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Al’ s Curious Ambivalence to humans..

* Our systems seem
happiest

« either far away from
humans

 Or in an adversarial
stance with humans

You want to help humanity, it is the people that you just can’t stand...



What happened to Co-existence?

« Whither McCarthy’ s advice taker?
« ..or Janet Kolodner’ s house wife?

. ...or even Dave’ s HAL?
* (with hopefully a less sinister voice)

HAA] in Planning:

M This Tutorial
uman- ware Al




Planning: The Canonical View

A fully specified
problem
--Initial state
--Goals
(each non-negotiable)
--Complete Action Model




Human-in-the-Loop Planning

* In many scenarios, humans are part of the
planning loop, because the planner:

* Needs to plan to avoid them
* Human-Aware Planning

* Needs to provide decision support to humans

« Because “planning” in some scenarios is too important to be
left to automated planners

» “Mixed-initiative Planning”; “Human-Centered Planning’;
“Crowd-Sourced Planning”

* Needs help from humans

« Mixed-initiative planning; “Symbiotic autonomy”
* Needs to team with them

« Human-robot teaming; Collaborative planning




Goal of this Tutorial

* Depending on the modality of interaction
between human and the planner, HILP raises
several open challenges for the planner

* The goal of this tutorial is to
« Survey HILP scenarios
 Discuss the dimensions along which they vary

* |dentify the planning challenges posed by HILP
scenarios
* Interpretation, Decision Support and Communication
 Outline current approaches for addressing these
challenges
* Present detailed case-studies of two recent HILP
systems (from our group © ).



A Brief History of HILP

» Beginnings of significant interest in the 90’s
* Under the aegis of ARPA Planning Initiative (and NASA)

» Several of the critical challenges were recognized

 Trains project [Ferguson/Allen; Rochester]
« Overview of challenges [Burstein/McDermott + ARPI Cohort]
« MAPGEN work at NASA
» At least some of the interest in HILP then was motivated by
the need to use humans as a “crutch” to help the planner

« Planners were very inefficient back then; and humans had to
“enter the land of planners” and help their search..

* In the last ~15 years, much of the mainstream planning research
has been geared towards improving the speed of of plan
generation

» Mostly using reachability and other heuristics; Helmert/Roger
Tutorial this morning

» Renaissance of interest in HILP thanks to the realization that HILP
is critical in many domains even with “fast” planners 11
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Lectures delivered at the ACAI Summer School on

Automated Planning and Scheduling, June 2011

Abstract:

In its early days, the planning community routinely and gleefully let its reach exceed its
grasp in terms of the class and scope of problems under consideration. Even when our
planners were really classical but quite glacial, and could at best handle three blocks
problems under mere minutes on a good day, we still blithely directed myriad efforts at
lifted planning, temporal planning, stochastic planning, open world planning, mixed-
initiative planning, and multi-agent planning.

The principled scale-up in classical planning in the last decade should have opened a more
expansive vent for all that pent-up ambition. Alas, it hasn't quite turned out that way; our
successes in scale-up seem to have turned us more circumspect. A Martian looking at any
of the recent ICAPS proceedings can be forgiven for thinking that we are all mostly in quest
of ever-more speed-up for classical planning.

In these lectures, I will make a case for turning our (and especially your) energies back to
the future of planning, and explain how we can co-opt the scale-up in classical planning to
aid in this quest. We shall look, in particular, towards advances in partial satisfaction
planning, temporal planning, stochastic planning, as well as planning with incomplete
models and open worlds.

Slides (final version: as delivered)

Audio Part 1

IMAGINE

it

Imagine there's no Landmarks
It's easy if you try

No benchmarks below us
Above us only blai

Imagine dall the planners
Planning for real

Imagine there's no state
Itisn't hard to do

Nothing to regress or relax
And no cost guidance too
Imagine all the planners
Lifting all the worlds

You may say that I'm o whiner
But I'm not the only one

| hope someday youlll join us
And the ICAPS will be more fun

AGAR

FREIBURG 2011

Imagine there'sno models

| wonder if you can

No need for preferences or groundings
A diversity of plans

Imagine dll the planners

Living life incomplete

You may say that I'm a whiner
But I'm not the only one

I hope someday you'll join us
And the ICAPS will be more fun



Quick Survey of some
HILP Systems

(with a view to bring out the
dimensions of variation)



MAPGEN—Mixed-initiative
Planning

~ /

Heuristics

Plan | |*Changes to partial plans

display | | ® Resource info Domain
* Explanation requests model

Plan edits APGEN : Planner

* Changes to partial plans Planning I
* Explanations database

Search
engine

Resource
display Planning

experts

- T

17
[Ai-Chang, Bresina et. Al., NASA; ]



TRAINS
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Figure 2: TRAINS-95 System Architecture

[Ferguson, Allen, Rochester; ~1995]



Grandpa Hates Robots — Interaction Constraints for Planning in Inhabited Environments

Motivation

@ Task planning in inhabited environments
(aka Human-aware Task Planning)

@ Humans impose rules on acceptability of plans
— “Grandpa hates robots”
— “Don’t vaccuum while I'm reading”
— “Don’t enter the bathroom when it's occupied”

Samuel Goldwyn Films, Robot & Frahk (2012)

U. Kockemann — AAAI 2014 2/17



Planning to Use Human Help

Move in
Elevator

m./,

o
-
¢

= \§

Carnegie Mellon University Stephanie Rosenthal and Manuela Veloso




[Talamadupula, Scheutz, Kambhampati et. Al. 2010]

Human-Robot Teaming

» Search and report (rescue)
» Goals incoming on the go
» World is evolving

»Model is changing

» Infer instructions from
Natural Language

» Determine goal formulation
through clarifications and
questions
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Decision Making

Proactive Decision
Support

Context / Relevancy Model

Relevance
Extractor

Mission_/ Decision Decomposition Engine

Operational
Environment

Mission

Firefighters near Presc..

Commander View.- .

Prescott Firestation #1
® 20 professional people

® 8 people called to forest
fire about 10 minutes ago

Volunteer firefighter #123
@ kartik: | heard about a
fire on the radio, maybe
they will call me to
volunteer today

Sedona Firestation #3

[S)gtjaCtu red Unstructured Data

Stream (e.g., short text)




Dimensions of Variation in
Human in the Loop Planning

« Cooperation Modality

« Communication Modality

* What is Communicated

« Knowledge Level (Who knows what)

28



COLLABORATING VS. INTERACTING

Cooperation Modality

* Awareness (No explicit communication)

* Avoid getting into the human’s way
« Grandpa Hates Robots

* Proactively support human’s actions

* Interaction

« Take commands/advice (Either via speech/language or via
special interfaces)

 From the human

« Mapgen; Trains
 From the Planner

« CrowdPlanning; Radar

 Collaboration/Teaming

 Human and Planner work together in formulating/executing
the plan

 Human-Robot Teaming 29



Communication Modality

* Through direct modification of plan structure
* Mapgen

* Through custom interfaces

* Quasi- stylized- natural language
« Crowd Planning

* By speech and Natural Language
* Trains, HRT

* Pre-specified constraints
« Grandpa Hates Robots



What is communicated

* New goals

* New preferences & plan constraints
« Grandpa Hates Robots: Interaction Constraints
« Crowdplanning: Critiques, subgoals (from the
planner)
 New model (actions etc)
 Human Robot Teaming



Knowledge Level (Who knows
What)

« Complete vs. Incomplete Models
* Preference incompleteness (most of the time)
* Dynamics incompleteness (sometimes)

34



Dimensions of HIL Planning

Cooperation | Communication What is Knowledae Level
Modality Modality Communicated 9
Interaction Incomplete Preferences
Crowdsourcmg (Advice from Custom Interface Critiques, subgoals Incomplete Dynamics

planner to humans)

Human-Robot Teaming/ Natural Language Goals, Tasks, Model Memmplzies Prerenees
Incomplete Dynamics

Teaming Collaboration Speech information (Open World)

« Awareness (pre- Prespecified -
Grandpa I-,I,ates specified (Safety / Interaction No expllc@ Incomplete Preferepces
Robots constraints) Constraints) communication Complete Dynamics
Interaction
MAPGEN (Planner takes Direct Modification of Direct modifications, Incomplete Preferences
binding advice from Plans decision alternatives Complete Dynamics

human)



How do we adapt/
adopt the modern

planning technology
for HILP?



