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ABSTRACT

Autonomous agents that act in the real-world can often improve their success by capturing

the uncertainty that arises because of their imperfect knowledge and potentially faulty actions. By

making plans robust to uncertainty, agents can be prepared to counteract plan failure or act upon

information that becomes available during plan execution. Such robust plans are valuable, but are

often difficult to construct when uncertainty is high and goal achievement requires many actions.

Unfortunately, current approaches to planning under uncertainty are not scalable: they focus on

small problems where the challenge is finding an optimal solution.

I study (non-deterministic and probabilistic) conformant and conditional planning in large

problems where just finding a feasible solution is the challenge. I develop scalable heuristic search

techniques that are inspired both by optimal approaches to planning under uncertainty (based on

Markov decision processes) and scalable approaches for classical planning (based on planning graph

reachability heuristics). Specifically, I develop measures for the cost of completing partial plans,

heuristics that estimate the measures, efficient data-structures and inference techniques to compute

the heuristics, and a multi-objective heuristic search algorithm that uses the heuristics. Through

extensive empirical evaluation, I show the resulting set of techniques significantly improves the

scalability of planning under uncertainty.
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CHAPTER 1

INTRODUCTION

Plan synthesis is an important, central task of Artificial Intelligence that concerns sequenc-

ing actions to achieve a goal. Classical planning models simplify the problem to model situations

with perfect state information and deterministic actions. In a number of applications, the classical

model is insufficient, and extensions such as durative actions, resources, and uncertainty are needed

for faithful representations of an environment. This work concentrates on planning models that

capture uncertainty, and specifically, how to scale up the synthesis of plans in such models. Using

intuitions from techniques for scaling classical planning and approximate reasoning in probabilistic

models, I combine the best of both to improve the synthesis of conformant and conditional plans

in non-deterministic and probabilistic models. This chapter will introduce the subsequent chapters

by providing motivation for this work, a justification for the methods taken, and a brief summary of

each chapter. This chapter will end with a perspective on the impact and implications of this work.

1. Uncertain Environments

When plans are executed by imperfect agents in unfriendly environments, it is important to

account for uncertainty or face failure. It is estimated that the $265 million Mars Pathfinder rover

spent nearly 40 to 70 percent of its time idle due to plan failure. For example, uncertainty in soil

consistency complicates models of power consumption. By planning contingencies, a rover running

low on power could branch its plan to take pictures (for some science return) instead of simply

failing to finish a long drive (with no science return). Uncertainty is one of the most difficult aspects

of plan synthesis, which this work addresses.

Uncertainty can take the form incomplete information, noisy observations, multiple action

outcomes, and differing action durations. This work addresses incomplete information and multiple

action outcomes. Incomplete information captures the notion that certain facts about the environ-
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ment that are not always observable. Having multiple action outcomes capture uncertainty in the

action’s result (e.g., flipping a coin). Reasoning about these types of uncertainty can lead to robust

plans.

There are two main techniques for handling uncertainty: be reactive or be proactive. Re-

planning upon plan failure is a reactive approach that typically uses a single sequence of actions.

When the assumptions (under which the plan was constructed) change it becomes necessary to find

a new plan, that is, replan. Conditional and conformant plans are proactive approaches that mitigate

uncertainties that can contribute to plan failure. With multiple assumptions (capturing the possibil-

ity of failure), proactive approaches ensure the plan will succeed for all or most cases. The trade-off

between the two extremes is that reactive approaches are less expensive, but suboptimal (and some-

times unsafe), and proactive approaches are of higher utility, but expensive. For example, a rover

using a replanning strategy may have to wait for the next day for a new plan (from mission control)

if it runs low on power. However, a rover using a conditional planning strategy could observe that

its power is low and use a pre-planned contingency to take a picture instead. With proper moti-

vation for pursuing conditional plans, the most pertinent issue is how to automatically synthesize

reasonable quality plans for large environments in a reasonable amount of time.

2. Automated Plan Synthesis

Plan synthesis is often posed as a graph search problem, where the graph corresponds to a

state transition system. Edges correspond to actions, vertices correspond to states, and plans are

paths leading from an initial state to a goal state. Automated planning often assumes propositional

(or factored) models that describe states and action in terms of state variables. From the action

descriptions it is possible to construct regions of the state transition system. Often the state transition

system is quite large (because states are defined by hundreds of variables), making enumeration
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impossible. Heuristic search algorithms help expand only those regions needed to find a plan. With

a sound inference procedure to generate states from action descriptions, the crux of plan synthesis

is guiding the heuristic search.

Chapter 2 provides background on plan synthesis in classical planning, as described above.

It additionally describes the foundations of reachability heuristics used to guide search. The chapter

additionally formalizes several models for planning under uncertainty and a heuristic search algo-

rithm for several classes of plans. The remaining chapters describe generalizations of reachability

heuristics for planning under uncertainty and a heuristic search algorithm for an additional class of

plans. These chapters are outlined in the next section.

3. Outline of Contributions

Chapters 3 to 8 contain several approaches for improving the scalability of planning under

uncertainty. The following list introduces each of these chapters:

• Planning Graph Heuristics for Belief State Search: Chapter 3 uses intuitions from classical

planning reachability heuristics, described in Chapter 2, to generalize state distance measures

to belief state distance measures. Under this generalization, the chapter shows how the belief

state distance measure can be estimated using planning graphs.

• Labeled Planning Graphs: Chapter 4 presents a new data structure, called a labeled planning

graph, to improve the efficiency of computing belief state distance estimates. The labeled

planning graph compactly represents and symbolically reasons about sets of planning graphs.

• Labeled Planning Graphs for Cost-Sensitive Planning: Chapter 5 presents a generalization

of the labeled planning graph to compute estimates of belief state distance when actions have
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non-uniform cost. The resulting cost labeled planning graph propagates cost information over

multiple planning graphs.

• Labeled Planning Graphs for Actions with Uncertain Effects: Chapter 6 describes a gen-

eralization of the labeled planning graph to incorporate actions with uncertain outcomes. The

monte carlo labeled planning graph incorporates monte carlo simulation to avoid reasoning

about all uncertain outcomes of actions, instead focussing on the most likely outcomes.

• State Agnostic Planning Graphs: Chapter 7 describes a framework, called state agnostic

planning graphs, using intuitions from the labeled planning graph. While the labeled planning

graph captures a set of planning graphs to estimate belief state distance, the state agnostic

planning graph captures arbitrary sets of planning graphs for many planning models. Using

state agnostic planning graphs it is possible to build a single planning graph structure for

every search node, rather constructing one fore each search node.

• Multi-Objective Conditional Probabilistic Planning: Chapter 8 presents a novel approach

to conditional probabilistic planning with the multi-objective LAO∗ (MOLAO∗) search al-

gorithm. MOLAO∗ is the first cost-based heuristic search algorithm for finding conditional

probabilistic plans. MOLAO∗ uses the heuristics developed in the preceding chapters to

solve the most general planning problems considered by this work.

4. Impact and Implications

Many important applications require planning under uncertainty, such as web-service com-

position, work-flow synthesis, and robotics. Scalability, as the goal of this work, is an ever important

consideration for making such applications feasible.
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Before this work was started in 2002, approaches for planning under uncertainty used rel-

atively small problems where the emphasis was on finding optimal plans. In contrast, most recent

work in classical planning has emphasized finding reasonable quality plans for much larger prob-

lems, which is justified by practical applications of classical planning (Boddy et al., 2005; Ruml

et al., 2005). Because finding optimal plans even in classical planning models is still challenging,

it seems limiting to focus on only optimal planning under uncertainty (a much more difficult class

of problems). To help impact the applications mentioned above, I focus on scaling planning under

uncertainty by removing the restriction of optimality, while still mindful of plan quality.

The main implications of this work rely on its concurrent development with techniques for

classical planning and reasoning under uncertainty; it can be seen as a bridge between these two

fields. Research on classical planning and Markov decision processes (one of the most popular

formalisms for planning under uncertainty) has largely proceeded in isolation. In recent years,

many of the similarities between these models have been identified (Boutilier et al., 1999), but few

techniques have actively combined the two. This work can be seen as one of the first approaches to

combine the fields by taking advantage of scalable techniques from both. In doing so, it provides

a clear path to integrate many of the advanced classical planning and reasoning under uncertainty

techniques that are to come in the future.
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BACKGROUND

This chapter contains the background material and definitions used in later chapters. Specifi-

cally, it starts with a presentation of classical planning and reachability heuristics, and then describes

assumptions regarding uncertainty and observability that are needed to model agents and their envi-

ronments. With these assumptions, the chapter defines several planning models, problems expressed

in the models, and solutions to the problems. The chapter concludes by describing a heuristic search

algorithm for solving planning problems and a planner developed around the search algorithm.

1. Introduction

There are a number of expressive features of planning models, including time, uncertainty,

observability, costs/rewards, and resources. Research between the dawn of AI in the 1950’s and the

1990’s largely explored defining the semantics of plans with each of these features in isolation and

in concert. Since the 1990’s, research in planning has concentrated significantly more on how to

efficiently synthesize such expressive plans. Many of the techniques for scalable plan synthesis have

roots in classical planning, adapt to deal with more expressive model features. This work describes

an adaptation of classical planning reachability heuristics to deal with different types of uncertainty

and observability.

We will use variations on the following running example to illustrate how several planning

models can address the same problem and how we can derive heuristics for the models:

Example 1 (Planetary Rover). Ground control needs to plan the daily activities for the rover Con-

quest. Conquest is currently at location alpha on Mars. The mission scientists have objectives to

obtain a soil sample from location alpha, a rock core sample from location beta, and a photo of the

lander from the hilltop location gamma. The rover must communicate any data it collects to have

the objectives satisfied. The cost of driving from one location to another varies depending on the
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terrain and distance between locations. Actions to collect soil, rock, and image data incur different

costs. Mission scientists may not know which locations will have the data they need and the rover’s

actions may fail, leading to potential sources of uncertainty.

This work is about the scalable synthesis of plans in uncertain environments, and there are

a number of topics upon which it builds. The central concept will be heuristic search in belief

space (where the search graph represents how actions make transitions between belief states). This

chapter begins by describing how to perform heuristic search in state space for environments without

uncertainty. The heuristic search description includes both how the search proceeds and how a

specific type of heuristic (based on planning graphs) is computed. Subsequent chapters will address

how these ideas are extended to more expressive planning models that capture uncertainty. Then,

two sections will cover basic ideas on how uncertainty and observability can be modeled. The

following chapter details the semantics of several models for planning under uncertainty and several

types of plans that are solutions for problems expressed in the models. The chapter ends with a

description of a heuristic search algorithm that will be used for many of the planning models and

the POND planner that uses the search algorithm.

2. Classical Planning

This section starts with a brief background on how the classical planning problem is rep-

resented and why the problem is difficult, then follows with an introduction to planning graph

heuristics for state-based progression (forward-chaining) search.

Background: The classical planning problem is defined as a tuple (P, A, I, G), where P is a set

of propositions, A is a set of actions, I is a set of initial state propositions, and G is a set of

goal propositions. This description of classical planning uses many representational assumptions

(described below) consistent with the STRIPS language (Fikes and Nilsson, 1971). While STRIPS is
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only one of many choices for action representation, it is very simple and most other action languages

can be compiled down to STRIPS (Nebel, 2000). In STRIPS a state s is a proper subset of the

propositions P , where every proposition p ∈ s is said to be true (or to hold) in the state s. Any

proposition p �∈ s is false in s. The set of states S is the power set of P , such that S = 2P . The

initial state sI is specified by a set of propositions I ⊆ P known to be true (the false propositions

are inferred by the closed world assumption) and the goal is a set of propositions G ⊆ P that must

be made true in a state s for s to be a goal state. Each action a ∈ A is described by an execution cost

c(a), a set of propositions ρe(a) for execution preconditions, and an effect (ε+(a), ε−(a)) where

ε+(a) is a set of propositions that it causes to become true and ε−(a) is a set of propositions it causes

to become false. An action a is applicable appl(a, s) to a state s if each precondition proposition

holds in the state, ρe(a) ⊆ s. The successor state s′ is the result of executing an applicable action a

in state s, where s′ = exec(a, s) = s\ε−(a) ∪ ε+(a). A sequence of actions {a1, ..., an}, executed

in state s, results in a state s′, where s′ = exec(an, exec(an−1, ... exec(a1, s) ...)) and each action

is executable in the appropriate state. A valid plan is a sequence of actions that can be executed

from sI and results in a goal state. The sum of the costs of the actions
∑n

i=1 c(ai) is the cost of the

plan.

STRIPS planning problems can be described with the planning domain description language

(PDDL) (McDermott, 1998). Figure 1 is a PDDL formulation of the rover problem for classical

planning.1 On the left is a domain description and on the right is a problem instance. The domain

description uses predicates and action schemas with free variables to abstractly define a planning

domain. The problem instance defines objects, an initial state, and a goal. Through a process

called grounding, objects defined in the problem description are used to instantiate predicates and

action schemas. Grounding involves using every combination of objects to replace free variables

1In the following, I will refer to the alpha, beta, and gamma locations in the text, but use the related symbols α,
β, and γ to simplify the illustrations.



9

(define (domain rovers classical)
(:requirements :strips :typing)
(:types location data)
(:predicates

(at ?x - location)
(avail ?d - data ?x - location)
(comm ?d - data)
(have ?d - data))

(:action drive
:parameters (?x ?y - location)
:precondition (at ?x)
:effect (and (at ?y) (not (at ?x))))

(:action commun
:parameters (?d - data)
:precondition (have ?d)
:effect (comm ?d))

(:action sample
:parameters (?d - data ?x - location)
:precondition (and (at ?x) (avail ?d ?x))
:effect (have ?d))

)

(define (problem rovers classical1)
(:domain rovers classical)
(:objects

soil image rock - data
alpha beta gamma - location)

(:init (at alpha)
(avail soil alpha)
(avail rock beta)
(avail image gamma))

(:goal (and (comm soil)
(comm image)
(comm rock)))

)

Figure 1. PDDL description of classical planning formulation of the rover problem.

in predicates to obtain propositions, and in action schemas to obtain ground actions. The problem

instance in Figure 1 denotes that the initial state is:

sI = {at(alpha), avail(soil, alpha),

avail(rock, beta), avail(image, gamma)}
and that the goal is:

G = {comm(soil), comm(image), comm(rock)}.

The domain description in Figure 1 lists three action schemas for driving between two lo-

cations, communicating data, and obtaining data by sampling. For example, the drive action

schema can be instantiated with the alpha and beta location objects to obtain the ground action

drive(alpha, beta) where its precondition is {at(alpha)} and it causes {at(beta)}

to become true and {at(alpha)} to become false:
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ρe(drive(alpha, beta)) = {at(alpha)}

ε+(drive(alpha, beta)) = {at(beta)}

ε−(drive(alpha, beta)) = {at(alpha)}
Executing drive(alpha, beta) from the initial state results in the state:

s′ = exec(drive(alpha, beta), sI)

= {at(beta), avail(soil, alpha), avail(rock, beta),

avail(image, gamma)},
because at(beta) becomes true and at(alpha) becomes false. A valid plan for the problem

in Figure 1 is the following sequence of actions:

( sample(soil, alpha), commun(soil),

drive(alpha, beta), sample(rock, beta),

commun(rock), drive(beta, gamma),

sample(image, gamma), commun(image))

Reachability Heuristics: Classical planning can be viewed as finding a path from an initial state

to a goal state in a state transition graph. This view suggests a simple algorithm that constructs the

state transition graph and uses a shortest path algorithm to find a plan in O(n log n) time. However,

practical problems have a very large number of states n. In the example, there are a total of 18

propositions, giving n = 218 = 2.6 × 105 states (which may be feasible in the above algorithm).

By making the problem more realistic, adding 17 more locations (a total of 20), 12 additional types

of data (a total of 15), and another rover, there are 420 propositions and n = 2420 = 2.7 × 10126

states.2 With approximately 1087 particles in the universe, explicitly representing and searching a

state transition graph of this size is impractical.

Instead of an explicit graph representation, it is possible to use a search algorithm and a

propositional representation to construct regions of the state transition graph, as needed. However,

2As we will see, the search space can also be infinite (e.g., in probabilistic planning in belief space).



11

in the worst case, it is possible to still construct the entire transition graph. Heuristic search al-

gorithms, such as A* search, can “intelligently” search for plans and hopefully avoid visiting large

regions of the transition graph. The critical concern of such heuristic search algorithms is the design

of a good heuristic.

To illustrate heuristic search for plans, consider the most popular search formulation, pro-

gression (a.k.a. forward-chaining). The search creates a projection tree rooted at the initial state

sI by applying actions to leaf nodes (representing states) to generate child nodes. Each path from

the root to a leaf node corresponds to a plan prefix, and expanding a leaf node generates all single

step extensions of the prefix. A heuristic estimates the “goodness” of each leaf node, and in clas-

sical planning this can be done by measuring the cost to reach a goal state (hence the terminology

reachability heuristics). With the heuristic estimate, search can focus effort on expanding the most

promising leaf nodes.

For instance, consider the empty plan prefix (starting at the initial state sI ) in our example.

Possible extensions of the plan prefix include driving to other locations, or sampling soil at the

current location. While each of these extensions contain actions relevant to supporting the goals,

they have different completion costs. If the rover drives to another location, then at some point it

will need to come back and obtain the soil sample. It would be better to obtain the soil sample now

to avoid extra driving later. A reachability heuristic should be able to measure this distinction.

Exact & Approximate Reachability Information: An obvious way to compute exact reachability

information is to compute the full projection tree rooted at the initial state. The projection tree

for the example is depicted in Figure 2a. The projection is represented as states in dark boxes

connected via edges for actions. The propositions holding in each state are listed (except for the

avail propositions, which are in all states).3 Within this tree, the exact reachability cost for each

3It is common to remove static propositions from state and action descriptions because they do not change value.
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Figure 2. Progression search graph (a) and planning graph (b) for rovers problem.

node is the minimal length path to reach a state satisfying the goal. For example, the cost of reaching

at(beta) is 1 and the cost of reaching have(rock) is 2. It is easy to see that access to such

exact reachability information can guide the search well.

Expecting exact reachability information is impractical as it is no cheaper than the cost of

solving the original problem! Instead, research on classical planning explores more efficient ways

of computing reachability information approximately. Of particular interest are “optimistic” (or

lower-bound) approximations as they can provide the basis for admissible heuristics. It turns out

that the planning graph data structure suits this purpose quite well. Figure 2b shows the planning

graph for the rover problem in juxtaposition with the exact projection tree. The planning graph is

a layered graph structure with alternating action and proposition layers (with the former shown in

rectangles). There are edges between layers: an action has its preconditions in the previous layer

and its positive effects in the next layer. For instance, the sample(soil, alpha) action, which
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is applicable at every level, has incoming edges from its precondition propositions avail(soil,

alpha) and at(alpha), and an outgoing edge for its positive effect have(soil). We ignore

negative effects (Hoffmann and Nebel, 2001) because action preconditions are strictly positive. In

addition to the normal domain actions, the planning graph also uses “persistence” actions (shown

by the dotted lines) which can be seen as noops which take and give back specific propositions.

It is easy to see that unlike the projection tree, the planning graph structure can be computed in

polynomial time.

There is an obvious structural relationship between the planning graphs and projection trees:

the planning graph seems to correspond to an envelope over the projection tree. In particular, the ac-

tion layers seem to correspond to the union of all actions at the corresponding depth in the projection

tree, and the proposition layers correspond to the union of all the states at that depth (with the states

being treated as “sets” of propositions). The envelope analogy turns out to be more than syntactic—

the proposition and action layers can be viewed as defining the upper bounds on the feasible actions

and states in a certain formal sense. Specifically, every legal state s at depth d in the projection tree

must be a subset of the proposition layer at level d in the planning graph. The converse however

does not hold. For instance, P1 contains the propositions at(beta) and have(soil), but they

do not appear together in any state at depth 1 of the search graph. In other words, the planning graph

data structure is providing optimistic reachability estimates.

The planning graph can be viewed as the exact projection tree for a certain relaxation of the

domain. The relaxation involves ignoring the interactions between and within action effects during

graph expansion. Two axioms capture these interactions and distinguish state expansion in the pro-

jection tree versus proposition layer expansion in the planning graph. In the projection tree, the first

axiom expresses that the state (set of propositions) resulting from applying action a1 is exclusive

of the state resulting from applying a2. For example, at depth 1 of the projection tree applying
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sample(soil, alpha) to state s1 makes have(soil) true in only state s13; have(soil)

is not true in the other states. The second axiom states that the effect propositions of each action must

hold together in the resulting state (i.e., they are coupled). Applying drive(alpha, beta) to

state s1 makes at(gamma) true and at(alpha) false in state s11; without coupling the effects,

the state would allow both at(gamma) and at(alpha) to be true. Expanding a proposition

layer also involves applying several actions, but with modifications to the two axioms above. The

first modified axiom states that the set of propositions resulting from applying a1 is independent of

the propositions resulting from applying a2, meaning that they are neither exclusive, nor coupled.

Consider how both at(gamma) and have(soil) appear in the first proposition layer P1 of the

planning graph (suggesting that the state {at(gamma), have(soil)} is reachable at depth 1).

The second modified axiom states that the effect propositions of each action are also independent.

For example, the first proposition layer P1 contains both at(gamma) and at(alpha) via the

independence within the effect of drive(alpha, gamma); the assumption allows ignorance

of how drive(alpha, gamma) makes at(alpha) false. The projection tree maintains state

barriers and couplings between effect propositions, where the planning graph removes both con-

straints. With an intuitive structural interpretation, the formal definitions of the planning graph and

the heuristics that it encodes follow quite easily.

Planning Graphs: I start by formalizing planning graphs and follow with a description of sev-

eral planning graph based reachability heuristics. Traditionally, progression search uses a different

planning graph to compute the reachability heuristic for each state s. A planning graph PG(s, A),

constructed for the state s (referred to as the projected state) and the action set A is a leveled graph,

captured by layers of vertices (P0(s),A0(s), P1(s),A1(s), ..., Ak(s),Pk+1(s)), where each level

i consists of a proposition layer Pi(s) and an action layer Ai(s). In the following, I simplify the

notation for a planning graph to PG(s), assuming that the entire set of actions A is always used.
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The notation for action layers Ai and proposition layers Pi also assumes that the state s is implicit.

The first proposition layer, P0, is defined as the set of propositions in the state s. An action

layer Ai consists of all actions that have all of their precondition propositions in Pi. A proposition

layer Pi, i > 0, is the set all propositions given by the positive effect4 of an action in Ai−1. It

is common to use implicit actions for proposition persistence (a.k.a. noop actions) to ensure that

propositions in Pi−1 persist to Pi. A noop action ap for proposition p is defined as ρe(ap) =

ε+(ap) = p.

Planning graph construction can continue until one of the following conditions holds: (i)

the graph has leveled off (i.e., two subsequent proposition layers are identical), or (ii) the goal is

reachable (i.e., every goal proposition is present in a proposition layer). In Figure 2a the planning

graph has all of the goal propositions {comm(soil), comm(rock), comm(image)} in P3

and will level off at P4. It is also possible to truncate planning graph construction at any level. If

the goal is not reachable before truncation, then the number of levels is still a lower bound on the

number of steps to reach the goal. However, if the goal is not reachable before the graph has leveled

off, then the goal is not reachable and there is no plan.

Heuristic Estimates of Plan Cost: Planning graph heuristics are used to estimate the plan cost to

transition between two states, a source and a destination state. The source state is always the state

that defines P0, and the destination state is one of potentially many goal states.

There are two fundamental types of planning graph heuristics, level-based and relaxed plan

heuristics (Nguyen et al., 2002). Most level-based heuristics compute a cost c(s, g) to reach each

proposition g ∈ G from the state s and then numerically aggregate the costs, via maximization

(maxg∈G c(s, g)) or summation (
∑

g∈G c(s, g)). The heuristics are level-based because the cost

4The reason that actions do not contribute their negative effects to proposition layers (which contain only positive
propositions) is a syntactic convenience of using STRIPS. Since action preconditions and the goal are defined only by
positive propositions, it is not necessary to reason about reachable negative propositions. In general, actions languages
(such as ADL (Pednault, 1994)) allow negative propositions in preconditions and goals, requiring the planning graph to
maintain “literal” layers that record the all reachable values of propositions (Koehler et al., 1997).
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Heuristic G G1 G2

Max 3 2 1
Sum 8 3 2
Relaxed Plan 8 2 2
True Cost 8 2 2

Table 1. Heuristic estimates and true cost to achieve each goal from the initial state.

of each proposition p is determined by the index of the first proposition layer in which it appears,

c(s, p) = mini:p∈Pii. For instance, the goal proposition comm(soil) first appears inP2, meaning

it has a cost of 2. If a proposition does not appear in any proposition layer of a leveled off planning

graph, then its cost is ∞. Otherwise, if the planning graph has k levels but has not leveled off,

the cost of such missing propositions is at least k. Unlike level-based heuristics that relate level to

cost, relaxed plans identify the actions needed to causally support all goals (while ignoring negative

interactions). I explore both types of heuristics in detail here, but later chapters focus exclusively

on relaxed plans.

In order to illustrate the different heuristics (see Table 1), I will use three goals for the

rover problem: G = {comm(soil), comm(image), comm(rock)} (the original goal), G1

= {at(beta), have(rock)}, and G2 = {at(beta), have(soil)}. Table 1 lists the cost

estimates made by different heuristics for each goal. The table also lists the true optimal plan cost

for each goal. The following discussion uses these goals to explain the properties of each heuristic.

Level-based Heuristics: The level-based heuristics make a strong assumption about the cost of

reaching a set of propositions: namely, that achievement cost is related to the level where propo-

sitions first appear. Depending on how one assesses the cost of the set of propositions, additional

assumptions are made.

Using maximization to aggregate proposition costs assumes that the actions used to achieve

the set of propositions will positively interact. For example, with G1 it is possible to achieve
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at(beta) in P1 defining c(sI , at(beta)) = 1, and achieve have(rock) in P2, defining c(sI ,

have(rock)) = 2. Taking the maximum of the costs max(1, 2) = 2 to achieve each proposi-

tion avoids counting the cost of drive(alpha, beta) twice. The max heuristic for reaching

the goal G from sI is max(c(sI ,have(soil)), c(sI , have(rock)), c(sI ,have(image))) =

max(2, 3, 3) = 3.

Using a summation to aggregate proposition costs assumes that the sub-plans to achieve the

set of propositions will be fully independent. Independence captures the notion that actions taken to

achieve one goal will neither aid nor prevent achievement of another goal. For example, with G2 it is

possible to achieve at(beta) in P1, defining c(sI , at(beta)) = 1, and achieve have(soil)

in P1, defining c(sI , have(soil)) = 1. Taking the summation of the costs 1 + 1 = 2 accurately

measures the plan cost as 2 (because the required actions were independent), whereas taking a

maximization would under-estimate the plan cost as 1. The sum heuristic for reaching the original

goal G is 8 because c(sI ,have(soil)) + c(sI ,have(rock)) + c(sI ,have(image))) = 2 +

3 + 3 = 8. In practice the sum heuristic usually outperforms the max heuristic, but gives up

admissibility.

The main problem with level-based heuristics is that they assume that the proposition layer

index is equal to the cost of achieving a proposition. Because planning graphs optimistically allow

multiple parallel actions per step, using level to define cost can be misleading. Consider a goal

proposition that first appears in P2: its cost is 2. In reality the proposition may be supported by

a single action with 100 precondition propositions, where each proposition must be supported by

a different action. Thus, a plan to support the goal would contain 101 actions, but a level-based

heuristic estimates its cost as 2. One can overcome this limitation by using a relaxed plan heuristic.

Relaxed Plan Heuristics: Many of the problems with level-based heuristics came from ignoring

how multiple actions per level execute in parallel. The reachability heuristic should better estimate
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RPExtract(PG(s), G)

1: Let n be the index of the last level of PG(s)
2: for all p ∈ G ∩ Pn do /* Initialize Goals */
3: PRP

n ← PRP
n ∪ p

4: end for
5: for i = n...1 do
6: for all p ∈ PRP

i do /* Find Supporting Actions */
7: Find a ∈ Ai−1 such that p ∈ ε+(a)
8: ARP

i−1 ← ARP
i−1 ∪ a

9: end for
10: for all a ∈ ARP

i−1, p ∈ ρe(a) do /* Insert Preconditions */
11: PRP

i−1 ← PRP
i−1 ∪ p

12: end for
13: end for
14: return (PRP

0 ,ARP
0 ,PRP

1 , ...,ARP
n−1,PRP

n )

Figure 3. Relaxed Plan Extraction Algorithm.

the number of actions in a plan. Through a simple back-chaining algorithm (Figure 3) called re-

laxed plan extraction, it is possible to identify the actions in each level that are needed to support

the goals or other actions. Relaxed plans are subgraphs (PRP
0 ,ARP

0 ,PRP
1 , ...,ARP

n−1,PRP
n ) of the

planning graph, where each layer corresponds to a set of vertices. Where appropriate, I represent

relaxed plans by their action layers (omitting noop actions and empty action layers) and omitting all

proposition layers. A relaxed plan satisfies the following properties: (i) every proposition p ∈ PRP
i ,

i > 0, in the relaxed plan is supported by an action a ∈ ARP
i−1 in the relaxed plan, and (ii) every

action a ∈ ARP
i in the relaxed plan has its preconditions ρe(a) ⊆ PRP

i in the relaxed plan. A re-

laxed plan captures the causal chains involved in supporting the goals, but ignores how actions may

conflict. For example, a relaxed plan extracted from PG(sI) may contain both drive(alpha,

beta) and drive(alpha, gamma) in ARP
0 because they both help support the goal, despite

conflicting.

Figure 3 lists the algorithm used to extract relaxed plans. Lines 2-4 initialize the relaxed

plan with the goal propositions. Lines 5-13 are the main extraction algorithm that starts at the last
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level of the planning graph n and proceeds to level 1. Lines 6-9 find an action to support each

proposition in a level. Line 7 is the most important critical step in the algorithm. It is common to

prefer noop actions for supporting a proposition (if possible) because the relaxed plan is likely to

include fewer extraneous actions. For instance, a proposition may support actions in multiple levels

of the relaxed plan; by supporting the proposition at the earliest possible level, it can persist to later

levels. It also possible to select actions based on other criterion, as will be seen in later chapters.

Lines 10-12 insert the preconditions of chosen actions into the relaxed plan. The algorithm ends by

returning the relaxed plan, which is used to compute the heuristic, which is the total number of non

noop actions in the action layers.

The relaxed plan to support the goal G from sI is depicted in Figure 2b in bold. Each of

the goal propositions is supported by a chosen action, and each of the actions has its preconditions

supported. There are a total of eight actions in the relaxed plan, each with unit cost, so the heuristic

is 8.

The advantage of relaxed plans is that they capture both positive interaction and indepen-

dence of sub-plans used to achieve the goals, rather than assuming one or the other. The goals G1

and G2 have the respective relaxed plans:

ARP (G1)
0 = {drive(alpha, beta)},

ARP (G1)
1 = {sample(rock, beta)}

and

ARP (G2)
0 = {sample(soil, alpha), drive(alpha, beta)}.

In the above, the relaxed plan heuristic is equivalent to the max heuristic for the positively inter-

acting goal propositions in G1, and it is equivalent to the sum heuristic for the independent goal

propositions in G2. Relaxed plans measure both action independence and positive interaction, mak-

ing them a compromise between the max and sum heuristics (which measure just one or the other).



20

Heuristic search in classical planning deals with estimating the distance between states.

However, when there is uncertainty, the techniques described above may not work as well. The next

chapter will evaluate this claim with respect to incomplete state information. To describe planning

under uncertainty, a model of uncertainty is first needed, described next.

3. Modeling Uncertainty

When mission control from the rover example has less than perfect knowledge of the rover’s

environment they may want to describe their uncertainty. The classical planning model does not

allow uncertainty, but it can be extended. There are two types of uncertainty addressed in this

work: non-deterministic (possibilistic) and stochastic (probabilistic). The former refers to uncer-

tainty by a set possibilities, and the latter refers to a probability distribution over possibilities. For

example, in the rover problem, there may be uncertainty about which location will provide a good

soil sample. The model can describe this uncertainty with propositions avail(soil, alpha),

avail(soil, beta), and avail(soil, gamma). A non-deterministic model may as-

sert that exactly one of {avail(soil, alpha), avail(soil, beta), avail(soil,

gamma) } holds. The probabilistic model may assert that avail(soil, alpha) holds with

probability 0.4, avail(soil, beta) holds with probability 0.5 and avail(soil, gamma)

holds with probability 0.1. In both cases, uncertainty is modeled in terms of a set of possible worlds.

Possible world semantics describes the set of joint outcomes to a set of uncertain events as possible

worlds. Probabilistic uncertainty adds weights to possible worlds, where non-deterministic uncer-

tainty does not. In the example above, in each possible world the soil is at a different location.

The meaning behind probabilistic uncertainty should be clear, but there can be many inter-

pretations of the non-deterministic uncertainty:
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1. Each possibility is equally likely (i.e., there is an implicit uniform probability distribution

over possibilities).

2. There is a probability distribution over possibilities, but it is unknown.

3. There is a probability distribution over possibilities, but it is ignored.

Each of these interpretations is appropriate under different circumstances, and it is the job of the

domain modeler to decide which applies.

Some works (Eiter and Lukasiewicz, 2003; Trevizan et al., 2007) have combined the two

types of uncertainty to allow for a non-deterministic uncertainty over probability distributions or a

probability distribution over non-deterministic choices. While these combined models could have

practical use in situations where some probability distributions are known and others are not, I

concentrate on exclusively non-deterministic and probabilistic models of uncertainty.

There also exists a third type of uncertainty that will not be addressed, namely qualitative

uncertainty. Seen as a compromise between non-deterministic and stochastic uncertainty, qualita-

tive uncertainty assigns possibilities to a small set of qualitative assessments such as: “unlikely”,

“possible”, or “highly likely”.

The following sections will give definitions for planning with uncertainty, pointing out

where differences due to non-deterministic and stochastic uncertainty arise.

4. Observability

If, in the rover example, mission control is uncertain about where there is soil, then perhaps

the rover is able to obtain some information to help rule out uncertainty. When a model includes

uncertainty, observability captures the degree to which the outcome of an uncertain event is known.

There are three basic types of observability:
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1. Full: It is possible to uniquely and correctly determine the outcome of an uncertain event.

2. Partial: It is possible to characterize the posterior possibility (probability) of an outcome, but

not necessarily to the extent that the outcome is uniquely determined. Partial observations

may also be noisy, meaning that information about the event is potentially faulty.

3. None: It is not possible to characterize the outcome of an uncertain event aside from its prior

possibility (probability).

There are several important consequences of assuming a particular type of observability.

The first is that partial observability contains full and no observability as special extreme cases.

Second, assuming partial and no observability require reasoning about hidden outcomes, where

with full observability this is not required. To see the differences, consider the rover example from

the previous section where there is uncertainty about which location has soil. Assume also that the

action to sample the soil may or may not work (its effect is uncertain). Under full observability,

the assumption is that the rover is pre-programmed with knowledge of which location has soil and

when the rover uses the sample action, it will know if it worked. With no observability, the rover

will not know which location has the soil and it will not know when the sample action succeeds.

With partial observability, it may be that the rover does not know which location has the soil, but it

will know if the sample action works. If the rover has a noisy sensor, then it may think that the

sample action worked when it did not, and vice-versa.

In planning, there are specific models for each type of uncertainty and observability. These

models formulate actions under various assumptions that reflect the uncertainty and observability

assumptions listed above.
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5. Planning under Uncertainty

Given the types of uncertainty and observability described in the previous sections, there

are a number of different combinations that give rise to different planning models. This section will

detail a general formulation that captures all of these combinations and defines the restrictions on

the general formulation that define each specific model. In the general model, it becomes necessary

to model how incomplete state information leads to belief states (by characterizing possible hidden

states), and how actions can have uncertain effects and provide observations about hidden states.

Also, with a more general state and action model, plans can have very different structure, taking the

form of digraphs versus sequences.

In the following, I define the shared features of several planning models. Each planning

problem uses a subset of these features in its definition. From the planning models and problem

definitions, I will define the semantics of plans (solutions). The following section builds upon this

section by detailing a search algorithm that can be used to synthesize many of the plans.

5.1. Model Features. Building upon the classical planning formulation from earlier, it be-

comes necessary to describe belief states and actions with uncertain effects and observations.

Belief States: When the state is hidden, it is characterized by a belief state b, which represents all

possible or probable current states. In the remainder of this work, states in a belief state may also

be referred to as possible worlds. Depending on the model of uncertainty, belief states are defined

differently.

A non-deterministic belief state b is a set of possible states b ⊆ S. The set of all non-

deterministic belief states B is the powerset of all states, which is the power set of all propositions,

such that B = 22P
= 2S . A non-deterministic belief state also describes a function b : S → {0, 1},

where b(s) = 1 if s ∈ b and b(s) = 0 if s �∈ b.
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A probabilistic belief state b is a probability distribution over states, describing a function b :

S → [0, 1], such that
∑

s∈S b(s) = 1.0. While every state is involved in the probability distribution,

many are often assigned zero probability. To maintain consistency with non-deterministic belief

states, those states with non-zero probability are referred to as states in the belief state s ∈ b if

b(s) > 0. Probabilistic belief states can be seen as the weighted generalization of non-deterministic

belief states.

Actions: In classical planning it is often sufficient to describe actions by their execution precon-

dition and positive and negative effects. With uncertainty, it is convenient to describe actions that

have multiple outcomes with context-dependent (conditional) effects and observations. Redefining

actions, an action a ∈ A is a tuple (ρe(a), Φ(a),O(a)), where ρe(a) is an enabling precondition,

Φ(a) is a set of causative outcomes, and O(a) is a set of observables. The enabling precondition

ρe(a) is a conjunctive set of propositions that determines the states in which an action is applicable.

An action a is applicable appl(a, s) to state s if ρe(a) ⊆ s, and it is applicable appl(a, b) to a belief

state b if for each state s ∈ b the action is applicable.5

Each causative outcome Φi(a) ∈ Φ(a) is a set of conditional effects. Each conditional effect

ϕij(a) ∈ Φi(a) is of the form ρij(a)→ (ε+
ij(a), ε−ij(a)) where both the antecedent (secondary pre-

condition) ρij(a), the positive consequent ε+
ij(a), and the negative consequent ε−ij(a) are a conjunc-

tive set of propositions. Actions are assumed to be consistent, meaning that for each Φi(a) ∈ Φ(a)

each pair of conditional effects j and j′ have consequents such that ε+
ij(a) ∩ ε−ij′(a) = ∅ if there

is a state s where both may execute (i.e., ρij(a) ⊆ s and ρij′(a) ⊆ s). In other words, no two

conditional effects of the same outcome can have consequents that disagree on a proposition if both

effects are applicable. In non-deterministic models, each outcome has a weight wi(a) = 1. In

5While it may seem like a strong restriction that actions must have their execution precondition satisfied in every state
of a belief state for the action to be applicable, it is possible to move execution preconditions into conditional effects. By
doing so, the action may be applicable in more belief states, but the effects will only change certain states that satisfy the
conditional effect preconditions. Another alternative, that is not explored in this work, is to allow uncertainty in action
applicability, which makes plan executability uncertain.
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probabilistic models, there is a weight 0 < wi(a) ≤ 1 indicating the probability of each outcome

i being realized, such that
∑

i wi(a) = 1. This representation of effects follows the 1ND normal

form presented by Rintanen (2003).

As outlined in the probabilistic PDDL (PPDDL) standard (Younes and Littman, 2004), it is

possible to use the effects of every action to derive a state transition function T (s, a, s′) that defines

a possibility or probability that executing a in state s will result in state s′. Executing action a in

state s will result in a single state s′ for each outcome Φi(a):

s′ = exec(Φi(a), s) = s ∪
( ⋃

j:ρij⊆s
ε+
ij(a)

)
\
( ⋃

j:ρij⊆s
ε−ij(a)

)

In non-deterministic models, this defines the possibility of transitioning from state s to s′ by ex-

ecuting a as T (s, a, s′) = 1 if there exists an outcome Φi(a) where s′ = exec(Φi(a), s), and

T (s, a, s′) = 0, otherwise. In probabilistic models T (s, a, s′) is the sum of the weight of each

outcome where s′ = exec(Φi(a), s), such that:

T (s, a, s′) =
∑

i:s′=exec(Φi(a),s) wi(a)

Executing action a in belief state b, denoted exec(a, b) = ba, defines the successor belief state

ba(s′) in the following manner. In non-deterministic models ba(s′) = maxs∈b b(s)T (s, a, s′), and

in probabilistic models ba(s′) =
∑

s∈b b(s)T (s, a, s′).

Each observable Ok(a) ∈ O(a) is described by a set of propositions (i.e., Ok(a) ⊆ P ),

and in probabilistic models it has an associated pair of probabilities (w+
k (a), w−

k (a)), indicating

its reliability in terms of a respective true positive and true negative probability. Observations in

non-deterministic models are assumed to be reliable (i.e., w+
k (a) = w−

k (a) = 1).

If a state s satisfies the observable Ok(a) (i.e., Ok(a) ⊆ s), then with probability w+
k (a)

the observable Ok(a) is reliably observed true in state s. Similarly, w−
k (a) is the probability that

Ok(a) is reliably observed false in state s when Ok(a) �⊆ s. Let Ω(a) : 2Ok(a) denote the set

of possible observations after executing action a, where each observation o ∈ Ω(a) is a set of
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observables observed to be true (assuming those observables Ok(a) �∈ o are observed false). In

non-deterministic models, define the possibility of each observation o ∈ Ω(a) with the observation

function O(a, s, o), where O(a, s, o) = 1 if ∀Ok(a)∈oOk(a) ⊆ s and ∀Ok(a) �∈oOk(a) �⊆ s, and

O(a, s, o) = 0 otherwise. In probabilistic models, define the probability of each observation o ∈

Ω(a) with the observation function O(a, s, o) =
∏

k Pr(Ok(a)|s), where

Pr(Ok(a)|s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w+
k (a) : Ok(a) ∈ o,Ok(a) ⊆ s

w−
k (a) : Ok(a) �∈ o,Ok(a) �⊆ s

1− w−
k (a) : Ok(a) ∈ o,Ok(a) �⊆ s

1− w+
k (a) : Ok(a) �∈ o,Ok(a) ⊆ s

The observation function helps define the belief state bo
a that results from assimilating ob-

servation o while in belief state ba, such that bo
a = assim(o, ba), bo

a(s) = αba(s)O(a, s, o), and

α =
∑

s∈ba
ba(s)O(a, s, o) is a normalization constant. The probability of receiving observation o

of belief state ba is equivalent to α.

Combining action execution and observation assimilation, define filter((a : o), b) =

assim(o, exec(a, b)) = bo
a. Define the belief state b′ reached by a sequence of actions and ob-

servations (a0 : o0, a1 : o1, ..., am : om) as b′ = filter((a0 : o0, a1 : o1, ...am : om), b) =

filter((am : om), ...filter((a1 : o1), filter((a0 : o0), b))...).

5.2. Planning Models. With the definitions of planning model features, it is possible to

define a generic planning model (to which various restrictions define models of interest):

Definition 1 (Generic Planning Model). The generic planning model is a tuple GP = (P, A, bI , G),

where P is a set of propositions, A is a set of actions, bI is a description of the initial belief state,

and G is a set of goal propositions.

The restrictions on observability are defined as follows:
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• No Observability (NO): Each action a has a single observable, O(a) = {∅}.

• Full Observability (FO): Each action a has an implicit observable for every proposition,

O(a) = {Ok(a) = {p}|p ∈ P}.

• Partial Observability (PO): Each action a has a possibly non empty set of observables.

– Perfect (PPO): Each action a has weight w+
k (a) = w−

k (a) = 1 for each observable

Ok(a) ∈ O(a).

– Noisy (NPO): There is an action a that has weight 0 ≤ w+
k (a) < 1 or 0 ≤ w−

k (a) < 1

for some observable Ok(a) ∈ O(a).

The restrictions on action effects are as follows:

• Deterministic Actions (DA): Each action a has a single outcome, Φ(a) = {Φ0(a)}.

• Non-Deterministic Actions (NDA): Each outcome Φi(a) of each action a has no weight

wi(a).

