Compitational Intelligence, Volume 10, Number 2, 1954

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND
REFITTING DURING PLAN REUSE

SUBBARAO KAMBHAMPATI
Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287, US.A.

The ability to reuse existing plans to solve new planning problems can enable a domain-independent planner to
improve its average case efficiency by exploiting the problem distribution and avoiding repetition of planning effort.
The pay-off from plan reuse, however, crucially depends on finding effective solutions to two important underlying
control problems: (i) controlling the retrieval of an appropriate plan and mapping to be reused in a new situation,
and (ii) controlling the modification (refitting) of the retrieved plan so as to minimize perturbation to the applicable
parts of the plan. This paper is concerned with the development of efficient domain-independent solutions to these
two problems, For the retrieval, it provides a domain independent similarity metric that utilizes the plan causal
dependency structure to estimate the utility of reusing a given plan in a new problem situation. For the refitting, it
presents a minimum-conflict heuristic, again based on the causal dependency structure of the plan, to conservatively
control the modification. The paper also discusses the implementation and evaluation of these strategies within the
PRIAR plan modification framework.

Key words: planning, plan reuse, plan retrieval, plan modification, similarity metrics, adaptation, case-based
planning.

1. INTRODUCTION

Theutility of reusing existing plans to solve new planning problems has been realized early
in planning research, and has more recently received considerable attention in the planning
and learning communities. By exploiting problem distribution and avoiding repetition of
planning effort, reuse promises significant savings in the average case efficiency of planning.
The payoff from plan reuse does, however, crucially depend on both the the ability to retrieve
an appropriate plan to be reused and the ability to efficiently modify the retrieved plan to solve
the new problem. Indiscriminate retrieval strategies can degrade a planner’s performance by
making it spend an inordinate amount of time in the retrieval phase (thereby offsetting any
potential savings from reuse) and/or retrieve an inappropriate reuse candidate. Similarly, once
a candidate plan is selected, the planner should be capable of modifying the retrieved plan
with less computational effort than would be required to solve the new problem from scratch.
To ensure this, the refitting process should be conservative and retain all applicable parts of
the retrieved plan; otherwise modification could degenerate into planning from scratch. Thus,
for reuse to lead to realistic improvements in planning performance, eftective solutions must
be devised to control the retrieval and refitting stages.

For retrieval to be effective, the similarity metrics used should be capable of evaluating
the ease of modifying an existing plan to solve the new problem. This cannot in general be
done by merely measuring surface similarity between the problems. Instead, the retrieval
strategies need to estimate the expected match between the plans for the two problem sit-
uations. Similarly, for refitting to be effective, parts of the retrieved plan that are already
applicable in the current problem situation should be left undisturbed as much as possible.
However, strict protection of all the applicable parts of the old plan is not a desirable solution,
as it may in general.lead to both inefficiency and loss of completeness (cf. Waldinger 1977).
What we need instead are control strategies capable of comparing the relative disturbances
caused by various modifications and selecting the best.

f

OParts of this work have previously been presented at IJCAI-89 and AAAIL-S(.

© 1994 Blackwell Publishers, 238 Main Street, Cambridge, MA 02142, USA, and 108 Cowley Road, Oxford, OX4 1JE, UK.




I'RIEVAL AND

2, AZ 85287, U.S.A.

dependent planner to
on of planning effort.
important underlying
d in & new situation,
tion to the applicable
ent solutions to these
lizes the plan causal
n. For the refitting, it
lan, to conservatively
 strategies within the

laptation, case-based

s been realized early
ion in the planning
iding repetition of
ciency of planning.
1¢e ability to retrieve
rieved plan to solve
r’s performance by
reby offsetting any
ate. Similarly, once
v the retrieved plan
yblemn from scratch.

applicable parts of
from scratch. Thus,
tive solutions must

pable of evaluating
annot in general be
1stead, the retrieval
e two problem sit-
an that are already
s much as possible.
1 desirable solution,
f. Waldinger 1977).
lative disturbances

ad, Oxford, OX4 1JE, UK.

EXPLOITING CAUSAL STRUC'_I‘URE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 213

Retrieval
Contral
Strategy

P F R |Annotation verification
New & ofd plan Int plan
g’;‘gg’]g — HatrlavaLi’" * —'ﬁnlerpremlon I Jitterences | O and Suggest
pping classily appll- s appropriate
fa3 '] pabllity fallures Tefit 1asks
i, &
Shlan N Applicable Parts of the oid plan
Library Rt Task R
----- . L] BSKS
{F R}
PARIAR Refitting
Planner
Reduction of
refit tasks

Anhotated Plan R
for the new problem

¥

FIGURE 1. Schematic overview of PRIAR.

In this paper, we present domain-independent techniques for controlling retrieval and
refitting based on plan causal dependency structures. For mapping and retrieval, we present
a class of efficient domain independent similarity metrics that utilize the causal structure of
a plan to estimate the utility of reusing it in a new problem situation. For refitting control we
develop “minimum-conflict” type heuristic strategies, which exploit the causal structure to
guide the modification so as to cause least amount of disturbance to the applicable parts of
the plan.

Our techniques are developed and implemented in a framework for plan modification
called PRIAR, which allows flexible and conservative modification of plans generated by
a hierarchical nonlinear planner (Kambhampati and Hendler 1992; Kambhampati 1989).
Figure 1 shows the schematic overview of the PRIAR plan modification framework. In this
framework, the causal and teleological structure of generated plans are represented in a
form of explanation of correctness of the plan cafled the “validation structure.” Individual
planning decisions made during the generation of the plan are justified in terms of their
relation to the validation structure. Modification is characterized as a process of detecting
and removing inconsistencies in the validation structure resulting from the externalty imposed
constraints. The cost of the modification process depends upon the number and type of these
inconsistencies. Repair actions utilize the dependency structures to transform a completed
plan with an inconsistent validation structure into a partially reduced plan with a consistent
validation structure. The repair of these inconsistencies involves removing unnecessary parts
of the plan and adding new nonprimitive tasks to the plan to establish missing or failing
validations. The resultant partiaily reduced plan is then sent to the planner for full reduction,
and a completed plan is produced. This last stage is referred to as the “refitting” stage.

Within the PRIAR modification framework, the problem of retrieval and mapping can
be characterized as that of selecting a reuse candidate with the lowest estimated cost of
modification to solve the given problem. Similarly, the refitting control can be characterized
as the problem of guiding the planner conservatively while it refines the partially reduced plan
provided to it by the modification process. In particular, this refinement process should be




214 COMPUTATIONAL INTELLIGENCE

controlled so as to cause the least amount of disturbance to the parts of the previous plan that
are already found to be applicable in the new situation by the annotation verification process.

For the retrieval problem, we provide a partial solution that does not depend on any
prior knowledge of the plan for solving the new problem. It makes an informed estimate of
the cost of modifying a given plan to solve the new problem by analyzing how the internal
dependencies of that plan will be affected in the new problem situation. In particular, we
provide a domain-independent similarity metric based on the plan validation structure to
measure the utility of modifying a given plan to solve the new problem. The key insight
used in these metrics is that the modification cost depends on the number and types of
inconsistencies caused by the new problem specification in the validation structure of the
retrieved plan. These metrics are domain-independent and take the surface specification as
well as the structure of the solution into account. They thus strike a balance between the
purely syntactic feature-based retrieval methods, and the methods which require a comparison
of the solutions of the new and old problems to guide the retrieval (e.g., Carbonell 1983).

For the refitting control problem, we provide minimum-conflicts type heuristic search
control strategies that compare the relative disturbances caused by various refitting choices,
and select the one causing the least disturbance. The strategies use the validation structure of
the plan to measure the disturbance (interactions) caused by each refitting choice. While most
minimum-conflict type heuristics tend to concentrate on minimizing the number of conflicts,
our strategies use the plan validation structure to also weight the conflicts in terms of the
estimated difficulty of repairing them.

The rest of this paper provides a description and evaluation of the retrieval and refit-
ting control strategies. Section 2 contains a review of the previous work that addressed
these problems. Section 3 presents a brief overview of the PRIAR modification framework.
Section 4 develops and analyzes a computational measure of similarity based on plan val-
idation structure to select mappings and retrieval candidates. Section 5 develops and an-
alyzes a validation-structure-based refitting control strategy. Sections 4 and 5 aré largely
self-contained and include discussion and evaluation of the respective techniques. Section 6
briefly discusses our experience in applying these techniques to guide incremental plan main-
tenance in a manufacturing planning domain. Section 7 provides a summary of the paper’s
main contributions.

2. RELATED WORK

In this section, we will briefly review previous research that addressed the issues of
retrieval and refitting during plan reuse and motivated our work.

2.1. Mapping and Retrieval

The problem of retrieval and mapping has received considerable atiention in the case-
based reasoning and analogical problem-solving communities (Gentner 1983; Kolodner 983;
Hammond 1990; Carbonell 1986). Most existing retrieval methods fall into two broad cate-
gories. The first can bé characterized as feature based and includes the majority of existing
methods. Feature based retrieval methods attempt to judge similarity by matching the syntac-
tic specifications of the new problem and the existing problems. For most problems, however,
the surface features of the problem specification are not very predictive of the structure of the
solution. Thus, feature based similarity measures often fail to accurately estimate the cost
involved in modifying a given plan to solve the new problem. Some methods deal with this
problem by supplementing the problem specification with information about the saliency of




€ previous plan that
verification process,
not depend on any
formed estimate of
ng how the internal
1. In particular, we
idation structure to
n. The key insight
imber and types of
ion structure of the
ace specification as
alance between the
2(uire a comparison
Carbonell 1983).

pe heuristic search
s refitting choices,
lidation siructure of
choice. While most
wmber of conflicts,
icts in terms of the

retrieval and refit-
ork that addressed
ication framework.
based on plan val-
> develops and an-
} and 5 are largely
hniques. Section 6
emental plan main-
nary of the paper’s

ssed the issues of

ention in the case-
33; Kolodner 1983;
1to two broad cate-
1zjority of existing
atching the syntac-
roblems, however,
the structure of the
y estimate the cost
10ds deal with this
out the saliency of

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 215

individual features and doing a weighted feature match. There are two problems with this
approach. First, saliency information used by these methods is often very domain specific,
making the retrieval techniques themselves very domain dependent. Second, the saliency
of a specification feature may in general change from problem to problem—what is very
important for one problem may not be so in solving another problem. Thus, even if domain
dependent saliency measures are available, they may still be ineffective in guiding retrieval
since saliency should ideally be judged with respect to a specific problem and its plan.

The methods in the second group, such as Carbonell’s derivational analogy (Carbonell

. 1986), try to deal with the limitations of feature based retrieval by comparing the derivation

of the solutions of the existing problems to the derivation of the new problem. Since new
problems have no solution to begin with, thesc methods depend on solving the new problem
at least partially so that they can compare derivations. This makes them too costly for
general-purpose refrieval.

The similarity measure proposed here falls in the middle ground as it does essentially
feature-based matching, but takes the validation structure of the solution into account during
the matching stage. This latter characteristic gives it the ability to make a more informed
estimate of the importance of individual feature matches on the costof the overall modification.
Tt can be best understood as a saliency-based feature matching, where the saliency information
is not domain specific but is instead culled from the causal dependency structure of the plan
for solving the particular problem.

The principal motivation behind our strategy is that mapping and retrieval should be
guided by the features of the existing plans that are predictive of the amount of modification
required to reuse them in the new problem situation. In this sense, it has some similarities to
the CHEF (Hammond 1990) retrieval strategy which gives importance to the features that are
predictiv_e of execution time failures and interactions. However, in contrast to CHEF, which
learns the features predictive of the interactions (through an explanation-based generalization
of execution time failures), PRIAR uses the causal dependency structure of the plan to decide
the relative importance of the individual features. To some extent, this difference isareflection
of the differing nature of the tasks that are addressed by the two systems—while PRIAR tries {0
modify plans in the presence of a generative planner and ensure correctness of the modification
with respect to that planner, CHEF relies on the heuristic modification of the retrieved plans
and tests the correctness through a domain-model-based simulation (Kambhampati 1990).