Planning: The Canonical View

roblem  —TTT======= I
Specification *

/" PLANNER

Fully Specified
Action Model

Fully Specified
Goals

Completely Known
(Initial) World State/

Plan (Handed off

@ But humans in the loop can ruin a really a perfect day ® for Execution) o



N=

Problem

I " em ates Specificatic
Human-in-the-Loop Planning”gsrq™ "

Open World Goals
[IROS09,AAAIIO,TISTIO]

Assimilate Sensor
Information

1
I
1
Action Model Information : PLANNER
[HRI12] [ Sapa Replan
Handle Human Instructions :
. [ACS13,IROS14] : <Rl Speciied —
A Action Model
A XXX
Communicate with ) 281 Goal
Human(s) in the Loop g ) Manager

Planning for
Human-Robot Teaming

Planning for

Crowdsourcing
Replan for the Robot

Coordinate with Humans ______[_‘ —— _‘I I_O,_D_I‘iA_\P_IE] ______

[IROS 4]

40



Challenges for the Planner

* Interpret what humans are doing
» Plan/goal/intent recognition

* Decision Support

« Continual planning/Replanning
« Commitment sensitive to ensure coherent interaction
« Handle constraints on plan

« Plan with incompleteness
* Incomplete Preferences

* Incomplete domain models
* Robust planning with “lite” models
* (Learn to improve domain models)

e Communication

« Explanations/Excuses

« Excuse generation can be modeled as the (conjugate of) planning
problem

 Asking for help/elaboration
 Reason about the information value



(Other Relevant) Challenges (that
are out-of-scope of this tutorial)

« Human Factors

« How to make planning support “acceptable” to the
humans in the loop?

« How to adjust the planner autonomy to defer to the
humans in the loop?

« Speech and Natural Language Processing in
Collaborative Scenarios

 Learning to Improve models
 Learning from demonstrations..

* Advances in multi-agent planning
* Problem decomposition; Coordination etc.



OVERVIEW

1. INTRODUCTION [45]
2. INTERPRETATION [30]

3. DECISION SUPPORT [60]
a. Explicit Constraints [30]

b. Implicit Constraints (Preferences) [15]

c. Incomplete Dynamics [15]

4. COMMUNICATION [30]

a. Excuses & Explanations [15]

b. Asking for Help [15]

5. CASE STUDY [30]
6. SUMMARY [15]

48
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OVERVIEW

&)

)

INTRODUCTION

INTERPRETATION

W)

CISION SUPPORT

Il

D

COMMUNICATION

SUMMARY
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» Understanding the
goals and plans of
humans from
semi-structured or
unstructured text

* Impedance Mismatch

Extract from Plain Text

Impose structure
[Ling & Weld, 2010]
[Kim, Chacha & Shah, 2013]

1)

UNSTRUCTURED

o o o
-
-

-----

~

-~
-,

PLANNER

"
COLLABORATIVE
REQUESTER BLACKBOARD
(Human)
° Task | FORM/MENU
specification | SCHEDULES /
H Requester |
goals i
Preferences i
ci
Human-Computer ol ‘ﬁ
Interface 2ic
53
. ol
= 7 R plani K
eeee Sub-goals E
New actions | LR
Suggestions E
CROWD .
(Turkers)
Full Plan Recognition
[Kautz & Allen, 1986]
[Ramirez & Geffner, 2010]
i STRUCTURED

Plan Recognition from Noisy Traces

Extract noisy traces first
[Zhuo, Yang & Kambhampati, 2012]

52
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DEALING WITH INTERPRETATION

Assume Structure
« Exploit/assume structured representation (plan)
 Easier to match planner’s expectation of structured
iInput
* Restricts flexibility of humans; less knowledge
specified

Extract/Infer Structure

 Allow humans to use natural language
« Semi-structured and unstructured text

 Extract information from human-generated input
* Validate against (partial) model
* [teratively refine recognized goals and plan

53



Plan Recognition

B

D

e Agent can move one unit in the four directions

e Possible targets are A, B, C, . ..

e Starting in S, he is observed to move up twice

e Where is he going? Why?

Hector Geffner, Planning Course, Master 115, UPF, 10-12/2014

Plan Recognition
as Planning

Miquel Ramirez
Hector Geffner

109



Example (cont’d)

A

C

|
|
1
5

e From Bayes, goal posterior is P(G|O) = a P(O|G)P(G), GG
e If priors P(G) given for each goal in G, the question is what is P(O|G)?

e P(O|G) measures how well goal GG predicts observed actions O

In classical setting,

> G predicts O best when need to get off the way not to comply with O
> G predicts O worst when need to get off the way to comply with O

Hector Geffner, Planning Course, Master 115, UPF, 10-12,/2014

110



lllustration: Noisy Walk

1 i 4 5 & T 8 % 10 1 1 9 N
"l
i My
I [ B C D E $
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. e, ~
10 0 — T T T Tt t——h
1 2 3 4 5 B Fi g 9 10 11 12 13
1 ! Time Steps

Graph on left shows ‘noisy walk' and possible targets; curves on right show resulting
posterior probabilities P(G|O) of each possible target GG as a function of time

Approach to plan recognition can be generalized to other models (MDPs, POMDPs);
the idea is that if you have a planner for a model, then you also have a plan
recognizer for that model given a pool of possible goals.

Hector Geffner, Planning Course, Master IS, UPF, 10-12/2014 112



| .
Beliefs, Intentions & Teaming rngs

* Agents have beliefs and intentions

— An agent can model its feam members’
N7 beliefs and intentions

s { o] bel(a,9) € Belserr }
{gOCLl(CK, Cba P) \goa,l(cu, Cba P) S B@lsegf}

-

&« * This information can be used to
predict the plans of team members

Talamadupula et al. — Arizona State University & Tufts University
Coordination in Human-Robot Teams Using Mental Modeling & Plan Recognition



» Used for high-level plan synthesis

» Can be used to simulate an agent’s plan
— Based on known beliefs and intentions
— Some information about agent’s capabilities

* Automated Planning Instance:
— Initial State: All known beliefs of that agent
— Goal Formula: All known goals of that agent
— Action Model: Precondition/Effect description



cr..
Tufts

UNIVERSITY

Triage

Medkit
Location

Room 1

Hall1 Hall 2 Hall 2 Hall4

Triage
Location

Room 5

PREDICTED move commx room3 hall5

move_reverse commx hall5 hall4

PL AN move_reverse commx hall4 hall3
move_reverse commx hall3 hall2
move_reverse commx hall2 hall1
move_reverse commx hall1 room1
pick_up_medkit commx mkeast room1
conduct_triage commx room1

Talamadupula et al. — Arizona State University & Tufts University
Coordination in Human-Robot Teams Using Mental Modeling & Plan Recognition



(..

