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Abstract

Most recent strides in scaling up planning have centered around two competing themes–disjunctive
planners, exemplified by Graphplan, and heuristic state search planners, exemplified by HSP and
HSP-R. In this paper, we describe a planner calledAltAlt , which successfully combines the ad-
vantages of the two competing paradigms to develop a planner that is significantly more powerful
than either of the approaches.AltAlt uses Graphplan’s planning graph in a novel manner to derive
very effective search heuristics which are then used to drive a heuristic state search planner.Al-
tAlt is implemented by splicing together implementations of STAN, a state-of-the-art Graphplan
implementation, and HSP-r, a heuristic search planner. We present empirical results in a variety of
domains that show the significant scale-up power of our combined approach. We will also present
a variety of possible optimizations for our approach, and discuss the rich connections between our
work and the literature on state-space search heuristics.

1 Introduction

There has been a rapid progress in plan synthesis technology in the past few years, and many approaches
have been developed for solving large scale deterministic planning problems. Two of the more promi-
nent approaches are “disjunctive” planners, as exemplified by Graphplan [2] and its many successors
including IPP [10] and STAN [13]; and heuristic state search planners exemplified by UNPOP [14],
HSP [4] and HSP-R [3].

Graphplan-style systems set up bounded length encodings of planning problems, solve those encod-
ings using some combinatorial workhorse (such as CSP, SAT or ILP solvers), and extend the encoding
length iteratively if no solution is found at the current encoding level. State search planners depend
on a a variety of heuristics to effectively control a search in the space of world states. These two
approaches have generally been seen to be orthogonal and competing. Although both of them have
produced quite powerful planning systems, they both do suffer from some important disadvantages.
Graphplan-style planners typically need to exhaustively search for plans at every encoding length until
a solution is found. This leads to prohibitively large space and time requirements in certain problems.
In contrast, state search planners can, in the best case, exhibit a solution with linear space and time.
Unfortunately, the existing heuristics for state search planners are unable to handle problems with com-
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plex subgoal interactions, making them fail on some domains that Graphplan-style systems are able to
handle comfortably.

In this paper, we describe a new hybrid planning system calledAltAlt 1 that cleverly leverages the
complementary strengths of both the Graphplan-style planners and the heuristic state search planners.
Specifically,AltAlt uses a Graphplan-style planner to generate a polynomial time planning data struc-
ture. Using the theory we developed in recent work [9], we extract several highly effective state search
heuristics from the planning graph. These heuristics are then used to control a heuristic search planner.
AltAlt is implemented on top of two highly optimized existing planners–STAN [13] that is a very ef-
fective Graphplan style planner is used to generate planning graphs, and HSP-r [3], a heuristic search
planner provides an optimized state search engine. Empirical results show thatAltAlt can be orders of
magnitude faster thanbothSTAN and HSP-r, validating the utility of hybrid approach.

In the rest of this paper, we discuss the implementation and evaluation of theAltAlt planning sys-
tem. Section 2 starts by providing the high level architecture of theAltAlt system. Section 3 briefly
reviews the theory behind extraction of state search heuristics [9]. Section 4 discusses a variety of
optimizations used inAltAlt implementation to drive down the cost of heuristic computation, as well
as the state search. Section 5 presents extensive empirical evaluation ofAltAlt system that demon-
strate its domination over both STAN and HSP-r planners. This section also presents experiments to
study the cost and effectiveness tradeoffs involved in the computation ofAltAlt ’s planning graph-based
heuristics. Section 6 discusses some related work and Section 7 summarizes our contributions.

