning: Get

rid of the epoch.

To round out the negative results:

Theorem 5.10. DE planners fail to be systematic with respect to even just the weak-

est reasonable reductions.

Proof. The only interesting reduction that DE planners half-heartedly attempt to

implement is something like the left-shifting or slackless dominance-reductions.

Neither is achieved: dream up any action that is completely independent of every-
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thing. It will be tried at every epoch. For that matter, it will also be tried after

every fattening choice. Clearly it would be far superior to bound the new size of

the search space by a factor of 2 in order to address the additional action (i.e., de-

cide only whether the action will or will not be in the plan: the when is irrelevant);

allowing the branching factor to be 1 greater everywhere is grossly inefficient, i.e.,

exponentially worse. �

It is, of course, unfair to claim that DE planners are nonsystematic without

spending more time trying to come up with working pruning rules. (Which plays

into why the heavy-duty formal treatment, next, is interesting.) In fact it is possible

to, say, prune the DE space down so that no two schedules both dominated by the

same slackless schedule are kept. The way to do that is just: Build the Simple Tem-

poral Networks and solve them (cf. Theorem 3.18, and especially the next section

on TEMPO). Having done so, however, it seems unnatural and counterproductive to

continue to think in terms of decision epochs. The meaning of which is that, pursu-

ing the details, we shall find that: ‘all roads lead to TEMPO’. So in the direction of

greater temporal expressiveness, the epoch turns out to be, again, a handicap rather

than a benefit; from any angle it seems that to ‘fix’ Decision Epoch Planning is just

to end up undermining its identity.

5.2.4 F D  D E P  S 

T S

Here we setup a heavy-duty formal treatment of the search-tree of decision epoch

planners. The technical perspective is helpful towards much deeper analysis than

that just pursued. Especially analysis towards ‘degrees of truth’ to properties as

fundamental as soundness, completeness, systematicity, and optimality may benefit
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from the perspective. Said another way, if one were to seriously consider implemen-

tation, despite the preceding theory, then: details are useful. For example, based on

the details, we conjecture that the following are empirically true of DE planners:

• Alphabetizing fattening choices is better.

• Forcing actions to begin at earliest start-times is better.1

• Radically (i.e., DE is a poor label after the change): Using a separate ‘epoch’

per fluent is better.

Among other more interesting consequences, doing so permits enforcing

deadlines without compiling the deadlines into pending effects.

We could go much deeper than mere conjecture here, incidentally. Empirically

salvaging DE planning is, however, beyond our scope. Within scope: it is interesting

—because, roughly, TEMPO just temporally lifts the following—to reference the

following when considering the formal treatment of TEMPO.

Setup. Our purpose is to demonstrate that the preceding relatively lightweight for-

malization is legitimate. The proof is mathematically legitimate: the question is

whether it really describes what it purports to describe. Does the theory actually

apply to planners such as SAPA? So verifying that is the exercise we carry out next.

Those not already familiar with TL [6], SAPA [54], or similar are invited to skip

the exercise. In any event:

Our approach is to pick out all the walks through situations that are the execu-

tions that decision epoch planners consider. Then each all-part+start-part pair will

1Collapse the all-part + start-part in order to compute an EST, and demand that be equal to the
current epoch.
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correspond to a fattening choice; and likewise each end-part will correspond to an

advancing choice. Computationally we ought to, and do, further demonstrate that

the manner of picking out the walks may be implemented in an incremental manner

(i.e., roughly constant-time per child).

First just the naı̈ve search-tree for ITP:

Definition 5.5. A forward-chaining effect-schedule search node:

N = (parent, op, t; State,Vault,Debt),

is named by (a reference to) its parent node P and the effect-dispatch (op, t) label-

ing the implicit edge from its parent; following are derived structures, namely, the

situation resulting from executing the effect-schedule connecting from the root.

When the parent is null, then the search node is a root of the search-space. Such

represent both the empty plan and some initial situation. Write along the lines:

N0 B (∅, init, t0; StateInitial,VaultInitial,DebtInitial).

Non-roots must incrementally satisfy executability, with a = op:

State B S ′a(Stateparent), (5.14)

Vault B V ′a,t(Vaultparent), and (5.15)

Debt B D′a,t(Debtparent). (5.16)

Every induced effect-schedule of a decision-epoch action-schedule is one way

that a DE planner might navigate through the naı̈ve search-space. Any specific
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DE planner, however, presumably picks just one of the many behavior-equivalent

possibilities. So for a canonical choice:

Definition 5.6. A decision-epoch effect-schedule is a canonical choice of an effect

-schedule induced from a decision-epoch action-schedule. The induced schedules

are time-sorted already, so only tie-breaking for simultaneously-starting effect-dis-

patches need be specified. Tie-break by:

Fatten First Order all non-end-parts first.

Pair All+Start Among the non-end-parts, preserve the dispatch-order of the ac-

tion-schedule.

Alphabetize Ends Sort the end-parts by the corresponding action names.

Observe that the property is monotonic: every prefix of a decision-epoch effect

-schedule is decision-epoch. So pruning leaves all (and only, of course) of the

decision-epoch effect-schedules intact. Then:

Definition 5.7. A decision-epoch search node is a forward-chaining effect-sched-

ule search node such that the concerned effect-schedule is decision-epoch. For an

interesting abuse, let DE denote the type, which constitutes an infinite forest on ev-

ery legal decision-epoch search node: one tree per interleaved temporal planning

problem.

Each such search-tree is equivalent, as far as search goes, to the traditional

description of how a DE planner works. That is, the definitions are correct—the

implied isomorphism is true:
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Lemma 5.11 (Heavyweight Replacement for Proposition 5.5). DE planners effec-

tively search through all and only DE. Moreover, and crucially, decision-epoch

search nodes may be identified incrementally.

Proof. By Theorem 3.21, the choice of tie-breaking among induced effect-sched-

ules is irrelevant as far as the final result is concerned; the executions all end in the

same situation. So in a sense the details of a canonical choice ought to be irrele-

vant. However, decision-epoch action-schedules (for which “all and only” already

holds by Proposition 5.5) specifically request executability only up to holding out

a maximal suffix of end-parts. So it is important to order all non-end-parts first.

Furthermore, pruning a fattening choice would happen immediately if either the

all-part or start-part were to fail; so it is important to evaluate the start-parts im-

mediately after their corresponding all-parts. The tie-breaking among end-parts,

however, is arbitrary so long as it does indeed force a total-order; whatever rule is

used is equivalent to implementing the details of advance-time. So alphabetizing

them is fine, as would be enforcing any other total-order.

In other words the tie-breaking defined clearly establishes a bijection between

decision-epoch action-schedules and decision-epoch effect-schedules, moreover,

the mapping is computable, computably invertible, and search-topology-preserv-

ing as just outlined. Therefore the isomorphism is shown.

However, we have ‘cheated’ by relying upon the definition of a decision-epoch

action-schedule. To ‘really’ implement DE as a pruning of the naı̈ve search-space

we must demonstrate that the pruning can be done without mapping back to the

perspective from action-schedules. Otherwise there is no point to taking the effect-

schedule perspective.
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So in other words, for the moreover, we must inductively identify those forward

-chaining search nodes that are moreover decision-epoch. For the base case there is

nothing to show: Every root is trivially a decision-epoch search node.

Then assume a decision-epoch search node P = (·, a, t, S ,V,D) with forward

-chaining child C = (P, a′, t′, S ′,V ′,D′). It suffices, expanding through the defi-

nitions of a decision-epoch effect-schedule and decision-epoch action-schedule in

turn, to incrementally check:

1. Time-sorted.

2. Epoch-explainable.

3. (Quasi-)Executability.

4. Tie-breaking:

a) Fatten First.

b) Pair all-parts with start-parts.

c) Alphabetize end-parts.

Consider the ‘event queue’. Define the soonest start-time of the pending effects

with respect to a debt X by:

s∗X B min
α

X(α, fin).

From there pick out the alphabetically-least-soonest pending effect by:

a∗X B
(
min

{
α | X(α, fin) = s∗X

}
, fin

)
.
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Time-sorted. By induction it suffices to ensure just that the last dispatch-time is

monotonically greater:

t′ ≥ t. (5.17)

Epoch-explainable. The constraint to check is that all-part start-times need to be

equal to previously established finish-times. There are two cases: this is the first all

-part to be dispatched for this time, or not.

In the former case, we need to mimic advancing, perhaps several times in a row,

to the new time. More accurately, we need to exclude this particular branch unless

the search path already includes the mimicry. So, above and beyond the obvious

(checking that the new epoch is a previously established finish-time), we should

ensure that all earlier pending effects have already been carried out. We need only

prevent skipping ahead of them in time: check that the new epoch is sooner than

the soonest of the parent’s pending effects. (The sufficiency is by induction; the

base case is a lack of pending effects, for which the soonest start-time should be

understood as positive infinity.) By inspection, the set of all lock release times

consists of (i) only previously established finish-times, and, by time-sortedness, (ii)

all finish-times potentially greater than the last epoch (t). So we should choose the

new epoch t′ from the set of release times.

In the latter case, by the tie-breaking (which forces corresponding start-parts

to immediately follow their all-parts), it suffices to additionally check just that the

parent’s effect-dispatch is of a start-part.
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So, for every all-part a′ = (·, all), either:

(t′ ∈ Released(Rng(V))) and (s∗D ≥ t′ > t), or (5.18)

(t′ = t) and (a = (·, bgn)). (5.19)

Executability. As the child C is by assumption a forward-chaining search node: ex-

ecutability itself is ensured. However, one cannot just pick foward-chaining search

nodes out of thin air. By inspection of the definition of forward-chaining search

nodes: It is clear that executability up through the child C is computable incre-

mentally from that of its parent P. Specifically check that each of the following is

defined: S ′ = S ′a′(S ), V ′ = V ′a′,t′(V), and D′ = D′a′,t′(D).

Remark 5.1. Optionally check that the locking constraints implied by the pending

effects in the current debt D′ remain plausibly satisfiable (“suffix-plausible”), which

of course can be done incrementally with respect to just the change wrought by the

last action a′. One might perform a similar relaxed check of the state constraints.

Importantly though, do not insist upon full executability itself through some com-

pletion (a descendant with no pending effects) of the child C: here is where “quasi-”

has hidden itself. I.e., it may very well be impossible to achieve the state constraints

of the pending effects, and detecting such is not necessary. Of course responding

appropriately to easily detected dead-ends is quite desirable (e.g., as for inevitable

violation of the locking constraints).

Tie-breaking. Note that we can only (incrementally) run afoul of the tie-breaking

constraints if the current and last dispatch-times are equal: t′ = t. For fatten first: So

non-end-parts should check that they follow only non-end-parts. For pair all+start:
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So firstly start-parts should insist upon the matching all-part. Secondly everything

else should refuse to follow an all-part. For alphabetize ends: So the effect reaching

here needs to have been the alphabetically-least-soonest pending effect (a∗D). Then

for notation, whenever tied (t′ = t), for α an arbitrary action:

a′ , (·, fin)⇒ a , (·, fin), (5.20)

a′ = (α, bgn)⇒ a = (α, all), and (5.21)

a′ = (·, fin)⇒ a′ = a∗D. (5.22)

Furthermore ensure that nothing follows an all-part except its start-part, i.e., regard-

less of whether t′ = t or not:

a′ = (α, bgn)⇐ a = (α, all). (5.23)

In short generating child search nodes may be implemented in ‘constant-time’

per search node, as desired for the moreover. �

The proof is checking every last detail of ensuring that our picture of the search-

forest DE is perfectly faithful. That inspires confidence that insight here is meaning-

ful towards deliberately reworking the design of a DE planner, i.e., so as to improve

it. Let us highlight just one interesting example. To drive home firstly the signif-

icance: the below alluded to line(s) of code within SAPA withstood a decade of

scrutiny [13, 41, 54].

Consider applying (W)A∗-ish search [48, 95]. From the effect-schedule perspec-

tive it should be reasonably clear how advance-time ‘ought’ to be evaluated (i.e.,
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how to update g and h values). In particular, ignore all the temporal details and

imagine how a classical planner would evaluate the end-parts.

In contrast, describing DE planners in the traditional way makes as clear as mud

a reasonable approach to assigning a search priority (something like an f = (1 −

w)g+wh value) to the special child. The more specific challenge in the eyes of a DE

planner engineer is that advancing time seems, in the eyes of a temporal heuristic, to

be strictly a bad idea. That is firstly because ‘just waiting around’ does not achieve

anything that was not ‘already happening’. Then only the negative aspect remains:

advancing time only decreases the time remaining in which useful things may be

done. As far as an optimal planner is concerned there would be no issue here, but

there cannot be such a thing as an optimal decision epoch planner (due to their

incompleteness). For satisficing approaches (i.e., something like w < 0.5) the issue

is excessive backtracking due to the illusion that advancing time is always a bad

choice.

Of course in truth the concerned edges of the search-trees are useful, indeed,

necessary. Meaning events should have the status ‘must happen or else’, not ‘al-

ready happening’. So a technical nuance is that fattening choices should not be

treated intuitively (with respect to action-schedules): the intuitive implementation

is to immediately increase cost-incurred-thus-far (g) so as to reflect the entire ac-

tion. Instead, ‘because’ such would be natural from the computationally-equivalent

and ‘classically-friendly’ perspective of effect-schedules, a portion should be set

aside to be charged towards the advance-time that actually finishes the action off.

Abstracting, the planner engineering lesson is: treat event queues as (temporal)

landmarks. As far as we are concerned the point is that there is significant insight to
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be had by manhandling the description of decision epoch planners into ‘classically

-friendly’ accounts.

5.2.5 D

Decision Epoch Planners attempt to create slackless schedules by starting actions

only at those times where events are already happening. Unfortunately for them,

this translates into the following two erroneous notions concerning slackless sched-

ules:

False: It suffices to start actions only immediately after another has finished start-

ing or finished entirely.

False: Every prefix of a slackless schedule is slackless.

Glancing at Figure 2.13 immediately suggests an approach to remedying the first

error. Namely, we can generalize to reasoning about causal interactions concerning

the end-parts (above and beyond just the start-parts) [43]. When all is said and done,

however, the second error remains. Indeed, the flaw is fundamental to even the most

abstract form of the design. It may be stated as: Demanding that decision epochs

monotonically advance is doomed. In light of the proof of Theorem 3.18 (that

considering slackless schedules is completeness-preserving), a technically minded

restatement is as follows. DE planners falsely assume that solvability of relatively

arbitrary Simple Temporal Networks [47] may be decided in linear time. STNs are

indeed simple: just not that simple. We can fix this flaw, by permitting the epochs

to move backwards in time—and end up with a reasonable approach to temporal

planning—but there is a Catch 22: The result can no longer be properly called a

Decision Epoch Planner. That is because permitting ‘decision epochs’ to arbitrarily
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travel through time, roughly as in LPGP [142], rules out the design goal: Develop a

‘state-space’ approach to temporal planning. In short, Decision Epoch Planners are

broken—at least in theory.

Nonetheless the approach can be defended to an extent, chiefly by considering

its practical advantages. It is easy to understand, implement, and generalize. For

example, with generalization to continuous nonlinear change, searching through

situations directly is much simpler than manipulating symbolic expressions. That

will be incomplete, suboptimal, nonsystematic, etc., of course, but making strong

theoretical guarantees in planning models sporting continuous nonlinear change

is generally impractical anyways. To emphasize ease of implementation we note

that TFD [64] is a decision epoch approach developed in full knowledge of our

theory [43]; at least, ease of implementation appears to be a significant factor behind

the design choice. On a related note, engineered carefully, one might take a decision

epoch approach as a Version 1 of a longer term plan to replace the epochs with

constraint reasoning. As far as understanding goes, for example: In the domain-

dependent context one may craft effective rules for selecting the epochs, thereby

attaining ‘completeness in practice’. Also, temporal heuristics easily benefit from

knowledge-of/commitment-to precise timing decisions [54].

That said, all real systems seem to approach numeric infinities with notably

greater sophistication. For example, we may (adaptively) discretize, (manually)

abstract, apply local/stochastic search, reduce to (Mixed) (Integer) (Non-)Linear

Programs, consider Hybrid Automata, or develop customized constraint languages

(e.g., flow tubes), among presumably many other techniques. Particularly pointed

is that local/stochastic search is a strictly superior perspective. That is, if we are

going to be deliberately incomplete, then we may as well go about it the right way.
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So for example, just scratching the surface, randomized versions of decision epoch

advancement may at least claim stochastic completeness.

That may be the best takeaway: Decision Epoch Planning is a local search

approach to temporal planning—(re)design appropriately. Next, and finally for

technical content, we shall attain forward-chaining, completeness, and systematic-

ity together; the technique is to reason with temporal constraints upon the dispatch

-times (in contrast to selecting them up-front).
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Figure 5.2: Two TEMPO search trees: with/without reduction by Proposition 5.18.
See Section 5.3.1.
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5.3 TEMPORALLY LIFTED PLANNERS

The key observation about decision epoch planners is that decisions about when to

execute actions are made eagerly—before all the decisions about what to execute

are made. In this section we construct technical support towards: Lazily making

scheduling decisions is better.

Let a TEMPO planner be short for a lazily-scheduling forward-chaining tempo-

ral planner, equivalently: a temporally lifted (forward-chaining) planner. (By anal-

ogy we may call VHPOP [208] a lazily-scheduling partial-order causal-link tempo-

ral planner.) To our knowledge, only Fox, Long, et al. have pursued the concept to

the level of implementation, beginning circa 2003 and continuing through 2012:

CRIKEY/CRIKEY3/POPF/POPF2/COLIN [37, 93]. As far as practical motivation

goes, as judged by the 2011 instance of the temporal planning competition: the ver-

sion spearheaded by Coles and Coles, POPF2 [36], is at present the most empirically

effective among the complete approaches to Interleaved Temporal Planning [76].