But what if we don’t have full
knowledge regarding the
team member’s goal(s)?



| e
Plan Recognition (M.

Tufts

:’: Mt.-(,kl T’ rage -
0.75 ‘¢ Location Comm X Medkit
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Talamadupula et al. — Arizona State University & Tufts University
Coordination in Human-Robot Teams Using Mental Modeling & Plan Recognition



Plan Recognition

BELIEF IN GOAL

(conducted_triage commX room1)

(conducted_triage commX room5)

posterior on goals -->
c o o o o o o o
— ~N w o [=2] -~ (==} o .
T

o

o
-~
T

observations —>

Talamadupula et al.

Medkit

Room 1

rf.

Tufts

Com"r X Medkit

Room 3 Room &

Tnage
Location
Room 2
L]
Hall 1 Hall 2 Hal13 Hall4 | Hall5 Robol. Hall 6
T e

Ik

Triage
Location

Room 5

observations -

move commx room3 hall4
move_reverse commx hall4 hall3
move_reverse commx hall3 hall2
move_reverse commx hall2 hall1
move_reverse commx hall1 room1

pick_up_medkit commx mkeast room1

conduct_triage commx room1

— Arizona State University & Tufts University

Coordination in Human-Robot Teams Using Mental Modeling & Plan Recognition



DEALING WITH INTERPRETATION

Assume Structure
 Exploit/assume structured representation (plan)
« Easier to match planner’s expectation of structured
iInput
* Restricts flexibility of humans; less knowledge
specified

Extract/Infer Structure

 Allow humans to use natural language
« Semi-structured and unstructured text

 Extract information from human-generated input
* Validate against (partial) model
* [teratively refine recognized goals and plan

64



Why Infer Task Plans?

* Integrate robots seamlessly in time-critical domains
* Lessen burden of programming and deploying robots
* Leverage the use of web-based planning tool (NICS)

Planning Conversation Robot Task Plans

Inferring Robot Task Plans from Human Team Meetings
Been Kim, Caleb Chacha and Prof. Julie Shah
MIT 66



Human Team Planning

67



General Framework

Algorithm:
Sampling Inference in
Generative Model
+ Logic-based prior

, Algorithm Input:
Raw Planning Structured Form of

Conversation Data Noisv Plannine Data
from_\LVeb-based Tool $ Y ;

U1: Send(blue robot, B)
] while Send(red robot, G) (PDDL)
S Then Send(medical, B)... “
s B | 1 ...
i U9: Send(mechanics, C) l

plan

Robot Task Plans: Algorithm Output: } ~
“Gonere W) N Final Agreed Plan (st )—»@
% oA \ N

i 1. Send Red Robot to B
2. Send Blue Robot to A 1
3. Send Red Medical Crew G : '

68




/ Raw Planning \

Conversation Data
from Web based Tool

Algorithm Input

Algorithm Input:

Structured Form of
Noisy Planning Data

U1: Send(blue robot, B)
while Send(red robot, G)
Then Send(medical, B)...

U9: Send(mechanics, C)

/ Algorithm Output:\

Final Agreed Plan

1. Send Red Robot to B
2. Send Blue Robot to A
3. Send Red Medical Crew G

\_ _/

/ Algorithm: \

Sampling Inference in
Generative Model
+ Logic-based prior

(PDDL)

(8%




/ Raw Planning \

Conversation Data

7

|
o |

/Robot Task qurjs:/:\

/ Algorithm Input: \

Structured Form of
Noisy Planning Data

U1: Send(blue robot, B)
while Send(red robot, G)
Then Send(medical, B)...

\ U9: Send(mechanics, C) /

Algorithm Output:
Final Agreed Plan

1. Send Red Robot to B

2. Send Blue Robot to A
3. Send Red Medical Crew G

Algorithm: \

Sampling Inference in
Generative Model

+ Logic-based prior
(PDDL)

(8%

70



Input and Output

Input: structured planning Output: Final plan
conversation Absolutely orders sets of
Relatively ordered noisy plan actions

parts (4.}, (C), (D.E)

Ordered tuple of sets of

What we see: :
grounded predicatel]

Planning Conversation

B
Me: First, let’s do A then C? O O
{4} {C})

You: We should do D and E together OO OO » O » OO

({D.E})

Me: Great, we can do H after that.

({4})

[1] Howey, R.; Long, D.; and Fox, M. 2004. Val: Automatic plan validation, continuous effects and mixed initiative planning using PDDL. In ICTAI



/ Raw Planning \

Conversation Data

from Web based Tool

Algorithm

Algorithm Input:
Structured Form of
Noisy Planning Data

U1: Send(blue robot, B)
while Send(red robot, G)
Then Send(medical, B)...

(Robot Task PIans \
l«mmyf s,;ﬂ \
' O gy

\ U9: Send(mechanics, C) /
( Algorithm Output:\

Final Agreed Plan

1. Send Red Robot to B
2. Send Blue Robot to A
3. Send Red Medical Crew G

\_ W

Algorithm:
Sampling Inference in
Generative Model
+ Logic-based prior
(PDDL)




Approach

Logical Approach Probabilistic Approach

 Small data (succinct
conversation)

e Large solution space

Can be solved as a logical
constraint problem of partial
order planning

— Uninformative prior will have
to search through a big space

®

Fails in processing noisy data

Probabilistic Generative Modeling with Logic Based Prior

Logic based plan validator (PDDL plan validator) to build
informative prior

Can deal with noisy data

73



What is PDDL Validator?

PDDL Validator Input PDDL Validator Output

* Available actions
* Pre/post conditions for
actions

* Available resources
* |nitial condition
* Goal condition

The algorithm is also tested
with imperfect input files

24

e



Plan Space

Generative Model

HELWAIF!

Do
C

75



Generative Model

Valid Plan Plan Alpha
Do
C

Invalid Plan

76



Plan Alpha

Sample a Plan

Plan Beta

Plan Alpha

What we see:
Planning Conversation

Sample utterances
from plan parts iid

Me: First, let’s do A then C?

You: We should do D and E together

Me: Great, we can do H after that. GA/

With a small chance,
‘incorrect’ plan parts
can be sampled

77




PDDL Validator in Gibbs Sampling

* Problem with sampling plan
— No obvious conjugate prior

— Intractable to calculate

. . normalization constant
Neighboring Plans

— Metropolis-Hastings sampling
o.>  PDDL plan validator is used to
oO

P, score the candidate plan

P(candidate plan| everything else)

* |Intuitively, maps what humans
are good at for machines

Posterior distribution
78



Summary

* Logical plan validator + Probabilistic generative
model to perform efficient inference

* Inferring the robot's plan in context W|th the fuII
joint plan " ’

“Polic s A ) ¢ @
epart| d 2 {8

3. A 2 e Theatet

N SN A -..,4" 2 AL v 4

: S > ; 2 ‘4’04:’? SiUahl ;
P

extSteps o -~ &
- VY oorm T N ARy, TR
= i W, ‘_v./qﬁstreeft i o e

e o obbery ...

