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Planning is hot...

New people. Conferences. Workshops. Competitions.
Inter-planetary explorations. So, Why the increased interest?

< Significant scale-up in the
last 4-5 years
— Before we could
synthesize about 5-6
action plans in minutes
— Now, we can synthesize
100-action plans in

< Significant strides in our
understanding
— Rich connections between
planning and CSP(SAT)
OR (ILP)
» Vanishing separation
between planning &

minutes Scheduling
» Further scale-up with — New ideas for heuristic
domain-specific control of planners
control — Wide array of approaches

for customizing planners
with domain-specific
knowledge
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Overview

The Planning problem

<

— Our focus
—  Modeling, Proving cotrectness
Refinement Planning: Formal Framework

Conjunctive refinement planners

<

<

Disjunctive refinement planners

<

— Refinement of disjunctive plans
— Solution extraction from disiunctive plans
» Direct, Compiled (SAT, CSP, ILP,BDD)
< Heuristics/Optimizations
< Customizing Planners
— User-assisted Customization
- Awutomated customization

< Support for non-classical worlds
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Planning : The big picture

< Synthesizing goal-directed behavior
< Planning involves

— Action selection; Handling causal dependencies

— Action sequencing and handling resource
allocation

» typically called SCHEDULING
— Depending on the problem, plans can be
» action sequences

» or “policies” (action trees, state-action
mappings etc.)
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The Many Complexities of Planning
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Broad Aims & Biases of the Tutorial

AIM: We will concentrate on planning in deterministic

guasi-static and fully observable worlds
Will start with “classical” domains; but Neo-Classical Planning

discuss handling durative actions and
numeric constraints, as well as replanning

BIAS: To the extent possible, we shall shun brand-names

and concentrate on unifying themes
Better understanding of existing planners
Normalized comparisons between planners
Evaluation of trade-offs provided by various design choices
Better understanding of inter-connections
Hybrid planners using multiple refinements
Explication of the connections between planning,

CSP, SAT and ILP
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Why Care about “neo-classical” Planning?

< Most of the recent advances occurred in neo-classical
planning
< Many stabilized environments satisfy neo-classical
assumptions
— Itis possible to handle minor assumption violations
through replanning and execution monitoring
" This form of solution has the advantage of relying on widelv-used (and
often very efficient) classical planning fechnoloay” Bovtilier. 2000
< Techniques developed for neo-classical planning often
shed light on effective ways of handling non-classical
planning worlds

— Currently, most of the efficient techniques for handling
non-classical scenarios are still based on ideas/advances
in classical planning
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Applications (Current & Potential)

Scheduling problems with action choices as well as
resource handling requirements

— Problems in supply chain management

— HSTS (Hubble Space Telescope scheduler)

— Workflow management
Autonomous agents

— RAX/PS (The NASA Deep Space planning agent)
Software module integrators

— VICAR (JPL image enhancing system); CELWARE (CELCorp)

— Test case generation (Pittsburgh)

Interactive decision support

— Monitoring subgoal interactions

» Optimum AlV system
Plan-based interfaces

<

¢

¢

<

<
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The (too) many brands of classical planners

Planning as Theorem Proving

— » Planning as Search
(Green’s planner)

ace of States
ro e S|on regres MEA)
S, PRODIGY, T , HSP-R,

Planning as Model Checking

rch in the space of
(Inter? ?acr;u%nl\iy¥0) ask networks (reduction
P of non-primitive tasks)

Ucger.1 (NOAH, NONLIN,
O-Plan, SIPE)

Planning as CSP/ILP/SAT/BDD
(Graphplan, IPP, STAN, SATPLAN, BLackBOX,GP-CSP,BDDPlan)
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A Unifying View

What are Plans? ‘ Candlidate set semantics

1.0 Refinement Planning

X y
® Refinements: FSS BSS PS
iy
)
. . B ) How are sets of plans
Refi Conju?g:ve ; 12 Disjunctive representfed comppac,:‘/y7
ennement Flanning Refinement Planning /" they refined?
How are they searched?
Q;\\
N
Q Graph-based CSP SAT ILP BDD
<1
QVQ\ Directed Partial HTN Schemas Case-based
Consistency enforcement TL Formulas Abstraction-based
— Reachability Cutting Planes Failure-based
S Relax Subgoal Domain Analysis*
& Relevance interacti Yy
z interactions Hand-coded o )
O ) g
Heuristics/Optimizations Domain-customization p?ﬁ
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Modeling Planning Problems:
Actions, States, Correctness
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Modeling Classical Planning

<>States are modeled in terms of (binary)
state-variables

-- Complete initial state, partial goal state At(AM),At(B,M)
<-Actions are modeled as state ~In(A), ~In(B)
transformation functions

-- Syntax: ADL language (Pednault)
-- Apply(A,S) = (S \ eff(A)) + eff(A)
(If Precond(A) hold in S)

At(A,E), At(B,E),At(R,E)

At(R,M), -At(R,E)
In(o,) INCY 1 inx) O At(x, M)

Load(o,)| |Unload(o,) Fy0 & -At(x, E)

At(R,E)
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At(o,,1,), At(R,1,) In(o,)




Some notes on action representation

STRIPS Assumption: Actions must specify all the
state variables whose values they change...

< No disjunction allowed in effects
— Conditional effects are NOT disjunctive

» (antecedent refers to the previous state &
consequent refers to the next state)

< Quantification is over finite universes
— essentially syntactic sugaring

All actions can be compiled down to a canonical

representation where preconditions and effects are
propositional

— Exponential blow-up may occur (e.g removing
conditional effects)

» We will assume the canonical representation
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Actions with Resources and Duration

Load(P:package, R:rocket, L:location)

Resources: ?h : robot hand

Preconditions: Position(?h,L) [?s, ?€]
Free(?h) ?s
Charge(?h) > 5 ?s

Effects: holding(?h, P) [?s, ?t1]
depositing(?h,P,R) [?t2, ?€] 25 ?a
Busy(?h) [?s, €] P 2 R
Free(?h) ?e
Charge - = .03*(?e - ?s) ?e Pos(?h.L)

Constraints:  ?t1 < ?t2 Hold(.?h,PH
2e - 2sin [L.0, 2.0] dep(?h,P)

Free(?h) Busy(?h) Free(?h)
Capacity(robot) = 3
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Planning vs. Scheduling

A Continuum >

4_ _________
Planning Scheduling
— Initial state & a set of Goals, — Set of jobs (may have of tasks
— Alibrary of actions in some (partial) order)
» Preconditions/effects — Temporal constraints on jobs
e Discrete/Continuous » EST, LFT, Duration
» Resource requirements — Contention constraints
Synthesize a sequence of » Each task can be done on a
actions capable of satisfying subset of machines
goals Find start times for jobs that are
optimal (wrt make-spans,
resource consumption etc)
I =initial state G = goal state (prec) (effects)
i u ., m . (6]
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Checking correctness of a plan:
The State-based approaches

< Progression Proof: Progress the initial state over the action
sequence, and see if the goals are present in the result
= 2
N * \
In(A) @'v* R er

L In(A)

K / K /
\ / \ /

< Regression Proof: Regress the goal state over the action
sequence, and see if the initial state subsumes the result
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Checking correctness of a plan: Contd..
The Causal Approach

< Causal Proof: Check if each of the goals and preconditions of the
action are
» “established” : There is a preceding step that gives it
» “unclobbered”: No possibly intervening step deletes it

e Or for every preceding step that deletes it, there exists another step
that precedes the conditions and follows the deleter adds it back

Causal proof is
— “local” (checks correctness one condition at a time)
— “state-less” (does not need to know the states preceding actions)
» Easy to extend to durative actions
“incremental” with respect to action insertion

» Great for replanning ~At(A,E) ~At(B In(A)
In(A) In(B
ALA E) Hoad(A Load(B \ In(E)
» At(R At(R E)
At(R,E)
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The Refinement Planning
Framework:

1. Syntax & Semantics of partial plans
2. Refinement strategies & their properties
3. The generic Refinement planning template
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Refinement Planning:Overview
All action
P

Pl

CO—C >

v
All Solutions
l Partial plans I

Narrowing sets of action sequences
to progress towards solutions

Remove non-solutions J

Subbarao Kambhampati
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Partial Plans: Syntax

Partial plan = (Steps, Orderings, Aux. Constraints )

1: Load(A) > 2:Fly() 4:Unload(A) @
\1@)@2

At(R,E)
3: Load(B)

Auxiliary Constraints:
Interval preservation constraint (IPC)  <S;, p,S,>
p must be preserved betweens ;ands,