• Probabilistic Actions (PA): Each outcome Φi(a) of each action a has a weight wi(a), such

that
∑

i wi(a) = 1.

The restrictions on the initial state are as follows:

• Deterministic Initial State (DI): There is a single initial state s, such that bI(s) = 1, and

∀s′ �= s, bI(s′) = 0.

• Non-Deterministic Initial State (NDI): There is a non-deterministic initial belief state bI .

• Probabilistic Initial State (PI): There is a probabilistic initial belief state bI .
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Figure 4 summarizes the models of interest in terms of their assumptions on uncertainty

and observability. It shows a portion of the belief space constructed for an example rover problem

in each of the models. Figure 5 lists a problem description for the rover example. The problem

description contains several features, such as probabilistic effects, noisy observations, and a proba-

bilistic initial belief state. To describe each of the models, various features of the example will be

ignored.

In the example, the probabilistic initial belief state is comprised of three states:

sα = {at(alpha), avail(soil, alpha)}

sβ = {at(alpha), avail(soil, beta)}

sγ = {at(alpha), avail(soil, gamma)}
such that bI = {0.4 : sα, 0.5 : sβ , 0.1 : sγ}. The goal is to achieve comm(soil), and

valid solutions must do so with at least 0.5 probability. The action that will be illustrated is the

sample(soil, alpha) action, described as:

ρe(sample(soil, alpha)) ={at(alpha)}

ϕ00(sample(soil, alpha))={{avail(soil, alpha)} → ({have(soil)}, {})}

w0(sample(soil, alpha)) =0.9

ϕ10(sample(soil, alpha))={}

w1(sample(soil, alpha)) =0.1

O0(sample(soil, alpha))={have(soil)}

w+
0 (sample(soil, alpha))=0.9

w−
0 (sample(soil, alpha))=0.7

The classical planning model is the most restrictive of the models considered in this work.

Definition 2 (Classical Planning Model). The classical planning model is defined as the generic

planning model with no observability, deterministic actions, and a deterministic initial state. [(NO)
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Figure 4. Planning Models.

+ (DA) + (DI)]

Each action has only one outcome and there is a single state in the initial belief state, meaning every

belief state reached by executing a sequence of actions will have only one state. Because there are

no observations (or need for observations), plans are sequential. The only differences between this

definition of classical planning and the definition from this chapter’s section on classical planning

is a more general action formalism and the notion of belief states. While the actions can contain

conditional effects, it is possible to transform these actions in STRIPS-style actions by moving the

antecedents of the conditional effects into execution preconditions.

The next model adds a minimum requirement for modeling uncertainty, namely uncertain
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(define (domain rovers stochastic)
(:requirements :strips :typing)
(:types location data)
(:predicates

(at ?x - location)
(avail ?d - data ?x - location)
(comm ?d - data)
(have ?d - data))

(:action drive
:parameters (?x ?y - location)
:precondition (at ?x)
:effect (and (at ?y) (not (at ?x))))

(:action commun
:parameters (?d - data)
:precondition (and)
:effect (when (have ?d)

(probabilistic 0.8 (comm ?d))))

(:action sample
:parameters (?d - data ?x - location)
:precondition (at ?x)
:effect (when (avail ?d ?x)

(probabilistic 0.9 (have ?d))))
:observation ( ((have soil) 0.9 0.7) )

)

(define (problem rovers stochastic1)
(:domain rovers stochastic)
(:objects

soil image rock - data
alpha beta gamma - location)

(:init (at alpha)
(probabilistic 0.4 (avail soil alpha)

0.5 (avail soil beta)
0.1 (avail soil gamma))

(:goal (comm soil) 0.5)
)

Figure 5. PDDL description of stochastic planning formulation of rover problem.

(non-deterministic) action effects with full observability.

Definition 3 (Fully-Observable Non-Deterministic Conditional Planning). Fully-observable non-

deterministic conditional planning is defined as the generic planning model with full observations,

non-deterministic actions, and a non-deterministic initial state. [(FO) + (NDA) + (NDI)]

Like the classical planning model, every belief state reachable by some action sequence contains a

single state in this model. With full observability it is possible to uniquely determine the state. Thus,

applying an action with uncertain effects to a belief state may result in several successor belief states,

each with a single state that is consistent with a different outcome of the action. When problems

have initial state uncertainty, there is assumed to be a dummy initial action that gives each possible

initial state as an effect. Figure 4 graphically depicts this dummy action with the dashed lines, lead-
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ing to each of the initial states. The figure also shows the result of applying the sample(soil,

alpha) action to the belief state with sα. Since this model is non-deterministic, assume that the

effect of the action is non-deterministic rather than probabilistic. Since the antecedent of the condi-

tional effect {avail(soil, alpha)} is true in sα, if outcome Φ0(avail(soil, alpha))

occurs, the resulting belief state will contain the state:

s′α = {at(alpha), avail(soil, alpha), have(soil)},

and if outcome Φ1(avail(soil, alpha)) occurs, the resulting belief state will contain the

state sα. While not depicted in the figure, applying the same action to the other belief states will

result in the same respective belief states because regardless of the outcome, there will be no effect.

It is possible to extend the non-deterministic model to include probabilistic uncertainty in

the following model.

Definition 4 (Fully-Observable Probabilistic Conditional Planning). The fully-observable proba-

bilistic conditional planning model is defined as the generic planning model with full observations,

probabilistic actions, and a probabilistic initial state. [(FO) + (PA) + (PI)]

Fully-observable probabilistic conditional planning is similar to the non-deterministic version, but

uses probabilistic actions. As depicted in Figure 4 in the upper right entry of the table, the edges

denoting action outcomes are weighted with their probability. Similar to a Markov chain, it is

possible to assess the probability of making transitions between belief states. For example, applying

sample(soil, alpha) to the belief state {sα} results in the belief state {s′α} with probability

0.4(0.9) = 0.36. If the first application did not work, then applying a second time will increase the

probability to 0.4(0.9) + 0.4(1.0-0.9)(0.9) = 0.396.

By assuming full observability, or by using the classical planning model, the space of belief

states is exactly the same size as the space of states. However, with partial or no observability,
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the size of the space of belief states is much greater. In non-deterministic models, there are 2|S|

belief states, but in the probabilistic model there are an infinite number (for all probability dis-

tributions over S). The first model that requires belief states (that contain several states) is the

non-deterministic conformant planning model.

Definition 5 (Non-Deterministic Conformant Planning). The non-deterministic conformant plan-

ning model is defined as the generic planning model with no observability, and one or both of

non-deterministic actions and a non-deterministic initial state. [(NO) + (NDA) + (NDI), (NO) +

(DA) + (NDI), (NO) + (NDA) + (DI)]

The non-deterministic conformant planning model is based on the notion that planning starts with

an uncertain belief state and/or an uncertain belief state is reached by applying an action with

an uncertain outcome (which cannot be observed). Figure 4 shows the result of applying the

sample(soil, alpha) action to bI (ignoring probabilities), resulting in a belief state where

s′α is a possible state in addition to the states already in bI . Without observations, as in the fully

observable model, it is not possible to differentiate the states.

By adding probabilities, it is possible to place a probability distribution over the states in a

belief state, and, while the exact state is not known, there is some information about which states are

most likely. However, the belief state space becomes much larger with probabilistic information.

Repeated applications of sample(soil, alpha) will not change the belief state in the non-

deterministic model because no new states are possible. Yet, in the probabilistic model, repeated

applications of an action may not change the possible states, but it will change the probability

distribution (meaning the belief state is different).

Definition 6 (Probabilistic Conformant Planning). The probabilistic conformant planning model is

defined as the generic planning model with no observability, and one or both of probabilistic actions

and a probabilistic initial state. [(NO) + (PA) + (PI), (NO) + (DA) + (PI), (NO) + (PA) + (DI)]
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Like the non-deterministic conformant planning model, uncertain effects or an uncertain initial state

combine with no observability to require the agent to maintain a belief state. As previously noted,

the probabilistic model provides a probability distribution over the outcome of each action and the

states in each belief state. Applying sample(soil, alpha) to bI results in the belief state

{0.04 : sα, 0.36 : s′α, 0.50 : sβ , 0.10 : sγ}. Applying the action again shifts the probability

distribution over the same states to the belief state {0.004 : sα, 0.396 : s′α, 0.50 : sβ , 0.10 : sγ}.

With observations it is possible to disambiguate the states in a belief state and branch the

plan for each possible observation, like the fully observable model. However, because observations

are partial, assimilating the observation may result in a belief state with several states. If the obser-

vation is perfect, the resulting belief state contains states that agree on the observation. However,

if the observation is noisy, then the resulting belief state may contain states that do not agree with

the observation because the observation is potentially wrong. Observations in the non-deterministic

model are assumed to be perfect and in the probabilistic model they can be noisy.

Definition 7 (Non-Deterministic Conditional Planning). The non-deterministic conditional plan-

ning model is defined as the generic planning model with partial observations, non-deterministic

actions, and a non-deterministic initial state. [(PPO) + (NDA) + (NDI)]

Non-deterministic conditional planning is the most general of the non-deterministic planning mod-

els. The initial state can be uncertain, actions can have multiple uncertain outcomes, and the ob-

servations are partial. Unlike the fully-observable non-deterministic planning model, it may never

be possible to know the outcome of an action. Consider the belief states resulting from applying

sample(soil, alpha) to bI . There is one belief state containing the single state s′α because

have(soil) is observed true in the state, and another belief state bI containing all states where

have(soil) is observed false.

With noisy observations and probabilistic dynamics, the belief states resulting from applying
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an action with observations will reflect increased probability for states agreeing with the respective

observations. However, it may not be possible to completely disambiguate the states.

Definition 8 (Probabilistic Conditional Planning). The probabilistic conditional planning model

is defined as the generic planning model with partial observations, probabilistic actions, and a

probabilistic initial state. [(PPO) + (PA) + (PI), (NPO) + (PA) + (PI)]

The probabilistic conditional planning model is the most general of all the planning models consid-

ered in this work. In addition to adding probabilities to the non-deterministic conditional planning

model, it adds the possibility of noisy observations. Figure 4 shows the belief states resulting from

applying sample(soil, alpha) to bI . The first belief state contains states inconsistent with

the have(soil) observation, but with low probability, and the second belief state contains a state

inconsistent with ¬have(soil), but with low probability. Since the observation is noisy, there is

a small probability that it is wrong and some states cannot be completely ruled out from the belief

state. The probability of getting each observation is equivalent to the sum of the products of the

probabilities of each state and the probability of getting the observation in the state.

Each of the planning models admits different types of solutions to the problems described

in the model. The next subsection contains definitions for several types of plans, which are different

solutions. The remainder of this work will assume certain solutions are required for each of the

models. For example, non-deterministic models will require strong plans (i.e., plans that guarantee

goal achievement), and probabilistic models will not (requiring a probabilistic guarantee of goal

achievement). Where appropriate, the assumptions on plans and models will be clarified.

5.3. Types of Plans. There are many types of plans that are solutions to the previously

defined planning models. Each plan is characterized by the following features: branching, cycles,

and goal achievement. Branching corresponds to conditional plans where it is possible to use a
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different sub-plan for each observation history (defined below). Cycles require branching to support

repeated execution of a sub-plan until an observation leads to a different sub-plan. Goal achievement

characterizes the degree to which a plan guarantees a goal state is reached upon executing the plan.

Plan traces (hypothetical executions) help define the semantics of a plan π. A plan trace π̃

is a sequence (s0, a0, o0, ..., sk−1, ak−1, ok−1, sk) that starts in an initial state s0 ∈ bI , contains k

actions and observations, and ends in a state sk. Each action ai, i > 0, is said to be conditioned

on the observation oi−1. The first action a0 is conditioned on the initial belief state (the initial

observation). A plan trace is valid if for each 0 ≤ i < k: oi ∈ Ω(ai) and si+1 ∈ filter((ai : oi), si).

A plan trace satisfies the goal if it is valid and sk is a goal state. The observation history of a plan

trace is the sequence of observations (o0, ..., ok−1).

A plan π is a directed graph π = (V π, Eπ) that summarizes a set of plan traces, such that

each plan trace corresponds to a path in the graph. Let bI ∈ V π denote a vertex for the initial

belief state, π(b) denote the action to execute in belief state b ∈ V π, and (b, b′) ∈ Eπ denote

an edge between belief states b and b′. The graph is structured such that there exists a plan trace

(s0, a0, o0, ..., sk−1, ak−1, ok−1, sk) if ∀ i : 0 ≤ i < k where bi+1 = filter((a0 : o0, ..., ai :

oi), bI):

• bI = b0

• bi, bi+1 ∈ V π, (bi, bi+1) ∈ Eπ

• si ∈ bi, ai = π(bi), si+1 ∈ bi+1

• π(bk) =⊥

In other words, a plan trace is in a plan if each state in the plan trace is in the belief state reached by

the same action and observation history.
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Model Plan Criterion
Classical Strong, Acyclic, Sequential
Fully-Observable Non-Deterministic Conditional Strong, Cyclic, Branching
Non-Deterministic Conformant Strong, Acyclic, Sequential
Non-Deterministic Conditional Strong, Acyclic, Branching
Fully-Observable Probabilistic Conditional Strong/Weak, Cyclic, Branching
Probabilistic Conformant Strong/Weak, Acyclic, Sequential
Probabilistic Conditional Strong/Weak, Cyclic, Branching

Table 2. Plan success criterion for the models described in this work.

A plan is strong if every plan trace satisfies the goal (G ⊆ sk), otherwise it is weak. Cyclic

plans have an infinite number of plan traces, and acyclic plans have a finite number of plan traces.

Since there are a finite number of states, observations, and actions, the only way for a plan to have

an infinite number of plan traces is through cycles. Each plan trace enters the cycle a different

number of times. A sequential plan requires that every plan trace has the same observation history

(implying they share the same sequence of actions because actions are conditioned on observations),

and a branching (conditional) plan has at least two plan traces with different observation histories.

In probabilistic models it is possible to quantify the probability of satisfying the goal in

weak plans. Define the probability of a plan trace as the probability of the observation history and

the starting state Pr(π̃) =
∑k−1

i=0 O(si, ai, oi)bI(s0). The probability of satisfying the goal in a

probabilistic plan is the sum of the probabilities of the valid plan traces that satisfy the goal.

Table 2 lists the solution criterion for each of the models considered in this work. The

non-deterministic conditional model is also required to be acyclic because strong cyclic plans for

planning with partial observability are beyond the scope of this work; consult Bertoli et al. (2001)

for more details. The probabilistic models can be weak, but specify a τ bounding the minimum

probability of goal satisfaction in acceptable solutions.
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6. AO∗ Search Algorithm

Recall that from the section on classical planning, progression search is a method to con-

struct a transition graph rooted at the initial state. With uncertainty, the transition graph (also known

as the belief state space) is rooted at the initial belief state. Belief states are vertices and actions

are directed edges, similar to the definition of plans from the previous section. (In fact, the belief

state space graph summarizes many partial plans, and the current plan is induced by choosing a

best action π(b) from the applicable actions for each belief state b.) Because applying an action

may result in several successor belief states (one for each observation) a new search algorithm is

needed. A* search can be used to find paths in the transition graph, but AO* is needed to find sub-

graphs. I will use AO* to find directed acyclic subgraphs in all types of conformant planning and

non-deterministic conditional planning. Probabilistic conditional planning will require a variation

of the LAO* algorithm to find cyclic subgraphs. I will not consider finding cyclic solutions for

non-deterministic problems.

AO* constructs the transition graph by maintaining and expanding a current partial solution.

Initially, the belief state space contains a single leaf vertex for the initial belief state. Expanding the

plan involves expanding every leaf vertex of a partial plan. Expanding a vertex (corresponding to

belief state b) adds every belief state bo
a to the belief state space that is reachable by executing action

a and receiving observation o in b. Each successor belief state bo
a of belief state b is connected by

a directed edge (b, bo
a) labeled by (a, o). Search expands only the leaf vertices of the current partial

plan.

Search maintains and expand the current best partial solution by carefully choosing the best

action π(b) for each belief state b in the partial solution. It is possible to quantify the value of each

action a in a belief state b with a q(b, a) function and to quantify the value of a belief state with a

J(b) function, such that in non-deterministic models:
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AO*()

1: i = 0
2: repeat
3: Z = ExpandPlan(bI , i

++)
4: Z’ = AddAncestors(Z)
5: Update(Z’)
6: until |Z| = 0
7: if solved(bI ) then
8: return π
9: else

10: return ∅
11: end if

ExpandPlan(b, i)

1: if expanded(b) < i then
2: expanded(b) = i
3: for (b, bo

π(b)) ∈ E do
4: Z’ = ExpandPlan(bo

π(b))
5: Z = Z ∪ Z’
6: end for
7: else
8: expanded(b) = i
9: GenerateSuccessors(b)

10: Z = Z ∪ b
11: end if
12: return Z

Figure 6. AO* Search Algorithm.

q(b, a) = c(a) + 1
|Ω(a)|

∑
o∈Ω(a)

J(bo
a),

and in probabilistic models:

q(b, a) = c(a) +
∑
s∈S

∑
s′∈S

b(s)T (s, a, s′)
∑

o∈Ω(a)

αO(a, s′, o)J(bo
a),

denotes the cost of executing action a plus the expected cost of the successors of a. The cost of a

belief state b is the minimum cost of actions executable in b:

J(b) = min
a∈A

q(b, a)

The best action to perform in b is the minimum cost action:

π(b) = argmin
a∈A

q(b, a).
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GenerateSuccessors(b)

1: if satisfyGoal(b, τ ) then
2: J(b) = 0
3: solved(b) = true
4: terminal(b) = true
5: else if |A(b)| = 0 then
6: J(b) = 0
7: solved(b) = false
8: terminal(b) = true
9: else

10: for a ∈ A, o ∈ Ω(a) do
11: V = V ∪ {bo

a}
12: E = E ∪ {(b, bo

a)}
13: expanded(bo

a) = 0
14: J(bo

a) = h(bo
a, G)

15: end for
16: end if

Figure 7. Generate Successors Algorithm.

Leaf vertices have no successors with which to compute the q functions, so their J(b) function is

initialized with an estimate of its value. The J(b) function represents the estimated expected cost of

a plan starting at belief state b and executing π(b).

The AO* algorithm, listed in Figure 6 iteratively constructs the belief space graph G =

(V, E) rooted at bI . The algorithm involves three iterated steps: expand the current partial plan π

with the ExpandPlan routine (line 3), collect the ancestors Z’ of newly expanded vertices Z (line

4), and compute the current best partial plan (line 5). The algorithm finishes when it expands no

new vertices. If bI is not marked as solved, then there is no plan, otherwise the plan is π.

In the following I briefly describe the sub-routines used by AO∗. The ExpandPlan routine

recursively walks the current plan to find unexpanded vertices (lines 1-6). Upon finding a vertex

to expand (lines 7-11), it generates all successors of the vertex with the GenerateSuccessors

routine. Generating successors involves determining if the vertex is a belief state that satisfies the

goal and marking it as solved and terminal (lines 1-4). A belief state satisfies the goal in non-
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AddAncestors(Z)

1: Z’ = Z
2: while ∃b s.t. (b, bo

π(b)) ∈ E and bo
π(b) ∈ Z do

3: Z’ = Z’ ∪b
4: end while
5: return Z’

Update(Z)

1: while |Z| > 0 do
2: Remove b ∈ Z s.t. ¬∃b′ ∈ Z where (b, b′) ∈ E
3: if terminal(b) == false then
4: Backup(b)
5: end if
6: end while

Backup(b)

1: for a ∈ A(b) do
2: Compute q(b, a)
3: end for
4: J(b) = max

a∈A(b)
q(b, a)

5: π(b) = argmax
a∈A(b)

q(b, a)

6: solved(b) = ∧o∈Ω(π(b))solved(bo
π(b))

Figure 8. AO* Subroutines.

deterministic models if ∀s∈bG ⊆ s, and in probabilistic models if
∑

s∈b:G⊆s b(s) ≥ τ . Else, if

there are no applicable actions, the belief state is marked unsolved and terminal (lies 5-8). Else,

each successor is added to the search graph, and initialized with a heuristic value (lines 9-15). The

heuristic h is perhaps the most crucial aspect of the algorithm, which this work is dedicated to

defining. A good heuristic will help the search identify which belief states have a low cost to reach

the goal, forcing their inclusion in the best partial solution.

After expanding the current plan, ExpandPlan returns the set of expanded vertices Z.

In order for Update (Figure 8) to find the current best partial plan, given the new vertices, it calls

AddAncestors to add to Z’ every ancestor vertex of a vertex in Z whose best action leads a vertex

in Z’. The resulting set of vertices consists of every vertex whose value (and best action) can change
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after Update. The Update routine iteratively removes vertices from Z that have no descendent in

Z and calls Backup on non-terminal vertices until no vertices remain in Z. The Backup routine

computes the value of a vertex, sets its best action, and determines if it is solved (i.e., there is a

feasible sub-plan starting at the vertex). The reason Update chooses vertices with no descendent

in Z is to ensure each vertex has its value updated with the updated values of its children.

AO∗ can often avoid computing the entire belief space graph G, leading to significant sav-

ings in many problems. By initializing vertices with a heuristic estimate of their value it is possible

to ignore vertices that have a consistently highest value. For example in Backup, if there exists

an action whose q-value is always less than the alternative actions, then the best action will never

be set to one of the alternatives. Further, because the alternative actions are never considered best,

ExpandSolution will never expand the successors.

6.1. AO* Search Example. To illustrate AO*, consider the following variation on the non-

deterministic conditional planning version of the rovers problem. Assume that all action effects are

deterministic, unlike the previous versions of the rover example. AO* finds only acyclic plans and

including non-deterministic actions in conditional planning may violate this restriction (see Figure

4). Both the sample and commun actions will have a single outcome with a single conditional

effect, and the sample action will provide a perfect observation of have(soil).

Figure 9 shows the belief state space expanded to find a strong conditional plan for the

problem. The belief states in bold and the dashed edges in bold correspond to the plan. All other

belief states and edges, are generated as part of the search, but not used in the plan. Each edge is

annotated with an action and observation pair, and terminal nodes are denoted by double circles.

Each belief state contains a set of states (listed in Figure 10). I will assume that the value of each

belief state (to the right of each node) is initialized with an exact heuristic estimate (i.e., the optimal
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Figure 9. AO* search example.

average cost to reach a terminal node). Thus, the search can find an optimal feasible plan with the

minimal number of search node expansions. In the following, I will describe the steps taken by AO*

to find the plan.

Initially, the belief state space consists of the root belief state bI (at the top of the fig-

ure). AO* generates the children of bI by applying the actions: sample(soil, alpha),

drive(alpha, beta), drive(alpha, gamma). There are two nodes corresponding to

the sample(soil, alpha) action because each is consistent with a different observation of

have(soil). AO* computes the q-values of applying each action to the initial belief state bI ,

and selects the sample(soil, alpha) action as the best action because its q-value of 3.5 is
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sα = {at(alpha), avail(soil, alpha)}
sα1 = {at(beta), avail(soil, alpha)}
sα2 = {at(gamma), avail(soil, alpha)}
s′α = sα ∪ {have(soil)}
s′α1 = sα1 ∪ {have(soil)}
s′α2 = sα2 ∪ {have(soil)}
sGα = s′α ∪ {comm(soil)}
sβ = {at(alpha), avail(soil, beta)}
sβ1 = {at(beta), avail(soil, beta)}
sβ2 = {at(gamma), avail(soil, beta)}
s′β = sβ ∪ {have(soil)}
s′β1 = sβ1 ∪ {have(soil)}
s′β2 = sβ2 ∪ {have(soil)}
sGβ1 = s′β1 ∪ {comm(soil)}
sγ = {at(alpha), avail(soil, gamma)}
sγ1 = {at(beta), avail(soil, gamma)}
sγ2 = {at(gamma), avail(soil, gamma)}
s′γ = sγ ∪ {have(soil)}
s′γ1 = sγ1 ∪ {have(soil)}
s′γ2 = sγ2 ∪ {have(soil)}
sGγ2 = s′γ2 ∪ {comm(soil)}

Figure 10. States used in the AO* search example.

minimal. The q-value is 3.5 = 1 + (4+1)/2 because the action cost is 1, and the average q-value of

the two successors is (4+1)/2 = 2.5. The search generated new nodes, so it must expand the current

partial plan in the next iteration.

The search expands the belief states reachable by applying sample(soil, alpha) to

bI . Three actions can be applied to the belief state on the left, and the commun(soil) action

leads to a terminal belief state, whose q-value is 0. Search then generates the successors of the

belief state {sβ , sγ}. Updating the partial solution chooses commun(soil) as best for the belief

state {s′α}, and the belief state has its value updated to be 1. Notice that the belief state’s value did

not change because the heuristic estimate of the value of the belief state was already 1. In general,

it is possible for the belief state value to change many times throughout search because the heuristic

is an estimate. Then drive(alpha, beta) is selected as the best action for the belief state
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{sβ , sγ} because its q-value is 3, giving the belief state a value of 4 (because the action cost is 1).

Then the cost of bI is updated, but does not change.

Search then expands the current partial solution by first tracing one path to find a termi-

nal belief state {sGα}. The recursion then traces the plan to find the non-terminal belief state

{sβ1, sγ1} and expands it by generating its successors. The solution is then updated by choosing

sample(soil, beta) for the newly expanded belief state. The other belief states in the partial

plan are also updated, but do not change.

Search again traces the partial plan recursively, and on this iteration generates the successors

of the belief states {s′β1} and {sγ1}. Updating chooses commun(soil) as the best action for

{s′β1} (leading to a terminal belief state), and drive(beta, gamma) as the best action for

{sγ1}. Over the next two iterations, search generates the successors and selects the best actions

for the belief states {sγ2} and {s′γ2}. On the final iteration, search does not generate any new

successors because all paths in the current plan lead to terminal belief states. At this point, the

subgraph induced by the action selections π is a valid plan, whose average path cost is 3.5.

7. The POND Planner

AO∗ serves as the search engine for the POND planner. The POND (partially observable

non-deterministic) planner is implemented using several off-the-shelf planning software packages.

The components of POND are the PPDDL parser, the IPP planning graph (Koehler et al., 1997),

and the CUDD BDD package (Somenzi, 1998) to represent belief states and actions. POND

uses modified LAO* (Hansen and Zilberstein, 2001) source code from Eric Hansen to perform AO*

search. Even with deterministic actions it is possible to obtain cycles from actions with observations

because of planning in belief space. POND constructs the search graph as a directed acyclic graph

by employing a cycle-checking algorithm. If adding an edge to the search graph creates a cycle,
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then the edge cannot represent an action in a strong plan and is hence not added to the graph.

8. Related Work

The following describes related work within classical planning, non-deterministic planning,

and probabilistic planning.

8.1. Classical Planning Reachability Heuristics. Given the current popularity of heuristic

search planners, it is somewhat surprising to note that the interest in the reachability heuristics in

AI planning is a relatively new development. Ghallab and his colleagues were the first to report

on a reachability heuristic in IxTeT (Ghallab and Laruelle, 1994) for doing action selection in a

partial-order planner. However the effectiveness of their heuristic was not adequately established.

Subsequently the idea of reachability heuristics was independently (re)discovered by McDermott

(1996, 1999) in the context of his UNPOP planner. UNPOP was one of the first domain-independent

planners to synthesize plans containing up to 40 actions. A second independent re-discovery of the

idea of using reachability heuristics in planning was made by Bonet and Geffner (1999). Each

(re)discovery is the result of attempts to speed up plan synthesis within a different search substrate

(partial-order planning, regression, and progression).

The most widely accepted approach to computing reachability information is embodied by

GraphPlan. The original GraphPlan planner (Blum and Furst, 1995) used a specialized combina-

torial algorithm to search for subgraphs of the planning graph structure that correspond to valid

plans. It is interesting to note that almost 75 percent of the original GraphPlan paper was devoted

to the specifics of this combinatorial search. Subsequent interpretations of GraphPlan recognized

the role of the planning graph in capturing reachability information. Kambhampati et al. (1997)

explicitly characterized the planning graph as an envelope approximation of the progression search
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tree (see Figure 2 of his work and the associated discussion). Bonet and Geffner (1999) interpreted

GraphPlan as an IDA* search with the heuristic encoded in the planning graph. Nguyen and Kamb-

hampati (2000) described methods for directly extracting heuristics from planning graph. That same

year, FF (Hoffmann and Nebel, 2001), a planner using planning graph heuristics, placed first in the

International Planning Competition. Since then there has been a steady stream of developments that

increased both the effectiveness and the coverage of planning graph heuristics.

8.2. Non-Deterministic Planning. Much of the recent interest in conformant and condi-

tional non-deterministic planning can be traced to CGP (Smith and Weld, 1998), a conformant

version of GraphPlan (Blum and Furst, 1995), and SGP (Weld et al., 1998), the analogous condi-

tional version of GraphPlan. Here the graph search is conducted on several planning graphs, each

constructed from one of the possible initial states. More recent work on C-plan (Castellini et al.,

2001) and Frag-Plan (Kurien et al., 2002) generalize the CGP approach by ordering the searches

in the different worlds such that the plan for the hardest to satisfy world is found first, and is then

extended to the other worlds. Work described in the next chapter will extend many of the ideas for

planning graph based reachability heuristics in classical planning to use planning graphs similar to

CGP for reachability heuristics.

Another strand of work models conformant and conditional planning as a search in the

space of belief states, as this work pursues. This started with Genesereth and Nourbakhsh (1993),

who concentrated on formulating a set of admissible pruning conditions for controlling search.

There were no heuristics for choosing among unpruned nodes. GPT (Bonet and Geffner, 2000)

extended this search to consider a simple form of reachability heuristic. Specifically, in computing

the estimated cost of a belief state, GPT assumes that the initial state is fully observable. The cost

estimate itself is done in terms of reachability (with dynamic programming rather than planning
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graphs). The work described in the next section will approach heuristic search similar to GPT, but

with a different heuristic.

Another family of planners that search in belief states is the MBP-family of planners—MBP

(Bertoli et al., 2001), and KACMBP (Bertoli and Cimatti, 2002). The MBP-family of planners

all represent belief states in terms of binary decision diagrams (BDDs) and action application is

modeled as modifications to the BDDs. MBP supports both progression and regression in the space

of belief states, while KACMBP is a pure progression planner. This family of planners uses a very

simple heuristic, measuring the size of a belief state to indicate the degree of knowledge, and a

highly optimized search algorithm to quickly explore the search space.

In contrast to these domain-independent approaches that only require models of the domain

physics, PKSPlan (Petrick and Bacchus, 2002) is a forward-chaining knowledge-based planner that

requires richer domain knowledge. The planner makes use of several knowledge bases, as opposed

to a single knowledge base taking the form of a belief state. The knowledge bases separate binary

and multi-valued variables, and planning and execution time knowledge.

YAK (Rintanen, 2002) is a regression conditional planner using BDDs that uses a cardinality

heuristic. Tuan et al. (2004) also present a regression conditional planner that uses an approximation

to belief states with 3-valued state variables. While the planner cannot represent all belief states, it

is quite efficient for problems where uncertainty can be modeled as unknown propositions.

Non-deterministic planning has also been studied under various extensions, where the unify-

ing theme is guaranteeing plan success in worst-case scenarios. In temporal planning it is especially

important to ensure that temporal networks are strongly controllable (Vidal and Ghallab, 1996),

similar to strong plans. Musliner et al. (1995) explore similar concerns in real-time systems.
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8.3. Probabilistic Planning. The earliest work on probabilistic planning focussed on par-

tial order casual link (POCL) planning techniques (Goldman and Boddy, 1994a; Peot and Smith,

1992; Kushmerick et al., 1994; Draper et al., 1994; Onder, 1999). In theory, POCL planners are a

nice framework for probabilistic planning because it is easy to add actions to support a low proba-

bility condition without backtracking (as may be necessary in state based search). In reality, POCL

can be hard to work with because it is often difficult to assess the probability of a partially ordered

plan. Due to a lack of scalability, very few recent works has used POCL planners for probabilistic

planning (with one notable exception (Onder et al., 2006)). Probabilistic planning has also been

studied in the context of GraphPlan (Blum and Langford, 1999), but scalability has only recently

improved (Little and Theibaux, 2006).

Most recent work has focussed on MDP and POMDP models (surveyed by Boutilier et al.

(1999)), where the main interest is in finding algorithms with approximation bounds for optimal

solutions to decision theoretic planning. Decision theoretic planning is a generalization of prob-

abilistic planning where rewards are associated with different goal states. Thus, the optimal plan

becomes one that can trade-off expected plan cost with expected goal reward. Finding even ap-

proximately optimal POMDP solutions is notoriously challenging and the community has moved

toward point-based approaches to approximate optimal value functions (Pineau et al., 2003). Solv-

ing MDPs has been improved through techniques that intertwine traditional value iteration with

heuristic search (Bonet and Geffner, 2003; Barto et al., 1995; Hansen and Zilberstein, 2001; Little

et al., 2005; Mausam and Weld, 2005).

Upon recognizing that the probabilistic planning techniques, mentioned above, are ex-

tremely computationally costly (Madani et al., 1999), some researchers focussed on restricted

classes of plans (Littman, 1997). Several works look at bounded length plan optimization, where

the objective is to maximize the probability of goal satisfaction. These include both conformant
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(Hyafil and Bacchus, 2004; Majercik and Littman, 1998; Huang, 2006) and conditional (Majercik

and Littman, 2003) planners.

The challenge of scaling probabilistic planning still faces all of these approaches. Very few,

if any, use the types of reachability heuristics developed in classical planning. Their performance

even pales compared to non-deterministic planners in many cases. However, the increased expres-

sivity afforded by probabilistic planning is important. This disconnect between the two classes of

planning was the subject of a much heated debate during a 2003 ICAPS workshop on planning un-

der uncertainty that has yet to be resolved sufficiently. While some works have sought out ways to

combine the strengths of non-deterministic and probabilistic planners (Mausam et al., 2007), this

work develops techniques that are not necessarily specific to either and can benefit both.



CHAPTER 3

PLANNING GRAPH HEURISTICS FOR BELIEF SPACE SEARCH

This chapter presents many of the key intuitions behind reachability heuristics for guiding

search in belief state space. By defining the properties of plan distance metrics between belief states,

several planning graph heuristic based approaches to estimating the distance metrics are presented.

This chapter focusses on non-deterministic conformant and conditional planning with deterministic

actions.

1. Introduction

In this chapter I focus on a type of uncertainty, called state incompleteness, where an agent

starts in an uncertain (non-deterministic) state but has deterministic actions. The agent seeks strong

plans, where they will reach the goal with certainty despite its incomplete state. Ever since CNLP

(Peot and Smith, 1992), Plinth (Goldman and Boddy, 1994b), CGP (Smith and Weld, 1998), and

SGP (Weld et al., 1998) a series of planners have been developed for tackling such conformant and

conditional planning problems – including GPT (Bonet and Geffner, 2000), C-Plan (Castellini et

al., 2001), PKSPlan (Petrick and Bacchus, 2002), Frag-Plan (Kurien et al., 2002), MBP (Bertoli et

al., 2001), KACMBP (Bertoli and Cimatti, 2002), CFF (Brafman and Hoffmann, 2004), and YAK

(Rintanen, 2002). Several of these planners are extensions of heuristic state space planners that

search in the space of belief states. Many of the aforementioned planners find strong plans, and

heuristic search planners are currently among the best. Yet a foundation for what constitutes a good

distance-based heuristic for belief space has not been adequately investigated.

Belief Space Heuristics: Intuitively, it can be argued that the heuristic merit of a belief state depends

on at least two factors–the size of the belief state (i.e., the uncertainty in the current state), and the

distance of the individual states in the belief state from a goal state. The question of course is how

to compute these measures and which are most effective. Many approaches estimate belief state
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distances in terms of individual state to state distances between states in two belief states, but either

lack effective state to state distances or ways to aggregate the state distances. For instance the MBP

planner (Bertoli et al., 2001) counts the number of states in the current belief state. This amounts to

assuming each state distance has unit cost, and planning for each state can be done independently.

The GPT planner (Bonet and Geffner, 2000) measures the state to state distances exactly and takes

the maximum distance, assuming the states of the belief state positively interact to achieve the goal.

Heuristic Computation Substrates: I characterize several approaches to estimating belief state

distance by describing them in terms of underlying state to state distances. The basis of this in-

vestigation is in adapting classical planning reachability heuristics to measure state distances and

developing state distance aggregation techniques to measure interaction between plans for the indi-

vidual states in a belief state. I take two fundamental approaches to measure the distance between

a belief state and the goal. The first approach does not involve aggregating state distance measures,

rather I use a classical planning graph to compute a representative state distance. The second retains

distinctions between individual states in the belief state by using multiple planning graphs, akin to

CGP (Smith and Weld, 1998), to compute many state distance measures which are then aggregated.

In the next chapter I also describe an improvement upon the multiple planning graph technique in

a new planning graph generalization, called the Labeled Uncertainty Graph (LUG), that measures

a single distance between a belief state and the goal. This chapter will contain some forward ref-

erences to the LUG, motivating its development. With these techniques I will discuss the types of

heuristics that can be computed, with special emphasis on relaxed plans. The relaxed plan heuristics

differ in terms of how they employ state distance aggregation to make stronger assumptions about

how states in a belief state can co-achieve the goal through action sequences that are independent,

positively interact, or negatively interact.

The motivation for the first of the planning graph techniques for measuring belief state dis-
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tances is to try a minimal extension to classical planning heuristics to see if they will work. Noticing

that using classical planning heuristics ignores distinctions between states in a belief state and may

provide uninformed heuristics, I move to the second approach where it is possible to build exponen-

tially many planning graphs to get a better heuristic. With the multiple planning graphs I show how

to extract a heuristic from each graph and aggregate them to get the belief state distance measure.

By assuming that the states of a belief state are independent, one can aggregate the measures with

a summation. Or, by assuming that they positively interact one can use a maximization. However,

as I will show, relaxed plans provide a unique opportunity to measure both positive interaction and

independence among the states by essentially taking the union of several relaxed plans. Despite the

utility of having robust ways to aggregate state distances, we are still faced with the exponential

blow up in the number of planning graphs needed. Thus, in the next chapter, I present an approach

that seeks to retain the ability to measure the interaction of state distances but avoid computing mul-

tiple graphs and extracting heuristics from each. The idea is to condense and symbolically represent

multiple planning graphs in a single planning graph, called a LUG. Loosely speaking, this single

graph unions the causal support information present in the multiple graphs and pushes the disjunc-

tion, describing sets of possible worlds (i.e., initial literal layers), into “labels”. The planning graph

vertices are the same as those present in multiple graphs, but redundant representation is avoided.

For instance an action that was present in all of the multiple planning graphs would be present only

once in the LUG and labeled to indicate that it is applicable in a planning graph projection from

each possible world. We will describe how to extract heuristics from the LUG that make implicit

assumptions about state interaction without explicitly aggregating several state distances.

Ideally, each of the planning graph techniques considers every state in a belief state to com-

pute heuristics, but as belief states grow in size this could become uninformed or costly. For ex-

ample, the single classical planning graph ignores distinctions between possible states where the
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heuristic based on multiple graphs leads to the construction of a planning graph for each state. One

way to keep costs down is to base the heuristics on only a subset of the states in our belief state.

We evaluate the effect of such a sampling on the cost of our heuristics. With a single graph we

sample a single state and with multiple graphs and the LUG we sample some percent of the states.

We evaluate state sampling to show when it is appropriate, and find that it is dependent on how we

compute heuristics with the states.

Standardized Evaluation of Heuristics: An issue in evaluating the effectiveness of heuristic tech-

niques is the many architectural differences between planners that use the heuristics. It is quite

hard to pinpoint the global effect of the assumptions underlying their heuristics on performance.

For example, GPT is outperformed by MBP–but it is questionable as to whether the credit for this

efficiency is attributable to the differences in heuristics, or differences in search engines (MBP uses

a BDD-based search). The interest in this chapter is to also systematically evaluate a spectrum of

approaches for computing heuristics for belief space planning. Thus I have implemented heuristics

similar to GPT and MBP and use them to compare against the new heuristics developed around

the notion of overlap (multiple world positive interaction and independence). I implemented the

heuristics within POND. POND does handle search with non-deterministic actions, but in this

chapter I discuss deterministic actions. Later chapters will discuss specific approaches needed to

handle non-deterministic/probabilistic actions.

The rest of this chapter is organized as follows. I discuss appropriate properties of heuristic

measures for belief space planning, and follow with a description of the two planning graph sub-

strates used to compute heuristics. I carry out an empirical evaluation in the next two sections, by

describing the test setup, and presenting a standardized internal comparison. I end with related re-

search and various concluding remarks. The next chapter will contain a thorough external evaluation

of POND with respect to other state of the art planners, while using the LUG.
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2. Reachability Measures in Belief Space

The POND planner uses AO* search to find strong conformant and conditional non-

deterministic plans. The AO* algorithm can guide search node expansion with heuristics that esti-

mate the plan distance dist(b, b′) between two belief states b and b′. By convention, I assume b is a

search node and b′ is a belief state comprised of all goal states, called the goal belief state. Since a

strong plan (executed in b) ensures that every state s ∈ b will transition to some state s′ ∈ b′, I define

the plan distance between b and b′ as the number of actions needed to transition every state s ∈ b to

a state s′ ∈ b. Naturally, in a strong plan, the actions used to transition a state s1 ∈ b may affect the

transition of another state s2 ∈ b. There is usually some degree of positive or negative interaction

between s1 and s2 that can be ignored or captured in estimating plan distance.1 In the following

I explore how to compute such estimates by using several intuitions from classical planning state

distance heuristics.

I start with an example search scenario in Figure 11. There are three belief states b1 (con-

taining states s11 and s12), b2 (containing state s21), and b3 (containing states s31 and s32). The

goal belief state is b3, and the two progression search nodes are b1 and b2. Search should expand

the search node with the smallest distance to b3 by estimating dist(b1, b3) – denoted by the bold,

dashed line – and dist(b2, b3) – denoted by the bold, solid line. Assume for now that the estimates

of state distance measures dist(s, s′), denoted by the light dashed and solid lines with numbers, are

given. The state distances can be referenced by the number of actions or the actual action sequence.

In the example, I will use the following action sequences for illustration:

dist(s11, s32) : ({a1, a2}, {a5}, {a6, a7}),

dist(s12, s31) : ({a1, a7}, {a3}),
1Interaction between states captures the notion that actions performed to transition one state to the goal may interfere

(negatively interact) or aid with (positively interact) transitioning other states to goals states.
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Figure 11. Conformant Plan Distance Estimation in Belief Space

dist(s21, s31) : ({a3, a6}, {a9, a2, a1}, {a0, a8}, {a5}).

In each sequence there may be several actions in each step. For instance, dist(s21, s31) has a3 and

a6 in its first step, and there are a total of eight actions in the sequence – meaning the distance is

eight. Notice that the example includes several state distance estimates, which can be found with

classical planning techniques. There are many ways to use similar ideas to estimate belief state

distance after addressing the issue of belief states containing several states.

Selecting States for Distance Estimation: There exists a considerable body of literature on esti-

mating the plan distance between states in classical planning (Bonet and Geffner, 1999; Nguyen et

al., 2002; Hoffmann and Nebel, 2001), and I would like to apply it to estimate the plan distance be-

tween two belief states, say b1 and b3. I have identified four possible options for using state distance
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estimates to compute the distance between belief states b1 and b3:

• Sample a State Pair: It is possible to sample a single state from b1 and a single state from b3,

whose plan distance is used for the belief state distance. For example, one might sample s12

from b1 and s31 from b3, then define dist(b1, b3) = dist(s12, s31).

• Aggregate States: It is possible to form aggregate states for b1 and b3 and measure their plan

distance. An aggregate state is the union of the propositions in each state in the belief state,

defined as:

s̃(b) =
⋃

p∈s,s∈b

p

For example, with aggregate states one would compute the belief state distance dist(b1, b3) =

dist(s̃(b1), s̃(b3)).

• Choose a Subset of States: It is possible to choose a set of states (e.g., by random sampling)

from b1 and a set of states from b3, and then compute state distances for all pairs of states from

the sets. Upon computing all state distances, one can aggregate the state distances (described

shortly). For example, one might sample both s11 and s12 from b1 and s31 from b3, compute

dist(s11, s31) and dist(s12, s31), and then aggregate the state distances to define dist(b1, b3).