* Include the ordering of conversation in the
model — Large scale complex planning data



Structured Interpretation
For Multi-Agent Systems




OVERVIEW

N\

&)

)

INTRODUCTION
INTERPRETATION

DECISION SUPPORT

a. Explicit Constraints

COMMUNICATION

SUMMARY
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& 8
My CHALLENGE: DECISION SUPPORT

COLLABORATIVE
REQUESTER BLACKBOARD

* Steering the human(S) (Hu:an) Task i FORM/MENU
to help in producing & w < ke - .

Preferences

Crltl q u I n g a p I a n Human-Computer %i g PLANNER
Interface gi E
* Partial domain dynamics ii
* Incomplete preferences cae& = = S J
M4 Subgors |
. Suggestions |
e [terative Process ..
(Turkers)
Problem Decomposition
[Nau et al., 2003]
Plan Critiquing Plan Generation
SHALLOW MODEL
Constraint & Arithmetic Checking Regression
Mobi [Zhang et al., 2012] Match sub-goals
Cobi [Zhang et al., 2013] with actions

Manikonda et al., Arizona State University 82



Continual Planning

Decision Support

. A Theory of Intra-

* New Information Agent Replanning
Talamadupula, Smith,

— Sources: Sensors, Other Agents Cushing & Kambhampati

 New Goals
— From humans: Orders

— From other agents: Requests

e Commitments

— Publication of currently executing plan creates
commitments in the world
* Other agents may base their plans on this plan

85
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Replanning for Human-Robot Teaming

= » Motivating Scenario: Automated Warehouses
— Used by Amazon (Kiva Systems) for warehouse management

* Human: Packager

— Only human on the entire floor; remotely located
— Issues goals to the robotic agents

e Robot(s): Kiva Robots

— Can transport items from shelves to the packager

* Goals: Order requests; come in dynamically

— Goals keep changing as orders pile up
— World changes as shelves are exhausted; break downs

[IROS09, AAAI10, TIST10, DMAP13, arXiv14]
—
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Warehouses: Commitments

1. Transports holding Packages
2. Towtrucks towing Transports
Packages delivered to Packager

SHELF

PACKAGER
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How to Replan

* Abandon Previous Plan
— Discard old plan completely

 Reuse Previous Plan

— Use information from = for generation of n’
— Reuse parts of the original plan «

e Commiftments from Previous Plan

— What was previous plan achieving / promising?

* Multi~agent: Inter-agent replanning problem produces intra-
agent replanning problem

* Project commitments made to other agents on to one’s own

planning process, as constraints
90



WQULD YOU
EASE MOVE®D-

PL

YOU'RE RUNING
MY ROCK

PICTURE ! ™

91



Replanning Constraints

* Unconstrained Replanning

— No constraints

* Similarity Constrained Replanning
— Action Similarity
* Minimize num of actions where © and ©’ differ
min |t A7’ |
— Causal Similarity

 Minimize num of causal links where © and =’ differ
min | CL(m) A CL(%’) |
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Replanning Constraints

* Commitment Constrained Replanning
— Dependencies between agents’ plans

— Project down into “commitments” between agents

* Commitments depend on original plan &

a KAE.
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Solution Techniques

* Classical Planning
— Solve <I',G’> using a classical planner

* Specialized Replanning Techniques

— Iterative Plan Repair

e Local Search

* Compilation to Partial Satisfaction Planning
— Commitments as constraints

— Model them as soft goals

94
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—+— EXECUTION

y
’," Similarity
/ Constraints

!
; s
/ Publicize to @L@l
; Other Agents @l@l@
t
CONSTRAINT |
PROCESSING Commitment

Constraints

SENSING

dTdOM

MONITORING <

EVENT

95



I
Replanning Constraints

> Depends on the similarity metric between plans
> ACTION SIMILARITY

REPLANNIll\\IAé AS REUSE min |TA7 |
(Similarity) »  CAUSAL SIMILARITY
min | CL(7) A CL(7) |
M3 > Dependencies' between n and other plans |
REPLANNING TO KEEP Project down into commMents that ©° must fulfill
COMMITMENTS z Exact nature of commitments depends on ©

E.g.: Multi~agent commitments (between rovers)
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Replanning: Solution Techniques

M2

REPLANNING AS ITERATIVE PLAN REPAIR
REUSE (Local Search)
(Similarity)

M3
REPLANNING TO COMPILATION

KEEP (Partial Satisfaction Planning)
COMMITMENTS

v

Start from 1

Minimize differences while
finding a candidate

Stop when [I',G'] satisfied

Commitments are constraints
on plan generation process
Commitments = Soft Goals G
Add G to G 2 G~

Run PSP planner with [I',G"]
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Commitments

* All plans are made up of commitments

— Causal: Supporters provide conditions to
consumers (partial order planning)

— Agents: Enable / disable conditions for other
azents

* Commitments are also goals
— Most natural way of constraining change

— Can model both “kinds” of replanning

* Commitment to Situation: If a rover’s view is blocked,
must it uphold the commitment on observing?

* Commitment to Form: If a rover’s view is blocked, must
it stick as close as possible to the previous plan?
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Breaking Commitments

* Autonomous Robots (and planners)

— Universal metric for defining penalty and reward
values for commitments and goals

* Humans
— Cannot reason with numbers alone

— Need explanations or excuses on why
commitments had to be broken
* What explanations will a human accept?
* Which excuses will make sense?

* How can these be autonomously generated?
99



Rewards and Penalties

* A commitment is a soft goal

— Reward r for fulfilling, penalty p for violating
* Agents can give each estimates for rand p summarization
* Else extract from a model of the other agent

* Action Similarity

— For every action a in w, insert a goal

* Any new plan ©n* that contains fewer of n’s actions than
some other n° will have lesser net-benefit

— Proof Sketch: In the absence of delete effects, n° can simply be a
copy of n* with one more action from =. If r > p, proved.

* Causal Similarity
— For every causal link in &, insert a goal ...
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Rewards and Penalties

* How do we set values of rand p?

— For agent-based commitments
* From real-world applications

* E.2.: NASA has estimates on how important certain
observations or windows are (reward), and how costly
missing them is (penalty)

* New plan will take these into account (along with
causal feasibility)

— For similarity

* Unit reward / penalty, in order to encourage more
similarity with the previous plan T

101



Compiling Action Similarity to PSP

1. For every ground actionain«

« Create a commitment constraint (goal) to have a in the
new plan
» Create predicate a-executed with the parameters® of a
» Goal on a-executed (along with respective parameters®)
 Assign unit reward and/or penalty to the goal

2. Add every goal thus generatedto G = G

3. Give [I',G '] to a PSP net-benefit planner

« Return highest net-benefit plan as ©

* ground objects
[Talamadupula, Smith et al., DMAP 2013]



Compiling Causal Similarity to PSP

1. Obtain the relevant causal structure of 1 via
regression

2. For every fluent f of every producer/consumer
in that causal structure ...

« Create a commitment constraint (goal) to make 1
generate f

« Create a predicate f-link with respective parameters, and a
goal on it

« Assign unit reward and/or penalty to the goal

« Add every goal thus generatedto G 2> G

3. Give [I',G '] to a PSP net-benefit planner
» Return highest net-benefit plan as 1

[Talamadupula, Smith et al., DMAP 2013]



Compiling Similarity to PSP

ACTION SIMILARITY

prec(a)

eff(a)

prec(a)

eff(a)
a-executed

CAUSAL SIMILARITY

prec(a)