Point truth Constraint (PTC) p@s
p must hold in the state before s

y
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Partial Plans: Semantics

Candidate is any action sequence that
-- contains actions corresponding to all the steps,
-- satisfies all the ordering and auxiliary constraints

P: 1: Load(A) > 2:Fly() 4:Unload(A)
In(A)@2
At(R,E)
3: Load(B)
Candidates ( 0 «P») Non-Candidates ( [ «P»)
[Load(A),Load(B),FIy(),UnIoad(A)] Load(A),FIy(),Load(B),UnIoad(B)]
Minimal candidate. Corresponds Corresponds to unsafe
to safe linearization [ 01324 o] linearization [ 01234 o]
[Load(A),Load(B),Fly(), [Load(A),Fly() ,Load(B),
Unload(B) ,UnIoad(A)] FIy(),UnIoad(A)]
MA2: Recent Advances in Al Dlsnminn. 4 ri_it:_s1r Subbarao Kambhampati

Linkin g Syntax and Semantics

Partial Plan

e

Linearization 1 Linearization 2  Linearization 3 Linearization n

e

Safe linearization 1 ~ Safe linearization 2 Safe Linearization m
Minimal Cand. 1 Minimal Cand. 2 Minimal Cand. m
+ + +
derived derived derived
candidates candidates candidates

Reduce candidate set size

Refinements < Increase length of minimal candidates
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Refinement (pruning) Strategies

“Canned” inference procedures actions & their inter-relationa
-- Prune by propagating the consequences of domain theory
and meta-theory of planning onto the partial plan

<A refinement strategy R: P =P’ («P’ » a subset of « P»)
—-R is complete if « P” » contains all the solutions of « P »
—R is monotonic if « P” » has longer minimal candidates than « P »_
-R is progressive if « P’ »is a proper subset of « P »
-R is systematic if components of P’ don’t share candidates

(0o —f]
Ofr) ——= (O} —f]
LR

§Aplanset P is asetof partial plans {P,,P, ... P}
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Existing Refinement Strategies

X
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& ©
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3, bb AtAM)
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CO @_‘>| 2:Fly( ‘ |_>|3:Unload(A)|
IS s
&
&
EH 1 Fly() Hz: Unload(A) ‘@
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The Refinement Planning
Template P

Refineplan( P : Plan set)

Use proofs of

correctness

0*. If «P » is empty, Fail.
1. If a minimal candidate of P is a solution, return it. End
2. Select a refinement strategy R

Apply Rto P to geta new plan set P’
3. Call Refine(P’)

-- Termination ensured if R is complete and monotonic
-- Solution check done using one of the proofs of correctness

Issues:
1. Representation of plan sets (Conjunctive vs. Disjunctive)
2. Search vs. solution extraction
3. Affinity between refinement and proof used for solution check
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A flexible Split&Prune search for
refinement planning

Q) Cumg)
\5 " P, !
olr Stk
Refineplan( P : Plan) VR B gVR« i
OO O O

0*. If «P » is empty, Fail.
1. If a minimal candidate of P
is a solution, terminate.
2. Select a refinement strategy R.
Appply R to P to getanew planset P’
3. Split P’ into k plansets
4. Non-deterministically select one of the plansets P’;
Call Refine( P))
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Two classes of refinement planners

Conjunctive planners

4+ Search in the space of
conjunctive partial plans

— Disjunction split into the
search space

» search guidance is
nontrivial

— Solution extraction is
trivial
< Examples:
— STRIPS & Prodigy
— SNLP & UCPOP
— NONLIN & SIPE
— UNPOP & HSP

MAz: Recent Advances in Al Planninz. & riici_s1r

Disjunctive planners

< Search in the space of
disjunctive partial plans
— Disjunction handled explicitly
— Solution extraction is non-
trivial
» CSP/SAT/ILP/BDD
methods
< Examples:
— Graphplan,IPP,STAN
— SATPLAN
- GP-CSP
— BDDPIan, PropPlan

Subbarao Kambhampati

CONJUNCTIVE
REFINEMENT
PLANNING
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Forward State-space Refinement

< Grow plan prefix by adding
applicable actions @]_’ 1: Unload(A)
— Complete, Monotonic
» consideration of all
executable prefixes
— Progressive
» elimination of
unexecutable
prefixes

— Systemati
ystematic @ 2: Load(A) 1: Unload(A) —’
» each component has
2: Load(B) 1: Unload(A) —>

a different prefix
+ Completely specified
state @ 2: Fly() 1: Unload(A) —’
» Easier to control?

— Higher branching factor
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A

A4

(o]

\4

Backward State-space Refinement

< Grow plan suffix by adding

relevant actions ‘.
—| 1:Fl H
— Complete, Monotonic @

» consideration of all
relevant suffixes

— Progressive Q

» elimination of irrelevant
suffixes

— Systematic n 1: Fly() 2: Unload(A)
» each component has a : .
different suffix @_' 1: Fiy0 2: Unload(B) H

4+ Goal directed
» Lower branching

— Partial state

» Harder to detect
inconsistency
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Plan-space Refinement

Goal selection:

Select a precondition
. 1:Unload(A
Establishment: @ nload(A)

Select a step (new or existing) At(AM)@*
and make it give the condition PSR
De-clobbering: At(AM)@ *
Force intervening steps to
preserve the condition At(AM)

Book-keeping: (Optional)
Add IPCs to preserve
the establishment

O Systematicity

causation

. . precondition
(PSR is complete, and progressive)

(Sacerdoti, 1972; Pednault, 1988; McAllester, 1991)
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Plan-space Refinement: Example 2

AY(R,M), -At(R,E) @]_’ L:Fly() —>
Oidn(x) O At(x M) AAE)@ o
@ Establishment
AR AUAE) AAE)@ oo
[0 Fy) | 5
itrati i O
A o |
Promotion riaton oepe® "~ Confrontation
I i AYAE
At(A,E) aap) DEMOtION t(AE)
-: |
(im0 29 (0 ) X ﬂlmp())@l &

preservation
precondition
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Tradeoffs among Refinements

X9
O
'(\»ZQ.\\\‘m%
. @5
FSR and BSR must commit Plan-space refinement (PSR)
to both position and avoids constraining position

relevance of actions
. ; : + Reduces commitment
+ Give state information (large candidate set /branch)
(Easier plan validation)
- Increases plan-validation
- Leads to premature costs
commitment
+ Easily extendible to actions
actions have durations

pf@ 1: Fly() Pp@—»m
Pb@—’m
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Generating Conjunctive

Refinement Planners o .
@ ooé\ 0}(@(\
Cd :&\o"’ V\Qs/;\t\
rg\\o(‘ ng\(ﬂ (70 \(\Q ‘&\QQ*
: . 3 > &
Refineplan ( P : Plan) Q\\\@i @E\\“ s (;\«1&@&@(@1\
RN O oV &S
0*. If «P » is empty, Fail. \FQQ,'\@& %@Q &5‘ &Q,@
1. If a minimal candidate of P N @@3‘ o
is a solution, terminate. @ 3 0
2. Select a refinement strategy R. oY

Appply R to P to geta setof new plans Pl...Pj
Add all plans to the search queue.
4. Non-deterministically select one of the plans P;
Call Refine(P;)

Subbarao Kambhampati
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Issues in instantiating Refineplan

< Although a planner can use multiple different refinements,
most implementations stick to a single refinement

< Although refinement can be used along with any type of
correctness check, there is affinity between specific
refinements and proof techngiues (support finite differencing)

— FSR and Progression based proof
— BSR and Regression based proof
— PSR and Causal proof

< Although it is enough to check if  any one of the safe
linearizations are solutions, most planners refine a partial
plan until all its linearizations are safe

— Tractability refinements (pre-order, pre-satisfy)

With these changes, an instantiated and simplified planner
may “/ook” considerably different from the general template
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Case Study: UCPOP

Refineplan ( P : Plan)
N
0*. If P is order inconsistent, FAIL. d@@‘\:zed“
1. If no open conditions and no unsafe IPCs, SUCCESS. \090\ :
2. Generate new plans using either 2’ or 2”
Add the plans to the search queue
2’. Remove an open condition c@s in P.
2.1. For each step s’ in P that gives ¢, make a new plan
P=P+(s’<s)+IPCs’-c-s
2.2. For each action A in the domain that gives c, make a new )
plan P’ =P + sn:A + (sn <s) + IPC sn-c-s. &;{\e@(\
2.2.1. For each precondition ¢’ of A, add & @
c’@sn to the list of open conditions of P’. N o
2.2.2. Foreach IPC s’-p-s”, if sn deletes p, add
[s’-p-s™; sn] to the list of unsafe IPCs of P’. o
2”. Remove an unsafe IPC [s'-p-s”; s™'] from P. /\@0\2@6&
Make two plans: P'=P +s"'<s’ P"=P+s"<g" &
3. Non-deterministically select one of the plans P, from
the search queue and  Call Refine( P))
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Many variations on the theme..
L . Tractability