2.2. Refitting Control

Any technique that attempts to find a solution for a new problem by modifying an existing
solution, or tries to improve an existing solution by debugging it, has to be concerned about
‘the number of changes done to the chosen solution. Ideally, such a technigue should be
conservative in that it should modify, debug, or extend the existing solution without disturbing
the parts of the solution that are already applicable in the new situation. There is along history
of planning systems that use minimization of perturbation to the overall plan as a basis for
modification and repair of plans. The general strategy for affecting such localization of search
process is to develop a measure of perturbation, and rank various choices in the search space
in terms of the expected perturbation. Several different realizations of this basic strategy,
usually called the minimum-conflict type heuristics, have been proposed. Hammond’s case-
based planner, CHEF (Hammond 1990), uses the explanation of an execution time failure to
suggest various minimally interactive ways of repairing that failure and then uses domain
dependent heuristics to select among the repair strategies. The debugger in Simmons’s GTD
system (Simmons 1988) selects among possible repairs by doing a causal simulation of
the plan with the suggested repairs, followed by an assessment of the global effect of the




216 COMPUTATIONAL INTELLIGENCE

suggested repair on the final outcome of the plan in terms of the “bugs” they cause in the plan
structure. Other systems, such as PRIGE (Mittal and Araya 1986) and CAS (Turner 1987) store -
specific handcoded strategies for repairing individual failing preconditions, and use them to
guide refitting. More recently, Zweben et al. (1990) describe the application of min-conflict
heuristics to dynamic revision of schedules. Min-conflict heuristics have also been widely
applied in repair-based approaches to constraint satisfaction problems.! Examples include
Minton ef al.’s local-search-based methods for constraint satisfaction problems (Minton ef
al. 1990), and the recent work by Selman et al. (1992) for solving satisfiability problems.
PRIAR'srefitting control strategy is an attempt to provide a domain-independent realization
of a minimum conflict heuristic search control strategy for plan meodification in hierarchical
planning. In particular, the different choices for modifying (extending) the plan are ranked by
the amount of interactions they would introduce into the plan being rensed. The interactions
are measured efficiently with the help of the causal dependency structure of the plan. Unlike
most of the techniques described above, which are only concerned with minimizing the num-
ber of conflicts, PRIAR also weights the inconsistencies in terms of the estimated difficulty of
repairing the inconsistency. Further, PRIAR employs a consistency check based on the domain
axioms to get a more realistic estimate of the conflicts caused by a particular modification
choice (see Section 5.4). In this latter respect PRIAR’s realization of the minimum conflicts
heuristic also bears similarity to the “consistency” based heuristics for guiding planning such
as the temporal coherence heuristic of Drummond and Currie (1989) and the loop control
heuristics of Feldman and Morris (1990). Such heuristics try to direct search away from the
paths that may require extensive interaction resolution and/or backtracking by anticipating
harmful interactions with the help of a domain-constraint-based consistency analysis.

3. PRELIMINARIES AND OVERVIEW OF PRIAR PLAN MODIFICATION
FRAMEWORK '

In this section, we establish some terminology for hierarchical nonlinear planning and
briefly describe how plans are represented and modified in PRIAR. In hierarchical planning,
plans are represented as partially ordered networks of tasks at varying levels of abstraction.
Planning proceeds by selecting a task from the current task network and reducing it with the
help of a task reduction schema to more concrete subtasks. Planning is considered complete
when all the tasks in the plans are either primitive (tasks that cannot be decomposed any
further) or phantom (tasks whose intended effects are achieved as side effects of some other
tasks). Some well-known hierarchical planners include NOAH (Sacerdoti 1977), NONLIN (Tate
1977), and SIPE (Wilkins 1984),

In the PRIAR framework (Kambhampati and Hendler 1992; Kambhampati 1989), a plan
is formally represented by a structure called a “hierarchical task network™ (HTN). A HIN is a
3-tuple:

(P:(T,0),T*, D)

where P is a partially ordered plan such that

(i) T is the set of tasics of the plan P. (We will use the names fasks, steps, and nodes
interchangeably to denote the members of 7.) T contains two distinguished tasks n;
and n¢ (standing for the input and goal state specification, respectively). Each task has

f

'In these problems, one starts with a complete but possibly inconsistent assignment for all variables, and incrementally
changes the assignments to make it consistent. Unlike planning, where the intermediate repairs can introduce new subgoals,
the repairs in constraint satisfaction problems do not change the size of the problem,




hey cause in the plan
s (Turner 1987) store
ons, and use them o
ation of min-conflict
ve also been widely
! Examples include
roblems (Minton ez
iability problems.
ependent realization
ation in hierarchical
e plan are ranked by
ed. The interactions
> of the plan. Unlike
ninimizing the num-
timated difficulty of
rased on the domain
ticular modification

minimum conflicts
iding pianning such
nd the loop control
arch away from the
ing by anticipating
ncy analysis.

IDIFICATION

inear planning and
rarchical planning,
vels of abstraction.
reducing it with the
»nsidered complete
e decomposed any
fects of some other
O77), NONLIN (Tate

npati 1989}, a plan
'(HTN). AHTNisa

, Steps, and nodes
inguished tasks n;
ly). Each task has

iables, and incrementally
- introduce new subgoals,

BXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 217

a set of applicability conditions and effects associated with it. They are represented as
unguantified literals in first order predicate calculus. Following Charniak and McDermott
(1984) and Tate (1977), we distinguish two types of plan applicability conditions: the
preconditions (such as Clear(A} in the blocks world) which the planner can achieve, and
the filter conditions (such as Block{A) in the blocks world) which the planner should not

achieve,

(ii) O defines a partial ordering on T. We shall use the notation “ny < 1" (whereny,np € T)

to indicate that n; is ordered to precede n; according to this partial ordering. Similarly,
“ny > ny” denotes that n; is ordered to follow na, and “ny||ny” denotes that there is no
ordering relation between the two nodes (n7 is parallel to #2).

(iif) 7T* is the union of tasks in 7 and their ancestors.
(iv) D defines a set of parent, child relations among the tasks of T* such that #, is a child of

a task n,, if n, is introduced into the plan as a result.of reducing n,. The set consisting
of a node n and all its descendants (i.e., its children, their children, and so on) in the plan
is called the subreduction of n, and is denoted by R(n).

The notation “F  f” is used to indicate that f directly follows from the set of facts in

F (ie., 3f" € F such that f’ codesignates with f), and the notation “F K f7 to indicate
that f deductively follows from the facts in F and the domain axioms. For example, in the
blocks world, if F = {On(A, B), Clear(C)} then F + Clear(C), and F © —Clear(B) (since
On(?x,7y) D —Clear(?y) is a domain axiom). Finally, the modal operators “00” and “&7
denote necessary and possible truth of an assertion. (An assertion is said to be necessarily
true in the situation preceding a step s in the plan, if it is true in every ground linearization of
that plan.)

The causal structure of the plan is represented by a set of producer-consumed dependency
links among the tasks of 7. A dependency link, referred to as a validation of the plan, is a
4-tuple (E, ng, C, ng) where the effect E of the task n; € T (called source node) is used to
satisfy (support) the condition C of task ny € T (called destination node). We can show that
for any correct plan there exist a finite set of such validation links; we denote this as V. The
individual validations are further distinguished based on the type of conditions they support
and the level at which they are introduced into the plan.

Figure 2 shows the validation structure of the pian for solving the blocks world problem
3BS (shown in the figure). Validations are represented graphically as dashed lines between
the effect of the source node and the condition of the destination node. (To simplify the
diagram, vatidations supporting conditions of the type Block(?x) are not shown in the figure.)
For example, {On(B, C), n15, On(B, C), ng) is a validation belonging to this plan since the
condition On(B, C) is required at the goal state n¢, and is provided by the effect On(B, C)
of node n;s.

Let V be the set of validations of a hierarchical task network (HTN), and [ and G be the
initial and goal state specifications of the HIN. We define the correctness of the HTN in terms
of its set of validations in the following way:

e Foreachg € G, arid each applicability condition C of the tasks # € T, there exists a
validation v € V supporting that goal or condition. If this condition is not satisfied, the
plan is said to contain missing vajidations.

e None of the plan validations are violated. That is Yy : {E, n;, C, ng) € V.) E €
effects(ng) and (il) An € T s.t. (O(ns <1 < 1)) A effects(n) = —C. If this constraint
is not satisfied, then the plan is said to contain failing validations.




"SIMONYS uoneprea st pue ueid §gE 7 N0

e

» ™ \\\\\. fa'viuo

suclepi|eA

us) u\\..i.-l-l-l...l.v ”l”ltii-nn’l:ﬁi/
] P v }
AU.mv:O \\ UomRy-uoing BE..IIIII =o_.u<_.w_mv=n B-111 e
. /] _ _ oty
] f
g @vio @i e o e [~{eiqe ‘gluo
2 NOALOY _ﬁﬁﬁﬂ_ﬂﬂ Nouov
- l{g*¥iuo1dioa au Koraluandlo 4 —"(v)ie8|D
wm /
z — = 3 e G
z {8'vivo e (0'aluo e [—~=-(0)1eB|)
S simis  Jech {@'v)uc-axe :uog (0'a)uo-e¥el :yog — -
< Ka'viuoly :eu fu
m [(o*gluplv:gu ejeis  Induyj
M /
ﬂnw .
sg8¢ 0& G.E:oﬂm.ﬁ.v_:
[eos) uoien)s nduj r
9 o9]/d v
g (o)weoigp(ghooigsiy)oog
{oMee|gp(eiqel'Oluge
v {ghree|gr(eiqe) ' glucs
(vheeiowe(ejge) ‘viug
(o'guosiayiuo

218




3BS plan and its validation structure,

FIGURE 2.

ExPLOITING CAUSAL STRUCTURE TG CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 219
In addition, we introduce a condition of nonredundancy as follows:

e For each validation v : {E, ny, C, rg) € V, there exists a chain of validations the first of
which is supported by the effects of nz and the last of which supports a goal of the plan.
If this constraint is not satisfied, then the plan is said to contain unnecessary validations.

A plan that does not contain any missing, failing, or unnecessary validation is said to
have consistent validation structure. The missing, failing, and unnecessary validations defined
above are collectively referred to as inconsistencies in the plan validation structure. Note that
this definition of correctness is applicable to both completely and partially reduced HTNs. In
particular, a completely reduced plan with a consistent validation structure constitutes a valid
executable plan.

To facilitate efficient reasoning about the correctness of the plan, and to gnide incremental
modification, we characterize the role played by the individual steps of the plan and the
planning decisions underlying the development of the plan in terms of their relation to the
validation structure of the plan. We accomplish this by annotating the individual nodes of the
HTN of the plan with the set of validations that encapsulate the role played by the subreduction
below that node in the validation structure of the overall plan. In particular, for each task
n € T*, we define the notions of e-conditions, e-preconditions, and p-conditions as follows:
The e-conditions of a task represent the set of validations that it or its descendants in the HTN
provide to the rest of the plan. If R(») represents the subreduction of n2e- condltlons(n) is

given by the set of validations
{vi i {E,ns,C,ng) | v; € Vins; € R(R); ng &€ R(n)}

The e-preconditions represent the set of validations that the task or its descendants consume
from the rest of the plan. e-preconditions(n) is given by the set of validations

{V,‘ . (E= Hs, Ca !’Id) ] Vi € Ve R4 € R(ﬂ), fg g R(?’I)}

Finally, the p-conditions represent the validations that should necessarily be preserved by the
effects of the task and its descendants to guarantee the correctness of the plan. p-conditions(n)

is given by the set of validations
(Vi : (E,ng, Congy | v; €V ng,ng ¢ R() A3n’ € Tst.n' € R(n) AS(ns < 1’ < ng)}

where O(ny < n' < ng) is true if n’ possibly falls between n; and ng for some total
ordering of the partially ordered plan. For example, for the node 3 in Fig. 2, the validation
(On(A, B), nig, On(A, B), ng) is an e-condition, the validation (Clear(A), ny, Clear(A),
77} is an e-precondition, and the validation (On(B, C), n1s5, On(B, C), ng) isa p-condition,
respectively. The annotations on a node encapsulate the node’s role in the validation structure
of the plan. These annotations can be computed efficiently for each node in the HTN in a

bottom-up, breadth-first fashion at planning time.
Using the task annotations introduced earlier, we also define the notion of the validation

state preceding and following each primitive executable action in the plan.

Preceding validation state AP (n) = e-preconditions(n) U p-conditions(n)
Succeeding validation state'A*(n) = e-conditions(n) U p-conditions(n)

2Note that R(r) = {n} if n € T (i.e., n is a leaf node in the HTN).




220 COMPUTATIONAL INTELLIGENCE

They specify the set of validations that should hold at each point during the plan execution
for the rest of the plan to have a consistent validation structure (which in turn guarantees its
successful execution, moduio the correctness of the planner’s domain model and barring any
unexpected events). Of particular interest for the PRIAR retrieval strategy are the validation
state following the initial node in the HTN, denoted by A%(ny), and the one preceding the goal
node, denoted by AP(ng). The former contains all validations which are provided by the
initial node, ny, and the latter contains all the validations which are consumed by the goal
node, ng.