2 Architecture of AltAlt

As mentioned earlier,AltAlt system is based on a combination of Graphplan and heuristic state space
search technology. The high-level architecture ofAltAlt is shown in Figure 1. The problem specifica-
tion and the action template description are first fed to a Graphplan-style planner, which constructs a
planning graph for that problem in polynomial time. We use the publicly available STAN implemen-
tation [13] for this purpose as it provides a highly memory efficient implementation of planning graph
(see below). This planning graph structure is then fed to a heuristic extractor module that is capable of
extracting a variety of effective and admissible heuristics, based on the theory that we have developed
in our recent work [9]. This heuristic, along with the problem specification, and the set of ground
actions in the final action level of the planning graph structure (see below for explanation) are fed to a
regression state-search planner. The regression planner code is adapted from HSP-R [3].

To explain the operation ofAltAlt at a more detailed level, we need to provide some further back-
ground on its various components. We shall start with the regression search module. This module starts
with the goal state and regresses it over the set of relevant action instances from the domain. An action
instancea is considered relevant for a stateS if the effects ofa give at least one element ofS and do
not deleteany elementof S. The result of regressingS overa is then(S n eff(a))[ prec(a)–which is
essentially the set of goals that still need to be achieved before the application ofa, such that everything
in S would have been achieved oncea is applied. For each relevant actiona, a separate search branch is
generated, with result of regressingS over that action as the new state in that branch. Search terminates
with success at a node if every literal in the state corresponding to that node is present in the initial state
of the problem.

Figure 2 pictorially depicts the initial and final state specification of a simple grid problem, and

1A Little of this and aLittle of That
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Figure 1: Architecture ofAltAlt
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(b) Regression Search

Figure 2: A simple grid problem and the first level of regression search on it.

presents the first level of the regression search for that problem. In this problem, a robot, in the state
(0,0) in the beginning required to pick a key that is in cell (0,1) and place it in the cell (2,2) and get back
to its original cell (0,0). The actions in this domain include picking and dropping a key, and moving
from one cell to an adjacent cell. If we use the predicateKey(x; y) to represent the location of the key,
andAt(x; y) to represent the location of the robot, the initial state of the problem isAt(0; 0)^Key(0; 1)
while the goal state isKey(2; 2) ^ At(0; 0). Figure 2(b) shows the search branches generated by the
regression search. Notice that there is no branch corresponding to a pickup action instance since none
of them are relevant for achieving any of the goals in the initial state.

The crux of controlling a regression search involves providing a heuristic function that can estimate
the relative goodness of the states on the fringe of the current search tree and guide the search in most
promising directions. Such heuristics can be quite tricky to develop. Consider, for example, the fringe
states in the search tree of Figure 2(b). Given the robot moves, it is clear that the left most state can
never be reached from the initial state–as it requires the robot to be in two positions at the same time.
Unfortunately, as we shall show below, naive heuristic functions may actually consider this to be a
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more promising state than the other two. In fact, as we discuss in [9], HSP-R, a state-of the art heuristic
search regression planner is unable to solve this relatively simple problem!

The issue turns out to be that each one of the three subgoals in the left most state are easier to
achieve in isolation than the subgoals of the two other states. Thus any heuristic that considers the
cost of achieving subgoals in isolation winds up ranking the left most state as the more promising
one. However, once we consider the interactions among the subgoals, the ranking can change quite
drastically (as it does in this problem). Taking interactions into account in a principled way turns out
to present several technical challenges. Fortunately, our recent work [9] provides an interesting way
of leveraging the Graphplan technology to generate very effective heuristics. In the next section, we
provide a brief review of this work, and explain how it is used inAltAlt .

3 Extraction of Heuristics from Graphplan’s Planning Graph

3.1 Structure of the Planning Graph

Graphplan algorithm [2] involves two interleaved stages– expansion of the “planning graph” data struc-
ture, and a backward search on the planning graph to see if any subgraph of it corresponds to a valid
solution for the given problem. The expansion of the planning graph is a polynomial time operation
while the backward search process is an exponential time operation. SinceAltAlt finds solutions using
regression search, our only interest in Graphplan is in its planning graph datastructure.

