
Improving the Temporal Flexibility of Position Constrained Metric Temporal Plans

Minh B. Do & Subbarao Kambhampati�

Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

fbinhminh,raog@asu.edu

Abstract

In this paper we address the problem of post-processing po-
sition constrained plans, output by many of the recent effi-
cient metric temporal planners, to improve their execution
flexibility. Specifically, given a position constrained plan,
we consider the problem of generating a partially ordered
(aka “order constrained”) plan that uses the same actions.
Although variations of this “partialization” problem have
been addressed in classical planning, the metric and tem-
poral considerations bring in significant complications. We
develop a general CSP encoding for partializing position-
constrained temporal plans, that can be optimized under an
objective function dealing with a variety of temporal flexi-
bility criteria, such as makespan. We then propose several
approaches (e.g. coupled CSP, MILP) of solving this en-
coding. We also present a greedy value ordering strategy
that is designed to efficiently generate solutions with good
makespan values for these encodings. We demonstrate the
effectiveness of our greedy partialization approach in the
context of a recent metric temporal planner that produces
p.c. plans. We also compare the effects of greedy and opti-
mal partialization using MILP encodings on the set of met-
ric temporal problems used at the Third International Plan-
ning Competition.

1 Introduction

Of late, there has been significant interest in synthesizing and
managing plans for metric temporal domains. Plans for metric
temporal domains can be classified broadly into two categories–
“position constrained” (p.c.) and “order constrained” (o.c.).
The former specify the exact start time for each of the actions
in the plan, while the latter only specify the relative orderings
between the actions. The two types of plans offer complemen-
tary tradeoffs vis a vis search and execution. Specifically, con-
straining the positions gives complete state information about
the partial plan, making it easier to control the search. Not sur-
prisingly, several of the more effective methods for plan syn-
thesis in metric temporal domains search for and generate p.c.
plans (c.f. TLPlan[Bacchus & Ady, 2001], Sapa[Do & Kamb-
hampati, 2001], TGP [Smith & Weld, 1999], MIPS[Edelkamp,
2001]). At the same time, from an execution point of view, o.c.

�We thank David E. Smith and the ICAPS reviewers for useful
comments on the earlier drafts of this paper. This research is supported
in part by the NSF grant IRI-9801676, and the NASA grants NAG2-
1461 and NCC-1225. Copyright c
 2002, American Association for
Artificial Intelligence (www.aaai.org). All rights reserved.

plans are more advantageous than p.c. plans –they provide bet-
ter execution flexibility both in terms of makespan and in terms
of “scheduling flexibility” (which measures the possible execu-
tion traces supported by the plan [Tsamardinos et. al., 1998;
Nguyen & Kambhampati, 2001]). They are also more effective
in interfacing the planner to other modules such as schedulers
(c.f. [Srivastava et. al., 2001; Laborie & Ghallab, 1995]), and
in supporting replanning and plan reuse [Veloso et. al., 1990;
Ihrig & Kambhampati, 1996].

A solution to the dilemma presented by these complemen-
tary tradeoffs is to search in the space of p.c. plans, but post-
process the resulting p.c. plan into an o.c. plan. Although such
post-processing approaches have been considered in classical
planning ([Kambhampati & Kedar, 1994; Veloso et. al., 1990;
Backstrom, 1998]), the problem is considerably more complex
in the case of metric temporal planning. The complications in-
clude the need to handle the more expressive action representa-
tion and the need to handle a variety of objective functions for
partialization (in the case of classical planning, we just consider
the least number of orderings)

Our contribution in this paper is to first develop a Constraint
Satisfaction Optimization Problem (CSOP) encoding for con-
verting a p.c. plan in metric/temporal domains into an o.c. plan.
This general framework allows us to specify a variety of objec-
tive functions to choose between the potential partializations of
the p.c. plan. Among several approaches to solve this CSOP en-
coding, we will discuss in detail the one approach that converts
it to an equivalent MILP encoding, which can then be solved
using any MILP solver such as CPLEX or LPSolve to produce
an o.c. plan optimized for some objective function. Our in-
tent in setting up this encoding was not to solve it to optimum–
since that is provably NP-hard [Backstrom, 1998]–but to use
it for baseline characterization of greedy partialization algo-
rithms. The greedy algorithms that we present can themselves
be seen as specific variable and value ordering strategies over
the CSOP encoding. We will demonstrate the effectiveness of
these greedy partialization algorithms in the context of our met-
ric/temporal planner called Sapa[Do & Kambhampati, 2001;
2002]. Our results show that the temporal flexibility measures,
such as the makespan, of the plans produced by Sapa can be
significantly improved while retaining Sapa’s efficiency advan-
tages. The greedy partialization algorithms developed in this
paper were used as part of the Sapa implementation that took
part in the 2002 International Planning Competition [Fox &
Long, 2002]. At the competition, Sapa was one of the best plan-
ners for metric temporal domains, both in terms of time and in

T4 T2T3 T1

{Q} {G} {Q} {G}

R
Q

S
~R

R
S

R
G

A4:A3:

A1: A2:

Q
R

~R
S

S
R

R
G

Figure 1: Examples of p.c. and o.c. plans

terms of quality. The partialization procedures clearly helped
the quality of the plans produced by Sapa. We also show that at
least for the competition domains, the option of solving the en-
codings to optimum, is not particularly effective in improving
the makespan further.

The paper is organized as follows. In Section 2, we provide
the definitions related to the partialization problem. Then, in
Section 3 we discuss the CSOP encoding for the partialization
problem. Section 4 focuses on how the CSOP encoding can
be solved. In Section 4, we also provide a greedy variable and
value ordering strategies for solving the encoding. The empir-
ical results for this greedy ordering strategy and the optimal
partialization using MILP encodings are provided in Section 5.
Section 6 discusses the related work and Section 7 presents our
conclusions.

2 Problem Definition
Position and Order constrained plans: A position con-
strained plan (p.c.) is a plan where the execution time of each
action is fixed to a specific time point. An order constrained
(o.c.) plan is a plan where only the relative orderings between
the actions are specified.

There are two types of position constrained plans: serial
and parallel. In a serial position constrained plan, no concur-
rency is allowed. In a parallel position constrained plan, ac-
tions are allowed to execute concurrently. Examples of the se-
rial p.c. plans are the ones returned by classical planners such
as AltAlt[Nguyen et. al., 2001], HSP[Bonet & Geffner, 1997],
FF[Hoffmann, 2000], GRT [Refanidis & Vlahavas, 2001]. The
parallel p.c. plans are the ones returned by Graphplan-based
planners and the temporal planners such as Sapa [Do & Kamb-
hampati, 2001], TGP[Smith & Weld, 1999], TP4[Haslum &
Geffner, 2001]. Examples of planners that output order con-
strained (o.c.) plans are Zeno[Penberthy & Weld, 1994],
HSTS[Muscettola, 1994], IxTeT[Laborie & Ghallab, 1995].