• Use All States: One can use all states in b1 and b3, and, similar to sampling a subset of states

(above), one can compute all distances for state pairs and aggregate the distances.

The former two options for computing belief state distance are reasonably straightforward,

given the existing work in classical planning. The latter two options require computing multiple

state distances. With multiple state distances there are two details which require consideration in

order to obtain a belief state distance measure. In the following I treat belief states as if they contain

all of the original states because they can be appropriately replaced with the subset of chosen states.
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The first issue is that some of the state distances may not be needed. Since each state in b1

needs to reach a state in b3, one should consider the distance for each state in b1 to “a” state in b3.

However, it may not be necessary to compute the distance for every state in b1 to reach “every” state

in b3. I will explore assumptions about which state distances need to be computed in Section 2.1.

The second issue, which arises after computing the state distances, is that they must be

aggregated into a belief state distance. Popular state distance estimates used in classical planning

typically measure aggregate costs of state features (propositions). When searching in belief space,

I wish to estimate belief state distance with the aggregate cost of belief state features (states). In

Section 2.2, I will examine several choices for aggregating state distances and discuss how each

captures different types of state interaction. In Section 2.3, I conclude with a summary of the

choices made in order to compute belief state distances.

2.1. State Distance Assumptions. When choosing to compute multiple state distances be-

tween two belief states b and b′, whether by considering all states or sampling subsets, not all of the

state distances are important. For a given state in b it is not necessary to know the distance to every

state in b′ because each state in b need only transition to one state in b′. There are two assumptions

about the states reached in b′ which help define two different belief state distance measures in terms

of aggregate state distances:

• The first is to optimistically assume that each of the states s ∈ b can reach the closest of the

states s′ ∈ b′. With this assumption it is possible to compute distance as:

dist(b, b′) = �s∈b min
s′∈b′

dist(s, s′).

• The second is to assume that all of the states s ∈ b reach the same state s′ ∈ b′, where the

aggregate distance is minimum. With this assumption it is possible to compute distance as:
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dist(b, b′) = min
s′∈b′
�s∈bdist(s, s′),

where� represents an aggregation technique (several of which I will discuss shortly).

Throughout the rest of this work I use the first definition for belief state distance because it

is relatively robust and easy to compute. Its only drawback is that it treats the states in b in a more

independent fashion, but is flexible in allowing states in b to transition to different states in b′. The

second definition measures more dependencies of the states in b, but restricts them to reach the same

state in b′. While the second may sometimes be more accurate, it is misinformed in cases where all

states in b cannot reach the same state s′ (i.e., the measure would be infinite). I do not pursue the

second method because it may return distance measures that are infinite when they are in fact finite.

In Section 3.3, when I discuss computing these measures with planning graphs, it is possible

to implicitly find for each state in b the closest state in b′, so that one does not enumerate the states s′

in the minimization term of the first belief state distance (above). Part of the reason this is possible is

that I compute distance in terms of goal propositions G rather than actual states. Also, because I only

consider propositions of b′, when I discuss sampling belief states to include in distance computation

it is possible to only sample from b. It is also possible to avoid the explicit aggregation� by using

the LUG (described in the next chapter), but I describe several choices for � here to understand

implicit assumptions made by the heuristics computed on the LUG.

2.2. State Distance Aggregation. The aggregation function � plays an important role in

measuring the distance between belief states. When computing more than one state distance mea-

sure, either exhaustively or by sampling a subset (as previously mentioned), it is necessary to com-

bine the measures by some means, denoted �. There is a range of options for taking the state

distances and aggregating them into a belief state distance. I discuss several assumptions associated

with potential measures:
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• Positive Interaction of States: Positive interaction assumes that the most difficult state in b

requires actions that will help transition all other states in b to some state in b′. In the example,

this means that it is assumed that the actions used to transition s11 to s32 will help us transition

s12 to s31 (assuming each state in b1 transitions to the closest state in b3). Inspecting the action

sequences, it is easy to see they positively interact because both need actions a1 and a7. It

is not necessary to know the action sequences to assume positive interaction because it is

possible to define the aggregation� as a maximization of numerical state distances:

dist(b, b′) = max
s∈b

min
s′∈b′

dist(s, s′).

The belief state distances are defined as dist(b1, b3) = max(min(14, 5), min(3, 7)) = 5 and

dist(b2, b3) = max(min(8, 10)) = 8. In this case b1 is preferred over b2. If each state distance

is admissible and one does not sample from belief states, then assuming positive interaction

is also admissible.

• Independence of States: Independence assumes that each state in b requires actions that are

different from all other states in b in order to reach a state in b′. Previously, there was positive

interaction in the action sequences to transition s11 to s32 and s12 to s31 because they shared

actions a1 and a7. There is also some independence in these sequences because the first

contains a2, a5, and a6, where the second contains a3. Again, there is no need to know the

action sequences to assume independence because it is possible to define the aggregation �

as a summation of numerical state distances:

dist(b, b′) =
∑
s∈b

min
s′∈b′

dist(s, s′).

In the example, dist(b1, b3) = min(14, 5)+min(3, 7) = 8, and dist(b2, b3) = min(8, 10) =

8. In this case there is no preference over b1 and b2.

Using the cardinality of a belief state |b| = |{s|s ∈ b}| to measure dist(b, b′) is a special case
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of assuming state independence, where ∀s, s′dist(s, s′) = 1. Using cardinality to measure

distance in the example, gives dist(b1, b3) = |b1| = 2, and dist(b2, b3) = |b2| = 1. With

cardinality, b2 is preferred over b1.

• Overlap of States: Overlap assumes that there is both positive interaction and independence

between the actions used by states in b to reach a state in b′. The intuition is that some actions

can often be used for multiple states in b simultaneously and these actions should be counted

only once. For example, when computing dist(b1, b3) by assuming positive interaction, I

noted that the action sequences for dist(s11, s32) and dist(s12, s31) both used a1 and a7.

When aggregating these sequences it is best to count a1 and a7 each only once because they

potentially overlap. However, truly combining the action sequences for maximal overlap is

a plan merging problem (Kambhampati et al., 1996), which can be as difficult as planning.

Since the ultimate intent is to compute heuristics, it is possible to take a very simple approach

to merging action sequences. I introduce a plan merging operator � for� that picks a step at

which to align the sequences and then unions the aligned steps. The number of actions in the

resulting action sequence measures belief state distance:

dist(b, b′) = �s∈b min
s′∈b′

dist(s, s′).

To define �, I assume that sequences used in progression search start at the same time. Thus,

all sequences are aligned at the first step before unioning the steps.

For example, merging the two plans results in the sequence dist(s11, s32) � dist(s12, s31) =

({a1, a2}, {a5}, {a6, a7})�({a1, a7}, {a3}) = ({a1, a2, a7}, {a5, a3}, {a6, a7}) because the

sequences are aligned at their first steps, and each step thereafter. Notice that this resulting

sequence has seven actions, giving dist(b1, b3) = 7, whereas defining� as maximum gave a

distance of 5 and as summation gave a distance of 8. Compared with overlap, positive inter-
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action tends to under estimate distance, and independence tends to over estimate distance. As

I will show during the empirical evaluation (in Section 5.3), accounting for overlap provides

more accurate distance measures for many conformant planning domains.

• Negative Interaction of States: Negative interaction between states can appear in the example

if transitioning state s11 to state s32 makes it more difficult (or even impossible) to transition

state s12 to state s31. This could happen if performing action a5 for s11 conflicts with action

a3 for s12. It is possible that b1 cannot reach b3 if all possible action sequences that start in

s11 and s12, respectively, and end in any s ∈ b3 negatively interact.

There are two ways negative interactions play a role in belief state distances. Negative in-

teractions can prove it is impossible for a belief state b to reach a belief state b′, meaning

dist(b, b′) = ∞, or they can potentially increase the distance by a finite amount. In this

work, I do not go into the details of computing negative interactions in heuristics and refer the

reader to Bryce et al. (2006). As such, I do not provide a concrete definition for� to measure

negative interaction.

While I do not explore ways to adjust the distance measure for negative interactions, I men-

tion some possibilities. Like work in classical planning (Nguyen et al., 2002), it is possible

to penalize the distance measure dist(b1, b3) to reflect additional cost associated with seri-

alizing conflicting actions. Additionally in conditional planning, conflicting actions can be

conditioned on observations so that they do not execute in the same plan branch. A distance

measure that uses observations would reflect the added cost of obtaining observations, as

well as the change in cost associated with introducing plan branches (e.g., measuring average

branch cost).
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State State Distance Planning Heuristic
Selection Aggregation Graph

Single + Interaction SG Max
Aggregate Independence MG Sum

Subset Overlap LUG Relaxed Plan
All - Interaction

Table 3. Features for a belief state distance estimation.

The above techniques for belief state distance estimation in terms of state distances provide

the basis for the use of multiple planning graphs. I will show in the empirical evaluation that these

measures affect planner performance very differently across standard conformant and conditional

planning domains. While it can be quite costly to compute several state distance measures, under-

standing how to aggregate state distances sets the foundation for techniques I develop in the LUG

in the next chapter. As I have already mentioned, the LUG conveniently allows implicit aggregation

of state distances to directly measure belief state distance.

2.3. Summary of Methods for Distance Estimation. Since this section explores several

methods for computing belief state distances on planning graphs, I provide a summary of the choices

to consider, listed in Table 3. Each column is headed with a choice, containing possible options

below. The order of the columns reflects the order in which the options are considered. In this

section I have covered the first two columns which relate to selecting states from belief states for

distance computation, as well as aggregating multiple state distances into a belief state distance.

Options for both of these choices are evaluated in the empirical evaluation.

In the next section I will also expand upon how to aggregate distance measures as well

as discuss the remaining columns of Table 3. I will present two types of planning graphs in this

section: the single planning graph (SG), and multiple planning graphs (MG). In the next chapter

I will discuss the labeled uncertainty graph (LUG). Finally, there are many different heuristics to
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compute on the planning graphs to measure state distances – max, sum, and relaxed plan – which

correspond to their classical planning counterparts. I will focus solely on relaxed plans because they

are the most effective.

3. Heuristic Measures of Belief State Distances

This section discusses how to use planning graph heuristics to measure the belief state dis-

tances defined in the previous section. It covers two types of planning graphs and the extent to

which they can be used to compute various heuristics. I begin with a brief background on planning

graphs in planning under uncertainty.

Planning Graphs for Belief Space: Planners such as CGP (Smith and Weld, 1998) and SGP (Weld

et al., 1998) adapt the GraphPlan idea of compressing the search space with a planning graph by

using multiple planning graphs, one for each possible world in the initial belief state. CGP and

SGP search on these planning graphs, similar to GraphPlan, to find conformant and conditional

plans. This chapter seeks to apply the idea of extracting search heuristics from planning graphs,

previously used in state space search (Nguyen et al., 2002; Hoffmann and Nebel, 2001; Bonet and

Geffner, 1999) to belief space search.

This section proceeds by describing three classes of heuristics to estimate belief state dis-

tance: NG, SG, and MG. NG heuristics are techniques existing in the literature that are not

based on planning graphs, SG heuristics are techniques based on a single classical planning graph,

MG heuristics are techniques based on multiple planning graphs (similar to those used in CGP).

The LUG (described in the next chapter) combines the advantages of SG and MG to reduce the

representation size and maintain informedness.

Note that I do not include observations in any of the planning graph structures as would

SGP (Weld et al., 1998). Search for conditional plans directly uses the planning graph heuristics by
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Figure 12. Taxonomy of heuristics with respect to planning graph type and state distance aggrega-
tion. Blank entries indicate that the combination is meaningless or not possible.

ignoring observations, and the results show that this still gives good performance. Conformant plan-

ning heuristics perform well in conditional planning under the following assumption: a conditional

plan and a conformant plan for the same problem will use the same actions, modulo sensory actions.

A conditional plan divides the actions among the plan branches, and a conformant plan sequences

the actions. If the conformant planning heuristic estimates this set of actions, then in conformant

planning the heuristic estimates both the plan length and the number of search node expansions

needed to find a plan. In conditional planning, this same heuristic may be a poor estimate of the

average branch length, but it will still be a good estimate of the number of search node expansions

(where the expansions are divided across the plan branches). While using a conformant planning

heuristic for conditional planning may lead to lower quality plans, it may do so with fewer node

expansions.
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Figure 12 presents a taxonomy of distance measures for belief space. The taxonomy also

includes related planners, whose distance measures will be characterized in this section. All of the

related planners are listed in the NG group, despite the fact that some actually use planning graphs,

because they do not clearly fall into one of my planning graph categories. The figure shows how

different substrates (horizontal axis) can be used to compute belief state distance by aggregating

state to state distances under various assumptions (vertical axis). Some of the combinations are not

considered because they do not make sense or are impossible. The reasons for these omissions will

be discussed in subsequent subsections. While there are a wealth of different heuristics one can

compute using planning graphs, I concentrate on relaxed plans because they have proven to be the

most effective in classical planning and in my previous studies (Bryce and Kambhampati, 2004).

Example: To illustrate the computation of each heuristic, I will use a conformant version of the

rover example. Similar to the example used to illustrate search in the previous chapter, each action

is deterministic and here there are no observations. The rover is unsure of which location alpha,

beta, or gamma will have soil, allowing it to achieve its goal of comm(soil). The initial (non-

deterministic) belief state is bI = {sα, sβ, sγ} and the optimal conformant plan to achieve the goal

is:

( sample(soil, alpha), drive(alpha, beta),

sample(soil, beta), drive(beta, gamma),

sample(soil, gamma), commun(soil) ),

Ideally, the heuristic estimate of the plan cost to reach a belief state where each state satisfies the

goal should be six, the same as the optimal plan length.

In the previous section I discussed the important issue of sampling states to include in the

heuristic computation. I will not directly address this issues in this section, deferring it to discussion

in the empirical evaluation section. The heuristics below are computed after deciding on a set of
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states to use, whether by sampling or not. Also, as previously mentioned, I only consider sampling

states from the belief state generated by search because it is possible to implicitly find closest states

from the goal belief state without sampling.

I proceed by describing the various substrates used for computing belief space distance

estimates. Within each I describe the prospects for various types of possible world aggregation. In

addition to the heuristics developed in this work, I mention related work where relevant.

3.1. Non Planning Graph-based Heuristics (NG). I group many heuristics and planners

into the NG group because they are not using SG, MG, or LUG planning graphs. Just because

they are mentioned in this group it does not mean they are not using planning graphs in some other

form.

No Aggregation: Breadth first search uses a simple heuristic, h0 where the heuristic value is set to

zero. I mention this heuristic to gauge the effectiveness of the search algorithm relative to improve-

ments gained through using heuristics.

Positive Interaction Aggregation: The GPT planner (Bonet and Geffner, 2000) measures belief

state distance as the maximum of the minimum state to state distance of states in the source and des-

tination belief states, assuming optimistic reachability as mentioned in Section 2.2. GPT measures

state distances exactly, in terms of the minimum number of transitions in the state space. Taking

the maximum state to state distance is akin to assuming positive interaction of states in the current

belief state.

Independence Aggregation: The MBP planner (Bertoli et al., 2001), KACMBP planner (Bertoli

and Cimatti, 2002), YAK planner (Rintanen, 2002), and my definition of a comparable hcard heuris-

tic measure belief state distance by assuming every state to state distance is one, and taking the

summation of the state distances (i.e., counting the number of states in a belief state). Cardinality is
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useful in progression because as belief states become smaller, the agent has more knowledge and it

can be easier to reach a goal state.

In the conformant rover problem, hcard(bI , G) = 3 because bI has three states consistent

with it. Notice, this may be uninformed because every reachable belief state will have three states,

as it is impossible to ever know which location has a soil sample. In general, cardinality does not

accurately reflect distance measures. For instance, hcard reverts to uninformed search in classical

planning problems because state distance may be large or small but it still assigns a heuristic value

of one to every state.

Overlap Aggregation: Rintanen (2004) describes n-Distances which generalize the belief state

distance measure in GPT to consider the maximum n-tuple state distance. The measure involves,

for each n-sized tuple of states in a belief state, finding the length of the actual plan to transition

the n-tuple to a belief state satisfying the goal. Then the maximum n-tuple distance is taken as the

distance measure.

For example, consider a belief state with four states. With an n equal to two, it is possible

to define six belief states, one for each size two subset of the four states. A real plan is found for

each of these belief states, and the maximum cost of these plans is used to measure the distance

for the original four state belief state. When n is one, the heuristic is equivalent to the measure

used by GPT, and when n is equal to the size of the belief state it is equivalent to directly solving

the planning problem. While it is costly to compute this measure for large values of n, it is very

informed as it accounts for overlap and negative interactions.

The CFF planner (Brafman and Hoffmann, 2004) uses a version of a relaxed planning graph

to extract relaxed plans. The relaxed plans measure the cost of supporting the goal from all states in

a belief state. In addition to the traditional notion of a relaxed planning graph that ignores negative

interactions, CFF also ignores all but one antecedent proposition in conditional effects to keep its
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Figure 13. Single planning graph for conformant rovers, with relaxed plan components in bold.

relaxed plan reasoning tractable. The CFF relaxed plan does capture overlap but ignores some

subgoals and all negative interactions. The way CFF ensures the goal is supported in the relaxed

problem is to encode the relaxed planning graph as a satisfiability problem. If the encoding is

satisfiable, the chosen number of action assignments is the distance measure.

3.2. Single Planning Graph Heuristics (SG). The simplest approach for using planning

graphs for belief space planning heuristics is to use a “classical” planning graph. To form the initial

proposition layer from a belief state, it is possible to either sample a single state (denoted SG1) or

use an aggregate state (denoted SGU ).

When computing the heuristic for bI in the conformant rovers problem (see Figure 13), it
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possible to define P0 for SG1 by sampling a state (say sα):

P0 = {at(alpha), avail(soil, alpha)},

or define P0 for SGU such that it is equal to ŝ(bI)

P0 = {at(alpha), avail(soil, alpha),

avail(soil, beta), avail(soil, gamma)}
Since these two versions of the single planning graph have identical semantics, aside from the initial

literal layer, I proceed by describing the SGU graph and point out differences with SG1 where they

arise.

Graph construction is similar to classical planning graphs and stops when all goal proposi-

tions appear in a proposition layer. Unlike, the previous chapter, I use the planning graph formalism

used in IPP (Koehler et al., 1997) to allow for explicit representation of conditional effects, meaning

there is a proposition layer Pk, an action layer Ak, and an effect layer Ek in each level k of a plan-

ning graph. The planning graph is a sequence of layers (A0, E0, P1, ..., Ak, Ek, Pk+1). Persistence

for a proposition p, denoted by ap, is represented as an action where ρe(ap) = ε00(ap) = p. A

proposition is in Pk if an effect from the previous effect layer Ek−1 contains the proposition in its

consequent. An action is in the action layer Ak if every one of its execution precondition propo-

sitions is in Pk. An effect is in the effect layer Ek if its associated action is in the action layer

Ak and every one of its antecedent propositions is in Pk. Using conditional effects in the plan-

ning graph avoids factoring an action with conditional effects into a possibly exponential number

of non-conditional actions, but adds an extra planning graph layer per level. Note that, to sim-

plify the illustration, Figure 13 (and later planning graph figures) only depicts conditional effects

in the effect layer (e.g., ϕ00(sample(soil, alpha))) and leaves unconditional effects (e.g.,

ϕ00(drive(alpha, beta))) implicit. Once the graph is built, one can extract heuristics.

No Aggregation: Relaxed plans within a single planning graph are able to measure, under the
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most optimistic assumptions, the distance between two belief states. The relaxed plan represents a

distance between a subset of the initial layer propositions and the propositions in the goal. In the

SGU , the propositions from the initial layer that are used for support may not hold in any single

state of the projected belief state, unlike the SG1. The classical relaxed plan heuristic hSG
RP finds

a set of (possibly interfering) actions to support the goal propositions. The relaxed plan RP is a

subgraph of the planning graph, of the form (ARP
0 , ERP

0 , PRP
1 , ..., ARP

k , ERP
k , PRP

k+1). Each of the

layers contains a subset of the vertices in the corresponding layer of the planning graph.

The only change in the relaxed plan extraction, over the algorithm described in the previous

chapter, is that it requires reasoning about the conditional effects explicitly. As before, the goal

propositions are supported starting from the last layer of the planning graph. Each proposition must

be supported by an effect from the previous layer. Each effect must be supported by its associated

action. Then, each proposition appearing in a chosen action’s precondition, or a chosen effect’s

antecedent, must be supported. The relaxed plan heuristic value is still the summation of the number

of (non-persistence) actions in each action layer of a planning graph with k + 1 levels:

hSG
RP (b, G) =

k∑
j=0

| ARP
j |

In the rover problem, the relaxed plan extracted from the SGU is shown in Figure 13

as the bold edges and nodes. The goal proposition have(soil) is supported by the effect

of commun(soil) in E1, and the effect is supported by the commun(soil) action. In P1,

have(soil) is supported (because it is in the antecedent of the effect of commun(soil)) by

the effect of sample(soil, alpha) in E0. This requires inclusion of the sample(soil,

alpha) action in A0 and avail(soil, alpha) and at(alpha) in P0. The relaxed plan

contains two actions, defining hSGU

RP (bI , G) = 2. This greatly underestimates the optimal plan length

of six because it ignores all but one state of bI . Sampling a single state, as in SG1, would lead to a
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similar result. A single, unmodified classical planning graph cannot capture support from all possi-

ble worlds – hence there is no explicit aggregation over distance measures for states. As a result, I

do not mention aggregating states to measure positive interaction, independence, or overlap.

3.3. Multiple Planning Graph Heuristics (MG). Single graph heuristics are usually un-

informed because the belief state used for constructing the planning graph often corresponds to

multiple possible states. The lack of accuracy is because single graphs are not able to capture propa-

gation of multiple world support information. Recall the single graph SGU for bI of the conformant

rover problem. If sample(soil, alpha) and commun(soil) were the only actions, one

would say that comm(soil) is reachable with a cost of two, but in fact the cost is infinite (since

there is no sample(soil, beta) and sample(soil, gamma) to support have(soil)

from all possible worlds), and there is no strong plan.

To account for lack of support in all possible worlds and sharpen the heuristic estimate, a set

of multiple planning graphs is considered. Each is a single graph, as previously discussed. These

multiple planning graphs are similar to the planning graphs used by CGP (Smith and Weld, 1998),

but lack mutexes. Each planning graph SG(s) ∈MG(b) constructs the initial layer P0(s) of with a

different state s ∈ b. With multiple planning graphs, the heuristic value of a belief state is computed

in terms of all the planning graphs. Unlike single planning graphs, it is possible to compute different

world aggregation measures with the multiple planning graphs.

While it is possible to get a more informed heuristic by considering more of the states in a

belief state, in certain cases it can be costly to compute the full set of planning graphs and extract

relaxed plans. I will describe computing the full set of planning graphs, but will later evaluate the

effect of computing a smaller proportion of these. The single graph SG1 is the extreme case of

computing a single one of the multiple planning graphs.



72

at( )

sample(soil, )

drive( , )

drive( , )

avail(soil, )

at( )

avail(soil, )

at( )

at( )

have(soil)

at( )
drive( , )

drive( , )

avail(soil, )

at( )

avail(soil, )

at( )

at( )

drive( , )
drive( , )

at( )

avail(soil, )

at( )

at( )

sample(soil, )
have(soil)

at( )
drive( , )

drive( , )

avail(soil, )

at( )

avail(soil, )

at( )

at( )

drive( , )

drive( , )

at( )

avail(soil, )

at( )

at( )

sample(soil, )
have(soil)

drive( , )

drive( , )

at( )

avail(soil, )

at( )

at( )

sample(soil, )
have(soil)

commun(soil) comm(soil)

commun(soil) comm(soil)

sample(soil, )

drive( , )

drive( , )

at( )

avail(soil, )

at( )

at( )

have(soil)

drive( , )

drive( , )

at( )

avail(soil, )

at( )

at( )

sample(soil, )
have(soil)

commun(soil)
comm(soil)

A1A0 A2P1P0 P2 P3

00 00

00

E1E0 E2

00

00

00

00

00

00

s

s

s

Figure 14. Multiple planning graphs for conformant rovers, with relaxed plan components bolded.

To illustrate the use of multiple planning graphs, consider the conformant rover example. It

is possible to build three planning graphs for bI , one for each state. The respective initial proposition

layers are:

P0(sα) = {at(alpha), avail(soil, alpha)},

P0(sβ) = {at(alpha), avail(soil, beta)}, and

P0(sγ) = {at(alpha), avail(soil, gamma)}.

A single planning graph is sufficient if there is no need to aggregate state measures, so in the

following I consider how to compute the goal achievement cost with multiple graphs by aggregating

state distances.

Positive Interaction Aggregation: Similar to GPT (Bonet and Geffner, 2000), one can use the

worst-case world to represent the cost of the belief state by using the hMG
m−RP heuristic. The dif-
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ference with GPT is that the heuristic is computed on planning graphs, instead of computing plans

in state space. This heuristic accounts for the number of actions used in a given world, but assume

positive interaction across all possible worlds.

The hMG
m−RP heuristic is computed by finding a relaxed plan RP (s) on each planning graph,

exactly as done on the single graph with hSG
RP . The difference is that unlike the single planning

graph SGU , but like SG1, the initial levels of the planning graphs are states, so each relaxed plan

will reflect all the support needed in the possible world corresponding to a state s ∈ b. Formally:

hMG
m−RP (b, G) = max

s∈b

⎛
⎝ k∑

j=0

| ARP (s)
j |

⎞
⎠

where k is the level of SG(s) where the goal propositions are first reachable.

Notice that this heuristic is not computing all state distances between states in b and states

consistent with G. Each planning graph SG(s) corresponds to a state in s ∈ b, and the heuristic

extracts a single relaxed plan from each. It is not necessary to enumerate all states consistent with

the goal and find a relaxed plan for each. The heuristic supports only the propositions in G. These

propositions are the estimated minimum distance goal state.

For the conformant rover problem, computing hMG
m−RP (bI , G) (Figure 14) finds the follow-

ing relaxed plans:

ARP (sα)
0 = {sample(soil, alpha)},

ERP (sα)
0 = {ϕ00(sample(soil, alpha))},

PRP (sα)
1 = {have(soil)},

ARP (sα)
1 = {commun(soil)},

ERP (sα)
1 = {ϕ00(commun(soil))},

PRP (sα)
2 = {comm(soil)}

from the second planning graph it finds:
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ARP (sβ)
0 = {drive(alpha, beta), avail(soil, beta)p},

ERP (sβ)
0 = {ϕ00(drive(alpha, beta)), ϕ00(avail(soil, beta)p)},

PRP (sβ)
1 = {at(beta), avail(soil, beta)},

ARP (sβ)
1 = {sample(soil, alpha)},

ERP (sβ)
1 = {ϕ00(sample(soil, beta))},

PRP (sβ)
2 = {have(soil)},

ARP (sβ)
2 = {commun(soil)},

ERP (sβ)
2 = {ϕ00(commun(soil))},

PRP (sβ)
3 = {comm(soil)}

and from the last planning graph it finds:

ARP (sγ)
0 = {drive(alpha, gamma), avail(soil, gamma)p},

ERP (sγ)
0 = {ϕ00(drive(alpha, gamma)), ϕ00(avail(soil, gamma)p)},

PRP (sγ)
1 = {at(gamma), avail(soil, gamma)},

ARP (sγ)
1 = {sample(soil, alpha)},

ERP (sγ)
1 = {ϕ00(sample(soil, gamma))},

PRP (sγ)
2 = {have(soil)},

ARP (sγ)
2 = {commun(soil)},

ERP (sγ)
2 = {ϕ00(commun(soil))},

PRP (sγ)
3 = {comm(soil)}

The first relaxed plan contains two actions and the second and third each have three actions. Taking

the maximum of the number of actions in the relaxed plan values gives hMG
m−RP (bI , G) = 3. This

aggregation ignores the fact that the plan must use sample actions at different locations.
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Independence Aggregation: Using the hMG
s−RP heuristic assumes independence among the worlds

in the belief state. Relaxed plan extraction is exactly as described in the previous heuristic and the

heuristic uses a summation rather than maximization of the relaxed plan costs. Formally:

hMG
s−RP (b, G) =

∑
s∈b

⎛
⎝ k∑

j=0

| ARP (s)
j |

⎞
⎠

where k is the level of each SG(s) where the goal propositions are first reachable.

For the conformant rovers example, computing hMG
s−RP (bI , G) finds the same relaxed plans

as in the hMG
m−RP (bI , G) heuristic, but sums their values to get 2 + 3 + 3 = 8 as the heuristic. This

aggregation ignores the fact that the plan can use the same commun(soil) action for all possible

worlds.

State Overlap Aggregation: Notice that the two previous heuristics either take a maximization and

do not account for some actions, or take a summation and possibly account for extra actions. The

hMG
RPU heuristic can balance the measure between positive interaction and independence of worlds.

Examining the relaxed plans computed by the two previous heuristics for the conformant rovers ex-

ample, one can see that the relaxed plans extracted from each graph have some overlap. Notice, that

ARP (sα)
1 , ARP (sβ)

2 and ARP (sγ)
2 contain a commun(soil) action irrespective of which location

has soil – showing some positive interaction. Also, ARP (sα)
0 contains sample(soil, alpha),

ARP (sβ)
1 contains sample(soil, beta), and ARP (sγ)

1 contains sample(soil, gamma)

– showing some independence. Taking the layer-wise union of the three relaxed plans leads to a

unioned relaxed plan:

ARPU
0 = {sample(soil, alpha), drive(alpha, beta),

drive(alpha, gamma), avail(soil, beta)p,

avail(soil, gamma)p}
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ERPU
0 = {ϕ00(sample(soil, alpha)), ϕ00(drive(alpha, beta)),

ϕ00(drive(alpha, gamma)), ϕ00(avail(soil, gamma)p)}

PRPU
1 = {have(soil),at(beta),at(gamma),

avail(soil, beta),avail(soil, gamma)}

ARPU
1 = {commun(soil),sample(soil, beta),sample(soil, gamma)}

ERPU
1 = {ϕ00(commun(soil)), ϕ00(sample(soil, beta)),

ϕ00(sample(soil, gamma))}

PRPU
2 = {comm(soil),have(soil)}

ARPU
2 = {commun(soil)}

ERPU
2 = {ϕ00(commun(soil))}

PRPU
3 = {comm(soil)}

This relaxed plan accounts for many of the actions that are the same between possible worlds

and the actions that differ. Notice that commun(soil) appears only once in level two and the

sample actions appear in layers zero and one. However, commun(soil) also appears in level

one because a poor alignment of the possible worlds was chosen.

In order to take the union of relaxed plans, the heuristic extracts relaxed plans from each

planning graph, as in the two previous heuristics. The relaxed plans are start-aligned to reflect that

they all start at the same time. The summation of the number of actions of each action level in the

unioned relaxed plan is used as the heuristic value. Formally:

hMG
RPU (b, G) =

k∑
j=0

| ARPU
j |

where k is the greatest level where the goal propositions are first reachable among all planning

graphs.
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Problem Initial Goal Propositions Causative Observational Optimal Optimal
States Propositions Actions Actions Parallel Serial

Rovers1 1 1 66 88 0 {12} 5 {5} 5 {5}
Rovers2 2 1 66 88 0 {12} 8 {7} 8 {7}
Rovers3 3 1 66 88 0 {12} 10 {?} 10 {8}
Rovers4 4 1 66 88 0 {12} 13 {?} 13 {10}
Rovers5 16 3 71 97 0 {12} ? {?} 20 {?}
Rovers6 12 3 119 217 0 {18} ? {?} ? {?}

Logistics1 2 1 29 70 0 {10} 6 {6} 9 {7}
Logistics2 4 2 36 106 0 {20} 6 {?} 15 {12}
Logistics3 2 1 58 282 0 {21} 8 {?} 11 {8}
Logistics4 4 2 68 396 0 {42} 8 {?} 18 {?}
Logistics5 8 3 78 510 0 {63} ? {?} 28 {?}

BT(n) n 1 n+1 n 0 {n} 1 {1} n {n-1}
BTC(n) n 1 n+2 n+1 0 {n} 2n-1 {2} 2n-1 {n-1}

CubeCenter(n) n3 3 3n 6 0 (3n-3)/2 (9n-3)/2
Ring(n) n3n n 4n 4 0 3n-1 3n-1

Table 4. Features of test domains and problems - Number of initial states, Number of goal propo-
sitions, Number of propositions, Number of causative actions, Number of Observational Actions,
Optimal number of parallel plan steps, Optimal number of serial plan steps. Data for conditional
versions of domains is in braces; plan lengths for conditional plans are maximum conditional branch
length.

For the conformant rovers problem, the number of actions in RPU provides a heuristic

value of hMG
RPU (bI , G) = 7. Notice that this estimate is in between the positive interaction and

independence aggregation heuristics.

4. Empirical Evaluation: Domains

This section presents the domains used in the experiments discussed in this chapter and the

next chapter. All tests were run in Linux on an x86 machine with a 2.66GHz P4 processor and 1GB

RAM with a timeout of 20 minutes. POND uses a heuristic weight of five in the AO* search.

Table 4 shows some of the relative features of the different problems used to evaluate the

heuristics. The table shows the number of initial states, goal propositions, propositions, actions, and

optimal plan lengths. Some of the propositions are static and are counted in the table. This can be

used as a guide to gauge the difficulty of the problems, as well as our performance.
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Conformant Problems: In addition to the standard domains used in conformant planning–such

as Bomb-in-the-Toilet, Ring, and Cube Center, I also developed two new domains Logistics and

Rovers. I chose these new domains because they have more difficult subgoals, and have many plans

of varying length.

The Ring domain involves a circular ring of n rooms where each room is connected to two

adjacent rooms. Each room has a window which can be open, closed, or locked. The goal is to

have every window locked. Initially, any state is possible – the agent could be in any room and

each window could be in any configuration. There are four actions: move right, move left, close

the window in the current room, and lock the window in the current room. Closing a window only

works if the window is open, and locking a window only works if the window is closed. A good

conformant plan involves moving in one direction closing and locking the window in each room.

The Cube Center domain involves a three-dimensional grid (cube) where there are six ac-

tions – it is possible to move in two directions along each dimension. Each dimension consists of n

possible locations. Moving in a direction along which there are no more grid points leaves one in

the same position. Using this phenomena, it is possible to localize in each dimension by repeatedly

moving in the same direction. Initially it is possible to be at any location in the cube and the goal is

to reach the center. A good conformant plan involves localizing in a corner and then moving to the

center.

The Rovers domain is a conformant adaptation of the analogous domain of the classical

planning track of the International Planning Competition (Long and Fox, 2003). The added uncer-

tainty to the initial state uses conditions that determine whether an image objective is visible from

various vantage points due to weather, and the availability of rock and soil samples. The goal is

to upload an image of an objective and some rock and soil sample data. Thus a conformant plan

requires visiting all of the possible vantage points and taking a picture, plus visiting all possible
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locations of soil and rock samples to draw samples. The first five Rovers problems have 4 way-

points. Problems one through four have one through four locations, respectively, at which a desired

imaging objective is possibly visible (at least one will work, but it is unknown which one). Problem

5 adds some rock and soil samples as part of the goal and several waypoints where one of each

can be obtained (again, it is unknown which waypoint will have the right sample). Problem 6 adds

two more waypoints, keeps the same goals as Problem 5 and changes the possible locations of the

rock and soil samples. In all cases the waypoints are connected in a tree structure, as opposed to

completely connected.

The Logistics domain is a conformant adaptation of the classical Logistics domain where

trucks and airplanes move packages. The uncertainty is the initial locations of packages. Thus,

any actions relating to the movement of packages have a conditional effect that is predicated on

the package actually being at a location. In the conformant version, the drivers and pilots cannot

sense or communicate a package’s actual whereabouts. The problems scale by adding packages and

cities. The Logistics problems consist of one airplane, and cities with an airport, a post office, and

a truck. The airplane can travel between airports and the trucks can travel within cities. The first

problem has two cities and one package that could start at either post office, and the goal is to get

the package to the second city’s airport. The second problem adds another package at the same

possible starting points and having the same destination. The third problem has three cities with

one package that could be at any post office and has to reach the third airport. The fourth problem

adds a second package to the third problem with the same starting and ending locations. The fifth

problem has three cities and three packages, each at one of two of the three post offices and having

to reach different airports.

Conditional Problems: For conditional planning I consider domains from the literature: Bomb-

in-the-Toilet with sensing (BTS), and Bomb-in-the-Toilet with clogging and sensing (BTCS). I also
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extend the conformant Logistics and Rovers to include sensory actions.

The Rovers problem allows for the rover, when it is at a particular waypoint, to sense

the availability of image, soil, or rock data at that location. The locations of the collectable data

are expressed as one-of constraints, so the rover can deduce the locations of collectable data by

failing to sense the other possibilities. For example by knowing that one of avail(soil,

alpha), avail(soil, beta), or avail(soil, gamma) is true, then by sensing both

avail(soil, alpha) and avail(soil, beta) as false we can deduce avail(soil,

gamma) is true.

Logistics has observations to determine if a package at a location exists, and the observa-

tion is assumed to be made by a driver or pilot at the particular location. Since there are several

drivers and a pilot, different agents make the observations. The information gained by the agents is

assumed to be automatically communicated to the others, as the planner is the agent that has all the

knowledge.2

5. Empirical Evaluation: Inter-Heuristic Comparison

In this section I intend to evaluate which distance estimates perform best, both in terms of

overall planner performance and accuracy. I compare many techniques within POND by using

the conformant and conditional domains. The performance metrics include the total planning time

and the number of search nodes expanded. I proceed by presenting how POND performs with the

different heuristics in both conformant and conditional domains, explore the effect of sampling a

proportion of worlds to build SG1, MG, and LUG graphs, and compare the heuristic estimates in

POND to the optimal plan length to gauge heuristic accuracy. I finish with a summary of important

conclusions. I mention some results for the LUG in this section, while it is presented in the next

2This problem may be interesting to investigate in a multi-agent planning scenario, assuming no global communication
(e.g. no radio dispatcher).
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chapter, because they identify how an improved representation of multiple planning graphs can

reduce computational cost while still computing the same heuristics.

With the exception of the discussion on sampling worlds to construct the planning graphs,

the planning graphs are constructed deterministically. This means that the single graph is the

unioned single graph SGU , and the MG and LUG graphs are built for all possible worlds.

5.1. Heuristic Measure Comparison. In Tables 5 and 6 and Figures 15 to 23, I show

results in terms of the total time and number of expanded nodes. The total time captures the amount

of time computing the heuristic and searching. A high total time with a high number of search

nodes indicates a poor heuristic, and a high total time and low number of search nodes indicates an

expensive but informed heuristic. I describe the results from left to right in Table 5, comparing the

different planning graph structures and relaxed plans computed on each planning graph.

I start with the non-planning graph heuristics h0 and hcard. As expected, h0, breadth-first

search, does not perform well in a large portion of the problems, shown by the large number of

search nodes and inability to scale to solve larger problems. In the BT and BTC domains (Figures

17 and 18) the hcard heuristic does not work well because the size of belief states does not change as

the search gets closer to the goal (it is impossible to ever know which package contains the bomb).

Also, hcard does not perform as well in the Rovers and Logistics problems (Figures 15 and 16)

because the size of a belief state, during planning, does not necessarily indicate that the belief state

will be in a good plan. Part of the reason hcard works so well in some domains like Ring and Cube

(Figures 20 and 19) is that it measures knowledge, and plans for these domains are largely based

on increasing knowledge. The reason hcard performs poorly on other domains is that finding causal

support (which it does not measure) is more important than knowledge for these domains.

With a single planning graph SGU , POND does reasonably well with the hSG
RP heuristic
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Problem h0 hcard hSG
RP hMG

m−RP hMG
s−RP hMG

RPU

Rovers 1 540/36 520/21 590/6 580/6 580/6 580/6
2 940/249 790/157 700/15 1250/32 750/10 830/13
3 3340/1150 2340/755 3150/230 3430/77 1450/24 1370/23
4 TO 14830/4067 13480/1004 10630/181 7000/163 2170/34
5 - TO TO 85370/452 12470/99 31480/73
6 - - - 180890/416 15780/38 31950/73

Logistics 1 560/169 530/102 680/46 970/58 730/21 650/9
2 TO TO TO 2520/32 6420/105 2310/20
3 - - - 27820/927 4050/83 2000/15
4 - - - 5740/27 29180/211 53470/382
5 - - - 42980/59 51380/152 471850/988

BT 2 450/3 460/2 460/3 450/2 450/2 500/2
10 760/1023 590/428 1560/1023 6200/428 820/10 880/10
20 TO TO TO TO 6740/20 6870/20
30 - - - - 41320/30 44260/30
40 - - - - 179930/40 183930/40
50 - - - - 726930/50 758140/50
60 - - - - TO TO
70 - - - - - -
80 - - - - - -

BTC 2 460/5 460/4 450/5 460/4 460/3 470/3
10 1090/2045 970/1806 3160/2045 18250/1806 980/19 990/19
20 TO TO TO TO TO 9180/39
30 - - - - - 54140/59
40 - - - - - 251140/79
50 - - - - - 1075250/99
60 - - - - - TO
70 - - - - - -

CubeCenter 3 10/184 30/14 90/34 1050/61 370/9 0430/11
5 180/3198 20/58 3510/1342 60460/382 11060/55 14780/82
7 1940/21703 40/203 46620/10316 TO 852630/359 1183220/444
9 TO 70/363 333330/46881 - TO TO
11 - 230/1010 TO - - -
13 - 700/2594 - - - -

Ring 2 20/15 20/7 30/15 80/8 80/7 80/8
3 20/59 20/11 70/59 1500/41 500/8 920/19
4 30/232 20/15 350/232 51310/77 6370/11 19300/40
5 160/973 20/19 2270/973 TO 283780/16 TO
6 880/4057 30/23 14250/4057 - TO -
7 5940/16299 40/27 83360/16299 - - -
8 39120/64657 40/31 510850/64657 - - -
9 251370/261394 50/35 TO - - -
10 TO 70/39 - - - -

Table 5. Results for POND for conformant Rovers, Logistics, BT, BTC, Cube Center, and Ring.
The data is Total Time (ms)/# Expanded Nodes, “TO” indicates a time out and “-” indicates no
attempt.
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Figure 15. Total Time (ms) on left and Expanded Nodes on right in Conformant Rovers domain.
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Figure 16. Total Time (ms) on left and Expanded Nodes on right in Conformant Logistics domain.
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Figure 17. Total Time (ms) on left and Expanded Nodes on right in BT domain.

in the Rovers, Cube Center, and Ring domains, but fails to scale on the BT, BTC, and Logistics

domains. Approximating a fully observable plan with the single graph relaxed plan is reasonable

when plans for achieving the goal from each world have high positive interaction, as in Rovers,
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Figure 18. Total Time (ms) on left and Expanded Nodes on right in BTC domain.
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Figure 19. Total Time (ms) on left and Expanded Nodes on right in Cube Center domain.
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Figure 20. Total Time (ms) on left and Expanded Nodes on right in Ring domain.

Cube Center, and Ring. However, without high positive interaction, as in BT, BTC, and Logistics,

the heuristic degrades quickly when the number of initial worlds increases.

With multiple planning graphs, POND is able to perform better in the BT, BTC, Rovers,
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and Logistics domains, but takes quite a bit of time in the Cube Center and Ring domains. In Rovers,

capturing distance estimates for individual worlds and aggregating them by some means tends to be

better than aggregating worlds and computing a single distance estimate (as in SGU ). In BT and

BTC, the total time increases quickly because the number of planning graphs and the number of

relaxed plans for every search node increase greatly as problems become larger.

It is possible to compare the choices for aggregating the distance measures with the MG

relaxed plans. Taking the maximum cost of the relaxed plans, hMG
m−RP , in assuming positive in-

teraction among worlds is useful in Logistics and Rovers, but loses the independence of worlds in

the Ring, Cube Center, BT, and BTC domains. However, taking the summation of the relaxed plan

values for different worlds, hMG
s−RP is able to capture the independence in the BT domain. The sum-

mation does not help POND in the BTC domain (Figure 18) because it overestimates the heuristic

value for some nodes by counting the Flush action once for each world when it in fact only needs

to be done once (i.e., it misses positive interaction). Finally, using the hMG
RPU heuristic works well

in every domain, aside from the cost of computing multiple graph heuristics (which is high in Ring

and Cube Center), because it accounts for both positive interaction and independence by taking the

overlap of relaxed plans. However, there is still a need to capture more possible worlds in a cheaper

fashion.