Figure 3 shows part of the planning graph constructed for the 3x3 grid problem shown in Figure 2.
As illustrated here, a planning graph is an ordered graph consisting of two alternating structures, called
“proposition lists” and “action lists”. We start with the initial state as the zeroth level proposition list.
Given ak level planning graph, the extension of the structure to levelk + 1 involves introducing all
actions whose preconditions are present in thekth level proposition list. In addition to the actions given
in the domain model, we consider a set of dummy “noop” actions, one for each condition in thekth

level proposition list (the condition becomes both the single precondition and effect of the noop). Once
the actions are introduced, the proposition list at levelk+1 is constructed as just the union of the effects
of all the introduced actions. Planning-graph maintains the dependency links between the actions at
levelk+1 and their preconditions in levelk proposition list and their effects in levelk+1 proposition
list.

The critical asset of the planning graph, for our purposes, is the efficient marking and propagation
of mutex constraints during the expansion phase. The propagation starts at level 1, with the actions that
are statically interfering with each other (i.e., their preconditions and effects are inconsistent) labeled
mutex. Mutexes are then propagated from this level forward by using two simple propagation rules:
Two propositions at levelk are marked mutex if all actions at levelk that support one proposition are
pair-wise mutex with all actions that support the second proposition. Two actions at levelk + 1 are
mutex if they are statically interfering or if one of the propositions (preconditions) supporting the first
action is mutually exclusive with one of the propositions supporting the second action. Figure 3 shows
a part of the planning graph for the robot problem specified in Figure 2. The curved lines with x-marks
denote the mutex relations.
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Figure 3: Planning Graph for the 3x3 grid problem

3.2 Heuristics based on the planning graph

To guide a regression search in the state space, a heuristic function needs to evaluate the cost of some
setS of subgoals, comprising a regression state, from the initial state–in terms of number of actions
needed to achieve them from the initial state. We now discuss how such a heuristic can be computed
from the planning graph.

Normally, the planning graph datastructure supports “parallel” plans–i.e., plans where at each step
more than one action may be executed simultaneously. Since we want the planning graph to provide
heuristics to the regression search module, which generates sequential solutions, we first make a mod-
ification to the algorithm so that it generates “serial planning graph.” Aserial planning graphis a
planning graph in which, in addition to the normal mutex relations, every pair of non-noop actions at
the same level are marked mutex. These additional action mutexes propagate to give additional propo-
sitional mutexes. Finally, a planning graph is said tolevel off when there is no change in the action,
proposition and mutex lists between two consecutive levels.

We will assume for now that given a problem, the Graphplan module ofAltAlt is used to generate
and expand a serial planning graph until it levels off. (As we shall see later, we can relax the requirement
of growing the planning graph to level-off, if we can tolerate a graded loss of informedness of heuristics
derived from the planning graph.) We will start with the notion of level of a set of propositions:

Definition 1 (Level) Given a setS of propositions, denotelev(S) as the index of the first level in the
leveled serialplanning graph in which all propositions inS appear and are non-mutexed with one
another. IfS is singleton, thenlev(S) is just the index of the first level where the singleton element
occurs. If no such level exists, thenlev(S) =1 if the planning graph has been grown to level-off, and
lev(S) = l+ 1, wherel is the index of the last level that the planning graph has been grown to (i.e not
until level-off). Similarly, denotelev(p) as the index of the first level that a propositionp comes into
the planning graph.

The intuition behind this definition is that the level of a literalp in the planning graph provides a
lower bound on the number of actions required to achievep from the initial state. Using this insight, a
simple way of estimating the cost of a set of subgoals will be to sum their levels.