. a
eff(a)

for all fin prec(a) s.t. fis
thereasonaisa
consumer, f-link

prec(a)

A

eff(a)

for all f in eff(a) s.t. f is the
reason a is a producer, f-
link
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I
Replanning Constraints

> Depends on the similarity metric between plans
> ACTION SIMILARITY

REPLANNIll\\IAé AS REUSE min |TA7 |
(Similarity) »  CAUSAL SIMILARITY
min | CL(7) A CL(7) |
M3 > Dependencies' between n and other plans |
REPLANNING TO KEEP Project down into commMents that ©° must fulfill
COMMITMENTS z Exact nature of commitments depends on ©

E.g.: Multi~agent commitments (between rovers)
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Grandpa Hates Robots — Interaction Constraints for Planning in Inhabited Environments

Motivation

@ Task planning in inhabited environments
(aka Human-aware Task Planning)

@ Humans impose rules on acceptability of plans
— “Grandpa hates robots”
— “Don’t vaccuum while I'm reading”
— “Don’t enter the bathroom when it's occupied”

Grandpa Hates Robots

Kockemann, Karlsson & Pecora

U. Kockemann — AAAI 2014 2107



Grandpa Hates Robots — Interaction Constraints for Planning in Inhabited Environments

Interaction Constraints
for Planning in Inhabited Environments

@ Extending constraint-based planning with human-awareness
@ Domain models contain variety of constraint types

— Temporal constraints, resources, goals, costs, Prolog, . ..
@ Contribution: Interaction constraints (/Cs)

— Modeling interactions between humans and robots
@ Examples:

— “Don’t vacuum while I'm reading”

— “Don’t enter the bathroom when it's occupied”

@ Can handle partially specified human activities

Kéckemann, Pecora, Karlsson. Proceedings of AAAI 2014
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A little recap..

 Until now we have been adapting current
planning techniques for



@ But humans in the loop can ruin a really a perfect day ®

Traditional Planning FF-HOP [2008]
—t .

Lo > x v
?;6 2 on Q‘/é\ on ,be Q \(\7’(’)
< @ <‘\ oQ O(’
N, A & S
Underlying System Dynam\cs

SAPA [2003] POND [2006]

Effective ways to handle the more expressive planning problems by
exploiting the deterministic planning technology



TRAINS—oplanner with limited

capabillities

Interestingly perhaps, traditional planning technology
does not play a major role in the system, and in fact it
is difficult to see how such components might fit into
a mixed-initiative system. We describe some of these

Although it’s doing planning, however, a mixed-
initiative planning system isn’t doing what we might
recognize as “traditional” planning, that is, construct-
ing a sequence of operators from a fully-specified ini-
tial situation to a stated goal. In fact, in an informal
analysis of one hour of human-human problem-solving
dialogues (part of a larger eight hour study (Heeman
& Allen 1995)), we found that a relatively small per-
centage of the utterances, 23%, dealt with explicitly
adding or refining actions in the plan. Figure 4 sum-
marizes this analysis. Note the importance of being

Evaluation /comparison of options 25%
Suggesting courses of action 23%
Establishing world state 13%
Claritying /confirming communication | 13%
Discussing problem solving strategy 10%
Summarizing courses of action 10%
Identifying problems/alternatives %

ager had stated their goals. However, not only is it
unlikely that we will ever be able to build such a rea-
soner for a realistic domain, in the next section we
claim that such a system is not necessarily appropri-
ate for mixed-initiative planning. We therefore delib-
erately weakened the TRAINS-95 domain reasoner in
order to force the manager to interact in order to over-
come its shortcomings. The route planner can there-
fore only plan route segments less than four hops long,
and for those it chooses a random path. The knowl-
edge base maintains an accurate view of the map, and
allows various “natural” events such as bad weather
or track maintenance to arise during the interaction.
These also force interaction in order to revise plans to
take account of them.



Learning is not the (sole) answer..

 Atempting way to handle incompleteness is
to say that we should wait until the full model
IS obtained
«  Either through learning
Or by the generosity of the domain writer..

* Problem: Waiting for complete model is often
times not a feasible alternative

The model may never become complete...

We need to figure out a way of maintaining incomplete
models, and planning with them (pending learning..)



Challenges of Handling
Incompleteness

1. Circumscribing the incompleteness

2. Developing the appropriate solution concepts
3. Developing planners capable of synthesizing them

4. Life-long Planning/Learning to reduce
Incompleteness
Commitment-sensitive Replanning



Preferences in Planning — Traditional
View

Classical Model: “Closed world” assumption
about user preferences.

All preferences assumed to be fully specified/available

Full Knowledge

g oqe, o of Preferences
Two possibilities

If no preferences specified —then user is
assumed to be indifferent. Any single feasible
plan considered acceptable.

If preferences/objectives are specified, find a plan
that 1s optimal w.r.t. specified objectives.

Either way, solution is a single plan



Human in the Loop: Unknown &
Partially Known Preferences
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Handling Unknown & Partially
Known Preferences

Unknown preferences

For all we know, user may
care about every thing -- the
flight carrier, the arrival
and departure times, the
type of flight, the airport,
time of travel and cost of
travel...

Best choice 1s to return a
diverse set of plans [[JCAI
2007]

o Distance measures between
plans

Domain Independent Approaches
for Finding Diverse Plans

Biplav Srivastava Subbarao Kambhampati
IBM India Research Lab Arizona State University
sbiplav@in.ibm.com rao@asu.edu

g%‘ n Tuan A. Nguyen Minh Binh Do
zﬁ\ University of Nature |s«: ncas Palo Alto Research Center
&£ | natuan@fit.hemuns.edu. rrinhdo@parc.com Parc
o Alfonso Gerevini Ivan Serina p
) University of Brescia University of Bresda
umBé gerevini@ing.unibs.it serina@ing.unibs.it

LICAL 2007, Hyderabad, India

(6 Authors from 3 continents, 4 countries, 5 institutions)
0 7 / '] Jan 09, 2007 Dorrain Independent: Approaches for Finding Diverse lans




o dDISTANTKSET

| | . .
i a distance measure 6(.,.), and a
Generating Diverse Plang: i, e,
problem that have guaranteed minimum
pair-wise distance d among them in

terms of &(.,.)

* Formalized notions of bases
for plan distance measures Distance Measures

" In wh hould
* Proposed adaptation to © Gotances betwonn o gl
g p 3 The roles played by the actions in the plan?
. o Choice may depend on
Of-th e-a rt, p I a n n I n g T:eE.Lgflgnh%tﬁduzep?;ntgeaﬁljagsn_or]-minimal
variant of P be considered similar or different?
What is the source of plans and how much is

algorithms to search for
diverse plans

« Showed that using action-

Compute by Set-difference Al
L ] O <g1,g2,g3>
based distance results in plans » {o;
. oActionT ase @)
that are likely to be also comparson; Sty stz U
. . dissimilar to. S1-3; with
diverse with respect to anther basis for | —»6—»@10“_.
. seen as different sotap Y
behavior and causal structure wState basea comparison:
and S1-3; S1-2 and S1-3 Plan $1-2

* LPG can scale-up well to large e
TOmOmO=g

S1-1 and S1-2 are
[ICAI 20¥hanaes

@ 3
2

problems with the proposed




Generating Diverse Plans with Local Search
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Figure 2: Performance of LPG-d (CPU-tume and plan distance) for there problems in DriverLog-Time, Satellite-Strips

and Storage-Propositicnal.