Recall that an overarching point is that required concurrency is an open—and

potentially solvable—challenge facing the temporal planning state-of-the-art. Our

final technical result goes a long way towards solving the challenge.

We formally define the search-tree shortly, preceded by a glance at partial eval-

uation. Following are our theorems demonstrating completeness and systematicity

for the reductions by slacklessness and deordering. The latter effectively serves as

our definition of required concurrency; to be complete and systematic for a reduc-

tion by deordering ‘solves’ the challenge. We close with some discussion of the

significant issues just glossed over.

Definition 5.8. A temporally lifted expression is a symbolic expression entirely

lacking temporal literals. In practice, to temporally lift a computation is to evalu-
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ate ‘as much as reasonable’ subject to not evaluating temporal symbols. For accu-

racy: also any hardcoded temporal literals need placeholders. A symbolic expres-

sion is a quoted, i.e., not evaluated, expression. Denote the type of expressions by

Expressions and the type of symbols by Symbols.

So for example, “1+2+3” is a symbolic expression, and is not equal to 6. When

writing in prefix-form it is common to instead write: ’(+ 1 2 3). With x = 2 and

s = ’(+ 1 x 3) then partially evaluating s, written (partial-eval s), results in 6 [92].

However, with x ∈Symbols denoting a symbol with value as-of-yet unknown and s =

’(+ 1 x 3) then (partial-eval s) results in either s, ’(+ 4 x), or ’(+ x 4): reader’s

choice. (Partially evaluating again presumably reaches a fixpoint.) The point here

is to support evaluating as much as possible about a hypothetical (equivalence class

of) schedule(s) without actually committing to particular dispatch-times.

The search-tree of TEMPO planners is quite straightforward: all effect-sequen-

ces (sequences of parts of actions), connected by forward chaining. So (X, a) is the

child of (X) for all effect-sequences X and effects a. More formally, the effect-se-

quences are the concatenation of the edge-labels along the path from the root to any

given vertex, and distinct vertices are reached by distinct effect-sequences. (Mean-

ing that an effect-sequence may leave the tree, but otherwise it uniquely names a

path.) We are primarily interested in the point that we can compute a great deal

about the situation that would result were we to assign dispatch-times and execute.

In particular we can compute the resulting states exactly:

Definition 5.9. Let N =
(
parent, op; t, State, V̂ , D̂

)
denote a temporally-lifted for-

ward-chaining effect-schedule search node, which is named by (a reference to)

its parent node P and the effect op ∈Primitives labeling the implicit edge from its parent;

following are derived structures including the (temporal) symbol t ∈Symbols = ’ASTd,
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with d the depth (d(N) B d(parentN)+1), standing for the intended start-time of the

effect op, the current state State, the current temporally lifted vault V̂ , and finally

the current temporally lifted debt D̂. If the parent is null, then the search node

is a root of the search-space and represents both the empty plan and some initial

situation; write along the lines N0 B (∅, init; AST0, StateInitial,VaultInitial,DebtInitial).

Everything else must satisfy (or be deemed illegal) the temporally lifted notion of

executing effect-schedules, with a = op:

State B S ′a(Stateparent), (5.24)

V̂ B V ′a,t(V̂parent) = (partial-eval ’(V ′ a t V̂parent)), and (5.25)

D̂ B D′a,t(D̂parent) = (partial-eval ’(D′ a t D̂parent)). (5.26)

For an interesting abuse, let TEMPO denote the type, which constitutes an infinite

forest on every legal temporally lifted search node: one tree per interleaved tempo-

ral planning problem.

Note that all fields of a search node are determined by its parent and the edge(-

label) connecting them: any given search tree is no more than all effect-sequences.

In practice the definition already prunes many, because the temporally lifted effect-

schedules (i.e., the effect-sequences) easily fail to be executable despite only partial

evaluation. For example, all violations of the classical constraints (i.e., the state-

transition functions) are caught. Similarly, if the parts of an action are executed out

of order, then the temporally lifted debt in question will fail to exist. In contrast,

technically, the computation of the temporally lifted vaults does nothing, as it will

never fail (as written).
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We include the vaults anyways, partially for symmetry, but mostly to reflect

the incremental costs of building (and if desired, solving) the associated Simple

Temporal Networks. Also, the gory details of the proof of Lemma 3.19 are made

somewhat clearer by keeping them. In particular the lemma wrestles with the tech-

nicality that the partially evaluated vault-sequences are not literally the same as the

precedence constraints of the associated Simple Temporal Networks. (They mean

the same thing, and cost the same to build/solve, but are not literally identical.)

Technical commentary aside: It ought to be fairly apparent, from the form of the

definition, that TEMPO planners easily achieve completeness (and, for that matter,

soundness). Let us prove so in a bit more detail.

Lemma 5.12. TEMPO may be taken to cover all and only slackless effect-schedules.

Proof. More specifically we may check at every search node that the associated

Simple Temporal Network remains consistent and prune if otherwise. (Claim) Un-

der said pruning, both directions hold.

Assume a slackless effect-schedule, which implies executability. Its underlying

effect-sequence labels a hypothetical path of the tree. As the constraints checked

by the partial evaluation of the transition functions are a strict relaxation of the

assumption of executability: the path is legal. Likewise satisfiability of the STNs

along the way are witnessed by the assumed schedule (see Lemma 3.19). Then the

path remains unpruned by the only additional pruning under consideration: the all

direction is shown.

Assume a legal search node, with satisfiable Simple Temporal Networks all

along the path reaching it. See Theorem 3.18 (for context) and Lemma 3.19 in par-

ticular. By the lemma, the partial evaluation of the execution, along with satisfac-
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tion of the STN, guarantees a slackless scheduling of the effect-sequence reaching

this search node. So the only direction is shown.

Therefore, both directions are shown. �

So, in other words:

Theorem 5.13. Some TEMPO planner is complete and systematic, with respect to

the dominance reduction by slacklessness, for Interleaved Temporal Planning.

Proof. By Theorem 3.18, slacklessness does indeed define a potential dominance

reduction within ITP. By Lemma 5.12, some TEMPO planner may be taken as

implementing that reduction—perfectly, i.e., covering every equivalence class once

and only once. �

Remark 5.2. Duration-optimality follows (as normal, if desired), as does optimality

for any other metric that may be computed solely from the effect-sequence under-

lying a given schedule. For example, TGP’s notion of quality is to wait as long as

possible without increasing overall duration (i.e., TGP right-shifts). Some TEMPO

planner is optimal for that metric (maximize sum of start-times subject to minimiz-

ing total duration), because we may reverse the direction of time in the STN for

each effect-sequence (flip the direction of every edge and negate its weight).

Then we have a workable approach to ITP. However, just slacklessness alone is

a relatively weak characterization of ‘strongest possible reduction in general’. In-

deed, it is more or less the weakest reasonable reduction: it serves only to eliminate

the infinity of time.
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Figure 5.3: A deordered-slackless-reduced TEMPO search tree (cf. Theorem 5.16).
Also see Section 5.3.1 and Figure 5.2.

5.3.1 D  F 5.2  F 5.3

The upper part of Figure 5.2 is strictly for literalism with the definitions. As alluded

throughout, the minimum reasonable implementation only uses 2 parts per action.

So the first equivalence reduction to implement is Proposition 5.18 (below).

Having done that, we have a reasonable looking search space for the problem

of fixing the fuse. (The bottom half of the figure.) For larger problems though, we

have some hints of problems lurking even here.

5.3.1.1 Shallow Technical Remarks on Figure 5.2

The “?” labels a sub-tree that would be possible if fixing a fuse was faster than burn-

ing a match. Whether our planner will explore that will depend on whether it can

do the algebra to notice the impossibility. (In contrast with arithmetic.) So to prune

that subtree, the implementation will need to be just a touch more complicated than

in the DEP case. Namely, implementing Theorem 5.13 is quite important.
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On top of that we should likely consider pruning before the STN becomes ob-

viously inconsistent. Particularly with many pending end-parts, at a minimum, we

should go ahead and create their vertices sooner rather than later. The formal def-

initions omit the optimization. In part that is because, really, an implementation

should have yet greater ambition.

The more sophisticated thing to do is to use inference techniques to predict

that even more than the endings of compounds are forced. In particular, landmark

analysis ties in seamlessly with understanding that end-parts of compounds must

be carried out.

There are two differences from ordinary landmarks. Durative actions carry a

quantitative constraint on the maximum time that could elapse before they must go

into the plan. So they are like deadline-annotated landmarks. Second, that forcing

is built in; no extra code, nor runtime, is needed to have the knowledge.2

These are minor points: just the typical sort of detail usually better ignored.

What is really compelling here is to implement deordering.

5.3.1.2 True Ambition: Figure 5.3

The difference between the two figures cannot seem large: we began with a toy

problem. The difference is that one part of the search tree is pruned one level

sooner. What must be appreciated is that such is pruning that is happening early

in the tree: the savings are exponentially larger as we scale up. The reason that it

may be pruned is that it is semantically equivalent to a different path in the tree;

2So to a classical planner, temporal planning looks like domain-dependent planning, in just
about the same way that HTN planning looks like advice rather than physics. In practice, such is a
point in favor of temporal planning.
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it is “non-canonical” with respect to the notion of equivalence enshrined under the

name deordering.

As we shall see shortly, the computational (and software engineering) cost to

pull the detection of the equivalence off is negligible relative to managing STNs.

So in particular, at least on this one toy example, the approach from temporally

lifting—implemented well enough—would easily trounce DE approaches. Indeed,

the state-of-the-art in forward-chaining temporally-lifted interleaved-concurrency

planning (POPF [36]) beat out its decision-epoch counterpart (LMTD [120]) in the

latest planning competition [76]. Then we should find polishing off our last theorem

a compelling prospect.

5.3.2 C D  S

Then consider that two effect-sequences may end up with isomorphic associated

STNs, and hence, intuitively speaking, also end up with identical schedules; for-

mally the relationship is deordered-equivalence. So we should be able to keep just

one of them. By Theorem 3.21, deordered-equivalence does in fact define an equiv-

alence-reduction. Then above and beyond implementing slacklessness, we should

implement the reduction by deordering. For a name, say deordered-slackless-

reduction is the reduction by both deordering and slacklessness; the order in which

the reductions are applied does not matter. Then our next and final technical goal is

to demonstrate that TEMPO can implement the deordered-slackless-reduction.

Implementing the pruning rule itself is easy. Proving it correct calls for a detour

through lemmas. What needs to happen here is that we need to efficiently recognize

isomorphic partial-orders: two slackless schedules are deordered-equivalent pre-

cisely when the two concerned sets of precedence constraints are equal (i.e., equal
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Figure 5.4: Isomorphism of labeled partial-orders is easy and exploitable.
See Proposition 5.14 and Lemma 5.15.

as partial-orders). Graph isomorphism in general, even restricted to only graphs

of partial-orders, is quite the special problem. Here, though, our partial-orders are

far from arbitrary. Indeed, our formal problem is actually isomorphism of labeled

partial-orders, which is trivial, as follows.

Definition 5.10. Say the effect-schedule X = (a, t)[n] is deordering-canonical

when for all (i < j) ∈[n]:

rank (Xi) ≤ rank (X j), and if equal then tie-break by: (5.27)

ai ≺id a j. (5.28)

Details: To compute the rank of each dispatch of X, view the deordering of X, which

is a particular partial-order on its dispatches, as a directed acyclic graph. The rank

of a vertex in a directed acyclic graph is given by rank (v) B 1+maxu∈N−(v) rank (u),

and by rank (v) B 0 when v is a root (in-degree 0). Assign an arbitrary totally-
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ordered set of identifiers to Primitives: write ≺id. For example, take their names in

dictionary order.

So, insist that ranks monotonically increase and tie-break arbitrarily but consis-

tently. The connotations hold:

Proposition 5.14. Our choice of a canonical representative for a deordered-equiv-

alence class is in fact unique.

Proof. Pick some effect-schedule X = (a, t)[n] arbitrarily. First let us demonstrate

existence.

Suppose there is a descent in rank: rank (Xi) > rank (Xi+1). By the construction

of deorderings, the two are non-mutex and belong to distinct actions, as otherwise

contradicts the supposition. So we may swap them, preserving deordered-equiv-

alence by definition. That reduces the number of inversions. So by induction on

the number of inversions, eliminate all descents. Then we have some X′ that is

monotonically increasing in rank and deordered-equivalent (to X).

Consider any two equal-rank dispatches of X′. The two are non-mutex and

belong to distinct actions, as otherwise contradicts equality of rank. Then every

such pair are non-mutex. So every way of permuting the equal-rank subsequences

is deordered-equivalent, by induction on its definition. In particular a deordered-

equivalent permutation of just the equal-rank subsequences meets the chosen tie-

breaking: A canonical representative exists, say Y .

Then it remains to show lack of plurality. For a contradiction, thereby establish-

ing lack of plurality, suppose existence of a distinct deordered-equivalent canonical

schedule Z. Note that, from above, we already have that Y is unique up to per-

muting the equal-rank subsequences of X′. Meaning that Z could only differ in
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some set of equal-rank dispatches (rather than sequence). So take rank i as min-

imal such that the sets of dispatches at rank i differ. Wolog (swap Y and Z), let

dispatch x ∈ rank −1
Y (i) and x < rank −1

Z (i) witness the difference. By minimality,

every predecessor of the witness x has equal rank in both Y and Z (because every

predecessor of x has rank less than i in Y). Rank is a function of only the predeces-

sors, so the rank of the witness in Z is the same as in Y: rank Z(x) = i = rank Y(x)

is forced. Which, as desired, contradicts that the dispatch x witnesses a difference:

rank Z(x) = i contradicts x < rank −1
Z (i). Hence lack of plurality, and uniqueness

follows. �

We may extend the notion of deordering-canonical to effect-sequences directly.

Which is what an implementation ought to do: define the vertices of a deorder by

the multiset of effects underlying dispatches (rather than using the dispatch-times

to disambiguate). In contrast would be building a STN: in order to schedule the

sequence, in order to build the deorder, in order to, finally, compute the ranks. For

reference, the computation of ranks can be done in constant-time per effect (linear

in the fluents that an effect depends on, which is a constant throughout a search

tree), at a small cost in memory usage (one, small, natural number per fluent).

Picking canonical representatives is the relatively obvious part of implementing

a reduction. The easy part to overlook is ensuring that the particular choice of

property is lost forever whenever lost.

Lemma 5.15. Under forward-chaining, with respect to deordering: Pruning non-

canonical schedules loses no canonical schedules.
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Proof. A deordering-non-canonical schedule is witnessed by a descent in rank or

a descent in the tie-breaking. It suffices to show that such descents are invariant

under forward-chaining, as then every extension must remain non-canonical.

The arbitrary choice of tie-breaking is invariant, because it is fixed before all

search.

(Claim) The rank of a dispatch is invariant under forward-chaining. Argue by

induction, with base case an empty schedule (and so nothing to show). Adding a

dispatch to the end of a schedule only adds edges leaving the graph of the deorder.

So no predecessors are added. Then all ranks remain as they were, because rank is

a function of only the predecessors. �

With that, the correctness of implementation is a breeze:

Theorem 5.16. TEMPO may be taken as complete and systematic for ITP, with

respect to the deordered-slackless-reduction.

Proof. Prune all search nodes that fail to have a solvable associated STN; so only

schedulable effect-sequences remain. Consider them to be slacklessly scheduled:

only slackless effect-schedules remain. By Theorem 5.13: all (and only) slackless

effect-schedules remain.

Prune all that fail to be deordering-canonical: only deordering-canonical slack-

less effect-schedules remain. By Lemma 5.15: all (and only) deordering-canonical

slackless effect-schedules remain. Which is the meaning of: (strongly) complete

and systematic with respect to the deordered-slackless-reduction. �

The theorem is powerful. See Figure 5.3 for an example of applying it, as

already discussed. The example understates the power.
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Corollary 5.17. Consider the deordered-equivalence class of some causally se-

quential schedule, in the context of an implementation of the deordered-slackless-

reduction. There exists precisely one unpruned search node covering that class.

So, more to the point, consider a causally sequential problem given to a TEMPO

planner implementing the reduction. The remaining search-tree is no larger than

the search-tree on classically-sorted slackless effect-schedules.

Proof. Straightforward applications of the theorem. �

In simpler terms yet, what the theorem does is automatically simplify to Conser-

vative Temporal Planning. With respect to the present empirical regime, that is the

difference between temporally lifted approaches being considered (1) a promising

research direction, and (2) state-of-the-art.

Now, somewhere between the understatement of the Figure and the overstate-

ment just made is the truth. The following is a much more accurate and precise

discussion of the technical merits and flaws of the theorem. The short of the mat-

ter is that what we have demonstrated here is a very promising and rather detailed

direction for future work.

5.3.3 S  L  D-S-R TEMPO

Recall the technical motivation for required concurrency: try to avoid considering

any interleavings besides the degenerate, i.e., sequential/conservative, cases. That

is, the technical aim is to consider only classically-sorted effect-sequences (cf., The-

orem 4.10). So the significance of Theorem 5.16 and its corollary is that we can

bound our worst-case by the right quantity. That is quite promising. The search
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tree, though, has the ‘wrong’ shape. That could end up being quite significant

when delving, for example, to analysis of heuristics.

The specific technical point concerns something like macros; what we would

really like to do is to always immediately step through all parts of an action. That

is what it means to prune down to classically-sorted interleavings. This final theo-

rem, however, does not neatly line up all parts of an action for us. Indeed, it more

or less works as hard as possible to separate parts of an action by as much as possi-

ble. Quite promising, though, is the point that, in a causally sequential domain, the

bias amounts only to a sequence of pairwise non-mutex action-parts. (That is, the

end-part in such domains has greater rank only by virtue of needing to follow the

start-part.) Which is almost strong enough to allow us to reorder into the desired,

classically-sorted, form. However, unless we are told or are able to prove the prop-

erty (causally sequential), then we cannot freely assume the end-part will always

end up with rank strictly 1 greater. Perhaps a related proposition paints a picture:

Proposition 5.18. ‘Any’ approach to ITP may be taken as searching through inter-

leavings of just two parts per action, i.e., rather than three parts.