Heuristic 1 (Sum heuristic) h(S) :=
P

p2S lev(fpg)
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The sum heuristic is very similar to the greedy regression heuristic used in UNPOP [14] and the
heuristic used in the HSP planner [4]. Its main limitation is that the heuristic makes the implicit as-
sumption that all the subgoals (elements ofS) are independent. For example, thehsum heuristic winds
up ranking the left most state of the search tree in Figure 2(b) as the most promising among the three
fringe states. Sum heuristic is neither admissible nor particularly informed. Specifically, since subgoals
can be interacting negatively (in that achieving one winds up undoing progress made on achieving the
others), the true cost of achieving a pair of subgoals may be more than the sum of the costs of achieving
them individually. This makes the heuristic inadmissible. Similarly, since subgoals can be positively
interacting in that achieving one winds up making indirect progress towards the achievement of the
other, the true cost of achieving a set of subgoals may be lower than the sum of their individual costs.
To develop more effective heuristics, we need to consider both positive and negative interactions among
subgoals in a limited fashion.

In [9], we discuss a variety of ways of capturing the negative and positive interactions into the
heuristic estimate using the planning graph structure, and discuss their relative tradeoffs. One of the
best heuristics according to that analysis was a heuristic calledhAdjSum2M . We adopted this heuristic
as the default heuristic inAltAlt . In the following, we briefly describe this heuristic.

The basic idea ofhAdjSum2M is to adjust the sum heuristic to take positive and negative interactions
into account. This heuristic approximates the cost of achieving the subgoals in some setS as the sum
of the cost of achievingS, while considering positive interactions and ignoring negative interactions,
plus the penalty for ignoring the negative interactions. The first component can be computed as the
length of a “relaxed plan” for supportingS, which is extracted byignoring all the mutex relations.
To approximate the penalty induced by the negative interactions alone, we proceed with the following
argument. Consider any pair of subgoalsp; q 2 S. If there are no negative interactions betweenp and
q, thenlev(fp; qg), the level at whichp andq are present together is exactly the maximum oflev(p)

andlev(q). The degree of negative interaction betweenp andq can thus be quantified by:

�(p; q) = lev(fp; qg) �max (lev(p); lev(q))

We now want to use the�-values to characterize the amount of negative interactions present among the
subgoals of a given setS. If all subgoals inS are pair-wise independent, clearly, all� values will be
zero, otherwise each pair of subgoals inS will have a different value. The largest such� value among
any pair of subgoals inS is used as a measure of the negative interactions present inS in the heuristic
hAdjSum2M . In summary, we have

Heuristic 2 (Adjusted heuristic 2M) hAdjSum2M (S) := length(Relaxedplan(S))+maxp;q2S �(p; q)

The analysis in [9] shows that this is one of the more robust heuristics in terms of both solution
time and quality. This is thus the default heuristic used inAltAlt .

4 Implementational issues of extracting heuristics from planning graph

While we described the main components and design issues underlyingAltAlt system, there are several
optimization issues that still deserve attention. Two of them are discussed in this section.
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4.1 Controlling the Cost of Computing the Heuristic

The first issue is the cost of computing the heuristic using planning graphs. Although, as we mentioned
earlier, planning graph construction is a polynomial time operation, it does lead to relatively high time
and space consumption in many problems. The main issues are the sheer size of the planning graph,
and the cost of marking and managing mutex relations. Fortunately, however, there are several possible
ways of keeping the heuristic computation cost in check. To begin with, one main reason for basing
AltAlt on STAN rather than other Graphplan implementations is that STAN provides a particularly
compact and efficient planning graph construction. In particular, as described in [13], STAN uses a
very compact bi-level representation planning graph which exploits the redundancy in the planning
graph. Secondly, STAN uses efficient datastructures to mark and manage the “mutex” relations.

While the use of STAN system reduces planning graph construction costs significantly, heuristic
computation cost can still be a large fraction of the total run time. For example, in one of the benchmark
problems,bw-large-d , the heuristic computation takes 3.5 m.sec. while the search takes 3 m.sec.
Worse yet, in some domains such as the Sched World from the AIPS 2000 competition suite [1], the
graph construction phase winds up overwhelming the memory of the system.