The performance of POND in the conditional domains exhibits similar trends to the con-

formant domains, with a few exceptions. Like the conformant domains, the MG relaxed plans tend

to outperform the SG relaxed plan. Unlike the conformant domains, The hMG
m−RP performs much

better in BTS and BTCS over BT and BTC partly because the conditional plans have a lower av-

erage cost. The hcard heuristic does better in BTS and BTCS over BT and BTC because the belief

states actually decrease in size when they are partitioned by sensory actions.
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Problem h0 hcard hSG
RP hMG

m−RP hMG
s−RP hMG

RPU

Rovers 1 550/36 480/21 580/6 570/6 570/6 580/6
2 1030/262 550/36 780/15 760/14 710/12 730/12
3 1700/467 590/48 3930/248 830/15 830/15 910/17
4 5230/1321 620/58 6760/387 1020/20 1040/21 1070/21
5 TO TO TO 16360/175 11100/232 12810/209
6 - - - 31870/173 24840/159 30250/198

Logistics 1 530/118 TO 740/46 580/10 570/10 600/10
2 TO - TO 1630/30 1300/36 1360/36
3 - - - 1360/20 1250/19 1290/19
4 - - - 4230/59 3820/57 3940/57
5 - - - 27370/183 19620/178 20040/178

BT 2 460/5 460/3 450/3 460/3 450/3 470/3
10 TO 470/19 111260/7197 970/19 970/19 1020/19
20 - 510/39 TO 9070/39 9060/39 9380/39
30 - 620/59 - 52410/59 52210/59 55750/59
40 - 850/79 - 207890/79 206830/79 233720/79
50 - 1310/99 - 726490/99 719000/99 TO
60 - 2240/119 - TO TO -
70 - 24230/139 - - - -
80 - 45270/159 - - - -

BTC 2 450/6 460/3 470/5 470/3 460/3 470/3
10 TO 480/19 271410/10842 1150/19 1140/19 1200/19
20 - 510/39 TO 11520/39 TO 11610/39
30 - 660/59 - 62060/59 - 64290/59
40 - 970/79 - 251850/79 - 274610/79
50 - 1860/99 - 941220/99 - TO
60 - 4010/119 - TO - -
70 - 7580/139 - - - -

Table 6. Results for POND for conditional Rovers, Logistics, BTS, BTCS. The data is Total Time
(ms)/# Expanded Nodes, “TO” indicates a time out (20 minutes) and “-” indicates no attempt.

5.2. Sampling Worlds. The evaluations to this point have considered the effectiveness of

different heuristics, each computed with respect to all possible worlds of a belief state. While it is

more informed to use as many of the possible worlds as possible, one can reduce computation cost

and hope to still get reasonable heuristics by considering a subset of the worlds. The scheme for

considering subsets of worlds in the heuristics is to sample a single world (SG1), or sample a given

percentage of the worlds and build multiple graphs, or the LUG.

With these sampling approaches, I use the hSG
RP , hMG

RPU , and hLUG
RP relaxed plans. I build

the MG and LUG for 10%, 30%, 50%, 70%, and 90% of the worlds in each belief state, sampled
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Figure 21. Total Time (ms) on left and Expanded Nodes on right in Conditional Rovers domain.
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Figure 22. Total Time (ms) on left and Expanded Nodes on right in Conditional Logistics domain.
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Figure 23. Total Time (ms) on left and Expanded Nodes on right in BTS domain.

uniformly and randomly. In Figure 25, I show the total time taken (hours) to solve every problem in

the test set (79 problems over 10 domains). Each unsolved problem contributed 20 minutes to the

total time. For comparison I show the previously mentioned heuristics: hSG
RP computed on a unioned



88

100

1000

10000

100000

1e+06

2 10 20 30 40 50 60 70

T
im

e 
(m

s)

Instance

BTCS

(0)
(Card)

(SG-RP)
(MG-m-RP)

(MG-s-RP)
(MG-RPU)

1

10

100

1000

10000

100000

2 10 20 30 40 50 60 70

E
xp

an
de

d 
N

od
es

Instance

BTCS

(0)
(Card)

(SG-RP)
(MG-m-RP)

(MG-s-RP)
(MG-RPU)

Figure 24. Total Time (ms) on left and Expanded Nodes on right in BTCS domain.

Figure 25. Total Time (hours) for POND to solve all conformant and conditional problems when
sampling worlds to use in heuristic computation.

single graph SGU , denoted as “Unioned” compared to the sampled single graph SG1 denoted as

“Single”, and hMG
RPU and hLUG

RP computed for all worlds denoted as “100%”. The total time for any

heuristic that samples worlds is averaged over ten runs.

There are two major points to see in Figure 25. First, the hSG
RP heuristic is much more
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effective when computed on SG1 versus SGU . This is because the SG1 is less optimistic. It builds

a planning graph for a real world state, as opposed to the union of propositions in all possible world

states, as in SGU . Respecting state boundaries and considering only a single state is better than

ignoring state boundaries to naively consider all possible states. However, as seen with the MG

and LUG heuristics, respecting state boundaries and considering several states can be much better,

bringing the second point.

There is very different performance when using more possible worlds to build multiple

graphs compared to the LUG. It is better using fewer worlds when building multiple graphs because

they can become very costly as the number of worlds increases. Multiple graph performance does

not degrade considerably as the number of worlds increases. The number of problems that it can

solve remains more or less constant. Otherwise the number of unsolved problems would increase

and dominate the total time. In contrast, performance improves with more possible worlds when

using the LUG. Using more possible worlds to compute heuristics is a good idea, but it takes a

more efficient substrate to exploit them.

5.3. Accuracy. The heuristics that account for overlap in the possible worlds should be

more accurate than the heuristics that make an assumption of full positive interaction or full inde-

pendence. To check this intuition, I compare the heuristic estimates for the distance between the

initial belief state and the goal for all the heuristics used in conformant problems. Figure 26 shows

the ratio of the heuristic estimate for h(bI , G) to the optimal serial plan length h∗(bI , G) in several

problems. The points below the line (where the ratio is one) are under-estimates, and those above

are over-estimates. Some of the problem instances are not shown because no optimal plan length is

known.

In all domains, the hLUG
RP and hMG

RPU heuristics are very close to h∗, confirming the intuitions.
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Interestingly, hMG
s−RP and hMG

m−RP are both close to h∗ in Rovers and Logistics; whereas the former

is close in the BT and BTC problems, and the latter is close in CubeCenter and Ring. As expected,

assuming independence (using summation) tends to over-estimate, and assuming positive interac-

tion (using maximization) tends to under-estimate. The hSG
RP heuristic tends to under-estimate, and

in some cases (CubeCenter and Ring) gives a value of zero (because there is an initial state that

satisfies the goal). The hcard heuristic is accurate in BT and BTC, under-estimates in Rovers and

Logistics, and over-estimates in Cube Center and Ring.

The accuracy of heuristics is in some cases disconnected from their run time performance.

For instance hcard highly overestimates in Ring and Cube Center, but does well because the domains

exhibit special structure and the heuristic is fast to compute. On the other hand, hLUG
RP and hMG

RPU

are very accurate in many domains, but suffer in Ring and Cube Center because they can be costly

to compute. We will see in chapter 7 how it is possible to further improve performance on these

domains by reusing the LUG between search nodes that have many states in common.

5.4. Empirical Evaluation Conclusions. In comparing ways to aggregate state distance

measures to compute belief state distances, I found that measuring no interaction as in single graph

heuristics tends to poorly guide planners, measuring independence and positive interaction of worlds

works well in specific domains, and measuring overlap (i.e., a combination of positive interaction

and independence) tends to work well in a large variety of instances. By studying the accuracy

of our heuristics I found that in some cases the most accurate were not the most effective. I did

however find that the most accurate did best over the most cases. The following list summarizes the

findings:

• Of the planning graph heuristics presented, relaxed plans that take into account the overlap

of individual plans between states of the source and destination belief states are the most
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Figure 26. Ratio of heuristic estimates for distance between bI and G to optimal plan length. Rv =
Rovers, L = Logistics, B = BT, BC = BTC, C = Cube Center, R = Ring.

accurate and tend to perform well across many domains.

• Sampling possible worlds to construct planning graphs does reduce computational cost, but

considering more worlds by exploiting planning graph structure common to possible worlds

(as in the LUG), can be more efficient and informed.

• The heuristics help our conditional planner, POND, to scale up in conditional domains,

despite the fact that the heuristic computation does not model action observations.

6. Related Work

Many works have described approaches for formulating conformant and conditional non-

deterministic planning. These include extensions of GraphPlan (Blum and Furst, 1995) to con-

formant planning (Smith and Weld, 1998; Kurien et al., 2002) and conditional planning (Weld et
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al., 1998). Others have used variants of satisfiability (Castellini et al., 2001; Palacios and Geffner,

2005), or logic programming (Morales et al., 2007).

Perhaps the most popular set of approaches use search in the space of belief states (Gene-

sereth and Nourbakhsh, 1993; Bonet and Geffner, 2000; Bertoli et al., 2001; Bertoli and Cimatti,

2002; Rintanen, 2002; Tuan et al., 2004; Brafman and Hoffmann, 2004), which this work also em-

ploys. Is is also possible to search in the space of states by transforming problems to classical

planning (Palacios and Geffner, 2006).

7. Conclusion

With the intent of establishing a basis for belief state distance estimates, I have:

• Discussed how heuristic measures can aggregate state distance measures to capture positive

interaction, negative interaction, independence, and overlap.

• Found that distance based heuristics for belief space search help control conformant and con-

ditional plan length because, as opposed to cardinality, the heuristics model desirable plan

quality metrics.

• Shown how to compute such heuristic measures on planning graphs and provided empirical

comparisons of these measures.

The intent in this chapter is to provide a formal basis for measuring the distance between

belief states in terms of underlying state distances. I investigated several ways to aggregate the state

distances to reflect various assumptions about the interaction of state to state trajectories. The best

of these measures turned out to measure both positive interaction and independence in what I call

overlap. I saw that planners using this notion of overlap tend to do well across a large variety of

domains and tend to have more accurate heuristics.



CHAPTER 4

LABELED PLANNING GRAPHS

This chapter describes labeled planning graphs and how they can be used to compute relaxed

plans to estimate belief state distance measures. It includes a description of labeled planning graphs

(with a worked example), an empirical evaluation, and a discussion of related work. This chapter

focusses on non-deterministic conformant and conditional planning with deterministic actions.

1. Introduction

In the previous chapter, I identified how the multiple graph technique for computing belief

state distance measures can compute heuristics that aggregate the costs of multiple worlds. How-

ever, this came with the disadvantages of computing some redundant information in different graphs

(c.f. Figure 14) and using every graph to compute heuristics (c.f hMG
RPU ). The approach described in

this chapter addresses these limitations by condensing the multiple planning graphs to a single plan-

ning graph, called a labeled uncertainty graph (LUG). The idea is to implicitly represent multiple

planning graphs by collapsing the graph connectivity into one planning graph, but use annotations,

called labels (�), to retain information about multiple worlds. While it is possible to construct the

LUG by generating each of the multiple graphs and taking their union, instead I define a direct con-

struction procedure. The procedure starts similar to the unioned single planning graph (SGU ) by

constructing an initial layer of all propositions in each state of a belief state. The difference with the

LUG is that it can prevent loss of information about multiple worlds by recording in a label for each

proposition which of the possible worlds is relevant. I will discuss a few simple techniques used

to propagate the labels through actions and effects to label subsequent proposition layers. Label

propagation relies on expressing labels as propositional formulas and using standard propositional

logic operations, but I will describe it using set logic. The end product is single planning graph

with labels on all graph vertices; labels denote in which of the explicit multiple graphs (if they were
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built) a graph vertex is reached.

The LUG trades planning graph structure space for label storage space. Using BDDs

(Bryant, 1986) to represent labels helps lower the storage requirements on labels. The worst-case

complexity of the LUG is equivalent to the MG representation. The LUG’s complexity savings

is not realized when the projected possible worlds and the relevant actions for each are completely

disjoint; however, this does not often appear in practice. The space savings comes in through two

aspects: (1) redundant representation of actions and propositions is avoided, and (2) labels that fa-

cilitate non-redundant representation are stored as BDDs. A nice feature of BDDs in the package

used (Somenzi, 1998) is that they efficiently represent many BDDs in a shared BDD that leverages

common substructure. Hence, in practice the LUG contains the same information as MG with

much lower construction and usage costs.

2. Labeled Uncertainty Graph Heuristics (LUG)

In this section I present how to construct the LUG and how to extract relaxed plans. I will

use the same assumptions from the previous chapter, namely actions are deterministic, the model is

non-deterministic, and observations are ignored in the heuristics for conditional planning problems.

2.1. Label Propagation. Like the single graph and multiple graphs, the LUG is based

on the IPP (Koehler et al., 1997) planning graph. I extend the single graph to capture multiple

world causal support, as present in multiple graphs, by adding labels to the vertices of the action

A, effect E , and proposition P layers, such that the LUG is a set of vertices and a label function:

LUG(b) = 〈(P0,A0, E0, ...,Ak−1, Ek−1,Pk), �〉. I denote the label of a proposition p in level k as

�(k, p), which will be described with the short-hand �k(p). A label is a set of states (also in belief

state b) from which a graph vertex is (optimistically) reachable. A proposition p is reachable from a
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set of states, described by b, after k levels, if �k(p) = b. For instance, I can say that comm(soil) is

reachable after three levels from bI if the LUG has a proposition layerP2 containing comm(soil)

and �2(comm(soil)) = bI , meaning that the states where comm(soil) holds after two levels are

exactly the set of states in bI .

The intuitive definition of the LUG is a planning graph skeleton, that represents causal

relations, over which propagated labels indicate specific possible world support. I show the LUG for

the conformant rovers problem in Figure 27. There is a set of shaded circles above each proposition

and action to represent labels (please ignore the variations in circle size for now). The black circles

represent the planning graph for the first state sα = {at(alpha), avail(soil, alpha)},

the grey circles are for the state sβ = {at(alpha), avail(soil, beta)}, and the white

circles are for the state sγ = {at(alpha), avail(soil, gamma)}. The initial proposition

layer has at(alpha) labeled with every color because it holds in each of the states, and the other

propositions are labeled to indicate their respective states.

Constructing the graph skeleton largely follows traditional planning graph semantics, and

label propagation relies on a few simple rules. Each initial layer proposition is labeled, to indicate

the states of b in which it holds. An action is labeled to indicate all states that co-achieve its execution

preconditions, which is the intersection of the labels of its execution preconditions. An effect is

labeled to indicate all worlds that co-achieve its antecedent propositions and its action’s execution

preconditions, which is the intersection of the labels of its antecedent propositions and the label of

its associated action. Finally, propositions are labeled to indicate all worlds where they are given as

an effect, which is the union over all labels of effects in the previous level that affect the proposition.

I now describe label propagation in more detail and work through the conformant rover example.

Initial Proposition Layer: The LUG(b) has an initial layer consisting of every proposition with a

non empty label. In the initial layer the label �0(p) of each proposition p is identical to
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Figure 27. The LUG(bI) of the conformant rover problem. The relaxed plan for hLUG
RP is shown in

bold.

�o(p) =
⋃

p∈s,s∈b s

representing the states of b in which p holds.

The labels for the initial layer propositions are propagated through actions and effects to

label the next proposition layer, as I will describe shortly. Propagation continues until either no

label of any proposition changes between layers, a condition referred to as level off, or each goal

proposition has its label contain all states in b (meaning the goal is reachable).

The LUG(bI) of the conformant rovers problem, shown in Figure 27, has the initial propo-

sition layer:

P0 = {avail(soil, alpha), avail(soil, beta),

avail(soil, gamma), at(alpha)}
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�0(avail(soil, alpha)) = {sα}

�0(avail(soil, beta)) = {sβ}

�0(avail(soil, gamma)) = {sγ}

�0(at(alpha)) = {sα, sβ , sγ}
Notice that each avail proposition has a label indicating the respective initial state in

which it holds, and at(alpha) is labeled by every state in bI .

Action Layer: Once the previous proposition layer Pk is computed, it is possible to find the action

layer Ak. Ak contains causative actions from the action set A, plus proposition persistence. An

action is included in Ak if its label is non empty. The label of an action at level k, is equivalent to

the intersection of the labels of its execution precondition proposition labels:

�k(a) =
⋂

p∈ρe(a)

�k(p)

The zeroth action layer for conformant rovers problem, is:

A0 = {sample(soil, alpha), drive(alpha, beta),

drive(alpha, gamma),avail(soil, alpha)p,

avail(soil, beta)p, avail(soil, gamma)p,

at(alpha)p}

�0(sample(soil, alpha)) = �0(drive(alpha, beta)) =

�0(drive(alpha, gamma)) = �0(at(alpha)p) = {sα, sβ , sγ}

�0(avail(soil, alpha)p) = {sα}

�0(avail(soil, beta)p) = {sβ}

�0(avail(soil, gamma)p) = {sγ}



98

Each proposition persistence has a label identical to the label of the corresponding proposi-

tion from the previous proposition layer. The sample and both drive actions have labels identical

to bI because their enabling precondition at(alpha) has the same label. While the actions are

labeled with every state in bI , it does not meant their effects will have the same label.

Effect Layer: The effect layer Ek depends both on the proposition layer Pk and action layerAk. Ek

contains an effect ϕij(a) if the effect has a non empty label. Because both the action and the effect

must be applicable in the same world, the label of the effect at level k is the intersection of the label

of the associated action with the intersection of the labels of the antecedent propositions:

�k(ϕij(a)) = �k(a) ∩
⋂

p∈ρij(a)

�k(p)

The zeroth effect layer for the example, is:

E0 = {ϕ00(sample(soil, alpha)), ϕ00(drive(alpha, beta)),

ϕ00(drive(alpha, gamma)), ϕ00(avail(soil, alpha)p),

ϕ00(avail(soil, beta)p), ϕ00(avail(soil, gamma)p),

ϕ00(at(alpha)p)}

�0(ϕ00(drive(alpha, beta))) = �0(ϕ00(drive(alpha, gamma))) =

�0(ϕ00(at(alpha)p)) ={sα, sβ, sγ}

�0(ϕ00(sample(soil, alpha))) = �0(ϕ00(avail(soil, alpha)p))={sα}

�0(ϕ00(avail(soil, beta)p)) ={sβ},

�0(ϕ00(avail(soil, gamma)p)) ={sγ}

Again, like the action layer, the effect of each proposition persistence has a label identical

to the corresponding proposition in the previous proposition layer. The effect of each drive action
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has a label identical to the label of the associated action. The label of the effect of the sample

action is different from the label of the action because the intersection of the antecedent proposition

label and the action label is one state, {sα, sβ , sγ} ∩ {sα} = {sα}.

Proposition Layer: The proposition layer Pk depends on the previous effect layer Ek−1, and con-

tains only propositions with non empty labels. An effect ϕij(a) ∈ Ek−1 contributes to the label of

a proposition p when the effect consequent contains the proposition p. The label of a proposition is

the disjunction of the labels of each effect from the previous effect layer that gives the proposition:

�k(p) =
⋃

ϕij(a)∈Ek−1:p∈εij(a)

�k−1(ϕij(a))

The first proposition layer for the example is:

P1 = P0 ∪ {at(beta), at(gamma), have(soil)}

�1(at(alpha)) = �0(at(beta)) =

�1(at(gamma)) = {sα, sβ, sγ}

�1(avail(soil, alpha)) = �0(have(soil)) = {sα}

�1(avail(soil, beta)) = {sβ}

�1(avail(soil, gamma)) = {sγ}

This proposition layer is identical the initial proposition layer, except that have(soil)

is now reachable from sα because it is supported by the effect of the sample(soil, alpha)

action.

Continuing to the level one action layer:
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A1 = A0 ∪ {sample(soil, beta), sample(soil, gamma),

commun(soil), drive(beta, alpha),

drive(beta, gamma), drive(gamma, alpha),

drive(gamma, beta),have(soil)p}

�1(sample(soil, alpha)) = �1(drive(alpha, beta)) =

�1(drive(alpha, gamma)) = �1(at(alpha)p) =

�1(sample(soil, beta)) = �1(sample(soil, gamma)) =

�1(commun(soil)) = �1(drive(beta, alpha)) =

�1(drive(beta, gamma)) = �1(drive(gamma, alpha)) =

�1(drive(gamma, beta)) = �1(at(alpha)p) =

�1(at(beta)p) = �1(at(gamma)p) = {sα, sβ , sγ}

�1(avail(soil, alpha)p) = �1(have(soil)p) = {sα}

�1(avail(soil, beta)p) = {sβ}

�1(avail(soil, gamma)p) = {sγ}
This action layer has new actions: the remaining sample actions, the commun(soil)

action, and several drive actions. Each of the new actions is applicable in all possible worlds.

The level one effect layer is:

E1 = E0 ∪ {ϕ00(sample(soil, beta)), ϕ00(sample(soil, gamma)),

ϕ00(drive(beta, alpha)), ϕ00(drive(beta, gamma)),

ϕ00(drive(gamma, alpha)), ϕ00(drive(gamma, beta)),

ϕ00(have(soil)p), ϕ00(at(beta)p),

ϕ00(at(gamma)p), ϕ00(commun(soil))}
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�1(ϕ00(drive(alpha, beta))) = �1(ϕ00(drive(alpha, gamma))) =

�1(ϕ00(drive(beta, alpha))) = �1(ϕ00(drive(beta, gamma))) =

�1(ϕ00(drive(gamma, alpha))) = �1(ϕ00(drive(gamma, beta))) =

�1(ϕ00(at(beta)p)) = �1(ϕ00(at(gamma)p)) =

�1(ϕ00(at(alpha)p)) = {sα, sβ , sγ}

�1(ϕ00(sample(soil, alpha))) = �1(ϕ00(commun(soil))) =

�1(ϕ00(have(soil)p)) = �1(ϕ00(avail(soil, alpha)p)) =

�1(ϕ00(commun(soil))) = {sα}

�1(ϕ00(sample(soil, beta))) = �1(ϕ00(avail(soil, beta)p)) = {sβ}

�1(ϕ00(sample(soil, gamma))) = �1(ϕ00(avail(soil, gamma)p)) = {sγ}
The conditional effects of the two new sample actions have labels to indicate the states

that can reach them. The effect of the commun(soil) is also now reachable from state sα. There

are also several new effects for additional drive actions.

The level two proposition layer is as follows:

P2 = P1 ∪ {comm(soil)}

�2(at(alpha)) = �2(at(beta)) =

�2(at(gamma)) = �2(have(soil)) = {sα, sβ, sγ}

�2(avail(soil, alpha)) = �2(comm(soil)) = {sα}

�2(avail(soil, beta)) = {sβ}

�2(avail(soil, gamma)) = {sγ}

The have(soil) proposition is now reachable by every state because it is supported by

the effect of the three sample actions, each supporting from a different state. The goal proposition
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commun(soil) is reachable from one state. All other propositions are reachable from the same

states as the previous proposition layer.

Continuing to the level two action layer:

A2 = A1 ∪ {comm(soil)p}

�2(sample(soil, alpha)) = �2(drive(alpha, beta)) =

�2(drive(alpha, gamma)) = �2(at(alpha)p) =

�2(sample(soil, beta)) = �2(sample(soil, gamma)) =

�2(commun(soil)) = �2(drive(beta, alpha)) =

�2(drive(beta, gamma)) = �2(drive(gamma, alpha)) =

�2(drive(gamma, beta)) = �2(at(alpha)p) =

�2(at(beta)p) = �2(at(gamma)p) = {sα, sβ , sγ}

�2(avail(soil, alpha)p) = �2(have(soil)p) = {sα}

�2(avail(soil, beta)p) = {sβ}

�2(avail(soil, gamma)p) = {sγ}

�2(comm(soil)p) = {sα}

This action layer is exactly the same as the previous action layer, but includes a new persis-

tence for comm(soil).

The level two effect layer is:

E2 = E1
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�2(ϕ00(drive(alpha, beta))) = �2(ϕ00(drive(alpha, gamma))) =

�2(ϕ00(drive(beta, alpha))) = �2(ϕ00(drive(beta, gamma))) =

�2(ϕ00(drive(gamma, alpha))) = �2(ϕ00(drive(gamma, beta))) =

�2(ϕ00(at(beta)p)) = �2(ϕ00(at(gamma)p)) =

�2(ϕ00(at(alpha)p)) = �2(ϕ00(commun(soil))) =

�2(ϕ00(have(soil)p)) = {sα, sβ , sγ}

�2(ϕ00(sample(soil, alpha))) = �2(ϕ00(avail(soil, alpha)p)) = {sα}

�2(ϕ00(sample(soil, beta))) = �2(ϕ00(avail(soil, beta)p)) = {sβ}

�2(ϕ00(sample(soil, gamma))) = �2(ϕ00(avail(soil, gamma)p)) = {sγ}
The conditional effect of commun(soil) is now reachable from all possible worlds,

meaning the next proposition layer will have the goal reachable from all possible worlds.

The level three proposition layer is as follows:

P3 = P2

�0(at(alpha)) = �0(at(beta)) =

�0(at(gamma)) = �0(have(soil)) =

�0(comm(soil)) = {sα, sβ, sγ}

�0(avail(soil, alpha)) = {sα}

�0(avail(soil, beta)) = {sβ}

�0(avail(soil, gamma)) = {sγ}

The comm(soil) proposition is now reachable by every state because it is supported by

the effect of the commun(soil) action, which is labeled with each state. All other propositions

are reachable from the same states as the previous proposition layer. Construction can stop here
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because the goal is reachable from each state in bI . However, level off occurs at the next level

because there is no change in the labels of the propositions.

2.2. LUG Heuristics. The heuristics computed on the LUG can capture measures similar

to the MG heuristics, but there exists a new opportunity to make use of labels to improve heuristic

computation efficiency. A single planning graph is sufficient if there is no state aggregation being

measured, so I do not mention such measures for the LUG. I proceed with aggregation techniques.

Positive Interaction Aggregation: Unlike MG heuristics, I do not compute positive interaction

based relaxed plans on the LUG. The MG approach to measure positive interaction across plans

for each state in a belief state is to compute multiple relaxed plans and take their maximum value.

To get the same measure on the LUG one would still need to extract multiple relaxed plans, the

situation avoided by using the LUG. While the graph construction overhead may be lowered by

using the LUG, the heuristic computation could take too long. Hence, I do not compute relaxed

plans on the LUG to measure positive interaction alone, but I do compute relaxed plans that measure

overlap (which measures positive interaction).

Independence Aggregation: Like positive interaction aggregation, one needs a relaxed plan for

every state in the projected belief state to find the summation of the costs. Hence, I do not compute

relaxed plans that assume independence.

State Overlap Aggregation: A relaxed plan extracted from the LUG to get the hLUG
RP heuristic

resembles the unioned relaxed plan in the hMG
RPU heuristic. Recall that the hMG

RPU heuristic extracts

a relaxed plan from each of the multiple planning graphs (one for each possible world) and unions

the set of actions chosen at each level in each of the relaxed plans. The LUG relaxed plan heuristic

is similar in that it counts actions that have positive interaction in multiple worlds only once and

accounts for independent actions that are used in subsets of the possible worlds. The advantage of
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hLUG
RP is that it is possible to find these actions with a single pass on one planning graph.

The trade off is the cost of computing multiple relaxed plans and the cost of manipulating

LUG labels to determine what lines of causal support are used in what worlds. In the relaxed plan

the intent is to support the goal with every state in the projected belief state b, but in doing so it is

necessary to track which states in b use which paths in the planning graph. A subgoal may have

several different (and possibly overlapping) paths from the worlds in b.

A LUG relaxed plan is a subset of the planning graph layers and a label function defined

as: 〈(ARP
0 , ERP

0 ,PRP
1 , ..., ARP

k−1, ERP
k−1, PRP

k ), �RP 〉, where ARP
r is a set of actions, ERP

r is a set

of effects, and PRP
r+1 is a set of propositions. The vertices of the layers are labeled to indicate the

worlds of b where they are chosen for support. The relaxed plan is extracted from the level k where

the goal propositions are first reachable by every state in b.

The labeled relaxed plan extraction is similar to the classical planning relaxed plan, but with

one key difference. A proposition may need support from more than one action because it needs

support from several source states, each requiring a supporter. Specifically, the relaxed plan tracks

which of the source states require the inclusion of a particular action or proposition. Notice the

circles in Figure 27 that are slightly larger than the others: these indicate the source states where the

given action or proposition is needed. For instance, at(gamma) in PRP
1 is only used for the source

state sα. Supporting a proposition is a set cover problem where each action covers some set of states

(indicated by its label). For example, have(soil) in PRP
2 needs support in the source states

where it supports commun(soil). There is no single action that supports it in all of these states.

However, a subset of the supporting actions can support it by covering the required source states.

For example, to cover have(soil) inPRP
2 with supporters, the relaxed plan includes the effect of

sample(soil, beta) for support from state sβ , and the effect of sample(soil, alpha)

for support from state sγ . Using the notion of set cover, it easy to exploit positive interactions with
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a simple greedy heuristic (which can be used to bias action choice in line 7 of Figure 3): an action

that supports in several of the explicit planning graphs is better than an action that supports in only

one. I also bias relaxed plan extraction to use all persistence before using the number of worlds to

bias effect selection.

For this example, the labeled relaxed plan gives a heuristic measure of 7, which is the same

as the unioned relaxed plan extracted from multiple planning graphs. The relaxed plan, shown in

bold in Figure 27, for bI to reach G is listed as follows:

PRP
0 = {avail(soil, alpha),avail(soil, beta),

avail(soil, gamma),at(alpha)}

�RP
0 (avail(soil, alpha)) = {sα}

�RP
0 (avail(soil, beta)) = {sβ}

�RP
0 (avail(soil, gamma)) = {sγ}

�RP
0 (at(alpha)) = {sα, sβ , sγ}

ARP
0 = {sample(soil, alpha),drive(alpha, beta),

drive(alpha, gamma),avail(soil, beta)p,

avail(soil, gamma)p}

�RP
0 (sample(soil, alpha)) = {sα}

�RP
0 (drive(alpha, beta))) = �RP

0 (avail(soil, beta)p)) = {sβ}

�RP
0 (drive(alpha, gamma)) = �RP

0 (avail(soil, gamma)p)) = {sγ}

ERP
0 = {ϕ00(sample(soil, alpha)), ϕ00(drive(alpha, beta)),

ϕ00(drive(alpha, gamma)), ϕ00(avail(soil, beta)p),

ϕ00(avail(soil, gamma)p)}
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�RP
0 (ϕ00(sample(soil, alpha))) ={sα}

�RP
0 (ϕ00(drive(alpha, beta)))) = �RP

0 (ϕ00(avail(soil, beta)p))) ={sβ}

�RP
0 (ϕ00(drive(alpha, gamma))) = �RP

0 (ϕ00(avail(soil, gamma)p)))={sγ}

PRP
1 = {have(soil),avail(soil, beta),

at(beta),avail(soil, gamma),

at(gamma)}

�RP
1 (have(soil)) = {sα}

�RP
1 (avail(soil, beta)) = �RP

1 (at(beta)) = {sβ}

�RP
1 (avail(soil, gamma)) = �RP

1 (at(gamma)) = {sγ}

ARP
1 = {commun(soil),sample(soil, beta),sample(soil, gamma)}

�RP
1 (commun(soil)) = {sα}

�RP
1 (sample(soil, beta)) = {sβ}

�RP
1 (sample(soil, gamma)) = {sγ}

ERP
1 = {ϕ00(commun(soil)), ϕ00(sample(soil, beta)),

ϕ00(sample(soil, gamma))}

�RP
1 (ϕ00(commun(soil))) = {sα}

�RP
1 (ϕ00(sample(soil, beta)))) = {sβ}

�RP
1 (ϕ00(sample(soil, gamma))) = {sγ}

PRP
2 = {have(soil), comm(soil)}

�RP
2 (have(soil)) = {sβ , sγ}

�RP
2 (comm(soil)) = {sα}

ARP
2 = {commun(soil),comm(soil)p}
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�RP
2 (commun(soil)) = {sβ , sγ}

�RP
2 (comm(soil)p) = {sα}

ERP
2 = {ϕ00(commun(soil)), ϕ00(comm(soil)p)}

�RP
2 (ϕ00(commun(soil))) = {sβ , sγ}

�RP
2 (ϕ00(comm(soil)p)) = {sα}

PRP
3 = {comm(soil)}

�RP
3 (comm(soil)) = {sα, sβ, sγ}

The relaxed plan starts by forming PRP
3 with the goal propositions, namely comm(soil),

labeled with each state in bI because it needs to be supported by all states in the belief state.

Next, it supports each proposition in PRP
3 with the relevant effects from E2 to form ERP

2 . The

comm(soil) proposition is supported first by the persistence of comm(soil) from sα and by

the effect of commun(soil) in the other two worlds (this is an example of positive interaction of

worlds). The commun(soil) action is included inARP
2 for all worlds its effect was needed, which

is fewer worlds than where it is reachable. Next the relaxed plan extraction formsPRP
2 with the exe-

cution preconditions of actions inARP
2 and antecedents of effects in ERP

2 , which are have(soil)

and comm(soil), labeled with all worlds where an action or effect needed it. In the same fashion

as level three, the relaxed plan supports the propositions at level two, using commun(soil) for

state sα, and one sample action for each of the other two states. The relaxed plan extraction con-

tinues until all propositions in level one are supported by actions in level zero. To see an example

of where an action is used for supporting a proposition in less worlds than it is reachable, consider

the at(beta) proposition in level one: it is only needed to support sample(soil, beta) in

world sβ , so does not need to be supported in the other worlds.

For the general case, extraction starts at the level k where the goal propositions are reach-
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able by every state in b (i.e., b =
⋂

p∈G �k(p)). The first relaxed plan layers constructed are

ARP
k−1, ERP

k−1,PRP
k , where PRP

k contains all propositions p ∈ G, labeled as �RP
k (p) = b.

For each level r, 1 ≤ r ≤ k, the relaxed plan supports each proposition in PRP
r+1 by choosing

relevant effects from Er to form ERP
r . An effect ϕij(a) is relevant if it is reachable in some of the

worlds where support for some p is needed (i.e., �r(ϕij(a))∩�RP
r+1(p) �= ∅) and the consequent gives

the proposition p. For each proposition, the relaxed plan must choose enough supporting effects

so that the chosen effect worlds are a superset of the worlds we need to support the proposition,

formally:

∀p∈PRP
r+1

�RP
r+1(p) ⊆

⎛
⎜⎝ ⋃

ϕij(a)∈Er:p∈ε+
ij(a)

�RP
r (ϕij(a))

⎞
⎟⎠

Supporting a clause in a set of worlds is a set cover problem where effects cover subsets

of worlds. The algorithm to cover the worlds of a proposition with worlds of effects is a variant

of the well-known greedy algorithm for set cover (Cormen et al., 1990). It chooses all applicable

persistence and then action effects that cover the most new worlds, breaking ties by preferring

persistence. Each effect chosen for support is added to ERP
r and labeled with the new worlds it

covered for p. Once all propositions in PRP
r+1 are covered, the relaxed plan forms the action layer

ARP
r as all actions that have an effect in ERP

r . The actions inARP
r are labeled to indicate all worlds

where any of their effects were labeled in ERP
r .

The next proposition layer, PRP
r , contains all propositions from the execution preconditions

of actions in ARP
r and antecedents of effects in ERP

r . Each proposition p ∈ PRP
r is labeled to

indicate all worlds where any action or effect requires p. The relaxed plan supports the propositions

inPRP
r−1 in the same fashion asPRP

r . The relaxed plan continues to support propositions with effects,

insert actions, and insert action and effect preconditions until it has supported all propositions in

PRP
1 .

The relaxed plan heuristic value, hLUG
RP (b, G), is the summation of the number of non per-
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sistence actions in each action layer, formally:

hLUG
RP (b, G) =

k∑
r=0

| ARP
r |

Thus in the rover example the heuristic is hLUG
RP (bI , G) = 7.

3. Empirical Evaluation: Intra-Planner Comparison

The previous chapter evaluated several different heuristic measures, finding that the hMG
RPU

(based on measuring state overlap) is most informative despite being very costly to compute. This

chapter identifies an alternative way to compute heuristics that measure state overlap based on la-

beled planning graphs. This section compares the hLUG
RP and the hMG

RPU relaxed plan heuristics to

gauge the effectiveness of the LUG. Specifically, I discuss results for both conformant and con-

ditional planning domains using all possible worlds in a belief state, and also comment on results

presented in the previous chapter that compare techniques for state sampling.

Conformant Planning: Table 7 and Figures 28 to 33 compare the two relaxed plan heuristics on all

of the conformant planning instances. The LUG heuristic takes considerably less time to compute,

leading to better overall time even when it expands more search nodes. The difference between the

MG and the LUG are especially pronounced in Cube Center and Ring (Figures 32 and 20), where

the size of the initial belief state is quite large as the instances scale. In many domains (e.g., Rovers,

CubeCenter and Ring) the LUG heuristic expands significantly more search nodes, because perhaps

the relaxed plan extraction makes poor local choices, leading to inferior heuristics. For example,

choosing effects that cover the most new worlds may be effectively end-aligning the relaxed plans

for different worlds, leading to lower overlap.
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Conformant
Problem hMG

RPU hLUG
RP

Rovers 1 580/6 590/6
2 830/13 680/11
3 1370/23 850/16
4 2170/34 1130/28
5 31480/73 2050/36
6 31950/73 9850/147

Logistics 1 650/9 560/9
2 2310/20 910/15
3 2000/15 1130/14
4 53470/382 3180/46
5 471850/988 6010/42

BT 2 500/2 460/2
10 880/10 520/10
20 6870/20 1230/20
30 44260/30 4080/30
40 183930/40 11680/40
50 758140/50 28420/50
60 TO 59420/60
70 - 113110/70
80 - 202550/80

BTC 2 470/3 460/3
10 990/19 540/19
20 9180/39 1460/39
30 54140/59 4830/59
40 251140/79 14250/79
50 1075250/99 34220/99
60 TO 71650/119
70 - 134880/139

CubeCenter 3 0430/11 70/11
5 14780/82 1780/205
7 1183220/444 27900/1774
9 TO 177790/7226
11 - 609540/17027
13 - TO

Ring 2 80/8 30/8
3 920/19 70/10
4 19300/40 250/24
5 TO 970/44
6 - 4080/98
7 - 75020/574
8 - 388300/902
9 - TO
10 - -

Conditional
Problem hMG

RPU hLUG
RP

Rovers 1 580/6 580/6
2 730/12 730/13
3 910/17 810/16
4 1070/21 910/21
5 12810/209 7100/174
6 30250/198 13560/174

Logistics 1 600/10 570/10
2 1360/36 1250/36
3 1290/19 1210/19
4 3940/57 4160/57
5 20040/178 20170/178

BT 2 470/3 460/3
10 1020/19 550/19
20 9380/39 1610/39
30 55750/59 5970/59
40 233720/79 17620/79
50 TO 43020/99
60 - 91990/119
70 - 170510/139
80 - 309940/159

BTC 2 470/3 470/3
10 1200/19 590/19
20 11610/39 1960/39
30 64290/59 6910/59
40 274610/79 19830/79
50 TO 49080/99
60 - 103480/119
70 - 202040/139

Table 7. Results for POND for conformant Rovers, Logistics, BT, BTC, Cube Center, and Ring
(left), plus results for conditional Rovers, Logistics, BT, BTC (right). The data is Total Time (ms)/#
Expanded Nodes, “TO” indicates a time out and “-” indicates no attempt.

Conditional Planning: The conditional planning results in Table 7 and Figures 34 to 37 are a bit

more promising. The number of search node expansions is comparable and the time taken using
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Figure 28. Total Time (ms) on left and Expanded Nodes on right in Conformant Rovers domain.
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Figure 29. Total Time (ms) on left and Expanded Nodes on right in Conformant Logistics domain.
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Figure 30. Total Time (ms) on left and Expanded Nodes on right in BT domain.

the LUG heuristic is generally lower. In the BT and BTC domains, scalability is vastly improved,

allowing POND to solve more instances.
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Figure 31. Total Time (ms) on left and Expanded Nodes on right in BTC domain.
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Figure 32. Total Time (ms) on left and Expanded Nodes on right in Cube Center domain.
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Figure 33. Total Time (ms) on left and Expanded Nodes on right in Ring domain.

Sampling States: The previous chapter presented a study of the effect of sampling states to include

in the heuristic computation. Figure 25 showed that using more states was only beneficial in the

case of the LUG. This is because the LUG can better accommodate more states with the symbolic
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Figure 34. Total Time (ms) on left and Expanded Nodes on right in Conditional Rovers domain.
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Figure 35. Total Time (ms) on left and Expanded Nodes on right in Conditional Logistics domain.
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Figure 36. Total Time (ms) on left and Expanded Nodes on right in BTS domain.

representation. The case for MG was much different because despite improved informedness with

more states, the cost of constructing the explicit planning graphs is too high.
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Figure 37. Total Time (ms) on left and Expanded Nodes on right in BTCS domain.

Summary: By comparing graph structures that provide the basis for belief state distance measures,

I found that POND is able to exhibit better scalability by using the LUG to optimize the repre-

sentation of the redundant planning graph structure. The improvement in scalability is attributed to

lowering the cost of heuristic computation, but retaining measures of multiple state distances. The

LUG makes a trade-off of using an exponential time algorithm for evaluation of labels instead of

building an exponential number of planning graphs. This trade-off is justified by our experiments.

4. Empirical Evaluation: Inter-Planner Comparison

This section first compares POND with several conformant planners on the conformant

domains, and then compares POND with conditional planners on the conditional domains. I com-

pare with the competing approaches CGP, SGP, GPT v1.40, MBP v0.91, KACMBP, YKA, and CFF.

The purpose in this section is to identify the advantages of the planning graph based heuristic tech-

niques over the state of the art planners. I end the section with a discussion of general conclusions

drawn from the evaluation.
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Planner Search Space Search Direction Conditional Heuristic Implementation
POND Belief Space Forward

√
Planning Graph C

MBP Belief Space Forward/Backward
√

Cardinality C
KACMBP Belief Space Forward Cardinality C
CGP Planning Graph Backward Planning Graph Lisp
SGP Planning Graph Backward

√
Planning Graph Lisp

GPT Belief Space Forward
√

State Space Plans C
YKA Belief Space Backward

√
Cardinality C

CFF Belief Space Forward Planning Graph C

Figure 38. Comparison of planner features.

4.1. Non-Deterministic Conformant Planning. Although this and the previous chapter

are aimed at giving a general comparison of heuristics for belief space planning, I also present a

comparison of the best heuristic within POND to some of the other leading approaches to confor-

mant planning. Figure 38 lists several features of the evaluated planners, such as their search space,

their search direction, whether they are conditional, the type of heuristics, and the implementation

language. Note, since each approach uses a different planning representation (BDDs, GraphPlan,

etc.), and not all of which even use heuristics, it is hard to get a standardized comparison of heuristic

effectiveness. Furthermore, not all of the planners use PDDL-like input syntax; MBP, and KACMBP

use AR encodings which may give them an advantage in reducing the number of propositions and

actions. I gave the MBP planners the same grounded and filtered action descriptions that I used

in POND. I also tried, but do not report results, giving the MBP planners the full set of ground

actions without filtering irrelevant actions. It appears that the MBP planners do not use any sort of

action pre-processing because performance was much worse with the full grounded set of actions.

Table 39 and Figures 40 to 45 compare MBP, KACMBP, GPT, CGP, YKA, and CFF with hLUG
RP in

POND with respect to run time and plan length.