Proof. Consider the naı̈ve graph on all executable schedules and reachable situa-

tions. Pruning by time-sortedness preserves completeness. The all-part and start-

part must have identical start-time. Then by tie-breaking on action names, we guar-

antee that every remaining schedule, i.e., unpruned, always immediately follows

up an all-part with the corresponding start-part. Compose the situation transition

functions of the two; replace both with this syntactically/notationally more complex

object. (A regression search would presumably prefer to make a macro out of the all

-part and end-part: also possible.) The reason to complicate syntax/notation is that

doing so permits us to neatly relax away the pruning rules used as justification for
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the manipulation (argument omitted); that is useful towards applying different com-

pleteness-preserving reductions, i.e., different approaches. In short actions of ITP

effectively have just two parts, as far as search complexity is concerned, regardless

of approach. �

So what we would like is a similar result for end-parts. Which we have—pro-

vided appropriate knowledge—but automatically proving that a problem is causally

sequential is, in general, just as hard (if not harder) than planning itself. That said,

it is always worth keeping in mind that ‘cheating’ is practical.

5.3.4 T S  S R C  P

   T L F C P

There are several cute tricks we could apply towards immediately forcing end-parts

into the plan in coincidentally causally sequential problems. The simplest is to just

temporarily assume the knowledge, so apply a FFC planner; should that step fail,

then fall back to a complete approach, i.e., some TEMPO planner. Such a portfolio

is easy to implement and surely quite effective in practice: a good baseline. A more

complicated, and computationally superior in theory, technique is to apply ‘iterative

broadening’ to some parameter that happens to take value 0 on causally sequential

plans. Sketch and discussion thereof follows.

Consider that, having just applied the all-part (+ start-part, see above) of an ac-

tion, we could immediately branch on whether the end-part will occur with minimal

rank (1 more than the current rank), or greater (2 or more). Admittedly that under-

mines the notion that the search is a straightforward implementation of “forward-

chaining”. However, heavily penalizing the second choice branches is (much of)

the desired exploit: too promising to pass up. Regarding them, note that it will be
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necessary for something mutex with the end-part to occur first (else its rank will

be minimal). So, in order to implement the intended semantics of the choice, ar-

tificially disable applicability of the end-part until something mutex does in fact

intervene. (More accurately, have search nodes track the set of artificially disabled

end-parts: re-enable each when its rank would be correct.) If such intervention is

impossible, the primary example being causally sequential problems, then the sec-

ond choice leads to a (potentially extremely large) dead-end. In practice it would

likely be empirically important to bound how much search time is spent in that dead

-end.

More importantly though, consider the first choices. To say that the end-part oc-

curs with minimal rank is to say that nothing mutually exclusive intervenes between

when it first becomes possible and when it is finally included. (A mutex effect with

the same rank as the start-part might ‘need’ to happen first, an example is forthcom-

ing.) Finishing actions, having started them, is by definition required: the end-part

is trivially an action-landmark (for the goal). So consider Proposition 3.2. Then

we may force the end-part to occur immediately after it first becomes possible. If

already possible then we will have essentially compressed the action [36]. In par-

ticular, if the entire problem is causally sequential then we will—almost—end up

forcing exploration of just classically-sorted effect-sequences, as desired.

Similar to forcing start-parts to occur immediately, there are some details to be

aware of. In particular subsequent pruning by the property of deordering-canon-

ical breaks if nothing more is done, because the current rank would increase too

soon. So the definition+proof+implementation of deordering-canonical and corre-

sponding pruning would be somewhat more complicated, more or less as follows.

Mark (artificially) forced effects/dispatches. Redefine canonical so that a sequence
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is canonical when instead some reordering of just its marked elements is canonical

by the old definition (delay them to the right positions). The manipulation is deter-

ministic and invertible (despite the existential implied by “some”), which would be

the crux of proving correct the altered definition. Implementation is likely straight-

forward as pruning is presumably enforced incrementally. Specifically, prior to

fixing the implementation of pruning the incremental rule is just: the rank of the

child should either be larger than that of its parent, or if equal, then its id should

be larger than that of its parent (failing both, then prune). Fixing which, i.e., in the

presence of artificially forcing end-parts, is straightforward. Alter just the pruning

at their children: take the rank and id from the grandparent, rather than from the

parent.

To round out the practical considerations, consider the potentially large search

effort wasted in exploring the potentially difficult to detect dead-ends possibly br-

ought about by following the second choices. ‘Best’ would be to reliably detect

such dead-ends (and so prune), e.g., by using landmark analysis as in the proof of

Theorem 4.12. The quick and dirty (but surely effective) fix would be to penalize

exploration of all such second choices by whatever scheme—anything would be

better than no penalty. A specific and extreme possibility—and notably promising

—is to use a new first component to the search priority: count the “degree of con-

currency” currently unfulfilled. (The second choices increase it, the concerned end

-parts decrease it: the size of the set of artificially disabled end-parts is the “degree

of concurrency”.) Note that, in words, such second choices correspond to demand-

ing that the action in question ultimately ends up as a psuedo-witness to required

concurrency.
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(Counter-)Example. The psuedo-witnessing of required concurrency underneath the

second choice branches is indeed imperfect: consider the deordering-canonical se-

quence “all-A + bgn-A (rank 0), all-B + bgn-B (rank 0), fin-B (rank 1), fin-A (rank

2)”. In the modified search-tree the sequence would read “all-A + bgn-A (rank 0),

non-minimally finish A, all-B + bgn-B (rank 0), minimally finish B, force fin-B

(rank 1), fin-A (rank 2)”. The rank annotations are saying that the all-part and start-

part of A are non-mutex with every part of B; hence it would be deordered-equival-

ent (but not canonical) to dispatch all of B and then all of A. Therefore the canonical

sequence is causally sequential, meaning A fails to witness required concurrency;

to witness, the rank sequence would have read 0, 1, 2, 3. So it is not quite true

that the described approach in general attains systematicity alongside considering

all causally sequential plans first. It is close though, as discussed in a moment.

While arguably a ‘hack’, the approach has merit. To support a non-hack per-

spective one terms it an ‘iterative’ broadening approach: broadening on the “degree

of concurrency”. (As described there are no iterations per se; prepending a compo-

nent to the search priority is similar enough.) Such would likely be at least slightly

superior to applying a sequential portfolio consisting of a FFC planner followed by

a TEMPO planner. That is because the second planner of the portfolio would redo

the search effort of the first. In contrast the broadening approach would still en-

joy systematicity. Furthermore, importantly, both more or less consider plans in the

same order.

Specifically, the portfolio ensures exhausting all causally sequential slackless

effect-schedules (i.e., action-sequences) first. The broadening approach somewhat

achieves that; a counterexample is above (the only way to find the action-sequence

“B, A” in the example above is to take a second choice). However, note that, sup-
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posing some isomorphic image of a conservative temporal planning problem, then,

without needing to know that fact, the broadening approach does manage to ex-

haust all action-sequences first (as desired). More specifically suppose that nothing

mutually exclusive with an end-part could ever occur, for arbitrarily complicated

reasons, between the corresponding start-part and itself. Then, trivially, the param-

eter “degree of concurrency” is always 0 in every non-dead-end. That is: every

second choice is a dead-end by supposition. So every potential solution would be

tried, in the desired (classically-sorted) form, first. If still no solution is found, then

we know the problem is unsolvable; the planner would continue on, exploring the

dead-ends, until such became apparent (i.e., until the “arbitrarily complicated rea-

sons” are enumerated). Which is as desired, especially as far as comparisons with

the portfolio approach are concerned.

It is, of course, not crucial to force exploration of all causally sequential sched-

ules first. Indeed, consider a heuristic able to prove/estimate a lower bound over

all solutions upon the maximum value of “degree of concurrency” throughout each.

Then we can generalize the discussion above to include this heuristic as part of

the calculation of the first component of search priority; that would be an improve-

ment. In other words, if we can guess that the problem does, to some extent, require

concurrency, there is every reason to avoid excessively penalizing the appropriate

plans. Considering that the compelling examples of required concurrency are likely

the results of compilation (cf. Theorem 4.12), then it does seem especially signifi-

cant for temporally expressive planners to avoid penalizing causally non-sequential

plans.

However, the far more important side of that coin is still the absence of required

concurrency. To wit, empirically (i.e., with respect to current benchmarks), and for
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that matter theoretically: realistic problems have small (minimax value of) “degree

of concurrency”. That is because we should be able to take any goal expression as

(the crucial portion of) an initial state towards a second subproblem of a much larger

problem. The minimax “degree of concurrency” for the two subproblems together

will only be the maximum over the two subproblems—whereas the total size of the

combined solutions grows additively. (The same is also true, perhaps surprisingly,

of parallel decomposition of global problems into subproblems: because we do

not insist that schedules be found in time-sorted order.) So, in general, relative

to solution size, the “degree of concurrency” ought to be considered small. (Else

the appropriate field is Combinatorial Search, not Automated Planning.) Therefore

even an approach as heavy-handed as ‘iterative’ broadening upon the parameter,

while certainly not computationally ideal for anything besides a minimax value

of 0, is promising enough: because the number of interleavings combinatorially

explodes, so ‘only the final iteration would count’.

5.3.5 W U

Intuitively speaking, long-term effects are clearly more important, in general, than

short-term effects. We should have our planners exploit that. Meaning we should

indeed be designing our search spaces, as just discussed at length, to penalize hypo-

thetical instances of required concurrency. The state-of-the-art seems to be missing

that mark; the significance/challenge of required concurrency is to ignore it, as

much as reasonable, without outright forbidding it. It is too far a stretch to claim

that the challenge is solved by either the formal theory developed here or the discus-

sion of relatively easy ways to operationalize. Entirely fair, though, is to say that:

Our technical contributions here are worthy achievements towards understanding
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and implementing efficient Interleaved Temporal Planners by way of leveraging

forward-chaining classical planning technique. The technical results, to a degree,

substantiate:

• Constraint reasoning is the right approach to temporally expressive planning.

• Catering to the sequential planning view should be a high-priority design

goal.
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5.4 SUMMARY

We putatively set out with the aims: (i) debunk single-objective FFC planners yet

support multi-objective FFC planners, (ii) debunk DE planners, and (iii) support

TEMPO planners. In fact, the technical results are on the whole, as they should be,

far less polarized. So to look back with a balanced eye:

Section 5.1. As far as Conservative Temporal Planning goes, straightforward ma-

nipulation of classical planners is a tough strategy to beat.

Theorem 5.3 Integrating First-Fit into any classical planner yields a theoretically

reasonable, and temporal planning competition winning, satisficing approach.

Theorem 5.4 For difficult to meet deadlines, equivalently, for duration-optimality,

we ought to slightly rework the approach. Specifically operationalizing de-

ordering (i.e., attaining completeness and systematicity for the equivalence-

reduction) as replacement for duplicate state elimination appears quite prom-

ising. In support we identified an appropriate—‘easily’ implemented, com-

putationally ‘free’—pruning rule: insist that mutex-order rank monotonically

increase + tie-break arbitrarily.

Albeit, there is little, if any, empirical evidence as of yet to corroborate this

theory: which is a point future work might do well to elaborate upon. Likely

the closest related and recent implementations of the computational motiva-

tion are VHPOP and CPT [202, 208].

Section 5.2. Generalizing classical planners to Interleaved Temporal Planning, in

contrast, presents notable challenge. The challenge is especially daunting to the

state-space/forward-chaining approaches (which at present empirically dominate,
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as judged by the classical planning competitions). The first issue—easily resolved

—is that something must be done to reduce the infinity of time to anything rather

less daunting. Various such reductions readily suggest themselves. As it turns out

though, (flawlessly) operationalizing them within a forward-chaining paradigm is

trickier than it appears. Specifically the decision epoch device possesses significant

drawbacks.

Theorem 5.6 and 5.6 Directly navigating through temporal situations is bound to

miss key possibilities: incompleteness is ‘inevitable’.

Theorem 5.10 The approach is moreover somewhat prone to examining ‘the same’

plan many times over. With careful attention to detail though, the flaw (lack

of systematicity), we conjecture, may be greatly mitigated or even eliminated;

for example it seems promising to permit dispatching actions at any given

decision epoch only when that time is an earliest start-time.

Such are the flaws of local search, which are hardly death knells, and there is cer-

tainly reason enough to remain committed to a direct search through temporal sit-

uations. Then the lesson, inasmuch as that commitment remains steadfast, is to

mitigate as normal. For example, decision epoch selection by ‘coin-flipping’ seems

to be a clear route to improved performance.

Section 5.3. Such cavalier sacrifice of our ideals is neither especially right nor espe-

cially wrong; true, completeness and systematicity are always inevitably trumped

by performance, but forestalling tooth-and-nail is worthwhile. So we came to the

other side of the coin that is reduction: the equivalence classes, rather than the

canonical representatives. More specifically, there are two complementary ways to
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characterize more or less equally well the manner in which the state-of-the-art clas-

sical planners reduce to search: state-space, or forward-chaining. From the latter

angle the way from classical planners to completeness and systematicity for Inter-

leaved Temporal Planning is clear.

Theorem 5.13 Integrating with temporal constraint reasoners (specifically solvers

of Simple Temporal Networks) attains at least theoretical plausibility (satis-

ficing or optimal as desired).

What scant empirical evidence exists suggests that temporally-lifted forward

-chaining is indeed the ‘right’ approach to greater degrees of temporal ex-

pressiveness [36, 76]. Empirical analysis is murky, though, and for good rea-

son—required concurrency—which point applies no less to decision epoch

approaches, but there manifests less clearly (perhaps visible through Lem-

ma 5.11), simply because such are not theoretically pristine. In any case

we put forth exploiting coincidental, localized, absences of causally required

concurrency between actions as the key computational challenge presently

facing the state-of-the-art.

Theorem 5.16 Implementing deordering (i.e., as a replacement for lack of dupli-

cate elimination) is again quite promising, and far closer to “theoretically

reasonable”. The pruning rule itself remains the same; the drawback is that

the search-tree is over effect-sequences rather than action-sequences.

In other words: Finally we shed some light on how one might indeed go about

‘solving’ required concurrency. The challenge remains open. Specifically our

result only exploits causal independencies in general (rather than focusing on
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the short-term/long-term distinction); while quite promising, the result falls

somewhat short of the promise of Theorem 5.4.

Wrapup. In this chapter we sought and attained better understanding, through the

lens of concurrency, of the forward-chaining fragment of the state-of-the-art tempo-

ral planning algorithms. Specifically with respect to our prior work we have slightly

improved in all of breadth, depth, accuracy, precision, and promise [43]; in general,

the results are novel and illuminating.
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Chapter 6

Conclusion

Over the past decade the computational performance of temporal planners is re-

ported to have steadily and considerably improved [36, 36, 37, 39, 54, 56, 57,

64, 84, 85, 86, 87, 93, 96, 100, 120, 129, 142, 146, 184, 198, 201, 202, 208].

If true then significant credit is surely due to the expedient of empirical analy-

sis [60, 71, 76, 82, 105, 141]; “significant” because truly compelling empirical

analysis of domain-independent planners is entirely nontrivial (e.g., such analysis

is not at all unlike designing an IQ test). Our skepticism is warranted. True, more

than a few entirely practical and self-styled “temporal” planning systems perform

well enough by all accounts [1, 12, 37, 110, 137, 154, 168, 169]. Still, ‘any’ kind of

temporal reasoning is undeniably hard in theory [2, 4, 70, 88, 109, 112, 145, 148,

151, 165, 173, 175]. In particular, theory warrants investigation of:

Is the reported performance of temporal planners due merely to evaluating against

temporally sugared classical planning problems?

Unfortunately we found that the short answer is “Yes” [42, 43]. For example,

LPG, MIPS, and 2 are all clearly minor modifications of classical planning

cores [56, 57, 87]. The tragedy here is loss of faith in the data. Among other

things, all the plots are missing a crucial line: as LAMA is presently performing

best among classical planners, we ought to similarly ‘generalize’ it to time and

compare [76, 174]. It is no stretch to suppose that said strategy will win every time,

at least, so long as the competitions continue to prefer the temporally simple side of
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the equation we can expect the baseline to win. Regardless, the baseline—dumb-as

-possible application of classical state-of-the-art to temporal planning—needs to be

present. How else can we have faith in conclusions reached by empirical analysis?

The issue is simple, dreadfully obvious even, but absolutely crucial, indeed,

goes far beyond just the relationship of temporal planning to classical planning.

McDermott’s creation of a standard (appropriately called the Planning Domain

Definition Language) around the turn of the millenia set apart all research into auto-

mated planning before and after [152]. After, both proofs and data are meaningful,

before, only proofs. Contribution is too small a word.

With respect to specifically temporal planning, we note that “temporal” has

been associated with many different facets of a planning problem: durative ac-

tions, deadlines, concurrency, processes, trajectory constraints, exogenous events,

and continuous change for example. Lacking any particular standard, researchers,

naturally, cherry-picked their favorite features, giving rise to many flavors of tem-

poral planning. This was to have been resolved by the generalization of PDDL to

time [71]. The effort has proven quite successful: a decade later we find a reason-

able number of temporal planners for which pairwise empirical comparison is face

-value meaningful. That said, “temporal PDDL” remains ambiguous: we also find

a disturbing number of temporal planners purporting to support PDDL, yet imple-

menting grossly distinct semantics.
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6.1 KEY LESSONS

When practice refuses to conform, it is time for theory to change. Our meta-the-

sis—our explanation of the nonconformance—is that the standard went too far too

fast. To get the definitions right, we need to precisely understand the computa-

tional relationship between Classical Planning and Temporal Planning. Slightly

more specifically, we must, to have a hope of conformance, formulate Temporal

Planning as relative to Classical Planning: that is, after all, how the engineering/re-

search will proceed. In other words, an absolutely crucial aspect of our treatment

throughout the dissertation is the pains we took to study Temporal Planning as ‘or-

thogonal’ to Classical Planning.