Thankfully, however, by trading off heuristic quality for reduced cost, we can aggressively limit the
heuristic computation costs. Specifically, in the previous section, we discussed the extraction of heuris-
tics from a completed leveled planning graph. SinceAltAlt does not do any search on the planning
graph directly, there is no strict need to use the full leveled graph to preserve completeness. Informally,
any subgraphof the full leveled planning graph can be gainfully utilized as the basis for the heuristic
computation. There are at least three ways of computing a smaller subset of the leveled planning graph:

1. Grow the planning graph to some length that is less than the length where it levels off. For
example, we may grow the graph until the top level goals of the problem are present without any
mutex relations in the final proposition level of the planning graph.

2. Spend only limited time on marking mutexes on the planning graph.

3. Introduce only a subset of the “applicable” actions at each level of the planning graph. For
example, we can exploit the techniques such as RIFO [15] and identify a subset of the action
instances in the domain that are likely to be “relevant” for solving the problem.

Any combination of the above three techniques can be used to limit the space and time resources
expended on computing the planning graph. What is more, it can be shown that the admissibility and
completeness characteristics of the heuristic will remain unaffected as long as we do not use the third
approach (recall that the definition of level in section 3.2 avoids assigning1 as the cost of a set if the
underlying planning graph is not grown to level off). Only the informedness of the heuristic is affected.
We shall see in the next section that in many problems the loss of informedness is more than offset by
the improved time and space costs of the heuristic.

4.2 Limiting the Branching Factor of Regression Search Using Planning Graphs

Although the preceding discussion focused on the use of the planning graphs for computing the heuris-
tic in AltAlt , from Figure 1, we see that planning graph is also used to pick the action instances con-
sidered in expanding the regression search tree. The advantages of using the action instances from the
planning graph are that in many domains there are a prohibitively large number of ground action in-
stances, only a very small subset of which are actually applicable in any state reachable from the initial
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state. Using all such actions in regression search can significantly increase the cost of node expansion
(and may, on occasion, lead the search down the wrong paths). In contrast, the action instances present
in the planning graph are more likely to be applicable in states reachable from the initial state.

The simplest way of picking action instances from the planning graph is to consider all action
instances that are present in the final level of the planning graph. If the graph has been grown to level
off, it can be proved that limiting regression search to this subset of actions is guaranteed to preserve
completeness. A more aggressive selective expansion approach, that we callsel-exp , involves the
following. Supposel is the first level at which the literals of the top-level goal are all present in the
planning graph without being pairwise mutex.Set-exp approach involves expanding the planning
graph up to levell, as opposed to level-off. Suppose that we are trying to expand a stateS in the
regression search, then only the set of actionsAl�1 is considered to regress the stateS. The intuition
behindsel-exp strategy is that the actions inAl�1 comprise the actions that are likely to achieve
the subgoals ofS in the most direct way from the initial state. As we shall see in the next section, the
sel-exp strategy, while theoretically incomplete, can have a significant effect on the performance of
AltAlt in some domains such as the Schedule World[1].

5 Evaluating the Performance ofAltAlt

AltAlt system as described in the previous sections has been fully implemented. Its performance on
many benchmark problems, as well as the test suite used in the recent AIPS-2000 planning competition,
is remarkably robust. Our initial experiments suggest thatAltAlt system is competitive with some of
the best systems that participated in the AIPS competition [1]. The evaluation studies presented in this
paper are however aimed at establishing two main facts: First,AltAlt convincingly outperforms both
Graphplan (STAN) and HSP-r systems that it is based on in a variety of domains. Second,AltAlt is
able to reduce the cost of its heuristic computation with very little negative impact on the quality of the
solutions produced.