Planner Termination Goal Sel. | Bookkeeping refinements
TWEAK MTC MTC -none- -none-
UA MTC MTC -none- pre-order
SNLP / ; i _aati i
UCPOP Causal proof arbitrary Contrib. Prot pre-satisfaction
TOCL Causal proof arbitrary Contrib. Prot. pre-order
McNonlin/} - caysal proof | arbitrary Interval Prot.  jjre-satisfaction
Pedestal ’
SNLP-UA MTC MTC Contrib. Prot. unambig. ord.
(Kambhampati, Knoblock & Yang, 1995)
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Interleaving Refinements

i

BSR < L
E]—>

< Combine different
refinements
opportunistically

— Can be more efficient than
single-refinement planners

1: Unload(A)

PSR @AI(A,M)@ ]
— Refinement selection
criteria? @_, 2: Fly() [*| 1: Unload(A)
» # Components PR L
produced

»“Progress” made | | 3 Loady— 2: iy |~ : Unload(a

Pre-position @
@ 3: Load(A) || 2: Fly() |- 1+ Unload(A)

(Kambhampati & Srivastava, 1995)
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Some implemented conjunctive planners

UCPOP, SNLP
[Weld et. al. ]

UNPOP [McDermott]
HSP [Geffner & Bonet]
FF  [Hoffman]

IXTET [Ghallab et al]
RAX [Muscettola et al]

Prodigy
[Carbonell et. al. ]
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Refinement

Plan-space

Forward state space

Plan-space

Forward state space

Heuristics

Fail-first
Flaw selection

Distance heuristics

Hand-coded search
control

Means-ends analysis

Subbarao Kambhampati

Conjunctive planners: The State of the Art

< Vanilla state-space (FSR/BSR) planners were known to be

less efficient than vanilla plan-space planners

— Several research efforts concentrated on extending
plan-space approaches to non-classical scenarios

< However, State-space planners seem to have better
heuristic support than plan-space planners at this time

— Distance-based heuristics seem particularly useful for

state-space planners

< But, plan-space planners are alleged to provide better
support for incremental planning, durative actions etc.
— replanning, reuse and plan modification, temporal reasoning
» IXTET, HSTS, RAX....
Charge: Either develop effective approaches for replanning
etc. in state-space planners or develop good heuristics for

plan-space planners
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. DISJUNCTIVE
" REFINEMENT
PLANNING

A Unifying View

1. Refining disjunctive plans
2. Solution Extraction
--Direct
--Compilation

CSP/SAT/ILP/BDD
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Disjunctive Planning

< Idea: Consider Partial plans with disjunctive step,
ordering, and auxiliary constraints

< Mativation: Provides a lifted search space, avoids
re-generating the same failures multiple times (also,
rich connections to combinatorial problems)

<+ Issues:
— Refining disjunctive plans
» Graphplan (Blum & Furst, 95)
— Solution extraction in disjunctive plans
» Direct combinatorial search
» Compilation to CSP/SAT/ILP
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Disjunctive Representations

--Allow disjunctive step, ordering and
auxiliary constraints in partial plans

1: Load(A) _*E] 1: Load(A)
1: Load(B) —»E] @ 2: Lzrad(B) ‘—’
1: Fly(R) 3: F?yr(R)

<1,In(A), ©» >V < 1,In(B), » >
//T(T n(A), n()

n . JE—
—» 1: Load(A IN(X)@ D @ Load(A) _»
—> 1. or |

BIENS

(o]

In(B) Load(B)
@—» 1: Load(B)—
In(x)@ © At(A.E)@1 V At(B,E)@1
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Refining Disjunctive Plans (1)

1: Load(A)
or

1: Load(A) 2 : Load(B)
oo |/ T B or

@ 2: Load(B) —‘>B 3:Fly(R) I
or | i or
3: Fly(R) 4 : Unload(A,E)

or

5 : Unload(B,E)

Indirect unioned approach
+ Maximum pruning power ﬁ
@ - Exponential refinement cost
(0][x: oasr) |PiFy®R) | —f]
@|1: Load®) |[2FyR) | ~«>D
g . @ 1: Load(A) |2: Unload(A E)
(0] [ 2: Load(e) |p: Unioaas ) |
g . 3 @|1: Load(d) | [2: Load(®) | ~«>B
n . (0][ 2: Loaue) |[ 2: Load(a) | 4«>D
DETEa
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In(A)

union of states

In(B)
At(R,M)
At(R,E)

At(A,E)
AY(B,E)

1: Load(A)
or

2 : Load(B)
or

3: Fly(R)
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Refining Disjunctive plans (2)

Direct naive approach
Put all actions at all levels
--Proposition list contains all conditions

+ Trivial to construct
- Loss of pruning power (progressivity)
=> too many (minimal) candidates
=> Costlier solution extraction

1: Load(AE)
or
2 : Load(B,E)
or
3: Fly(R)
or
4 : Unload(AE)
or
5: Unload(B,E)
: Unload(A,M)
: Unload(B,M)
: load(A,M)
: load(B,M)

1: Load(A)
or

2 : Load(B)
or

3: Fly(R)

—=J

6
7
8
9

Subbarao Kambhampati

In(A)
In(B)
At(R,M)

AY(R E)

Refining Disjunctive plans (3)

AUAE) 1: Load(A,E)
At(B,E) o
2 : Load(B,E
i
w 1: Load(A) 3: Fly(R)
1: Load(A) or or
or @ 2:Load(B) | | 4: Unload(AE) B
@ 2 : Load(B) —‘>E] or or —|
v 3: Fly(R) 5 : Unload(B,E)
AR 6 : Unload(A,M)
7 : Unload(B,M)
o toadtB; vy
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Enforce partial 1-consistency
Proposition list avoids unsupported
conditions

+ Polynomial refinement time
-- Loss of pruning power (progressivity)




Refining Disjunctive plans (4)

Enforce (partial) 2-consistency
Proposition list maintains interactions
between pairs of conditions
+ Polynomial refinement time
higher pruning power
+ Better balance between refinement cost
and solution extraction cost

1: Load(AE)
or
2 : Load(B,E)
or
1: Load(A) 3: Fly(R)
1: Load(A)

or or
or 2 Load(B 4 : Unload(AE) =
@ 2: Load(B)_DD |:> @ z? ® or B

or 3: Fly(R) 5 : Unload(B,E)
3: Fly(R) o Dok - I
\ ¢ ' 7 ~tmtoaTtE
Yigher \eve! " e cost - i
OBy
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Open issues in disjunctive refinement

< Directed partial consistency
— Mutex propagation is a form of reachability analysis
» Relevance analysis?
— Higher levels of directional consistency?
» Typically not cost effective
< Supporting refinements other than FSR
— Direct naive refinements are easy to support;
enforcing an appropriate level of consistency is harder
— Some “relevance” based approaches exist for BSR
» Inseperability, backward mutex [
e Kambhampati et. al. ECP, 1997

» Can be used in conjunction with reachability
analysis

— Enforcing effective consistency for PSR is still virgin
territory...
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Solution Extraction in Disjunctive Plans

< Verify if some minimal candidate of the disjunctive plan is a
solution (“Model Finding” )
» Involves (implicit or explicit) use of proof strategies

< Direct methods: Can be solved using special techniques
customized to the disjunctive structure
» Graphplan backward search; Graphplan local search
< Compilation methods: Generate a set of constraints, whose

satisfaction ensures that a substructure of the disjunctive
structure is a solution. Find a model for the constraints.

» Constraints will correspond to lines of proof

e Progression proof, regression proof, causal proof
» Constraints can be in any standard form

e e.g. CSP, SAT, ILP, BDD
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Graphplan Backward Search

(Direct Search 1)

Objective: Find a sub-graph of the plangraph that corresponds to a valid plan.