During retrieval, it is often useful to know which parts of the initial state specification of
a plan are directly involved in supporting a particular validation in the plan. (In Section 4.2,
we will see that this helps the retrieval strategy in focusing on only those features of the input
specification which will serve some useful purpose in solving the new problem.) For this
purpose, we define the notion of input-support of a validation (E, ng, C, ng) as follows:

: v ifrg, = ny
input-support(v : (E, ns, C,ng)) = U input-support(v') if ny # ny

v'ce—preconditions{ng)
For example, in the 3BS plan shown in Fig. 2, we have

input-support({On(A, B), nig, On(A, B), ng)

{Clear(B), ny, Clear(B), ng)
= | (Clear(A), n;, Clear(A), ny)
(On(A, Table), ny, On(A, Table), ni6)

In PRIAR, the validation structure is used (1) to locate the parts of the plan that would
have to be modified, (ii) to suggest appropriate modification actions, (iif) to control the
modification process such that it changes the existing plan minimally to make it work in the
new situation, and (iv) to assist in plan mapping and retrieval. Figure 1 shows the schematic
overview of the PRIAR plan modification framework. Given a plan to be reused to fit the
constraints of a new problem situation, PRIAR first maps the plan into the new problem
situation. This process, known as interpretation, marks the differences between the plan and
the problem situation. These differences in turn are seen to produce inconsistencies in the
plan validation structure (such as missing, failing, or redundant validations). Modification is
characterized as the process of removing these inconsistencies (caused by the specification
of the new problem) from the validation structure of the plan. PRIAR uses a polynomial-time
process called annotation-verification to locate the inconsistencies and suggest appropriate
modifications to remove them from the plan validation structure. These domain-independent
modifications depend on the type of the inconsistencies and involve removal of redundant
parts of the plan, exploitation of any serendipitous effects of the changed situation to shorten
the plan, and addition of high-level refit tasks to reestablish any failing validations. After
annotation-verification, PRIAR will have a partially reduced plan with a consistent validation
structure. In the next:stage, called the refitting stage, PRIAR’s hierarchical nonlinear planner
accepts this partially reduced plan and reduces it further to produce a completely reduced
HTN. To ensure efficiency of reuse, PRIAR employs validation-structure-based strategies for
controlling retrieval and refitting. The rest of this paper is devoted to the discussion of these
control strategies. The details of the modification process itself can be found in (Kambhampati
and Hendler 1992).




e plan execution
I guarantees its
I and barring any
re the validation
receding the goal
provided by the
med by the goal

> specification of
- (In Section 4.2,
tures of the input
oblem.) For this
} as follows:

ifn, =ny
Yy ifng £

y

plan that would
1} to control the
ke it work in the
vs the schematic
reused to fit the
1¢ new problem
een the plan and
sistencies in the
- Modification is
the specification
polynomial-time
gest appropriate
ain-independent
val of redundant
1ation to shorten
lidations. After
istent validation
onlinear planner
pletely reduced
ed strategies for
cussion of these
1 (Kambhampati

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 221

4. CONTROLLING MAPPING AND RETRIEVAL

The modification strategy discussed in the previous section enables a planner to flexibly
reuse a given plan in a new problem situation. To build an effective plan reuse framework
around this modification strategy, we still need a methodology for selecting an appropriate
plan to be reused given a new planning problem. PRIAR’s retrieval method works by matching
the causal dependency structure of the existing plans to the new problem situation to estimate
the cost of modifying that plan to fit the specification of the new problem situation. Formally,
given a problem P* = [/", G"] and a set of reuse candidates {{R°, &)}, where R? is an
existing plan, and « is a mapping between the objects of R? and P", the objective of PRIAR
retrieval strategy is to select the candidate that can solve the new problem with the lowest
expected modification cost.> PRIAR does this by estimating the inconsistencies that would
be caused in the validation structure of the reuse candidate if it is used in the new problem
sitnation. In particular, it defines the notion of plan kernel for every stored plan and ranks
the reuse candidates by the degree of match between the candidate and the new problem
situation. The following sections provide the details of this strategy.

4.1. Plan Kernels

The plan kernel of a stored plan R?, PK(R%), is intended to encapsulate the dependencies
between R and the features of its input and goal specification. We will formulate it as a
collection of validations of R° that are supported by or supporting the features of the input
and goal states of the plan. These validations are further divided into three categories based
on the expected difficulty of reestablishing them, in the event that the input and goal state
features on which they are dependent no longer hold in the new planning situation. Thus, we
define it as a three-tuple.

PK(R®) = {(g-features, f-features, pc-features)

where the g-features, f-features, and pc-features are in turn defined as follows:
g-features (Goal Features): These correspond to the validations of R° that directly
support its goals. Thus

g-features(PK (R%)) = AP (ng)

~ (where AP(ng) is as defined in Section 3).

f-features (Filter features): These correspond to the validations supported by the input
specification of R? to either the filter conditions (the unachievable applicability conditions)
of the plan, or the phantom nodes that achieve some main goal of R°. Thus, a validation
v 1 (E,n;, C,ng) belongs to f-features(PK(R?)), iff v € A*(n) and either C is a filter
condition or I’ : {E', ng, C', ng) € AP(ng) such that ng =ng AC = C’,

pc-features (Precondition Features): These correspond to the validations supported by
the input specification of R® that support either the preconditions of some node of R, orthe
phantom nodes achieving the preconditions of some node of R?. In the current framework,
these will essentially be all the validations of A®(ny) that are not included in the f-features
of the plan kernel. That is,

pe-features(tPK(R°) ={v |[ve A(n)) Av € f-features(P K (R%))}

3pRiaR currently performs a partial unification on the goals of R° and P” to get an initial set of reuse candidates (see
Section 4.5).




222 COMPUTATIONAL INTELLIGENCE

Based on the above definition, the plan kernel of a plan can be computed in a straightforward
fashion from the initial validation state A®(n;) and the final validation state A? (n¢) of that
plan. As an example, the plan kernel of 3BS plan shown in Fig. 2 will be:

On(A, B), nis, On(A, B), ng}
On(B, C),nis, On(B, C), ng)

Block(B), ny, Block(B), n15)
Block(B), ny, Block(B), nig)
Block(A), ny, Block(A), nig)
Block(C), ny, Block(C), nis)
On(B, Table), ny, On(B, 1x), m5)
On(A, Table), ny, On(A, 7x), nig)

{Clear(B), ny, Clear(B}, n4)

|} {Clear(B), n;, Clear(B), n3)
pe-features i 1 cloar(C. ny, Clear(C), ns)
{Clear(A), n;, Clear(A), n7)

—"

g-features :

S-features :
PE(3BS) =

P o —

Notice that the different features of the problem specification enter the plan kernel only
by virtue of the validations that they provide to the plan. Moreover, if any features support
multiple validations, they enter the plan kerne! once for each of these validations. For example,
the features Block(B) and Clear(B} enter P K(3BS) more than once. Thus, the number of
times a feature enters the plan kernel, and the type of validations it supports, implicitly reflect
the relative importance of that feature during retrieval.

4.2. Plan-Kernel-Based Ordering of Reuse Candidates

Plan kernels can be used to develop an efficient similarity metric to rank a set of reuse
candidates in the order of the cost of modifying them to solve the new problem. As defined
earlier, a reuse candidate consists of a plan R°, and a mapping o between the objects of that
plan and the new problem situation. The plan kernel of a reuse candidate (R°, o) is obtained
by substituting & in P K (R?). To obtain an initial set of reuse candidates to be ranked, PRIAR
performs a partial unification on the goals of the new problem, and those of the stored plans
(see Section 4.5).

The degree of match between the plan kernel of a reuse candidate and the input and goal
specification of a new planning problem gives a rough indication as to how much of that plan
would be applicable to the new problem and as to what type of validation failures would arise
when it is reused in the new problem situation. Since the refitting cost depends to a large
extent on the number and type of validation failures, it is reasonable to use this match to
estimate the amount of modification that would be needed for reuse. In Figure 3, we describe
a three-layered ordering procedure to rank a set of reuse candidates with the help of their plan
kernels. The procedure measures the difficulty of reusing a given reuse candidate in the new
problem situation by estimating the number of inconsistencies caused by the new problem
specification in the validation structure of the reuse candidate.

While ranking the reuse candidates with respect to the f-features and pc-features of
the plan kernel, only the validations that ultimately support a goal of the reused plan which
matches with some goal of the new problem (under the given mapping) should be considered.
This is because the rest of the validatigns of A*(#n;) do not serve any useful purpose in the new
problem and will most probably be pruned from the. final plan. As an example, suppose that
we are judging the appropriateness of reusing the 3BS plan, shown in Fig. 2, in a new problem
situation, and we find that under the chosen mapping there is no match for the goal On(A, B)




in a straightforward
tate A?(ng) of that

=Y

n5)
R16)

he plan kernel only
ny features support
tions. Forexample,
hus, the number of
ts, implicitly reflect

rank a set of reuse
oblem. As defined
 the objects of that
(R?, &) is obtained
0 be ranked, PRIAR
of the stored plans

the input and goal
 much of that plan
ailures would arise
depends to a large

use this match to
rure 3, we describe
¢ help of their plan
ndidate in the new
7 the new problem

nd pe-features of
reused plan which
uld be considered.
purpose in the new
nple, suppose that
,in a new problem
he goal On(A, B)

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 223

Given. The new problem P* = [I*, G"], and a set of reuse candidates {{R°, o)}.

Step 0. Compute the plan kernels of the reuse candidates by translating the plan kernels of the
corresponding plans, using the mapping associated with the reuse candidate. Thatis, PK({R®, a}) =
R? - o, where - refers to the operation of object substitution, '

Step 1. Rank reuse candidates based on the number of goals of P* that will not be supported by the
g-features of the plan kernels of individual candidates. The cost function for this layer of ordering
will be given by

Hg lee G A(Bv:(E,ng, C,ng) € g-features(PK{{R°, a)))s.t.C = g)}|

Based on this step, the best candidates are those which will need to achieve the least number of extra
goals to be reused in the new problem situation.

Step 2. In case of a tie in step 1, rank the best candidates further based on the number of f-features
of their plan kernels that indirectly support some matched goal of the new problem, but do not hold
in the input specification of the new problem. Thus the cost function for this layer is given by

Hv|v:{E,n;, C,ng) € f-features(tPK({R°,a))) nv € GSV(PK({R®,a}) A E ¢ I}

where GSV(PK({R’, }) is the set of validations in PK({R°, a}) that indirectly support the g-
feature validations which match with some goal of P” under the mapping « (see below). It is given
by Section 3: '

GSV(PK({R°,a)) = ({input-supports(v) |v:{E ng, C, ng)
€ g-features(PK((R°,e))) Adg e G"C =g}

Step 3. In case of a tie in step 2, rank the best-ranked candidates further ranked by the number of
pe-features of their plan kernels that indirectly support some matched goal of the new probler, but
do not hold in the input state of the new problem. Thus, the cost function for this layer is given by

[{v:(E,n;,C, ng) | ve pefeaturest PK{R%, o})) nv e GSV(PE((R®,a) nC &I}

FIGURE 3.  Plan-kernel-based ordering.

of 3BS in the new problem. In such a case, the validation {Clear(A), n;, Clear(A), nig)
cannot be counted as a failure, even if Clear(A) is not true in the initial state of the new
problem—this validation, being an e-precondition of the node ny : A[On(A, B}], will be
pruned away eventually (since 73 has no useful purpose), thus making its failure inconsequen-
tial. Steps 2 and 3 of the ranking procedure shown in Fig. 3 use the notion of input-supports
of a validation (as defined in Section 3) to avoid this type of cost overestimation. The best-
ranked reuse candidates at the end of this three layer ordering procedure are returned as the
preferred candidates for reuse in solving P”".

The implicit levels of importance attached to the validations at different layers of the pian
kernel can be justified in terms of the computational effort needed for reestablishing them in
the new problem situation. One heuristic is that a significant amount of task reduction and
interaction resofution would be required to generate subplans to achieve goals of the new




204 _COMPUTATIONAL INTELLIGENCE

problem that are not supported by the retrieved plan, or to replace subplans of the retrieved
plan with failing filter conditions. In contrast, we expect that less effort is required to reachieve
the failing preconditions. Another heuristic is that in the event of filter condition failare, it is
possible to exploit some of the previous planning effort (e.g., effort expended in establishing
the e-preconditions of the subreduction being replaced) in the new planning situation. For
this reason, the failing filter conditions are considered less costly to handle than new goals.

4.3. Example

Figure 4 shows the initial and goal state specification of the blocks world problem 4BS1,
and lists four possible reuse candidates for that problem. For each reuse candidate, the figure
shows the initial and goal state specifications, the mapping between the candidate and the 4BS 1
problem, and the plan kernel of the reuse candidate.* To simplify the drawings, the figure
shows the validations of the plan kernels only by their supporting effects. Similarly, it also
omits assertions of type Block(?x) (as well as the validations of the type (Block(?x), —, —, =)
from the specifications of the problems.

When these four reuse candidates are ordered with the help of their plan kernels, at the
first layer the g-features of the plan kernels of all the reuse candidates fail to satisfy one goal
of the new problem (4BS1). Thus, they are all deemed equally costly at this layer, and all the
candidates move to the ordering at the next layer. Since each reuse candidate has two goals
and all of them match exactly two goals of the 4BS problem, it can be easily seen that GSV ()
for each reuse candidate will be same as all the validations supported by its initial state (i.e.,
A*(n;)). Thus the check v € GSV (.) in the next two layers of the ranking procedure in Fig. 3
is trivially satisfied.