Such understanding—When is Temporal Planning really Temporal?—then, in

so many words, has been our mission. The insights gleaned from practice that we

have constructed greatest theoretical support for are:

The first two obstacles to generalizing classical planning technique to time are, in

order, deadlines and decomposition.

Deadlines. The significance of deadlines is that fastest is computationally more

complicated than cheapest: perhaps counter-intuitively, Single-Objective Search

is not strong enough, theoretically speaking, to support finding fastest plans. So

the first significant hurdle is Multi-Objective Search. To capture this lesson we

precisely formulated and studied Conservative Temporal Planning.

Decomposition. The significance of decomposition is maddeningly simple: plan-

ning is combinatorial. Details are the enemy. Consider that it is a great art to

abstract away the irrelevant (the art is to correctly identify the relevant): an art not
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even close to mastered by present classical planning technique. To capture this

lesson we precisely formulated and studied Interleaved Temporal Planning.

Durative Effects or Causally Primitive Actions. For a (related) specific, concrete,

lesson: we consider the standard’s lack of durative effects to be a mistake. That is,

“(over all . . . )” effects ought to be legal (. . . and the semantics should be as for our

all-parts). The reason is just that, otherwise, models will tend to contain twice as

many primitives as necessary. (Without durative effects one cannot directly state

causally primitive durative actions, which are the bread and butter of Conserva-

tive Temporal Planning.) The computational advantage had by disrespecting the

intended semantics of decomposition has proven itself, in practice, to be too great

to ignore.

Situations. More abstractly, a crucial principle that sets our investigation apart is

that our formal semantics are precisely and explicitly reduced to state transition

systems (and, for that matter, only slightly less explicitly, to situation calculus). In

particular we explicitly define temporal situations for each form of temporal plan-

ning considered (and prove that the definitions are correct). The closest the stan-

dard comes is through a one-way mapping into a particular state transition system;

were the mapping two-way, then working backwards from the vertices would give

a correct definition of temporal situation. As-is, correctly defining the situations of

temporal PDDL is far from trivial (meaning: nobody has done so). That our inves-

tigation possesses such two-way mappings+definitions+theorems is a significant

improvement.
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The Point. Chapter 2 gets every little detail right: for that value of “right” defined

by “requires minimal reengineering of a classical planner”. The key insight is that

classical planners simply cannot understand concurrency. So, in order to under-

stand the relationship of temporal planning to classical planning, the aspect to fo-

cus on is how the definition of concurrency ultimately gets twisted into reasoning

about only sequences.
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6.2 LIMITATIONS

The work is—of course—far from without flaws. Inasmuch as we have made

progress in improving upon temporal PDDL: we can only expect future work will

find fault here, too.

Indeed, we should hope that the distinctions made here eventually become in-

significant as the state-of-the-art advances. Eventually we might hope that AI be-

comes solved, which would certainly suffice.

Perhaps a day will come (in the rather less distant future) when the present

version of temporal PDDL will prove to be the ‘right’ perspective to take upon the

then state-of-the-art. An alternative, and more likely, hypothesis takes PDDL+ as

candidate [70].

Several of the high level points surely lack adequate technical support; for ex-

ample, the correct form of Section 5.3.4 is obviously to ‘just implement’ and em-

pirically evaluate. Which is no small task: there is much more to implementing an

effective planner than merely setting up a reasonable search-tree!
...

Such aside: Several of the deliberate limitations are interesting to call attention

to. Specifically all of the following are intimately intertwined:

• Our treatment cannot be understood independently of the standard [71].

• We skip formalizing syntax.

• There is no mechanism for permitting concurrency of additive effects.

• The intermediate language used in the proof of Theorem 4.12 is more com-

pelling than ITP itself.
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• “The Feature” from a domain modeling perspective is almost surely exoge-

nous/trajectory events+constraints.

Consider that a particularly compelling source of real world temporal planning

problems involve complex synchronization with numerous externalities. (Other

agents, star visibility, solar/wind power availability, et cetera.) These can of course

be compiled, quite unnaturally, into just ‘voluntary’ actions by exploiting required

concurrency. However, there are two compelling reasons not to. For one thing, a

heuristic should exploit the fact that such things are not actually voluntary. More

importantly, to compile them out still needs a higher level language to have ex-

pressed them in the first place. As far as the syntax of a directly useful higher level

language goes [187], note that, for example: the right way to describe a tempo-

ral planning problem is to state “permitted assumptions and desired constraints”,

both over whole timelines. That is in contrast to the tired “initial situation and goal

expression” idiom inherited from classical planning.

Stepping back, the point is that we have deliberately and sharply curtailed our

treatment of planning language. We fully expect that generalization is necessary to

achieve direct relevance to real-world problems. So for example, consider additive

effects. The right default, we argue, is to prohibit concurrency of such. But there

are certainly real world problems where we would like to permit concurrency of

additive effects. To do so requires two generalizations, firstly, some syntax would

need to be cooked up for distinguishing. Secondly, and far more involved, the

locking protocol would need to be extended to a third type of lock: a shareable

write lock. Doing so in the right way calls for a lot of legwork: rebuild the impacted

theory.
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6.3 REVIEW OF THE DISSERTATION

The Thesis. Our broad aim was to develop a deeper understanding of the relation-

ship between temporal and classical planning. The thesis is that concurrency is

“The Feature” best characterizing that relationship. Then the lesson, in other words,

is that we ought to distinguish between (at least):

• Sequential Planning: forbid concurrency.

• Conservative Temporal Planning: permit concurrency only for optimization.

• Interleaved Temporal Planning: permit causally required concurrency.

We constructed justification from two directions. From theory, each language is

computationally more general than the preceding. From practice, each language

captures a portion of the state-of-the-art.

Chapter 2. We gave thorough formal and intuitive accounts of these three kinds

of temporal planning. Sequential Planning just emphasizes the form of the plans

of classical planners: sequences of actions. In Conservative Temporal Planning

(CTP) we extend the problem ‘syntax’ by durations and deadlines; the plan ‘syntax’

acquires dispatch-times. In Interleaved Temporal Planning (ITP) we extend the

‘syntax’ by having actions decompose into parts: one psuedo-part standing for the

whole, a starting part, and an ending part. Each such primitive part acts as an action

of CTP; so, for example, each has a strictly positive, constant, duration. Meanwhile,

the plan ‘syntax’ remains the same in the sense that plans, called effect-schedules,

consist of dispatches of primitives.
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Chapter 3. We continued by building up foundational theory. Three particular intu-

itions are quite useful in practice.

Reduce We explicitly walked through the implementations of complete (and cor-

rect) brute-force approaches. (Which informs implementing more sophisti-

cated approaches.)

Reschedule We proved that precise timing decisions are of no consequence. Such

is crucial, otherwise there would be little hope to coming from classical plan-

ning; the right field would be control theory.

Reorder We proved that ordering nonmutex primitives is, as it should be, irrel-

evant. Such is crucial, as we lose effective forms of duplicate elimination

in temporal planning; duplicate elimination has the effect of avoiding overly

wasteful exploration of pointless ordering decisions.

Two results are especially significant so far as conclusions go.

Theorem 3.17, the formalization of reduction for CTP, establishes that Con-

servative Temporal Planning Problems and Sequential Planning Problems both re-

duce into the same underyling state-space. The difference is that finding fastest

plans needs the techniques of Multi-Objective Search (rather than Single-Objective

Search as for cheapest plans).

Theorem 3.21, the formalization of reordering for ITP, completes the lion’s

share of automatically exploiting absences of required concurrency. In Chapter

5 we completed that promise.

Next we turned our attention to applying the theory to analysis of the formal

languages and algorithms underlying the state-of-the-art.
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Chapter 4. In the end, we are able to conclude that: Taking Conservative Tempo-

ral Planning and Interleaved Temporal Planning as representatives of the temporal

state-of-the-art is reasonable enough.

In particular it is useful to note that whether actions really are, in terms of

causality, compound is enough to characterize expressibility of required concur-

rency. Firstly that is because such is the essential distinction between our suggested

representative languages. Secondly, expressibility of required concurrency may be

exploited to work around most other differences in syntax and semantics between

actual systems.

Chapter 5. We demonstrated that Conservative Temporal Planning poses little dif-

ficulty to algorithm designers. In particular merely integrating First-Fit into a clas-

sical planner already attains completeness and systematicity for Conservative Tem-

poral Planning sans deadlines. For deadlines/duration-optimality it is enough to

disable duplicate state elimination; of course it is rather more promising to replace

that with something reasonable. We covered such a replacement: an implementa-

tion of the reordering intuition formalized and proven in Chapter 3.

Then, as long as classical planning research keeps up its pace, those results

close the book on CTP. So next we considered attempts at ‘state-space’ Interleaved

Temporal Planning.

We (once more) covered the incompleteness result for Decision Epoch Plan-

ners [43, 147]. We extended that by a nonsystematicity result, in part to further

undermine the algorithm style. In a roundabout fashion the nonsystematicity re-

sult also goes towards supporting (!) the style. Long story short we concluded

that Decision Epoch Planners are a fundamentally local search approach to tempo-
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ral planning; hence potentially quite reasonable as long as said insight is properly

appreciated.

That said, it of course remains valuable to develop a theoretically pristine ap-

proach. The key insight is to change the design objective from ‘state-space’ to

forward-chaining: the motivation from leveraging classical planning technique re-

mains as compelling as ever.

Then the solution is just to forward-chain through effect-sequences: employ

temporal lifting to delay choosing the missing dispatch-times. (From Chapter 3,

it is possible to do so by building up just Simple Temporal Networks rather than,

say, Mixed Integer Linear Programs; for generalizations of ITP one might very

well end up with the latter instead, which has little impact on the promise of the

approach [37].) So we easily proved completeness and systematicity for such Tem-

porally Lifted Planners, Theorem 5.13.

With slightly more legwork, we also covered an implementation of the reord-

ering intuition, Theorem 5.16. The last is quite promising towards the goal of au-

tomatically simplifying to CTP on any ismorphic image thereof; we sketched some

practical approaches to narrowing the gap.
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6.4 SUMMARY

A decade of temporal planning practice offers us several key lessons. The unify-

ing theme is: Leverage Classical Planning. Piecing together, and expanding upon,

those particulars is, in abstract, the technical work of the dissertation. To high-

light a technical contribution: our Theorem 5.16 shows great promise towards au-

tomatically exploiting absences of causally required concurrency; the significance

of doing so is under-appreciated by the state-of-the-art.

In carrying out our technical work, it became clear that the standard could bene-

fit from revision; two forms of temporal planning have proven to be (in practice) too

computationally distinct from one another, and too important in their own right, to

be lumped together. Roughly, the dissertation is that revision. Accurately, the dis-

sertation constitutes a detailed justification: changing a standard cannot be pursued

lightly.

It is fascinating to observe that, from far enough away, every justification is:

Concurrency is “The Feature”.
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[140] Iain Little and Sylvie Thiébaux. Concurrent probabilistic planning in the
graphplan framework. In Long et al. [144], pages 263–273. PROTTLE.

[141] Derek Long and Maria Fox, editors. Proceedings of the 2002 Competition,
Deterministic Part, June 2002. IPC 2002.

[142] Derek Long and Maria Fox. Exploiting a graphplan framework in temporal
planning. In Giunchiglia et al. [91], pages 52–61. LPGP.

[143] Derek Long, Henry A. Kautz, Bart Selman, Blai Bonet, Hector Geffner, Jana
Koehler, Michael Brenner, Jörg Hoffmann, Frank Rittinger, Corin R. Ander-
son, Daniel S. Weld, David E. Smith, and Maria Fox. The AIPS-98 planning
competition. AI Magazine, 21(2):13–33, 2000. IPC 1998.

385



[144] Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee McCluskey, edi-
tors. Proceedings of the Sixteenth International Conference on Automated
Planning and Scheduling (ICAPS), Cumbria, UK, June 2006. AAAI.

[145] Peter Lynds. Zeno’s paradoxes: A timely solution. PhilSci Archive, 2003.
http://philsci-archive.pitt.edu/1197/.
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MATHEMATICS AND AUTOMATED PLANNING BACKGROUND
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This appendix is a whirlwind treatment of some of the more unusual or important
assumptions/notation underlying the entirety. It is intended only as a reference.

The Standard Temporal Planning Language. Version 2.1 of the Planning Domain
Definition Language (PDDL 2.1) is proscriptive rather than descriptive [71], but
otherwise our treatment (in Chapter 2) may be taken as roughly equivalent in pur-
pose and, up to PDDL 2.1’s third level of expressiveness, roughly equivalent in
scope. Our treatment is (meant to be) complementary. Specifically we eliminate
(by wholesale replacing its semantics) the obstacles to precisely understanding its
syntax from the perspective of state transition systems.

Formatting, Conventions and Emphasis. Emphasis in general is formatted thusly.
A potential connotation is for foreign language: exempli gratia. Another is for
quotation: we means you and I (and hence “our contribution”).

Notions whose precise technical meaning are being specifically called out are
formatted as foo, chiefly when said definition has yet to appear. An opposing con-
notation is conveyed with single-quotes (i.e., the technical meaning should be ig-
nored): classical planning is ‘feasible’.1

Definitions, particularly when less standard, may be highlighted as in: foo
means nothing in particular. I employ (just for variety) all of the following as perfect
synonyms for definition: means, is, (precisely) when, denotes, and written as. (In
contrast to definitions/axioms, reserve iff and friends for propositions/theorems.)
Plain x + 0 = x could refer to definition or proposition; to emphasize equality-by-
definition write: x + 0 B x.

Assignment is (dubiously) denoted byB as well. Other texts write, for example,
← to draw the subtle distinction. For natural language (equally dubiously), treat as
synonymous all of: let, (re)define, assign, with, and where.

Variables/fields/accessors/slots are formatted as in: State(Initial) is the value of
the field called State in the structure denoted by Initial. Any more complicated
computation on a structure, for the sake of example consider computing the cost
of a path, is formatted as in: cost(P) B

∑
e∈E(P) w(e). Of course we may also just

overload w(P) to mean
∑

e∈P w(e) directly.
Context is progressively deemphasized by abbreviating, subscripting, or omit-

ting arguments. For example, vertex i of path P for some index i is preferably
written just v, followed closely by vi. Less preferable are the increasingly formal
expressions: vP,i, vi ∈ VP, v(P, i), and v(P(i)). For relevant subexpressions, ab-
breviation is by shortening to initials as in replacing State with S . Irrelevance is
abbreviated further, with ·, as in: max(·,∞) = ∞.

1‘Feasibility’ of classical planning means: state of the art classical planners work surprisingly
well in practice [76], despite the well-known theory to the contrary [24].
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A.1 MATHEMATICAL UNDERPINNINGS

Standard Values and Sets. Booleans, Naturals, Integers, Rationals, and Reals are
denoted by B = {False, True}, N, Z, Q, and R. Denote the first k Naturals by
[k] = [1, k] = {1, 2, . . . , k} ⊂ N. The cartesian product is written as in: R × R = R2.

Types. A type is a disambiguating, and optional, annotation that can be applied to
expressions to clarify what values and operations are meant [33, 117, 170, 180]. We
treat these as just (very well-behaved) sets of values. So we say that B denotes the
set of truth-values (and R the set of Reals); we really mean though that B denotes
a Boolean algebra (and R the Real field). For notation, write α ∈X to declare that α
should be interpreted with respect to type X. Writing α ∈ X has intuitively the same
meaning. A significant difference is that α ∈X is undefined when α < X.

Functions, Sets, and Relations. We sometimes stylize functions using an adaptation
of set-builder notation (“function-builder notation”). For example the Fibonnaci
numbers are denoted by:

Fib B

 i ∈N 7→ i | i ∈ [0, 1];

i ∈N 7→ Fib(i − 2) + Fib(i − 1)

.
Precise meaning may be had by transliterating into the S adaptation of the
λ-calculus [34, 191]. See Figure A.1.

(define Fib-Slowly (lambda (i) (cond

((and (natural? i) (member '(0 1))) i)

((natural? i) (+

(Fib-Slowly (- i 2))

(Fib-Slowly (- i 1)))))))

;; not built-in

(define natural? (lambda (i) (and

(exact? i) (positive? i) (integer? i))))

Figure A.1: A terrible way to compute the Fibonnaci numbers.

The type of partial functions from type X to type Y is denoted by X → Y , and the

type of total functions by X
total
−→ Y . A single argument total truth-function, i.e.,

type X
total
−→ B, represents a set. A multiple argument total truth-function, e.g., type

X × Y
total
−→ B, represents a relation (i.e., a set of tuples).
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Any function f ∈X→Y may be regarded instead as a relation, as in:

(y = f (x))⇒ ( f (x, y) = True),
(y , f (x))⇒ ( f (x, y) = False).

(For totality, take f (x, y) as false if otherwise undefined.)
A relation is a function when the reverse mapping is possible. Abusively, take

the range of a relation to be the image in its last argument (rather than B). E.g.:
Rng( f ) B {y | f (x, y)}. The range of the subrelation f�Z of f domain-restricted to
Z ⊆ Dom( f ), i.e., loosely the image of Z under function f , may be written:

Rng( f�Z) = {y | f (x, y) for some x ∈ Z}, if f is a function then:
= { f (x) | x ∈ Z}, also written as just:
= f (Z).