MBP: The MBP planner uses a cardinality heuristic that in many cases overestimates plan distances

(as per the discussion of hcard in the last chapter). MBP uses regression search for conformant

plans, but progression search for conditional plans. It is interesting to note that in the more difficult
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Problem POND MBP KACMBP GPT CGP YKA CFF
hLUG

RP

Rovers 1 590/5 66/5 9293/5 3139/5 70/5 1220/7 70/5
2 680/9 141/8 9289/15 4365/8 180/8 2050/10 30/8
3 850/11 484/10 9293/16 5842/10 460/10 1740/12 10/10
4 1130/16 3252/13 9371/18 7393/13 1860/13 2010/16 10/13
5 2050/25 OoM 39773/40 399525/20 OoM 7490/27 18/22
6 8370/25 727/32 TO TO - 24370/26 21/23

Logistics 1 560/9 37/9 127/12 916/9 60/6 250/13 10/9
2 910/15 486/24 451/19 1297/15 290/6 670/19 12/15
3 1130/14 408/14 1578/18 1711/11 400/8 20280/21 14/12
4 3180/22 2881/27 8865/22 9828/18 1170/8 17530/27 12/18
5 6010/29 OoM 226986/42 543865/28 TO 141910/40 25/28

BT 2 460/2 6/2 10/2 487/2 20/1 0/2 0/2
10 520/10 119/10 16/10 627/10 520/1 0/10 30/10
20 1230/20 80/20 84/20 472174/20 3200/1 20/20 4400/20
30 4080/30 170/30 244/30 TO 10330/1 80/30 4500/30
40 11680/40 160/40 533/40 - 24630/1 160/40 26120/40
50 28420/50 300/50 1090/50 - 49329/1 250/50 84730/50
60 59420/60 480/60 2123/60 - 87970/1 420/60 233410/60
70 113110/70 730/70 3529/70 - 145270/1 620/70 522120/70
80 202550/80 1080/80 1090/80 - TO 3310/80 979400/80

BTC 2 460/3 8/3 18/3 465/3 0/3 10/3 10/3
10 540/19 504/19 45/19 715/19 39370/19 30/19 57/19
20 1460/39 98/39 211/39 - - 240/39 2039/39
30 4820/59 268/59 635/59 - - 1210/59 23629/59
40 14250/79 615/79 1498/79 - - 3410/79 116156/79
50 34220/99 1287/99 10821/99 - - 8060/50 334879/99
60 71650/119 2223/119 5506/119 - - 15370/119 TO
70 134880/139 3625/139 2640/139 - - 27400/139 -

CubeCenter 3 70/9 10/9 20/9 40/9 28990/3 0/9 20/15
5 1780/18 16/18 20/18 363/18 TO 0/19 28540/45
7 27900/29 35/27 70/27 4782/27 - 20/34 TO
9 177790/36 64/36 120/36 42258/36 - 80/69 -
11 609540/47 130/45 230/45 26549/45 - 190/68 -

Ring 2 30/6 0/5 0/5 31/5 TO 0/5 360/12
3 70/8 0/8 40/8 35/8 - 0/8 TO
4 250/13 10/11 30/11 60/11 - 20/11 -
5 970/17 20/14 50/14 635/14 - 80/14 -
6 4080/22 30/17 120/18 51678/17 - 110/17 -
7 75020/30 80/20 230/21 TO - 300/20 -
8 388300/29 160/23 600/24 - - 480/23 -

Figure 39. Results for POND using hLUG
RP compared with MBP, KACMBP, GPT, CGP, YKA, and

CFF for conformant Rovers, Logistics, BT, BTC, Cube Center, and Ring. The data is Total Time /
# Plan Steps, “TO” indicates a time out (20 minutes), “OoM” indicates out of memory (1GB), and
“-” indicates no attempt.
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problem instances in the Rovers and Logistics domains MBP and KACMBP tend to generate much

longer plans than the other planners. MBP does outperform POND in some cases but does not

find solutions in certain instances (like Rovers 5), most likely because of its heuristic. Note that

KACMBP and MBP are quite fast on the Cube Center and Ring domains, but have more trouble on

domains like Rovers and Logistics. This illustrates how a heuristic modeling knowledge as opposed

to reachability can do well in domains where the challenge is uncertainty not reachability.

Optimal Planners: The optimal approaches (CGP and GPT) tend not to scale as well, despite their

good solutions. CGP has trouble constructing its planning graphs as the parallel conformant plan

depth increases. CGP spends quite a bit of time computing mutexes, which increases the planning

cost as plan lengths increase. CGP does much better on shallow and parallel domains like BT, where

it can find one step plans that dunk every package in parallel. GPT performs progression search that

is guided by a heuristic that measures the cost of fully observable plans in state space. GPT finds

optimal serial plans but is not as effective when the size of the search space increases. GPT fails

to scale with the search space because it becomes difficult to even compute its heuristic (due to a

larger state space as well).

YKA: YKA is a regression planner that uses a BDD based representation and a cardinality heuristic.

YKA performs well on all the domains without reachability heuristics because of its search engine

based on BDDs. POND is able to do better than YKA in the Rovers and Logistics domains, but it

is unclear whether this is because of the search direction or heuristics.

CFF: Conformant FF, a progression planner using a relaxed plan similar to the LUG relaxed plan,

does very well in the Rovers and Logistics domains because it uses the highly optimized FF search

engine as well as a cheap to compute relaxed plan heuristic. However, CFF does not do as well

in the BT, BTC, Cube Center, and Ring problems because there are not as many propositions that

will be entailed by a belief state. CFF relies on implicitly representing belief states in terms of the
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Figure 40. Total Time (ms) on left and Plan Length on right in Conformant Rovers domain.
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Figure 41. Total Time (ms) on left and Plan Length on right in Conformant Logistics domain.
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Figure 42. Total Time (ms) on left and Plan Length on right in BT domain.

literals that are entailed by the belief state, the initial belief state, and the action history. When there

are very few literals that can be entailed by the belief state, reasoning about the belief state requires

inference about the action history. Another possible reason CFF suffers is the problem encodings.
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Figure 43. Total Time (ms) on left and Plan Length on right in BTC domain.
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Figure 44. Total Time (ms) on left and Plan Length on right in Cube Center domain.
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Figure 45. Total Time (ms) on left and Plan Length on right in Ring domain.

The Cube Center and Ring domains are naturally expressed with multi-valued state features, and in

our transformation to binary state features I describe the values that must hold but also the values

that must not hold. This is difficult for CFF because the conditional effect antecedents contain
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Problem POND MBP GPT SGP YKA
hLUG

RP

Rovers 1 580/5 3312/11 3148/5 70/5 3210/5
2 730/8 4713/75 5334/7 760/7 6400/7
3 810/8 5500/119 7434/8 TO 7490/8
4 910/10 5674/146 11430/10 - 11210/10
5 7100/19 16301/76 TO - TO
6 13560/22 OoM - - -

Logistics 1 570/7 41/16 1023/7 5490/6 1390/8
2 1250/12 22660/177 5348/12 TO TO
3 1210/9 2120/45 2010/8 - TO
4 4160/15 OoM TO - -
5 20170/22 - - - -

BT 2 460/2 0/2 510/2 0/1 0/2
10 550/10 240/10 155314/10 70/1 20/10
20 1610/20 OoM OoM 950/1 60/20
30 5970/30 - - 4470/1 200/30
40 17620/40 - - 13420/1 400/40
50 43020/50 - - 32160/1 810/50
60 91990/60 - - 90407/1 1350/60
70 170510/70 - - 120010/1 2210/70
80 309940/80 - - TO 3290/80

BTC 2 470/2 20/2 529/2 10/2 0/4
10 590/10 280/10 213277/10 TO 210/12
20 1960/20 OoM TO - 2540/22
30 6910/30 - - - 13880/32
40 19830/40 - - - 46160/42
50 49080/50 - - - 109620/52
60 103480/60 - - - 221460/62
70 202040/70 - - - 41374/72

Figure 46. Results for POND using hLUG
RP compared with MBP, GPT, SGP, and YKA for con-

ditional Rovers, Logistics, BT, and BTC. The data is Total Time / # Maximum possible steps in a
execution, “TO” indicates a time out (20 minutes), “OoM” indicates out of memory (1GB), and “-”
indicates no attempt.

several propositions and its heuristic is restricted to considering only one such proposition. It may

be that CFF is choosing the wrong proposition or simply not enough propositions to get effective

heuristics. However in BT and BTC, where I used only one proposition in effect antecedents CFF

still performs poorly.

4.2. Non-Deterministic Conditional Planning. Table 46 and Figures 47 to 50 show the

results for testing the conditional versions of the domains on POND, MBP, GPT, SGP, and YKA.
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Figure 47. Total Time (ms) on left and Average Branch Length on right in Conditional Rovers
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Figure 48. Total Time (ms) on left and Average Branch Length on right in Conditional Logistics
domain.
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Figure 49. Total Time (ms) on left and Average Branch Length on right in BTS domain.

MBP: The POND planner is very similar to MBP in that it uses progression search. However,

POND uses an AO* search, whereas the MBP binary uses a depth first And-Or search. The depth
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Figure 50. Total Time (ms) on left and Average Branch Length on right in BTCS domain.

first search used by MBP contributes to highly sub-optimal maximum length branches (as much

as an order of magnitude longer than POND). For instance, the plans generated by MBP for the

Rovers domain have the rover navigating back and forth between locations several times before

doing anything useful; this is not a situation beneficial for actual mission use. MBP tends to not

scale as well as POND in all of the domains tested. A possible reason for the performance of MBP

is that the Logistics and Rovers domains have sensory actions with execution preconditions, which

prevent branching early and finding deterministic plan segments for each branch. I experimented

with MBP using sensory actions without execution preconditions and it was able to scale somewhat

better, but plan quality was much longer.

Optimal Planners: GPT and SGP generate better solutions but very slowly. GPT does better on

the Rovers and Logistics problems because it exhibits some positive interaction in the plans, but

SGP does well on BT because its planning graph search is well suited for shallow, yet broad (highly

parallel) problems.

YKA: YKA fares similar to GPT in Rovers and Logistics, but has trouble scaling for other reasons.

I think that YKA may be having trouble in regression because of sensory actions since it was able

to scale reasonably well in the conformant version of the domains. Despite this, YKA proves to do
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very well in the BT and BTC problems.

4.3. Empirical Evaluation Conclusions. In the internal comparisons of heuristics within

POND, as well as external comparisons with several state of the art conformant and conditional

planners, this investigation has uncovered many interesting lessons about heuristics for planning in

belief space.

• Distance based heuristics for belief space search help control conformant and conditional plan

length because, as opposed to cardinality, the heuristics model desirable plan quality metrics.

• Planning graph heuristics for belief space search scale better than planning graph search and

admissible heuristic search techniques.

• The LUG is an effective planning graph data structure for search heuristics in belief space.

• Sampling possible worlds to construct planning graphs does reduce computational cost, but

considering more worlds by exploiting planning graph structure common to possible worlds

(as in the LUG), can be more efficient and informed.

• The LUG heuristics help the conditional planner, POND, to scale up in conditional domains,

despite the fact that the heuristic computation does not model observation actions.

5. Related Work

The way that the LUG handles uncertainty through labels and label propagation is reminis-

cent of and related to de Kleer’s assumption based truth maintenance system (ATMS) (de Kleer,

1986). Where an ATMS uses labels to identify the assumptions (contexts) where a particular state-

ment holds, a traditional truth maintenance system requires extensive backtracking and consistency

enforcement to identify other contexts. Similarly, where we can reason about multiple possible
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worlds (contexts) with the LUG simultaneously, the MG approach requires, not backtracking, but

reproduction of planning graphs for other possible worlds.

More recently, there has been closely related work on heuristics for constructing conformant

plans within the CFF planner (Brafman and Hoffmann, 2004). The planner represents belief states

implicitly through a set of known facts, the action history (leading to the belief state), and the initial

belief state. CFF builds a planning graph forward from the set of known literals to the goal literals

and backwards to the initial belief state. In the planning graph, conditional effects are restricted

to single literals in their antecedent to enable tractable 2-cnf reasoning. From this planning graph,

CFF extracts a relaxed plan that represents supporting the goal belief state from all states in the

initial belief state. The biggest differences between the LUG and the CFF technique are that the

LUG reasons only forward from the source belief state (assuming an explicit, albeit symbolic, belief

state), and the LUG does not restrict the number of literals in antecedents. As a result, the LUG

does not lose the causal information nor perform backward reasoning to the initial belief state.

The LUG is also closely related to work on uncertain databases with lineage (Benjelloun

et al., 2006). Uncertain databases can capture incompleteness in element attributes similar to how

belief states capture uncertainty about propositions. To process queries, such as joins, on uncertain

databases it is important to track the lineage intermediate query products. Tracking lineage is similar

to how I propagate labels through the planning graph.

6. Conclusion

In addition to the contributions of the previous chapter, I have:

• Found that exploiting planning graph structure to reduce the cost of considering more possible

states of a belief state in heuristics is preferable to sampling a subset of the states for the

heuristics.
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• Shown that a labeled uncertainty graph can capture the same support information as multiple

graphs, and reduces the cost of heuristic computation.

• Shown that the labeled uncertainty graph is very useful for conformant planning and, without

considering observational actions and knowledge, can perform well in contingent planning.

I have shown that planning with a Labeled Uncertainty planning Graph LUG, a condensed

version of the multiple graphs, is useful for encoding conformant reachability information. The

main innovation is the idea of “labels” – labels are attached to all propositions, actions, and effect

relations to indicate the set of worlds in which those respective vertices hold. The experimental

results show that the LUG can outperform the multiple graph approach. In comparison to other

approaches, I have also been able to demonstrate the utility of structured reachability heuristics in

controlling plan length and boosting scalability for both conformant and contingent planning.

In chapter 7, I extend the LUG within the framework of state agnostic planning graphs

(Cushing and Bryce, 2005). A state agnostic planning graph is essentially a multiple source planning

graph, where by analogy a conventional planning graph has a single source. Planning graphs are

already multiple destination, so in our generalization the state agnostic planning graph allows us to

compute the heuristic distance measure between any pair of states or belief states. The LUG seeks

to avoid redundancy across the multiple planning graphs built for states in the same belief state. I

extended this notion to avoid redundancy in planning graphs built for every belief state. I will show

that the state agnostic LUG (SLUG) which is built once per search episode (as opposed to a LUG

at each node) can reduce heuristic computation cost without sacrificing informedness.



CHAPTER 5

LABELED PLANNING GRAPHS FOR COST-SENSITIVE PLANNING

While POMDPs provide a general platform for non-deterministic conditional planning un-

der a variety of quality metrics they have limited scalability. On the other hand, non-deterministic

conditional planners scale very well, but many lack the ability to optimize plan quality metrics. This

chapter presents a novel generalization of planning graph based heuristics that helps conditional

planners both scale and generate high quality plans when using actions with non-uniform costs.

The technique propagates cost of the LUG to extract cost-sensitive relaxed plans. I make empirical

comparisons with two state of the art planners to show the benefit of the techniques. This chapter

focusses on non-deterministic conformant and conditional planning with deterministic actions.

1. Introduction

In this chapter, I describe a way of extending the reachability heuristics based on the LUG

to make them more sensitive to cost/quality information. Classical planning reachability heuristics

incorporate cost information by propagating estimates of the cost to reach propositions in the plan-

ning graph at different levels. Relaxed plans can then use the cost information to select the least

costly supporting action for each proposition. Recall that chapter 2 describes level-based reach-

ability heuristics that define the cost to reach propositions in terms of the first level they appear.

When actions have non-uniform costs, this assumption can fail because it may take only level for

a proposition to appear, but it could be supported by a high cost action. It is possible that after

two levels the proposition could be supported by a different sequence of actions whose total cost

is lower. By propagating costs over the planning graph, it is possible to capture the least cost to

support propositions at different levels. When given the choice to support a proposition, it should

be at the level with lowest cost via the lowest cost actions.
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Straightforward adaptation of cost propagation to the LUG unfortunately proves to be in-

feasible. Recall that the LUG relaxed plan may support actions and propositions in different subsets

of possible worlds. By propagating costs for different subsets of the possible worlds, it is possible

to reason about the cost of supporting propositions in different subsets of possible worlds. On one

extreme, each proposition and action can be given a cost for each subset of possible worlds. On the

other extreme, cost propagation in the LUG can ignore the possible worlds and assign a single cost

to each proposition and action. The former requires an doubly-exponential number of costs and the

latter assumes full positive interaction between possible worlds (which may lead to bad heuristics).

Even the intermediate approach of tracking a single cost per possible world still requires an expo-

nential number of costs. Instead, I describe a technique to use a small finite number of costs per

proposition to approximate the costs of supporting them in different sets of possible worlds.

I describe this method for propagating cost information over the LUG in an extension called

the CLUG. The CLUG tracks cost over each element of a partition of world sets for each proposi-

tion. The size of the partition (number of costs tracked) is bounded by the number of planning graph

levels. Each disjoint set is the worlds in which a proposition or action is newly reached at a level.

The CLUG is then used as the basis for doing reachability analysis. In particular, I extract relaxed

plans from it (as described in the previous chapter), using the cost information to select low cost

relaxed plans. The results show that cost-sensitive heuristics improve plan quality and scalability.

I proceed by describing the CLUG, and an associated relaxed plan extraction procedure.

I present an empirical study of the techniques within POND and compare with two state of the

art conditional planners MBP (Bertoli et al., 2001) and GPT (Bonet and Geffner, 2000). I end by

providing a comparison to related work, and a conclusion.
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2. Cost Labeled Uncertainty Graph (CLUG)

In this section, I present the extension of the LUG used to handle costs, called the CLUG.

Recall that the LUG is a single planning graph that uses an annotation on vertices (actions, effects,

and propositions) to reflect assumptions about how the vertex is reached. Specifically it uses a label,

�k(p), to denote the states of the current (source) belief b that reach the proposition in level k. The

CLUG additionally uses a cost vector ck(p) to estimate of the cost of reaching the vertex from

different states of the source belief.

Consider an extension to the non-deterministic conformant rovers problem to include ac-

tions with non-uniform costs, as:

Action Cost

drive(alpha, beta) 10

drive(beta, alpha) 5

drive(beta, gamma) 15

drive(gamma, beta) 10

drive(alpha, gamma) 30

drive(gamma, alpha) 5

sample(soil, alpha) 20

sample(soil, beta) 20

sample(soil, beta) 20

commun(soil) 5

Driving between locations incurs different costs, due to slope and soil consistency. The initial

belief state and goal are identical to the formulation previously described for the conformant rovers

problem.

Figure 51 illustrates the CLUG built for the initial belief in the example. Label propagation



130

sample(soil, )

avail(soil, ) avail(soil, )

have(soil)

at( )
drive( , )

drive( , )

avail(soil, )

at( )

avail(soil, )

at( )

at( )

drive( , )

drive( , )

at( )

avail(soil, )

at( )

at( )

sample(soil, )

have(soil)

drive( , )

drive( , )

drive( , )

drive( , )

avail(soil, ) avail(soil, ) avail(soil, )

sample(soil, )

drive( , )

drive( , )

at( )

avail(soil, )

at( )

at( )

sample(soil, )

have(soil)

drive( , )

drive( , )

drive( , )

drive( , )

commun(soil)
comm(soil)

commun(soil)
comm(soil)

sample(soil, )

avail(soil, )

avail(soil, )

sample(soil, )

sample(soil, )

avail(soil, )

A1A0 A2P1P0 P2 P3

00

00 00

00

00

00

00

00

00

E0 E1 E2

Legend
s
s
s

25

50

0

0

0
0

10

30

20

30

30

10

10

0

0

0

30

10

0

20
80

25

30

20

0

10

25

25

25

10

10

0

0

0

25

10

0 20

30

45 20
75

25
85 25

85

0

10

25

0

20

Figure 51. The CLUG for bI of the conformant rover problem. The relaxed plan for hCLUG
RP is

shown in bold.

is exactly as described for the LUG in the previous chapter. In the CLUG, the labels are partitioned

and a cost is assigned to each disjoint subset. In the figure some partitions contain only one set.

Some partitions do not have costs depicted because the cost is zero.

Cost propagation on planning graphs, similar to that used in the Sapa planner (Do and

Kambhampati, 2003), computes the estimated cost of reaching propositions at different levels,

which may decrease over the levels. Since the CLUG tracks whether a proposition is reached

in more than one possible world, it is possible that the cost of reaching a proposition is different

for every subset of these worlds. Instead of tracking costs for an exponential number of subsets, or

even each individual world, it partitions labels into fixed sets to track cost over (i.e., the elements of

the cost vectors ck(·)). A cost vector ck(·) is a partition of worlds represented by the label �k(·) that

assigns a cost to each of the disjoint sets.



131

Definition 9 (Cost Vectors). A cost vector ck(·) is a set of pairs (�r
k(·), cr

k(·)), where �r
k(·) ⊆ �k(·)

is a set of states and cr
k(·) is a rational number, such that ∪r�

r
k(·) = �k(·). Every cr

k(·) is an estimate

of the cost of jointly reaching an action, effect, or proposition from all states s ∈ �r
k(·).

As I will show, the partitions are different for each action, effect, and proposition because

the partition is with respect to the new worlds that reach the given action, effect, or proposition in

each level. The reason for defining the partitions this way is that the size of the partition is bounded

by the number of CLUG levels.

The CLUG construction requires first defining costs for the initial proposition layer, and

then an inductive step to assign costs within each graph level. For each graph layer of the CLUG,

I compute the label of each vertex �k(·) and update the cost vector of the vertex.

Initial Proposition Layer: The cost vector for each proposition p ∈ P0 in the initial layer of the

CLUG is defined as c0(p) = {(�0(p), 0)}. In the cost vector, I store a cost of zero for the entire

group of states in which each proposition is initially reachable.

The cost vectors for the initial proposition layer of the rover problem are as follows:

c0(avail(soil, alpha)) = {({sα}, 0)}

c0(avail(soil, beta)) = {({sβ}, 0)}

c0(avail(soil, gamma)) = {({sγ}, 0)}

c0(at(alpha)) = {({sα, sβ , sγ}, 0)}

Action Layer: The action layerAk of the LUG assigns the cost vector to each action in the layer as:

ck(a) = {(�r
k(a), cr

k(a))|�r
k(a) �= ∅}, each cost vector partition as: �r

k(a) = �k′(a)\⋃k′≤k �k′−1(a),

and each cost as: cr
k(a) =

∑
p∈ρe(a)

Cover(�r
k(a), ck(p)).

The Cover(�, c) operation, detailed below, computes the cost of supporting states in the set

� with the cost function c. The action layer Ak partitions the cost vector of each action based on
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worlds that newly support the action in each level. If there are new worlds supporting a at level k,

the CLUG adds a cost for the new worlds to the cost vector with the label equal to �k(a)\�k−1(a).

When k = 0, assume �−1(a) = ∅. Then the cost for each element of the cost vector is updated. The

updating finds cr
k(a) by summing the costs of the covers of the execution precondition propositions

in the worlds described by �r
k(a). The cost of each proposition is determined by covering the worlds

�r
k(a) with the cost vector of the proposition. In general, cost vectors do not have a specific pair for

the set of worlds under consideration, rather the worlds are partitioned over several pairs. To get a

cost for the set of worlds under consideration, the CLUG must cover the worlds with the disjoint

world sets in the cost vector. It is best to find a minimum cost for the cover because planning graphs

typically represent an optimistic projection of reachability.

Cover(�, c): A Cover of a set of worlds � with a set of pairs c = {(�1(·), c1(·)), ..., �n(·), cn(·))},

is equivalent to a weighted set cover problem (Cormen et al., 1990) where the states in � must be

covered with weighted sets of states defined by the pairs in c. A set of pairs c′ ⊆ c covers � with cost

∑
i:(�i(·),ci(·))∈c′ c

i(·) when � ⊆ ⋃i:(�i(·),ci(·))∈c′ �
i(·). Finding a minimum cover is an NP-Complete

problem, following from set cover. I solve it using a greedy algorithm that at each step chooses the

least cost formula-cost pair that covers an uncovered world of �. Fortunately in the action and effect

layers, the Cover operation is done with (non-overlapping) partitions, meaning there is only one

possible cover. This is not the case in the proposition layer construction and relaxed plan extraction

because the cover is with a set of possibly overlapping sets. I show an example of using Cover after

the proposition layer definition.

The cost vectors for the zeroth action layer are as follows:
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c0(sample(soil, alpha)) = c0(drive(alpha, beta)) =

c0(drive(alpha, gamma)) = c0(at(alpha)p) = {({sα, sβ , sγ}, 0)}

c0(avail(soil, alpha)p) = {({sα}, 0)}

c0(avail(soil, beta)p) = {({sβ}, 0)}

c0(avail(soil, gamma)p) = {({sγ}, 0)}

Each cost vector has a single element because every possible world labeling the actions is

a new world at this level. The costs associated with each element of each cost vector are defined

in terms of the precondition propositions, which are each zero. Covering the action cost vector

elements requires a single precondition cost vector element in each case.

Effect Layer: In the effect layer Ek, the cost vector of each effect ϕij(a) ∈ Ek is defined as:

ck(ϕij(a)) = {(�r
k(ϕij(a)), cr

k(ϕij(a)))|�r
k(a) �=⊥}, each cost vector partition of the label as:

�r
k(ϕij(a)) = �k′(ϕij(a))\�k′−1(ϕij(a)), k′ ≤ k, and each partition subset cost as: cr

k(ϕij(a)) =

c(a)+ Cover(�r
k(ϕij(a)), ck(a)) +

∑
p∈ρij(a)

Cover(�r
k(ϕij(a)), ck(p)). The cost cr

k(a) of state set

�r
k(a) of an effect at level k is found by adding the execution cost of the associated action, the

support cost of the action in the worlds of �r
k(ϕij(a)), and the support cost of the antecedent in

�r
k(ϕij(a)) (found by summing over the cost of each proposition p ∈ ρij(a)).

The zeroth effect layer for our example has the cost vectors:

c0(ϕ00(sample(soil, alpha))) = {({sα}, 20)}

c0(ϕ00(drive(alpha, beta))) = {({sα, sβ , sγ}, 10)}

c0(ϕ00(drive(alpha, gamma))) = {({sα, sβ , sγ}, 30)}

c0(ϕ00(at(alpha)p)) = {({sα, sβ , sγ}, 0)}

c0(ϕ00(avail(soil, alpha)p)) = {({sα}, 0)}

c0(ϕ00(avail(soil, beta)p)) = {({sβ}, 0)}

c0(ϕ00(avail(soil, gamma)p)) = {({sγ}, 0)}
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Like the action layer, each effect cost vector contains a single element because the set of

worlds labeling each effect is new at this level. A single element of each precondition and associated

action is needed to cover the each element of the effect cost vectors.

Proposition Layer: The propositions layer Pk defines each cost vector of each proposition p ∈ Pk

as: ck(p) = {(�r
k(p), cr

k(p))|�r
k(a) �= ∅}, each partition as: �r

k(a) = �k′(p)\⋃k′≤k �k′−1(p), and

each subset’s cost as: cr
k(a) = Cover(�r

k(p),
⋃

ϕij(a)∈Ek−1:p∈ε+
ij(a) ck−1(ϕij(a))). The cost cr

k(p) in

a set of states �r
k(p) for a proposition at level k is found by covering the states �r

k(p) with the union

of all state-cost pairs of effects that support the proposition.

c1(at(alpha)) = {({sα, sβ , sγ}, 0)}

c1(at(beta)) = {({sα, sβ , sγ}, 10)}

c1(at(gamma)) = {({sα, sβ , sγ}, 30)}

c1(have(soil)) = {({sα}, 20)}

c1(avail(soil, alpha)) = {({sα}, 0)}

c1(avail(soil, beta)) = {({sβ}, 0)}

c1(avail(soil, gamma)) = {({sγ}, 0)}

Again, the cost vector for each proposition contains a single element. The propositions

from level zero have no new supporters, so their cost vectors contain no new elements. The new

propositions in level one have a single cost vector element because all worlds that label them are

new. Each element of each cost vector is covered by a single element from their single supporter.

c1(sample(soil, alpha)) = c1(drive(alpha, beta)) =

c1(drive(alpha, gamma)) = c1(at(alpha)p) =

c1(commun(soil)) = c1(at(alpha)p) = ({sα, sβ , sγ}, 0)
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c1(drive(beta, gamma)) = c1(sample(soil, beta)) =

c1(at(beta)p) = c1(drive(beta, alpha)) = ({sα, sβ, sγ}, 10)

c1(at(gamma)p) = c1(drive(gamma, alpha)) =

c1(drive(gamma, beta)) = c1(sample(soil, gamma)) = ({sα, sβ, sγ}, 30)

c1(have(soil)p) = {({sα}, 20)}

c1(avail(soil, alpha)p) = {({sα}, 0)}

c1(avail(soil, beta)p) = {({sβ}, 0)}

c1(avail(soil, gamma)p) = {({sγ}, 0)}

Each action in A1 has a single element in its cost vector because the action is new, or is

supported in no new worlds. The new actions at this level have a non zero cost for the element in

their cost vector because their preconditions have non zero cost. For example, sample(soil,

gamma) has cost 30 for its single cost vector element because its precondition at(gamma) has

cost 30 for its single cost vector element.

Continuing to E1, the cost vectors are:

c1(ϕ00(drive(alpha, beta))) = c1(ϕ00(at(beta)p)) = {({sα, sβ, sγ}, 10)}

c1(ϕ00(drive(alpha, gamma))) = c1(ϕ00(at(gamma)p)) = {({sα, sβ, sγ}, 30)}

c1(ϕ00(drive(beta, alpha))) = {({sα, sβ, sγ}, 15)}

c1(ϕ00(drive(beta, gamma))) = {({sα, sβ, sγ}, 25)}

c1(ϕ00(drive(gamma, alpha))) = {({sα, sβ, sγ}, 35)}

c1(ϕ00(drive(gamma, beta))) = {({sα, sβ, sγ}, 45)}

c1(ϕ00(at(alpha)p)) = {({sα, sβ, sγ}, 0)}
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c1(ϕ00(commun(soil))) = {({sα}, 25)}

c1(ϕ00(sample(soil, alpha))) = c1(ϕ00(have(soil)p)) = {({sα}, 20)}

c1(ϕ00(avail(soil, alpha)p)) = {({sα}, 0)}

c1(ϕ00(sample(soil, beta))) = {({sβ}, 30)}

c1(ϕ00(avail(soil, beta)p)) = {({sβ}, 0)}

c1(ϕ00(sample(soil, gamma))) = {({sγ}, 50)}

c1(ϕ00(avail(soil, gamma)p)) = {({sγ}, 0)}

Each effect in level one has a single element in its cost vector because each is new or

is labeled by no new worlds. The costs of each element reflects the cost of executing the as-

sociated action and the cost of supporting the action for all worlds represented by the element.

For example, ϕ00(sample(soil, beta)) has cost 30 for the element {sβ} because executing

sample(soil, beta) costs 20, supporting the action costs 10, and supporting the antecedent

of the effect costs 0.

Continuing to P2, the cost vectors are:

c2(at(alpha)) = {({sα, sβ, sγ}, 0)}

c2(at(beta)) = {({sα, sβ, sγ}, 10)}

c2(at(gamma)) = {({sα, sβ, sγ}, 25)}

c2(have(soil)) = {({sα}, 20), ({sβ , sγ}, 80)}

c2(avail(soil, alpha)) = {({sα}, 0)}

c2(avail(soil, beta)) = {({sβ}, 0)}

c2(avail(soil, gamma)) = {({sγ}, 0)}

c2(comm(soil)) = {({sα}, 25)}
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At level two, there is an example of a cost vector with more than one element. The

have(soil) proposition was reachable by {sα} at level one, and is newly reachable by {sβ , sγ} at

this level. The first can be supported in the same fashion as in level one. The second element must be

covered by supporting effect cost vectors. The element from c1(ϕ00(sample(soil, beta)))

has cost 30 and covers sβ and the cost vector of ϕ00(sample(soil, gamma)) at level one has

cost 50 and covers sγ , making the cost of covering {sβ , sγ} a total of 80.

Notice also that the cost of at(gamma) decreases because its minimal cost supporter is

now the effect of drive(beta, gamma), instead of drive(alpha, gamma). By propagat-

ing costs I can identify if longer action sequences reduce the cost of supporting propositions.

Continuing to A2, the cost vectors are:

c2(sample(soil, alpha))=c2(drive(alpha, beta)) =

c2(drive(alpha, gamma))=c2(at(alpha)p) =

c2(commun(soil)) =c2(at(alpha)p) = ({sα, sβ , sγ}, 0)

c2(drive(beta, gamma)) =c2(sample(soil, beta)) =

c2(at(beta)p) =c2(drive(beta, alpha)) = ({sα, sβ , sγ}, 10)

c2(at(gamma)p) =c2(drive(gamma, alpha))=

c2(drive(gamma, beta)) =c2(sample(soil, gamma))= ({sα, sβ , sγ}, 25)

c2(have(soil)p) = {({sα}, 20),

({sβ , sγ}, 80)}

c2(comm(soil)p) = {({sα}, 25)}

c2(avail(soil, alpha)p) = {({sα}, 0)}

c2(avail(soil, beta)p) = {({sβ}, 0)}

c2(avail(soil, gamma)p) = {({sγ}, 0)}
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The actions in level two have their cost vectors computed as before. Because the cost of

at(gamma) decreased, the cost of sample(soil, gamma) also decreases to 25.

Continuing to E2, the cost vectors are:

c2(ϕ00(drive(alpha, beta))) = c2(ϕ00(at(beta)p)) = {({sα, sβ , sγ}, 10)}

c2(ϕ00(drive(alpha, gamma))) = = {({sα, sβ , sγ}, 30)}

c2(ϕ00(at(gamma)p)) = {({sα, sβ , sγ}, 25)}

c2(ϕ00(drive(beta, alpha))) = {({sα, sβ , sγ}, 15)}

c2(ϕ00(drive(beta, gamma))) = {({sα, sβ , sγ}, 25)}

c2(ϕ00(drive(gamma, alpha))) = {({sα, sβ , sγ}, 30)}

c2(ϕ00(drive(gamma, beta))) = {({sα, sβ , sγ}, 35)}

c2(ϕ00(at(alpha)p)) = {({sα, sβ , sγ}, 0)}

c2(ϕ00(commun(soil))) = {({sα}, 25),

({sβ , sγ}, 85)}

c2(ϕ00(sample(soil, alpha))) = c2(ϕ00(have(soil)p)) = {({sα}, 20)}

c2(ϕ00(avail(soil, alpha)p)) = {({sα}, 0)}

c2(ϕ00(sample(soil, beta))) = {({sβ}, 30)}

c2(ϕ00(avail(soil, beta)p)) = {({sβ}, 0)}

c2(ϕ00(sample(soil, gamma))) = {({sγ}, 45)}

c2(ϕ00(avail(soil, gamma)p)) = {({sγ}, 0)}

c2(ϕ00(comm(soil)p)) = {({sα}, 25)}

The effects at level two have their cost vectors computed as before. Notice that the cost of

ϕ00(sample(soil, gamma)) decreases to 45 from 50 in the last level. The cost decreases be-

cause the associated action had its cost decrease. Also, the effect ϕ00(commun(soil, gamma))
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has an additional element in its cost vector at this level because its condition have(soil) acquired

a new cost vector element.

Continuing to P3, the cost vectors are:

c3(at(alpha)) = {({sα, sβ, sγ}, 0)}

c3(at(beta)) = {({sα, sβ, sγ}, 10)}

c3(at(gamma)) = {({sα, sβ, sγ}, 25)}

c3(have(soil)) = {({sα}, 20), ({sβ , sγ}, 75)}

c3(avail(soil, alpha)) = {({sα}, 0)}

c3(avail(soil, beta)) = {({sβ}, 0)}

c3(avail(soil, gamma)) = {({sγ}, 0)}

c3(comm(soil)) = {({sα}, 25), ({sβ , sγ}, 85)}

At level three, the goal comm(soil) is reachable from each possible world, and adding

the cost vector elements indicates that the cost is 110. At this point, it is possible to find a relaxed

plan to support the goal proposition by using the propagated cost information. It is also possible to

extend the CLUG additional levels to see if the cost of the goal propositions decreases. With costs,

level-off does not occur until proposition costs do not change between levels, instead of when the

proposition layers do not change (as before).

2.1. Relaxed Plans. The challenge to deal with cost-sensitive domains is in extracting cost-

sensitive relaxed plans, for which the propagated cost vectors help. The relaxed plan heuristic

extracted from the CLUG is similar to the LUG relaxed plan heuristic, from the previous chapter.

The only aspect of relaxed plan extraction that changes is how proposition supporters are chosen.

In the LUG relaxed plans, the only information available about supporters is the number of worlds

in which they support the proposition and whether or not they are persistence. Thus, without cost
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information, supporters that are persistence are preferred, as are supporters that cover more possible

worlds. With cost information, it is possible to assess the cost with which supporters cover certain

possible worlds and prefer the least costly.

In the LUG, I use an un-weighted set cover to cover the worlds in which a proposition

should be supported. In the CLUG, it becomes a weighted set cover. As described in the Cover

operation it is possible to greedily select supporters that cover new possible worlds based on the

cost with which they cover new worlds. Consider the relaxed plan in Figure 27 depicted in bold.

This relaxed plan is extracted using cost vectors for guidance, making it different from the re-

laxed plan extracted from the LUG in Figure 51. The primary difference is that the goal proposi-

tion comm(soil) is supported differently when cost information is present. The comm(soil)

proposition can covered by three supporters ϕ00(commun(soil)) in worlds {sα} at cost 25,

ϕ00(commun(soil)) in worlds {sβ , sγ} at cost 75, and ϕ00(comm(soil)p) in worlds {sα}

at cost 25. Notice that ϕ00(commun(soil)) is only one effect but is part of two supporters; each

entry in the cost vector of an effect corresponds to a different way to support a proposition (because

of different worlds and costs). In the LUG, the relaxed plan chose the latter two supporters be-

cause it chose the persistence first and needed the action effect to cover the other two worlds. In

the CLUG, persistence is not arbitrarily chosen first. The relaxed plan extraction chooses the first

supporter first because it has lowest cost (breaking the tie with persistence) and covers new worlds.

Then, the second supporter is chosen because it is the only option for covering new worlds. The

resulting relaxed plan has cost 105, where the relaxed plan extracted from the LUG (without using

cost information) has cost 110 because it uses the commun(soil) action twice.
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3. Empirical Evaluation

The main intent of this chapter is to evaluate the effectiveness of the CLUG in improving

the quality of plans generated by POND. Additionally, I also compare with two state of the art

planners, GPT (Bonet and Geffner, 2000), and MBP (Bertoli et al., 2001).1 Even though MBP

does not plan with costs, I show the cost of MBP’s plans for each problem’s cost model. GPT

uses heuristics based on relaxing the problem to full-observability (whereas our relaxation is to no

observability while ignoring negative interactions), and MBP uses a belief state’s size as its heuristic

merit.

The test set up involves two domains: Medical-Specialist and Rovers. Each problem had a

time out of 20 minutes and a memory limit of 1GB on a 2.6GHz P4 Linux machine.

Medical-Specialist: I developed an extension of the medical domain (Weld et al., 1998), where

in addition to staining, counting of white blood cells, and medicating, one can go to a specialist

for medication and there is no chance of dying – effectively allowing conformant (non-sensing)

plans. I assigned costs as follows: c(stain) = 5, c(count white cells) = 10, c(inspect stain) = X,

c(analyze white cell count) = X, c(medicate) = 5, and c(specialist medicate) = 10. I generated ten

problems, each with the respective number of diseases (1-10), in two sets where X = {15, 25}. Plans

in this domain must treat a patient by either performing some combination of staining, counting

white cells, and sensing actions to diagnose the exact disease and apply the proper medicate action,

or using the specialist medicate action without knowing the exact disease. Plans can use hybrid

strategies, using the specialist medicate for some diseases and the diagnosis and medicate for others.

The strategy depends on cost and the number of diseases.

The results in Figures 52, 53, and 54 show the average plan path cost, number of plan nodes

1While there are other conditional planners, such as YAK (Rintanen, 2002) and SGP (Weld et al., 1998), I chose MBP
to represent those that are not cost sensitive and GPT for its ability to handle cost. In our other experiments, not shown,
YAK and SGP are inferior to MBP anyway.
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(belief states) in the solution, and total time for two cost models; the horizontal axis reflects different

problem instances. Extracting relaxed plans from the CLUG instead of the LUG enables POND

to be more cost-sensitive. The plans returned by the CLUG method tend to have less nodes and a

lower average path cost than the LUG. The LUG heuristic does not measure sensing cost, but as

sensing cost changes, the search is able to locally gauge the cost of sensing and adapt. Since MBP

is insensitive to cost, its plans are proportionately costlier as the sensor cost increases. GPT returns

better plans, but tends to take significantly more time as the cost of sensing increases; this may be

attributed to how the heuristic is computed by relaxing the problem to full-observability. The LUG

and CLUG heuristics measure the cost of co-achieving the goal from a set of states, whereas GPT

takes the average cost for reaching the goal from the states.

Rovers: I use an adaptation of the Rovers domain from the previous chapter. The action cost model

is: c(sense visibility) = X, c(sense rock) = Y, c(sense soil) = Z, c(navigate) = 50, c(calibrate) =

10, c(take image) = 20, c(communicate data) = 40, c(sample soil) = 30, c(sample rock) = 60, and

c(drop) = 5. The two versions have costs: (X,Y,Z) = {(35, 55, 45), (100, 120, 110)}. Plans in the

rovers domain can involve sensing at locations to identify if data can be collected or simply going

to every possible location and trying to collect data. The number of locations varies between four

and eight, and the number of possible locations to collect up to three types of data can be between

one and four.

The results in Figures 55, 56, and 57 show the average plan path cost, number of plan nodes

(belief states) in the solution, and total time for two cost models; the horizontal axis reflects differ-

ent problem instances. The LUG and CLUG relaxed plan extraction guide POND toward similar

plans, in terms of cost and number of nodes. The lack of difference between the heuristics may

be attributed to the domain structure – good solutions have a lot of positive interaction (i.e. the

heuristics extract similar relaxed plans because low cost actions also support subgoals in many pos-
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sible worlds), as opposed to Medical-Specialist where solutions are fairly independent for different

possible worlds. MBP, making no use of action costs, returns plans with considerably (a order of
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magnitude) higher average path costs and number of solution nodes. GPT fares better than MBP in

terms of plan cost, but both are limited in scalability due to weaker heuristics.

In summary, the experiments show that using the CLUG to extract relaxed plans can help

find better solutions. I also found that planners not reasoning about action cost can return arbitrarily

poor solutions, and planners whose heuristic relaxes uncertainty do not scale as well.

4. Related Work

The idea of cost propagation on planning graphs was first presented by Do and Kambham-

pati (2003) to cope with metric-temporal planning. The first work on using planning graphs in

conditional planning was in the CGP (Smith and Weld, 1998) and SGP (Weld et al., 1998) planners.

Recently, planning graph heuristics have proven useful in conformant planning (Bryce and Kamb-

hampati, 2004; Brafman and Hoffmann, 2004) and conditional planning (Cushing and Bryce, 2005;

Hoffmann and Brafman, 2005), as seen in the previous chapters. They have also proven useful in

reachability analysis for MDPs (Boutilier et al., 1999); this work could be extended for POMDPs.

Also related is the work on sensor planning, such as Koenig and Liu (1999). The authors investi-

gate the frequency of sensing as the plan optimization criterion changes (from minimizing the worst

case cost to the expected cost). I investigate the frequency of sensing while minimizing average plan

cost under different cost models. The work on optimal limited contingency planning (Meuleau and

Smith, 2003) stated that adjusting sensory action cost, as we have, is an alternative to their approach

for reducing plan branches.

5. Conclusion

With motivation toward conditional planning approaches that can scale like classical plan-

ners, but still reason with quality metrics like POMDPs, I have presented a cost propagated version
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of the LUG called the CLUG. With the CLUG it is possible extract cost-sensitive relaxed plans

that are effective in guiding POND toward high-quality conditional plans. I have shown with an

empirical comparison that my approach improves the quality of conditional plans over conditional

planners that do not account for cost information, and that it can out-scale approaches that consider

cost information and uncertainty in a weaker fashion.



CHAPTER 6

UNCERTAIN ACTION EFFECTS IN LABELED PLANNING GRAPHS

This chapter describes how to extend the LUG to address probabilistic conformant planning

problems with actions whose effects are uncertain. Previous chapters address non-deterministic

planning problems whose action effects are deterministic. I simultaneously move to probabilistic

problems and actions with uncertain effects (i.e., conformant probabilistic planning) because the

techniques described here make use of both assumptions. Unlike the previous chapter, this chapter

assumes actions have unit cost.