Method: Start from the goal propositions at the last level
Select actions to support the goals so that no two are mutex (choice)
Recurse on the preconditions of the selected actions
(recursion ends at the initial state)
(When backtracking over the goals at a level, memoize them)

Optimizations: Adaptation of DVO, FC, EBL, DDB etc... [RKambhampati, JAIR 2000]
1 Load(A)\

/2 : Load(B) —
-3 : Fly(R) Q
]

~P-Al(R E)

=<P-At(A,E)

[~ P-At(B,E)
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Backward Search

MAz: Recene Advances in Al Dlsnmine. A 1ioit:y1s Subbarao Kambhampati

Other Direct Extraction Strategies

< Motivation: No compelling reason for making the search for a
valid subgraph backward, or systematic...
< Alternatives:

— Forward Search (dynamic programming) [Parker &
Kambhampati; 98,99; Blum & Langford 98]

— Systematic Undirectional search [Rintanen, 98]

» Select an action anywhere in the plan-graph for inclusion in the
solution; Propagate consequences (adapts normal CSP Search to
plan-graph)

— Local Search [Gerevini et. al., 99]

1: Load(A)

~In(A)
2 : Load(B) —

3 Fly(R) —]

~P-At(R E)

P-AY(AE)

P-AY(B.E)
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<« Compilation to CSP

\(\'A
o

©°

CSP: Given a set of discrete variables,

the domains of the variables, and constraints

on the specific values a set of variables can rake.

in combination, FIND an assianment of values to

all the variables which respects all constraints

Goals: In(A),In(B)

1:Load(A)

~In(A)

2: Load(B) —

—In(B)

3 : Fly(R) — AR

Variables: Propositions (In-A-1, In-B-1, ..At-R-E-0 ...)
Domains: Actions supporting that proposition in the plan
In-A-1: { Load-A-1, #} At-R-E-1: {P-At-R-E-1, #}

Constraints: Mutual exclusion
~[ (In-A-1 = Load-A-1) & (At-R-M-1 = Fly-R-1)] ; etc..

Activation
In-A-1!=# & In-B-1!=# (Goals must have action assignments)
In-A-1 = Load-A-1 => At-R-E-0 = #, At-A-E-O I=#

(subgoal activation constraints)

MAz2: Recent Advances in Al Planminn. A 11-i: 117 I
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¥ Compilation to SAT
v Goals: In(A) In(B)
1:Load(A)
i 2 : Load(B) — —In(A)
SAT is CSP with Boolean Variables | ) -

-P-At(R E)

P-AY(AE)

P-AY(B,E)

Init: At-R-E-0 & At-A-E-0 & At-B-E-0
Goal: In-A-1 & In-B-1

Graph: “cond at k => one of the supporting actions at k-1"
In-A-1 => Load-A-1 In-B-1 => Load-B-1
At-R-M-1 => Fly-R-1 At-R-E-1 => P-At-R-E-1

Load-A-1 => At-R-E-0 & At-A-E-0 “Actions => preconds”
Load-B-1 => At-R-E-0 & At-B-E-0
P-At-R-E-1 => At-R-E-Oh

~In-A-1V ~ At-R-M-1  ~In-B-1V ~At-R-M-1 “Mutexes”
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Compilation to Integer Linear Programming

ILP: Given a set of real valued variables, a linear obiective function on the variahlec.
a set of linear inequalities on the variables,and a set of integrality restrictions on the
variables, Find the values of the feasible variables for which the nhiertive frumarinm
attains the maximum value

-- of1 integer programming corresnonds closelv to SAT nrohlom

< Motivations
— Ability to handle numeric quantities, and do optimization
— Heuristic value of the LP relaxation of ILP problems
< Conversion
— Converta SAT/CSP encoding to ILP inequalities
»E.Qg. Xv~YvZ =>x+(1-y)+z>=1
— Explicitly set up tighter ILP inequalities (Cutting constraints)
» If X,Y,Z are pairwise mutex, we can write x+y+z <=1

(instead of x+y <=1 ;y+z <=1;z +x <= 1) v 3
YR yre s e mess R T
\\ﬁa ge(\e\’ &0‘“\0
et
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\o* e, Compilation to Binary Decision

oV gee

e Diagrams (BDDs)

BDDs support compact representationand direct manipulation ofboolean

formulae on a finite set of propositions. (Popular in CAD communitv!
Standard algorithms for converting aboolean formulae into BDDs and for
supporting standard boolean operations on them [Bryant et. al.|

< Idea: Represent disjunctive plans as BDDs and plan
extension as BDD operations
— Proposition list at level  k is an approximation to the set 1
of states reachable in  k steps.
» The set can be represented compactly as BDDs
» Plan growth can be modeled as direct manipulations
on BDD
e Operations such as “action projection” need to
be modeled as BDD modifications

BDD for X, & X,

Subbarao Kambhampati
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Relative Tradeoffs Offered by
the various compilation substrates

< CSP encodings support implicit representations
— More compact encodings [Do & Kambhampati, 2000]
— Easier integration with Scheduling techniques

< ILP encodings support numeric quantities
— Seamless integration of humeric resource constraints

[Walser & Kautz, 1999]

— Not competitive with CSP/SAT for problems without

numeric constraints

<

SAT encodings support axioms in propositional logic form

— May be more natural to add (for whom ;-)

<

BDDs are very popular in CAD community

— Commercial interest may spur faster algorithms (which we can

use)

MAz: Recent Advances in Al Planninz. & riici_s1r

Subbarao Kambhampati

Direct vs. compiled solution extraction

DIRECT

x Need to adapt CSP/SAT
techniques

v Can exploit
approaches for
compacting the plan

v Can make the search
incremental across
iterations

MAz: Recent Advances in Al Dlanninz. A riic_sir

Compiled

Can exploit the latest
advances in SAT/CSP
solvers

Compilation stage can
be time consuming,
leads to memory blow-
up

Makes it harder to
exploit search from
previous iterations
Makes it easier to add
declarative control
knowledge

Subbarao Kambhampati




Disjunctive planners based on
BSS and PS refinements?

Graphplan can be seen as a disjunctive planner based on
state-space refinement.
— How about planners based on other refinements?
< Chief difficulty lies in generalizing the refinements to
disjunctive plans, while retaining their progressivity
— The mutex propagation step of Graphplan is what makes it
progressive

< Generalization is however quite easy  If we sacrifice
“progressiveness” of refinements
Basic idea:
— Set up bounded length disjunctive structure
— Search for a substructure that satisfies solution properties
» Use lines of proofs

MAz: Recent Advances in Al Planninz. & riici_s1r

Subbarao Kambhampati

[Mali & Kambhampati, 1999]
Lines of Proof as basis for ( naive) encodings

< Loop from k=1, until a solution is found

— Set up k-length sequence of disjunctive actions (al V a2 V ....V an)

» In effect, a direct naive refinement is used (monotonic,
complete, but not progressive)

— Impose constraints, satisfaction of which ensures that some sub-

sequence of the disjunctive sequence is a solution
» The constraints set up lines of proof
e State-space proofs

— Graphplan’s backward search can be thought of as setting

up backward proof
e Causal proofs

o al al al
- Convgrt the cgnstraqnts into your a2 a2 a2
favorite combinatorial substrate a3 a3 a3
and solve
an an an

1 2
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a2
a3

an
k
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Encodings based on Causal proofs

S0 s1 s2 s3

S0, 11)
S0, 12)

S0, In)

Sk

Sw, G1)
Sw, G2)

Each step is mapped to exactly one action
Si=A1VSi=A2...; ~(Si=Ai&Si=Aj)
A step inherits the needs, adds and deletes of
the action it is mapped to
Si = Aj => Adds(Si, Pa) & Needs(Si, Pp) &
Deletes(Si, Pd)
A Step get needs, adds and deletes only through
mapped actions
Adds(Si, Pa) => Si=AjVSi = Ak ...
(Ai, Ak add Pa)
Every need is established by some step
Needs(Si,Pj) => Estab(S1, Pj, Si) V
Estab(S2, Pj, Si) ... V Estab(Sk, Pj, Si)

Establishment with causal links
Estab(S1,Pj,Si) => Link(S1,Pj,Si)
Link implies addition & precedence
Link(Si,Pj,Sk) => Adds(Si,Pj) &
Precedes(Si,Pj)
Link implies preservation by
intervening steps
Link(Si,Pj,Sk) & Deletes(Sm,Pj)
=> Precedes(Sm, Si) V
Precedes(Sk, Si)

MAz: Recent Advances in Al Planninz. & riici_s1r

Precedence is irreflexive,
asymmetric and transitive...

Subbarao Kambhampati

Tradeoffs between encodings based on
different proof strategies

< Causal encodings in general have more clauses than state-

space encodings

— O( #actions x #actions x #fluents) for causal link variables
» Could be reduced by using white-knight based proofs
— O(#actions x #actions x #actions) clauses for partial ordering
» Could be reduced by using contiguous ordering
— However, the best causal encodings will still be dominated by the
backward state-space encodings [Mali & Kambhampati, 99]

< Paradoxical given the success of partial order planners in

conjunctive planning?

— Not really! We are using causal proof which is typically longer than
state-based proofs, and are not using the flexibility of step insertion.

» Can be helpful in incremental planning & Plan reuse
» Are helpful in using causal domain specific knowledge (e.g.