Figure 1 shows, on the left, a valid p.c. parallel plan con-
sisting of four actions A1; A2; A3; A4 with their starting time
points fixed to T1; T2; T3; T4, and on the right, an o.c plan con-
sisting of the same set of actions and achieving the same goals.
For each action, the marked rectangular regions show the du-
rations in which each precondition or effect should hold during
each action’s execution time. The shaded rectangles represent
the effects and the white ones represent preconditions. For ex-
ample, action A1 has a precondition Q and effect R and action
A3 has no preconditions and two effects :R and S.

It should be easy to see that o.c. plans provide more execu-
tion flexibility than p.c. plans. In particular, an o.c. plan can
be “dispatched” for execution in any way consistent with the
relative orderings among the actions. In other words, for each
valid o.c. plan Poc, there may be multiple valid p.c. plans that
satisfy the orderings in Poc, which can be seen as different ways
of dispatching the o.c. plan.

While generating a p.c. plan consistent with an o.c. plan

is easy enough, in this paper, we are interested in the reverse
problem–that of generating an o.c. plan given a p.c. plan.
Partialization: Partialization is the process of generating a
valid order constrained plan Poc from a set of actions in a given
position constrained plan Ppc.

We can use different criteria to measure the quality of the o.c.
plan resulting from the partialization process (e.g. makespan,
slack, number of orderings). One important criterion is a plan’s
“makespan.” The makespan of a plan is the minimum time
needed to execute that plan. For a p.c. plan, the makespan
is the duration between the earliest starting time and the latest
ending time among all actions. In the case of serial p.c. plans,
it is easy to see that the makespan will be greater than or equal
to the sum of the durations of all the actions in the plan.

For an o.c. plan, the makespan is the minimum makespan
of any of the p.c. plans that are consistent with it. Given an
o.c. plan Poc, there is a polynomial time algorithm based on
topological sort of the orderings in Poc, which outputs a p.c.
planPpc where all the actions are assigned earliest possible start
time point according to the orderings in Poc. The makespan of
that p.c. plan Ppc is then used as the makespan of the original
o.c. plan Poc.

3 Formulating a CSOP encoding for the
partialization problem

In this section, we develop a general CSOP encoding for the
partialization problem. The encoding contains both continuous
and discrete variables. The constraints in the encoding guaran-
tee that the final o.c plan is consistent, executable, and achieves
all the goals. Moreover, by imposing different user’s objective
functions, we can get the optimal o.c plan by solving the encod-
ing.

3.1 Preliminaries
Let Ppc, containing a set of actions A and their fixed starting
times stpc

A
, be a valid p.c. plan for some temporal planning

problem P . We assume that each action A in Ppc is in the stan-
dard PDDL2.1 Level 3 representation [Fox & Long, 2001].1 To
facilitate the discussion on the CSOP encoding in the following
sections, we will briefly discuss the action representation and
the notation used in this paper:

� For each (pre)condition p of actionA, we use [stpA; et
p
A] to

represent the duration in which p should hold (stpA = et
p
A

if p is an instantaneous precondition).

� For each effect e of action A, we use eteA to represent the
time point at which e occurs.

� For each resource r that is checked for preconditions or
used by some action A, we use [strA; et

r
A] to represent the

duration over which r is accessed by A.

� The initial and goal states are represented by two new ac-
tions AI and AG. AI starts before all other actions in the
Ppc, it has no preconditions and has effects representing
the initial state. AG starts after all other actions in Ppc, has
no effects, and has top-level goals as its preconditions.

� The symbol “�” is used through out this section to denote
the relative precedence orderings between two time points.

1PDDL2.1 Level 3 is the highest level used in the Third Interna-
tional Planning Competition.

Note that the values of stpA; et
p
A; et

e
A; st

r
A; et

r
A are fixed in the

p.c plan but are only partially ordered in the o.c plan.

3.2 The CSOP encoding for the partialization
problem

Let Poc be a partialization of Ppc for the problem P . Poc must
then satisfy the following conditions:

1. Poc contains the same actions A as Ppc.

2. Poc is executable. This requires that the (pre)conditions of
all actions are satisfied, and no pair of interfering actions
are allowed to execute concurrently.

3. Poc is a valid plan for P . This requires that Poc satisfies
all the top level goals (including deadline goals) of P .

4. (Optional) The orderings on Poc are such that Ppc is a legal
dispatch (execution) of Poc.

5. (Optional) The set of orderings in Poc is minimal (i.e., all
ordering constraints are non-redundant, in that they cannot
be removed without making the plan incorrect).

Given that Poc is an order constrained plan, ensuring goal
and precondition satisfaction involves ensuring that (a) there is
a causal support for the condition and that (b) the condition,
once supported, is not violated by any possibly intervening ac-
tion. The fourth constraint ensures that Poc is in some sense an
order generalization of Ppc [Kambhampati & Kedar, 1994]. In
the terminology of [Backstrom, 1998], the presence of fourth
constraint ensures that Poc is a de-ordering of Ppc, while in its
absence Poc can either be a de-ordering or a re-ordering. This
is not strictly needed if our interest is only to improve temporal
flexibility. Finally, the fifth constraint above is optional in the
sense that any objective function defined in terms of the order-
ings anyway ensures that Poc contains no redundant orderings.

In the following, we will develop a CSP encoding for finding
Poc that captures the constraints above. This involves speci-
fying the variables, their domains, and the inter-variable con-
straints.
Variables: The encoding will consist of both continuous and
discrete variables. The continuous variables represent the tem-
poral and resource aspects of the actions in the plan, and the
discrete variables represent the logical causal structure and or-
derings between the actions. Specifically, for the set of actions
in the p.c. plan Ppc and two additional dummy actions Ai and
Ag representing the initial and goal states,2 the set of variables
are as follows:
Temporal variables: For each action A, the encoding has one
variable stA to represent the time point at which we can start
executing A. The domain for this variable is Dom(stA) =
[0;+1).
Resource variables: For each action A and the resource r 2
R(A), we use a pseudo variable3 V r

A to represent the value of r
(resource level) at the time point strA.
Discrete variables: There are several different types of dis-
crete variables representing the causal structure and qualitative
orderings between actions:

2Ai has no preconditions and has effects that add the facts in the
initial state. Ag has no effect and has preconditions representing the
goals.

3We call V a pseudo variable because the constraints involving V
are represented not directly, but rather indirectly by the constraints in-
volving Ur

A; see below.

� Causal effect: We need variables to specify the causal
link relationships between actions. Specifically, for each
condition p 2 P (A) and a set of actions fB1; B2:::::Bng
such that p 2 E(Bi), we set up one variable: Sp

A where
Dom(SpA) = fB1; B2::::Bng.