At the second layer, the f-feature (On(K,J), —, —, —) of the plan kernel of
(3BS-Phantom,[A — L, B — K,C — J]) is not preserved in the input state of the
new problem (4BS1) as On(K,J) & I". (This basically means that the top-level phan-
tom goal of this reuse candidate has to be reestablished if we want to use it to solve P
Similarly, the f-feature {(Pyramid(L), —, —, —) of the plan kernel of the reuse candidate
{3BS-Pyramid,[A — L,B — K,C — J]) is not preserved since Pyramid(L) ¢ I".
If we want to solve 4BS1 by this reuse candidate, the subreduction dependent on this fil-
ter condition would have to be replaced. Further, the f-feature (On(J, Table), —, —, —)3
of the plan kernel of the reuse candidate (3BS,[A — K, B — J,C — [T} is not pre-
served since On(J, Table) & I™. In contrast, none of the f-features of the reuse candidate
(3BS.[A — L,B — K,C — J]) fail to hold in the new problem situation., Thus,
this is ranked best by the ordering based on the f-features of the plan kernel. Since
this is the only best-ranked candidate, the ordering at the third layer is not required and
(3BS,[A— L,B — K,C — J)) is returned as the preferred reuse candidate for solving
the problem 4BS1.

Notice that the plan-kernel-based ordering is able to discriminate among these reuse
candidates even though all the candidates satisfy the same number of goals of P*. Further, as
we mentioned earlier, it is capable of discriminating among different plans as well as different
mappings of the same plan. Inthe current example, the reuse candidates {385, [A—L,B—>
K,C — Jl)and 3BS,[A — K,B — J,C — I correspond to two different mappings

4 As an exercise, the reader may compare the plan kernels of the reuse candidates (3BS.{A — L. B ~» K,C — J1y and
{(3BS,[A — K, B — J,C — I]) with PX(3BS5) specified previously. .

5We follow the convention of (Tate 1977} and classify On(J, 7x) as a filter condition rather than a precondition. Some
effects of the plan depend on the binding of ?x, and one way of correctly propagating the effects when the binding of 7x changes
is to re-reduce the corresponding task.




of the retrieved

ired to reachieve
tion failure, it is
1in establishing
g situation. For
han new goals.

problem 4BS1,
idate, the figure
ate and the 4BS1
rings, the figure
imilarly, it also

'(?X), T T _))

n kernels, at the
satisfy one goal
ayer, and alf the
¢ has two goals
en that GSV ()
nitial state (i.e.,
)eedure in Fig. 3

plan kernel of
put state of the
top-level phan-
it to solve P".)
reuse candidate
amid(LY & I".
dent on this fil-
ble), —, —, —)°
11} is not pre-
reuse candidate
tuation. Thaus,
kernel. Since
ot required and
date for solving

ng these reuse
P", Further, as
well as different
[A— L, B—
erent mappings

—= K,C — J)) and

L precondition. Some
vinding of ?x changes

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 225

(g° Y (o n'
R1 R2
3ps-phantom [g] (g} B |
[c] e} 385 Lc |
o, =<A>L,BKCsls a,=<A=LB>KCas
Plan = Put-Blk-on-Blk-Act[ A,8) Plan =
Put-Blk-on-Blk-Act{ B.C)—=Put-Blk-on-Blk-Act{A,B}
<-.-.OfLK), nGx>
G| <-.-. OnfKS}, nG> [<-.-,0n(1.7. nG>
Komel ® & = < OnfK). Bl =, => G [<-o-. Onfih. G>
17 || <Onit.Tabm) Al -, - > Kemel® ¢ = < OnfL,Table), nl, -, ->
2 |F | <OniKTable), al,-,->
<, «, Cloar(l}, NG> <=, -, Cloar{l), nG
P [(-,-,Ckeai%, NS> F I;-.-.Chaar{ 3 nG>>
\_ v,
s N
O
Ry :
2] 3BS-pyramid 5 |
o 8| /A ]
3BS ﬂ E E a, == AaL,BK Cods
o =< A>KB->JCsb Flan =
Plan 3 Put-Blk-on-Blk-Act{ B,C}—=Put-Blk-on-Pyramid-Act{A,B)
Put-Blk-on-Blk-Act{ B,C}-=-Put-Blk-an-Blk-Act(A,B) <-, -, ORfLK}, nG>
G |<-.-,.OnfKJ), nG>
<-, -, OnK.J) ., nG>
Gl<-,-,0npll), nG> F ‘d’.{fﬁ%}"’f""
Kernef® o = < g Al -
Ketnel " < On(J,Tabla), al, -, - On 2l -
* o2 [-:On((K.TabIe), il : 4 « Onit, Tabkehnl >
< -, -, Clear{J}, nG <=, -, Choar(K}), nG>
P |:<-.-,c.'reaﬁ{ G > P [<-,-,01mar(-1.1. nG >
L A J

FIGURE 4. Example illustrating the retrieval strategy.

of the same (three blocks) plan. We have seen that the ordering prefers one of the mappings
over the other.

4.4. Refinements to Plan-Kernel-Based Ordering

The informedness of the ordering procedure presented in Section 4.2 can be further
improved by exploiting the hierarchical structure of the plan. In particular; we can distinguish
among the validations by the reduction level at which it was first introduced into the HTN.
For example, in Fig. 2, the validation {Block(A), n;, Block(A), nig) is considered to be of a
higher level than the validation (OnQA, Table), n;, On(A, Table), nyg), since the former is
introduced into the HTN to facilitate the reduction of task n3 while the latter is introduced
during the reduction of task ng. A useful characteristic of hierarchical planning is that its
domain schemata are written in such a way that the more important validations are established




226 COMPUTATIONAL INTELLIGENCE

at higher levels, while the establishment of less important validations is delegated to lower
levels. Thus, the notion of the level of a validation can be used as a domain independent
measure of saliency of the features supporting that validation.®

To improve the informedness of the heuristic ordering, we can weight the validations
of individual layers by their levels. The cost functions of the ordering procedure will then
compute the weighted sum of the number of failing validations. Forexample, the cost function
for the f-feature-based ordering step in Section 4.2 would now become }_ , level(v), where

A={v:i{E n;, C, ng)|veffeatures(tPK(R°, a))) AC & I"}

In the current example, this would mean that the failure of the validation (Block(A), ny,
Block(A), n1g) would be considered more costly than the failure of the validation
{On(A, Tuble), ny, On(A, Table), ng). This is reasonable since the former necessitates the
replacement of a larger subpian (the subplan rooted at n3) than the latter (which only leads
to the replacement of the subplan rooted at ng; see Fig. 2).

4.5. Obtaining the Initial Set of Reuse Candidates

The strategy we discussed above shows how to pick a reuse candidate from an initial
set of plausible ones. PRIAR uses a simple goal-based retrieval method to generate a set
of plausible reuse candidates. The goals of the new problem P" are variablized and are
matched with the goals of the plans in the library. The matching is done by a modified
unification algorithm that allows partial unification of formulas with differing number of
conjuncts, returning an object mapping (binding list) and the number of goals unified for
each partial unification. To avoid any unsupported generalization, we require that different
variables be bound to different constants. Thus, the matching algorithm enforces an implicit
unique noncodesignating variables constraint (that is, each variable is required to bind to a
distinct constant) to ensure that only one-to-one mappings between the objects of P" and
R? are generated. Currently, PRIAR includes only the candidates that satisfy the maximum
number of goals in the set of plausible reuse candidates. These will then be ranked by the
plan-kernel-based ordering discussed above.’

For example, when the 3BS problem of Fig. 2 is matched with the 4BS1 problem (in the
same figure) the partial unification gives two reuse candidates based on this plan, (3B S, [A —
L,B— K,C — J]}and 3BS,[A — K,B — J,C — I1)."Each of these candidates
matches two goals of 4BS1.

4.6. Discussion and Evaluation of Retrieval Control Strategy

The retrieval techniques described here have been implemented within the PRIAR reuse
framework and have been used in solving a variety of problems in the blocks world. The
evaluation trials consisted of solving blocks world problems by reusing a range of similar
to dissimilar stored plans. In each trial, statistics were collected regarding the amount of
effort involved in solving each problem from scratch versus solving it by modifying a given
plan. Approximately 80 sets of trials were conducted over a variety of problem situations
and problem sizes. A comprehensive listing of these statistics can be found in Kambhampati
(1989).

i

5We agsume that domain schemas having this type of abstraction property are supplied/encoded by the user in the first
place. What we are doing here is to exploit the notion of importance implicit in that abstraction,
"Notice that this step essentially carries out step | of the ordering procedure.




delegated to lower
main independent

sht the validations
rocedure will then
e, the cost function
~A level(v), where

¢ 1"

on {Block(A), ny,
of the validation
er necessitates the
(which only leads

ite from an initial
to generate a set
ariablized and are
ne by a modified
ffering number of
- goals unified for
uire that different
iforces an implicit
ired to bind to a
dbjects of P* and
sty the maximum
be ranked by the

1 problem (in the
lan, {3BS, [A —
" these candidates

n the PRIAR reuse
locks world, The
L range of similar
ng the amount of
nodifying a given
roblem situations
‘in Kambhampati

1 by the user in the first

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 227

TaBLE 1.  Sample Statistics for PRIAR Reuse.

R? -» PP P® from Scratch Reuse R° Savings
(%)

3BS—4BS1  [4.0s, 127, 5i] [2.4s, 4n, 1i] 39

3BS—S85BS1  [12.4s, 17n, 22i] [5.2s, 8n, 12i] 58

3BS—7BS1 [38.65, 24n, 13i] [11.1s, 12n, 19i] 71
4BS1—+8BS1  [79.3s, 28n, 14i] {22.25, 18n, 18i] 71

5BS—8BS1 [79.3s, 28n, 14i] [10.1s, 145, 7i] 87
6BS—9BS1 [184.6s, 32n, 17i] [18.1s, 17n, 17i] 9%
10BS—9BS1  [184.6s, 32n, 17i]  [6.5s, 5n, 2i] 96
4BS—10BS1  [401.5s, 36n, 19i]1  [52.9s, 30n, 33i] 86
8BS—10BS1  [401.5s, 36n, 19i] [14.5s, 12a, 7i] 96

3BS—12BS1  [1758.6s, 44n, 23i] - [77.1s, 40n, 38i] 95
5BS—12BS1  [1758.6s, 44n, 23i] [51.8s, 32n, 26i}] 97
10BS—12BS1 [1758.6s, 44n, 23i] [21.2s, 13n, 7i] 98

Table 1 presents representative statistics from the experiments. Each entry in the table
shows the cost of solving a problem P” from scratch, and solving it by reusing a given plan R”.
It compares planning times (measured in cpu seconds), the number of task reductions (denoted
by xn), and the number of detected interactions (denoted by xi), for from-scratch planning
and for planning with reuse. Since all the problems are drawn from the blocks world, where
the goal assertions arc all comprised of clear and on literals, there is a significant amount of
surface level similarity between any given plan and R and a new problem P*. This in turn
gives rise to multiple reuse candidates in each case, making it critical to select among the
reuse candidates. The retrieval strategy described in Fig. 3 is used to choose among these
reuse candidates.®

The problems 3BS, 4BS, 6BS, 8BS, etc., are block stacking problems with three, four,
six, eight, etc., blocks, respectively, on the table in the initial state, and stacked on top of
each other in the final state. Problems 4BS1, 5BS1, 6BS1, etc., correspond to blocks world
problems where all the blocks are in some arbitrary configuration in the initial state, and
stacked in some order in the goal-state. In particular, the entry 3BS—4BS1 in Table 1
corresponds to the example discussed in the previous sections. A complete listing of the test
problem specifications, as well as results of over 80 test runs, can be found in Kambhampati
(1989). The last column of the table presents the computational savings gained through reuse
as compared to from-scratch planning (as a percentage of from scratch planning time). Since
the efficiency of reuse depends on the appropriateness of the chosen reuse candidate, these
statistics provide a limited form of empirical support regarding the efficacy of the validation-
structure-based retrieval.

Retrieving plans based solely on the plan-kernel-based ordering may still be too expensive
when the plan library is very large. In such cases, the initial retrieval of candidate plans, prior
to the plan-kernel-based ordering may have to be based on a domain-dependent retrieval
strategy. However, the plan-kernel-based ordering strategy can act in conjunction with such
a gross feature-based retrieval strategy to make a more informed estimate of the utility of
reusing a plan in the given problem situation.

8The initial set of candidate mappings was generated by goal unification as described in Section 4.5.




228 COMPUTATIONAL INTELLIGENCE

Finally, the details of the three-layered ordering strategy in Fig. 3 are not meant to be
too rigid. Indeed, it is possible to come up with alternatives that involve combining the cost
metrics of the different layers in some weighted fashion before ranking the reuse candidates,
Our main contribution to the retrieval problem is in elucidating a clear framework for using
the causal dependency structure of stored plans to Judge the utility of reusing them to solve
new problems. We have shown that within this framework it is possible to formulate a variety
of efficient and domain-independent similarity metrics with varying cost/benefit trade-offs.