LPG-d solves 109 comb.

Avg. time = 162.8 sec

Avg. distance = 0.68

Includes d<0.4,k=10; d=0.95,k=2

LPG-d solves 211 comb.
Avg. time = 12.1 sec
Avg. distance = 0.69

LPG-d solves 225 comb.
Avg. time = 64.1 sec
Avg. distance = 0.88



Unknown & Partially Known

Preferences

o Partially known
»  We may know that user
cares only about makespan

and cost. But we don’t know
how she combines them..

o Returning a diverse set of
plans may not be enough

» They may not differ on the
attributes of relevance..

» Focus on spanning the pareto
set..

el

PARTIAL PREFERENCE
MODELS

Tuan A. Nguyen Minh B. Do
CSE, Arizona State University Palo Alto Research Center

‘ PLANNING WITH
@
@
@

Subbarao Kambhampati Biplav Srivastava
en d el CSE, Arizona State University IBM India Research Lab

j Diverse rians



Modeling Partially Known Objectives

The user 1s interested In minimizing two objectives
(say makespan and execution cost of plan p: time(p),

cost(p).)
The quality of plan p is given by cost function:

f(p,w)y=w x time(p)+(1-w)xcost(p) (weg[0,1])
w&[0,]] represents the trade-off between two competing
objectives.

111TADULT UuUTvClupTu 111 vl Lulllliliiulliivy \vallyilc, avvyj.



cost
AN

Handling Partially Known O
\\\ \\ O
Preferences 8 o Parstose

0 - time
View it as a Multi-objective optimization

Return the Pareto optimal set of plans

(and let the user select from among them)

Two problems
[Computational] Computing the full pareto set can be
too costly

[Comprehensional] Lay users may suffer information
overload when presented with a large set of plans to

choose from
Solution: Return % representative plans from the
Pareto Set

Challenge 1: How to define “representative” robustly?

Challenge 2: How to generate representative set of
plans efficiently?



Measuring Representativeness: ICP
f(p,w)= thime(p)+(1 w)xcost(p) (we[0,1])

ICP(P Z/ (wxty,, +(1—w) xec,, Jdw
i=1 Y Wi—1

cost |
‘|®1. o
\ ° R O 3 representative plans
\\\\. \\\\ o
\\\. \\
\\\\ . \\
0 time

h(W) N

0 0.5 1 w
(Fast plan seems better)



Handling Partial Preferences using
ICP

Problem Statement: Solution Approaches:
Given Sampling: Sample k
values of w, and

approximate the optimal
plan for each value.

ICP-Sequential: Drive
the search to find plans

the objectives O,

the vector w for convex
combination of O,

the distribution A(w) of

w, that will improve ICP
Return a set of & plans Hybrid: Start with
with the minimum ICP Sampling, and then
value. improve the seed set

with ICP-Sequential

[Baseline]: Find £
diverse plans using the

distance measures from
[IJCAI 2007] paper;
LPG-Speed.



Learning Planning Preferences

We can learn
to 1improve the

preference o
model by 1
revising the o
» Revisin
h(w) afteI' " distribugtion
2 h(w) over
eVQI'y feW iterations
. . (Bayesian
iterations o 1w M arming
h(w)
(through user ,

Iinteraction)
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Models v. Planning
Capabilities

Plan Critiquing/ Plan Creation

Plannin Retrieval Management

Support

No Model Shallow Approximate Full
Models Models Models

L R 8 R R _ B B R B B B B} | -------------------’

Increasing degree of Completeness of domain models

/O types o -
Task dependency Missing some preconditions/

(e.g. workflows management, effects of actions
web service composition) (e.g. Garland & Lesh, 2002)

wiariikonda et al., Arizona State University 133



There are known knowns;
there are things we know
that we know. There are
known unknowns; that is
to say, there are things
that we now know we
don’t know. But there are
also unknown unknowns;
there are things we do not
know we don’t know.




Approaches for Planning with
Incomplete Models

Incompleteness annotations Library of cases is

are available available

- An alternative way to - ML-CBP exploits cases directly
make-up for model during planning (by transferring
: let i t case fragments into a skeletal
Incompieteness IS 1o plan generated w.r.t. M’)
expect annotations + AAAI 2013
circumscribing the extent - An alternative approach would
of incompleteness be to use the cases C to refine

: the model M’ into a more

* In thIIS. case, we can accurate model M” (where M” is
explicitly reason with the a better approximation of M*).
correctness of candidate gg&f see our LICAI 2013
plans over all possible . Zhuo et. Al. IJCAI 2013
models « M” contains both primitive and

macro- operators

« Nguyen et. Al NIPS 2013;
ICAPS 2014; Weber &
Bryce, ICAPS 2011



Deterministic Partial Domain Models

* We consider planning with deterministic, but
iIncompletely specified domain model

« Each action a is associated with possible precond and
effects (in addition to the normal precond/eff):

* PreP(a) [p]: set of propositions that a might depend on
during execution

« AddP(a) [p]: : set of propositions that a might add after

execution
- DelP(a) [p]: : set of propositions that a might delete after
execution
Example: An action a that is pl
known to depend on p1, add p4 pl @,
and delete p3. In addition, it might p2
have p3 as its precondition, might O 03
add p2 and might delete p1 after P3

execution. p4



Solution Concept:

» Solution concept:
* Robust plan

» Plan is highly robust if executable in
large number of most-likely
candidate models

» Robustness measure

» Set of candidate domain models S
(consistent with the given
deterministic partial domain model
D)

* A complete but unknown domain
model D*

« Can be any model in S

R(m) = %

ITT| Number of candidate models with
which the plan succeeds

K = E PreP(a) + AddP(a) + DelP(a)

Robust Plans
RO

b & ®
'\ e 3 " I_’ 3
state s, (initial state) state s, state s, (goal state)
Candidate models of plan 1 2 3 4 5 6 7 8
a, relies on p, yes | yes | yes | yes | no no no no
a, deletes p, yes | ves | no | no [ yes | yes | no no
a, adds p» yes | no [ yes | no | ves | no | ves no
Plan status fail | fail | fail | fail |succeed| fail |succeed|succeed
Legend
precondition E‘——’ additive effect ""’ ggzmefeﬁed @ pisue
. possible o i possible S pis false
precondition delete effect @" delete effect  *eas’ P

Robustness value: 3/8

Easily generalized to consider model likelihood



Assessing Plan Robustness

 Number of candidate models: * Approximate methods:
exponentially large. Computing — Invoke approximate model
robustness of a given plan is )
hard!l! counting approach
» Exact and approximate — Approximate and propagate
assessment. action robustness
Exa?\/tvmer:thg)dl\s/l: o " * Can be used in generating
eighte odel-counting
approach: robust plans

» Construct logical formulas
representing causal-proof (Mali
& Kambhampati 1999) for plan

correctness
* Invoke an exact model counting
approach @ @
100% %
———————————————— “ . . @ 1. Approximating @
I “If plis realized 100% and propagating 22%%
| as a delete effect | -, robustness to the
_____1ofal, thenit N goal state @
must be an 0% 7%
. 2. Aggregate
additive effect of robustness of goal
a2.” propositions (i.e.

plan robustness)

state s, (initial state) state's, state s, ( goal state)



*¢* Plan correctness constraints X
> Establishment constraints

add pre add
v pak pai = V pak
Cj<ksi—1,peAdd(ak) Cjsksi—1,peAdd(ak)

» Protecting constraints

Plan robustness

pdel =

Am \/ pg:gd . o
N Weighted model
Cp<k=<i-1,peAdd(ay) -
counting WMC(X)

pre del add

C;,Sksi—l,pEAdd(ak)

Monotone clauses, but exact WMC(X) is provably costly!