� Interference:Two actions A and A0 are in logical interfer-
ence on account of p if p 2 Precond(A) [Effect(A)
and :p 2 Effect(A0). For each such pair, we introduce
one variable IpAA0 : Dom(IpAA0) = f�;�g (A beforep A

0,
or A afterp A

0). For the plan in Figure 1, the interference
variables are: IRA1A3

and IRA2A3
. Sometimes, we will use

the notation A �p A
0 to represent IpAA0 =�.

� Resource ordering: For each pair of actions A and A 0 that
use the same resource r, we introduce one variable R r

AA0

to represent the resource-enforced ordering between them.
If A and A0 can not use the same resource concurrently,
then Dom(Rr

AA0) = f�;�g, otherwise Dom(Rr
AA0) =

f�;�;?g. Sometimes, we will use the notation A �r A
0

to represent Rp
AA0 =�.

Following are the necessary constraints to represent the rela-
tions between different variables:

1. Causal link protections: If B supports p to A, then every
other action A0 that has an effect :p must be prevented
from coming between B and A:
S
p
A = B) 8A0; :p 2 E(A0) : (Ip

A0B
=�) _ (Ip

A0A
=�)

2. Constraints between ordering variables and action start
time variables: We want to enforce that if A �p A0 then
et
p
A < st

p
A0 . However, because we only maintain one

continuous variable stA in the encoding for each action,
the constraints need to be posed as follows:

I
p

AA0
=�, stA + (et:pA � stA) < stA0 + (stp

A0
� stA0).

I
p

AA0
=�, stA0 + (etp

A0
� stA0) < stA + (st:pA � stA).

R
p

AA0 =�, stA + (etrA � stA) < stA0 + (strA0 � stA0).

Rr
AA0 =�, stA0 + (etrA0 � stA0) < stA + (strA � stA).

Notice that all values (stp=rA �stA), (et
p=r
A �stA) are con-

stants for all actions A, propositions p, and resource r.

3. Constraints to guarantee the resource consistency for all
actions: Specifically, for a given action A that has a re-
source constraint V r

str
A
> K, let Ur

A be an amount of re-
source r that A produces/consumes (U r

A > 0 if A pro-
duces r and U r

A < 0 if A consumes r). Suppose that
fA1; A2; ::::::Ang is the set of actions that also use r and
Initr be the value of r at the initial state, we set up a con-
straint that involves all variables Rr

AiA
as follows:

Initr +
X

Ai�rA

Ur
Ai

+
X

Ai?rA;Ur
Ai
<0

Ur
Ai

> K (3)

(where Ai �r A is a shorthanded notation for Rr
AiA

=�).
The constraint above ensures that regardless of how
the actions Ai that have no ordering relations with A
(Rr

AiA
=?) are aligned temporally with A, the orderings

between A and other actions guarantee that A has enough
resource (V r

str
A
> K) to execute.

Note that in the constraint (3) above, the values ofU r
Ai

can
be static or dynamic (i.e. depending on the relative order-
ings between actions in Poc). Let’s take the actions in the

IPC3’s ZenoTravel domain for example. The amount of
fuel consumed by the action fly(cityA; cityB) only de-
pends on the fixed distance between cityA and cityB and
thus is static for a given problem. However, the amount of
fuel U fuel

refuel = capacity(plane)�fuel(plane) produced
by the action A = refuel(plane) depends on the fuel
level just before executing A. The fuel level in turn de-
pends on the partial order between A and other actions in
the plan that also consume/produce fuel(plane). In gen-
eral, let U r

A = f(f1; f2; :::fn) (3.1) where fi are functions
that have values modified by some actions fAi

1
; Ai

2
:::Ai

mg
in the plan. Because all Ai

k are mutex with A according
to the PDDL2.1 specification, there is a resource ordering
variable Rfi

AAi
with Dom(Rfi

AAi
) = f�;�g and the value

V
fi
stA can be computed as:

V
fi
stA = Initr +

X

Ai�fi
A

U
fi
Ai

(3:2)

Then, we can subtitute the value of V fi
stA in equation (3.2)

for each variable fi in (3.1). Solving the set of equations
(3.1) for all action A and resource r, we will find the value
of U r

A. Finally, that value of U r
A can be used to justify the

consistency of the CSP constraint (3) for each resource-
related preconditionV r

str
A
> K. Other constraints V r

str
A
?K

(? =�;�; <) are handled similarly.

4. Deadlines and other temporal constraints: These model
any deadline type constraints in terms of the temporal vari-
ables. For example, if all the goals need to be achieved be-
fore time tg , then we need to add a constraint: stAg

� tg.
Other temporal constraints, such as those that specify that
certain actions should be executed before/after certain time
points, can also be handled by adding similar temporal
constraints to the encoding (e.g L � stA � U).

5. Constraints to make the orderings on Poc consistent with
Ppc (optional): Let TA be the fixed starting time point of
actionA in the original p.c plan Ppc. To guarantee that Ppc
is consistent with the set of orderings in the resulting o.c
plan Poc, we add a constraint to ensure that the value TA is
always present in the live domain of the temporal variable
stA.

3.3 Objective function

Each satisficing assignment for the encoding above will corre-
spond to a possible partialization of Ppc, i.e., an o.c. plan that
contains all the actions of Ppc. However, some of these assign-
ments (o.c. plans) may have better execution properties than
the others. We can handle this by specifying an objective func-
tion to be optimized, and treating the encoding as a Constraint
Satisfaction Optimization (CSOP) encoding. The only require-
ment on the objective function is that it is specifiable in terms
of the variables of the encodings. Objective functions such as
makespan minimization and order minimization readily satisfy
this requirement. Following are several objective functions that
worth investigating:
Temporal Quality:

� Minimum Makespan: minimizeMaxA(stA + durA)

Discrete CSP Solver
Assign value for ordering variables
Checking bound values

Simple Temporal Network
Finding Minimal Network
Finding temporal bound

• Inconsistency detection
• Temporal Bounds

Solution
• Feasible values for
all actions start time
• Value of the obj func
• Orderings between
action’s starting times

♣A p.c plan
♣Objective function

Figure 2: General leveled CSP framework to solve the partial-
ization problem

� Maximize summation of slacks:

Maximize
X

g2Goals

(stgAg
� et

g
A) : SgAg

= A

� Maximize average flexibility:
Maximize Average(Domain(stA))

Ordering Quality:
� Fewest orderings: minimize#(stA � stA0)

4 Solving the partialization encoding
Given the presence of both discrete and temporal variables in
this encoding, the best way to handle it is to view it as a
leveled CSP encoding (see Figure 2), where in the satisficing
assignments to the discrete variables activate a set of tempo-
ral constraints between the temporal variables. These tempo-
ral constraints, along with the deadline and order consistency
constraints are represented as a temporal constraint network
[Dechter et. al., 1990]. Solving the network involves mak-
ing the domains and inter-variable intervals consistent across all
temporal constraints [Tsamardinos et. al., 1998]. The consis-
tent temporal network then represents the o.c. plan. Actions in
the plan can be executed in any way consistent with the tempo-
ral network (thus providing execution flexibility). All the tem-
poral constraints are “simple” [Dechter et. al., 1990] and can
thus be handled in terms of a simple temporal network. Opti-
mization can be done using a branch and bound scheme on top
of this.