HTN schemas)

MAz: Recent Advances in Al Dlanninz. A riic_sir
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Some implemented disjunctive planners

Graphplan (Blum/Furst)
IPP (Koehler)

STAN (Fox/Long)
GP-EBL (Kambhampati)

Refinement

Direct Partially
2-consistent
refinement with FSR

Solution Extraction

Direct search on
the disjunctive plan

SATPLAN (Kautz/Selman)

Naive direct
refinement with FSR,
BSR, PSR

Blackbox (Kautz/Selman)

Same as Graphplan

Compilation to SAT

GP-CSP
(Do/Kambhampati)

Same as Graphplan

Compilation to CSP

IPP Plan (Walser/Kautz)

Naive direct
refinement with FSR

Compilation to ILP

BDDPlan (Hans-Peter)
PROPPIlan (Stoerr)
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Naive direct
refinement with FSR

Compilation to BDDs

Subbarao Kambhampati

Conjunctive vs. Disjunctive
planners

< Progress depends on the
effectiveness of the
heuristics for judging the
goodness of a partial plan

< Space consumption can
be regulated

< Better fit with mixed-
initiative, incremental
planning scenarios(?)

<>

Space consumption is a big
issue
— Creation and storage of
disjunctive structures
» CSPs do better by
supporting implicit
representations
Connection to combinatorial
substrate

Better integration with non-
propositional reasoners (?)

Hybrid planners--Controlled splitfing &
Search in the space of disjunctive plans
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Actions with Resources and Duration

Capacity(robof) = 3

Handling Resources, Metric
and Temporal Contraints

MAz: Recent Advances in Al Planninz. & riici_s1r

Subbarao Kambhampati

Scheduling: Brief Overview

Jobshop scheduling
— Set of jobs

» Each job consists of tasks
in some (partial) order

— Temporal constraints on jobs
» EST, LFT, Duration
— Contention constraints

» Each task can be done on
a subset of machines

CSP Models
— Time point model
» Tasks as variables, Time
points as values
» EST, LFT, Machine
contention as constraints
— Inter-task precedences as
variables (PCP model)

|\LFT
ESTLA \Tz T2 s /
=, |

M
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CSP Techniques
— Customized consistency
enforcement techniques
» ARC-B consistency
» Edge-finding
— Customized variable/value
ordering heuristics
» Contention-based
» Slack-based
— MaxCSP; B&B searches

Subbarao Kambhampati




Adapting to Metric/Temporal Planning

Schedulers already routinely handle resources and
metric/temporal constraints.
— Let the “planner’concentrate on causal reasoning
— Let the “scheduler” concentrate on resource
allocation, sequencing and numeric constraints for
the generated causal plan

Need beter coupling to avoid inter-module thrashing....
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Issues in handling time and resources

< Monolithic or loosely-coupled?
< How can the Planner keep track of consistency?
— Low level constraint propagation
» Loose path consistency on TCSPs
» Bounds on resource consumption,
» LP relaxations of metric constraints
— Pre-emptive conflict resolution
The more aggressive you do this, the less need for a
scheduler..
< How do the modules interact?
— Failure explanations; Partial results
< Which Planners are best suited for time and resources?**

Subbarao Kambhampati

MAz: Recent Advances in Al Dlanninz. A riic_sir




What planners are good for handling
resources and time?

< State-space approaches have an edge in terms of ease of
monitoring resource usage
— Time-point based representations are known to be better for
multi-capacity resource constraints in scheduling

Plan-space approaches have an edge in terms of durative actions
and continuous change

<

— Notion of state not well defined in such cases (Too many
states)

— PCP representations are known to be better for scheduling
with single-capacity resources

< Disjunctive compilation approaches may provide better basis for
interacting with schedulers and other external constraint
reasoners

— Conjunctive approaches better for  monolithic architectures
(disjunctive ones may lead to very large encodings)
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[Adapted from David Smith's Invited Talk at AIPS-2000)]

Tradeoffs in the current

Multi-capacity| Metric Optimization | Continuous | Speed
Resources | Quantities Time
Graphplan hard? hard hard? hard good
IPP TGP
SAT moderate? moderate moderate? very hard? good
Compilation LPSAT
ILP easy? easy easy very hard? fair?
Compilation ILP-plan ILP-plan
Conjunctive | moderate moderate moderate? easy fair?
PS IXTeT Zeno HSTS

Work on loosely-coupled architectures is just starting... [Srivastava, 2000]
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HEURISTICS &
OPTIMIZATIONS

A Unifying View
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Distance Heuristics from Relaxed Problems
Gz

o

R

Problem: Estimating the distance of a (partial)

state from the initial (or goal) state \ ‘53
/o Oh
: . U
Solution: Relax the problem by assuming that all subgoals are O Oé
independent (ignore +ve / -ve interactions between actions) ? ?

Solve the relaxed problem and use the length of the solution as
part of the heuristic

Properties: The heuristic is neither a lower bound (-ve interactions) nor an
upper-bound (+ve interactions).
--leads to inoptimal solutions (in terms of plan length)
>>Possible to reduce inoptimality by considering interactions

History: First used in IXTET [Ghallab et. al. 1995]
hinted at by Smith’s Operator Graphs [Smith et. al., 1995]
independently re-discovered in UNPOP [McDermott, 1996]
independently re-re-discovered in HSP [Bonet & Geffner, 1997]
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PLP2 Al Gl
Q11 Bl Pl 5 Gl Top down greedy distance
SE ig PP22,~P i computation
Q12 D1 Qi1 > sor®

. — PR S

Init: Q12 Goal: G1 2 pP1 2 P2 »tve as well as

-ve interactions
between P1 and P2
are ignored....

1 Qu1

1|D1 g
For each partial plan in the
Q12 search queue, estimate its
0 h-value using this procedure
MA2: Recent Advances in Al Dlsnminn. 4 ri_it:_s1r Subbarao Kambhampati

Bottom-up Distance computation

< Each condition (state-variable & value combo) has a
distance

— Initialized to O for all conditions in the initial state
— « for everything else
< Repeat until reaching fix-point (until no distances change)

— Select an action A to be applied. LetP , ...P,, beits
preconditions and E ; ...E, be the conditions it adds.

— Reset the distance values of E ; as follows R
2
QP
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Improving the Heuristic

< Subgoal independence assumption leads to
— Inadmissibility (when subgoals interact positively; A is +ve)
— Un-informedness (when subgals interact negatively; | is large)
< Informedness improved by accounting for -ve interactions
— Use information about infeasible subgoal sets (“Mutexes”)
» No plan of length k can achieve p and q
» No plan can ever achieve p and q
< Admissibility can be improved by accounting for +ve
interactions Heuristic
— Solve the planning problems ignoring
-ve interactions between actions to get

True Distance

. N
lower bound on plan length (distance) '
5] A = Maxg [n(s) -h¥(s)]
Q
o I =Max, | h(s) - h¥(s) |
! States——->
MAz2: Recene Advances in Al Dlsnminn. A 11_:2:_s1r: Subbarao Kambhampati

,ﬁ{u
NN . .
o Using the Planning Graph to
e account for +ve/-ve Interactions

< Mutex relations can help account for -ve interactions
— Grow the PG until level-off (Polynomial operation)

— Distance of aset{P , P,...P.}isthe index of the first level of
the PG where P ,...P,, are present without any mutexes

» Easy to generalize to n-ary mutexes

» Informedness can be improved by partitioning P ,...P, into
some k partitions, S ,...S, and summing the distances of S |

< +ve interactions can be accounted for by extracting a plan from
the PG ignoring mutex relations
— Run Graphplan algorithm, but do not do any mutex propagation.