1. Introduction

Despite long standing interest (Kushmerick et al., 1994; Majercik and Littman, 1998; Hyafil

and Bacchus, 2003, 2004), probabilistic plan synthesis algorithms have a terrible track record in

terms of scalability. The current best conformant probabilistic planners are only able to handle

very small problems. In contrast, there has been steady progress in scaling deterministic and non-

deterministic planning. Much of this progress has come from the use of sophisticated reachability

heuristics (as described in earlier chapters). In this chapter, I show how to effectively use reacha-

bility heuristics to solve probabilistic conformant planning problems. I use work on planning graph

heuristics for non-deterministic planning described in previous chapters as the starting point. The

heuristics developed in this chapter significantly improve the scalability of probabilistic conformant

planning.

I investigate an extension of the labeled uncertainty graph to handle actions with probabilis-

tic effects. Recall that the LUG is used to symbolically represent a set of relaxed planning graphs

(much like the multiple planning graphs used by Conformant GraphPlan (Smith and Weld, 1998)),

where each is associated with a possible world. While the LUG previously only worked with state

uncertainty (and deterministic actions), it is necessary in probabilistic conformant planning to han-
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dle action uncertainty. Extending the LUG to consider action uncertainty involves symbolically

representing how at each level the explicit representation of multiple planning graphs splits each

planning graph over all joint outcomes of uncertain actions. In such a case, each time step has a set

of planning graph layers (each a possible world) defined by the cross product of an exponential set

of joint action outcomes and an exponential number of possible worlds from the previous level.

With deterministic actions, the LUG worked well because while there were an exponential

number of possible worlds at each time step, the number was held constant (i.e., all uncertainty is in

the starting belief state). With uncertain actions, an explicit or symbolic representation of planning

graphs for all possible worlds at each time step is exactly representing an exponentially increasing

set. Since I am only interested in planning graphs to compute heuristics, it is both impractical and

unnecessary to exactly represent all of the reachable possible worlds. I turn to approximate methods

for representing the possible worlds. Since I am applying planning graphs in a probabilistic setting,

I have the opportunity to use Monte Carlo techniques to sample the planning graphs I construct.

Unlike chapter 3, where I described uniform sampling from non-deterministic belief states to con-

struct the planning graph, Monte Carlo relies on having probability distributions in belief states and

action outcomes.

There are a wealth of methods that fall under the name sequential Monte Carlo (SMC)

(Arulampalam et al., 2002; Doucet et al., 2001), for reasoning about a random variable over time.

The idea in SMC is to represent a probability distribution as a set of samples (particles), which

are updated over sequential time steps by sampling the system’s transition function (i.e., simulating

each particle). In this setting, each particle is a planning graph that represents a simulation in the

relaxed planning space. Instead of splitting over all joint outcomes of uncertain actions to represent

the true distribution over possible worlds in the planning graph, I sample a joint outcome of the

actions to simulate the planning graph. By using more particles, I capture more of the possible
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worlds, exploiting the natural affinity between SMC approximation and heuristic accuracy.

The SMC technique requires multiple planning graphs (each a particle), but their number is

fixed. I could represent each planning graph explicitly (analogous to the multiple graph techniques

described earlier), but they may have considerable redundant structure. Instead, I generalize the

LUG to symbolically represent the set of planning graph particles in a planning graph I call the

Monte Carlo LUG (McLUG). I show that by using theMcLUG to extract a relaxed plan heuristic

POND is able to greatly out-scale the current best conformant probabilistic planner CPplan (Hyafil

and Bacchus, 2004, 2003) in a number of domains, without giving up too much in terms of plan

quality.

My presentation starts with a brief primer on SMC. I follow with a worked example of how

to construct planning graphs that exactly compute the probability distribution over possible worlds

versus using SMC, as well as how one would symbolically represent planning graph particles. After

the intuitive example, I give the details of the McLUG and the associated relaxed plan heuristic.

Finally, I present an empirical analysis of my technique compared to CPplan, a discussion of related

work, and conclusions.

2. Sequential Monte Carlo

In many scientific disciplines it is necessary to track the distribution over values of a random

variable X over time. This problem can be stated as a first-order stationary Markov process with

an initial distribution p(X0) and transition equation p(Xk+1|Xk). It is possible to compute the

probability distribution over the values of X after k steps as:

p(Xk+1) =
k∏

i=0
p(Xi+1|Xi)p(X0) = p(Xk+1|Xk)...p(X2|X1)p(X1|X0)p(X0)

In general, p(Xk) can be very difficult to compute exactly.
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SMC techniques can approximate p(Xk) as a set of N samples (particles) {xn
k}N−1

n=0 , where

the probability that Xk takes value xk,

P (Xk = xk) ≈ |{x
n
k |xn

k=xk}|
N

is the proportion of particles taking on value xk. At time k = 0, the set of samples is drawn from

the initial distribution p(X0). At each time step k > 0, SMC simulates each particle from time k by

sampling the transition equation xn
k+1 ∼ p(Xk+1|xn

k). Applying SMC to planning graphs, samples

represent possible worlds and the transition equation resembles the Conformant GraphPlan (Smith

and Weld, 1998) construction semantics.

I would like to point out that the SMC technique is inspired by, but different from the

standard particle filter. The difference is that the SMC is used for prediction and not on-line filtering.

It is not used to filter observations to weight particles for re-sampling. Particles are assumed to be

unit weight throughout simulation.

3. Uncertain Effects in Planning Graphs

This section discusses how to incorporate reasoning about uncertain effects within planning

graphs by using an extension of the rover example, shown in Figure 58. Like the description in

chapter 2, there are probabilistic effects of the sample and commun actions, but there are no

observations. I will start by describing how a direct extension of multiple planning graphs and the

LUG might capture all possible worlds, from both initial state and action uncertainty. In the next

section I will discuss how SMC can be used to reduce the representational burden of reasoning about

the immense number of possible worlds.

It is possible to extend multiple planning graphs and the LUG to handle probabilities by

associating probabilities with each planning graph or label. However, handling uncertain actions,
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(define (domain rovers stochastic)
(:requirements :strips :typing)
(:types location data)
(:predicates

(at ?x - location)
(avail ?d - data ?x - location)
(comm ?d - data)
(have ?d - data))

(:action drive
:parameters (?x ?y - location)
:precondition (at ?x)
:effect (and (at ?y) (not (at ?x))))

(:action commun
:parameters (?d - data)
:precondition (and)
:effect (when (have ?d)

(probabilistic 0.8 (comm ?d))))

(:action sample
:parameters (?d - data ?x - location)
:precondition (at ?x)
:effect (when (avail ?d ?x)

(probabilistic 0.9 (have ?d)))))
)

(define (problem rovers stochastic1)
(:domain rovers)
(:objects

soil image rock - data
alpha beta gamma - location)

(:init (at alpha)
(probabilistic 0.4 (avail soil alpha)

0.5 (avail soil beta)
0.1 (avail soil gamma))

(:goal (comm soil) 0.5)
)

Figure 58. PDDL description of stochastic planning formulation of rover problem.

whether non-deterministic or stochastic, is troublesome. With deterministic actions, each of the

multiple planning graphs or labels captured uncertainty about the source belief state and the num-

ber of planning graphs and size of the labels is bounded (there is a finite number of states in the

belief state). With uncertain actions, multiple planning graphs and labels must capture uncertainty

about the belief state and each uncertain action at each level of the planning graph because every

execution of an action may have a different result.

Multiple Planning Graphs: Consider Figure 59, where both multiple planning graphs and the LUG

are used to exactly represent possible worlds for the rover example. On the left of the figure, there

are three initial proposition layers, as we saw when describing multiple planning graphs. However,

since the sample(soil, alpha) action now has two outcomes (one with a conditional effect,

and the other with no effect), there are different proposition layers reachable depending on the
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Figure 59. Multiple planning graphs (left) and Labeled uncertainty graph (right) with uncertain
effects.

outcome. Each of the planning graphs “split” in the zeroth effect layer over all joint outcomes of

uncertain actions. Since there is only one uncertain action (with two outcomes) in each level zero,

each planning graph splits in two. If there were two uncertain actions (each with two outcomes),

then each graph would split into four (one for each joint outcome of the actions). Since each of the

initial proposition layers represents state uncertainty, each proposition layer is the value of a random

variable:

X0 = {P0({sα}),P0({sβ}),P0({sγ})}.

The next random variable:
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X1 = {P1({sα, Φ0(sample(soil, alpha))}),

P1({sα, Φ1(sample(soil, alpha))}),

P1({sβ , Φ0(sample(soil, alpha))}),

P1({sβ , Φ1(sample(soil, alpha))}),

P1({sγ , Φ0(sample(soil, alpha))}),

P1({sγ , Φ1(sample(soil, alpha))})}
has a value for each proposition layer reachable from the joint outcome of all actions in action layer

zero. Thus, after level one, the planning graphs capture the distribution p(X1|X0)p(X0).

Labeled Uncertainty Graph: As seen with multiple planning graphs with deterministic effects,

there is considerable redundance among the multiple planning graphs. With uncertain effects, the

redundancy increases as the planning graphs split. The ideas from the LUG can be extended to sym-

bolically capture the possible worlds by using a new labeling scheme. In the problems considered in

previous chapters, there is only a single random event X0 captured by labels because the actions are

deterministic. In the worst case, the random event X0 captured by the labels has 2|P | outcomes (i.e.,

all states are in the belief state), characterized by a logical formula over log2(2|P |) = |P | boolean

variables.

When there are uncertain actions, the distribution p(X1|X0)p(X0) requires additional vari-

ables to represent p(X1|X0). For example, if the action layer contains |A| actions, each with m

probabilistic outcomes, then we would require an additional log2(m|A|) = |A|log2(m) boolean

variables (for a total of |P | + |A|log2(m) boolean variables to exactly represent the distribution

p(X1|X0)p(X0)). For the distribution after k steps, it would need |P | + k|A|log2(m) boolean vari-

ables. In a reasonable sized domain, where |P | = 20, |A| = 30, and m = 2, a LUG with k = 3

steps could require 20+(3)30log2(2) = 110 boolean variables, and for k = 5 it needs 170. Currently,

a label function with this many boolean variables is feasible to construct, but is too costly to use in
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Figure 60. Monte carlo labeled uncertainty graph.

heuristic computation. I implemented this approach (representing labels as BDDs) and it performed

very poorly; in particular it ran out of memory constructing the first planning graph for the p2-2-2

logistics problem, described in Section 5.

The planning graph on the right of Figure 59 shows a version of the LUG where the effect

layer introduces label extensions to capture uncertain action outcomes. Where the zeroth proposi-

tion layer had three possibilities captured by each label, the level one proposition layer has six pos-

sibilities. Since each of the three states could have either outcome of sample(soil, alpha)

occur, there is a possible world for each. Unlike the case with deterministic actions, the label

representation grows (exponentially) with each level that contains uncertain actions. This growth

can become too burdensome to represent even with powerful symbolic techniques. However, it is

possible to sample the possible worlds to represent.
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4. Monte Carlo in Planning Graphs

Recall from the previous chapters how I described sampling some of the states in a belief

state to use for computing a heuristic. It is also possible to sample from the multiple planning graphs

and LUG that incorporate uncertain action effects. Viewing the multiple planning graphs as a tree-

like structure that branches over uncertainty, sampling will identify a subset of the paths to use for

heuristic computation. The same idea can be extend within the LUG. In a probabilistic setting, it

is possible to sample from the probability distribution over the multiple planning graphs to identify

the most likely paths in the multiple planning graph tree. Using SMC, many of the paths may be

sampled by the same particles, meaning they are more likely.

The Monte Carlo LUG (McLUG) represents every planning graph sample simultaneously

using the labeling technique developed in the LUG. Figure 60 depicts a McLUG for the initial

belief state of the example. There are four samples (particles), denoted by the circles and square

above each action and proposition. Each effect is labeled by particles (sometimes with less particles

than the associated action). The first two particles sample the first state sα in the belief state, and the

latter two sample the second state sβ . The third state sγ , whose probability is 0.1, is not sampled,

thus avail(soil, gamma) does not appear in P0. Every action that is supported by P0 is

added to A0. In A0, sample(soil, alpha) is labeled by two particles, but each outcome

is labeled by only one. This is because each particle labeling an action samples an outcome of

the action. It happens that only one of the particles labeling sample(soil, alpha) samples

the outcome with an effect; the other particle samples the outcome with no effect. In each action

level, theMcLUG must re-sample which particles label each outcome because each execution of an

action can have a different outcome. Propagation continues until the proportion of particles labeling

the goal is no less than the goal probability threshold. In P2, comm(soil) is labeled with one

particle, indicating its probability is approximately 1/4, which is less than the threshold 0.5. In P3,
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comm(soil) is labeled with three particles, indicating its probability is approximately 3/4, which

is greater than 0.5. It is possible to extract a labeled relaxed plan (described in the previous section)

to support the goal for the three particles that label it.

4.1. Symbolic Particle Representation (McLUG). In the following, I formally describe

how to construct theMcLUG, an extension of the LUG to handle actions with uncertain outcomes,

which is used to extract relaxed plan heuristics. TheMcLUG is a set of layers and a label function

McLUG(b) = 〈(P0,A0, E0, ...,Ak−1, Ek−1,Pk), �〉. There are noticeable similarities to the LUG,

but by using a fixed number of particles theMcLUG avoids adding boolean variables to the label

function at each level of the graph. I implement labels as boolean formulas, but find it convenient

in this context to describe them as sets of particles (where each particle is in reality a model of a

boolean formula). TheMcLUG is constructed with respect to a belief state encountered in search,

which I call the source belief state. The algorithm to construct theMcLUG starts by forming an

initial proposition layer P0 and an inductive step to generate a graph level {Ak, Ek,Pk} consisting

of an action, effect, and proposition layer. I describe each part of this procedure in detail and follow

with a description of relaxed plan extraction.

Initial Proposition Layer: The initial proposition layer is constructed with a set of N particles

{xn
0}N−1

n=0 drawn from the source belief state. Each particle xn
0 corresponds to a state s ∈ b in the

source belief state. (The super-script of a particle denotes its identity, and the sub-script denotes its

time index.)

In the example (assuming N=4), the samples map to the states:

x0
0 = x1

0 = {sα},

x2
0 = x3

0 = {sβ}
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The initial proposition layer P0 is a set of labeled propositions P0 = {p|�0(p) �= ∅}, where

each proposition must be labeled with at least one particle. A proposition is labeled �0(p) = {xn
0 |p ∈

s, xn
0 = s} to denote particles that correspond to states where the proposition holds.

In the example, the initial proposition layer is:

P0 = {at(alpha), avail(soil, alpha), avail(soil, beta)}

and the labels are:

�0(at(alpha)) = {x0
0, x

1
0, x

2
0, x

3
0}

�0(avail(soil, alpha)) = {x0
0, x

1
0}

�0(avail(soil, beta)) = {x2
0, x

3
0}

Action Layer: The action layer at time k consists of all actions whose enabling precondition is

enabled, meaning all of the enabling precondition propositions hold together in at least one parti-

cle. The action layer is defined as all enabled actions Ak = {a|�k(a) �= ∅}, where the label of

each action is the set of particles where it is enabled �k(a) =
⋂

p∈ρe(a) �k(p). When the enabling

precondition is empty, the label contains all particles.

In the example, the zeroth action layer is:

A0 = {sample(soil, alpha), drive(alpha, beta),

avail(soil, alpha)p, avail(soil, beta)p,

at(alpha)p}

�0(sample(soil, alpha)) = �0(drive(alpha, beta)) =

�0(drive(alpha, gamma)) = �0(at(alpha)p) = {x0
0, x

1
0, x

2
0, x

3
0}

�0(avail(soil, alpha)p) = {x0
0, x

1
0}

�0(avail(soil, beta)p) = {x2
0, x

3
0}
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Each of the actions are enabled in all particles because their enabling preconditions are {},

thus always enabled. The persistence actions for the avail proposition are labeled by the particles

where they were sampled in the proposition layer.

Effect Layer: The effect layer contains all effects that are labeled with at least one particle, such

that Ek ={ϕij(a)|�k(ϕij(a)) �= ∅}. Determining which effects get labeled requires simulating the

path of each particle. The path of a particle is simulated by sampling from the distribution over

the joint outcomes of all enabled actions, xn
k+1 ∼ p(Xk+1|xn

k). I sample by first identifying the

actions an
k = {a|xn

k ∈ �k(a)} that are applicable for a particle xn
k . I sample from the distribution of

outcomes of each applicable action a ∈ an
k to identify a joint set of outcomes Φn

k = {Φi(a)|Φi(a) ∼

Φ(a), a ∈ an
k} . The set of sampled outcomes identifies the path of xn

k to xn
k+1. I record the path

by adding xn
k+1 to the labels �k(ϕij(a)) of applicable effects ϕij(a) ∈ Φi(a) of sampled outcomes

Φi(a) ∈ Φn
k . Note that even though an outcome is sampled for a particle, some of its effects may not

be applicable because their antecedents are not supported by the particle (i.e., xn
k �∈

⋂
p∈ρij(a) �k(p)).

In the example, I first simulate x0
0 by sampling the outcomes of all actions applicable in

x0
0, which is every action. Because the drive actions are deterministic, the same outcome will

always be sampled, so I will ignore these actions in this description. Suppose outcome 1 for

sample(soil, alpha) is sampled, meaning it is labeled with x0
1. Particle x1

0 happens to sam-

ple outcome 0, and it labels the effects of outcome 0. Particles x2
0 and x3

0 both sample outcome 0,

but do not label the effect in outcome 0 because the effect does not have its antecedent enabled in

x2
0 and x3

0.

Thus, the effect layer is:
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E0 = {ϕ00(sample(soil, alpha)), ϕ10(sample(soil, alpha)),

ϕ00(drive(alpha, beta)), ϕ00(drive(alpha, gamma)),

ϕ00(avail(soil, alpha)p), ϕ00(avail(soil, beta)p),

ϕ00(at(alpha)p)}

�0(ϕ00(drive(alpha, beta))) = �0(ϕ00(drive(alpha, gamma)))=

�0(ϕ00(at(alpha)p)) ={x0
1, x

1
1, x

2
1, x

3
1}

�0(ϕ00(sample(soil, alpha))) ={x1
1}

�0(ϕ10(sample(soil, alpha))) ={x0
1}

�0(ϕ00(avail(soil, alpha)p)) ={x0
1, x

1
1}

�0(ϕ00(avail(soil, beta)p)) ={x2
1, x

3
1}

Proposition Layer: Proposition layer Pk contains all propositions that are given by an effect in

Ek−1. Each proposition is labeled by the particles of every effect that gives it support. The proposi-

tion layer is defined as Pk = {p|�k(p) �= ∅}, where the label of a proposition is

�k(p) =
⋃

ϕij(a)∈Ek−1:p∈ε+
ij(a)

�k−1(ϕij(a))

In the example, the level one proposition layer is

P1 = P0 ∪ {at(beta), at(gamma), have(soil)}

�0(at(alpha)) = �0(at(beta)) =

�0(at(gamma)) = {x0
1, x

1
1, x

2
1, x

3
1}

�0(have(soil)) = {x1
1}

�0(avail(soil, alpha)) = {x0
1, x

1
1}

�0(avail(soil, beta)) = {x2
1, x

3
1}
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The propositions from the previous proposition layer P0 persist through noop actions, al-

lowing them to be labeled as in the previous level – in addition to particles from any new supporters.

The have(soil) proposition is supported by one effect, and one particle defines the label. The

drive actions are support at(beta) and at(gamma) in all particles.

Continuing to the level one action layer:

A1 = A0 ∪ {sample(soil, beta),

commun(soil), drive(beta, alpha),

drive(beta, gamma), drive(gamma, alpha),

drive(gamma, beta),have(soil)p}

�1(sample(soil, alpha)) = �1(drive(alpha, beta)) =

�1(drive(alpha, gamma)) = �1(at(alpha)p) =

�1(sample(soil, beta)) = �1(commun(soil)) =

�1(drive(beta, alpha)) = �1(drive(beta, gamma)) =

�1(drive(gamma, alpha)) = �1(drive(gamma, beta)) =

�1(at(alpha)p) = �1(at(beta)p) =

�1(at(gamma)p) = {x0
1, x

1
1, x

2
1, x

3
1}

�1(avail(soil, alpha)p) = {x0
1, x

1
1}

�1(have(soil)p) = {x1
1}

�1(avail(soil, beta)p) = {x2
1, x

3
1}

This action layer allows several new actions, namely the sample(soil, beta) action,

the commun(soil) action, and several drive actions. Each of the new actions is applicable in

all possible worlds.

The level one effect layer is:
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E1 = E0 ∪ {ϕ00(sample(soil, beta)), ϕ00(commun(soil)),

ϕ00(drive(beta, alpha)), ϕ00(drive(beta, gamma)),

ϕ00(drive(gamma, alpha)), ϕ00(drive(gamma, beta)),

ϕ00(have(soil)p), ϕ00(at(beta)p),

ϕ00(at(gamma)p)}

�1(ϕ00(drive(alpha, beta))) =�1(ϕ00(drive(alpha, gamma)))=

�1(ϕ00(drive(beta, alpha))) =�1(ϕ00(drive(beta, gamma))) =

�1(ϕ00(drive(gamma, alpha)))=�1(ϕ00(drive(gamma, beta))) =

�1(ϕ00(at(beta)p)) =�1(ϕ00(at(gamma)p)) =

�1(ϕ00(at(alpha)p)) = {x0
2, x

1
2, x

2
2, x

3
2}

�1(ϕ00(sample(soil, alpha)))=�1(ϕ00(commun(soil))) =

�1(ϕ00(have(soil)p)) = {x1
2}

�1(ϕ00(avail(soil, alpha)p)) = {x0
2, x

1
2}

�1(ϕ10(sample(soil, alpha))) = {x0
2}

�1(ϕ00(sample(soil, beta))) =�1(ϕ00(avail(soil, beta)p)) = {x2
2, x

3
2}

Again, the particles are simulated by sampling each outcome for each action. The same

particles sample the same outcomes of the sample(soil, alpha) action. Every particle sam-

ples the outcome 0 of the sample(soil, beta) action, but only two particles label the effect

because its antecedent is only supported by those particles. The commun(soil) action has every

particle sample outcome 0 and the effect is only supported in one particle.

The level two proposition layer is as follows:

P2 = P1 ∪ {comm(soil)}
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�2(at(alpha)) = �2(at(beta)) =

�2(at(gamma)) = {x0
2, x

1
2, x

2
2, x

3
2}

�2(comm(soil)) = {x1
2}

�2(have(soil)) = {x1
2, x

2
2, x

3
2}

�2(avail(soil, alpha)) = {x0
2, x

1
2}

�2(avail(soil, beta)) = {x2
2, x

3
2}

The have(soil) proposition is now reachable by three particles, and the goal proposi-

tion comm(soil) is reachable by one particle (indicating the probability of goal satisfaction is

1/4). Notice also that the size of the effect layer is not necessarily monotonically increasing; some

outcomes are not sampled at some levels, and their effects do not appear. However, the proposition

and action layers are guaranteed to monotonically increase.

Continuing to the level two action layer:

A2 = A1 ∪ {comm(soil)p}

�2(sample(soil, alpha)) = �2(drive(alpha, beta)) =

�2(drive(alpha, gamma)) = �2(at(alpha)p) =

�2(sample(soil, beta)) = �2(drive(beta, alpha)) =

�2(drive(beta, gamma)) = �2(drive(gamma, alpha)) =

�2(drive(gamma, beta)) = �2(at(alpha)p) =

�2(at(beta)p) = �2(at(gamma)p) =

�2(commun(soil)) = {x0
2, x

1
2, x

2
2, x

3
2}
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�2(avail(soil, alpha)p) = {x0
2, x

1
2}

�2(have(soil)p) = {x1
2, x

2
2, x

3
2}

�2(avail(soil, beta)p) = {x2
2, x

3
2}

�2(comm(soil)p) = {x1
2}

This action layer is exactly the same as the previous action layer, but includes a new persis-

tence for comm(soil).

The level two effect layer is:

E2 = E1 ∪ {ϕ10(sample(soil, beta)), ϕ10(commun(soil), ϕ00(comm(soil)p)}

\ {ϕ10(sample(soil, alpha)}

�2(ϕ00(drive(alpha, beta))) =�2(ϕ00(drive(alpha, gamma)))=

�2(ϕ00(drive(beta, alpha))) =�2(ϕ00(drive(beta, gamma))) =

�2(ϕ00(drive(gamma, alpha)))=�2(ϕ00(drive(gamma, beta))) =

�2(ϕ00(at(beta)p)) =�2(ϕ00(at(gamma)p)) =

�2(ϕ00(at(alpha)p)) ={x0
3, x

1
3, x

2
3, x

3
3}

�2(ϕ00(commun(soil))) ={x2
3, x

3
3}

�2(ϕ00(have(soil)p)) ={x1
3, x

2
3, x

3
3}

�2(ϕ00(comm(soil)p)) =�2(ϕ10(commun(soil))) ={x1
3}

�2(ϕ00(sample(soil, alpha)))=�2(ϕ00(avail(soil, alpha)p))={x0
3, x

1
3}

�2(ϕ00(sample(soil, beta))) ={x2
3}

�2(ϕ10(sample(soil, beta))) ={x3
3}

�2(ϕ00(avail(soil, beta)p)) ={x2
3, x

3
3}

In this layer, the conditional effect of commun(soil) is sampled by two new particles,

which have support from the antecedent have(soil).
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The level three proposition layer is as follows:

P3 = P2

�3(at(alpha)) = �3(at(beta)) =

�3(at(gamma)) = �3(have(soil)) = {x0
3, x

1
3, x

2
3, x

3
3}

�3(comm(soil)) = {x1
3, x

2
3, x

3
3}

�3(avail(soil, alpha)) = {x0
3, x

1
3}

�3(avail(soil, beta)) = {x2
3, x

3
3}

The comm(soil) proposition is now reachable by 3/4 of the particles, meaning it is reach-

able with probability 0.75. Since the goal threshold is 0.5 probability, a relaxed plan supporting the

3 particles labeling the goal proposition will reflect the cost to achieve the goal.

Termination: McLUG construction continues until a proposition layer supports the goal with

probability no less than τ . I assess the probability of the goal at level k by finding the set of

particles where the goal is supported and taking the ratio of its size with N. Formally,

P (G|Xk) ≈ |⋂p∈G �k(p)|
N

I also define level off for theMcLUG as the condition when every proposition in a proposi-

tion layer is labeled with the same number of particles as in the previous level. If level off is reached

without p(G|Xk) ≥ τ , then we set the heuristic value of the source belief state to∞.

4.2. Heuristics. I just defined how to terminate construction of theMcLUG and we can

use the resulting depth k as a measure of the number of steps needed to achieve the goal with

probability no less than τ . This heuristic is similar to the max heuristic defined for the LUG.
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As has been shown in non-deterministic and classical planning, relaxed plan heuristics are often

much more effective, despite being inadmissible. Since I am already approximating the possible

world distribution of the planning graph and losing admissibility, I will use relaxed plans as the

heuristic. The relaxed plan extraction is almost identical to the relaxed plan extraction in the LUG.

The extraction is very fast because it makes use of the symbolic representation to obtain a relaxed

plan for all particles at once, rather than each individually and aggregating them. The intuition

behind the relaxed plan is that I know which particles support the goal propositions and which paths

the particles took through the McLUG, so I can pick actions, labeled with these particles, that

support the goal.

Often there are many choices for supporting a subgoal in a set of particles. Consider a

subgoal g that must be supported in a set of particles {x1
k, x

2
k, x

3
k} and is supported by effect ϕ in

particles x1
k and x2

k, ϕ′ in particles x2
k and x3

k, and ϕ′′ in x2
k. Choosing support in the wrong order

may lead me to include more actions than needed, especially if the effects are of different actions.

This problem is actually a set cover, which I solve greedily. For example, until the set of particles

for g is covered, I select supporting effects based on the number of new particles they cover (except

for proposition persistence actions, which I prefer over all others). The number of particles an effect

can support is proportional to the probability with which the effect supports the proposition. Say I

first pick ϕ because it covers two new particles, then ϕ′ can cover one new particle, and ϕ′′ covers

no new particles. I finish the cover by selecting ϕ′ for particle x3
k. Notice that even though ϕ′ can

support two particles I use it to support one. When the relaxed plan extraction subgoals to support

ϕ′ it only supports it in particle x3
k to avoid “bloating” the relaxed plan.
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5. Empirical Evaluation

I externally evaluate POND using theMcLUG relaxed plan heuristic by comparing with

the leading approach to probabilistic conformant planning, CPplan (Hyafil and Bacchus, 2003,

2004). I also internally evaluate my approach by adjusting the number of particles N used in each

McLUG. I refrain from comparing with POMDP solvers, as did (Hyafil and Bacchus, 2004), be-

cause they were shown to be effective only on problems with very small state spaces (e.g., slippery

gripper and sandcastle-67) and I care about problems with large state spaces. My approach does

only slightly better than CPplan on the small state space problems and I doubt we are superior to

the POMDP solvers on these problems.

I use four test domains for the evaluation: logistics, grid, slippery gripper, and sandcastle-

67. In the test setup, I used a 2.66 GHz P4 Linux machine with 1GB of memory, with a timeout

of 20 minutes for each problem. I note that CPplan performs marginally worse than previously

reported because my machine has one third the memory of the machine that Hyafil and Bacchus

(2004) used for their experiments.

CPplan is an optimal bounded length planner that uses a CSP solver for probabilistic confor-

mant planning. Part of the reason CPplan works so well is its efficient caching scheme that re-uses

optimal plan suffixes to prune possible solutions. In comparison, my work computes a relaxation of

plan suffixes to heuristically rank partial solutions. CPplan finds the optimal probability of goal sat-

isfaction for a given plan length (an NPPP -complete problem (Littman et al., 1998)), but POND,

like Buridan (Kushmerick et al., 1994), finds plans that satisfy the goal with probability no less than

τ (an undecidable problem (Madani et al., 1999)). CPplan could be used to find an optimal length

plan that exceeds τ by iterating over increasing plan lengths (similar to BlackBox (Kautz et al.,

1996)).

To compare with CPplan, I run CPplan on a problem for each plan length until it exceeds the
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time or memory limit. I record the probability that CPplan satisfies the goal for each plan length. I

then give POND a series of problems with increasing values for τ (which match the values found

by CPplan). If POND can solve the problem for all values of τ solved by CPplan, then I increase

τ by fixed increments thereafter. I ran POND five times on each problem and present the average

run time, plan length, and expanded search nodes. Comparing the planners in this fashion allows

me to compare the plan lengths found by POND to the optimal plan lengths found by CPplan for

the same value of τ . POND often finds plans that exceed τ and include more actions, whereas

CPplan meets τ with the optimal number of actions. Nevertheless, I feel the comparison is fair and

illustrates the pro/cons of an optimal planner with respect to a heuristic planner.

Logistics: The logistics domain has the standard logistics actions of un/loading, driving, and fly-

ing, but adds uncertainty. Hyafil and Bacchus (2004) enriched the domain developed by Brafman

and Hoffmann (2004) to not only include initial state uncertainty, but also action uncertainty. In

each problem there are some number of packages whose probability of initial location is uniformly

distributed over some locations and un/loading is only probabilistically successful. Plans require

several loads and unloads for a single package at several locations, making a relatively simple deter-

ministic problem a very difficult stochastic problem. I compare on three problems p2-2-2, p4-2-2,

and p2-2-4, where each problem is indexed by the number of possible initial locations for a package,

the number of cities, and the number of packages. See (Hyafil and Bacchus, 2004) for more details.

The plots in Figures 61 and 62 compare the total run time in seconds (left) and the plan

lengths (right) of POND using 16/32/64/128 particles in the McLUG versus CPplan. In this

domain I also use helpful actions from the relaxed plan (Hoffmann and Nebel, 2001). CPplan is

able to at best find solutions where τ ≤ 0.26 in p2-2-2, τ ≤ 0.09 in p4-2-2, and τ ≤ 0.03 in

p2-2-4. In most cases POND is able to find plans much faster than CPplan for the problems they

both solve. It is more interesting that POND is able to solve problems for much larger values of
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Figure 61. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p2-2-2
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Figure 62. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p4-2-2
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Figure 63. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p2-2-4

τ . POND finds solutions where τ ≤ 0.95 in p2-2-2, τ ≤ 0.85 in p4-2-2, and τ ≤ 0.15 in p2-2-4,

which is respectively 3.7, 9.6, 5.2 times the maximum values of τ solved by CPplan. In terms of
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Figure 64. Run times (s) and Plan lengths vs. τ for Grid-0.8
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Figure 65. Run times (s) and Plan lengths vs. τ for Grid-0.5

plan quality, the average increase in plan length for the problems we both solved was 4.6 actions in

p2-2-2, 4.2 actions in p4-2-2, and 6.4 actions in p2-2-4. I believe that some of the spikes in run times

as τ increases are due to theMcLUG coming very close to τ in a layer, but extending an extra layer

to exceed τ . When theMcLUG extends the extra layer, the relaxed plan will likely contain more

actions and increase the heuristic estimate. This could be leading search away from easy solutions

that will exceed τ .

The plot of plan lengths gives some intuition for why CPplan has trouble finding plans for

greater values of τ . The plan lengths for the larger values of τ approach 40-50 actions and CPplan

is limited to plans of around 10-15 actions. For POND we notice that plan length and total time
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scale roughly linearly as τ increases. We can see that the McLUG relaxed plan heuristic directs

search very well.

I would also like to point out some differences in how POND performs when the number

of particles changes. As τ increases, using more particles makes the search more consistent (i.e.,

fluctuation in terms of run time and plan length is minimized). Total time generally increases as the

number of particles increases because the heuristic is costlier.

Grid: The Grid domain, as described by (Hyafil and Bacchus, 2004), is a 10x10 grid where a robot

can move one of four directions to adjacent grid points. The robot has imperfect effectors and moves

in the intended direction with high probability (0.8), and in one of the two perpendicular directions

with a low probability (0.1). As the robot moves, its belief state grows and it becomes difficult to

localize itself. The goal is to reach the upper corner of the grid. The initial belief state is a single

state where the robot is at a known grid point. I test on the most difficult instance where the robot

starts in the lower opposite corner.

Figure 64 shows total run time and plan lengths for the problem. I notice that CPplan can

solve the problem for only the smallest values of τ , whereas POND scales much better. For the

single problem we both solve, POND is on average finding solutions with 4.75 more actions.

Again, POND scales roughly linearly because the McLUG heuristic is very informed. In this

problem, POND is able to do very well with only 4-8 particles, leading me to believe that there are

only a few very important regions of the distribution over possible worlds and theMcLUG actually

captures them.

Doing so well with only a few particles made me question whether theMcLUG is really

needed. As a sanity check, I show results for a variation of the grid problem in Figure 65. This

problem defines the probability that the robot moves in the intended direction to 0.5 and to 0.25

for the adjacent directions. The result is that as the robot moves, the belief state will be much less
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Figure 66. Run times (s) and Plan lengths vs. τ for Slippery Gripper.

peaked and harder to capture with few particles. I see that my doubts are quieted by the results.

More particles are required to get good quality plans and make search more effective.

Slippery Gripper: Slippery Gripper is a well known problem that was originally presented by

Kushmerick et al. (1994). There are four probabilistic actions that clean and dry a gripper and paint

and pick-up a block. The goal is to paint the block and hold it with a clean gripper. Many of the

lower values of τ find very short plans and take very little run time, so I focus on the higher values

of τ where I see interesting scaling behavior.

Figure 67 shows the total time and plan length results for this problem in the two left-most

plots. For short plans, CPplan is faster because theMcLUG has some additional overhead, but as τ

increases and plans have to be longer theMcLUG proves useful. Using 8 particles, POND is able

to find solutions faster than CPplan in the problems where τ > .99. Using more particles, POND

is able to find solutions faster for most problems where τ ≥ .998. In terms of plan quality, the

POND solutions are usually 1-2 extra actions with 3 extra actions in the worst case.

SandCastle-67: SandCastle-67 is another well known probabilistic planning problem, presented by

Majercik and Littman (1998). The task is to build a sand castle with high probability by using two

actions: erect-castle and dig-moat. Having a moat improves the probability of successfully erecting
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Figure 67. Run times (s) and Plan lengths vs. τ for SandCastle-67.

a castle, but erecting a castle may destroy the moat. Again, scaling behavior is only interesting for

high values of τ .

In the two right-most plots for run time and plan length in Figure 67, I see that the run

time for CPplan has an exponential growth with τ , whereas POND scales roughly linearly. As

τ increases, POND is eventually able to outperform CPplan. In terms of plan quality, POND

usually find plans with 1-3 extra actions.

Discussion: In comparison with CPplan, the major difference with my heuristic approach is the

way that plan suffixes are evaluated. CPplan must exactly compute plan suffixes to prune solutions,

whereas I estimate plan suffixes. It turns out that the estimates require POND to evaluate very

few possible plans. As plans become longer, it is more difficult for CPplan to exactly evaluate plan

suffixes because there are so many and they are large.

By adjusting the number of particles within POND I have a couple of general observations.

As can be expected, when belief states or distributions over possible worlds are fairly non-peaked

distributions, using more particles guides search better. However, without understanding the do-

main, it is difficult to pick the right number of particles. Fortunately, the number of particles is

an easily tunable parameter that cleanly adjusts the all-too-common cost/effectiveness tradeoff in
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heuristics. It would be interesting to use techniques from particle filter research to automatically

determine the right number of particles during search.

Overall, my method is very effective in the probabilistic conformant planning problems I

evaluated, with the only drawback being longer plans in some cases. To compensate, I believe it

should be reasonably straight-forward to post-process the plans to cut cost by removing actions.

Nevertheless, it is a valuable lesson to see the size of problems that can be solved by relaxing our

grip on finding optimal plans.

6. Related Work

Buridan (Kushmerick et al., 1994) was one of the first planning algorithms to solve prob-

abilistic conformant planning. Buridan is a partial order casual link (POCL) planner that allows

multiple supporters for an open condition, much like our relaxed plans in the McLUG. Unfortu-

nately, Buridan does not scale very well because it lacks effective heuristics. Probapop (Onder et al.,

2006), which is built on top of Vhpop (Younes and Simmons, 2003), attempts to enhance Buridan

by using heuristics. Probapop uses the classical planning graph heuristics implemented by Vhpop

by translating every outcome of probabilistic actions to a deterministic action. In theory, POCL

planners are a nice framework for probabilistic planning because it is easy to add actions to support

a low probability condition without backtracking (as may be necessary in state based search). In

reality, POCL can be hard to work with because it is often difficult to assess the probability of a

partially ordered plan.

Partially observable Markov decision process (POMDP) algorithms, such as (Cassandra

et al., 1997) to name one, are also able to solve probabilistic conformant planning. The work

on CPplan (Hyafil and Bacchus, 2003, 2004) makes extensive comparisons with the mentioned

POMDP algorithm and shows it is inferior for solving probabilistic conformant planning problems
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with large state spaces (like logistics and grid). This disparity may be partly due to the fact that

the POMDP algorithms solve a slightly different problem by finding plans for all possible initial

belief states. CPplan also compares with MaxPlan (Majercik and Littman, 1998), showing it too

is inferior for several problems. MaxPlan is similar to CPplan, in that it encodes probabilistic

conformant planning as a bounded length planning problem using a variant of satisfiability. The

main difference is in the way they cache plan suffixes.

More closely related to our approach is the work on the CFF planner (Brafman and Hoff-

mann, 2004). In this work the focus is to use planning graphs to derive relaxed plan heuristics for

non-deterministic conformant planning. CFF encodes a relaxed planning graph as a tractable satis-

fiability instance and tries to prove a relaxed plan exists for every model of a belief state. The work

on the LUG directly propagates constraints about possible worlds on a planning graph and extracts

a relaxed plan.

The Prottle planner (Little et al., 2005) uses a variation of temporal planning graphs for

fully-observable probabilistic temporal planning. In their planning graph they explicitly reason

about actions with probabilistic actions by adding an outcome layer and defining a cost propagation

procedure. The authors do not extract relaxed plans, nor reason about possible worlds.

PGraphPlan (Blum and Langford, 1999) and CGP (Smith and Weld, 1998) are two plan-

ners that use generalizations of GraphPlan (Blum and Furst, 1995) for planning under uncertainty.

PGraphPlan and its sister algorithm TGraphPlan, are used for fully-observable probabilistic plan-

ning (similar to Markov decision processes). The key idea in PGraphPlan is to forward chain in the

planning graph, using dynamic programming, to find an optimal probabilistic plan for a given finite

horizon. Alternatively, TGraphPlan greedily back-chains in the planning graph to find a solution

that satisfies the goal, without guaranteeing optimality. CGP solves non-observable (conformant)

non-deterministic planning problems.
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RTDP (Barto et al., 1995) is a popular algorithm, used in many recent works (Mausam and

Weld, 2005; Little et al., 2005; Bonet and Geffner, 2003), that also uses Monte Carlo techniques.

RTDP samples a plan suffix to evaluate, whereas I estimate the plan suffix with a relaxed plan.

Because I am reasoning about non-observable problems I sample several plan suffixes and aggregate

them to reflect that we are planning in belief space.

7. Conclusion

In this chapter, I have presented an approach calledMcLUG to integrate sequential Monte

Carlo approaches into heuristic computation on planning graphs. The McLUG enables quick

computation of effective heuristics for conformant probabilistic planning. By using the heuristics,

POND is able to far out-scale the current best approach to conformant probabilistic planning. At

a broader level, this work shows one fruitful way of exploiting the recent success in deterministic

planning to scale stochastic planners.



CHAPTER 7

STATE AGNOSTIC PLANNING GRAPHS

Previous chapters describe how to use planning graphs in a number of scenarios, all of

which assume a new planning graph (or set of planning graphs) is built for every search node. This

chapter takes a more general view of labeled planning graphs to describe how they can represent

the entire set of planning graphs for every search node. I explore this idea, called a state agnostic

planning graph, in classical, non-deterministic, and stochastic planning with uniform cost actions. I

consider non-deterministic and probabilistic conformant planning and non-deterministic conditional

planning.

1. Introduction

Heuristics derived from planning graphs (Blum and Furst, 1995) are widespread in planning

(Gerevini et al., 2003; Hoffmann and Nebel, 2001; Bonet and Geffner, 1999; Younes and Simmons,

2003; Nguyen et al., 2002). In many cases, heuristics are derived from a set of planning graphs. In

classical planning, progression planners compute a planning graph for every search state. (The same

situation arises in planning under uncertainty when calculating the heuristic for a belief state, as we

have seen in previous chapters.) A set of planning graphs for related states can be highly redundant.

That is, any two planning graphs often overlap significantly. As an extreme example, the planning

graph for a child state is a sub-graph of the planning graph of the parent, left-shifted by one step

(Zimmerman and Kambhampati, 2005). Computing a set of planning graphs by enumerating its

members is, therefore, inherently redundant.

Consider progression planning in a variation of the classical rovers domain, described in

Figure 68. There are two locations, alpha and gamma, and an image is available at gamma.

The goal is to achieve (comm image). There are four actions drive(alpha, gamma),

drive(gamma, alpha), sample(image, gamma), and commun(image). The rover
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can use the plan: drive(alpha, gamma), sample(image, gamma), commun(image)

to achieve the goal. The sequence of states, where each state will be evaluated by the heuristic, is:

sI = {at(alpha), avail(image, gamma)}

s2 = {at(gamma), avail(image, gamma)}

s10 = {at(gamma), have(image), avail(image, gamma)}

s14 = {at(gamma), have(image), commun(image), avail(image, gamma)}

Notice that s2 ⊂ s10 ⊂ s14, meaning that the planning graphs for each state will have initial

proposition layers where P0(s2) ⊂ P0(s10) ⊂ P0(s14). Further, many of the same actions will

appear in the first action layer of the planning graph for each state. It is possible to capture this set

of planning graphs by computing a LUG for the hypothetical belief state b = {s2, s10, s14}. We

can use the LUG to represent this set of planning graphs, but how do we compute heuristics for

individual states?

The answer, developed in this chapter, is an elegant generalization of the planning graph

called the State Agnostic Graph (SAG), that extends the labeling technique introduced in the LUG.

In this chapter, I take a more general perspective on the labeling technique employed, described

here as SAG, and apply this perspective to further boost the performance of POND, employing

LUG-based heuristics.