Generating Robust Plans

D. Bryce et al. / Artificial Intelligence 172 (2008) 685-715

« Compilation approach: Compile into ¢ 1
T . . Compute h(b,) for
(Probabilistic) Conformant Planning oo PRP”
p ro b I e m Problem # of Particlcs,
1] t H \_{‘— Approximate Belief Manual
» One “unobservable” variable per Srounding & S i P
each possible effect/precondition ‘
 Significant initial state ép,A‘h.‘c,»?
uncertainty ——t—

Representation

Space
PP Planning
Engine
Relaxed

Plan
Extraction

« Can adapt a probabilistic conformant
planner such as POND [JAIR, 2006;
AlJ 2008]

» Direct approach: Bias a planner’s
search towards more robust plans

Fig. 6. POND architecture.

» Heuristically assess the robustness Initial Current ‘B> B> |
: state state : |

of partial plans U m

* Need to use the (approximate) O - O\.\ (o ————~ .
robustness assessment O -
procedures =T m===

Successor Relaxed plans are
states  used to evaluate
successor states

[Bryce et. Al., ICAPS 2012; Nguyen et al; NIPS 2013; Nguyen & Kambhampati, ICAPS 2014]



Synthesizing Robust Plans: A Compilation

Incomplete model Complete model

Complete world state Belief state

(Conformant Probabilistic
Planning)

xq/,@ xp (0.5) x4(0.7) x,(0.2)

» Resulting action a’ with eight
Xy @ conditional effects.

Cond: x, Ap Axg Ax, Effiq A—r




Synthesizing Robust Plans: A Heuristic Search
** Anytime approach

1. Initialize: 6 = 0 h(s,8) = 100
2. Repeat

“Findplanmtst.R(m) > &6
~ Better state found.
*If plan found: 6 = R(m) h(s',8) = 55
Until time bound reaches
3. Return  and R(m) if plan found

h(s,8): how faritis h(s",6) =0
approximately from s to a goal Goal reached
state so that the resulting plan § « R(m)

has approximate robustness > 6.



** Approximate plan robustness
» Lower bound

1(3) = nPr(c) < WMC()

CEX

_liél'éiéa'bl'ér'{ﬁ"" [(Zm, AZg) > 6

> Upper bound: divide X into independent sets X!

cexl

u(X) = 1_[ min Pr(c) = WMC(Z)
yi

® P If u(z; )>0

Ty then compute WMC (1)



Approaches for Planning with
Incomplete Models

Incompleteness annotations Library of cases is

are available available
- An alternative way to . (I;/ILTCBPl exp_loits( gases dgrec;tly
_ uring planning (by transferring
.make up for moc.lel case fragments into a skeletal
Incompleteness is to plan generated w.r.t. M’)
expect annotations * AAAI 2013
circumscribing the extent « An altetrrr:ative ap%roach \;voulca be
: to use the cases C to refine the
of mcompleteness model M’ into a more accurate
- In this case, we can model M” (\_Nher?l\l\/{l”)isg better
. : approximation of M*). Come see
epr|C|tIy reason Wlth the our IJCAI 2013 paper.
correctness of candidate « Zhuo et. Al. IJCAI 2013
plans over all possible + M Sentains both primitive and
models

« Nguyen et. Al NIPS 2013;
ICAPS 2014; Weber &
Bryce, ICAPS 2011
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Failures in Planner-Based Systems

When acting in a uncertain, dynamic environment, things can go wrong:
@ Execution failures

e Error diagnosis
e Continual Planning

@ Planning failures

e Domain is incorrectly modelled

e Incomplete world knowledge

e Missing resources

e Maybe the task is just unsolvable

Coming up With Good Excuses
Gobelbecker, Keller, Eyerich, Brenner & Nebel (2010)

Moritz Gébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010 2 /24



Explaining Planning Failures

An excuse is a counterfactual statement about the planning problem:

“If the door were unlocked, then | could find a plan to bring you the coffee
and the newspaper.”

Moritz Gébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010 4 /24



What is an Excuse?

Definition (Excuse)

An excuse is a changed initial state in which:
@ The values of fluents can be changed
@ New objects can be added

Exclude those changes that
@ make goal atoms immediately true.

@ change a fluent that contributes to the goal.

Moritz Gébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010 6 /24



roomy roomy Possible excuses:

e {open(doory)}
e {open(doory)}

m o lm @ {pos(key,) = robot}
&! o {pos(key,) = roomg}
roomy

Why did you not open the door yourself?
Because | do not have the key.

Moritz Goébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010



roomy room;
@k:eﬁ o {open(doory)}

/ e {open(doory)}
—— — @ {pos(key,) = robot}

door1 door»

o {pos(key,) = roomy}

roomg

Why did you not get the key yourself?
Because doors is not open.

Moritz Goébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010



roomy roomy Possible excuses:

@k:eﬁ o {open(doory)}

/ e {open(doory)}
door doorzi o {pos(key;) = robot}
o {pos(key,) = roomo}

roomg

Why did you not open door, yourself?
Because there is no way to open door».

Moritz Goébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010



Good Excuses

@ An excuse that can be regressed to another excuse is no good excuse.

@ Static facts are always good excuses.

Moritz Gébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010 12 / 24



Perfect Excuses

@ Some facts about the world are “more static’ than others.

e Example: adding a new key vs. adding a new door.
@ Associate costs with changing facts.

@ A good excuse with minimal costs is a perfect excuse.

Moritz Gébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010



Finding excuses

Reduce the problem of finding excuses to planning.
Introduce change operators that can modify the initial state at will.

Partition the plan into two phases.

Allow application only in the initial phase

Moritz Gébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010 17 / 24



Finding excuses

e For efficiency, limit the number of change operators.
@ We limit ourselves to static facts and facts on cycles.

e Determine cyclic facts using the ungrounded causal graph.

e Sufficient for some planning problems

e In general, might not find all good excuses.

Moritz Gébelbecker (Uni Freiburg) Coming up With Good Excuses ICAPS 2010



) Preferred Explanations
Expla nations Sohrabi, Baier & Mcllraith (2011)

drive(home, work)

start(car) getOff(car) start(car) turnOn(radio)
| | | . 1 I 1 I .,
templs(-20) engineOff(car) on(radio)

What could explain this?

m Many things: battery died, leads wet, ran out of gas, ...

But not all explanations are equal...

E.g., Preferences can be expressed over explanations for the car
not starting:

m |f radio is dead then sometime in the past the battery died.

m If it is rainy then sometime in the past high tension leads got
wet.

o
e ~ s
Cn}mpute‘r Seience

¥? UNIVERSITY OF TORONTO Sohrabi et al.: Preferred Explanations: Theory and Generation via Planning 2
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Planning with Human Help

Modeling humans as actors along with
robots Is computationally infractable for
large numbers of humans

Instead, model humans only as
observation/actuation providers to the
robot with limited availability and
accuracy

Stephanie Rosenthal and Manuela Veloso




How to Ask for Help

Symbiotic Autonomy
Rosenthal, Veloso et al.

Can you point to where we are on this map?