Insight: [deas of disjunctive planning help
in generating heuristics for conjunctive plannersl!
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Plan Graph produces a large
spectrum of effective heuristics with
differing tradeoffs

Fmtlzmm Graphplan [ Swroeromes set-lev | pamition-1 partition: 2 aj-aurmn cafha arfj-aure
Tror-Targe-b T 375 4% T 13250 [ 187107354 - JEKD LA AL | EAASSY IEELEH
bolargec - - - - - | ETMAS | AW 44T | 2ETIEM
ba-large-d - - - - - - BETFEERR

racket-exta - /4008 - 3N 404 AN 10M 4610 Hi472 407 4363
rocketenth - N - EHEEE AN 1073 | 341413 INTEE | EHETR

aftdoga - 218 - | oW indl - | eFIET | aWIlhg I

aft-Tog-h - i - | ewIng - EWEETE | W IR0d G155 28
sippar 20 BT N T EE] ) Bi5s.1

Spumdal || 374422 || 3A 18673 SSAESRET | AW E005 | 4TIITRET | T3S | F11G5d4 | 31714333
Spumdal || 300134568 4H4 13 AL | AHRES0 | 30540 [ 4410370 | 48045 | 30634827

Epumdal X 3056 200 202,34 FUEEEFE RS aFHA0 | TR | 2ME3 23 6256
traval-1 IR [EN:] wrod BI023 B0Led HPEF] LILEEE] P
orid3 165374 - 16ri40n | 1675540 1674670 | 152143 | 1origz2 1671512
aridd 182130 - Twia2e | 182617 | 1eri26p4 | 183701 153712 L& 3047
aipe-oridi 14031157 - 14763081 | 140800l | 147101080 [ 14767036 | 14i6dndT | 14r730.43
Topriroe-1 174 - ATETeE | 4TI AEIZET ATER 47T B

Tatda2: IMumiver of actiors Total CPU Time in seeorts. The dash () ireticates that 0 solaion was S in 3 ours of 25008,

[Long & Kambhampat;,
AAAI 2000]
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Using Distance Heuristics

< Conjunctive FSS planners need to recompute the heuristic
as the init state changes
— UNPOP [McDermott], HSP [Bonet & Geffner], FF [Hoffman]
» GRT [Refanidis & Vlahavas] elaborates the goal state and
computes heuristic in the reverse direction
< Conjunctive BSS planners can get by with a single
computation of the heuristic
— HSP-R [Bonet & Geffner], AltAlt [Long & Kambhampati &..]
< Conjunctive PS planners can use distance heuristics and
mutex information to rank partial plans and flaw resolution
choices
— IXTET [Ghallab et. al.]; AltAlt-UC [Long & Kambhampati]
< Disjunctive planners can use distance heuristics as the
basis for variable and value ordering heuristics
— GP-HSP [Kambhampati & Nigenda], GP-CSP [Do &
Kambhampati]
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Other notable optimizations

< Reduce the size of the disjunctive plan
— Bi-level Representations [Fox & Long, 97][Smith &Weld, 97]
— Lifted representations [Parke & Ginsberg, 2000]
— Relevance based pruning
» Backward plan growth [Kambhampati et. al., 97]

» Preprocessing to remove irrelevant actions and conditions
[RIFO, Nebel et. al. 97]

< Increase the consistency level of the disjunctive plan

— Learn (or input) higher-order mutexes (invariants) [Gerevini,
98] [Fox & Long, 99][Rintanen, 2000]

< Improve the solution extraction process
— Exploit Symmetry [Fox et. al. 99, Srivastava et. al. 99]

— + the usual retinue of search improvements from CSP, ILP etc.
[Kambhampati, 2000]
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a8” CUSTOMIZING
PLANNERS WITH
DOMAIN SPECIFIC
KNOWLEDGE

A Unifying View

1. User-assisted customization
2. Automated customization
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Improving Performance
through Customization

< Biasing the search with control knowledge
acquired from experts
— Non-primitive actions and reduction schemas
— Automated synthesis of customized planners

» Combine formal theory of refinement planning
and domain-specific control knowledge

< Use of learning techniques

— Search control rule learning
— Plan reuse
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User-Assisted Customization
(using domain-specific Knowledge)

< Domain independent planners tend to miss the
regularities in the domain

< Domain specific planners have to be built from
scratch for every domain

An “Any-Expertise” Solution: Try adding domain

specific control knowledge to the domain-
independent planners

" o
C/@% o Domain Q’Q:('\(l?'
a &Y s Specific Y‘(}o &&"
&\2\#\0 Knowledge O N
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Many User-Customizable Planners

< Conjunctive planners
— HTN planners

» SIPE [Wilkins, 85-]

» NONLIN/O-Plan [Tate et. al., 77-]
» NOAH [Sacerdoti, 75]

» Also SHOP (Nau et. al., IJCAI-99)

— State-space planners

» TLPlan [Bacchus & Kabanza, 95; 99]
» TALPlan [Kvarnstrom & Doherty, 2000]

— Customization frameworks

» CLAY [Srivastava & Kambhampati, 97]

< Disjunctive planners
— HTN SAT [Mali & Kambhampati, 98]
— SATPLAN+Dom [Kautz & Selman, 98]
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Subbarao Kambhampati

With right domain knowledge any level
of performance can be achieved...

HTN-SAT, SATPLAN+DOM beat
SATPLAN...
— Expect reduction schemas, declarative

knowledge about inoptimal plans

TLPLAN beats SATPLAN,
GRAPHPLAN
— But uses quite detailed domain

knowledge

SHOP beats TLPLAN...(but not
TALPIan)

— Expects user to write a “program” for
the domain in its language
» Explicit instructions on the order in
which schemas are considered and
concatenated
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Types of Guidance

< Declarative knowledge about desirable or
undesirable solutions and partial solutions
(SATPLAN+DOM,; Cutting Planes)

< Declarative knowledge about desirable/undesirable
search paths (TLPlan & TALPIan)

< A declarative grammar of desirable solutions (HTN)

(largely) independent of the details of the specific planner
[affinities do exist between specific fypes of quidance and blannarc)

Planner specific. Expert needs o understand the
specific details of the planner's search space
< Procedural knowledge about how the search for the
solution should be organized (SHOP)

< Search control rules for guiding choice points in the
planner’s search (NASA RAX)
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Ways of using the Domain Knowledge

< As search control
— HTN schemas, TLPIlan rules, SHOP procedures
— Issues of Efficient Matching

To prune unpromising partial solutions
— HTN schemas, TLPIlan rules, SHOP procedures
— Issues of maintaining multiple parses

As declartative axioms that are used along with other
knowledge

— SATPlan+Domain specific knowledge
— Cutting Planes (for ILP encodings)
— Issues of domain-knowledge driven simplification

< Folded into the domain-independent algorithm to generate
a new domain-customized planner

— CLAY
— Issues of Program synthesis

<

<
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Task Decomposition (HTN) Planning

The OLDEST approach for providing domain-specific
knowledge

— Most of the fielded applications use HTN planning

Domain model contains non-primitive actions, and schemas
for reducing them

Reduction schemas are given by the designer

— Can be seen as encoding user-intent

» Popularity of HTN approaches a testament of ease with
which these schemas are available?

Two notions of completeness:

— Schema completeness
(Partial Hierarchicalization)

GobyTrain(S,D

»

— Planner completeness
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Getin(B,S)
BuyTickt(B)
Getout(B,D

BuyTickt(T)
Getin(T,S)
Getout(T,D)

Hitchhike(S,D)

Subbarao Kambhampati

Modeling

Action Reduction

In(B)

t1: Getin(B,S; K
t2: BuyTickt(B)
e t3: Getout(B,D
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Dual views of HTN planning

Capturing hierarchical
structure of the domain
— Motivates top-down planning
» Start with abstract plans,
and reduce them
Many technical headaches
— Respecting user-intent,
maintaining systematicity
and minimality
[Kambhampati et. al. AAAI-98]
» Phantomization, filters,
promiscuity, downward-
unlinearizability..

&

&

Relative advantages are still unclear...
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&

Capturing expert advice
about desirable solutions
— Motivates bottom-up
planning
» Ensure that each partial
plan being considered is
“legal” with respect to
the reduction schemas
» Directly usable with
disjunctive planning
approaches
[Mali & Kambhampati, 98]

< Connection to efficiency is
not obvious

[Barrett, 97]

Subbarao Kambhampati

<>

the non-primitive tasks

HTN constraints

Constraints
from action-based
encodings

SAT encodings of HTN planning

Abstract actions can be seen as disjunctive constraints
— K-step encoding has each of the steps mapped to a disjunction of

— If astep sis mapped to a task N, then one of the reductions of N
must hold (**The heart of encoding setup**)
— + The normal constraints of primitive action-based encoding
» Causal encodings seem to be a natural fit (given the causal
dependencies encoded in reduction schemas)

[Mali & Kambampati, AIPS-98]
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Solving HTN Encodings

Puzzle: How can increasing encoding sizes lead to efficient planning?
Abstract actions and their reductions put restrictions on the
amount of step-action disjunction at the primitive level.
--Reduction in step-action disjunction propagates
e.g. Fewer causal-link variables, Fewer exclusion clauses...