It is common to view the planning graph as exactly solving a single-source shortest path

problem, for a relaxed planning problem. The levels of the graph efficiently represent a breadth-

first sweep from the single source. In the context of progression planning, the planner will end

up calculating a heuristic for many different sources. Iterating a single-source algorithm over each

source (building a planning graph per search node) is a naive solution to the all-pairs shortest path

problem. I develop a generalization, SAG, under this intuition: directly solving the all-pairs shortest

path problem is more efficient than iterating a single source algorithm.
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This intuition falls short in most planning problems, because the majority of states are un-

reachable. Reasoning about such states is useless, so instead, I develop the SAG as a solution to

the multi-source shortest path problem. More precisely, the SAG is a representation of a set of

planning graphs. Its exact form depends upon the kind of planning graph being generalized (mu-

texes, cost, time, . . . ). The main insight to the technique is to represent the propagation rules of the

planning graph and a set of sources as boolean functions. Composing these functions via boolean

algebra yields an approach for building the set of planning graphs without explicitly enumerating

its elements. Manipulating formulas exploits redundant sub-structure, and boosts empirical perfor-

mance, in spite of the fact that this technique does not alter theoretical worst-case complexity. While

the representation is in terms of boolean functions, I describe the label semantics in terms of sets

(models of the boolean functions).

I start by introducing the SAG technique, for the purpose of exposition, in the simpler realm

of classical planning. I restrict attention to planning graphs without mutexes: relaxed planning

graphs. I generalize this planning graph to the State Agnostic Graph (SAG). I extend the discussion

to belief-space planning, generalizing the LUG to its state agnostic version, and generalizing the

McLUG to its state agnostic version. I then demonstrate two formalizations, SLUG and CSSAG,

which drastically improve theoretical complexity: I use these results as the basis for heuristics in

POND. I also explore a generalization of relaxed plan heuristics that follows directly from the

SAG, namely, the state agnostic relaxed plan, which captures the relaxed plan for every state. From

there, I consider several strategies for reducing irrelevant heuristic computations. The experimental

evaluation begins by comparing these strategies. I take the best among these to conduct an external

comparison with state of the art belief space planners. I demonstrate that POND is competitive

with the state of the art in both conformant and conditional non-deterministic planning and con-

formant probabilistic planning (the next chapter covers conditional probabilistic planning). Before
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(define (domain rovers classical)
(:requirements :strips :typing)
(:types location data)
(:predicates

(at ?x - location)
(avail ?d - data ?x - location)
(comm ?d - data)
(have ?d - data))

(:action drive
:parameters (?x ?y - location)
:precondition (at ?x)
:effect (and (at ?y) (not (at ?x))))

(:action commun
:parameters (?d - data)
:precondition (have ?d)
:effect (comm ?d))

(:action sample
:parameters (?d - data ?x - location)
:precondition (and (at ?x) (avail ?d ?x))
:effect (have ?d))

)

(define (problem rovers classical1)
(:domain rovers classical)
(:objects

image - data
alpha gamma - location)

(:init (at alpha)
(avail image gamma))

(:goal (and (comm image)))
)

Figure 68. PDDL description of classical planning formulation of the rover problem.

concluding, I provide some insight into the connections to other work.

2. Classical Planning

I first present the SAG in a classical setting by describing how it can represent the classical

planning graphs discussed in Chapter 2, as well as how it is used to compute a simple level heuristic.

Recall that a planning graph, PG(s), built for a single source s, satisfies:

1. If p holds in s then p ∈ P0(s)

2. For any k such that p ∈ Pk for every p ∈ ρe(a), then a ∈ Ak

3. For any k such that a ∈ Ak, then p ∈ Pk+1 for all p ∈ ε+(a)

A proposition or action is reachable from a state s after at least k actions if it appears in level k of

the planning graph built from state s. The level heuristic is based on the extension of this idea to
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a set of propositions: the level of a set of propositions is the least level k where each proposition

appears.

I generalize the planning graph to the State Agnostic Planning Graph (SAG), by permitting

multiple source states. I associate every vertex of the graph with a label �; each label tracks the set

of sources reaching the associated graph vertex. These labels are represented as boolean functions

of the domain propositions to describe sets. Intuitively, a source s reaches a graph vertex x if it is a

subset of the label s ⊂ �k(x).

A State Agnostic Planning Graph is a labeled planning graph, with a label � function assign-

ing states to vertices. The graph SAG(S) is constructed from its scope S, a set of sources. For all

s ∈ S, the following holds:

1. If p ∈ s, then s ∈ �0(p) and p ∈ P0

2. If s ∈ �k(p) for every p ∈ ρe(a), then:

(a) s ∈ �k(a)

(b) a ∈ Ak

3. If p ∈ eff +(a) and s ∈ �k(a), then s ∈ �k+1(p) and p ∈ Pk+1

Consider building a SAG, in Figure 69, for the entire set of states S = S for the problem

described in Figure 68 (omitting the static proposition avail(image, gamma) from state de-

scriptions). There are a total of 16 states (4 of which are unreachable) listed in the table in Figure

69. The figure denotes the labels with sets of integers, which correspond to state indices in the

table. The initial proposition layer contains every proposition, labeled with the states in which it

holds. Label propagation is identical to the LUG: actions are labeled with the intersection of their

precondition labels, and propositions are labeled with the union of their supporters. By the third

level, the goal proposition comm(soil) is labeled with all but one state, and extending the SAG
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Figure 69. SAG for rover example.

an additional level will not change the labels. The SAG is said to level off at level 4, at which point

it can be used to compute the heuristic for any state that is a subset of the scope S.

The level heuristic for any state s ∈ S is the first level k where s ∈ ⋂p∈G �k(p), meaning

the state can reach each goal proposition in k steps. To see the connection with the LUG, notice

that the LUG built for a belief state b is using a scope S = b, and the level heuristic for b is the

first level k where b =
⋂

p∈G �k(p). Using the SAG to compute the heuristic for a state involves

set membership checks, whereas computing the heuristic for a belief state in the LUG uses a set

equivalence check. Later I will show that the SAG can compute the heuristic for all belief states by

using a subset check.

Sharing: Unlike the classical planning graph, the SAG can be reused across multiple search states.

Consider a set of sources, S. It is possible to extract a planning graph heuristic for each source,

s ∈ S, from SAG(S), without building any additional graphs. This is done by evaluating labels.

As an example, I presented a generalization of the level heuristic. The sharing of the SAG across

invocations of the heuristic involves passing the graph as an argument to the heuristic function.
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That is, the caller builds a graph for a set of anticipated search states, and passes that graph when

obtaining the heuristic estimate for each search state in the set.

The graph, SAG(S), is built once for a set of states, S. For any s ∈ S, the heuristic

reuses the shared graph SAG(S). For example, it is possible to compute the level heuristic for

every state in the rover problem, by finding the first level where the label of comm(soil) con-

tains the state. The states {s5, s6, s7, s8, s13, s14, s15, s16} have a level heuristic of zero, the states

{s9, s10, s11, s12} have a heuristic of one, the states {s2, s4} have a heuristic of two, and the state

s3 (the initial state) has a heuristic of three. It is possible to compute the heuristic values a priori,

or on-demand during search. Later I will discuss various points along the continuum between com-

puting all heuristic values before search and computing the heuristic at each search node when I

describe relaxed plan heuristics.

The search tree for this rover problem has a total of five unique states s3, s2, s10, s11, s14.

By constructing a planning graph for each state, the total number of planning graph vertices (for

propositions and actions) that must be allocated is 66. Constructing the equivalent SAG, while

representing the planning graphs for extra states, requires 31 planning graph vertices. To answer the

question of whether the SAG is more compact and efficient than building individual planning graphs,

we must consider the size of labels and the associated manipulation costs. Representing labels as

boolean functions (e.g., with BDDs) significantly reduces the size and cost of labels, making the

SAG a better choice in some cases. We must also consider whether the SAG is used enough by

the search: it may be too costly to build the SAG for all states if we only evaluate the heuristic

for relatively few states. I will address these issues empirically in the evaluation section, but first

consider the SAG for planning in non-deterministic belief state space.
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(define (domain rovers nd)
(:requirements :strips :typing)
(:types location data)
(:predicates

(at ?x - location)
(avail ?d - data ?x - location)
(comm ?d - data)
(have ?d - data))

(:action drive
:parameters (?x ?y - location)
:precondition (at ?x)
:effect (and (at ?y) (not (at ?x))))

(:action commun
:parameters (?d - data)
:precondition (and)
:effect (when (have ?d) (comm ?d)))

(:action sample
:parameters (?d - data ?x - location)
:precondition (at ?x)
:effect (when (avail ?d ?x) (have ?d)))

)

(define (problem rovers nd1)
(:domain rovers nd)
(:objects

image - data
alpha gamma - location)

(:init (at alpha)
(avail image gamma)
(oneof (have image)

(not (have image))))
(:goal (comm image))

)

Figure 70. PDDL description of non deterministic planning formulation of rover problem.

3. Non-Deterministic Planning

As previously mentioned, it is possible to apply the SAG to belief state space planning to

compute the heuristic value of belief states. My presentation parallels the discussion in the classical

setting: I revisit a planning graph-variant for belief-space planning, LUG, and generalize it to the

state agnostic version (to represent a set of LUG). The worst-case complexity of the SAG technique

is exponential in the worst-case complexity of the LUG method. That is, normally, there is no

complexity-theoretic advantage to the technique. In the case of non-deterministic planning, I find

an equivalent representation, SLUG (see below), with the same worst-case complexity as LUG–

an exponential reduction. The intuition is that the LUG operates on a set of states, and the naive

generalization would operate on a set of sets of states. However, by taking the union of these sets of

states, the SLUG manages to reduce the complexity of the representation.

As before, I describe the actions in belief state space planning as having conditional effects.
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I extend the running example to belief state space by reinterpreting its operators, as shown in Figure

70. The commun(image) and sample(image, gamma) actions have conditional effects.

There is uncertainty as to whether have(image) is true, so the initial belief state is b0 = {s3, s11}

(using the same state indices as the classical planning example above).

To reiterate, a Labeled Uncertainty Graph, LUG(b), is a labeled graph, built for the belief

state b. Each label, �, is a set world states, represented by a boolean function. For every s ∈ b, the

following holds:

1. If p ∈ s, then s ∈ �0(p) and p ∈ P0

2. If s ∈ �k(p) for every p ∈ ρe(a), then:

(a) s ∈ �k(a)

(b) a ∈ Ak

3. If a ∈ Ak and s ∈ �k(p) ∩ �k(a) for every p ∈ ρij(a), then:

(a) s ∈ �k(ϕij(a))

(b) ϕij(a) ∈ Ek

4. If p ∈ ε+
ij(a) and s ∈ �k(ε+

ij(a)), then s ∈ �k+1(p) and p ∈ Pk+1

As stated, the LUG is a kind of SAG. The LUG is an efficient representation of a set of

planning graphs built for classical planning with conditional effects. However, the LUG is more than

that: the LUG is a full-fledged planning graph for belief-space planning. That is, I derive heuristics

for belief-space from it by computing it for every search node. The level heuristic for the LUG is an

estimate of the belief-space distance between the belief b and the goal G, argmink b =
⋂

p∈G �k(p).

As I noted before, this heuristic is similar in structure to both the classical SAG and tra-

ditional planning graph level heuristic. The heuristic does not amortize graph construction effort
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across search nodes, but, it does use the SAG technique to efficiently build and reason about a set of

planning graphs. That is, the set equivalence check reasons about a set of planning graphs (one for

each s ∈ b) using only the single graph LUG(b). I introduced Figure 69 as an example of the SAG

for classical planning. It is possible to re-interpret it as an example of the LUG. The graph, LUG(b),

depicted in Figure 69 is built for the belief, b, that contains every state in the rover example.

I generalize the LUG to its state agnostic version by analogy to the state agnostic general-

ization of the classical planning graph. I introduce a new label syntax to track which sources reach

vertices. In this case, sources are belief states. A further complication arises in that the LUG already

defines its own labels. In order to complete the generalization, I represent labels as pairs of belief

states and states. That is, the state agnostic LUG is a set of LUGs and each label denotes which

states in which LUGs (distinguished by their source belief states) reach different graph vertices.

Each pair in the set represented by a label signifies which LUG reaches the graph vertex, and which

state of the LUG source reaches the vertex.

This state agnostic LUG is a labeled graph built for a scope S containing the set of belief

states B. The following holds for every b ∈ B, and s ∈ b:

1. If p holds in s, then (b, s) ∈ �0(p) and p ∈ P0

2. If (b, s) ∈ �k(p) for every p ∈ ρe(a), then:

(a) (b, s) ∈ �k(a)

(b) a ∈ Ak

3. If a ∈ Ak and (b, s) ∈ �k(p) ∩ �k(a) for every p ∈ ρij(a), then:

(a) (b, s) ∈ �k(ϕij(a))

(b) ϕij(a) ∈ Ek
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Figure 71. Graph structure of a SAG, representing a set of LUG.

4. If p ∈ ε+
ij(a) and (b, s) ∈ �k(ϕij(a)), then (b, s) ∈ �k+1(p) and p ∈ Pk+1

Intuitively, the label of a proposition, p, at level k represents a set of (b, s) pairs where

LUG(b) considers the proposition k-reachable from state s in belief state b.

Figure 71 shows the state agnostic generalization of the LUG for the rovers problem. The

labels contain pairs (b, s) for each belief state b ⊆ S and s ∈ b, but the figure depicts the portion

of the labels for two belief states: b0 = {s3, s11} and b1 = {s3, s11, s15}. Belief state b0 is the

initial belief state of the rover example, and b1 results from applying commun(image) to b0. There

are many labels that contain pairs that involve the same state for different belief states, such as

�0(avail(image, gamma)), which contains (b0, 3) and (b1, 3).

It is possible to optimize this representation by eliminating the distinction between belief

states in labels. Introducing these pairs of belief states and states is sufficient for representing

arbitrary extensions of the planning graph to belief space. The LUG, however, does not require this

mechanical scheme. Intuitively, the propagation rules of the LUG depend only upon properties of

world states (as opposed to properties of belief states). SLUG exploits this: SLUG(B) represents
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a set (LUG(b), b∈B) for the price of a single element (LUG(b∗)). An, optimized, State Agnostic

Labeled Uncertainty Graph, SLUG(B), is a labeled graph built for a set of belief states B. The

structure is equivalent to a particular LUG where b∗ =
⋃

b∈B b, such that SLUG(B) =LUG(b∗).

Figure 69 also depicts the SLUG for every belief state in the rover example because b∗ =

⋃
b∈B b =

⋃
b∈B

⋃
s∈b s = S (i.e., the union of all belief states is the set of states).

Any query concerning LUG(b), for b ∈ B, can be answered using SLUG(B) and the

following rule for propositions (similarly for effects and actions): p ∈ Pk(b) iff: p ∈ Pk(B) and

b ⊆ �k(p). By analogy with the level heuristic for the SAG, it is possible to compute a level heuristic

for the SLUG . The level heuristic for belief-space planning, extracted from SLUG(B) for belief

state b is defined as argmink b ⊆ ⋂p∈G �k(p). Like how the SAG is used for classical planning,

heuristics use subset checks with SLUG labels. The level heuristic for b0 is three and for b1, three

also. The goal proposition is not labeled with all of the states in either b0 or b1 until proposition

layer three.

4. Stochastic Planning

The SAG for non-deterministic and classical planning captures a single planning graph for

each state because the actions are deterministic. In stochastic planning, the McLUG deals with

actions with uncertain outcomes, meaning there is potentially several planning graphs per state

(each corresponds to a different set of joint outcomes). It is possible to use theMcLUG to compute

a heuristic for a belief state by first sampling a set of states from the belief state, and for each state

sampling from the set of potential planning graphs.

Developing a state agnostic generalization of the McLUG requires a data structure that

can compute the heuristic for all probabilistic belief states (of which there an infinite number). A

complication is that theMcLUG generates new and potentially different planning graphs for each
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state sampled from each belief state. Since it is unknown how many times a state will be sampled

during a search, it seems reasonable to sample a fixed pool of planning graphs for each state and re-

sample from this pool. It is possible to ensure that the planning graphs for every set of state samples

is constructed by generating N planning graphs for each state, where N is the maximum number of

samples per belief state. This means that, using ideas from the SLUG (where labels describe sets

of states, instead of pairs of belief states and states), the state agnosticMcLUG captures O(N |S|)

planning graphs.

Consider the number of random numbers, used in this scheme, to construct a state agnostic

planning graph. Each of the N |S| planning graphs represented by the state agnostic graph will have

at most k levels, with O(A) actions per level. If each action has an uncertain outcome, there are

on the order of O(N |S||A|k) random numbers needed to construct the SAG. By sampling a unique

outcome of every action in each planning graph, it is possible to generate the pool of planning graphs

for heuristics. Under this scheme, each label is a set of pairs (s, xn(s)), denoting the condition when

a state s and a set of action outcomes, represented by xn(s), can make the labeled vertex reachable.

The state agnostic version of theMcLUG for all s ∈ S is defined by:

1. If p ∈ s, then ∀n=0...N−1(s, xn(s)) ∈ �0(p) and p ∈ P0

2. If (s, xn(s)) ∈ �k(p) for every p ∈ ρe(a), then:

(a) (s, xn(s)) ∈ �k(a)

(b) a ∈ Ak

3. If a ∈ Ak, (s, xn(s)) ∈ �k(p) ∩ �k(a) for every p ∈ ρij(a), and Φi(a) is sampled by xn(s)

then:

(a) (s, xn(s)) ∈ �k(ϕij(a))
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(b) ϕij(a) ∈ Ek

4. If p ∈ ε+
ij(a) and (s, xn(s)) ∈ �k(ϕij(a)), then (s, xn(s)) ∈ �k+1(p) and p ∈ Pk+1

Since each label is a set of pairs (s, xn(s)), the label representation is dependent both on

the number of states and the number of samples per state. Using the notion of “common samples”,

it is possible to reduce the size of the label representation and the cost of computing the SAG.

We consider a planning graph called the common sample SAG (CSSAG) to share action outcome

samples between states. In the CSSAG, labels are sets of pairs (s, xn), where xn refers to a history

of action outcome samples that is independent of the starting state. A label containing the pairs

(s, xn) and (s′, xn), signifies whether starting in state s or s′ and fixing the same outcomes to

uncertain actions in planning graph, the labeled vertex is reachable. This reduces the number of

random numbers needed from O(N |S||A|k) to O(N |A|k) (the same number as theMcLUG). The

CSSAG is defined by:

1. If p holds in s, then ∀n=0...N−1(s, xn) ∈ �0(p) and p ∈ P0

2. If (s, xn) ∈ �k(p) for every p ∈ ρe(a), then:

(a) (s, xn) ∈ �k(a)

(b) a ∈ Ak

3. If a ∈ Ak, (s, xn) ∈ �k(p) ∩ �k(a) for every p ∈ ρij(a), and Φi(a) is sampled by xn then:

(a) (s, xn) ∈ �k(ϕij(a))

(b) ϕij(a) ∈ Ek

4. If p ∈ ε+
ij(a) and (s, xn) ∈ �k(ϕij(a)), then (s, xn) ∈ �k+1(p) and p ∈ Pk+1
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(define (domain rovers stochastic)
(:requirements :strips :typing)
(:types location data)
(:predicates

(at ?x - location)
(avail ?d - data ?x - location)
(comm ?d - data)
(have ?d - data))

(:action drive
:parameters (?x ?y - location)
:precondition (at ?x)
:effect (and (at ?y) (not (at ?x))))

(:action commun
:parameters (?d - data)
:precondition (and)
:effect (when (have ?d)

(probabilistic 0.8 (comm ?d))))

(:action sample
:parameters (?d - data ?x - location)
:precondition (at ?x)
:effect (when (avail ?d ?x)

(probabilistic 0.9 (have ?d))))
)

(define (problem rovers stochastic1)
(:domain rovers stochastic)
(:objects

image - data
alpha gamma - location)

(:init (at alpha)
(avail image gamma)
(probabilistic 0.9 (have image)))

(:goal (comm soil) 0.99)
)

Figure 72. PDDL description of stochastic planning formulation of rover problem.

Consider the extension of the rover example listed in Figure 72. There are probabilistic

effects for the sample(image, gamma) and commun(image) actions, and a probabilistic

initial belief state, denoting that have(image) is true with 0.9 probability. The corresponding

CSSAG for this problem is shown in Figure 73. The labels are depicted in a short hand that de-

scribes a set of pairs by two sets, the states, and the samples, where every pair of elements from

the two sets is in the label. For example, the pairs (s2, x
0), (s4, x

0), ..., (s2, x
1), ... are in the label

�0(at(gamma)). Similarly, the pairs (s9, x
0), ..., (s8, x

2) are in the label �1(have(image)).

The labeled effects, show which samples sample the outcome where the effect occurs, such as

{x0, x1, x2} for the effect ϕ00(sample(image, gamma)).

Using the CSSAG to evaluate a heuristic for a belief state b involves sampling a set of N

states from the belief state. Each sampled state s is paired with a sample identifier xn, such that a set
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Figure 73. Graph structure of a CSSAG.

{(s, xn)}N−1
n=0 identifies theMcLUG(b). For instance, the level heuristic is the first level k where

the proportion of state and sample pairs (sampled from the belief state) that reach the goal exceeds

the goal satisfaction threshold,
|⋂p∈G �k(p)∩{(s,xn)}N−1

n=0 |
N ≥ τ . For example, the level heuristic for

the initial belief state {0.1 : s3, 0.9 : s11} to reach the goal of the stochastic rover formulation

is computed as follows. If N = 4, we may sample states from the initial belief state to obtain

{(s3, x
0), (s11, x

1), (s11, x
2), (s11, x

3)}. The intersection between the label of the goal proposition

comm(image) and the state samples is {} at level zero, {(s11, x
1), (s11, x

3)} at level one, and

{(s11, x
1), (s11, x

3)} at level two. Thus, the probability of reaching the goal is 0/4 = 0 at level

zero, 2/4 = 0.5 at level one, and 2/4 = 0.5 at level two. Without expanding the CSSAG further, it is

possible to say the level heuristic is at least 2.

5. SAG Relaxed Plans

There two fundamental techniques that I identify for extracting relaxed plans from state

agnostic planning graphs to guide POND’s AO* search. The first, called the SAG relaxed plan,
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extracts relaxed plans from the state agnostic graph during search, upon generating each search

node. The second, called a global relaxed plan, extracts the relaxed plan for each state (or state

and sample pair) before search, and during search combines the necessary relaxed plans to evaluate

specific search nodes.

SAG Relaxed Plans: Recall that I extract a belief-space relaxed plan from LUG(b) (McLUG(b))

by requiring that, for any s ∈ b ((s, xn) ∼ b), the set of vertices whose labels’ evaluate to true

for s ((s, xn))represents a classical relaxed plan. Previous chapters demonstrate the procedure for

efficiently extracting such a plan. The relaxed plan can be viewed as ignoring negative interactions

between states in a belief state in addition to ignoring negative interactions between actions. I

extend this to extracting belief-space relaxed plans from SLUG(S), for any b ⊆ S, by intersecting

the labels of the SLUG with b before using them in the above extraction procedure. As with classical

relaxed plans, the heuristic value of a belief-space relaxed plan is the number of action vertices it

contains. The same holds for the CSSAG(S), where S = {(s, xn)|s ∈ S, 0 ≤ n ≤ N −1} by taking

the intersection of a set of state-sample pairs with labels.

Global Relaxed Plans: Much like how the SLUG can be used to represent a set of LUGs with

labels indicating which states are relevant to which planning graph vertices, it is possible to do the

same for relaxed plans. The idea is to extract a relaxed plan to support the goals from the belief

state b = S that captures the entire scope of the SLUG (or CSSAG). Each action in this global

relaxed plan is labeled by the subset of its label �
RP (S)
k (a) ⊆ �k(a) that denotes the states that use

it to support the goal. Then, to evaluate the heuristic for a specific belief state b′ ⊆ S, I count the

number of actions in the global relaxed plan that are used for the states in b′ (i.e., those actions

where b′ ∩ �
RP (S)
k (a) �= ∅).

The trade-off between the SAG relaxed plan and the global relaxed plan, is very similar to

the trade-off between using a SAG and a standard planning graph: a priori construction cost must
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be amortized over search node expansions. However, there is another subtle difference between

the relaxed plans computed between the two techniques. Recall that relaxed plan extraction is

guided by a simple heuristic (in the absence of cost information) that prefers to support propositions

with supporters that contribute more possible worlds. In the SAG relaxed plan, this set of possible

worlds contains exactly those possible worlds that are needed to evaluate a search node. In the

global relaxed plan, the set of possible worlds (e.g., any subset of S) used to choose supporters

may be much larger than the set used to evaluate any given search node. By delaying the relaxed

plan extraction to curtail it to each search node, the SAG relaxed plan can be more informed. By

committing to a global relaxed plan before search (without knowledge of the actual search nodes),

the heuristic may make poor choices in relaxed plan extraction and be less informed. Despite the

possibility of poor relaxed plans, the global relaxed plan is quite efficient to compute for every

search node (modulo the higher extraction cost).

6. Choosing the SAG Scope

The choice of scope has a great impact on the performance of any approach based on SAG.

Using fewer states in the scope almost always requires less computation per graph. While not every

label function becomes smaller, the aggregate size almost always decreases. Restricting the scope,

however, prevents the SAG from representing the planning graphs for states so excluded. If such

states are visited in search, then a new SAG will need to be generated to cover them. All of the

approaches based on SAG can be seen as a particular strategy for covering the set of all states with

shared graphs. I define 4 isolated points in that spectrum: Global-SAG, Reachable-SAG, Child-

SAG, and the PG (Node-SAG).

Global-SAG: A Global-SAG is a single graph for an entire planning episode. The scope is taken to

be the set of all states (or state and sample pairs); that is, Global-SAG uses the degenerate partition
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containing only the set of all states (or state and sample pairs).

Reachable-SAG: A Reachable-SAG is also a single graph for an entire planning episode. A normal

planning graph (LUG) is constructed from the initial belief state of the problem; all states consistent

with the last level form the set from which the Reachable-SAG is built. That is, states are partitioned

into two groups: definitely unreachable, and possibly reachable. A graph is generated only for the

latter set of states.

Child-SAG: A Child-SAG is a graph built for the set of children of the current node. This results

in one graph per non-leaf search node. That is, Child-SAG partitions states into sets of siblings.

While this is still an exponential number of graphs, the reduction in computation time, relative to

Node-SAG, is still significant.

Node-SAG: A Node-SAG is built for the smallest conceivable scope: the current search node. In

some situations, label propagation is useless, and therefore skipped. That is, Node-SAG is just a

name for the naive approach of building a planning graph for every search node.

7. Empirical Evaluation

The empirical evaluation is divided into two subsections for an internal and external eval-

uation. The internal evaluation covers i) the effect of using different scopes, and ii) the effect of

using SAG or global relaxed plans. The external evaluation compares several of the better tech-

niques (from the internal evaluation) to several state of the art planners, including results from Fifth

International Planning Competition (IPC).

In order to qualitatively evaluate the techniques, I developed them within POND. I imple-

mented all of the SAG strategies (Node, Child, Reachable, Global) within POND. The degenerate

case, Node-SAG, simply uses LUG orMcLUG. The other three cases are implemented with respect
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to the (optimized) state agnostic version of LUG: SLUG , or CSSAG. The implementation uses the

relaxed plan based heuristic, identical to the relaxed plan heuristic developed in Chapter 4 for the

LUG, or in Chapter 6 for theMcLUG.

I ran tests across a wide variety of benchmark problems in belief-space planning. All prob-

lems in the POND distribution (from Chapter 3) were attempted; I further augmented the test set

with all benchmarks from the 2000, 2002, and 2004 planning competitions. The latter problems are

classical planning problems, which we include in order to gauge the possible benefits of applying

SAG to classical planners.

7.1. Internal Comparison. Within the internal comparison, I discuss results for different

choices of scope and methods of computing the relaxed plan heuristic. The results were collected in

four different groups: IPC classical planning problems, POND’s non-deterministic problems, IPC

non-deterministic conformant planning problems, and POND’s conformant probabilistic problems

(from Chapter 6). The choices for SAG scope are evaluated on every group, and the choices for

relaxed plan are evaluated on the last two groups.

The choices for SAG scope are evaluated on four test sets, described below. All but the first

two sets were evaluated on different machines with different characteristics. The first two test sets

are evaluated under the same methodology.

IPC Classical Planning & POND Non-Deterministic Problems: There are several hundred prob-

lems in the IPC test sets, so I imposed relatively tight limits on the execution (5 minutes on a P4

at 3.06 GHz with 900 MB of RAM) of any single problem. I exclude failures due to these limits

from the figures. In addition, I sparsely sampled these failures with relaxed limits to ensure that

my conclusions were not overly sensitive to the choice of limits. Up until the point where physical

memory is exhausted, the trends remain the same.
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Figure 74. Reachable-SAG (using SLUG) vs.
PG (using LUG), Non-Deterministic Problems
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PG (using LUG), Classical Problems

The measurement for each problem is the total run time of the planner, from invocation to

exit. I have only modified the manner in which the heuristic is computed; despite this, I report total

time to motivate the importance of optimizing heuristic computation. It should be clear, given that I

achieve large factors of improvement, that time spent calculating heuristics is dominating time spent

searching.

Figures 74 and 75 provide several perspectives on the merits of Reachable-SAG in non-
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deterministic and classical planning. The figure omits Global-SAG and Child-SAG for clarity. The

former, Global-SAG, is dominated; the mode wastes significant time projecting reachability for

unreachable states. The latter, Child-SAG, improves upon the PG approach in virtually all problems.

However, that margin is relatively small, so I prefer to depict the current standard in the literature,

the PG approach. The top graph in each figure is a scatter-plot of the total running times. The

line “y=x” is plotted, which plots identical performance. The middle graph in each figure plots the

number of problems that each approach has solved by a given deadline. The bottom graph in each

figure offers one final perspective, plotting the ratio of the total running times.

The scatter-plots reveal that Reachable-SAG always outperforms the PG approach. More-

over, the boost in performance is well-removed from the break-even point. The deadline graphs are

similar in purpose to plotting time as a function of complexity: rotating the axes reveals the telltale

exponential trend. However, it is difficult to measure complexity across domains. This method

corrects for that at the cost of losing the ability to compare performance on the same problem. We

observe that, with respect to any deadline, Reachable-SAG solves a much greater number of plan-

ning problems. Most importantly, Reachable-SAG out-scales the PG approach. When we examine

the speedup graphs, we see that the savings grow larger as the problems become more difficult.

POND treats classical problems as problems in belief-space; naturally, this is very ineffi-

cient. Despite this, Reachable-SAG still produces an improvement on average. While the scatter-

plots reveal that performance can degrade, it is still the case that average time is improved: mostly

due to the fact that as problems become more difficult, the savings become larger.

In light of this, my colleagues have made a preliminary investigation in comparing SAG

to state of the art implementations of classical planning graphs. In particular, Hoffmann and Nebel

(2001) go to great lengths to build classical planning graphs as quickly as possible, and subsequently

extract a relaxed plan. They attempted to compete against that implementation with a straightfor-
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Figure 77. Run times (s) and Plan lengths IPC5 Blocksworld Instances.

ward implementation of SAG. They ran trials of greedy best-first search using SAG relaxed plan

heuristic against using same heuristic with the same heuristic as the Reachable-SAG strategy. Total

performance was improved, sometimes doubled, for the Rovers domain; however, in most other

benchmark problems, the relative closeness of the goal and the poor estimate of reachability pro-

hibited any improvement. Of course, per-node heuristic extraction time (i.e. ignoring the time it

takes to build the shared graph) was always improved, which motivates an investigation into more

sophisticated graph-building strategies than Reachable-SAG.

IPC5 Non-Deterministic Conformant Planning Domains: Figures 76, 77, 78, 79, 80, and 81
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Figure 78. Run times (s) and Plan lengths IPC5 Coins Instances.
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Figure 79. Run times (s) and Plan lengths IPC5 Comm Instances.
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Figure 81. Run times (s) and Plan lengths IPC5 UTS Instances.

show total time in seconds and plan lengths for six domains used for the Fifth International Planning

Competition non-deterministic planning track. The first domain, called adder circuits, involves

actions describing logic gates that must be sequenced to synthesize an n-bit adder. The second

domain, called blocksworld, is similar to the classical planning domain, but includes initial state

uncertainty where any reachable state is part of the initial belief state. The third domain, called

coins, involves an agent in a unknown location of a building with multiple floors needing to collect

all the coins in the building. The fourth domain, called communication, involves synthesizing a

network access protocol for a noisy network. The fifth domain, called sorting networks, involves

sequencing a set of gates to sort an a priori unknown array of binary numbers. The sixth domain,

called universal traversal sequences, is a network problem where a message must be broadcast from

an unknown node to all others.

In the next section, I will discuss comparisons with other planners. In this section, I con-

centrate on the three versions of POND that were entered in the competition. The three versions

of POND, denoted as P-+, P-SAG, and P-GRP, use an enforced hill-climbing search algorithm,

instead of AO*, and differ with respect to the heuristics used. P-SAG uses the SAG relaxed plan,

as did the previously discussed sets of results. P-GRP uses the global relaxed plan. P-+ uses both
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heuristics, plus an additional cardinality heuristic (measuring belief state size).

The way that P-+ uses the three heuristics to guide enforced hill-climbing requires a brief

introduction to enforced hill-climbing search. Enforced hill-climbing is a local search that attempts

to extend a plan prefix. Each extension is evaluated with a heuristic that measures the distance to the

goal, and if an action decreases the distance it is chosen to extend the plan, and the next extension

is considered. If no extension decreases distance to the goal, a breadth-first search is used to find

an extension (that is possibly multiple steps) that decreases the heuristic estimate of the distance to

the goal. P-+ uses the cardinality heuristic first, and if it cannot find an extension that decreases

distance to the goal, then it re-evaluates the nodes with the global relaxed plan. If the global relaxed

plan does not identify any extension that decreases distance to the goal, then the SAG relaxed plan

is used to re-evaluate the nodes. If no heuristic can find a better extension, then breadth-first search

is used. In this manner, P-+ tries increasingly accurate, but costly, heuristics to re-evaluate the same

plan extensions. The P-SAG and P-GRP use the respective SAG relaxed plan, or global relaxed

plan, to evaluate plan extensions once before breadth-first search.

Looking at the results, there are several observations about the behavior of the different

heuristics. P-SAG and P-GRP can solve the first adder problem, but P-+ cannot. P-SAG is the fastest

technique for solving blocksworld and coins problems, but P-GRP is fastest for communication

problems. P-+ is fastest for sortnet problems (because it only uses cardinality), and P-SAG is the

faster of the techniques actually using a relaxed plan heuristic. In sortnet, it is very costly to compute

a global relaxed plan, making it run out of memory. In universal traversal sequences, it is not clear

whether P-SAG or P-+ is better, but P-GRP is dominated. From these results, it appears that the SAG

relaxed plan is better (consistently faster) than the global relaxed plan heuristic (with the exception

of the communication domain). The reason that the global relaxed plan heuristic performs worse is

that it can take quite a long time to compute it, and it can give inferior search guidance. In the cases
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where the global relaxed plan can be computed in reasonable time and provide enough guidance, it

does better.

POND Probabilistic Conformant Planning Domains: Figures 82, 83, 84, 85, 86, 88, and 87 show

total time in seconds and plan length results for the probabilistic conformant planning problems

from Chapter 6. The figures compare the SAG relaxed plan (denoted SAG), the global relaxed plan

(denoted GRP ), the McLUG(denoted by the number of particles), and CPplan. I use 16 or 64

samples, as indicated in the legend of the figures for each domain, in each CSSAG (used for SAG

and GRP ) orMcLUG because these numbers proved best in the evaluation from Chapter 6. This

version of POND uses AO* search instead of enforced hill climbing.

Figure 82 shows that the CSSAG and the SAG relaxed plan improves, if only slightly, upon

theMcLUG in Logistics p2-2-2. However, the CSSAG with the global relaxed plan takes longer

and finds much worse plans. Figure 83 shows similar results for Logistics p4-2-2, with the SAG

relaxed plan performing considerably better – solving the problem where τ = 0.95. Figure 84

shows results for Logistics p2-2-4 that demonstrate the improvements of using the SAG relaxed

plan, finding plans for τ = 0.95, where theMcLUG could only solve instances where τ ≤ 0.25.

In general, the global relaxed plan performs worse than the SAG relaxed plan both in terms of time

and quality. However, the global relaxed plan scales better than theMcLUG in some cases, despite

poor quality solutions. Overall, using the CSSAG is better than theMcLUG.

Figure 85 shows results for the Grid-0.8 domain that indicate the CSSAG greatly improves

total planning time with both the SAG and global relaxed plans over theMcLUG. However, Figure

86 shows the results are different for Grid-0.5. The CSSAG heuristics perform much worse than

theMcLUG. A potential explanation is the way in which the CSSAG chooses a pool of common

action outcome samples to use in the planning graphs. TheMcLUG is more robust to the sampling

because it re-samples the action outcomes for each belief state, where the CSSAG re-samples the
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Figure 82. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p2-2-2
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Figure 83. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p4-2-2
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Figure 85. Run times (s) and Plan lengths vs. τ for Grid-0.8
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Figure 86. Run times (s) and Plan lengths vs. τ for Grid-0.5

action outcomes from the pre-sampled pool.

Figures 88 and 87 show results for the respective SandCastle-67 and Slippery Gripper do-

mains, where theMcLUG outperforms the CSSAG with either relaxed plan heuristic. Similar to

the Grid-0.5 domain, CSSAG has an impoverished pool of action outcome samples that does not

plague theMcLUG. Since these problems are relatively small, the cost of computing theMcLUG

pales in comparison to the quality of the heuristic it provides.

Overall, the CSSAG is useful when it is too costly to compute aMcLUG for every search

node, but it seems to provide less informed heuristics. Using the global relaxed plan generally takes
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Figure 88. Run times (s) and Plan lengths vs. τ for SandCastle-67.

as much time to find a plan as does the SAG relaxed plan, but finds much worse plans.

7.2. External Comparison. Like the internal evaluation, this section uses several groups

of test problems to evaluate the SAG: POND’s non-deterministic planning problems (from Chapter

3) and the Fifth International Planning competition non-deterministic track domains. The results on

POND’s conformant probabilistic planning problems are similar to the results described in Chapter

6, and compared to CPplan performance only improves.
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Figure 89. Comparison of planners on conformant (left) and conditional (right) domains. Four
domains appear in each plot. The conformant domains include Rovers (Rv1-Rv6), Logistics (L1-
L5), Cube Center (C5-C13), and Ring (R2-R10). The conditional domains are Rovers (Rv1-Rv6),
Logistics (L1-L5), Medical (M2-M14), and BTCS (B10-B80).

POND’s Non-Deterministic Domains: I made an external comparison of POND with several of

the best conformant: KACMBP (Bertoli and Cimatti, 2002) and CFF (Brafman and Hoffmann,

2004), and conditional planners: MBP (Bertoli et al., 2001) and BBSP (Rintanen, 2005). Based

on the results of the internal analysis, I used belief-space relaxed plans extracted from a common

SLUG , using the Reachable-SAG strategy. I denote this mode of POND as “SLUG” in Figure 89.

The tests depicted in Figure 89 were allowed 10 minutes on a P4 at 2.8 GHz with 1GB of memory.

The planners we used for these comparisons require descriptions in differing languages. I ensured

that each encoding had an identical state space; this required us to use only boolean propositions in

our encodings.

I used the conformant Rovers and Logistics domains as well as the Cube Center and Ring

domains (Bertoli and Cimatti, 2002) for the conformant planner comparison in Figure 89. These

domains exhibit two distinct dimensions of difficulty. The primary difficulty in Rovers and Logistics

problems centers around causing the goal. The Cube Center and Ring domains, on the other hand,

revolve around knowing the goal. The distinction is made clearer if we consider the presence of

an oracle. The former pair, given complete information, remains difficult. The latter pair, given
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complete information, becomes trivial, relatively speaking.

I see my heuristic as a middle-ground between KACMBP’s cardinality based heuristic and

CFF’s approximate relaxed plan heuristic. In the Logistics and Rovers domains, CFF dominates,

while KACMBP becomes lost. The situation reverses in Cube Center and Ring: KACMBP easily

discovers solutions, while CFF wanders. Meanwhile, by avoiding approximation and eschewing

cardinality in favor of reachability, POND achieves middle-ground performance on all of the prob-

lems.

I devised conditional versions of Logistics and Rovers domains by introducing sensory ac-

tions. I also drew conditional domains from the literature: BTCS (Weld et al., 1998) and a variant

of Medical (Petrick and Bacchus, 2002). Our variant of Medical splits the multi-valued stain type

sensor into several boolean sensors.

The results (Figure 89) show that POND dominates the other conditional planners. This is

not surprising: MBP’s and BBSP’s heuristic is belief state cardinality. Meanwhile, POND employs a

strong, yet cheap, estimate of reachability (relaxed plans extracted from SLUG , in Reachable-SAG

mode). MBP employs greedy depth-first search, so the quality of plans returned can be drastically

poor. The best example of this in our results is instance Rv4 of Rovers, where the max length branch

of MBP requires 146 actions compared to 10 actions for POND.

International Planning Competition: In the conformant planning track of the Fifth IPC, POND

was entered with three variations, previously described. POND was the only planner to solve in-

stances in the adder domain, and outperformed all other planners in the blocksworld and sortnet

domains. POND was competitive, but slower in the coins, communication, and universal traversal

sequences domains. Overall, POND exhibited good performance across all domains, as a domain-

independent planner should.
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8. Related Work

I have already noted that this work is a generalization of the LUG, which efficiently exploits

the overlap in the planning graphs of members of a belief state. Liu et al. (2002) have explored

issues in speeding up heuristic calculation in HSP. Their approach utilizes the prior planning graph

to improve the performance of building the current planning graph (the rules which express the

dynamic program of HSP’s heuristic correspond to the structure of a planning graph). I set out

to perform work ahead of time in order to save computation later; their approach demonstrates

how to boost performance by skipping re-initialization. Also in that vein, Long and Fox (1999)

demonstrate techniques for representing a planning graph that take full advantage of the properties

of the planning graph. I seek to exploit the overlap between different graphs, not different levels.

Liu et al. (2002) seek to exploit the overlap between different graphs as well, but limit the scope

to graphs adjacent in time. Another way of avoiding the inefficiencies in repeated construction

of planning graphs is to do the reachability computation in the backward direction (Kambhampati

et al., 1997). However, I note that state of the art progression planners typically do reachability

analysis in the forward direction. Work on greedy regression graphs (McDermott, 1999) as well as

the GRT system (Refanidis and Vlahavas, 2001), can be understood this way.

9. Conclusion

A common task in many planners is to compute a set of planning graphs. The naive approach

fails to take account of the redundant sub-structure of planning graphs. I developed the state agnostic

graph (SAG) as an extension of prior work on the labeled uncertainty graph (LUG). The SAG

employs a labeling technique which exploits the redundant sub-structure, if any, of arbitrary sets of

planning graphs.
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I developed a belief-space progression planner called POND to evaluate the technique. I

improve the use of the LUG within POND by applying our SAG technique. I found an optimized

form, SLUG , of the state agnostic version of the LUG, and the CSSAG for the McLUG. These

optimized forms improve worst-case complexity, which carries through to the experimental results.

I compared POND to state of the art planners in conformant and conditional planning. I

demonstrated that, by using SLUG and CSSAG, POND is highly competitive with the state of the

art in belief-space planning. Given the positive results in applying SAG, I see promise in applying

SAG to other planning formalisms.



CHAPTER 8

MULTI-OBJECTIVE CONDITIONAL PROBABILISTIC PLANNING

Previous chapters developed a family of reachability heuristics to guide single objective

search (i.e., the heuristic estimated the cost to complete a partial plan). For example, Chapter 2

followed the traditional formulation of probabilistic planning: minimize plan cost, subject to a

probability of goal satisfaction threshold. This chapter breaks from tradition by recognizing that,

for a number of reasons, probabilistic planning is better formulated as multi-objective search. The

reasons include the ability to provide users with a Pareto set of plans (while handling the single ob-

jective formulation as a special case), the formulation of the first cost (and probability) optimizing

search for conditional probabilistic planning, and the inclusion of other objectives (e.g., the number

of plan branches to model limited contingency planning (Meuleau and Smith, 2003)). In this chap-

ter, I describe a multi-objective search algorithm, called multi-objective LAO∗ (MOLAO∗), that is

used to find conditional and conformant probabilistic plans.