In this section, we have discussed the problem of retrieval without addressing the problem
of organization of stored plans in the library. In general, however, the efficiency of a retrieval
strategy cannot be measured in isolation, as it is fundamentally influenced by the way plans
are stored in the library. For example, since the stored plans may have significant amount
of structural overlap, storing them in an unorganized fashion could lead to a considerable
amount of redundant matching during the retrieval phase. To avoid this, the organization
strategies should be able to group “similar” plans together. A first step is to variablize
the plans before storing them (so that we do not store two instances of the same plan);
explanation-based generalization techniques (¢f Mitchell, Keller, and Kedar-Cabelli 1986) are
typically used for this purpose. The PRIAR modification strategy, based as it is on a systematic
characterization of the explanation of correctness of the plan, is amenable to integration with
explanation-based generalization techniques. In particular, we have recently developed a
family of provably sound algorithms for generalizing partially ordered plans based on the
validation structure representations discussed in Section 4. 1 (Kambhampati and Kedar 1992).
These techniques are currently being integrated into the PRIAR reuse framework to improve the
Storage and retrieval costs associated with plan reuse {Kambhampati 1992). Further reduction
in redundancy requires utilization of hierarchical memory organization frameworks (such
as discrimination networks) to group overlapping plans together. The natural abstraction
inherent in the plans generated in the hierarchical planning regime may provide support for
this type of abstraction, although this remains to be investigated (Kambhampati 1992).

5. CONTROLLING REFITTING

Once an appropriate reuse candidate has been chosen by the retrieval procedure, PRIAR
typically needs to modify it to solve the new problem. As we have mentioned earlier, this
process consists of two stages. The first is the annotation verification stage, which locates the
places where the reuse candidate needs to be modified and suggests modifications to be carried
out. The outcome of this stage is typically a partially reduced plan for solving the new probiem.
The refitting stage takes this partially reduced plan and completes the reduction process.
Consider, once again, the reuse example in Fig. 4, which involves solving the 4BS1 problem
by reusing a set of existing plans. In Section 4.3, we have seen that the retrieval control strategy
recommends the 3BS plan, along with the mapping o« = [A — L,B— K,C~— J],as
the preferred reuse candidate in this example. This becomes the input to the annotation
verification process. Figure 5 shows the partially reduced plan resulting from the annotation
verification process for. this example (Kambhampati and Hendler 1992). It contains all the
applicable parts of the 3BS reuse candidate plus high-level refit tasks added to handle any
unsatisfied goals. The objective of the refitting stage is then to accept this partially reduced
plan and complete the reduction of the refit tasks. To ensure overall savings from plan reuse,
this reduction process should be localized so as to cause least disturbance to the rest of the
applicable parts of the annotation verified plan (denoted by R?). This, in short, is the problem
of refitting control.




EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 229

> not meant to be
ymbining the cost
reuse candidates.
mework for using
ing them to solve
rmlate a variety
2nefit trade-offs.
ssing the problem
ncy of a retrieval
by the way plans
gnificant amount
0 a considerable
the organization
) is to variablize
the same plan);
Cabelli 1986) are
8 on a systernatic
 integration with
ity developed a
ins based on the
ind Kedar 1992).
rk to improve the
“urther reduction
ameworks (such
tural abstraction

vide support for

pati 1992),

state

On(K,J)

On(L,K)
4

L

K

J

|
Goal

T On{J,l)

E
& |

-m-"‘"-’.—,-

On{L K)BOn(K.)&On(J,I)

4BS1

pfi.  OnLK)

n: BO[Putan(L,K)

of:  OnjLK}

18 Puton-Action
LK

n
P
ACTION

“IPRIMITIVE

 Clear(K}

&0n{J,L)&Clear(J)
a0n(L, Table)
Block(D&Block(J)
Block(K)&Block{L)

On(l, Table)&Clear(l}
&0n{K,Table)&Clear{K}
K
Input situation

n3: A[On{L,KY
Sch: Make-on{LK)

off: OniL,K)

————

On{KJ)sOniL Ky

ni

\\_:_‘:zmr"

On(KJ)

-—---..~___.____h
n6: DO[Puten(K.J)}
Qn{KA
waAPRIMITIVE
el
e e

ACTION
In15:  Pulon-Action
(KJ)

Annotation verified plan for 3BS—4BS1 problem.

——

nZ: AION(KJ))
Sch: Make-on(K.J)

eff: OnfiJd)

rocedure, PRIAR
ned earlier, this
hich locates the
ons to be carried
1€ new problem. E
uction process.
> 4BS1 problem
control strategy , &
K, C — J], as
the annotation [ |
| the annotation . |
contains all the '
1 to handle any
irtially reduced
rom plan reuse, , |
 the rest of the -
, is the problem |

—,
FIGURE 5.

S

state
On(K.TabIa)\

On{L,Table},

input
Glsar{l)
On{l, Table)
on{J, L}
Clear(J}
Clear(K




230 COMPUTATIONAL INTELLIGENCE

To ensure such localization of refitting, PRIAR provides a minimum-conflict-type heuristic
control strategy for reducing refit tasks. In particular, for each refit task, this strategy chooses
the schema instance causing the least number of harmful interactions with the rest of the
plan. The interactions are measured in terms of the number and type of inconsistencies
in the validation structure of the plan that are caused by the various reduction choices. In
the following, we define the notion of the zask kernel of a refit task and develop a ranking
procedure based on it to facilitate conservative control of refitting.

5.1.  Representation of the Task Kernel

The task kernel K (n) of a refit task # is intended to encapsulate the potential interactions
that a reduction choice at this node will have with the validation structure of the rest of the
annotation-verified plan R®. The task kernel of a refit task is intended to encapsulate the
information required to measure the amount of disturbance that a reduction choice can cause
to the validation structure of the rest of the plan. A new reduction choice at a refit task may
neglect establishing an expected validation; it may violate an existing validation of R¢: or it
Inday not consume a validation which it utilized previously. Accordingly, the task kernel has
three layers, each corresponding to a way in which the reduction at a refit task can interact
with the validation structure of R%. Formally, we define K (1) as a 3-tuple

K (n) = {e-conditions, p-conditions, e-preconditions)
where”

e-conditions(K (n)) = e-conditions(n)
p-conditions(K (n)) = p-conditions(n)
e-preconditions(K (n)) = e-preconditions(n)

With this formulation, K (n) contains all the validations of R* that might possibly get
affected by any reduction done at #.

Consider the refit task Achieve[Clear(L)] at node #7 in the annotation-verified plan (R?)
for the 3BS—+4BS1 problem we discussed above. The task kernel of ny will bel?

e-conditions :  {Clear(L), n7, Clear(L), ns)

' (Clear(K), ny, Clear(K), ng)
K{n7) = ditions - (On(J, 1), n1p, On(J, I), ng)
preondiiions =y «on(k, 1), nis, On(K, J), ng)
{On(L, Table), ny, On(L, 7x), Hig)

As a second example, consider the following hypothetical case from the same example.
Suppose that there is a replace-reduction refit task at n3. This might be the case, for example,
if in P", the object L is a pyramid rather than a block. This would cause the failure of a filter

t
9We make this differentiation between e-conditions, p-conditions, and e-preconditions of X (n) and those of n because it
is possible to give alternative formulations to K (#) (as we do in Section 5.3), where they will not be the same.
0The validation supporting the goal On(J, f) oceurs in the task kernel because A[COn(J, I)] is not yet ordered with
respect to the plan, and thus it is a p-condition of Riny).




-type heuristic
rategy chooses
the rest of the
nconsistencies
n choices. In
lop a ranking

al interactions
the rest of the
1capsulate the
Jice can cause
refit task may
on of R?; or it
ask kernel has
k can interact

L possibly get

i%i plan (R%)

e example.
for example,
ure of a filter

»se of 1 because it
1e.

- yet ordered with

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 231

condition validation, and necessitate re-reduction of n3. The task kernel for this refit task
would be

" e-conditions : (On(L, K), n3, On(L, K), ng)

(On(K, J),n15. On(K, 1), ng)
{On(J, I),n19, On(J, I}, ng)

{Clear{K), n;, Clear(K), n3)
{Clear(L), ny, Clear(L), n3}
{Block(K}, ny, Block(K), n3)
{On(L, Table), ny, On(L, 1x), n3)

p-conditions : {
K(n3) =

e-preconditions :

5.2. Ordering Refitting Choices Using Task Kernels

The main motivation for using task kernels to order reduction choices at a refit task » is to
prefer choices that preserve as many of the task kernel validations as possible. This strategy
has the following desirable properties:

1. By preserving the e-conditions of the task kernel of #, it obviates the need to reestablish
the validations that were previously supported by R(n) in R?. This means that there will
not be any need to add additional refit tasks for achieving the unsatisfied e-conditions of
n during refitting.

2. By preserving the p-conditions of the task kernel of g, it minimizes the harmful interac-
tions that refitting at » will have with the validations of other parts of R?, thus preserving
as much of the applicable parts of the old plan as possible and reducing the cest of
refitting.

3. By preserving the e-preconditions of the task kernel of #, it utilizes the already existing
parts of R“ that establish those validations and thereby reduces the cost of reduction
of n (as the planner would not have to newly establish these preconditions for the new
reduction below n).

Figure 6 shows the three-layered procedure that is vsed for ranking the schema instance
choices for reducing a refit task. Notice that the definition of preservation of p-conditions in
step 2 is in terms of nonviolation. This is appropriate since the objective is to ensure that the
p-condition validations are not violated by the reduction at #, rather than to establish them.
Furthermore, notice that a p-condition is considered preserved only when the effects of the
task reduction schema, in conjunction with the domain axioms, do not imply violation of the
p-condition (see below). This allows the ranking process to anticipate and avoid interactions
that would normally only be discovered at a later stage in the planning (see below). The
best-ranked schema instances at the end of this three-layered ordering procedure are returned
as the schema instances preferred by the task-kernel-based ordering.

These implicit levels of importance accorded to the various components of the task kernel
reflect the effect of violation of those validations upon the overall refitting cost. In Section 5.3
we will discuss some refinements to task-kernel-based ordering which will allow us to further
differentiate among validations on the same layer.

Example. Consider, once again, the example of reducing the refit task »7 in the annotation-
verified plan for 3BS—4BS1 problem shown in Fig. 5. The default selection strategy finds




N TN P e

232 COMPUTATIONAL INTELLIGENCE

Given. Arefittask n € R®, and a set of schema instances {5:) capable of reducing n.

Step 1. Order the refitting choices (schema instances) according to the number of task kernel e-
conditions they preserve. A schema instance S, preserves an e-condition of the task kernel if its

effects can supply that e-condition. Thus, the merit function used to order schema instances at this
level is given by

Merit (8) = [{v v (E,n,, C,ng) € e-conditions(K (n}) A effects(S;) - CH

Step 2. In case of a tie, pick the set of schema instances that are ranked best by step 1 and rank them
Jurther according to the number of task kernel p-conditions they preserve. A task kernel p-condition

is considered preserved by a schema instance S;, if the effects of S; do not violate that p-condition.
Thus

Merit;(§;)y = {{v | v:{E, 0, C ny e p-conditions(K (n)) A effects(S;) I;:'—wEH

Step 3. In case of a tie, pick the set of schema instances that are ranked best by step 2 and further rank
them according to the number of task kernel e-preconditions that they preserve. An e-precondition
is considered preserved by a schema instance S, if §; has an applicability condition that can be
supported by the e-precondition, Thus,

” vi{E,n,C,nge e-preconditions(K (n))A
3C" € applicability-conditions (5} s.t. E - C' )

—

Merits () =

FIGURE6.  Task-kernel-based ordering.

that this refit task can be reduced by the following three (blocks world) schema instances:

A : MakeClear-Table(L, J) eff : Clear(L), On(J, Tuble)
B : MakeClear-Block(L, J, K) eff : Clear(L), On(J,K), ~Clear(K)
C : MakeClear-Block(L, J,I) eff : Clear (L), On(J I}, =Clear(I)

where the schema MakeClear-Block(7X, 7Y, 7Z) clears 7X by putting ?Y (which is on top
of 2X) on top of ?Z, and the schema MakeClear-Table(?X, 7Y) clears 72X by putting ?¥ on
Table (which is considered always clear).

When these schema instances are ordered using K (n7) given in the previous section,
we find that the task kernel e-condition (Clear(L}, ny, Clear(L), nys) is preserved by all
three choices, as all of them have an effect Clear(L). So, they all survive to the next layer

ordering with respect to task kernel p-conditions. At this stage, choice B violates the first
three p-conditions since

d
On(J, K) F =Clear(K) A ~On(J, DA=0n(K,J)

Choice A preserves (Clear(K ), ny, Clear(K), ng), but violates one p-condition as

d
On(J, Table) - —0n(J, I) |

The p-condition {On(L, Table), n,, On(L, 7x), n16) is preserved by both A and B since
none of their effects negate On(L, Tuble). Finally, choice C preserves all the p-conditions,




 kernel e-
rnel if its
ces at this

rank them
-condition
condition.

rther rank
condition
at can be

instances:

ch is on top
itting 7Y on

ous section,
rved by all
€ next layer
ates the first

and B since
-conditions.