Savings won't hold if each non-primitive task has MANY reductions

20000000
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[Nau et. al., 99]

Full procedural control: The SHOP way

Shop provides a (:method (travel-to ?y)
“high-level” programming (:first (at ?x)

language in which the at-taxi-stand ?t ?x)
user can code his/her distance ?x ?y ?2d)
domain specific planner have-taxi-fare ?4d))

(
(
(

o (('hail ?t ?x) (!ride ?t ?x ?vy)
-- Similarities to HTN (
planning (
(
(

-- Not declarative (?)

pay-driver , (+ 1.50 2d)))

at ?x) (bus-route ?bus ?x ?vy))
'wait-for ?bus ?x)

The SHOP engine can be pay-driver 1.00)

seen as an interpreter (!lride ?bus ?x ?y)))
for this language

(
(

S
S

‘ Travel by bus only if going by taxi doesn’t wotk out ‘

Blurs the domain-specific/domain-independent divide
How often does one have this level of knowledge about a domain?
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[Kautz & Selman, AIPS-98]

Non-HTN Declarative Guidance

Invariants: A truck is at only one location
at(truck, locl, 1) & loc1 !'= loc2 => ~at(truck, loc2, I)

Optimality: Do not return a package to the same location
at(pkg, loc, 1) & ~at(pkg,loc,l+1) & I<J => ~at(pkg,loc,))

Simplifying: Once a truck is loaded, it should immediately move
~n(pkg,truck,l) & in(pkg,truck,l+1) & at(truck, loc, 1+1) =>
~at(truck, loc, 1+2)

Once again, additional clauses first increase the encoding size
but make them easier to solve after simplification
(unit-propagation etc).
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Rules on desirable State
Sequences: TLPIlan approach

TLPIlan [Bacchus & Kabanza, 95/98] controls a
forward state-space planner

Rules are written on state sequences
using the linear temporal logic (LTL)

LTL is an extension of prop logic with temporal modalities

U until [ always
O next <> eventually
Example:

If you achieve on(B,A), then preserve it until On(C,B) is achieved:

[ (on(B,A) =>on(B,A) U on(C,B))
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TLPLAN Rules can get quite baroque

Good towers are those that do not violate any goal conditions

goodfower(x) E clear(z) A goodtowerbelow ()
goodtowerbelow! ) S {ontable(x) A ~GOAL(J[y:oniz, y)] V holding(z)))
v Ayionle, y)) ~GOAL{ontable(x) v holding(x)) A ~GOAL(clear(y))
AY[2:00AL{on(®, 2))] 2z = y AV¥[2:GOAL{on(z, y))]z = ¢
A goodtowerbelow (i)

Keep growing “good” towers, and avoid “bad” towers .

RN\ I
O (V[;r:cl ear(x)] goodfower(x) = Ogoodtowerabove(x) “O‘o“\o‘\)\ee'
A badtower(z) = O(-3[yon(y. =)]) ‘(\O\N \06‘56
A (ontable{x) A Ay:GOAL(on(x, y))| ~goodtower(y)) ,&\6\
= O(~holding(x)))
The heart of TLPlan is the ability to  incrementally
and effectively evaluate the truth of LTL formulas.
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Stivastava & Kambhampati, JAIR 97

Folding the Control Knowledge
into the planner: CLAY approach

< Control knowledge similar to
TLPlan’s

< Knowledge is folded using
KIDS semi-automated software
synthesis tool into a generic
refinement planning template
— Use of program optimizations
such as
» Finite differencing
» Context-dependent &
independent simplification
< Empirical results demonstrate
that folding can be better than
interpreting rules
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Conundrums of user-assisted cutomization

< Which planners are easier to control?

— Conjunctive planners are better if you have search control
knowledge

» Forward State Space (according to TLPlan)
» Plan-space planners (according to HTN approaches)

— Disjunctive planners are better if your knowledge can be posed as
additional constraints on the valid plans

» Which SAT encoding?
e HTN knowledge is easier to add on top of causal encodings

< Which approach provides the best language for expressing
domain knowledge for the lay user?

— (Mine--no, no, Mine! )
< What type of domain knowledge is easier to validate?
< When does it become “cheating”/ “wishful-thinking”

— Foolish not to be able to use available knowledge

— Wishful to expect deep procedural knowledge...
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Automated Customization of
Planners

¢

Domain pre-processing N &
— Invariant detection; Relevance detection; e
Choice elimination, Type analysis & &
» STAN/TIM, DISCOPLAN etc. &8
» RIFO; ONLP \(\&.AQ’
Abstraction \&4‘ O{\g“
» ALPINE; ABSTRIPS, STAN/TIM etc. é\“ é\()
Learning Search Control rules V\o‘}
» UCPOP+EBL, &
» PRODIGY+EBL, (Graphplan+EBL)
Case-based planning (plan reuse)
» DerSNLP, Prodigy/Analogy

<

¢

¢
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Symmetry & Invariant Detection

< Generate potential invariants and test them
DISCOPLAN [Gerevini et. al.]

» Allows detection of higher-order mutexes
Rintanen’s planner

» Uses model-verification techniques
STAN/TIM

» Type analysis of the domain is used to generate invariants

— ONLP (Peot & Smith)

» Use operator graph analysis to eliminate non-viable
choices
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Abstraction

<+ ldea
— Abstract some details of the problem or actions.
— Solve the abstracted version.
— Extend the solution to the detailed version
< Precondition Abstraction
— Work on satisfying important preconditions first
» Importance judged by:
e Length of plans for subgoals [ABSTRIPS, PABLO]
e Inter-goal relations [ALPINE]
e Distribution-based [HighPoint]
— Strong abstractions (with downward refinement property) are rare
— Effectiveness is planner-dependent
» Clashes with other heuristics such as “most constrained first”
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Example: Ab

Most planners thrash by

addressing planning and

scheduling considerations

together

— Eg. Blocks world, with

multiple robot hands

Idea: Abstract resources

away during planning

Plan assuming infinite

resources

Do a post-planning resource

allocation phase

Re-plan if needed

<>

(with Biplav Srivastava)
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Learning Search Control Rules with EBL

Explain leaf level failures

Regress the explanations
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to compute interior node
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Use failure explanations to
set up control rules

Problems:
-- Most branches end in
depth-limits
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>Use preference rules?
-- THE Utility problem
>Learn general rules
>Keep usage statistics &
prune useless rules

(Kambhampati, Katukam, Qu, 95)
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If Polished(x)@S &
~Initially-True(Polished(x))
Then
REJECT
Stepadd(Roll(x),Cylindrical(x)@s)
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Example Rules (Learned)

UCPOP

If Polished(x)@S &
~Initially-True(Polished(x))
Then
REJECT
Stepadd(Roll(x),Cylindrical(x)@

Pruning rule

~
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Prodigy

If (and (current-nodeodg
(candidate-goabde
(shapigj Cyl))
(candidate-goal node
(surface-conditiolnj
polished)))
Then: Prefer (shapeobj cyl) to
(surface-conditiaij polished)

Preference rule

Subbarao Kambhampati

Case-based Planning
Macrops, Reuse, Replay

5

< Structures being reused
— Opaque vs. Modifiable

5

5

5

— Solution vs. Solving process (derivation)

< Acquisition of structures to be reused

— Human given vs. Automatically acquired

< Mechanics of reuse

— Phased vs. simultaneous
Costs
— Storage & Retrieval costs; Solution quality
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(Ihrig &

Case-study: DerSNLP

< Modifiable derivational traces are reused
< Traces are automatically acquired during problem solving

— Analyze the interactions among the parts of a plan, and store plans for
non-interacting subgoals separately

» Reduces retrieval cost
— Use of EBL failure analysis to detect interactions
& All relevant trace fragments are retrieved and replayed before the
control is given to from-scratch planner

— Extension failures are traced to individual replayed traces, and their
storage indices are modified appropriately

» Improves retrieval accuracy

Kambhampati, JAIR 97)
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Reuse in Disjunctive Planning

< Harder to make a disjunctive planner commit to
extending a specific plan first
< Options:
— Support opaque macros along with primitive actions
» Increases the size of k-step disjunctive plan
» But a solution may be found at smaller k
— Modify the problem/domain specification so the old
plan’s constraints will be respected in any solution
(Bailotti et. al.)
— MAX-SAT formulations of reuse problem
» Constrain the encoding so that certain steps may
have smaller step-action mapping and ordering
choices
» Causal encodings provide better support

[with Amol Mali]

Subbarao Kambhampati
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Summary

< Focus on “Neo-classical’ planning
Refinement planning provides a unifying view
— Conjunctive Refinement Planners
— Disjunctive Refinement Planners
» Refinement
» Solution Extraction
e Direct vs. compilation to CSP/SAT
< Heuristics/Optimizations
— Relaxed Problem heuristics
— Consistency enforcement

< Customization of planners
— User-assisted
— Automated

< Related approaches to non-classical planning
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But who is winning???
(Using AIPS-2000 Competition as a benchmark)

<>

15 planners took part in AIPS-2000 competition
— Representatives from all types of planners we discussed
< Competition focussed on pure classical problems
— Separate tracks for domain-independent and user-
customized planners
< Domain independent:
— FF (Forward state-space planning; Heuristics based on
planning graphs, local search)
< Customized:
— TALPIan (control knowledge about good and bad state
sequences, applied to a forward state-space planner)

< Million Dollar question: Will the line-up be same for neo-
classical planning (durative actions, continuous change
etc?)
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Status

< Exciting times...
— Many approaches with superior scale-up capabilities
» Broadened views of planning
— Many influences (CSP; OR; MDP; SCM)
< Ripe for serious applications
— VICAR [JPL]; DeepSpace monitoring [NASA/AMES]
— Plant monitoring [Ayslett et. al.]