Although the leveled CSP framework is a natural way of
solving this encoding, unfortunately, there are no off-the-shelf
solvers which can support its solution. Because of this, for the
present, we convert the encoding into a Mixed Integer Linear
Programming (MILP) problem, so it can be solved using exist-
ing MILP solvers, such as LPSolve and CPLEX. In the follow-
ing, we discuss the details of the conversion into MILP.

We remind the readers that as mentioned in the introduction,
the purpose of setting up the MILP conversion was not to use it
as a practical means of partializing the p.c. plans, but rather to
use it as a baseline for evaluating the greedy algorithms–which
will be presented in Section 4.2.

4.1 Optimal Post-Processing Using MILP Encoding
Given the CSOP encoding discussed in Section 3, we can con-
vert it into a Mixed Integer Linear Program (MILP) encoding

and use any standard solver to find an optimal solution. The
final solution can then be interpreted to get back the o.c plan.
In this section, we will first discuss the set of MILP variables
and constraints needed for the encoding, then, we concentrate
on the problem of how to setup the objective functions using
this approach.

MILP Variables and Constraints
For the corresponding CSOP problem, the set of variables and
constraints for the MILP encoding is as follows:
Variables: We will use the the binary integer variables (0,1)
to represent the logical orderings between actions and linear
variables to represent the starting times of actions in the CSOP
encoding (Section 4.2).

� Binary (0,1) Variables:

1. Causal effect variables: X
p
AB = 1 if SpA = B,

X
p
AB = 0 otherwise.

2. Mutual exclusion (mutex) variables: Y
p
AB = 1 if

I
p
AB =�, Y p

BA = 1 if IpAB =�,
3. Resource interference variables: X r

AA0 = 1 if A �r

A0 (i.e. etrA < strA0). N r
AA0 = 1 if there is no or-

der between two actions A and A0 (they can access
resource r at the same time).4

� Continuous Variable: one variable stA for each action A
and one variable stAg

for each goal g.

Constraints: The CSP constraints discussed in Section 4.2 can
be directly converted to the MILP constraints as follows:

� Mutual exclusion: Y p
AB + Y

p
BA = 1

� Only one supporter: 8p 2 Precond(A) : �X p
BA = 1

� Causal-link protection:
8A0;:p 2 Effect(A0) : (1�Xp

AB)+(Y p
A0A+Y

p
BA0) � 1

� Ordering and temporal variables relation:
M:(1�X

p
AB) + (stpB � et

p
A) > 0; where M is a very big

constant.5

� Mutex and temporal variables relation:
M:(1� Y

p
AB) + (stpB � et

p
A) > 0

� Resource-related constraints: Let U r
A be the amount of re-

source r that the action A uses. U r
A < 0 if A consumes

(reduces) r and U r
A > 0 if A produces (increases) r. For

now, we assume that U r
A are constants for all actions A in

the original p.c plan returned by Sapa and will elaborate
on this matter in the later part of this section.

– Only one legal ordering between two actions:
Xr
AA0 +Xr

A0A +Nr
AA0 = 1

– Resource ordering and temporal ordering relations:
M:(1�Xr

AA0) + (strA0 � etrA) > 0

4In PDDL 2.1, two actions A and B are allowed to access the same
function (resource) overlappingly if: (1) A do not change any function
that B is checking as its precondition; (2) A and B using the functions
to change the value of r in a commute way (increase/decrease only).

5The big constant M enforces the logical constraint: Xp
AB = 1)

et
p
A < st

p
B . Notice that if Xp

AB = 0 then no particular relation
is needed between etpA and stpB . In this case, the objective function
would take care of the actual value of etpA and stpB . The big M value
can be any value which is bigger than the summation of the durations
of all actions in the plan.

– Constraints for satisficing resource-related precondi-
tions:

Initr +
X

Xr
A0A:U

r
Ai

+
X

Ur
B
<0

Nr
AB:U

r
B > K (4)

if the condition to execute action A is that the re-
source level of r when A starts executing is higher
than K.6

� Constraints to enforce that all actions start after Ainit and
finish before Agoal:
8A : stA � stAinit

� 0; stAgoal
� (stA + durA) � 0.

� Goal deadline constraints: stAg
� Deadline(g)

Note that in the equation (4) listed above, we assume that U r
A

are all constants for all resource-related functions r and actions
A. The reason is that if U r

A are also variables (non-constant),
then equation (4) is no longer a linear equation (and thus can
not be handled by a MILP solver). In Section 3.2, however, we
discussed the cases in which the values of U r

A are not constants
and depend on the relative orders between A and other actions
in the plan. Therefore, to use the MILP approach, we need to
add additional constraints to ensure that the values of U r

A are
all constants and equal to the U r

A values in the original p.c plan.
By doing so, we in some sense enforce that the actions in Poc

and Ppc are physically identical in terms of the reasources they
produce/consume.

To ensure thatU r
A are constants and consistent with the order-

ings in the final o.c planPoc, we have to do some pre-processing
and add additional linear constraints to the MILP encoding.
First, we pre-process Ppc and for each action A and function
f which A accesses/changes the value of, we record the value
V
f

stf
A

andU f
A. Let’s call those fixed values V PCf

stf
A

andUPCf
A.

Then, for each action A and function f which A accesses the
value, we add the following MILP constraint to the encoding:

V r
str
A
= Initr +

X
X

f
AiA

:UPC
f
Ai

= V PC
f

stf
A

(4:2)

The linear constraint (4.2) means that the orderings between
A and other actions that change the value of f ensure that the
value of f when we executeA is V f

stf
A

= V PC
f

stf
A

. Then, using

equation (3.1) (Section 3.2), the value of U r
A can be calculated

as:

Ur
A = f(f1; :::fn) = f(V PCf1

st
f1
A

; :::V PC
f1

stfn
A

) = UPCr
A

and is fixed for every pair of action A and resource r regardless
of the orderings in the final o.c plan Poc.

MILP Objective Functions
Starting from the base encoding above, we can model a variety
of objective functions to get the optimal o.c. plans upon solving
MILP encoding as follows:
Minimum Makespan:

� An additional (continuous) variable to represent the plan
makespan value: Vms

6This constraint basically means that even if the actions that has
no ordering with A (Nr

AA0 = 1) align with A in the worst possible
way, the A has enough r at its starting time. Notice also that the initial
level of r can be considered as the production of the initial state action
Ainit, which is constrained to execute before all other actions in the
plan.