EXPLOITING CAUSAL STRUCTURE TOQ CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 233

Thus, the task-kernel-based ordering clearly prefers choice C, Make-Clear(L, J, I'}. This

~will be sent to the planner as the schema instance with which node ny should be reduced.

Notice that this choice would in fact minimize the refitting cost as it causes no harmful
interactions with the validations of R“, and has the serendipitous effect of achieving the extra
goal, On(J, I).

Figure 7 shows the result of reducing the annotation-verified plan in Fig. 5 with the help
of this refitting control strategy. The top part of the figure shows the hierarchical structure
of the task reductions underlying the development of the plan (abstract tasks are shown on
the left, with their reductions shown to the right). The bottom part shows the chronological
partial ordering relations among the leaf nodes of the HTN. The black nodes correspond to the
parts of the interpreted plan that were salvaged by the reuse process, while the white nodes
represent the refit tasks added during the annotation-verification process and their subsequent
reductions. In this example, the choice between B and C could have been made through
a strategy of delayed binding of objects (e.g., the merge objects critic in NOAH (Sacerdoti
1977)). However, such a strategy would not have been able to deal with A, which is an
instance of a different schema. In general, controlling the choice among alternative schema
instances involves more than delayed binding of objects, as there may be different schemata
that can reduce the same refitting task, with significant differences among their effects and
preconditions. Choices made with the help of task-kemnel-based ordering will be able to
effectively control refitting in such cases.!!

The dominant cost of task-kernel-based ordering comes from the cost of checking if a
given validation will be preserved or violated by the effects or applicability conditions of a
schema instance S;. In particular, this may involve deciding if the effects of §; are consistent
with the condition being supported by a given validation. While consistency analysis is
undecidable in the general case, it can be made efficient by restricting the generality of the
domain axioms {e.g., Drummond and Currie 1989).

5.3. Refinements to Task-Kernel-Based Ordering |

The heuristic ordering procedure described above can be made more informed and efficient
in a variety of ways by exploiting the hierarchical siructure of the plan. Below we discuss
some ways of doing this based on the PRIAR validation structure. The ordering procedure can
be made more informed by allowing it to distinguish between the validations belonging to
the same layer of the task kernel. It can be made more efficient by redefining the task kernel
in such a way as to include only those validations that might potentially be violated by the
schema reduction choices. -

Improving the Informedness of the Ordefing.

(1) Judging the Importance of Validations by “Level.” Once again, by utilizing the level of
the validations, the validations of the individual layers of the task kernel can be differentiated
further, based on the difficuity of reestablishing them in the event they are not preserved by
the schema instance chosen to reduce the refit task. When the validations are weighted in this
fashion during the task-kernel-based ordering, the merit functions of the ordering procedure
will then be computing the weighted sum of the validations preserved at each layer. For

!

U1n fact, it can be argued that previous nonlinear planners avoided deliberating on the schema selection by relying on
delayed commitment strategies and nondeterministic choice strategies. Control strategies such as task-kernel-based ordering
help the planner to properly deliberate on schema selection.




COMPUTATIONAL INTELLIGENCE

234

"1SP<SHE 10) AVId Aq paonpoid uepd oy,

"1, HNOI]

i {irNo),
1\ [IHOLNYHA] 11-py1

{42014y370)

.\\\\\ [HOLHYHAED 2-nm

(I P NOLLOY-2078-NOHD078-LNd) ! (rdOLYvI) )
[animind:] a-pN 1 IHOLHYHS] 21-pH!

(M dOLHYITD)
[WoLHYHA] 68-by

(rdo14w310)

[HoLtvHa] ot-py
L8.89¢ Joyded y

{r 3 HOLLIY-¥D018-10 -¥D0 18- 1nd) B
[3anrLimigg:] r-pe

(rdo1bvaTD) (Fdo1dvITy)

HOLHYHA:

(4 d0L8ya12)

{i F NOMDY-HIOTE-HO-HD 0I8-L0d)
[3ALmiEg] 5PN

(1P YI0TE-NO-HI0T18-LNd)

i

o]

{rdoLyvana);

(37 HOHDY %2018 -HO-%2019 -Lnd)
ZatLIINE] €-pH

(41d0LHYITD)

(HOLHYH

(¥ H2018-HO-ND01R-1nd)

(8] [1voo:l o1-py

c_n_oEqmdu
[voorl :

0L
d el e

(1doluvIn)
[ZINoLKeHaI ] estsLy

Gitno)
voo:l e-pn




The plan produced by PRIAR for 3BS—4BS1.

FIGURE 7.

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 235
example, the merit function for the second layer ordering will now be

Merit* (5) = > _ level(v)
A

where

d
A={v|v:{(E, ng, C,ng) € p-conditions(K(n)) A effects(8;) ¥ —E}

The levels of validations can be precomputed efficiently at annotation time in at most O (d|V])
for all the validations, if done at the time of annotation,'? where d is the depth of the HTN
(typically d <« Np). '

In the three-block stacking plan example, the validation (On(K, J), n15, On(K, J), ng)
is of higher level (level 0) than the validation (Clear(K), n;, Clear(K), ng) (level 2). Thus,
while ordering the schema instance choices for reduction r7, a schema instance preserving
only the former validation will be preferred over a schema instance preserving only the latter.

(2) Giving Importance to Filter Condition Validations. A heuristic that is useful to
follow regarding the p-conditions of the task kernel is to give higher importance to the p-
conditions of K (n) supporting filter conditions. The rationale for this heuristic is that the
violation of the former would necessitate replace-reduction refit tasks, thereby significantly
increasing the amount of refitting required to completely reduce R?. One way of using this
heuristic is to split the second layer of the ordering into two sublayers. The first sublayer
ranks the schema instances by the number of filter condition validations they preserve. The
second sublayer then ranks the best choices (in the ranking of the first sublayer) by the rest
of the p-conditions.

Improving the Efficiency of the Ordering. As mentioned earlier, the main cost of task-
kernel-based ordering stems from the checks to ascertain whether the validations of the task
kernel are preserved by the effects and applicability conditions of each of the schema instance
choices. One way of reducing this cost is to reduce the size of the task kernel. This can be
achieved by ensuring that the task kernel does not contain any irrelevant validations whose
violation or preservation cannot reasonably be established from the effects and conditions
of the refitting choices, or whose violation can be easily repaired by introducing additional
ordering relations. In this section, we will discuss two ways of doing this.

(1) Eliminating Parallel p-conditions from Task Kernels. The ordering strategy pre-
sented in Section 5.2 assumes that the violation of any p-condition of the task kernel will
necessitate costly backtracking or additional refitting. This is not always the case, since
the violation of some of the p-conditions can be handled by the planner through the intro-
ducticn of additional temporal orderings between tasks of the plan. If the cost of checking
for violation of all p-conditions of K (#) is a concern during the ordering (as would be the
case, for example, when there is a significant amount of choice in the domain), then it would
make sense to have the ordering consider only those p-conditions whose violation cannot
possibly be resolved by imposing additional temporal orderings on the plan. In particular, a
p-condition v : {E, ng, C, nyg) of a node n cannot be reordered with respect to n only when
O(ng < 1 < rg). We can reduce the size of the task kernel by eliminating p-conditions that
do not satisfy this, \

12The levels of the validations can also be easily maintained dynamically during planning. In fact, the levels of validations
can be used during interaction resolution to decide which of a set of conflicting validations should be preserved.




236 COMPUTATIONAL INTELLIGENCE

(2) Eliminating Lower-Level Validations from Task Kernels. One way of improving the
efficiency of the ordering is to reduce the size of the task kernels (which reduces the number
of validations that need to be checked). In hierarchical planning, the schema instances often
reduce a nonprimitive node to only the next lower level of abstraction. Thus, at the time of
reduction of a refit task n, it is difficult to predict the complete subreduction below n. In
general, without this information, it does not make sense to try to check for the preservation
of all the e-conditions, p-conditions, and e-preconditions of #, since they may be pertaining
to the nodes that are at a lower level of the abstraction. In other words, the task kernel
validations need be at the same level of detail as the applicability conditions and effects of
the schema instances that comprise the reduction choices. We can use this to provide an
alternative formulation for the task kernel that has a lower match cost: The e-preconditions,
e-conditions, and p-conditions of n, which were originally introduced into R° at more than
one level of abstraction below that of n need not be included in the task kernel of n. With
this alternative formulation, the task kernel of the hypothetical replace-reduction refit task at’
n3 would be

e-conditions : (On(L, K), n3, On(L, K}, ng)

. | (On(K, ), nis, On(K, J), ng)
K'(ng) = | PeonaMIons: { (On(J. 1), n1o, On(J, 1), ng)

(Clear(K), ny, Clear(K), n3)
e-preconditions : { (Clear(L), nj, Clear(L), n3)
{Block(K), ny, Block{K), n3)

In other words, the e-preconditions of K ’.(ng) will not include the lower-level. validation
{On(L, Table), n;, On(L, 1x}, n3}.

5.4. Discussion and Evaluation of Refitting Control Strategy

The task-kernel-based ordermg is a cheap informed backtracking control strategy, wherc
the heuristic attempts to predict the number of interactions that will eventually have to
be resolved if a given refit task is reduced with the help of a particular schema instance.
Using this, the glanner can select schema instances that are likely to cause the least number
of interactions’® with the applicable parts of the retrieved plan. This is a very effective
technique for controlling refitting as interaction detection and resolution increase the cost
of nonlinear planning exponentially!* and delocalize. the refitting process by affecting the
validations of the apphcable parts of the plan. From a search reduction point of view, the
refitting control strategy is best used as a pruning strategy. Unfortunately, however, using it
as a pruning strategy can in general lead to loss of completeness (cf. Waldmger 1977). To
preserve completeness, we use it as a nonpreemptive selection strategy, in that the unchosen
reduction choices are not discarded but stored as choice points for later backtracking. This,
however, makes it difficult to formally quantify the search reduction offered by the control
strategy.

To understand the impact of the refitting.control strategy on PRIAR’s reuse performance,

13 Interaction here signifies the amount of disturbance caused to the validation structure of the plan by a particular refitting
choice. Resolving such interaction may necegsitate reordering, re-reduction (backiracking), from-scratch achievement, or
pruning.

141f the number of interactions caused by a refitting cheice s is given by I (s), and the average number of ways of resolving
an mteracn?](*i ):s k, then it can be shown (see Yang 1989) that the worst-case search space for resolving all the conflicts has a
size of O(k'™).




f improving the
ces the number
instances often
, at the time of
m below n. In
he preservation
y be pertaining
the task kernel
s and effects of
 to provide an
-preconditions,
' at more than
nel of n. With
fon refit task at

evel validation

strategy, where
tually have to
1ema instance.
e least number
very effective
rease the cost
y affecting the
it of view, the
Wever, using it
ger 1977). To
t the unchosen
racking. This,
by the control

: performance,
a particular refitting
ch achievement, or

of ways of resolving
1 the conflicts has a

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 237

TABLE 2. S.ample Statistics Regarding Effectiveness of PRIAR Refitting Control.
R — P* P" from Scratch Reuse R° Reuse R°

without Refit Cntl. with Refit Cntl.
(%) (%)

3BS->4BS1 i4.0s, 12n, 5i] [3.3s, 7n, 9i] 16 [2.4s, 4n, 1i] 39
3BS—3BS1 [8.4s, 16n, 8i] [7.1s, 1in, 12i] 15 [4.3s, 8r, 3i] 49
4BS—35BS1 [8.4s, 16n, 8i] [5.3s, 8r, 11i] 36 [3.25, 5n, 2i] 62
5BS—7BS1 [38.65, 24n, 13i] [15.4s, 158, 28i] a0 {11.1s, 12n, 19i] 71
4BS—8BS1 [79.3s, 28n, 14i] [24.9s, 22n, 26i] 638 [15.4s, 19n, 17/] 80
T7BS—9BS1 [184.65, 32n, 17i] [18.6s, 14n, 16i] 89 [11.4s5, 11n,6i] 93
8BS—10BS1 [401.5s, 36n, 19i] [22.0s, 15R, 16i] 94 [14.5s, 12n, 7i] 96

TBS—10BS1  [401.5s, 36n, 19i] [22.4s, 1972, 17i] 94  [23.4s, 19n, 17i] 94
4BS—6BS1 [17.7s, 20n, 10i] [11.6s, 14n, 28i] 34 [11.6s, 14n, 28{] 34
SBS—12BS1 [1758.6s, 44n, 23i] [73.7s, 35n, 35{] 95  [51.8s, 32n, 26i] 97

we performed an ablation study by measuring the reuse performance with and without the
refitting control over a variety of blocks world modification problems.!> Table 2 shows some
representative results from these experiments. It lists the planning times, the number of task
reductions, and the number of detected interactions when a problem P” is 'solved by PRIAR
from scratch, by reusing a given plan R° without refitting control, and by reusing R° and
controlling the refitting by the task-kernel-based ordering. It shows that the refitting control
leads to significant improvements in the performance. There is a reduction in planning times,
in the number of detected interactions, and in the number of task reductions during refitting.