— Manufacturing Process Planning [Nau et. al.;
Kambhampati et. al]

— Supply chain management/ Logistics

» Industrial “Planning” does not have to the optimal
scheduling of an inoptimal action selection!
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Resources

< Mailing Lists
— Planning list digest
» http://rakaposhi.eas.asu.edu/planning-list-digest
— UK. P &S List
» http://www.salford.ac.uk/planning/home.html
< Special Conferences
— Intl. Conf. on Al Planning & Scheduling
» http://www.isi.edu/aips (April 2000, Breckenrdige, CO)
— European Conference on Planning
» http://www.informatik.uni-ulm.de/ki/ecp-99.html
— Also, AAAI, IJCAI, ECAI, Spring/Fall Symposia
< Courses

— ASU Planning Seminar Online Notes (2000,1999, 1997,
1995,1993)

» http://rakaposhi.eas.asu.edu/planning-class.html
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Adapting to Incompleteness,
Uncertainity and Dynamism

(not Static)
(not fully Observable)

Conflicting
Goals
> o
o))
The most efficient approaches to all these /s ave still based on classical planning ibeas...
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perception
(imperfect)

action
(nondeterministic)




Incomplete Information

< PROBLEM: Values of some state variables are unknown;
There are actions capable of sensing (some) of them.
— If k boolean state variables are unknown, then we are in one of
2k initial states
— Two naive approaches
» PLAN/SENSE/EXECUTE : Solve each of the 2 * problems
separately; At the execution time sense the appropriate
variables, and execute the appropriate plan
» SENSE/PLAN/EXECUTE: First sense the values of the
variables. Solve the problem corresponding to the sensed
values
— Problems with naive approaches
» Solving the 2 * problems separately is wasteful
e Shared structure (Tree structured plans)
» Not all variables may be observable (or worth observing)
e Conformant planning
— (Find non-sensing plans that work in all worlds)
e Irrelevant variables (Goal directed planning)
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Incomplete Information:
Some Implemented Approaches

< Conjunctive planners
— CNLP [Peot & Smith; 92] CASSANDRA [Pryor & Collins, 96] add
sensing actions to UCPOP; support tree-shaped plans

— SADL/PUCCINI [Golden & Weld; 96-98] integrates planning and
sensing in the context of a UCPOP-like planner

< Disjunctive planners

» One plan-graph per possible world/ Interactions among plangraphs
captured through induced mutexes

— [Rintanen, 99] converts conditional planning to QBF encodings
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— CGP [Smith & Weld, 98] supports conformant planning on Graphplan
— SGP [Weld et. al., 98] supports conditional planning on Graphplan

Subbarao Kambhampati




Dynamic Environments

< PROBLEM: The world doesn't sit still. Blind execution of a
“correct” plan may not reach goals
< APPROACHES:

— PLAN/MONITOR/REPLAN: Monitor the execution; when the
@ observed state differs from the expected one, REPLAN

» Replanning is like reuse except there is added incentive for
minimal modification

e Easy to support with conjunctive plan-space planners

— PRIAR [Kambhampati; 92]; DerSNLP [lhrig &
Kambhampati, 97]

e Possible to support with disjunctive causal encodings
— [Mali, 1999]
— MONITOR/REACT/LEARN:
» Policy construction (Universal plans)...
— MODEL OTHER AGENTS CAUSING CHANGE:
» Collaborative/Distributed planning
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Stochastic Actions

< PROBLEM: Action effects are stochastic
— Actions transform  state-distributions  to state-distributions
— Maximize “probability” of goal satisfaction
— Plan assessment itself is hard
<~ APPROACHES:
— Conjunctive planners
» BURIDAN [Hanks et. al., 95] uses UCPOP techniques to put
candidate plans together and assesses them
o Multiple /redundant supports
— Disjunctive planners
» Pgraphplan [Blum & Langford, 98] modifies Graphplan to
support some forms of stochastic planning
e Forward search; value propagation; Envelope extension
» Maxplan [Majercik & Littman, 98] uses EMAJSAT encodings to
solve stochastic planning problems

e Chance variables & Choice variables. Equivalence classes of
models that have the same values of choice variables. Find the
equivalence class with maximum probability mass.
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Complex & Conflicting Goals

< Problems & Solutions:
— Goals that have temporal extent (stay alive)
» UCPOP, TLPlan, TGP [Smith& Weld, 99]
—[ Goals that have mutual conflicts (Sky-dive & Stay Alive)
— [ Goals that take cost of achievement into account
— [ Goals that admit degrees of satisfaction (Get rich)
» Branch & Bound approaches; MAXSAT approaches
e Pyrrhus [Williamson & Hanks; 92]

Decision Theoretic Approaches:

Model goals in terms of factored reward functions
for Markov Decision Processes

--Can utilize tricks and insiahts from classical nlannina]

[Boutilier, Hanks, Dean; JAIR g9l
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CSP/SAT/TCSP Review
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(very) Quick overview of CSP/SAT concepts

x,y,u,v: {A,B,C,D,E}

< Constraint Satisfaction Problem (CSP) w: {D,E} | : {A,B}
— Given x=A [0 w£E
» A setof discrete variables y=B O u#D

. u=C 0O I#A
» Legal domains for each of the v=D O I#B
variables
» A set of constraints on values A solution:
groups of variables can take x=B, y=C, u=D, v=E, w=D, |I=-B
— Find an assignment of values to all the A f
variable_s so thaF none of the
constraints are violated yeB
< SAT Problem = CSP with boolean Ny peA&y=8]
. Ve D
variables
< TCSP = CSP where variables are time u-cC
[N; =A&y=B&v=D&u=C}|
- E

points and constraints describe ”
allowed distances N {x=A&y=B&v=D&M

[Ny x=A&y=B&v=D&u=C&w=D} |
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Important ideas in solving CSPs

Variable order heuristics:
Pick the most constrained variable

--Smallest domain, connected to most other variables, x=af
. .

causes most unit propagation, o

causes most resource contention, V-

has the most distance etc...

ueC
Value ordering heuristics :
Pick the least constraining value

. xy,u,v: {A,B,C,D,E}
ConS|stency enforcement w: {D,E} | : {AB}

k-consistency; adaptive consistency. (pre-processing) X=A = w+E
Forward Checking, unit propagation during search (dynamic)

y=B = uzD
u=C = |#A
v=D = |#B

Search/Backtracking
DDB/EBL: Remember and use interior node failure explanations
Randomized search
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Temporal Constraint Satisfaction
Problem (TCSP)

< Variables correspond to time points

< Constraints retrict allowable
distances between time points

< Constraints can be represented as
sets of intervals

— Simple temporal problem (STP)

» All constraints have at most
one interval (TRACTABLE!!!)

< Solution of general TCSP involves
enforcing path-constistency

— Approximations such as loose
path consistency can be used to

detect inconsistencies Cop = (tot)) o (t,1,) = [18][ 7.12] =[112]
Cor M (tt,) =[7,201M[112] =[7,12]

Subbarao Kambhampati

{Dechter
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What makes CSP problems hard?

e
&
S
s

Asignments to individual A gvf\
variables that seem locally
consistent are often globally
infeasible, causing costly
backtracking.

The difficulty of a CSP/SAT
problem depends on

— Number of variables
(propositions)

— Number of constraints
(clauses)

— Arity of constraints

— Degree of local consistency

»
>

1
~4'3‘cons+rain+s / # Variables

MAz: Recent Advances in Al Dlanninz. A riic_sir Subbarao Kambhampati




Hardness & Local Consistency

< An n-variable CSP problem is said to be k-consistent iff every
consistent assignment for (k-1) of the n variables can be
extended to include any k-th variable
» Directional consistency: Assignment to first k-1 variables
can be extended to the k-th variable
» Strongly k-consistent if it is j-consistent for all j from 1 to k
< Higher the level of (strong) consistency of problem, the lesser
the amount of backtracking required to solve the problem
— A CSP with strong n-consistency can be solved without any
backtracking
< We can improve the level of consistency of a problem by
explicating implicit constraints
— Enforcing k-consistency is of  O(nX) complexity
» Break-even seems to be around k=2 (“arc consistency”) or 3
(“path consistency”)

» Use of directional and partial consistency enforcement
techniques
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