The result of remapping (a.k.a. overriding, overwriting, updating, assigning,
extending-by) the function f ∈X→Y by the function g ∈X′→Y′ is the function that is the
extension of g obtained by defaulting to f wherever g is undefined:

( f ⊕ g) ∈(X∪X′→Y∪Y′) =
{
x ∈Dom(g) 7→ g(x); x ∈Dom( f ) 7→ f (x)

}
,

= f�Dom(g) ∪ g,

= f \ f�Dom(g) ∪ g.

Prototypes and Structures. Structure types are traditionally declared in terms of
prototypes, with instances given by unification/substitution. Treat field names of
prototypes as accessor functions. For example, “A simple graph G = (V, E) con-
sists of its vertices V , a set, and edges E, a symmetric irreflexive binary relation on
V .”, declares the type simple graph in terms of the prototypical instance G = (V, E).
So declaring some other instance, “H = (A, B) is a simple graph.”, implicitly asserts

V(H) = A, E(H) = B, B ∈
(

A
2

) total
−→ B, and so forth.

Collections. Collections are especially useful for grouping related structures to-
gether and are treated similarly in notation. Formally say that collections are total
functions, but, write subscripts in preference to function applications. For example,
with i ∈I the index of a graph in some collection G = (V, E)I of (simple) graphs in-
dexed by I: preferably write Gi, Vi and Ei for the graph, its vertices, and its edges,
rather than writing G(i), V(G(i)), and E(G(i)). If helpful we can name the iterator,
for example: G = (Vi, Ei)i. To disambiguate, write both explicitly: G = (Vi, Ei)i∈I .
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Sequences. A finite sequence is more or less a collection indexed by a finite total-
order; except that sequences are regarded as identical if the only difference is the
representation of the total-order. So the canonical index set is just [n] for any n-
length sequence. The prototypical X-sequence of length n is written either

(
S ∈X

)
[n]

or (S 1, S 2, . . . , S n) ∈Xn
. The Kleene star of X, X∗ =

⋃
k=0 Xk =

{(
S ∈X

)
[k]
| k ∈Z ≥ 0

}
,

denotes the type of arbitrary, but not infinite, length X-sequences. A tuple is just a
sequence in the context of fixed length/size. A structure is just a tuple giving better
names (than 1st, 2nd, . . . ) to its elements.

Families and Tuple Types. Collections of sets are also called families and serve,
by their cartesian products, to precisely define very particular subtypes of tuples.
(In application to planning the set of possible states is conveniently expressed as
such.) The cartesian product of a family is given by the set of all tuples whose
elements are each of the right type, i.e., each belonging to the same-indexed set
of the family. In notation, with

(
C ∈Set

)
I

a family, its cartesian product is written�
C = {(c)I | ci ∈ Ci for all i ∈ I}, or equivalently

�
C = {(ci ∈ Ci)i∈I 7→ True}.

Graphs. All graphs actually of interest are at a minimum directed and theoreti-
cally could have multiple edges, even loops, between vertices. So say: A graph
G = (V, E,R) consists of its vertices V , edges E, and single-step transition relation

R ∈E
total
−→V2

=
(
u ∈V , v ∈V

)
E
, which is an edge-indexed relation on vertices. The transi-

tion relation R denotes that each edge in E connects some vertex u to some vertex
v, in that order, perhaps redundantly, perhaps even in a loop. That is, asserting
R(e) = (a, b) means also that e ∈ E, u(e) = a, v(e) = b, and denotes that edge e con-
nects vertex a to vertex b. (One thinks of R as a relation proper by writing R(a, b)
in preference to R−1(a, b) , ∅.)
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A.2 DOMAIN-INDEPENDENT AUTOMATED PLANNING BACKGROUND

In case of dispute between planners: The ultimate notion of correct is always by
reduction to state transition systems. It is then, perhaps, worthwhile to be extremely
clear concerning the relationship to and the nature of the state transition systems
that we require. We also examine some of the key inference techniques employed
by the state-of-the-art in classical planning.

A.2.1 S, S,  S T S

(Lack of) Formal Syntax for Examples. Our examples of planning problems usu-
ally employ psuedo-syntax. In part that is just because employing PDDL-syntax
would be (even more) ambiguous. Also we do not wish to encourage implementa-
tion, which certainly needs to be explained. Somewhat abstractly, having planners
all willing to parse identical syntax is better than ensuring that syntax accurately
reflects the semantics ascribed. That is, we consider a plethora of incompatible
dialects to be worse than semantic ambiguity. Ultimately we should indeed ex-
tend/modify from PDDL-syntax so as to capture the semantic issues investigated
here. However, we consider design of syntax to be a serious endeavor in its own
right, and so leave the task to the future. Such work should take seriously those is-
sues considered and formalized in at least: (temporal) PDDL, PDDL+, O, and
ANML [70, 71, 151, 187]. It certainly wouldn’t hurt to also draw from real-world
systems, e.g.: NDDL for EUROPA [12, 73].

It is easy to underestimate the significance of the task. So we note that the very
first specification of PDDL—a defining moment in the literature—formalized only
syntax [152]. McDermott could get away with skipping semantics chiefly because
those issues—i.e., for starters, the connections between STRIPS, SAS, and ADL—
had already been resolved [9, 66, 78, 139, 166].

(Lack of) Formal Semantics. It is more lucid to be a touch imprecise regarding the
several levels of interpretation involved in automated planning. In general it is
quite worthwhile to distinguish between them, say for the purpose of successfully
automating planning in practice, especially: (Level 1) the (meta-)language of plan-
ner engineering, (Level 2) the formal language(s) of planning systems themselves,
and (Level 3) the physical interpretation of plans as implemented by executives.
But for our purpose it is preferable to conflate these together. For example, we say:
“ActionDefs(a) is the definition of action a.”, rather than:

(Level 1) ActionDefs(a) denotes

(Level 2) those axioms of the planner’s theory that constrain

(Level 3) the permitted interpretations as a physical action by the executive of
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(Level 2) that particular constant action-symbol of the planner’s theory referred to

(Level 1) by us, at the moment, with the variable symbol a of the meta-language.

Note that the less precise statements are normally no less accurate, theoretically
speaking. Consider the following.

There are several assumptions virtually always made by domain-independent
planners that ensure the apparent lack of precision is nonetheless unambiguous.
It is beyond commonplace to assert the Unique Names Axiom: (i) distinct names
identify distinct objects and distinct objects are distinctly named. That licenses
conflations such as “the action a” and “the fluent f ” to abbreviate “the action named
by a ∈Dom(ActionDefs)” and “the fluent named by f ∈Dom(FluentDefs)”. The other two axioms
that go almost hand in hand are that: (ii) every name is known, and (iii) there are
only finitely many names. Taking all three guarantees that planning theories ground
into the narrow confines of (the situation calculus embedded within) propositional
logic [71]. At that point the theoretical differences between the model-theories and
proof-theories of the languages of domain modeling, planning, and execution are
all slight enough.

In short, as far as our aims are concerned, our somewhat loose treatment of the
various levels of interpretation is of little significance. In general the distinctions
are rather more important. For example, real systems must be robust to plan failure.
As a trivial prequisite to such, clearly we would have to distinguish the planner’s
notion of executable from the executive’s notion of executable.

State Transition Systems. A state transition system is a model of a machine in terms
of an edge-labeled graph, where the vertices denote all the possible states of the
machine, and the edges, along with their labels, denote all the possible transitions
the machine can make between its states. Somewhat more precisely: At each time
the behavior of a state transition system is to traverse some transition (i) labeled by
the current input, (ii) leaving the current state, and (iii) arriving at the next state.
If no such transition exists then the input is immediately rejected. (We assume
determinism, so otherwise the choice is unique.) The input is accepted only if the
final state is one of a designated set of accepting states (and otherwise rejected).
The set of all accepted input is called the language of the system. The remainder
elaborates and ascribes notation; throughout let M = (V, E,Σ,R, `, s0,T ) denote the
state transition system in question.

Definition A.1 (State Transition System). A state transition system is the exten-
sion of its underlying graph G = (V, E,R) to include: a set of (transition-)labels Σ,
a (transition-)labeling

(
` ∈Σ

)
E
, which is a total function ascribing a label to every

transition, an initial state s0
∈V , and a set of accepting states T ⊆ V . A state is just

a vertex, and a transition an edge, of the underlying graph.
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A state transition system is finite, or may as well be, if its transition relation is
finite. Our definitions do not require finiteness.

For simplicity we do require determinism. A state transition system is deter-
ministic when the labels induce transition functions:

Definition A.2 (Induced Transition Functions). Recall that the (indexed) transi-
tion relation is the collection specifying the endpoints of each transition: R =(
u ∈V , v ∈V

)
E
. Define the transition relation R′a induced by any transition-label a ∈Σ

as the restriction of the full transition relation to just those transitions labeled by
a, i.e.: R′a B Rng(R�`−1(a)). Then M is deterministic if each induced transition re-
lation is moreover a function. In notation, M is deterministic if, for all transition-
labels a ∈Σ, the transition relation induced by a is equal to its functional part:

R′a = {x 7→ y | for all e such that (`e = a and ue = x) then (ve = y)}. (A.1)

If so, then each R′a is called the a-induced transition function, a.k.a. the transition
function of a.

Definition A.3 (Behavior). Consider any input (w)[n]
∈Σ∗ , a label-sequence, and

write (s)[0,m]
∈V∗ for the behavior, a state-sequence, of M given w. The behavior

of M given w is defined by iteratively applying the induced transition functions, as
follows. For each time i ∈[m] with m ≤ n the point after which time stops, let a = wi

be the current label, and s = si−1 the current state. Define the result thus far as
just Result(w�[i−1], s0) B s the current state. The system M immediately rejects if
none of the edges leaving s are labeled by a, i.e., if R′a(s) is undefined. Time stops
whenever M rejects or accepts. If otherwise, then define the next state:

si B R′a(si−1). (A.2)

Regard the result function as encompassing all choices of initial state: say
ResultM =

⋃
ResultM′ for M′ only differing in s0. In particular observe that the

full reachability relation, as it is called when viewed as a relation, is transitive. That
is, a determination of Result(a, s) for all labels a and states s likewise determines
Result(w, s) for all label-sequences w. Equivalently a determination of R′a for each
a determines all of Result().

Definition A.4 (Language). A state transition system M accepts input w, and w is
then called a word, when the final result Result(w, s0) is one of the accepting states:
Result(w, s0) ∈ T holds (and, firstly, is defined).

The language L of M is its set of words:

L B {w | Result(w, s0) ∈ T }. (A.3)
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The differences between a state transition system and its underlying graph, be-
sides vocabulary, are relatively minor. For example its language is just the set of
sequences of edge-labels one obtains by walking through the underlying graph be-
tween the initial and target vertices. In practice usually at most the minimal walks
—the paths—are of interest. So computing the ‘interesting’ walks/words is inti-
mately related to the Single-Source Cheapest-Path Problem [49].

Similarly the connection to planning is by and large a shift in vocabulary (la-
bels are actions, paths are plans, etc.). There is one absolutely crucial computa-
tional difference though: planning problems are exponentially smaller than their
corresponding transition systems. In particular the graphs that serve to arbitrate the
formal semantics of variations on planning are strictly figurative; we assume, with
excellent cause, that to write out such graphs is to ‘die’ (computationally speaking).
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A.2.2 I: C, R H,  L

The aim here is to formalize ‘efficient’ compilation between forms of planning
along the lines that the target planner carries out ‘enough’ in the way of sophis-
ticated inference so as to render tolerable the otherwise atrocious computational
consequences (of taking a compilation approach to planning). So, in slight contrast
with related work, we make explicit the point that whether a compilation is ‘good’
fundamentally depends on the target ‘platform’ being compiled to [10, 157]. An
improvement is that theory of the following kind can, for example, support the ob-
servation that both the exponential and polynomial approaches to compiling out
conditional effects can be effective in practice. Nebel’s theory, in particular, cannot
distinguish between meaningful and meaningless increases in plan/solution size.

A.2.2.1 Compilation

For the moment let notation be as follows:

• all plans in problem P of source language S and problem Q = σ(P) of target
language T : X = Actions(P)∗ and Y = Actions(Q)∗,

• the total map from source to target: σ ∈S
total
−→T ,

• the partial map from target to source: ρ ∈T→S ,

• the expressions/sets presently defining “interesting plans” (e.g., goal-achiev-
ing, executable, cost-optimal): α and β = σ(α),

• the plans of interest: A = α−1(True) ⊆ X and B = β−1(True) ⊆ Y , finally

• the uninteresting plans: A = α−1(False) ⊆ X and B = β−1(False) ⊆ Y .

Assume/demand that the empty plan always represents itself: σ(∅) = ∅ (and ρ(∅) =
∅). An interpretation stipulates that the two directions really agree: ρ(σ(x)) = x for
all x, that is, the reverse map is a left-inverse. A relaxation guarantees uninterest-
ingness: σ and ρ are such that ρ(B) ⊆ A. A restriction guarantees interestingness:
σ and ρ are such that ρ(B) ⊆ A. A compilation does all three:

σ−1 ⊆ ρ,

ρ(B) ⊆ A, and
ρ(B) ⊆ A.

When the target language is smaller then we say equivalence-reduction rather
than compilation: compilations and equivalence-reductions are two sides of a coin.
So for example (taking ρ as the reduction direction), with y =ρ y′ whenever ρ(y) =
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ρ(y′), then we say σ(ρ(y)) is a choice of canonical representative for the ρ equival-
ence class of y. In other words a compilation is an equivalence-reduction in reverse:
an anti-optimization, theoretically speaking.

Forcing: Not Inefficient Compilation. Not all compilation approaches are anti-opti-
mizations in practice. Clever compilation can ensure the target planner does more
or less just as well as a direct implementation. To motivate our definition of a forc-
ing compilation, consider the following.

Fix some tree over the plans of the target, rooted at the empty plan. One plan
extends another with respect to the tree if it is weakly a descendent: plans extend
themselves. The ill-formed plans fail to extend to canonical plans: the plans in{
y | there exists no y′ ∈ σ(X) extending y

}
are the ill-formed plans. The partially-

formed plans succeed:{
y | y < σ(X) and there exists y′ ∈ σ(X) extending y

}
are the partially-formed plans. The well-formed plans in the target are just the
canonical representatives: σ(X).

Suppose the target manages to prune all and only the ill-formed plans. So ev-
ery leaf would be canonical. Further suppose every vertex is a leaf or branch:
no choices are forced. (Or just directly assume that total work is proportional to
branches+leaves.) Then the number of internal vertices are bounded by the leaves.
Hence total work is bounded by at most twice the number of canonical plans, which
is already promising.

Leaves do not, in principle, require heuristic evaluation (and in some sense,
no substantially expensive computation whatsoever need happen at leaves). Hence
the number of heuristic evaluations could be bounded by the number of canonical
plans. It is only a small stretch to further conclude that total work would be bounded
directly by the number of canonical plans.

In other words, by supposing/proving either/both, we may conclude that the
target planner would be performing more or less just as well as a direct implemen-
tation against the source language could possibly be expected to. Or well, to be
accurate, at least we would have that the worst-cases would be close enough. Nat-
urally we may easily suppose that the target planner would have less appropriate
search-control.

That, however, is a question to be settled empirically. Then the significance is
that it would be worth the while to in fact implement the compilation in question:
it certainly matters whether a compilation approach is even remotely practical.

So say a compilation is forcing with respect to a target planner when:

1. at least every ill-formed plan is pruned, and ideally
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2. only negligible work is performed on partially-formed plans.

Regarding the latter it would typically be enough to guarantee that at most one
heuristic evaluation occurs per canonical plan; the cost of computing heuristics
tends to dominate the runtime of domain-independent planners. Achieving either
calls for heavy-duty unreachability analysis by the target planner.
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A.2.2.2 Unreachability Analysis

“Maybe reachable” is a vague notion: good for intuition/insight [16, 102, 162]. For
analysis/implementation it is better to work with “definitely unreachable” [20, 106,
127]. In particular, here the right perspective to take on planning graphs is that of
HSP [20].

Let Regress(a, q) denote a necessary and sufficient condition in normal form
(i.e., CNF) for action a to result in satisfaction of the condition q: Regress(a, q) =
Andi Or j `i, j is such that Regress(a, q) is satisfied by S iff Result(a, S ) satisfies q.
An m-literal is a consistent conjunction of up to m literals, i.e., an assignment on up
to m fluents. We can relax these preconditions for conditional effects by choosing
to satisfy only some of the constraints, i.e.:

Relaxm(Andi∈[a] Or j∈[bi] fi, j = vi, j) B AndI∈[a]m Orq∈Q(I) q, and (A.4)

Q(I) =
{
q ∈m-literals | q satisfies Andi∈I Or j∈[bi] fi, j = vi, j

}
(A.5)

make every choice of m clauses and every choice of how to satisfy each such set.
Then the heuristic hm computes bounded-depth unreachability in the relaxation

that ignores inconsistencies between m-literals:

hm
P,B(And Or q) B max min hm

P,B(q). (A.6)

hm
P,B(q) B 0 when q ∈ B, otherwise (A.7)

hm
P,B(q) B min

a∈Actions(P)
1 + hm

P,B(Relaxm(Regress(a, q))). (A.8)

For self-contradictions and infinite recursions then naturally:

hm(·) B ∞. (A.9)

Some useful special cases for STRIPS-style problems are (with standard abuses):

hm(q) = min
a:q∩Add(a),∅ and q∩Del(a)=∅

1 + hm({p | q \ Add(a) ⊂ p ⊆ Pre(a)}).

h1(q) = min
a:q∈Add(a)

1 + h1(Pre(a)).

hm(P) = max
p∈P

hm(p).

• That hm is well-defined, computable, and so forth are all standard results (e.g.,
detecting infinite recursion is, here, legitimate).