� Additional constraints for all actions in the plan:
8A : stA + durA � Vms

� MILP Objective function: minimize Vms

Maximize minimum slack7 value:

� An additional (continuous) variable to represent the mini-
mum slack value: Vms

� Additional constraints for all goals:
8g8A : Vms � (M:X

g
AAg

+ (stAg
� et

g
A)) � 0, M is a

very big constant. This constraint contains two parts. The
first part: M:X

g
AAg

+(stAg
� et

g
A) guarantees that among

all actions that add g (cause g for Ag), the real supporting
actionA (Xg

AAg
= 1) is the one that is used to measure the

slack value (i.e. among all actions that can potentially sup-
port goal g, the value M:X

g
AAg

+ (stAg
� et

g
A) is biggest

forA choosen to support g). The whole equation with Vms

involved would then guarantee that the slack value is mea-
sured correctly. The same big M value is used across all
the constraints for different goals and would be subtracted
from the final Vms value to get the correct minimum slack
value.

� MILP objective function: minimize Vms

Minimum number of orderings:

� Additional binary ordering variables for every pair of ac-
tions: OAB

� Additional constraints:
8A;B; p : OAB �X

p
BA � 0; OAB � Y

p
AB � 0

� MILP objective function: minimize�OAB

4.2 Greedy value ordering strategies for solving the
encoding

Solving the CSOP encoding to optimum, whether by MILP
encoding or otherwise, will be NP-hard problem (this follows
from [Backstrom, 1998]). Our motivation in developing the en-
coding was not to solve it to optimum, but rather to develop
greedy variable and value ordering strategies for the encoding
which can ensure that the very first satisficing solution found
will have a high quality in terms of the objective function. The
optimal solutions can be used to characterize how good the so-
lution found by greedy variable/value ordering procedure.

Clearly, the best greedy variable/value ordering strategies
will depend on the specific objective function. In this section,
we will develop strategies that are suited to objective functions
based on minimizing the makespan. Specifically, we discuss a
value ordering strategy that finds an assignment to the CSOP
encoding such that the corresponding o.c plan P oc is biased to
have a reasonably good makespan. The strategy depends heav-
ily on the positions of all the actions in the original p.c. plan.
Thus, it works based on the fact that the alignment of actions
in the original p.c. plan guarantees that causality and preserva-
tion constraints are satisfied. Specifically, all CSP variables are
assigned values as follows:
Supporting Variables: For each variable Sp

A representing the
action that is used to support precondition p of action A, we
choose action A0 such that:

1. p 2 E(A0) and etpA0 < st
p
A in the p.c. plan Ppc.

7The objective function of maximize maximum slack and maximize
summation of slack can be handled similarly.

2. There is no action B s.t: :p 2 E(B) and etpA0 < et
:p
B <

st
p
A in Ppc.

3. There is no other action C that also satisfies the two con-
ditions above and etpC < et

p
A0 .

Interference ordering variables: For each variable I pAA0 , we
assign values based on the fixed starting times of A and A 0 in
the original p.c plan Ppc as follows:

1. IpAA0 =� if etpA < st
p
A0 in Ppc.

2. IpAA0 =� if etpA0 < st
p
A in Ppc.

Resource variables: For each variables Rr
AA0 , we assign val-

ues based on the fixed starting times of A and A 0 in the original
p.c plan Ppc as follows:

� Rr
AA0 =� if etrA < strA0 in Ppc.

� Rr
AA0 =� if etrA0 < strA in Ppc.

� Rr
AA0 =? otherwise.

This strategy is backtrack-free due to the fact that the original
p.c. plan is correct. Thus, all (pre)conditions of all actions are
satisfied and for all supporting variables we can always find an
action A0 that satisfies the three constraints listed above to sup-
port a precondition p of action A. Moreover, one of the tempo-
ral constraints that lead to the consistent ordering between two
interfering actions (logical or resource interference) will always
be satisfied because the p.c. plan is consistent and no pair of in-
terfering actions overlap each other in Ppc. Thus, the search is
backtrack-free and we are guaranteed to find an o.c. plan due
to the existence of one legal dispatch of the final o.c. plan Poc

(which is the starting p.c. plan Ppc).
The final o.c. plan is valid because there is a causal-link

for every action’s precondition, all causal links are safe, no
interfering actions can overlap, and all the resource-related
(pre)conditions are satisfied. Moreover, this strategy ensures
that the orderings on Poc are consistent with the original Ppc.
Therefore, because the p.c plan Ppc is one among multiple p.c
plans that are consistent with the o.c plan Poc, the makespan
of Poc is guaranteed to be equal or better than the makespan of
Ppc.
Complexity: It is also easy to see that the complexity of the
greedy algorithm is O(S � A + I + O) where S is the number
of supporting relations, A is the number of actions in the plan,
I is the number of interference relations andO is the number of
ordering variables. In turn S � A�P , I � A2 andO � P �A2

where P is the number of preconditions of an action. Thus, the
complexity of the algorithm is O(P �A2).

5 Empirical Evaluation
We have implemented the greedy variable and value ordering
discussed in the last section (Section 4.2) and have also imple-
mented the MILP encoding discussed in Section 4.1. We tested
our implementation with the Sapa planner. Sapa is a forward
state space planner that outputs parallel p.c. plans. The results
reported in [Do & Kambhampati, 2001] show that while Sapa is
quite efficient, it often generates plans with inferior makespan
values. Our aim is to see how much of an improvement our par-
tialization algorithm provides for the plans produced by Sapa.

Given a p.c plan Ppc, the greedy partialization (GP) and op-
timal partialization (OP) routines return three different plans.
The first is what we call a logical order constrained (logical

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

problems

m
ak

es
p

an

Sum Dur

Sapa's MS

After PP

Opt. MS

(a) With drive inter-city action.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

problems

m
ak

es
p

an

Total Dur

Sapa MS

After PP

Opt. MS

(b) Without drive inter-city action.

Figure 3: Compare different makespan values for random generated temporal logistics problems

o.c) plan. It consists of a set of logical relations between ac-
tions (e.g. causal link from the end point of A1 to the start
point of A2). The logical relations include (i) causal link, (ii)
logical mutex, and (iii) resource mutex. The second is a tempo-
ral order constrained (temporal o.c) plan in which the temporal
o.c plan is represented by the temporal relations between the
starting time points of actions. This in effect collapses multiple
logical relations (in a logical o.c plan) between a pair of actions
(A1; A2) into a single temporal relation between A1 and A2.
The temporal o.c plan is actually a Simple Temporal Network
(STN) [Dechter et. al., 1990].8 The third plan is the p.c plan
that is a legal dispatch of the logical or temporal o.c plan, in
which each action is given an earliest starting time allowed by
the logical/temporal ordering in Poc. The makespan of this p.c
plan is the minimal makespan of any dispatch of Poc and is thus
reported as the makespan after post-processing.

We report the results for the greedy partialization approach
in Section 5.1 and Section 5.2. The empirical results for the op-
timal partialization using MILP approach are discussed in Sec-
tion 5.3. The MILP solver that we used is the Java version of
the lp solve package9. Since this solver is also implemented in
Java, integrating it into the Sapa package was somewhat easier.