1. Introduction

Probabilistic planning is the inherently multi-objective problem of optimizing both plan cost

and probability of goal satisfaction. However, as both Kushmerick et al. (1994) and Littman (1997)

point out (and as I described in previous chapters), it is possible to bound one of the objectives

and optimize the other with a single objective search. Bounding an objective can be useful to users

that understand a domain well. However, when users do not fully understand a domain – which is

precisely when they need an automated planner – they may not be able to place meaningful bounds.

For example, they may (in error) place a cost bound, below which no plan can satisfy the goal

with non-zero probability, or place a probability bound that can only be met by unreasonably costly

plans. Instead, providing a user with a Pareto set of plans allows them to select among feasible

alternatives.
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Another, more technical, reason to pursue a multi-objective formulation is motivated by

the difficulty of finding a solution to the single objective formulation of conditional probabilistic

planning. By using the multi-objective formulation and applying bounds to the Pareto set of plans,

I can easily select the plan that satisfies the goal with at least τ probability at minimal cost. The

question is whether the additional overhead incurred by multi-objective optimization is justified. To

see why a single formulation of conditional probabilistic planning as belief space search is perhaps

ill-suited for a cost-optimizing search, consider the following.

Recall that I formulate conformant (non-observable) probabilistic planning as a forward-

chaining (single objective) AO* search in the space of belief states that optimizes plan cost. If the

search finds a belief state satisfying the goal with probability no less than τ , then the action sequence

leading to it is a feasible plan. When it comes to conditional planning however, the situation is more

complex. The probability of satisfying the goal is the expectation of satisfying it in each branch.

To ensure plan feasibility (i.e., the probability of goal satisfaction exceeds τ ), I must consider both

(i) the probability of executing each branch and (ii) the probability that each satisfies the goal. In

conformant planning (i) is always 1.0, making (ii) a belief state property. In conditional planning,

feasibility is a property of the entire plan (through aggregate probabilities of branches). Naturally,

during synthesis there may be many sub-plan options within the different branches. Finding a cost-

optimal feasible plan involves deciding between sub-plans (in each branch) that have different costs

and probabilities of goal satisfaction. Unfortunately, as the following example illustrates, it is not

possible to decide which sub-plan is best in one plan branch without considering sub-plan options

in the other branches. That is, I need to somehow combine these non-dominated options across

branches.

Example:The conditional plan π (Figure 90) starts with action a, which has two probabilistic

outcomes and an execution cost of one. After the first outcome (whose probability is 0.2) it is
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Pr(G| 1) = 1.0
E[Cost( 1)] = 50

Pr(G| 2) = 0.5
E[Cost( 2)] = 10

Pr(G| 3) = 0.75
E[Cost( 3)] = 30

Pr(G| 4) = 0.0
E[Cost( 4)] = 0
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Pr(G)
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E[Cost]

Pr(G)
a,[ 1| 3]

a,[ 1| 4]

a,[ 2| 4]

a,[ 2| 3]

bI

b1 b2

Figure 90. Example of Conditional Probabilistic Planning.

possible to execute sub-plan π1 that achieves the goal with 1.0 probability and expected cost 50

or π2 that achieves the goal with 0.5 probability and expected cost 10. After the second outcome

(whose probability is 0.8) it is possible to execute sub-plan π3 that achieves the goal with 0.75

probability and expected cost 30 or π4 that achieves the goal with 0.0 probability and expected cost

0. Using the following choices for sub-plans will result in different plan costs and probability of

goal satisfaction:
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Plans π E[Cost(π)] Pr(G|π)

a, [π1|π3] 1+(.2)50+(.8)30 = 35 (.2)1+(.8).75 = .8

a, [π2|π3] 1+(.2)10+(.8)30 = 27 (.2).5+(.8).75 = .7

a, [π1|π4] 1+(.2)50+(.8)0 = 11 (.2)1+(.8)0 = .2

a, [π2|π4] 1+(.2)10+(.8)0 = 3 (.2).5+(.8)0 = .1

If τ = 0.6, then using sub-plans π2 and π3 exceeds the threshold with a minimal expected

cost of 27. Notice that if I commit to sub-plans in each branch without considering other branches, I

may choose π1 and π3 (because each individually exceeds τ ). Yet, this aggressive (and incomplete)

strategy finds a feasible plan with a higher cost of 35. Or, in a single objective search I may pick

the sub-plan with minimal cost, meaning I would choose π2 and π4 for a total cost of 3 and 0.1

probability of goal satisfaction (not exceeding τ ).

One alternative to solving this problem is to formulate the problem as A* search in plan

space. Each search node will correspond to a partial plan, and the search branches over all possible

extensions of the plans. In the example above, there would be a search node corresponding to each

of the four plans listed in the table above. Note that there is significant redundance among these four

search nodes – each contains action a and may have one of the sub-plans π1 to π4 in common. A

more desirable approach would capture this redundancy more compactly, omitting multiple copies

of identical plan fragments. Formulating the problem as search in belief state space can avoid

this redundancy, but as I noted above, single objective search in belief state space can make poor

commitments in each branch (by considering only probability or only cost).

For belief space search to be effective, it must delay such pre-mature commitments in each

branch. This chapter describes how this is done. Each belief state maintains a Pareto set of non-

dominated sub-plans and, through multi-objective dynamic programming (Henig, 1983), commu-

nicates these options to its ancestors. The dynamic programming combines non-dominated options
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in child branches to define the Pareto set of sub-plans at the parent. Through a bottom-up compu-

tation, the initial belief state maintains its Pareto set of plans. If desired, I can apply a probability

threshold to select the cost-optimal feasible plan. To compute these plans, I search the belief state

space from the initial belief state using a multi-objective generalization of the LAO∗ algorithm,

called MOLAO∗.

At first glance, it would seem as if combining multi-objective optimization and probabilistic

planning (two notoriously computationally difficult tasks) will not scale. I tame the complexity of

the search, by pursuing a number of speed-ups. The most notable of these speed-ups is to use the

CSSAG relaxed plan to guide the search. I also discuss variations on MOLAO∗ that focus synthesis

on likely branches, reduce the complexity of dynamic programming, and reduce the size of Pareto

sets by using ε-domination (Papadimitriou and Yannakakis, 2000).

I also take advantage of the multi-objective formulation to include other objectives for more

expressive planning problems, such as limited contingency planning (LCP). My approach to LCP

trades the complexity of increasing the state space, as Meuleau and Smith (2003), for the complexity

of using another objective: the number of plan branches.

In the next section, I formally redefine the planning model to capture some additional no-

tational conventions. The following section discusses two single objective dynamic programming

formulations of conditional probabilistic planning and shows how they rely on very restrictive as-

sumptions. I then show how a novel multi-objective formulation lifts these assumptions in the suc-

cessive section. The next section describes MOLAO∗ and the speed-ups, followed by an empirical

evaluation, a discussion of limited contingency planning, related work, and conclusions.
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2. Background & Representation

I will explore two variations on the model for conditional probabilistic planning prob-

lems, where the difference is in terms of observability. I phrase the models as “flat” state-based

(PO)MDPs, where the notation in this chapter supersedes the notation in Chapter 2 (however they

are quite similar). The underlying model is still propositional to facilitate planning graph heuristics,

but as far as search is concerned, it operates on a flat representation. In the next two sections, I will

define different solution concepts for these models.

Full Observability: The fully-observable conditional probabilistic planning model (S, A, T, sI , G)

is defined as:

• S, a set of states

• A, a set of actions

• T (s, a, s′), a state transition relation

• sI , an initial state

• G(s), a goal state function

The state transition relation describes a probability distribution: T (s, a, s′) = Pr(s′|a, s).

A subset of actions A(s) ⊆ A∪ ⊥ are applicable in each state s. The ⊥ action signifies no action is

performed in s. The goal state function G : S → [0, 1] maps each state to a probability it satisfies

the goal. In this model, G(s) = 1 or G(s) = 0 for every state (later we will see that 0 ≤ G(s) ≤ 1

in belief state MDPs). Each state s where G(s) = 1 is absorbing (i.e., A(s) = {⊥}). Applying

each action incurs a cost c(a), which I will assume is uniform in this chapter (with the exception

that c(⊥) = 0).
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Partial Observability: The partially-observable conditional probabilistic planning model is given

by (S, A, T, bI , G, O, Ω), defined as before, and as:

• bI , an initial belief state

• O(s, a, o), an observation function

• Ω, a set of observations

A belief state b : S → [0, 1] is a probability distribution that maps each state to a proba-

bility, such that
∑

s∈S b(s) = 1.0. The set A(b) = ∩s∈S:b(s)>0A(s) contains all actions applicable

in a belief state b. The observation function O(s, a, o) = Pr(o|a, s) characterizes a probability

distribution over observations o ∈ Ω received upon transitioning to state s after executing action a.

I define the belief state reached by applying a in b as ba(s′) =
∑

s∈S b(s)T (s, a, s′) and

the belief state bo
a (the belief state after receiving observation o in belief state ba) as bo

a(s
′) =

αO(s′, a, o)ba(s′), where α is a normalization factor. The probability of receiving observation o in

belief state ba (i.e., the probability of reaching belief state bo
a upon executing a in b) is defined as

T (b, a, o, bo
a) = α =

∑
s∈S ba(s)O(s, a, o).

Fully-observable MDPs and Belief state MDPs: I am ultimately interested in solving conditional

probabilistic planning problems with partial observability. However, I find it convenient to describe

my approach in terms of fully-observable MDPs. To clarify the correspondence between the fully-

observable and partially observable model, consider the following transformation, called a belief

state MDP. A belief state MDP (S̃, A, T̃ , s̃bI
, G̃) for the POMDP (S, A, T, bI , G, O, Ω) is given by

the following equivalences, where each state s̃b ∈ S̃ corresponds to a belief state b:

• T̃ (s̃b, a, s̃bo
a
) = T (b, a, o, bo

a)

• G̃(s̃b) =
∑

s∈S b(s)G(s)



217

S̃ is an infinite set1 of (belief) states, A is an unchanged set of actions, s̃bI
is the initial (belief)

state, and G̃ is the probability each (belief) state satisfies the goal. Under this representation, G̃(s̃b)

maps every (belief) state to a probability of satisfying the goal, such that 0 ≤ G̃(s̃b) ≤ 1. In the

following, I remove all distinction between belief state MDPs and fully-observable MDPs, given

the equivalences described above, and consider only fully-observable MDPs.

3. Single Objective Formulation

Most works that address conditional probabilistic planning optimize a single objective:

probability of goal satisfaction or expected cost. In the following, I describe these approaches

and characterize the Bellman optimality equation for each.

Maximizing Probability: Optimizing the probability of goal satisfaction completely ignores plan

cost, except, perhaps, when breaking ties between plans that satisfy the goal with the same probabil-

ity. With no concern for plan cost, it is possible for planners to search for increasingly longer plans

to improve the probability of goal satisfaction. An often used solution to this problem is to assume

a finite horizon of feasible plans, finding the highest probability plan with the given horizon k. The

Bellman optimality equation for maximizing the probability of goal satisfaction for each state s, for

each horizon 0 ≤ t < k is:

J(s, t) = min
a∈A(s)

q(s, t, a)

π(s, t) = argmin
a∈A(s)

q(s, t, a)

q(s, t, a) =
∑

s′∈S

T (s, a, s′)J(s′, t + 1)

and J(s, k) = 1 − G(s). The objective is to compute the minimal J(sI , 0) and the corresponding

plan π.

1While dealing with an infinite set of states is challenging, I rely on search algorithms (described later) to consider a
subset of the states reachable from sI by some sequence of actions.
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In the example, each sub-plan π1 to π4 could have the same expected cost/length by assum-

ing there are persistence actions. If we assume that the actions are unit cost and k = 51, then the

optimal plan would select sub-plans π1 and π3 because they maximize probability of goal satisfac-

tion.

Minimizing Expected Cost: Another solution is for planners to optimize expected cost to reach

the goal. If the goal is not reachable with probability 1, then it is customary to assume a cost c�G

of not reaching the goal.2 The Bellman optimality equation for maximizing expected cost for each

state s is:

J(s) = min
a∈A(s)

q(s, a)

π(s) = argmin
a∈A(s)

q(s, a)

q(s, a) = c(a) +
∑

s′∈S

T (s, a, s′)J(s′)

q(s,⊥) = c �G(1−G(s))

The objective is to compute the minimal J(sI) and the corresponding plan π.

Assuming a cost for not reaching the goal indirectly influences the optimal probability of

satisfying the goal, given the costs of potential plans. To see this, consider how the value for c�G

affects the choice between π1 and π2 in the example. If c�G = 79, then π1 has a total cost of (1-

1)79+50 = 50 and π2 has a total cost of (1-0.5)79+10 = 49.5, making π2 a better choice. If c�G = 81,

then π1 has a total cost of (1-1)79+50 = 50 and π2 has a total cost of (1-1)81+10 = 50.5, making

π1 a better choice. However, if c�G = 80, then π1 has a total cost of 50 and π2 has a total cost of

50, making the choice ambiguous. With a small variation in c�G the best plan (and the probability

of goal satisfaction) can change. To model a problem with a goal satisfaction probability threshold

requires knowledge of the costs of alternative plans. However, if we knew the costs of alternative

plans, then what is the point of using an automated planner?! Nevertheless, optimizing expected

2This is analogous to reward models that assign negative reward to actions and positive reward to goal states.
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reward does have its merits when the probability of goal satisfaction is not of primary concern to

the domain modeler. Finding an optimal plan is much more critical in this formulation because

(without explicit bounds on the probability of goal satisfaction) a suboptimal plan may have a low

probability of goal satisfaction despite having a relatively low cost.

4. Multi-objective Formulation

Instead of carefully engineering problems by imposing a horizon bound or a cost for failing

to satisfy the goal, it is possible to directly solve the conditional probabilistic planning problem with

a more natural multi-objective formulation. The formulation minimizes plan cost and maximizes

probability of goal satisfaction (omitting a horizon bound or goal cost). Committing to a multi-

objective formulation opens the possibility for other objectives (e.g., number of branches, makespan,

resource consumption, etc.), so I present a general multi-objective formulation and point out specific

details for computing the expected cost and probability of goal satisfaction objectives. In a later

section, I discuss limited contingency planning by introducing the number of branches as a third

objective.

I introduce an extension to the value function, such that J(s) becomes a Pareto set. Each

point of the Pareto set q(s, a) ∈ J(s) represents a vector of n objectives, such that q(s, a) =

(q0(s, a), q1(s, a), ..., qn−1(s, a)), and J(s) = {q(s, a)|¬∃q′(s,a′)∈J(s)q
′(s, a′) ≺ q(s, a)}

where J(s) contains only non-dominated points. A point q′(s, a′) dominates another q(s, a) if it is

as good in all objectives, and strictly better in at least one:

q′(s, a′) ≺ q(s, a)⇔ ∀iq
′
i(s, a

′) ≤ qi(s, a)∧

∃iq
′
i(s, a

′) < qi(s, a)

Each point is mapped to a best action by π (i.e., π(s, q(s, a)) = a), making it possible for two

sub-plans to start with the same action but have different values.
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Each q(s, a) ∈ J(s) is computed in terms of its successors’ values. Because each successor

(s′, s′′, ...) is associated with a Pareto set (J(s′), J(s′′), ...), it is possible to define a different q(s, a)

from each element (q(s′, a′), q(s′′, a′′), ...) of the cross product of the Pareto sets (J(s′)× J(s′′)×

...). We saw this in the example, where it was possible to have |J(s̃bI
)| = 4 because |J(s̃b1)| =

|J(s̃b2)| = 2. The cross product of J(s̃b1) and J(s̃b2) contains four elements, each used to define

an element of J(s̃bI
). The actual number of elements in a Pareto set may be less because some

elements will be dominated.

I define expected cost and probability of not satisfying the goal objectives for probabilistic

conditional planning, q(s, a) = (q0(s, a), q1(s, a)), such that:

q0(s, a) = c(a) +
∑

s′∈S

T (s, a, s′)q′0(s′, a′)

q0(s,⊥) = 0

q1(s, a) =
∑

s′∈S

T (s, a, s′)q′1(s′, a′)

q1(s,⊥) = 1−G(s)

(8.1)

Each q′(s′, a′) in the above equations is from an element of the cross product of successor Pareto

sets.

From the example, J(s̃bI
) = {(35, 0.2), (27, 0.3), (11, 0.8), (3, 0.9)}. The first element

of J(s̃bI
) is defined by q(s̃b1 , (50, 0.0)) ∈ J(s̃b1) and q(s̃b2 , (30, 0.25)) ∈ J(s̃b2) as q0(s̃bI

, a) =

1 + (0.2)50 + (0.8)30 = 35 and q1(s̃bI
, a) = (0.2)0.0 + (0.8)0.25 = 0.2.

To solve the single objective probabilistic conditional planning problem, I am interested

in finding a plan starting with the action a = π(sI , (q0(sI , a), q1(sI , a))) such that the plan has

minimal cost q(sI , a) = minq(sI ,a)∈J(sI) q0(sI , a) subject to the goal satisfaction threshold τ ≤

1− q1(sI , a). The remaining actions in the plan are those actions used to define each q(s, a) for the

actions in the plan. For example, if the plan starts by executing a and it results in a single state s′,

then the action to execute in s′ is a′ where q′(s′, a′) was used to compute q(sI , a).
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Computing the Multi-objective Bellman Equation: It can take O(|A(s)||J(s′)||S|) time to com-

pute the multi-objective Bellman equation once for a state s because there are |A(s)| actions are

applicable in s, each results in at most |S| successor states s′, and there are |J(s′)| Pareto optimal

sub-plans for each state s′. In a later section, I identify ways to reduce this complexity by limiting

the size of the Pareto sets J(s).

5. Multi-objective LAO∗

Hansen and Zilberstein (2001) introduce Looping AO* (LAO∗) search as a technique for

solving stochastic shortest path and MDP problems. Unlike the traditional value iteration and policy

iteration techniques for solving MDP problems, LAO∗ generalizes AO* search (Nilsson, 1980) to

handle loops in the search graph. The idea is to expand a limited region of the state space, over which

value iteration is used to identify a partial plan. In each iteration, LAO∗ expands unexpanded fringe

states of the partial plan, and performs value iteration. If the fringe state values are initialized with

an admissible heuristic, LAO∗ terminates when it identifies an optimal solution. LAO∗ termination

relies on two criterion: the difference between upper and lower bounds on the value function is

below a threshold, and the solution contains no unexpanded states. In my setting, solutions are

plans and not policies, meaning every plan path eventually ends in a terminal state. By labeling

terminal states as “solved” (as done in AO*), we can propagate solved labels to identify if a solution

contains unexpanded states.

The main generalization needed for a multi-objective LAO∗ (MOLAO∗) is to reinterpret

the J-values as J-sets and compute them as such. This also means that there may be several

non-dominated partial solutions that MOLAO∗ can expand each iteration. Figures 91 and 92 de-

scribe the MOLAO∗ search algorithm using J-sets to find a Pareto set of conditional plans. The

MOLAO∗ function in Figure 91 contains the outer loop that calls ExpandPlan to compute a set
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MOLAO∗()

1: i = 0
2: repeat
3: Z = ExpandPlan(sI , i

++)
4: AddAncestors(Z)
5: VI(Z)
6: until (ConvergenceTest(sI) == T)

ExpandPlan(s, i)

1: if expanded(s) < i then
2: Z = Z ∪s
3: if expanded(s) == 0 then
4: expanded(s) = i
5: ExpandState(s)
6: else
7: expanded(s) = i
8: for q(s, a) ∈ J(s)s.t. ¬solved(q(s, a)) do
9: for s′ ∈ S : T (s, a, s′) > 0 do

10: Z’ = ExpandPlan(s′, i)
11: Z = Z ∪ Z’
12: end for
13: end for
14: end if
15: end if
16: return Z

Figure 91. MOLAO∗ Search Algorithm.

of states Z that are reachable by the set of non-dominated partial plans. To Z, AddAncestors

adds all states that can reach a state s ∈ Z with a non-dominated plan. The set of partial plans

is revised by calling VI(Z) to update J(s) for each s ∈ Z. When ConvergenceTest indicates

that J(sI) has converged (i.e, all non-dominated solutions are labeled solved, and upper and lower

bounds on their values is below a threshold), it is possible to stop.

The ExpandPlan function recursively traces each non-dominated partial plan (lines 7-

13) to find leaf states to expand (lines 4-5). The ExpandState function applies each action

a ∈ A(s) to generate successor states. Each successor state s′ has its Pareto set J(s′) initialized

and expanded(s′) is set equal to zero. Initializing J(s′) involves adding a point q(s′,⊥) where
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Backup(s)

1: J ′(s) = ∅
2: for a ∈ A(s) do
3: W = ×

s′:T (s,a,s′)>0
J(s′)

4: for w ∈W do
5: Compute q(s, a) with each q′(s′, a′) ∈ w
6: solved(q(s, a)) =

∧
q′(s′,a′)∈w

solved(q′(s′, a′))

7: UpdateDominance(q(s, a), J ′(s))
8: end for
9: end for

10: error = ComputeError(J ′(s), J(s))
11: J(s) = J ′(s)
12: return error

Figure 92. MOLAO∗ state value Backup.

solved(q(s′,⊥)) is true, indicating that it is possible to end the plan at s′. I can also add heuristic

points q(s, ∗) to J(s) that indicate heuristic estimates of non-dominated sub-plans. Each heuristic

point is marked unsolved. Through dynamic programming, each J(s) will contain some heuristic

points that indicate the value of partial plans rooted at s. Later, I discuss which and how many

heuristic points I use.

The VI function performs value iteration on a set of states (i.e., iteratively calling Backup,

Figure 92, for each state until the maximum change in some J(s) falls below a threshold). The

Backup function computes J(s) by applying every action in the loop (lines 2-9). For each action,

W is the cross product of Pareto sets of successor states (line 3). For each element w ∈ W , a point

q(s, a) is computed (as in Equation 8.1) with the points q′(s′, a′) ∈ w (line 5). Each new point is

marked solved if each of the successor points is solved (line 6). The UpdateDominance function

(line 7) maintains the Pareto set by checking if each new point is dominated, or dominates points

already in the Pareto set.

I deliberatively leave ConvergenceTest and ComputeError undefined because I will

pursue a variation on MOLAO∗ that I use to compute feasible conditional probabilistic plans
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quickly. Many of the speed-ups involved will affect completeness and admissibility.

5.1. MOLAO∗ Speedups. In the following, I describe four improvements to MOLAO∗

that I use to find feasible, but suboptimal, solutions quickly. The first is a modified version of

MOLAO∗, named mMOLAO∗. The second describes heuristics. The third involves Pareto set

approximations. The fourth simulates the current partial plan to focus synthesis, similar to RTDP

(Barto et al., 1995).

mMOLAO∗: The variation of MOLAO∗ that I pursue is very similar to the “efficient” version

of LAO∗ presented by Hansen and Zilberstein (2001) (c.f. Table 7). The idea is to combine value

iteration with solution expansion by calling the Backup function for each state after recursively

calling ExpandPlan for each of child state reached by an action in J(s). Figure 93 describes my

version of the MOLAO∗ algorithm that not only combines value iteration with solution expansion,

but also stops when a feasible (labeled solved) solution satisfies the goal with probability no less

than τ . I omit the convergence test used in LAO*, so that I can stop at the first feasible plan.

MOLAO∗ Heuristics: Adding heuristic points increases the size of J-sets, which I previously

noted as a major source of complexity in computing state backups. There are two techniques I use

to mitigate the increase in J-set size. First, I use a single heuristic point that estimates the cost to

satisfy the goal with probability 1. Second, I limit how solved and not solved points are combined

in the state backups. Specifically, I only combine solved points with solved points, and not solved

points with not solved points. Formally, I replace W in line 3 of Backup with W ′:

W ′ = W\{w|q(s, a), q′(s′, a′) ∈ w, w ∈W ,

solved(q(s, a)) �= solved(q′(s′, a′))}
If I let Jsol(s) denote all solved points and Jh(s) denote all not solved (heuristic) points

for a state s, then restricting the combination of solved and not solved points will bring the com-

plexity of computing the multi-objective Bellman equation from O(|A(s)|(|Jsol(s)| + |Jh(s)|)|S|)
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mMOLAO∗()

1: i = 0
2: repeat
3: mExpandPlan(sI , i

++)
4: until ∃q(sI ,a)∈J(sI)feasible(q(sI , a))

mExpandPlan(s, i)

1: if expanded(s) < i then
2: if expanded(s) == 0 then
3: expanded(s) = i
4: ExpandState(s)
5: else
6: expanded(s) = i
7: for q(s, a) ∈ J(s) s.t. ¬solved(q(s, a))

do
8: for s′ ∈ S : T (s, a, s′) > 0 do
9: mExpandPlan(s′, i)

10: end for
11: end for
12: end if
13: Backup(s)
14: end if

Figure 93. Modified MOLAO∗ Search Algorithm.

to O(|A(s)|(|Jsol(s)||S| + |Jh(s)||S|)). Notice that because I use a single heuristic point per Pareto

set and combine points in this fashion, there will only be a single partial plan expanded in line 7 of

mExpandPlan (i.e., ∀s|Jh(s)| = 1).

The specific heuristic that I use is extracted from the CSSAG. It estimates the cost to satisfy

the goal with at least a given probability (which I set to 1.0) by computing a relaxed plan. The

CSSAG relaxed plan estimates the conformant probabilistic plan cost, which can be seen as an

additional relaxation that ignores observations. I also compare with a non-heuristic strategy where

I set the cost to reach the goal with 1.0 probability to zero.

Approximating Pareto Sets: As with most multi-objective optimization problems, a Pareto set can

contain an exponential number of non-dominated solutions. There exists a range of techniques for

computing these Pareto sets and I explore one idea to reduce their size. It relies on the notion of
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ε-domination (Papadimitriou and Yannakakis, 2000) to prune solutions. By inflating each objective

of other sub-plans by a factor of 1 + ε, it is possible to approximate the Pareto to within a relative

error of ε in each objective by using a different definition of domination:

q′(s, a′) ≺ε q(s, a)⇔ ∀iq
′
i(s, a

′) ≤ (1 + ε)qi(s, a)

The resulting Pareto set is polynomial sized in the number of sub-plans and 1
ε (c.f. Theorem 1,

Papadimitriou and Yannakakis, 2000), but may still take exponential time to compute. However,

because the number of non-dominated sub-plans tends to increase during bottom-up dynamic pro-

gramming (i.e., a parent’s Pareto set is exponential in its childrens’ Pareto sets) pruning more sub-

plans can have a large effect.

Simulated Expansions: Instead of expanding every leaf state of the current partial plan, it is pos-

sible to expand a single leaf state that is reached by simulating the partial plan. This variation of

MOLAO∗ called MOLAO∗sim samples a single successor state s′ from the transition relation in

line 8 of mExpandPlan instead of iterating over every successor. The intuition for this variation

is to concentrate plan synthesis on the most likely plan branches.

6. Empirical Results

I implemented MOLAO∗ within POND to take advantage of its reachability heuristics

computed from the CSSAG. In the following, each reference to MOLAO∗ is with respect to the

modified version (described above). Given my description of approaches for solving conditional

probabilistic planning, it seems that no previous work is directly relevant for empirical comparison.

As a coarse comparison, I compare with the Zander planner (Majercik and Littman, 2003) on the

single objective conditional probabilistic planning problem in the following manner. Zander finds

the maximum probability k-horizon plan with a stochastic satisfiability solver. By increasing k in-

crementally, it is possible to find the optimal probability of goal satisfaction τ for different expected
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plan lengths. Unlike my approach, the conditional plans generated by Zander require each plan

branch is length k. Thus, for the same τ , POND may find lower expected length plans by virtue

of removing this structural assumption. In fact, POND generates conditional plans as digraphs,

where paths may have heterogenous lengths.

The domains that I use for comparison with Zander include Coffee Robot, GO-5, and Ship-

Reject from Majercik and Littman (2003). Noticing that these domains are small (in the number

of states and actions, and the plan lengths), I developed two domains: First-Responders and Grid.

Both GO-5 and First-Responders plans use loops in the belief state space. The following table lists

the number of Actions |A|, Propositions |P |, and observations |O| in each problem.

Problem |A| |P | |O|

Coffee Robot 6 8 4

GO-5 5 6 5

Ship-Reject 4 5 2

FR1 82 29 22

FR2 116 45 28

FR3 200 54 42

Grid 5 20 2

The First-Responders domain is inspired by the planning required of dispatchers in disaster

scenarios. There may be multiple victims (of unknown health) that need to be treated on the scene

(with a lower probability of improvement) or taken to the hospital by an ambulance (where their

health will improve with high probability). There may also be fires at several locations that fire

trucks can extinguish. Both fire and ambulances can report what they observe at a location. The

goal is to bring each victim to health and extinguish all fires. We use three instances: FR1 has two

fires, two victims, and four locations; FR2 has two fires, four victims, and four locations; and FR3

has two fires, two victims, and nine locations.

The Grid domain is an adaptation of the grid problem first described by Hyafil and Bacchus



228

0

50

100

150

200

250

300

0.75 0.76 0.77 0.78 0.79 0.8

T
im

e 
(s

)

p(G)

Coffee Robot

(Zander)
(0.001)
(0.01)
(0.1)

0.1

1

10

100

1000

0.5 0.6 0.7 0.8 0.9 1

T
im

e 
(s

)

p(G)

GO-5

(Zander)
(0.001)
(0.01)
(0.1)

0.001

0.01

0.1

1

10

100

1000

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

T
im

e 
(s

)

p(G)

Ship-Reject

(Zander)
(0.001)
(0.01)
(0.1)

Figure 94. Run times (s) vs. τ for Coffee Robot, GO-5, and Ship-Reject.
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Figure 95. Expected Plan Cost vs. τ for Coffee Robot, GO-5, and Ship-Reject.

(2004) to include an action with observations. Like the original domain, a robot is moving about a

10x10 grid. The robot starts in the center of the grid and must reach a given corner. Its actions move

it in the intended direction with 0.8 probability and in an adjacent direction with 0.1 probability. A

sensory action allows the robot to perfectly sense the presence of a wall.

Zander Domains: The plots in Figures 94 and 95 show results for the Coffee-Robot, GO-5, and

Ship-Reject domains. I compare Zander with MOLAO∗ without a heuristic or randomized expan-

sions by varying the value of ε for approximate Pareto sets. Using theMcLUG heuristic in these

problems showed little improvement. The plot legends indicate the results for POND by the value

of ε. The total planning time in seconds is shown in Figure 94 and the expected plan length is

shown in Figure 95 for several values of τ . Despite POND not guaranteeing optimal plans, it finds

plans that are less than or equal to the expected length of plans found by Zander (per the discussion

above). In terms of planning time, in most cases POND performs better than Zander as ε increases
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Table 8. Results using MOLAO∗sim, MOLAO∗h, and MOLAO∗h−sim.
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Figure 96. E[C] vs. τ over time on FR1, using MOLAO∗h.

(decreasing the size of J-sets). Zander performs better in the Ship-Reject; the POND and Zander

plan costs are close, indicating that Zander is better when are balanced trees. POND is able to

capitalize on the plans that are unbalanced trees in other domains.

New Domains: Results for the First-Responders and Grid domain are shown in Table 8. All the

results are the average of 5 runs. I compare three versions of the modified MOLAO∗ where the

superscript “sim” corresponds to using simulated expansions, and the superscript “h” corresponds

to using the relaxed plan heuristic (instead of zero) for heuristic points. In each version I use ε = 0.1

and 10 samples within each CSSAG. I do not show results for the version of modified MOLAO∗,

used in the Zander domains, because it was not able to solve any of the instances for any value of τ .

Due to complications with encoding the domains in Zander’s input format, I do not report Zander

results. I expect Zander to perform comparable to MOLAO∗ without heuristics. The table reports

total time in seconds “T(s)”, plan cost “E[C]”, number of unique belief states in the plan where an

action is executed “PS”, number of belief states with more than one parent in the plan “DS”, and

the number of terminal belief states “TS”.

I see that the probabilistic conformant planning graph heuristic does indeed improve scala-

bility, as I hoped. MOLAO∗sim is only able to solve the smallest FR1 to a 0.75 probability of goal

satisfaction. However, using the heuristic in MOLAO∗h and MOLAO∗h−sim allows POND to
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solve every instance to a high level of probability. While the expected cost is slightly better with-

out using the heuristic, I see the benefit of using an inadmissible, but informative heuristic. In the

instances requiring the heuristic, the number of plan belief states (PS) is quite large, testifying to

the scale of the plans. The number of plan belief states with more than one parent (DS) shows

the benefit of using MOLAO∗ to find more compact digraph plans. The number of terminal belief

states (TS) attests to the number of branches in the plans (modulo the number of collapsed branches,

captured by DS).

While I presented results for solving the single objective conditional probabilistic planning

problem, my main interest is in finding Pareto sets of plans. Figure 96 shows the Pareto set for

bI over time (after each iteration in ExpandPlan) in the FR1 domain while using MOLAO∗h.

Each line represents a solution satisfying the goal with the indicated probability and cost. The set

of feasible plans steadily increase the probability of goal satisfaction over time, suggesting how

MOLAO∗ can be used in an anytime fashion to find a Pareto set of plans. I cut the search off

once a solution is found that exceeds 0.95 probability of goal satisfaction. The search can, however,

continue to find solutions with higher probability of goal satisfaction, or lower cost solutions for

other probabilities of goal satisfaction.

7. Limited Contingency Planning

Limited contingency planning involves bounding the number of plan branches k to make

plans more human-understandable and compact (Meuleau and Smith, 2003). Meuleau and Smith

formulate k-contingency problems as a POMDP where they embed the number of contingencies

as a state feature and make k copies of the state space. Executing a sensory action transitions the

state to a logically equivalent state where there are fewer available contingencies. A sensory action

cannot be executed in states where it introduces more than the available number of contingencies.



232

The grid problem, which has 100 reachable states (220 total states), could be encoded as a POMDP

with 100(k + 1) states. However, this problem proved difficult for a POMDP solver when k = 1

(Hyafil and Bacchus, 2004), making it doubtful that it could scale with k.

In MOLAO∗, I can trade this state space explosion for a third objective q2(s, a). The

objective is computed as q2(s, a) =
∑

s′∈S:T (s,a,s′)>0 q′2(s′, a′) and q2(s,⊥) = 1. I can identify

plans with k or less branches when q2(sI , a) ≤ k. Furthermore, I can prune a point q(s, a) at any

time if q2(s, a) > k because its sub-plan already exceeds the number of contingencies. I initialize

all heuristic points as q2(s, ∗) = 1 because all plans have at least one contingency. While the

number of contingencies can be seen as an objective, I assume that all numbers of contingencies

less than k are equally preferred and use the objective as a hard constraint for plan feasibility rather

than optimization.

τ = 0.25 τ = 0.5 τ = 0.75
k T(s) E[C] TS T(s) E[C] TS T(s) E[C] TS

20 10.4 10.7 1.0 11.9 13.7 1.0 14.1 18.0 1.0
21 16.2 10.9 1.5 21.8 15.0 1.2 25.8 20.5 1.0
22 20.9 11.1 1.5 26.5 13.6 2.0 46.5 19.4 1.7
23 19.1 11.1 3.0 35.3 14.7 3.7 73.0 20.6 3.0
26 43.8 16.3 2.8 77.8 23.4 10.6 110.5 24.9 9.8
29 56.4 17.0 3.8 47.7 23.2 5.4 245.5 29.1 43.0
212 52.7 18.7 4.4 69.2 27.1 9.8 146.9 30.8 23.6

Table 9. Limited contingency MOLAO∗h on Grid.

Table 9 presents results from the Grid domain, where I vary the maximum number of

branches k allowable in a feasible plan. MOLAO∗h scales reasonably well with k. Using k as

a pruning condition greatly improves time to find a plan compared to the unbounded case.
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8. Related Work

My formulation of conditional probabilistic planning is based on existing work techniques

for vector-valued MDPs (Henig, 1983). I define cost, probability of goal satisfaction, and number

of branches as values optimized in the MDP. Where previous work concentrates on value iteration,

we extend the more appropriate LAO∗ algorithm to deal with multiple objectives.

As mentioned earlier, there are several techniques for solving conditional probabilistic plan-

ning. Earliest work (Draper et al., 1994; Onder, 1999) used partial order planning techniques to

find feasible plans (ignoring plan cost). In parallel, work on single objective MDPs and POMDPs

(surveyed by Boutilier et al. (1999)) were developed to find cost optimal plans (using penalties for

not satisfying the goal). More recently, Majercik and Littman (2003) formulated the problem as

stochastic satisfiability to find the optimal probability of goal satisfaction for finite horizon plans.

None of the previous works use reachability heuristics to guide plan synthesis and hence have con-

centrated on relatively small problems.

9. Conclusion

I have shown that embracing the multi-objective nature of probabilistic planning allows one

to overcome restrictive assumptions made in single objective formulations. It also provides a richer

notion of conditional plans: providing a Pareto set of plans (and sub-plans) to the plan executor

introduces additional “choice” contingencies to the set of nature selected “chance” contingencies.

These benefits incur a greater combinatorial overhead, but are offset by ε-domination techniques for

Pareto set approximation. Further, because my formulation uses cost as an optimization criterion,

I can make use of effective planning graph reachability heuristics that estimate plan cost. I have

also shown that additional objectives, such as the number of plan branches in limited contingency
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planning, are easily integrated within my framework.



CHAPTER 9

CONCLUSION

Over the previous chapters, I provided a range of planning graph reachability heuristics for

solving non-deterministic and probabilistic, conformant and conditional, planning problems. I also

developed a new search algorithm for solving these problems. In this chapter I provide a summary,

as well as a perspective on how this can be further extended.

1. Summary

With the intent of scaling planning under uncertainty, this work has made several improve-

ments to heuristic search, both in terms of heuristics and search algorithms. The contributions

include:

• Distance Metrics For Belief States: By defining several metrics for belief state distance

and providing several planning graph heuristics to estimate the metrics, this work provided a

framework for heuristic search in belief state space.

• Symbolic Representation of Sets of Planning Graphs: This work developed the labeled

planning graph (LUG), which captures sets of planning graphs symbolically by using propo-

sitional formulas to label planning graph vertices.

• Cost-Sensitive Belief State Heuristics: The CLUG propagates cost information on the LUG

to provide heuristics that reason with actions with non-uniform costs.

• Monte Carlo Planning Graphs: Within the McLUG, I developed a new relaxation for

probabilistic planning that uses Monte Carlo simulation within planning graphs to deal with

the uncertain outcomes of actions.
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• State Agnostic Planning Graphs: By developing the SAG framework for planning graphs,

I showed how to capture arbitrary sets of planning graphs, which had a large impact in im-

proving heuristic computation in planning under uncertainty.

• Heuristic Search for Conditional Probabilistic Plans: With a desire to apply planning

graph heuristics to conditional probabilistic planning I developed the MOLAO∗ search al-

gorithm, which finds Pareto sets of conditional plans.

With all of these contributions the scalability of planning under uncertainty has improved

considerably. The problems solved with these techniques are comparable to the size of classical

planning benchmarks. As classical planning techniques continue to improve, there will be further

opportunities to adapt them to consider uncertainty. In the next section, I identify several ways in

which the methods described by this work can both be applied and extended.

2. Future Directions

There are a number of ways that this work can extend to new and interesting scenarios, such

as integrated planning and execution, incomplete domain models, and finding sets of diverse plans.

It may be also possible to improve the heuristics by incorporating observations and extend them to

decision theoretic planning.

2.1. Planning and Execution. In Chapter 1, I mentioned that there are two ways to deal

with uncertainty, either be reactive or proactive. In reality there are a number of hybrid strategies

that incorporate aspects of both. Systems that integrate the two are likely to generate plan branches

for the most critical contingencies, where it may be impossible or very costly to re-plan. In other

situations, which are highly unlikely or easy for re-planning, the system would wait to re-plan when
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necessary. The distinction between these cases is not always obvious, unless the system actually

tries to plan for them. Yet, if the system succeeds in planning the contingencies, then it does not

need to worry about re-planning. Instead of using search to evaluate whether a contingency should

be planned, one could use planning graph reachability heuristics to estimate the planning effort and

impact of not pre-planning.

Another consideration for such systems is the amount of time it will take to plan certain

branches. A system that plans and executes may have finite time before it must start the next action.

Knowing how long it will take to plan can be useful in selecting which branches to pre-plan. Again,

planning graph heuristics may be useful to estimate the size of the search tree within a branch, and

hence estimate the time to plan.

2.2. Incomplete Domain Models. In addition to the type of incompleteness discussed in

this work, which is called incomplete state information, there may also be incomplete information

about action descriptions (Chang and Amir, 2006). In such scenarios the belief state not only cap-

tures uncertainty about the state of the world, but also uncertainty about preconditions and effects.

It should be possible to incorporate this type of incompleteness within the LUG. With this

information, heuristics can guide search to trade-off exploration and exploitation. That is, explo-

ration involves reducing the size of the belief state by trying actions to learn their descriptions, and

exploitation is choosing actions that will lead to goal achievement.

2.3. Diverse Plans. Often times users desire not just a single plan, but several qualitatively

different plans. Chapter 8 described a multi-objective search algorithm that finds Pareto sets of

plans. Each plan in the Pareto set is different because it optimizes the planning objectives differently.

Comparing two (partial) Pareto sets of the same size, the Pareto set that has relatively clustered

points can be thought of as less diverse. It should be possible to guide the search for a Pareto
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set of plans toward plans are not clustered. A number of interesting objectives could be useful

for describing the plans, such as specific partial orderings of actions, state sequences, makespan,

resource utilization, and human impact.

2.4. Incorporating Observations in Reachability Heuristics. I was able to use confor-

mant planning heuristics to scale conditional plan synthesis by ignoring observations. It may be

possible to incorporate observations to improve the heuristics.

With observations, a conditional plan can disambiguate some of the possibilities charac-

terized by the uncertainty and divide the cases among several plan branches. A conditional plan

may contain many of the same actions as in a conformant plan, but divide the actions among plan

branches. Therefore, it seems reasonable to use conformant relaxed plans, but post-process them

to include observations. The resulting conditional relaxed plan would have an expected cost that is

used as the heuristic.

2.5. Decision Theoretic Heuristics. Chapter 8 described several approaches for condi-

tional probabilistic plan synthesis. One was based on a single-objective formulation that optimizes

expected plan cost and assigning a cost penalty to not satisfying the goal. This formulation proves

less desirable when the probability of goal satisfaction is bounded. However, in cases where the

probability of goal satisfaction is not bounded, such a formulation can be used for decision theoretic

planning. It should be possible to extend the probabilistic planning heuristics to decision theoretic

planning by combining the McLUG techniques with heuristics developed for partial satisfaction

planning (an extension of classical planning that associates costs with actions and utilities to goals)

(van den Briel et al., 2004). Such probabilistic partial satisfaction heuristics would estimate net-

benefit (the expected utility minus expected cost) of plan suffixes by choosing not only which goal

states to achieve, but also the probability of achieving them.



REFERENCES

S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-line non-

linear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188,

February 2002.

A. G. Barto, S.J. Bradtke, and S.P. Singh. Learning to act using real-time dynamic programming.

Artificial Intelligence, 72:81–138, January 1995.

Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. Uldbs: Databases with

uncertainty and lineage. In Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo

Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, Pro-

ceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, Septem-

ber 12-15, 2006, pages 953–964. ACM, 2006.

Piergiorgio Bertoli and Alessandro Cimatti. Improving heuristics for planning as search in belief

space. In Ghallab et al. [2002], pages 143–152.

Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Planning in nondeter-

ministic domains under partial observability via symbolic model checking. In Bernhard Nebel,

editor, Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence,

IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001, pages 473–478. Morgan Kaufmann,

2001.

Susanne Biundo and Maria Fox, editors. Recent Advances in AI Planning, 5th European Conference

on Planning, ECP’99, Durham, UK, September 8-10, 1999, Proceedings, volume 1809 of Lecture

Notes in Computer Science. Springer, 2000.

Susanne Biundo, Karen L. Myers, and Kanna Rajan, editors. Proceedings of the Fifteenth Inter-



240

national Conference on Automated Planning and Scheduling (ICAPS 2005), June 5-10 2005,

Monterey, California, USA. AAAI, 2005.

Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis. In Chris S.

Mellish, editor, Proceedings of the Fourteenth International Joint Conference on Artificial Intel-
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