• Technically the definition treats every action as mutex with every other action
and so corresponds to the relatively uncommon serial planning graph. (The
only way the definition permits an action to establish both of x and y, e.g., in
h2, should it lack y as a direct effect, is to persist y and give x.) However, we
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are primarily interested in just m = 1 and hm(·) = ∞, either of which renders
the distinction meaningless.

• Similarly the definition differs from typical implementations in its treatment
of disjunctions (i.e., conditional effects). In STRIPS-style disjunctions are
forbidden in the first place.

• It can be useful to note that m is only used to define the relaxed problem.
Any algorithm for computing h1 can be used to compute hm as well if one
is willing to write down the relaxed problem explicitly [97]. The relaxed
problems, however, are exponentially large in m.

The intuition, for m = 1, is to drop every fundamental contradiction: permit
both f = v and f = v′ to be simultaneously true for every fluent and every pair of
values. (In terms of formal problem relaxation: setup new boolean fluents whose
names are ( f , v) so that it is notationally possible to write down the impossibility
without actual contradiction, i.e., by writing S (( f , v)) = True and S (( f , v′)) = True
instead.) So the set of literals taken to be true only ever enlarges (because the re-
laxation of f B v is ( f , v) B True—there are no assignments to False), thereby
earning the title: delete-relaxation. In particular satisfaction of every expression in
the relaxation is monotonic: if ever true, then forevermore true. Then every relaxed
plan remains executable if appended to any other. Meaning (un)solvability is poly-
nomial.2 That is, to solve the relaxed problem it suffices to generate as many wit-
nesses of individual fluent-value pairs as possible (just one witness per pair, hence
poly-time in the pairs); if that includes all top-level goals then any concatenation of
all the witnesses is a (very sub-optimal) solution to the relaxed problem. Otherwise
the relaxed problem is unsolvable—as is the real problem.

Example Inference Using hm in B. Increasing m drops fewer constraints,
yielding a more informed heuristic. For example, h2 recognizes that a single fluent
can only have one value at a time (h2( f = v and f = v′) = ∞ always), unlike h1.
Other, but not all, 2-size impossibilities can also be caught, for example:

Proposition A.1. Stacking two blocks upon each other is 2-delete-relaxed unsolv-
able; having a block clear and yet below another block is also impossible even
in the relaxation; moreover, stacking two blocks upon a common block is likewise
deemed, in poly-time, unreachable:

h2((below a) = b and (below b) = a) = ∞. (A.10)

h2((clear a) = True and (below b) = a) = ∞. (A.11)

h2((below b) = a and (below c) = a) = ∞. (A.12)

2Optimally solving the relaxation is NP-complete.
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For concreteness consider the specific model of B on Page 39. The
details should still work out for any vaguely normal encoding, but little can stop
someone determined to defeat a heuristic [69].

Proof. Let q = ((below a) = b and (below b) = a); so the first aim is to show
h2(q) = ∞. There are 2 types of actions that can establish the expression: moving
a to ontop of b, or vice-versa. They do so if applied in a situation where the other
half of the expression is already true. Renaming objects has no meta-effect, i.e., by
symmetry: it suffices to show that moving a onto b in a situation where b is already
on a is known to be impossible. In notation, the aim is to show that:

x = 1+max
{
h2(p′ ∈2-literals) | Result((move a b), S ) satisfies q only if S satisfies p′

}
is undefined/infinite. Which suffices, as x is a straightforward under-estimate of h2,
i.e., h2(q) ≥ x. If it were possible the movement would have to be executable—in
particular a would have to be clear above and beyond persisting (below b) = a.

(P). Consider p = ((clear a) = True and (below b) = a): p is a necessary condition
for the movement to be both executable and result in q. Therefore h2(q) > h2(p).
Should we happen to know that “clear” literally means the absence of every cov-
ering block then we are done but for the moreover. Otherwise it suffices to show
h2(p) = ∞ is anyways inferred (from the moreover). No action has p as its di-
rect effect, so again one half must be persisted. Case: persist clear. The only
way to establish (below b) = a is to move b onto a, but doing so also has the ef-
fect (clear a) B False. So p can never be a post-condition of moving b onto a.
The regression of an apparent contradiction through an action can be assumed/de-
manded to produce syntax remaining clearly unsatisfiable, e.g., by just copying the
already apparent contradiction. For h2, “apparent” means containing contradictory
unit clauses, which “(clear a) = False and (clear a) = True” meets. (So it is in-
deed formally correct to drop such obviously impossible actions from the relaxed
problem: doing so does not alter h2 but for speeding up its computation.) Then
the remaining case is to attempt to establish the other half of p. Case: persist be-
low. The only actions establishing (clear a) = True are (i) moving a anywhere, and
(ii) moving a block on top of a elsewhere. (i) Moving a has as precondition that
it already be clear, so all of p would have to have held before. Which is circular.
For such circularity to win the minimization over actions means that the relation
inferred is h2(p) = 1 + h2(p). That recurrence relation is unsolvable, denoted by
writing h2(p) = ∞, i.e., p would be deemed unreachable (as desired). (ii.1) Moving
b off of a would directly contradict p (by setting (below b) to something besides
a), so is deemed impossible by virtue of its regression containing contradictory unit
clauses. (ii.2) So some other block, say c, must move off of a if h2(p) is to be finite.
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(O). Consider o = ((below c) = a and (below b) = a). Then moving c off of a
will establish p—but only if o. That is, h2(o) is a candidate in the maximization
for the sole remaining conceivable way of establishing p and thus: h2(p) > h2(o).
Therefore it suffices to show h2(o) = ∞. Again no single action could establish
both halves at once. Case: persist below b. Consider moving c onto a from a
state where b is already on a. Then p itself is a candidate in the maximization:
o and p cannot both be bigger than each other (so are deemed infinite). Case:
persist below c. Consider moving b onto a from a state where c is already on a.
So p′ = ((clear a) = True and (below c) = a) is a necessary condition (and thus
h2(o) > h2(p′)).

Then return to (P) with p B p′ and q B o. That is, ping-pong back and forth
until exhausting every variation on: (P) a block is on a yet a is clear, (O) two blocks
are on a.3 Hence all

{
h2(r) | r ∈ P ∪ O

}
are h2-provably greater than each other: all

are infinite. �

3Being clear is much like being below only the hand; for such an encoding of B the
latter two claims of the proposition may be combined together as “at most one thing is directly above
a block”. The proof could then consider all minimal counterexamples in one fell swoop.
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A.2.2.3 Landmark Analysis

A “landmark” is in principle a necessary and sufficient condition for reachability
of the final destination. In planning, consideration of sufficient conditions for goal
-reachability are considered only rarely, for the reason that a general enough treat-
ment subsumes the whole task [61]. That is, landmarks, in planning, are only nec-
essary conditions [174], albeit sometimes exploited in a manner befitting sufficient
conditions [116].

An hm-detectable landmark (α, γ, β) satisfies: for any B satisfying (α and ¬β)
and B′ satisfying (β and ¬α) there exists at least one witness q, satisfied by B′,
such that hm

P−γ,B(q) = ∞. The intuition is that satisfaction of β is unreachable from
satisfaction of α in the problem suppressing γ. (An action a appearing in α or β
stands for all the situations in which it is executable, i.e., Regress(a, True).) Usually
α and β name sets of vertices comprising a separation of a Domain Transition Graph
(or for m > 1, separations of several Domain Transition Graphs merged together).4

That is, these would usually have the form q1 or q2 or q3 · · · for a set of m-literals qi

known to be pairwise mutually exclusive in the real problem.
The inefficient way to find such separations would be to hypothesize cuts, do

them, and detect unreachability of certain literals explicitly. (Which is how the
notation reads.) Some of the intuition from that perspective is useful nonetheless.
For example, consider the final layer of a special planning graph built from the
initial situation, suppressing γ. Say some situation satisfies no literal considered
unreachable by suppressing γ. (So it satisfies ¬β for β the disjunction over all such
conditionally unreachable literals.) Then the literals it does satisfy are a subset of
the final layer of the special planning graph. Hence it continues to fail to reach any
situation satisfying any of those conditionally unreachable literals. Barring the use
of γ, of course.

In other words, landmarks name (directed) cuts in the real problem: highly ex-
ploitable knowledge. Better yet landmarks name (directed) separations—the plan-
ner can know which side of a cut it is presently considering. At least, that is how we
formulate them here. It is also possible to consider landmarks as mere cuts. (Which
is more general, but awkward, as it calls for additional machinery to track whether
or not a landmark has taken place sometime in the past.)

Example Landmark Analysis. Unqualified, a landmark means specifically a sepa-
ration of the initial situation from every goal situation, in truth (i.e., with respect
to h∗). For example, in 4-operator B unstacking block b from c is a
landmark with respect to (i) block b starting on top of c, and (ii) block c not start-
ing on top of whatever the goal demands. Such is certainly true with respect to
the real domain physics. It is moreover the case that said landmark is detectable

4A Domain Transition Graph is equivalent to the result of contracting together all states agreeing
upon the value of a given fluent.
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by merely h1. Say block d is what is to be below c in the goal. Then in our
notation, ((i) and (ii), (unstack b c), (on c d)) is an h1-detectable landmark. (Meta
-Proof) Each inference in the following chains through just one literal at a time as
precondition/effect: (Paraphrasing of h1-detection) block c does not start where it
needs to finish, so needs to move; any movement requires that it be clear; so it suf-
fices to show that block c is never clear; the only actions giving that c is clear do so
by moving a block off of c; moving a block off of c requires that a block is already
on c; the only actions resulting in their being a block on c require it already be clear;
which is circular; so only moving specifically the block already on c, block b, can
witness achieving that c is clear for the first time; suppressing said movement then
ensures c is never clear for a first time; hence block c is never clear at all in the
modified problem, which suffices.

Notation for Suppressing Propositions and Actions. Say P − a denotes the plan-
ning problem with action a removed. To address minor technicalities it is easier to
make it impossible than to outright remove it. Define removal of actions as mak-
ing their definitions empty: eff a B {} in P − a is the sole change. So syntactically
it remains possible to include such actions in plans, but such plans are never ex-
ecutable, because said actions are nowhere executable. Similarly treat removal of
sets of actions.

Let P − ( f = v) denote adding the negation of the condition, f , v, as a
precondition to every action a (syntactically) dependent upon the fluent f . Then any
remaining executable plan never exploits f = v. Moreover, if f = v should indeed
ever become true then it remains so thereafter—the more interesting aspect of which
is that no action thereafter depends upon f in any way. Furthermore for any action
already requiring f = v as a precondition the manipulation is tantamount to making
its definition be empty. At least, intuitively speaking that is so; in STRIPS-style one
might very well define P − ( f = v) as equivalent to removing all actions explicitly
requiring f = v. In general, however, the two definitions are not equivalent; adding
f , v as a precondition is more constraining than just removing actions requiring
f = v.

Let P − ( f B v) denote adding ¬Regress(a, f = v) as a precondition to each
action a. Then no remaining executable plan can ever re-establish f = v; it is only
true if initially true, and has remained so up to the time in question. Which is much
like removing all actions that, if executable, certainly carry out the effect f B v;
for STRIPS-style that equivalence is provable, because, in that setting, there are no
such things as indirect or conditional effects.
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APPENDIX B

FORMAL PROOF OF THE DOMINANCE OF LEFT-SHIFTING

410



Here we rigorously prove that left-shifted defines a dominance reduction. For ref-
erence, the theorem may be stated precisely:

Theorem (Left-Shifting is Complete). Left-shifted schedules dominate their action
-sequence equivalence classes.

Conceptually the theorem is saying: “Fastest is Best”. We break its proof down
into two lemmas: “Faster is Locally Better” and “Locally Better is Globally Bet-
ter”. So the first lemma creates small local improvements. Then the second lemma
converts those into small global improvements by induction. Finally the proof of
the theorem converts those into largest global improvements, by another induction.

We begin by precisely defining dominance between situations, prove that shift-
ing a single action earlier in time immediately results in dominance, and follow that
up with a demonstration that the dominance persists through the tail of the altered
schedule. Rescheduling a second action raises issues. In short the precise values of
earliest start-times are moving targets as we engage in rescheduling. To address this
we appeal to universally left-shifted schedules as a mechanism for referring to ear-
liest start-times by name (rather than value). Then it is no longer an issue should the
precise value later change. Finally we take our amassed tools, restate the theorem,
and prove it.
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B.1 FASTER IS LOCALLY BETTER

To make the proof go through we need to generalize dominance to cover the mu-
tual exclusions between action effects; the notion from Chapter 3 is only strong
enough to cover satisfaction of goals and subgoals as soon as possible. Recall that
situations consist of just states and vaults and that the theorem concerns action
-sequence equivalent schedules. Meaning the underlying state-sequence is fixed
during rescheduling. So only the vault-sequences of executions really matter.

Then the idea is: One vault dominates another if every hypothetical dispatch has
an at least as early, earliest, start-time. Earliest start-times are just minimizations
over subsets of read-times and write-times, so:

Definition B.1 (Dominance). A vault X ∈Vaults dominates another Y ∈Vaults when, for
all fluents f ∈Fluents:

Read-Time(X f ) ≤Read-Time(Y f ), and (B.1)
Write-Time(X f ) ≤Write-Time(Y f ); (B.2)

say vaults X and Y are of the same vault-subtype1 if furthermore:

Readable(X f ) = Readable(Y f ). (B.3)

If all three conditions hold, then say the vault X dominates with type the vault Y .
Observe that the relation is a partial-order on vaults: write X � Y .

Say a vault transition function dominates another when, on all inputs, its result
dominates (with type) the other’s result. Then we can show that starting actions
sooner results in dominance:

Lemma B.1. The earliest vault transition function (V ′a) dominates every non-ear-
liest vault transition function (V ′a,t). In notation, for arbitrary actions a ∈Actions and
requested start-times t ∈Q:

for all V ∈Vaults,V ′a(V) � V ′a,t(V). (B.4)

Proof. Let vault X = V ′a(V) and vault Y = V ′a,t(V) denote the vaults resulting
from respectively dispatching a earliest and at some other time t. Demonstrat-
ing dominance and vault-subtype equality may be pursued for each fluent sepa-
rately: let fluent f ∈Fluents be arbitrary. Denote the lock on f resulting from ap-
plying the action earliest by `′ =

(
Acquired′,Released′,Readable′

)
= X f . Like-

wise let ` = (Acquired,Released,Readable) = Y f . Then it suffices to show, with

1The third condition, vault-subtype, is just to streamline the proofs. Conceptually only the first
two conditions should matter.
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Read-Time′ = Read-Time(`′), Read-Time = Read-Time(`), and so forth:

Read-Time′ ≤ Read-Time, (a)
Write-Time′ ≤Write-Time, and (b)

Readable′ = Readable. (c)

(Claim) The start-times and release times of `′ are monotonically sooner than
those of `: (i) Acquired′ ≤ Acquired, and (ii) Released′ ≤ Released.

Read-time dominance, i.e., (a), follows from (c), (i), and (ii) by the definition of
read-times, namely: Read-Time = ifReadable then Acquired else Released. Write-
time dominance, i.e., (b), follows from just (ii), since write-time is just a synonym
of release time. Then it suffices to show (c), (i), and (ii).

Conduct a case-analysis over the manner in which the action effects the lock on
fluent f . The arguments are all by inspection of the definition of acquired-locks,
recall:

Acquired-Read-Locks = (Read-Time,max(Released,AFT), True)Reads ,

Acquired-Write-Locks = (Write-Time,AFT, False)Writes ,

AFT = AST + dur, and
AST = max(EST, t).

Case f < Depends. Then the fluent is neither read from nor written to, ergo,
its lock is uneffected. So `′ = ` = V f holds trivially. Then (c), (i), and (ii) are
confirmed for uneffected fluents.

Case f ∈ Depends. Confirm (c), (i), and (ii) in turn.
For (c): By the definition of Conservative Temporal Planning, whether actions

write to, or only read from, any given fluent is fixed. So Readable′ = Readable
holds trivially, confirming (c).

For (i): By the definition of acquired-locks, locks are always acquired as soon as
possible, i.e., independently of actual start-time. Then, because also (c) Readable′ =
Readable holds, either both lock acquisition times are the read-time of the pre-
existing lock, Read-Time(V f ), or both are the write-time of the pre-existing lock,
Write-Time(V f ). Either way they are equal. Therefore Acquired′ = Acquired holds,
confirming (i).

Then it remains only to confirm (ii). Consider separately the (exhaustive and
disjoint) sub-cases of write-locks and read-locks: f ∈ Writes and f ∈ Reads =
Depends \Writes.

Case f ∈ Writes. From the definition of acquired write-locks: The competing
write-locks, `′ and `, are held until respectively the earliest finish-time and the
actual finish-time with respect to t: Released′ = EFT and Released = AFT. These
really do obey the constraint EFT ≤ AFT, as the action’s duration is a constant,

413



and both are just offset from the start-times by said duration: EFT = EST + dur ≤
AST + dur = AFT by EST ≤ AST. So (ii) is confirmed for fluents written to.

Case f ∈ Reads. From the definition of acquired read-locks: The release time
of a read-lock on f is the greater of the pre-existing release time Released(V f )
and the actual finish-time of the action. So Released′ = max(Released(V f ),EFT)
and Released = max(Released(V f ),AFT). Since EFT ≤ AFT (see above), then
either possibility for Released′ is sooner than at least one possibility for Released.
That is, the desired relationship holds: Released′ = max(Released(V f ),EFT) ≤
max(Released(V f ),AFT) = Released. Then (ii) is confirmed for fluents only read
from. �

So we have a relatively intuitive notion of dominance and a suitable place to
apply it for a local benefit. Greed, though, is not always good.
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B.2 LOCALLY BETTER IS GLOBALLY BETTER

For Conservative Temporal Planning, greed is good:

Lemma B.2. If vault X dominates with type a vault Y, then any successor of X
dominates with type the corresponding successor of Y. Precisely, for any dispatch
(a, t), vault X, and vault Y:

if X � Y (B.5)
then V ′a,t(X) � V ′a,t(Y). (B.6)

Moreover type-dominance is preserved through whole dispatch-sequences.