Our experiments were all done on a Linux system running on a 500 megahertz pentium III CPU with
256 megabytes of RAM. We comparedAltAlt with the latest versions of both STAN and HSP-r system
running on the same hardware. HSP2.0 is a recent variant of the HSP-r system that opportunistically
shifts between regression search (HSP-r) and progression search (HSP). We also compareAltAlt to
HSP2.0. The problems used in our experiments come from a variety of domains, and were derived
primarily from the AIPS-2000 competition suites [1], but also contain some other benchmark problems
known in the literature. Unless noted otherwise, in all the experiments,AltAlt was run with the heuristic
hAdjSum2M , and with a planning graph grown only until the first level where top level goals are present
without being mutex (see discussion in Section 4.1). Only the action instances present in the final level
of the planning graph are used to expand nodes in the regression search (see Section 4.2).

Table 1 shows some statistics gathered from head-on comparisons betweenAltAlt , STAN, HSP-r
and HSP2.0 across a variety of domains. For each system, the table gives the time taken to produce
the solution, and the length (measured in the number of actions) of the solution produced. Dashes
show problem instances that could not be solved by the corresponding system under a time limit of 10
minutes. We note thatAltAlt demonstrates robust performance across all the domains. Itdecisively
outperformsSTAN and HSP-r in most of the problems, easily solving both those problems that are
hard for STAN as well as those that are hard for HSP-r. We also note that the quality of he solutions
produced byAltAlt is as good or better than those produced by the other two systems in most problems.
The table also shows a comparison with HSP2.0. While HSP2.0 predictably outperforms HSP-r, it is
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STAN3.0 HSP-r HSP2.0 AltAlt(AdjSum2M)
Problem Time Length Time Length Time Length Time Length

gripper-15 - - 0.12 45 0.19 57 0.31 45
gripper-20 - - 0.35 57 0.43 73 0.84 57
gripper-25 - - 0.60 67 0.79 83 1.57 67
gripper-30 - - 1.07 77 1.25 93 2.83 77

tower-3 0.04 7 0.01 7 0.01 7 0.04 7
tower-5 0.21 31 5.5 31 0.04 31 0.16 31
tower-7 2.63 127 - - 0.61 127 1.37 127
tower-9 108.85 511 - - 14.86 511 48.45 511

8-puzzle1 37.40 31 34.47 45 0.64 59 0.69 31
8-puzzle2 35.92 30 6.07 52 0.55 48 0.74 30
8-puzzle3 0.63 20 164.27 24 0.34 34 0.19 20
8-puzzle4 4.88 25 1.35 26 0.46 42 0.41 24
aips-grid1 1.07 14 - - 2.19 14 0.88 14
aips-grid2 - - - - 14.06 26 95.98 34
mystery2 0.20 9 84.00 8 10.12 9 3.53 9
mystery3 0.13 4 4.74 4 2.49 4 0.26 4
mystery6 4.99 16 - - 148.94 16 62.25 16
mystery9 0.12 8 4.8 8 3.57 8 0.49 8
mprime2 0.567 13 23.32 9 20.90 9 5.79 11
mprime3 1.02 6 8.31 4 5.17 4 1.67 4
mprime4 0.83 11 33.12 8 0.92 10 1.29 11
mprime7 0.418 6 - - - - 1.32 6
mprime16 5.56 13 - - 46.58 6 4.74 9
mprime27 1.90 9 - - 45.71 7 2.67 9

Table 1: Comparing the performance ofAltAlt with STAN, a state-of-the-art Graphplan system, and
HSP-R, a state-of-the-art heuristic state search planner.

still dominated byAltAlt , especially in terms of solution quality.
The plots in Figure 4 and Figure 5 compare the time performance of STAN,AltAlt and HSP2.0

in specific domains. Plot a summarizes the problems from blocks world and the plot b refers to the
problems from logistics domain. The plot in Figure 5 refers to the problems from the scheduling
world. These are three of the standard benchmark domains that have been used in the recent planning
competition [1]. The y-axis in all these plots is in logarithmic scale. We see that in all domains,AltAlt
clearly dominates STAN. It dominates HSP2.0 in logistics and is very competitive with it in blocks
world. Scheduling world was a very hard domain for most planners in the recent planning competition
[1]. We see thatAltAlt scales much better than both STAN and HSP2.0. (Recall, once again, that
HSP2.0 uses a combination of progression and regression search. Comparison with HSP-r system
would be even more decisively in favor ofAltAlt .) Although not shown in the plots, the length of the
solutions found byAltAlt in all these domains was as good or better than the other two systems.