5.1 Evaluating the Effect of Greedy Partialization
The first test suite is the 80 random temporal logistics provided
with the TP4 planner. In this planning domain, trucks move
packages between locations inside a city and airplanes move
them between cities. Figure 3 shows the comparison results
for only the 20 largest problems, in terms of number of cities
and packages, among 80 of that suite. In the left graph of Fig-
ure 3, trucks are allowed to move packages between different
locations in different cities, while in the right graph of the same
figure, trucks are not allowed to do so.

The graphs show the comparison between four different
makespan values: (1) the optimal makespan (as returned by
TGP [Smith & Weld, 1999]); (2) the makespan of the plan
returned by Sapa; (3) the makespan of the o.c. resulting
from the greedy algorithm for partialization discussed in the
last section; and (4) the total duration of all actions, which

8While logical o.c plan gives more information, the temporal o.c
plan is simpler and more compact. Moreover, from the flexibility ex-
ecution point of view, temporal o.c plan may be just enough. The
temporal o.c plan can be built from a logical o.c plan by sorting the
logical relations between each paif of actions. It’s not clear how to
build a logical o.c plan from a temporal o.c plan, though.

9lp solve can be downloaded from
http://www.cs.wustl.edu/j̃avagrp/help/LinearProgramming.html

would be the makespan value returned by several serial tem-
poral planners such as GRT [Refanidis & Vlahavas, 2001], or
MIPS [Edelkamp, 2001] if they produce the same solution as
SapaṄotice that the makespan value of zero for the optimal
makespan indicates that the problem is not solvable by TGP.

For the first test which allows driving between cities action,
compared to the optimal makespan plan for the problem (as pro-
duced by TGP and TP4), on the average, the makespan of the
serial p.c. plans (i.e, cumulative action duration) is about 4.34
times larger, the makespan of the plans output by Sapa are on
the average 3.23 times larger and the Sapa plans after post pro-
cessing are about 2.61 times longer (over the set of 75 solvable
problems; TGP failed to solve the other 5). For the second test,
without the inter-city driving actions. The comparison results
with regard to optimal solutions are: 2.39 times longer for se-
rial plans, 1.75 times longer for the plans output by Sapa, and
1.31 times longer after partialization. These results are aver-
aged over the set of 69 out of the 80 problems that were solvable
by TGP.10

Thus, the partialization algorithm improves the makespan
values of the plans output by Sapa by an average of 20% in the
first set and 25% in the second set. Notice also that the same
technique can be used by GRT [Refanidis & Vlahavas, 2001]
or MIPS [Edelkamp, 2001] and in this case, the improvement
would be 40% and 45% respectively for the two problem sets.

5.2 Use of partialization at IPC-2002
The greedy partialization technique described in this paper was
part of the implementation of Sapa with which we took part
in the International Planning Competition (IPC-2002). At IPC,
Sapa was one of the best planners in the most expressive metric
temporal domains, both in terms of planning time, and in terms
of plan quality (measured in makespan). The credit for the plan
quality can be attributed in large part to the partialization tech-
nique. In Figure 4, we show the comparison results on the qual-
ity of plans returned by Sapa and its nearest competitors from
the Satellite (complex setting) and Rovers domains–two of the
most expressive domains at IPC, motivated by NASA applica-
tions.11 It is interesting to note that although TP4 [Haslum &
Geffner, 2001] guarantees optimal makespan, it was unable to
solve more than 3 problems in the Satellite domain. Sapa was

10While TGP could not solve several problems in this test suite,
Sapa is able to solve all 80 of them.

11The competition results were collected and distributed by the
IPC3’s organizers and can be found at [Fox & Long, 2002]. Detailed
descriptions of domains used in the competition are also available at
the same place.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y

Problem number

Satellite-Complex

Sapa (16 solved)
MIPS (Plain setting) (10 solved)

TP4 (3 solved)

40

60

80

100

120

140

160

180

200

220

240

260

0 2 4 6 8 10 12 14 16

Q
ua

lit
y

Problem number

Rovers-Time

Sapa (11 solved)
MIPS (Plain setting) (9 solved)

Figure 4: Comparing the quality (in terms of makespan) of the plan returned by Sapa to MIPS and TP4 in “Satellite” and “Rover”
domains–two of the most expressive domains motivated by NASA applications.

domains orig/tt-dur gpp/tt-dur gpp/orig
zeno simpletime 0.8763 0.7056 0.8020

zeno time 0.9335 0.6376 0.6758
driverlog simpletime 0.8685 0.5779 0.6634

driverlog time 0.8947 0.6431 0.7226
satellite time 0.7718 0.6200 0.7991

satellite complex 0.7641 0.6109 0.7969
rovers simpletime 0.8204 0.6780 0.8342

rovers time 0.8143 0.7570 0.9227

Table 1: Comparison of different makespan values in the IPC’s
domains

able to leverage its search in the space of position-constrained
plans to improve search time, while at the same time using post-
processing to provide good quality plans.

Figures 5 provides more detailed comparison of the
makespan values before partialization, after greedy partializa-
tion, and after optimal partialization. We use problems of the
four domains used in the competition, which are: ZenoTravel,
DriverLog, Satellite, and Rovers. For each domain, we use two
sets of problems of highest levels, and take the first 15 (among
the total of 20) problems for testing. The simple-time sets in-
volve durative actions without resources, and the time/complex
sets (except the DriverLog domain) involve durative actions us-
ing resources. In each of the four figures, we show the compari-
son between the makespans of a (i) serial plan, (ii) a parallel p.c
plan returned by Sapa (iii) an o.c plan built by greedy partializa-
tion, and (iv) an o.c plan returned by solving the MILP encod-
ing. Because the two optimal-makespan planners that partici-
pated in the competition—TP4 and TPSYS—could only solve
the first few problems in each domain, we could not include the
optimal makespan values in each graph.

For this set of problems, we discuss the effect of greedy
postprocessing here and leave the comparison regarding the
results of optimal postprocessing until the next section (Sec-
tion 5.3). Table 1 summarizes the comparison between differ-
ent makespan values for 8 sets of problems in those 4 domains.
The three columns show the fractions between the makespans
of greedily partialized o.c plan (gp), the original parallel p.c
plan (orig), and the total duration of actions in the plan (tt-dur),
which is equal to the makespan of a serial plan. Of particular
interest is the last column which shows that the greedy partial-
ization approach improves the makespan values of the original
plans ranging from 8.7% in the RoversTime domain to as much

domains #Solved Diff GP Aveg. Diff
zeno simpletime 8/13 2/2 0.9723

zeno time 10/10 0/0 1.0
driverlog simpletime 11/12 2/2 0.9748

driverlog time 10/12 1/2 0.9928
satellite time 14/15 0/3 1.0

satellite complex 12/12 0/1 1.0
rovers simpletime 4/11 2/2 0.9276

rovers time 3/9 2/3 0.8355

Table 2: Comparison of optimal and greedy partializations

as 33.7% in the DriverLog Simpletime domain. Compared to
the serial plans, the greedily partialized o.c plans improved the
makespan values 24.7%-42.2%.