The structure of the proof is nigh identical to the last; it is perhaps straightfor-
ward to abstract over both lemmas.

Proof. Let X′ = V ′a,t(X), Y ′ = V ′a,t(Y) denote the successors of X and Y . So the aim
is to show that X′ � Y ′ follows from X � Y; note that the moreover follows by
induction. It suffices to consider one fluent at a time: let f ∈Fluents be arbitrary. There
are four concerned locks. Let x = X f and x′ = X′f be the locks before and after
along the dominating sequence. Likewise let y = Y f and y′ = Y ′f be with respect to
the dominated sequence. Then the task is to demonstrate, with respect to the new
locks, the desired properties:

Read-Time(x′) ≤ Read-Time(y′), (a′)
Write-Time(x′) ≤Write-Time(y′), and (b′)

Readable(x′) = Readable(y′). (c′)

With respect to the old locks we are given those properties by hypothesis:

Read-Time(x) ≤ Read-Time(y), (a)
Write-Time(x) ≤Write-Time(y), and (b)

Readable(x) = Readable(y) (which is unnecessary). (c)

Argue by a case analysis over the manner in which the action effects the fluent f .
Case f < Depends. There is nothing to show: the locks simply persist (x = x′

and y = y′). I.e., (a′), (b′), and (c′) follow immediately from (a), (b), and (c).
Case f ∈ Depends. (Claim) It suffices to show (i) Acquired(x′) ≤ Acquired(y′),

(ii) Released(x′) ≤ Released(y′), and (c′) all hold. Write-times are just release
times: (b′) follows from (ii). Read-times are either acquisition times or release
times depending on the lock-types, which are equal by (c′). So (a′) follows from
(i) in the case that f becomes read-locked, and from (ii) in the case that f becomes
write-locked. Then the claim is shown—it remains to confirm (i), (ii) and (c′). First
establish (c′) and (i), completing the trivial cases. Finally argue for (ii).
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For (c′), i.e., lock-type equality: Fluents read by an action are read-locked, and
fluents written by an action are write-locked, independently of their former status.
So Readable(x′) = Readable(y′) holds trivially as both are equal to f ∈ Reads.

For (i), i.e., acquisition time dominance: The aquisition-times select the former
read-times or write-times, as appropriate for the new lock-types, which are equal by
(c′). So in the case of reading (i) follows from (a): Acquired(x′) = Read-Time(x)
and Acquired(y′) = Read-Time(y). Likewise in the case of writing (i) follows from
(b): Acquired(x′) =Write-Time(x) and Acquired(y′) =Write-Time(y).

Only release time dominance (ii) remains. Here the start-times and finish-times
of the action dispatch actually matter. First, by the dominance of X over Y , the
earliest start-time in X is monotonically sooner than in Y: EST(X) ≤ EST(Y). As
actual start-times are just the maximum of earliest and requested start-times then
also the actual start-time in X is no later than in Y: AST(X) ≤ AST(Y). Then since
actual finish-times are just actual start-times plus the action duration, which is fixed,
again X has the advantage:

AFT(X) ≤AFT(Y). (f)

Then finish by considering separately whether the fluent becomes write-locked or
read-locked.

Case f ∈ Writes. The release times are the actual finish-times: Released(x′) =
AFT(X) and Released(y′) = AFT(Y). So (ii) follows by (f).

Case f ∈ Reads. The release times are the maximizations over the former re-
lease times and the actual finish-times: Released(x′) = max(Released(x),AFT(X))
and Released(y′) = max(Released(y),AFT(Y)). Then (ii) is confirmed, as there is
always a larger possibility on the right, respectively by (b) and (f):

max(Released(x),AFT(X)) ≤ max(Released(y),AFT(Y)). �

The current status is as follows. We have defined “Better” and “Faster”, shown
that “Faster” gives “Locally Better”, and shown that “Locally Better” is also “Glob-
ally Better”. So it remains to define “Best”, define “Fastest”, and show that the two
coincide.
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B.3 FASTEST IS BEST

We distinguish two particular left-shifted schedules: actual and universal. The re-
quested and actual start-times in an actual schedule coincide. The actual and earli-
est start-times in a left-shifted schedule coincide. So the actual left-shifted sched-
ule requests (and receives) the precise values of its earliest start-times.

Definition B.2 (Left-Shifted). Let Left-Shift(X,V0) B (a, t)[n] denote, with respect
to vault V0, the actual left-shifted schedule action-sequence equivalent to schedule
X = (a, ·)[n] given by setting every requested start-time to the earliest start-time.
Precisely, set ti for each i ∈[n] as:

ti B ESTai(Vi−1), and (B.7)
Vi B V ′ai

(Vi−1). (B.8)

Note that the vault-sequence in the definition is identical to the result of attempt-
ing to execute the schedule. (It would be poor form though to refer to executions of
the schedule during its own definition.) Style aside, with respect to just the vault V0:
the actual start-times, earliest start-times, and requested start-times are all clearly
identical. Which is fine for the statement of the theorem, but the dependency on V0

is inconvenient for its proof.
The universal left-shifted schedule instead asks for earliest start-times ‘by

name’. For notation just use the beginning-of-time t−∞ as a sentinel value to de-
note a request for earliest start-time. Note that any action scheduled for t−∞ < t0,
or any other such ‘negative’ value, automatically waits until its earliest start-time:
V ′a,t−∞ = V ′a. So the universally left-shifted schedule X† B (ai, t−∞)i∈[n], action-se-
quence equivalent to schedule X = (a, ·)[n], is given by just setting every request to
the beginning-of-time. Then finally we are ready:

Theorem B.3 (Left-Shifting is Complete). Left-shifted schedules dominate their
action-sequence equivalence classes.

Proof. Suppose X = (a, t)[n] is a solution; the task is to prove that its action-se-
quence equivalent universally left-shifted schedule X† is a solution as well. (As,
by Proposition 3.6, the executions of X† and Left-Shift(X,VaultInitial) are identi-
cal, hence the two are result-equivalent and thus also solution-equivalent.) The
argument proper is an induction through increasingly long suffixes of the given so-
lution, demonstrating at each step that the current suffix is dominated by its left-
shifted version.

First we extend dominance to schedule fragments (i.e., the suffixes), so that we
may apply the lemmas more directly. For any subsequence Y = (a, t)[i, j] of some
larger schedule let V ′Y B V ′a j,t j

◦ V ′a j−1,t j−1
◦ · · · ◦ V ′ai,ti denote the composition of

its vault transition functions. In the event that these are all equal to earliest vault
transition functions, then omit the irrelevant requested start-times; i.e., for Y† write:
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V ′Y† B V ′a j
◦V ′a j−1

◦ · · · ◦V ′ai
. As with single dispatches, say Y dominates Z when, for

all possible input vaults, the output from V ′Y dominates with type the output from
V ′Z. For notation, define Y � Z when:

for all V ∈Vaults,V ′Y(V) � V ′Z(V). (B.9)

Then argue by induction on a suffix Y = X�[k,n] of X. That is, assume we know
Y† dominates Y and conclude that Z† dominates Z = X�[k−1,n]. For notation, assume:

for all V ∈Vaults,V ′Y†(V) � V ′Y(V). (IH:k)

From which, conclude:

for all V ∈Vaults,V ′Z†(V) � V ′Z(V). (IH:k − 1)

Which suffices, as then, by induction, (IH:1) would hold, in particular:

V ′X†(VaultInitial) � V ′X(VaultInitial). (B.10)

That such is strong enough follows by Proposition 3.5 and Proposition 3.7; goal
satisfaction is monotone in decreasing read-times, which dominance is stronger
than. Therefore X† is a solution whenever X is.

Hence it remains only to in fact show the induction. By Lemma B.1 we know—
which for k = n addresses the base case (IH:n)—that starting the last action before
the current suffix as soon as possible locally dominates:

for all V ∈Vaults,V ′ak−1
(V) � V ′ak−1, tk−1

(V).

By Lemma B.2 we have that this dominance is maintained throughout the suffix:

for all V ∈Vaults,V ′Y†(V
′
ak−1

(V)) � V ′Y†(V
′
ak−1, tk−1

(V)).

This can be simplified to the following statement. The left-shifting of the longer
suffix dominates left-shifting all but its first action:

for all V ∈Vaults,V ′Z†(V) � V ′Y†(V
′
ak−1, tk−1

(V)). (IH:k − 1:i)
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To finish, first reword the induction hypothesis: Left-shifting all but the first ac-
tion of the longer suffix dominates no rescheduling whatsoever. Then conclude by
transitivity that left-shifting all of the longer suffix dominates. In notation, first
substitute V ′ak−1, tk−1

(V) for V into (IH:k):

for all V ∈Vaults,V ′Y†(V
′
ak−1, tk−1

(V)) � V ′Y(V ′ak−1, tk−1
(V)).

Then simplify to Z as intended:

for all V ∈Vaults,V ′Y†(V
′
ak−1, tk−1

(V)) � V ′Z(V). (IH:k − 1:ii)

So finally, (IH:k − 1) follows from (IH:k − 1:i) and (IH:k − 1:ii) by transitivity:

for all V ∈Vaults,V ′Z†(V) � V ′Z(V). �
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APPENDIX C

THE DEFERRED CASE ANALYSIS FOR COMPILING TO THE MINIMAL
TEMPORALLY EXPRESSIVE SUBLANGUAGES OF INTERLEAVED

TEMPORAL PLANNING
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Here we complete the proof of Lemma 4.17, which is missing the technical details
of its case analysis. The general idea of the overall proof is to:

• split up any given action (α) into a chain-decomposition (β),

• compile each piece into its own action (β̂ for all of them),

• setup an envelope to contain them all (do), and

• use two matched pairs of virtual actions to help control the relationship be-
tween the envelope and its contents (setup/reset and before/after).

The last, which is all that remains to be proven, is needed to circumvent the extreme
syntactic limitations of the minimal cases.

Recall the regular expression inspired notation. The notion of the regular lan-
guage denoted by a regular expression is entirely standard. The notational liberties
taken (which documentation is previously omitted, incidentally) are documented in
the following rundown of technical details.

• The tokens (i.e., the alphabet symbols) are the names of the parts of com-
pound actions.

• Parentheses and commas are for sequencing tokens.

• “+” is for one-or-more.

• “∗” is for zero-or-more.

• Alternation/disjunction is unused (presumably write “|”).

• Compounds stand for the sequence through their parts, for example, with α a
compound: the regular expression “α” rewrites to “(all-α, bgn-α, fin-α)”.

• We write such regular expressions as assertions capturing much of our state
of knowledge regarding the properties of the compilations. Elaborating, the
meaning of asserting “(regular expression) foo (holds)”—which is always
written just “foo”, sans quotes, in the following—is:

– all solutions to the compiled problems (viewed as token-sequences),

– up to operationalizing (e.g., by completness-preserving pruning) any
context-specific equivalence/dominance reductions,

– projected onto the alphabet of foo (i.e., throw away tokens not in foo),

– lie within the regular language denoted by foo.
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The intent here is to concisely state certain meta-properties about the reasoning ca-
pabilities had within the general framework of merging Domain Transition Graphs
together (but stated from the perspective of the edge labels rather than the vertex
labels, which latter vocabulary is the norm for discussion of Domain Transition
Graphs) [106]. Elaborating, the reason to demonstrate correctness of the compi-
lations through that particular set of techniques is to strongly substantiate forcing.
For example, the twist of considering the alphabet underlying foo to be just the to-
kens appearing within foo points to (presumably rather nonobviously) the (hard in
practice) problem of fluent merging. In other words, I leave those ambiguities as
pointers towards promising future work.

Recall also the strategy for completing the case analysis (Page 288), repro-
duced momentarily, which consists of demonstrating four key properties—labeled
throughout the following by (1) through (4)—for each case. Finally recall the over-
arching per-action compilation strategy and attendant machinery developed: the
envelope do, the pair setup/reset wrapping the compiled view of the action α, said
compiled view β̂ of the action α, all of which thus far comprise the envelope and
its intended contents, and finally the pair before/after (which are supposed to oc-
cur outside the envelope) serving to separate multiple simulations of the action α.1

Then, to complete support of Theorem 4.12, it suffices to prove:

Lemma C.1 (The Case Analysis of Lemma 4.17). The four guarantees needed by
Lemma 4.17 per minimal temporally expressive sublanguage hold. Namely:

1. (before+, setup+, reset+, after+)∗.

2. (before+, do+, after+)∗.

3. Every envelope starts between the last beforeα and first setupα.

That is, with (1) and (2): (before+, bgn-do+, setup+, reset+, after+)∗.

4. Every envelope ends between the last resetα and first afterα.

That is, with (1) and (2): (before+, setup+, reset+, fin-do+, after+)∗.

1Achieving repeatability of the compilation of each action is perhaps the greatest aspect forc-
ing technical complexity well beyond conceptually necessary. (The severely limited syntax of the
minimal cases is also a strong contender.) The significance follows from the observation that many
benchmarks can be strongly attacked in practice from the direction of assuming that actions need
to be repeated at most only a handful of times [202]. (An easy counterexample is the Towers of
Hanoi puzzle.) From that assumption we can just make copies in order to implement a guarantee
that every action need occur at most once. Here that would permit notably simplifying the book-
keeping needed. In practice the (intimately related) observation would be that automating the (land-
mark-style) inference is notably simpler when we can ignore the distinction between the/first/last/all
instance(s) of an action.
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Proof. Every case shares the following book-keeping.

• For reference, action do has duration durα,0 + 4µ̂.

• For reference, actions before and after have unit-duration (written µ̂ to distin-
guish from the original unit of time).

• Create a boolean fluent before-possible, initially and finally true.

• Create a boolean fluent setup-possible, initially and finally false.

• Create a boolean fluent reset-possible, initially and finally false.

• Create a boolean fluent after-possible, initially and finally true.

• Add before-possible B True to after.

• Add before-possible = True to before.

• Add before-possible B False to setup.

• Add setup-possible B True to before.

• Add setup-possible = True to setup.

• Add setup-possible B False to reset.

• Add reset-possible B True to setup.

• Add reset-possible = True to reset.

• Add reset-possible B False to after.

• Add after-possible B True to reset.

• Add after-possible = True to after.

• Add after-possible B False to before.

The machinery is just an instance of token-passing (with descriptive names), in
support of (1). That is, by the same kind of analysis by which we already know:

(setup+, β̂i,1+, β̂i,2+, . . . , reset+)∗,

likewise infer, from the book-keeping just above, satisfaction of (1):

(before+, setup+, reset+, after+)∗, (C.1)
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and so moreover, combining both, infer:

(before+, setup+, β̂i,1+, . . . , reset+, after+) ∗ . (C.2)

Then it remains to show (2–4) for each case. We could easily implement (2), which
is roughly that before/after wrap each instance of the envelope, in case-independent
fashion (i.e., by applying more token-passing). However, implementing (3) and (4)
—for a rough statement, these mean that the envelope is to wrap setup/reset—
anyways does most/all of the work of (2) as a side-effect.

Then consider each of the following four cases in turn (which are exhaustive by
Lemma 4.14 and Theorem 4.1). In the first case we shall proceed most carefully
and thoroughly. All subsequent cases will typically, for example, elide qualifying
“repetition” by “internal”, omit “instance of”, and so forth. Even in the first case,
that “first/last/all/only/the” are meant per repetition of the action α is not always
spelled out in so many words. The notation, in contrast, is reasonably accurate and
precise throughout (albeit, subscript-litter such as doα everywhere is still omitted).

Case: L(eff; pre; pre). For (3) and (4), we ensure the envelope can only start
and end in the right places using the conditions we are allowed in this case to place
at its start and end. We ensure it must occur per instance of before, i.e., for (2),
by making it responsible for achieving a new condition for carrying out after. The
case-specific book-keeping:

• Create a boolean fluent do-occurred, initially and finally true.

• Add do-occurred B True to the all-part of do.

• Add do-occurred = True to after.

• Add do-occurred B False to before.

• Add before-possible = True to the start-part of do.

• Add setup-possible = True to the start-part of do.

• Add reset-possible = True to the end-part of do.

• Add after-possible = True to the end-part of do.

We already have, from before the case analysis, that before, setup, β̂i, reset,
and after all occur (hypothetically with undesirable repeats), in that order, cycli-
cally throughout every solution, for every i. Concisely, equation (C.2) describes all
solutions:

(before+, setup+, β̂i,1+, . . . , reset+, after+) ∗ .
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By the mechanics of do-occurred, combined with our prior knowledge that
before and after are governed by a loopy cycle throughout solutions, we have that
(2) holds, i.e.:

(before+, do+, after+)∗

describes all solutions.
Note that setup-possible is false from the first instance of setup until the first

instance of after. That it be true is a condition for starting the envelope. So every
internal repetition of the envelope starts between the first instance of before and the
first instance of setup. Because of the mutual exclusion concerning do-occurred
between the all-part of the envelope and before, we furthermore know that every
internal instance of the envelope begins after the last internal repetition of before.
Therefore we know (3). Then we may write, regarding (by Proposition 5.18) the all
-part and start-part of the envelope as one primitive:

(before+, bgn-do+, setup+, β̂i,1+, . . . , reset+, after+) ∗ .

Note that after-possible is false from the first instance of before until the first
instance of reset. That it be true is a condition for ending the envelope. So every
internal repetition of the envelope ends after the first instance of reset. Recall that
after deletes reset-possible, which is a condition for ending the envelope. So every
internal repetition of the envelope ends before the first instance of after. Then we
have most of (4): we are missing that the envelope always ends after the last internal
repetition of reset. We could write that out as a regular expression, but let us just
eliminate (useless) repetitions of reset directly (next).