Figure 8 compares the variation of PRIAR’s performance when a particular blocks world
problem, 7BS1, is solved by reusing existing plans with and withour refitting control strat-
egy. We noticed from these experiments that refitting control improves reuse performance
whenever there is a choice to reduce refit tasks (by reducing the number of interactions that
need to be resolved).

A word of explanation is in order regarding the statistics shown in Table 2. When
the planner is run without the refitting conirol strategy, if it is allowed to choose randomly
among the reduction choices, it often gets into extensive backtracking and fails to find a plan
within a reasonable time limit. To limit backiracking in the runs without refitting control, we
employed a domain-dependent heuristic and always clear a block by putting the block on top
of it on the table (rather than transfer it to the top of another block). Further, in the blocks
world, the only refit tasks for which there exists any choice of task reduction schemata are
of the type Achieve[Clear(?x)]. Thus, when reusing R to solve P”, if the HIN after the
annotation verification, R%, does not contain any refit tasks of this type,16 we cannot expect
any improvement from PRIAR’s refitting control strategy. The last two entries of the table
reflect this. We expect that in domains where there is more choice for reducing individual
refit tasks, the effect of the refitting control strategy will be more significant. This conjecture
is supported by our experience with manufacturing planning domain (see Section 6), where
there is a significant amount of task-reduction choice. More interestingly, as we shall see in

15pRIAR has also been tested in a manufactulfing planning domain where the objective is to construct a partially ordered
sequence of machining operations for manufacturing simple machinable mechanical parts; see Section 6 for details.

5% hether or not R® contains refit tasks of a particutar form depends on the relation between R° and P” as well as on
the particular mapping, o, between R° and P" that is chesen by the retrieval procedure.




238 COMPUTATIONAL INTELLIGENCE

7851 With

s 80 Refitting Control
a ™
vV &
| 5
n
g 40
9 - 7BS1 Without
S Refitting Gontrol
20
o,
% 10 T
0 ‘ " . t —
3BS 4BS 4B51 o8BS as BS TBS1 885

Reused Problems

——a—— 7BS1 Without Refit. cnt —C—— 7BS1 With Refit. cntl

FIGURE 8.  Effect of PRIAR refitting control strategy on a blocks world problem.

Section 6, the minconflict refitting control strategy is of added utility when the planner is part
of a larger environment and the revisions to the plan affect other modules in the environment.

Because of its “status quo” nature, the minimal conflicts heuristic biases the search to
find a solution that is nearest to the “seed guess.” This may not necessarily be the best
solution according to some global “objective function.” In other words, it is a sarisficing
control strategy rather than an optimizing one (cf. Simon and Kadane 1975). Because of the
status quo nature of the heuristic, we think this will be more suitable for controlling refitting
than for planning from scratch. This is also in consonance with recent work on application
of minconflict heuristics to constraint satisfaction problems (Minton ez al. 1990; Zweben et
al. 1990), which shows that the efficacy of these heuristics depends to a large extent on the
nearness of the initial seed guess to the final solution.

Finally, as a minimum-conflict heuristic (Section 2), there are two important aspects of
the task-kernel-based refitting control strategy that merit attention. These involve the way
conflicts are computed, and the way they are classified.

Computing Conflicts.  Given an expressive enough representation language, finding con-
flicts (interactions) and checking for consistency in a partially ordered plan is equivalent to
theorem proving over the effects of partially ordered events. Most traditional planners avoid
this complexity by employing the “STRIPS assumption” (Waldinger 1977). The STRIPS as-
sumption shortcuts the interaction detection problem by assuming that the only conflicts to
be considered are those arising from the explicit negations between represented conditions
and effects of the actions in a plan. While this reduces the cost of interaction detection dur-
ing planning, it often delays the detection of many interactions. Thus, using this method to
compute the number of interactions is not going to give an accurate estimate of the conflicts
generated by a choice. For example, most blocks world planners that use STRIPS assump-




planner is part
- environment.
the search to
'y be the best
s a satisficing
Jecause of the
lling refitting
on application
)(); Zweben et
- extent on the

ant aspects of
volve the way

e, finding con-
 equivalent to
lanners avoid
'he STRIPS as-
ly conflicts to
ed conditions
detection dur-
his method to
f the conflicts
"RIPS assump-

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 239

tion coupled with the TWEAK truth criterion (Chapman 1987) fail to detect that the effect
On(A, B) of an action is inconsistent with a protected condition On(D, B) (even though
On(A, B)Ii —-0n(D, B)). These planners eventually produce correct plans by ensuring that
the missed conflicts are detected at a more detailed level (e.g., the conflict between On(A, B)
and On(D, B) will be detected when it is discovered that Clear(B) is a precondition of
the operator for achieving On(D, B), and it is being denied by the action that achieves
On(A, B))

As we have seen, PRIAR refitting control strategy deals with this trade-off by using “do-
main axioms” for computing the minimum-conflicts heuristic during schema selection, while
retaining the STRIPS assumption during planning. The underlying rationale is that there is
some computational advantage to be gained in making choices by anticipating the conflicts
that the planner will realize only later on (as long as the consistency analysis itself is not too
costly).

Classifying interactions. Typical realizations of a minimum conflict heuristics in con-
straint satisfaction problems (e.g., Minton et al. 1990; Zweben et al. 1990) tend to consider
all types of conflicts to be of uniform cost. However, such a model does not adapt well to
controlling refitting. This is because the cost of interaction resolution varies widely depend-
ing on the type of the interaction—certain interactions can be resolved by simple parameter
rebinding, while others might necessitate extensive backtracking. Thus, some understanding
of the “cost of resolution” seems essential for proper application of the minimum conflicts
heuristic to planning. One way of doing this is to acquire and utilize some domain-dependent
information about the significance of various interactions. Another approach, employed by
PRIAR, is to use the validation-structure-based representation of plan dependency structure to
characterize the interactions. PRIAR’s refitting control strategy estimates the relative cost of
interactions along domain-independent dimensions such as the zype of the failing validation,
and the level of the validation. :

6. EVALUATION IN MANUFACTURING PLANNING DOMAIN

Tn previous sections, we characterized the utility of the retrieval and refitting techniques
by discussing their effect in improving the efficiency of plan reuse in the blocks world. As
we mentioned however, the techniques themselves are domain independent and are of broad
applicability. Indeed, the PRIAR plan reuse framework has been applied to a manufacturing
planning domain to improve efficiency of planning. Although a comprehensive discussion
of our work in the manufacturing planning domain is beyond the scope of the paper (see
Kambhampati ef al. 1993), in this section we will briefly discuss the effect of refitting and
retrieval techniques on planning in that domain.

The task addressed in manufacturing planning domain is that of generating and main-
taining process plans for machined parts. The planner is part of a prototype environment for
supporting concurrent design, called NEXT-CUT (Cutkosky and Tenenbaum 1990). NEXT-
CUT can be seen as a CAD-tool for mechanical design, which aims to provide rapid feedback
to the designer about the manufacturability of the evolving design. To support this goal,
NEXT-CUT performs planning and analysis step by step as the designer constructs and modi-
fies the design. The main objective of the process planner in the NEXT-CUT environment is
thus to provide feedback regarding the manufacturability of the evolving part!’. The input to

17Those familiar with process planning literature may note that this is somewhat different from the objectives of production-




240 COMPUTATIONAL INTELLIGENCE

the planner consists of the description of a part in terms of features, dimensions, tolerances,
and corresponding geometric models. The process plan includes a sequence of “setups” (par-
ticular orientations in which the workpiece should be restrained using fixturing devices such
as vises and strap-clamps), the set of machining operations (such as drilling, milling, boring)
that should be carried out during cach setup, and the tools (such as 0.25in-dia-twist-drill)
to be used during each machining operation. The PRIAR modification framework was used
to automate the generation and incremental revision of machining plans, while separate do-
main dependent modules deal with the geometric and fixture planning portions of the overall
process plan.!®

Since we are modifying the current plan to accommodate user-initiated changes in design,
the problem of retrieval is short-circuited. However, the efficiency of refitting was still
important, and the refitting control techniques described in this paper prove to be particularly
useful. In contrast to the blocks world, there is a larger choice for task reduction in process
planning. For example, a task such as make-hole can be achieved in a variety of ways,
including drilling, milling, honing, boring, etc. Each of these choices interacts in different
ways with the commitments in the existing plan, making refitting control strategy quite
valuable.

Apart from improving the refitting efficiency of the machining planner, these techniques
also allowed a more efficient interaction between the machining planner and the other modules
in the NEXT-CUT environment. To understand this, note that whenever the machining plan is
modified to accommodate the user-initiated changes, these modifications in turn necessitate
changes to the fixturing plan (which in this domain turns out to be a computation intensive
operation). Figure 9 shows a plan revision scenario from the process planning domain which
illustrates this point.'” In this case, after initial process planning for the part shown in
Window I is completed, the designer makes some changes to its specification—including
addition of a new hole, change of diameter of one of the holes (shown in bold outline), and
the positional tolerance of another. The response of the machining planner (implemented
by PRIAR) to these changes is shown in Window IIL. Once again, the black nodes represent
parts of the plan from the previous iteration, and the white nodes represent the results of
refitting to accommodate the user-initiated changes. Windows V and VI show the fixturing
plan corresponding to the new machining plan, with the black nodes representing the parts
of the fixture plan that are salvaged from the original plan, while the white ones represent the
results of new analysis. Notice that the only fixturing setup that is completely new is the one
corresponding to Aole-5 shown in Window VL

The machining planner’s ability to accommodate the changes in the specification in a
conservative fashion thus leads to a reduction in the amount of refixturing needed to accom-
modate the user-specified changes.?’ The process planning domain also brings out a new
motivation for conservative refitting: It is required not only for ensuring internal efficiency of
planning (as was discussed in Section 5), but also for conzaining the ripple effects of changes
in the plan on the analyses of other modules.

level process planning. In particular, while plan optimality is very important in production-level process planning, in NEXT-
CUT, which is concerned with prototyping, speed of response regarding feasibility of accommodating user-initiated changes is
considered more important than optimality of the process plan.

18%pe Kambhampati er al. (1993) for details on how the interactions among the various modules are managed.

19There are several additional complexities,of both plan generation and reuse (brought out to a large extent by the need
for cooperation between the planner and ihe other modules), which are not reflected in the discussion here. For a more
comprehensive treatment, the reader is referred to Kambhampati et al. (1993). .

20Note once again that refitting based on such status-quo heuristics may not necessarily guarantee the optimality of the
resultant process plan. '




-urewrop Sunmued sseoord ur asnar uepd jeiewiaiout Jo ajdwexy g TENDE]

—
<
(ot}

v

34N L1 0313]

i

BEEUI SN

- U £

SIAI-LITE  IYVLS

[1-3 0% 14133 53

({1-ITOH TIHO) uoREL3dg g

* (LF10H THHA-HALNID) uopeiado *) N
(23104 TIHG) voneszdo 8 |- i
(Z-T10H TNH-HIINID) vonriada v
EL-FUNII-LOTAS
(1-1075 T1IW) uoieiado ‘g -
(£-1.0°1S YII) uopesado v P
THMMLOTTAS -
a-al ¥-il Q
“m.._.o._m .ﬂ_iw =oze._um0 '8 | IFTHUXI-L313S .
P-1071S TN uefiesadp v
- EIBNIKIL-1DT IS o ar
(6-T10H TIA-HSINED) vepada g |- HIIUKILITNIS  FIHUKILINIS p! \ E
(e-T10H TIN-HDNOH) uatRadg v QH L14v1s| \

1NDILYYRAD)|

§IUNLIS-LOTHS LKA A

1’4

*f| 1-ON3 ~ ’ £-38MUX4-13N38

FANNAN
. SEANNAY

{s- 3104 TIHQ) uonesado g
($-F10H THUG-HIINTD) tofieiadg ¥
LH(]

£ MOTNIM LNO3dA

{2-3T0H TOH-TIHNOKHKY) (s-310H ToHwuICL-VHLANvIOY), | (s-T10H ._.__ze_cll._ (=-T0H THYO-4ILNED) {Fos00Ls-1via),

'
1
i [e9210H] o€ apon H [esgr1aN] b€ opon] [Eo%101] 2 opon [3191am1 7E 9po v [maianlisopon