The cpu times for greedy partialization are extremely short.
Specifically, they were less than 0.1 seconds for all problems
with the number of actions ranging from 1 to 68. Thus, using
our partialization algorithm as a post-processing stage essen-
tially preserves the significant efficiency advantages of plan-
ners such as Sapa GRT and MIPS, that search in the space of
p.c. plans, while improving the temporal flexibility of the plans
generated by those planners.

Finally, it should be noted that partialization improves not
only makespan but also other temporal flexibility measures.
For example, the “scheduling flexibility” of a plan defined in
[Nguyen & Kambhampati, 2001], which measures the number
of actions that do not have any ordering relations among them,
is significantly higher for the partialized plans, compared even
to the parallel p.c. plans generated by TGP. In fact, our partial-
ization routine can be applied to the plans produced by TGP to
improve their scheduling flexibility.

5.3 Optimal Makespan Partialization
We would now like to empirically characterize the how far the
makespan of the plan produced by greedy partialization is in
comparison to that given by optimal parallelization. To com-
pute the optimal parallelization, we use the MILP encoding dis-
cussed in Section 4.1 and solve them using the Java version of
LP SOLVE, a public domain integer programming solver.

Table 2 shows the statistics of solving the 8 sets of problems
listed in Figures 5. The objective function is to minimize the
makespan value. The first column shows the number of prob-
lem that can be solved by LP SOLVE (it crashed when solving
the other encodings). For example, for ZenoSimpletime do-

ZenoTravel SimpleTime

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem

m
ak

es
p

an
Zeno Time

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem

m
ak

es
p

an

Total Dur

Orig MS

GPP MS

OPP MS

DriverLog SimpleTime

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem

m
ak

es
p

an

DriverLog Time

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem

m
ak

es
p

an

Satellite Time

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

problem

m
ak

es
p

an

Satellite Complex

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

problem

m
ak

es
p

an

Rovers Simpletime

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem

m
ak

es
p

an

Rovers Time

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem

m
ak

es
p

an

Figure 5: Comparison of different makespan values for problems in Zeno-Simpletime, Zeno-Time, DriverLog-SimpleTime,
DriverLog-Time, Satellite-Time, Satellite-Complex, Rovers-Simpletime, and Rovers-Time domains.

mains, LP SOLVE can solve 8 of 13 encodings. In the second
column, we show the number of problems, among the ones
solvable by LP SOLVE, for which the optimal o.c plan is differ-
ent from the greedily partialized o.c plan. For example, in the
RoversTime domains, there are 3 problems in which the two o.c
plans are different and in 2 of them, the optimal makespans are
smaller than the greedily partialized makespans. The third col-
umn shows the average ratio between the optimal and greedy
makespans (averaged over only those problems for which they
are different). The table shows that in the ZenoTime domain,
for all 10 problems, the optimal o.c plans and greedy o.c plans
are identical. For the two Satellite domains (time and com-
plex) there are 4 problems in which the two o.c plans are dif-
ferent, but there is no makespan improvement in any of these
cases. In the ZenoSimpletime and two Driverlog domains,
there are few problems in which the two o.c plans are differ-
ent but the makespan improvements are very small (0.7-2.8%).
The most promising domains for the optimal partialization ap-
proach is the Rovers domains in which 2 of 4 solved problems
in RoversSimpletime and 2 of 3 solved problems in RoversTime
have better optimal o.c plans than greedy o.c plans. The im-
provements range from 7.3% in RoversSimpletime to 16.4% in
RoversTime. For the Rovers domain, the encodings seem to be
more complicated than other domains and LP SOLVE crashed
in solving most of them. In terms of the time for solving the
encodings, where LP SOLVE was able to solve the encodings, it
did so within several seconds. As we mentioned, it did “crash”
on several larger encodings. We are planning to use more pow-
erful and robust solvers such as CPLEX to find the solutions for
the remaining unsolved encodings.

The results in Table 2 clearly show that optimal partializa-
tion is often not very much better than the greedy partialization.
This is surprising, considering the fact that the former allows
for reordering of actions. (i.e., the partialization does not have
to be consistent with the orderings in the p.c plan). We believe
that these results can be explained by looking at the potential
number of supports for the causal link constraints (i.e. num-
ber of supporters for a given action’s precondition) in the p.c
plans output by Sapa in the various domains. It turns out that in
all domains other than Rovers, the average number of supports
is very close to 1. For example, in the Satellite domains, the

largest number of supporters for a causal link is 2, but 93% of
causal links has single support. In the ZenoTravel and Driver-
Log domains, the percentage of causal links with single support
is lesser, but the largest number of supporters for a causal link is
still only 4 (and most of the problems still only have causal links
of 1 are 2 supports). Because of the dominance of causal links
with single supports, there are only few candidate o.c plans and
thus it is more likely that the greedy and optimal partialization
routines will output the same o.c plans. In the Rovers domain,
there are causal links with upto 12 supporters, and there is no
problem in which the causal link have only 1 or 2 supporters.
The percentage of single support constraints is only 77.8% for
RoversSimpletime and 81.3% for RoversTime domains. Be-
cause there are more causal links with more supporters, there
are more potential o.c plans for a given set of actions. Thus,
there is more chance that the optimal partialization will find a
better o.c plan than the greedy partialization approach.

6 Related Work
The complementary tradeoffs provided by the p.c. and o.c.
plans have been recognized in classical planning. One of the
earliest efforts that attempt to improve the temporal flexibil-
ity of plans was the work by Fade and Regnier [Fade & Reg-
nier, 1990] who discussed an approach for removing redun-
dant orderings from the plans generated by STRIPS system.
Later work by Mooney [Mooney, 1998] and Kambhampati and
Kedar [Kambhampati & Kedar, 1994]characterized this partial-
ization process as one of explanation-based order generaliza-
tion. Backstrom [Backstrom, 1998] categorized approaches for
partialization into “de-ordering” approaches and “re-ordering”
approaches. The order generalization algorithms fall under the
de-ordering category. He was also the first to point out the NP-
hardness of maximal partialization, and to characterize the pre-
vious algorithms as greedy approaches.

The work presented in this paper can be seen as a principled
generalization of the partialization approaches to metric tempo-
ral planning. Our novel contributions include: (1) providing a
CSP encoding for the partialization problem and (2) character-
izing the greedy algorithms for partialization as specific value
ordering strategies on this encoding. In terms of the former, our
partialization encoding is general in that it encompasses both

de-ordering and re-ordering partializations–based on whether
or not we include the optional constraints to make the order-
ings on Poc consistent with Ppc. In terms of the latter, the work
in [Veloso et. al., 1990] and [Kambhampati & Kedar, 1994]
can be seen as providing a greedy value ordering strategy over
the partialization encoding for classical plans. However, unlike
the strategies we presented in Sections 4.2, their value ordering
strategies are not sensitive to any specific optimization metric.