In any state subsequent to executing a reset and preceding its corresponding
after, it (i.e., reset) is a no-op. That is because (a) its corresponding after is a
landmark for everything mutex with reset besides itself and ending the envelope,
and (b) ending the envelope changes nothing.2 Thus reset is effectively unique up

2The first to follow among that which changes what reset changes, besides itself, is just after.
Hence internal repetitions of reset alter no fluent by inspection. Ergo such produce strictly dom-
inated situations with respect to locks. By temporal reasoning all of its parts are contiguous in
canonical dispatch-sequences, i.e., it may be treated as a primitive despite technically consisting of
multiple precisely temporally coinciding parts. In short, such internal repetitions are effectively no-
ops with respect to promises. Therefore pruning them incurs no loss (i.e., is completeness-preserv-
ing).
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to independent simulations of the original action α:3

(before+, setup+, β̂i,1+, . . . , reset, after+) ∗ .

Hence (4), i.e., furthermore infer and write (which is stronger than (4)):

(before+, setup+, β̂i,1+, . . . , reset, fin-do+, after+) ∗ .

From this point forward (up till the next case) we demonstrate, for reference, the
significance of (1–4) to the over-arching argument.

(Uniqueness in Detail: Stepping up to Lemma 4.17). So we desire here to show
correctness of the compilation in this case, in gory detail, for sake of example with
respect to the remaining cases. (Which is technically unnecessary, as the common
argument already given suffices.) Then forget, for example and for the moment,
that we know (uniqueness) of reset already; assume only (1–4), (existence), and
(ordering). So, from such we need to conclude (uniqueness) and (duration). For
the contents β̂ the former is a side-effect of the latter. For (uniqueness) of the rest
(the book-keeping actions) we employ arguably ad hoc arguments. For (duration)
of the book-keeping, we rely on finesse applied long ago (namely, we ensured that
repeats of real actions must occur far enough apart in time). Incidentally, (3) and (4)
directly subsume (1) and (2); the properties (1) and (2) are useful as steps towards
establishing (3) and (4).

Note that the first instance of reset always follows the first instance of setup. It
follows that every internal repetition of the envelope begins before (by (3)) and ends
after (by (4)) the first instance of setup. So all internal repetitions are concurrent (as
we may freely assume time-sortedness), meaning: there are no internal repetitions
of the envelope. Then write:

(before+, bgn-do, before∗, setup+, β̂i,1+, . . . , reset+, fin-do, reset∗, after+) ∗ .

The only primitives mutex with a before are: itself, the start-part (and all-part)
of the envelope, setup, and after. Consider internal repetitions of a before in the
two intervals on either side of the start-part of the envelope (which is indeed unique
per simulation of α as just shown).

3We will repeat this argument for any other purely virtual pieces of the compilation (“Local
repetitions of primitives engaged in only token-passing are pointless and hence prunable without
loss.”), namely: the parts of the envelope, the four wrapping actions, and the struts inside of β̂
can ‘freely’ be assumed to occur ‘uniquely’. More accurately: non-dominated solutions provably
exclude localized repetition.
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From the landmarks: only itself could possibly occur in the interval from the
first instance of before until the envelope starts. That is deordered-equivalent to an
immediate repetition: hence a no-op, thus dominated, ergo prunable.

Then consider after the start of the envelope: so concurrent with the all-part. All
instances of before are mutex with the all-part of the envelope (because they write
to do-occurred). So no such instance occurs—in time—until after the all-part ends.
As we may freely assume that solutions are time-sorted, no internal repetition of a
before may occur—in dispatch-sequence—until after the end-part of the envelope.
We already know the end-part is forced between a reset and an after, where we also
know that instances of before cannot occur.

So, either way, effectively (i.e., after pruning), only one instance of a before
occurs (per simulation of α). Then say just “the before”. For notation, write:

(before, bgn-do, setup+, β̂i,1+, . . . , reset+, fin-do, reset∗, after+) ∗ .

By similar reasoning, the action after is effectively unique per simulation of α:

(before, bgn-do, setup+, β̂i,1+, . . . , reset+, fin-do, reset∗, after) ∗ .

We already demonstrated that reset occurs effectively uniquely, but for con-
trast with the argument just given concerning internal repetitions of before, let us
demonstrate (uniqueness) of reset again. Our second argument differs by start-
ing from (uniqueness) of the envelope (which was demonstrated independently of
(uniqueness) of reset, i.e., the following is noncircular). The only primitives mutex
with a reset are: itself, β̂i,ki , the end-part of the envelope, setup, and after. Consider
hypothetical repetitions on either side of the end-part of the envelope; in contrast
with the argument concerning internal repetitions of before is the justification for
the second case.

From the landmarks: only itself could possibly occur in the interval from the
first instance of reset until the envelope ends. That is deordered-equivalent to an
immediate repetition: hence a no-op, thus dominated, ergo prunable.

Then consider the interval after the envelope ends until the after occurs (both
of which are unique by above). (Unlike above, a copy of reset could occur.) The
only primitive that could occur in that interval, mutex with a reset, is itself. So the
only primitive that could intervene between copies of a reset is the end-part of the
envelope. The end-part of the envelope alters no fluents that reset writes to. Hence
any copy of a reset in this latter interval is a no-op: thus dominated, ergo prunable.

In either case, reset is effectively unique. So write:

(before, bgn-do, setup+, β̂i,1+, . . . , reset, fin-do, after) ∗ .
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We could furthermore demonstrate that all internal repetitions of a setup are sin-
gleton by virtue of pruning no-ops. Such argument only works for virtual actions:
actions that touch only book-keeping. (That is because we may identify all of their
causal interactions and so carry out the analysis as above.) For (uniqueness) of the
real parts of α we need to invoke temporal reasoning, which in particular grants
(uniqueness) to all of the contents (real or virtual).

Specifically, by temporal reasoning, given the preceding: the contents of the
envelope are unique per simulation of α. That is because repetitions increase the
minimum duration between the start-part and end-part of the envelope beyond its
maximum value (the duration of α plus two units for setup and reset). So write, for
each i:

(before, bgn-do, setup, β̂i,1, . . . , reset, fin-do, after) ∗ .

In other words, we have (uniqueness) for the whole compilation of α.
Note that, long ago, we ensured that excess book-keeping lying outside the

duration of α is nonproblematic (by ensuring that copies of αmust occur sufficiently
far enough apart in time). So (duration)—that everything starts when it is supposed
to—is true of the excess book-keeping by triviality. Meaning: there is no specific
time at which before and after are forced/supposed to take place. Naturally it is
important to ensure that there exists at least one legal time to dispatch them (hence
this note). In fact there exists a plethora of such legal times; regarding the slightly
undesirable aspect of which, consider the following points.

A sufficiently clever—and little cleverness is called for—implementation of
slackless-equivalence will make up a canonical time to dispatch the two. A hu-
man, for example, would likely right-shift before and left-shift after. That yields
the tightest packing of the compilation of the original action α, taking up a total of
6µ̂ excess duration (i.e., before and after the start-time and finish-time of α itself).
An automated planner might very well prefer to left-shift both or to right-shift both
(or just think in purely lifted terms, and leave the variables largely unconstrained).
We may also observe that accepting these degrees of freedom is necessary suppos-
ing we need the excess book-keeping at all. Specifically, attempting to compile in
a mechanism for forcing the start-times of before and after falls into a recursion
trap: they exist precisely to allow forcing of the start-times of setup and reset. So
conversely, if one can circumvent the trap, then one can presumably circumvent the
excess book-keeping altogether (which is certainly possible in non-minimal lan-
guages).

Anyways, returning to the main line: recall that (uniqueness) of the contents was
just a side-effect of all the parts being forced to occur at the right times. In particular
also (duration) holds of the contents, and thus of the whole compilation. Then we
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have all of (existence), (ordering), (duration), and (uniqueness): correctness of the
compilation is shown, in great detail, for this particular case of Lemma 4.17.

So for the remaining three cases we shall walk through only the bare bones.
Case: L(pre; eff; eff). For (2), we ensure, by the all-part condition on

between-before-and-after, that the envelope never occurs in any other context than
with a surrounding pair of before/after. The general storyline is to use (3) and (4)
to conclude (uniqueness) of the envelope; in fact, in this and every following case,
we establish and use (uniqueness) of the envelope to conclude the otherwise chal-
lenging bits of (3) and (4). (The common argument will then reprove the property,
which is unnecessary rather than circular.) Specifically, by using tracking effects at
the envelope’s endpoints, we ensure that (a) one instance occurs, and (b’) the first
occurs where desired. The rest of (3) and (4), that (b) all instances occur where
desired, then follows trivially from at-most-onceness. Elaborating, we directly es-
tablish (uniqueness) of the envelope (at-most-onceness subject to completeness-
preserving pruning) by way of the destructive effect on between-before-and-end of
its end-part. The book-keeping:

• Create a boolean fluent do-start-occurred, initially and finally true.

• Create a boolean fluent do-end-occurred, initially and finally true.

• Create a boolean fluent between-before-and-after, initially and finally false.

• Create a boolean fluent between-before-and-end, initially and finally false.

• Add do-start-occurred B True to the start-part of do.

• Add do-start-occurred = True to setup.

• Add do-start-occurred B False to before.

• Add do-end-occurred B True to the end-part of do.

• Add do-end-occurred = True to after.

• Add do-end-occurred B False to reset.

• Add between-before-and-after = True to the all-part of do.

• Add between-before-and-after B True to before.

• Add between-before-and-after B False to after.

• Add between-before-and-end = True to setup, every β̂, and most importantly
to reset.
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• Add between-before-and-end B True to before.

• Add between-before-and-end B False to the end-part of do.

From before the case analysis:

(before+, setup+, β̂i,1+, . . . , reset+, after+) ∗ .

Particularly, when any of those occur, then they all occur (in that order).
If an envelope occurs, then so does a prior instance of before by the dynamics

of between-before-and-after (i.e., given by before and needed by the all-part of the
envelope). The corresponding after must follow the envelope in question, again by
the dynamics of between-before-and-after (i.e., taken away by after and needed by
the all-part of the envelope).

Conversely, whenever an after occurs, then an envelope precedes it by the dy-
namics of do-end-occurred (i.e., given by the end-part of the envelope and needed
by after).

Hence solutions conform to (2):

(before+, do+, after+) ∗ .

So (3) and (4) remain.
Consider (further) the tracking effects at the endpoints of the envelope, i.e.,

consider the dynamics of do-start-occurred and do-end-occurred. Specifically, we
may separately infer first that an envelope must start between before and setup, and
secondly that an envelope must end between reset and after. As noted, such are
most of (3) and (4) but for forcing all instances of the envelope to occur where
desired. In fact we cannot force that aspect of (3) and (4) except by first ensuring
the envelope occurs, effectively, uniquely.

We can be sure that the first instance of the envelope to start does so before
setup, simply because there is no earlier than earliest. We cannot be so easily sure
that the first instance of the envelope to end does so where we desire it to. To
see the desired guarantee consider the dynamics of between-before-and-end. As
the first envelope to end takes it away (which only before gives/restores), and all
the intended contents require it, then specifically we have that the first envelope to
end does so following the last reset. Then all later instances of the envelope start
after the last reset—recall that actions are self-mutex—and so in particular all later
envelopes are empty. Putting it all together, for notation:

(before+, bgn-do, setup+, β̂i,1+, . . . , reset+, fin-do, do+, after+) ∗ .
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Note that all of the repetitions of the envelope are no-ops, hence prunable. So
simplify:

(before+, bgn-do, setup+, β̂i,1+, . . . , reset+, fin-do, after+) ∗ .

Such is stronger than (2–4), thus this case is complete.
Case: L(∅; pre; eff). For the ordering constraints of (3), we re-use a mech-

anism from the first case: we constrain where any instance of the envelope could
possibly begin by use of conditions in its start-part (i.e., on before-possible and
setup-possible). For at-least-onceness of all of (2–4) we reuse the mechanism of a
tracking effect in the end-part of the envelope. Said dynamics of do-end-occurred
considered more generally also give most of the ordering constraints of (4). As
in the second case, we finish off (4) by establishing at-most-onceness through the
mechanism of between-before-and-end. The machinery:

• Create a boolean fluent do-end-occurred, initially and finally true.

• Add do-end-occurred B True to the end-part of do.

• Add do-end-occurred = True to after.

• Add do-end-occurred B False to reset.

• Add before-possible = True to the start-part of do.

• Add setup-possible = True to the start-part of do.

• Create a boolean fluent between-before-and-end, initially and finally false.

• Add between-before-and-end = True to setup, every β̂, and most importantly
to reset.

• Add between-before-and-end B True to before.

• Add between-before-and-end B False to the end-part of do.

From before the case analysis:

(before+, setup+, β̂i,1+, . . . , reset+, after+) ∗ .

Particularly, when any of those occur, then they all occur (in that order).
By the condition do-end-occurred = True of after we know the envelope occurs

at least once between corresponding instances of before and after. In the other
direction, whenever the envelope occurs: its start-part forces a previous instance of
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before by the condition on setup-possible (which is given only by before). The rest
of (2) follows (because a before forces a corresponding after), so write:

(before+, do+, after+) ∗ .

Then (3) and (4) remain.
Note:

• The condition setup-possible = True holds only between the firsts of before
and reset.

• The condition before-possible = True holds only between the firsts of the
previous iteration’s after (or the initial state) and setup.

So every start-part of an envelope occurs between the firsts of before and setup.
As similarly argued above, instances of before following the start-part of the enve-
lope and preceding setup are no-ops (as are immediate repetitions), hence prunable.
Then in particular we have, by pruning, that bgn-do occurs between the last before
and first setup. In other words we have (3), so write:

(before+, bgn-do+, setup+, β̂i,1+, . . . , reset+, after+) ∗ .

For (4), consider do-end-occurred in greater depth. Specifically, note that at
least one such end-part occurs between reset and after. We do not yet, but will very
shortly, know that such holds of the first (and all) envelope(s) to end.

Recall the mechanism of between-before-and-end: all contents fall within the
first envelope, because the first envelope takes it away (which only before gives
back), and all contents need it. In this case there cannot be later instances of the
envelope as we already have all of (3), in particular, the start-part cannot follow a
reset. We could also argue that later instances of the envelope, by virtue of contain-
ing nothing, would be no-ops and hence prunable.

Regardless, combining both points: the only (and so trivially first and all) in-
stance(s) of the envelope end where desired, establishing (a result stronger than) all
of (4). Specifically write:

(before+, setup+, β̂i,1+, . . . , reset+, fin-do, after+) ∗ .

Moreover, combining with (3), write:

(before+, bgn-do, setup+, β̂i,1+, . . . , reset+, fin-do, after+) ∗ .

Such is enough to complete the case.
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Case: L(∅; eff; pre). Conceptually the case ought to be simply converse
to the preceding. However, the mechanisms actually employed differ somewhat;4

specifically, while playing the same role (ensuring at-most-onceness), the dynam-
ics of setup-occurred and between-before-and-end do not seem to be precisely con-
verse. Said mechanisms:

• Create a boolean fluent do-start-occurred, initially and finally true.

• Add do-start-occurred B False to before.

• Add do-start-occurred B True to the start-part of do.

• Add do-start-occurred = True to setup.

• Create a boolean fluent setup-occurred, initially and finally true.

• Add setup-occurred B False to the start-part of do.

• Add setup-occurred B True to setup.

• Add setup-occurred = True to the end-part of do.

• Add setup-occurred = True to after as well.

• Add reset-possible = True to the end-part of do.

• Add after-possible = True to the end-part of do.

Excluding the envelope, from before the case analysis, if anything, then every-
thing: (before+, setup+, β̂i,1+, . . . , reset+, after+)∗. Specifically, if anything else
besides the envelope occurs, then a setup occurs. From which, infer that also
the envelope must start (hence occur as a whole); such is by the dynamics of
do-start-occurred (i.e., bgn-do gives, setup needs, and before takes).

Conversely, if the envelope occurs, and so ends, then (because reset-possible
and after-possible can only be simultaneously true between the firsts of reset and
after) note that everything else occurs as well (in particular before and after are
forced).

Hence (2):

(before+, do+, after+) ∗ .

So (3) and (4) remain.

4Perhaps the implied proof-improvement is impossible? After all, causality is not a wholly
symmetric notion.
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Note that by digging deeper into the preceding we can already extract most of
(3) and (4). As in all but the first case, it suffices to ensure (uniqueness) of the
envelope to obtain the rest of (3) and (4).

Elaborating, begin by observing that every envelope to end does so in a fairly
specific spot in the dispatch-sequence: between the firsts of reset and after. Specif-
ically the first envelope to end does so there; so any hypothetical repeat of the
envelope follows. Then note that from the dynamics of setup-occurred—which the
envelope sets to false—any hypothetical repeat of the envelope is a contradiction of
solutionness. (Doing so is executable, but, leads to a dead-end.) More specifically
that is because setup is never executable (with respect to the reachable situations of
course) between the firsts of reset and after; the latter of which requires that setup
take place.

So the envelope occurs at most once per repetition of the action α, from which
(3) and (4) in particular easily follow. Slower, the following stronger statement is
easily had from the notes thus far made concerning the case:

(before+, bgn-do, setup+, β̂i,1+, . . . , reset+, fin-do, after+) ∗ .

In contrast, (3) and (4) together only guarantee the nominally weaker assertion
(which nominally permits repeats of the envelope):

(before+, bgn-do+, setup+, β̂i,1+, . . . , reset+, fin-do+, after+) ∗ .

Regardless (i.e., starting from either assertion), the common argument for estab-
lishing correctness of the compilation proceeds readily. (For reference, correctness
is written as, for each i: (before, bgn-do, setup, β̂i,1, . . . , reset, fin-do, after)∗.) In
any event, correctness follows, which suffices for the case.

So we are done, as all cases are complete. �
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