(E-A10H THH-HSHI) {C-TI0H THN-HOROB)
feazign] 9 spon Ies3ranl sc epon

(2-210H TIHA-YTLIID) (s2'0SONI0LE- 1) Qo|
[9191anT oz apon [s1avgn) ez apo
prrrrennmm———————
{3z e 9 101E-1014) PI,@olll
Iz19105] 3¢ apowes

{+-1078 TiW)
[srzignlon apoy

(2:37101 11180)
[eagtonl Lz apoy

{2-310H IDHYUTIOL-WHLIKYI)
losg1anl zz apey

(2-370H 310H-33NNCHBY)
[esetanl s ener

{£-1078 TINW)
[st21as) 6 apen

(1-310H 210H-31N0NNY) {1-310H 331YHIT10 13U L3vYIE) {1-3100 180} (1-3TOH TIHG-HILKIY)
[ess10n] ¢+ apopy [sestanlaf span {eesianl 1 anon fo18can) 21 spoy

(z-10381
lgr£1ana apon

(z-1018 1K}
Ist210n] £ apou

~IDNACHE-SSOUD J¢ yded ¥AMIQ-1VIL

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE

-NVId

PR = F-any iy T N gSE2R a8 eI I O R R — = T B B~ R A R @ ! o ow & .8 =TE @
8E9¥T 897 5FE5555 S22 38CSF5EECEEEE SsitE §g £: 2
M(Snd u 2 17 Iowcq S S A -5 88 &2 5 -8 Cm Z B o o
P AT = v vy B 2 = .mo.l.psewwu\l/ r.w.m Dh g0 m & o & = = =
= 0SB4 E 0 = ¥ Q9 8= = ST EGSE e vsS 5 & o = = e TE =
baf.frde g3° EC 8 SEwlESS2cE5o088E 8 2 o85O io o BE T
—_ RSN == = - U w - =5 al o ™ o
Ouvgm 0, = o mm Q FE O PR =S Tt~ S Bt = B~ =1 it < 83 (- 28 8= E
=8 — a0 - B = - 0= 8 g F = TR (ST O =) == gh S =}
D08 T Qo H == =8 mt_umeehnew o w4 S 8¢ &
S:ch_rrn.a SO g O 0w 3 et.m .Oow o, e=] - . [ 5y mne w A 58 E %5 =]
e TR ESC,C @Wgeolasyg 2BVIESSgSglETwETERL Sl 28 EB2d= g



242 COMPUTATIONAL INTELLIGENCE

7. CONCLUSION

In this paper, we have described two domain-independent heuristic techniques, which use
arepresentation of plan causal dependency structure, called the validation structure, to control
retrieval and refitting during plan reuse. We have discussed the implementation and evaluation
of these techniques within the PRIAR plan modification framework. The evaluation consisted
of testing in blocks world, as well as an application to manufacturing planning domain.

Our main contribution to the mapping and retrieval problem is an efficient domain in-
dependent computational measure of the degree of similarity of plans that takes surface and
structure of solution into account. In particular, we utilize the validation structure of the
stored plan to decide the appropriateness of reusing it in a new problem situation. The cen-
tral idea is to estirnate the cost of modifying the plan to solve the new problem, and prefer
the candidate with least expected modification cost. The modification cost is estimated by
measuring the amount of (imis)match between the initial and goal state specifications of the
stored plan and the new problem sitvation. The validation structure of the plan guides this
matching process by providing an effective means for measuring the dependencies between
the goal and initial states of the stored plan as well as the degree of importance of various
features of the initial state of the stored plan. We argued that our strategy is more informed
than the typical feature-based retrieval strategies and more efficient than the methods which
require partial knowledge of the nature of the plan for the new problem situation to guide the
retrieval process.

For controlling refitting, we presented an informed backtracking strategy based on a
minimum conflicts heuristic. The strategy orders the refit task reduction choices based on the
amount of disturbance they can cause to the validatien structure of the plan being reused. In
contrast to the traditional minimum-conflict type heuristics, which are only concerned with
minimizing the number of conflicts, our strategy uses the plan validation structure to weight
the inconsistencies in terms of the estimated difficulty of repairing the inconsistency. It also
employs a consistency check based on the domain axioms to get a more realistic estimate of
the conflicts caused by a particular modification choice. We have discussed several ways of
making the strategy more informed by exploiting the hierarchical nature of the underlying
planner and analyzed the complexity and the utility of the strategy.

The research reported in this paper demonstrates that in the absence of any other domain-
specific knowledge, the causal dependency structure of plans can be exploited to effectively
control retrieval and refitting during plan reuse. A promising direction for further study
involves complementing these domain-independent control strategies with domain specific
control information acquired through adaptive and speedup learning strategies. Our current
work (Kambhampati 1992; Kambhampati and Chen 1993) is aimed at understanding the
issues involved in facilitating such an integration,

ACKNOWLEDGMENTS

The advice and influence of Jim Hendler during the formative stages of this work, as weli
as the helpful feedback from Larry Davis, Lindley Darden, Mark Drummond, Amy Lansky,
Jack Mostow, Austin Tate, Andrew Philpot, and the reviewers of this journal is gratefully
acknowledged. Support for this research has been provided in part by the DARPA and the
U.S. Army Engineer Topographic Laboratories under contract DACA76-88-C-0008 (to the
University of Maryland Center for Automation Research), the Office of Naval Research under
contract N00014-88-K-0620 (to Stanford University Center for Design Research), National
Science Foundation Grant IRI-9210997 (to Arizona State University), the ARPA/Rome Lab-




ues, which use
fure, to control
and evalvuation
ition consisted
y domain.

nt domain in-
es surface and
ructure of the
tion. The cen-
>m, and prefer
s estimated by
ications of the
an guides this
ncies between
nce of various
nore informed
1ethods which
n to guide the

y based on a
s based on the
ing reused. In
oncerned with
ture to weight
stency. It also
ic estimate of
veral ways of
he underlying

other domain-
to effectively
further study
main specific
. Our current
rstanding the

work, as well
Amy Lansky,
| is gratefully
\RPA and the
-0008 (to the
esearch under
ch), National
A/Rome Lab-

EXPLOITING CAUSAL STRUCTURE TO CONTROL RETRIEVAL AND REFITTING DURING PLAN REUSE 243

oratory planning initiative under grant F30602-93-C-0039 (to University of Maryland and
Arizona State University), and the Washington, DC, Chapter of A.C.M. through the “1988
Samuel N. Alexander A.C.M. Doctoral Fellowship.”

REFERENCES

CARBONELL, I. G. 1983, Derivational analogy and its role in problem solving. Proceedings of National Conference
on Artificial Intelligence, Washington DC: 64—69.

CARBONELL, J. G. 1986. Derivational analogy: a theory of recenstructive problem solving and expertise acquisi- -
tion. In Machine Learning: an artificial intelligence approach, vol, 2, Edited by R. Michalski, J. Carbonell,
and T. M. Mitchell. Morgan Kaufmann, Palo Alto, CA.

CHAPMAN, D. 1987. Planning for conjunctive goals. Artificial Intelligence, 32:333-377.

CHARNIAK, E,, and D. MCDERMOTT. 1984. Managing plans of actions. Iz Introduction to artificial intelligence.
Addison-Wesley, Reading, MA, pp. 435-554.

CUTKOSKY, M. R., and J. M. TENENBAUM. 1990. A methodology and computational framework for concurrent
product and process design. Mechanism and Machine Theory, 23:5.

DEAN, T, and M. BODDY. 1988. Reasoning about partially ordered events. Artificial Intelligence, 36:375-399.

DRUMMGND, M., and K. CURRIE. 1989. Goal ordering in partially ordered plans. Eleventh International Joint
Conference on Artificial Intelligence: 960-965.

FELDMAN, R., and P. MORRIS. 1990. Admissible criteria for 1oop control in planning. Eighth National Conference
on Artificial Intelligence (AAAI-90):1151-1157. )

GENTNER, D, 1983, Structure-mapping: a theoretical framework for analogy. Cognitive Science, 7, 155-170.

HAMMOND, K. J. 1990. Explaining and repairing plans that fail. Artificial Intelligénce, 45:173-228.

KAMBHAMPATI, S. 1989. Flexible reuse and modification in hierarchical planning: a validation structure based
approach. CS-Technical Report-2334, CAR-Technical Report-469, Center for Automation Research, De-
partment of Computer Science, University of Maryland, College Park, MD (Ph.D. dissertation).

KAMBHAMPATI, 8. 1990. A classification of plan modification strategies based on their information requirements.
AAAT Spring Symposium on Case-Based Reasoning,

KAMBHAMPATI, S. 1992. Utility tradeoffs in incremental modification and reuse of plans. AAAI Spring Sympe-
sium on Computational Considerations in Supporting Incremental Modification and Reuse.

KAMBHAMPATI, S., and J. CHEN. 1993. Relative utility of EBG based plan reuse in partial ordering vs. total
ordering planning. Proceedings of 11th National Conference on Artificial Intelligence: 514-519.

KAMBHAMPATI, 8., M. R. CUTKOSKY, J. M. TENENBAUM, and S. H. LEE. 1993. Integrating general purpose
planners and speciafized reasoners: case study of a hybrid planning architecture. IEEE Transactions on
Systems, Man and Cybernetics (Special Issue on Planning, Scheduling and Control), 23(6).

KAMBHAMPATT, 8., and J. A. HENDLER. 1992. A validation structure based theory of plan modification and reuse.
Artificial Intelligence Journal, 55(2-3):193-258,

KAMBHAMPATI, 5., and 8. KEDAR. 1994, A unified framework for explanation-based generalization of partiaily
ordered partially instantiated plans. Artificial Intelligence, 67(2). A preliminary version appears in the
proceedings of AAAI-91).

KOLODNER, J. L. 1983. Maintaining organization in a dynamic long-term memery. Cognitive Science, 7:243-280.

MINTON, 8., A. B. PHILIPS, P. LAIRD, and M. D. JOHNSTON. 1990, Solving large-scale constraint-satisfaction and
scheduling problems using a heuristic repair method. Eighth National Conferénce on Artificial Intelligence
(AAAL-Q0): 17-24.

MITCHELL, T. M., R. M. KELLER, and S. T. KEDAR-CABELLI. 1986. Explanation-based generalization: a unifying
view. Machine Learning, 1, 1. ,

MITTAL, 5., and A, ARAYA. 1986. A knowledge-based framework for design. Proceedings of 5th National Con-
ference on Artificial Intefligence: 856-865.

SACERDOTL E. D. 1977. A structure for plans and behavior. Elsevier North-Holland, New York.




244 COMPUTATIONAL INTELLIGENCE

SELMAN, B., H. LEVESQUE, and D. MITCHELL, 1992, A new method for solving hard satisfiability problems.
Proceedings of 10th National Conference on Artificial Intelligence (AAAT-92): 440-446.

SIMMONS, R. 1988. A theory of debugging plans and interpretations. Proceedings of 7th National Conference on
Artificial Intelligence: 94-99,

SIMON, H., and . B. KADANE. 1975. Optimal problem solving search: all-or-none solutions. Artificial Inteiligence,
6.

TATE, A. 1977. Generating project networks. Proceedings of 5th IICAIL: 888-893.

TURNER, R. M. 1987, Issues in the design of advisory systems: the consumer-advisor system, GIT-ICS-87/ 19,
School of Information and Computer Science, Georgia Institute of Technology.

WALDINGER, R. 1977. Achieving several goals simultaneously. fz Machine intelligence 8, Edited by
E. B. D. Michie. Edinburgh University Press, pp. 94-136.

WILKINS, D. E. 1984. Domain-independent planning: representation and plan generation. Artificial Intelligence,
22:269-301.

ZWEBEN, M., M. DEALE, and R. GARGAN. 1990, Anytime rescheduling. Proceedings of DARPA workshop on
Innovative Approaches to Planning, Scheduling and Control, San Diego, CA.

LIST OF SYMBOLS
Symbol Meaning

Successor of

Predecessor of

Unordered

There exists

For all

Directly follows from facts

AV

Follows from facts and domain axioms
Modal operator for possible truth
Modal operator for necessary truth
Logical implication

Logical negation

Tuple notation

Set union

Element of

Maps to

Logical conjunction

Logical disjunction

Set of validations of a plan

Plan length (or number of leaf nodes in an HTN)

<<>|MmMC1UOCTe T<w

S




Volurne 10, Number 2 May 71994

Computational
Intelligence

AN INTERNATIONAL JOURNAL

Contents

The Scope of Dimensional Analysis in Qualitative Reasoning

Jayant Kalagnanarm, Max Henrion,
and Eswaran Subrahmanian

MetaBank: A Knowledge-Base of Metaphoric Language
Conventions
James H. Martin

Reasoning with Background Knowledge—A Three-l.ével
Theory
Wiodek Zadrozny

Correcting Real-Word Spelling Errors Using a Model of the
Problem-Solving Context
Lance A. Rarmshaw

Exploiting Causal Structure to Control Retrieval and Refitting
during Plan Reuse :
Subbarao Kambhampati

_
Published by Blackwell Publishers Cambridge MA & Oxford Uk