It is interesting to note that our encoding for partialization
is closely related to the so-called “causal encodings” [Kautz et.
al., 1996]. Unlike casual encodings, which need to consider
supporting a precondition or goal with every possible action in
the action library, the partialization encodings only need to con-
sider the actions that are present in Ppc. In this sense, they are
similar to the encodings for replanning and plan reuse described
in [Mali, 1999]. Also, unlike causal encodings, the encodings
for partialization demand optimizing rather than satisficing so-
lutions. Finally, in contrast to our encodings for partialization
which specifically handle metric temporal plans, causal encod-
ings in [Kautz et. al., 1996] are limited to classical domains.

7 Conclusion
In this paper we addressed the problem of post-processing po-
sition constrained metric temporal plans to improve their exe-
cution flexibility. We developed a general CSP encoding for
partializing position-constrained temporal plans, that can be op-
timized under an objective function dealing with a variety of
temporal flexibility criteria, such as makespan. We then pre-
sented greedy value ordering strategies that are designed to effi-
ciently generate solutions with good makespan values for these
encodings. We evaluated the effectiveness of our greedy par-
tialization approach in the context of a recent metric temporal
planner that produces p.c. plans. Our results demonstrate that
the partialization approach is able to provide between 25-40%
improvement in the makespan, with extremely little overhead.
Currently, we are focusing on (i) improving the optimal solving
of MILP encodings (Section 4.1) by finding better solver; (ii)
testing with different objective functions other than minimize
makespan; (iii) developing greedy value ordering strategies that
are sensitive to other types of temporal flexibility measures be-
sides makespan; and finally our ultimate goal is (iv) building
a stand-alone partialization software (separate from Sapa) that
can take any p.c/o.c plan returned by any planner and greedily
or optimally partialize it.

References
[Bacchus & Ady, 2001] Bacchus, F. and Ady, M. 2001. Planning with

Resources and Concurrency: A Forward Chaining Approach. Proc
IJCAI-2001.

[Backstrom, 1998] Backstrom, C. 1998. Computational Aspects of
Reordering Plans Journal of Artificial Intelligence Research 9, 99-
137.

[Bonet & Geffner, 1997] Bonet, B., Loerincs, G., and Geffner, H.
1997. A robust and fast action selection mechanism for planning.
Proc AAAI-97

[Do & Kambhampati, 2001] Do, M., and Kambhampati, S. 2001.
Sapa: A Domain-Independent Heuristic Metric Temporal Planner.
Proc ECP-01

[Do & Kambhampati, 2002] Do, M., and Kambhampati, S. 2002.
Planning graph-based heuristics for cost-sensitive temporal plan-
ning. In Proc. AIPS-02.

[Dechter et. al., 1990] Dechter, R., Meiri, I., and Pearl, J. 1990. Tem-
poral Constraint Network. Artificial Intelligence Journal 49.

[Edelkamp, 2001] Edelkamp, S. 2001. First Solutions to PDDL+
Planning Problems In PlanSIG Workshop.

[Fade & Regnier, 1990] Fade, B. and Regnier, P. 1990 Temporal Op-
timization of Linear Plans of Action: A Strategy Based on a Com-
plete Method for the Determination of Parallelism Technical Report

[Fox & Long, 2002] Fox, M. and Long, D. 2002.
Third International Planning Competition.
http://www.dur.ac.uk/d.p.long/competition.html

[Fox & Long, 2001] Fox, M. and Long, D. 2001. PDDL2.1: An
Extension to PDDL for Expressing Temporal Planning Domains.
Technical Report.

[Haslum & Geffner, 2001] Haslum, P. and Geffner, H. 2001. Heuris-
tic Planning with Time and Resources. Proc ECP-2001

[Hoffmann, 2000] Hoffmann, J. 2000. http://www.informatik.uni-
freiburg.de/ hoffmann/ff.html

[ILOG,] ILOG Solver Suite. http://www.ilog.com/products/solver/

[Kautz et. al., 1996] Kautz, H., McAllester, D. and Selman B. Encod-
ing Plans in Propositional Logic In Proc. KR-96.

[Ihrig & Kambhampati, 1996] Ihrig, L., Kambhampati, S. Design and
Implementation of a Replay Framework based on a Partial order
Planner. Proc. AAAI-96.

[Kambhampati & Kedar, 1994] Kambhampati, S. & Kedar, S. 1994.
An unified framework for explanation-based generalization of par-
tially ordered and partially instantiated plans. Artificial Intelligence
Journal 67, 29-70.

[Laborie & Ghallab, 1995] Laborie, P. and Ghallab, M. Planning with
sharable resource constraints. Proc IJCAI-95.

[Mali, 1999] Mali, A. Plan Merging and Plan Reuse as Satisfiability
Proc ECP-99.

[Mooney, 1998] Mooney, R. J. Generalizing the Order of Operators
in Macro-Operators Proc. ICML-1988

[Muscettola, 1994] Muscettola, N. 1994. Integrating planning and
scheduling. Intelligent Scheduling.

[Nguyen et. al., 2001] Nguyen, X., Kambhampati, S., and Nigenda,
R. 2001. Planning Graph as the Basis for deriving Heuristics for
Plan Synthesis by State Space and CSP Search. In AIJ.

[Nguyen & Kambhampati, 2001] Nguyen, X., and Kambhampati, S.
2001. Reviving Partial Order Planning. Proc IJCAI-01.

[Penberthy & Weld, 1994] Penberthy, S. and Weld, D. 1994. Planning
with Continous Changes. Proc. AAAI-94

[Refanidis & Vlahavas, 2001] Refanidis, I. and Vlahavas, I. 2001.
Multiobjective Heuristic State-Space Planning Technical Report.

[Smith & Weld, 1999] Smith, D. & Weld, D. Temporal Planning with
Mutual Exclusion Reasoning. Proc IJCAI-99

[Srivastava et. al., 2001] Srivastava, B., Kambhampati, S., and Do, M.
2001. Planning the Project Management Way: Efficient Planning
by Effective Integration of Causal and Resource Reasoning in Re-
alPlan. Artificial Intelligence Journal 131.

[Tsamardinos et. al., 1998] Tsamardinos, I., Muscettola, N. and Mor-
ris, P. Fast Transformation of Temporal Plans for Efficient Execu-
tion. Proc. AAAI-98.

[Veloso et. al., 1990] Veloso, M., Perez, M, & Carbonell, J. 1990.
Nonlinear planning with parallel resource allocation. Workshop on
Innovative Approaches to Planning, Scheduling and Control.

[Wolfman & Weld, 1999] Wolfman, S. and Weld, D. 1999. The LP-
SAT system and its Application to Resource Planning. In Proc.
IJCAI-99.