Evaluating Cost/quality Tradeoffs in the heuristic computation: We mentioned earlier that in
all these experiments we used a partial (non-leveled) planning graph that was grown only until all the
goals are present and are non-mutex in the final level. As the discussion in Section 4.1 showed, deriving
heuristics from such partial planning graphs trades cost of the heuristic computation with quality. To
get an an idea of how much of a hit on solution quality we are taking, we ran experiments comparing
the same heuristichAdjSum2M derived once from full leveled planning graph, and once from the partial
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planning graph stopped at the level where goals first become non-mutexed.
The plots in Figure 6 show the results of experiments with a large set of problems from the schedul-

ing domain. Plot a shows the total time taken for heuristic computation and search together, and plot
b shows the length of the solution found for both strategies. We can see very clearly that if we insist
on full leveled planning graph, we are unable to solve problems beyond 81, while the heuristic derived
from the partial planning graph scales all the way to 111 problems. The time taken by the partial plan-
ning graph strategy is significantly lower, as expected. Plot b shows that even on the problems that are
solved by both strategies, we do not incur any appreciable loss of solution quality because of the use
of partial planning graph. This validates our contention in Section 4.1 that the heuristic computation
cost can be kept within limits. It should be mentioned here that the planning graph computation cost
depends a lot upon domains. In domains such as Towers of hanoi, where there are very few irrelevant
actions, the full and partial planning graph strategies are almost indistinguishable in terms of cost. In
contrast, domains such as grid world and scheduling world incur significantly higher planning graph
construction costs, and thus benefit more readily by the use of partial planning graphs.

6 Related work

As we had already discussed in the paper, by its very nature,AltAlt has obvious rich connections to
the existing work on Graphplan [2, 13, 10] and heuristic state search planners [4, 3, 14, 16]. The
idea of using the planning graph to select action instances to focus the regression search is similar to
techniques such as RIFO [15], that use relevance analysis to focus progression search. As discussed
in [9], there are several rich connections between our strategies for deriving the heuristics from the
planning graphs, and recent advances in heuristic search, such as pattern databases [5], and capturing
subproblem interactions [11, 12]. Finally, given that the informedness of our heuristics is closely
related to the subgoal interaction analysis, pre-processing and consistency enforcement techniques,
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Figure 5: Results in the Scheduling World
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Figure 6: Results on trading heuristic quality for cost by extracting heuristics from partial planning
graphs.
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such as those described in [7, 17, 6] can be used to further improve the informedness of the heuristics.

7 Concluding Remarks

We described the implementation and evaluation of a novel plan synthesis system, calledAltAlt . Al-
tAlt is designed to exploit the complementary strengths of two of the currently popular competing
approaches for plan generation–Graphplan, and heuristic state search. It uses the planning graph to
derive effective heuristics that are then used to guide heuristic state search. The heuristics derived from
the planning graph do a better job of taking the subgoal interactions into account and as such are sig-
nificantly more effective than existing heuristics.AltAlt was implemented on top of two state of the
art planning systems–STAN3.0 a Graphlan-style planner, and HSP-r, a heuristic search planner. Our
extensive empirical evaluation shows thatAltAlt convincingly outperforms both STAN3.0 and HSP-r.
In fact,AltAlt ’s performance is very competitive with the planning systems that took part in the recent
AI Planning Competition [1]. Our empirical results also show that there exist attractive approaches for
trading cost for quality in the computation of planning graph based heuristic.
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