People often give grounding context when
asking for help

[Rosenthal, Veloso ,Dey: Ro-Man 2009, |UI 2010, JSORO 2012]

Carnegie Mellon University Stephanie Rosenthal and Manuela Veloso




Who To Ask: Results

Probability of
Availability

[ Environment Occupants are not Always Available

Carnegie Mellon University Stephanie Rosenthal and Manuela Veloso




Availability of Help

e Si\oricst path may not be

the one with the most

available or wiling help

Stephanie Rosenthal and Manuela Veloso




Actuation Limitations

Carnegie Mellon University Stephanie Rosenthal and Manuela Veloso




Asking for Help Assuming Humans
Always Available

Ask Push Ask Whic.h Move in Ask When On
Up/Down Ele(\)/ator is Elevator |1 Dest. Floor
pen

Carnegie Mellon University Stephanie Rosenthal and Manuela Veloso




Conditional Plan to Overcome
Actuation Limitations

Multi-Floor Navigation
On

Destination
Floor?

Move to
Destination

Move to |- éfekv!\:glrci: Move in . Ask When On
Elevator Open Elevator Dest. Floor

[ Enable New Functionality by Requesting Help J

Carnegie Mellon University Stephanie Rosenthal and Manuela Veloso




Asking for Help Using Inverse Semantics
Tellex, Knepper, Li, Rus & Roy

Thursday, Jan 29 2015, 1:55pm - 3:10pm

Session: Science and Systems 2014 (RSS) Presentations 2
Asking for Help Using Inverse Semantics

Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus, Nicholas Roy







Please hand me
the white table leg.




the white leg| !
that is on the table. ,

.

yk are groundings, or objects, places, paths, and

| events in the external world. Each b corresponds to a

constituent phrase in the language.
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Case Study: Planning for Human-Robot Teaming

v

A

A

Human-Robot Teaming (HRT) is becoming an
important problem

Requires a lot of different technologies
» Perception (Vision), Actuation, Dialogue, Planning ...

Most current robots are glorified remote-
operated sensors

Autonomous Planning is an important capability
» Supporting flexible HRT with constant changes

180



2
1 Planning Challenges in Human-Robot Teaming

1. OPEN WORLD GOALS

) Provide a way to specify quantified goals on unknown objects
) Consider a more principled way of handling uncertainty in facts

2. REPLANNING

> Handle state and goal updates from a changing world while
executing

> Present a unified theory of replanning, to analyze tradeoffs

3. MODEL UPDATES

) Accept changes to planner’s domain model via natural
language

4. PLAN RECOGNITION

) Use belief models of other agents to enhance planning

183



THE EMBEDDED PLANNER  #en

AN INTERACTIVE, ITERATIVE SYSTIEjern Updates Specificatie

Assimilate Sensor
Information

Open World Goals
[IROS09,AAAIIO,TISTIO]

Action Model Information
[HRI12]

Handle Human Instructions
[ACSI3, IROS14]

PLANNER
Sapa Replan

—FEillySpesifed—

Action Model

Communicate with ) Goal
Human in the Loop g} Manager

Planning for

Human-Robot
Teaming

Replan for the Robot

Coordinate with Humans ______[_‘ —— _‘I I_O,_D_I‘iA_\P_IE] ______

[IROS 4]

A
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|



Fielded Prototype

» Planning Artifact: Sapa Replan
» Extension of Sapa metric temporal planner

» Partial Satisfaction Planning
» Builds on SapaFs planner

> Replanning

» Uses an execution monitor to support
scenarios with real-time execution

[Benton et al., AlJO7]

[Talamadupula, Benton, et al., TIST10]
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»  When to start b

sensing?
» Indicator to start
sensing

»  What to look for?
» Obiject type
» Obiject properties

>  When to stop sensing?
»  When does the planner know the world is closed?

> Why should the robot sense?
» Does the object fulfill a goal?
> What is the reward? Is it a bonus?

[Talamadupula, Benton et al., ACM TIST 2010]
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A 5
1 Replanning for Changing Worlds

-

» New Information
» Sensors
» Human teammate

» New Goals

» Orders: Humans
» Requests

» Requirement
> New plan that works in new world (state)
» Achieves the changed goals

[Talamadupula et al. AAAI10]
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Model Updates

(via natural language)

» “To go into a room when you S R
are at a closed door, push it Ve o
one meter.” R ——

» Precondition: “you are at a closed A e R =
door” e [

» Action definition: “push it one T S"T"“
meter” Robot Spoaker

Base

» Effect: “go into a room”

» NLP Module

I Reference resolution

ii.  Parsing

iii. Background knowledge

iv.  Action submission (to planner)

1

[Cantrell, Talamadupula et al., HRI 2012] [In collaboration with hrilab, Tufts University]
Kartik Talamadupula - Ph.D. Dissertation Defense 189



I
Example: Action Addition

“To go into a room when you
are at a closed door, push it
one meter.”

New Action: “push”

( :durative—action

:parameters |(?door - doorway ?cur loc - hallway ?to loc - zone)

:duration (= ?2duration (dur push))]

:condition (and kat start (at ?cur loc)ﬂ

(at start (door connected ?door ?cur loc ?to loc))
(over all (door connected ?door ?cur loc ?to loc)))
:effect (and (at start (not (at ?cur loc)))

(at end (open ?doorwav))

[(at end (at ?to loc)))”

{ From natural language ] [ Architecture ] Background knowledge

Kartik Talamadupula - Ph.D. Dissertation Defense 190



Bel[CommX] =
{atfmk1,room2),
atfmk2room4),
at{commXroom3))

Goal[CommX] = {}

[In collaboration with hrilab, Tufts University]

[Talamadupula, Briggs et al., IROS14]

Kartik Talamadupula - Ph.D. Dissertation Defense 191



Deliver Triage
Medikit Location

Medikit
Room 2

Room 1

| | & |
Hall 1 Hall2  Hall3 Hall4 Halls Robot.ll‘ Hall 6

R U

Map the robot’s beliefs and knowledge about CommX
Into a new planning instance

Generate a plan for this instance — prediction of
CommX’s plan

Extract relevant information from the predicted plan
> Which medkit will CommX pick up?

Use the extracted information to deconflict robot’s plan

Triage
Location

Room 5

Kartik Talamadupula - Ph.D. Dissertation Defense
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. Comm X’s Goal
X "

\

\

Triage

Medkit
Location

Room 1

Hall1

1
Hall2  Hall2 Halla Hall5 . . €

Triage
Location

Room 5

PREDICTED move commx room3 halld

PLAN FOR
COMMX

move_reverse commx hall5 hall4
move_reverse commx hall4 hall3
move_reverse commx hall3 hall2
move_reverse commx hall2 hall1

move reverse commx hall1 room1
pick_up_medkit commx mkeast room1
conduct_triage commx room1

Kartik Talamadupula - Ph.D. Dissertation Defense

193



JASE STUDY: CROWD-PLANNING

» Crowdsourcing: Process of obtaining ideas or a
needed service from a crowd of people
« Crowd + QOutSourcing @

* Example: Travel Planning

) g%

Going to New York City

ew York City, New York State

Questions

ata ©2014 Google TermsofUse

Exciting things to do in New York City

Sync your Gogobot Trip Plans with

Manikonda et al., Arizona State University 194



REQUESTER
(Human)

®
w
Human-Computer
Interface

Mo

CROWD
(Turkers)

AI-MIX: A CROWD-PLANNING SYSTEM

COLLABORATIVE
BLACKBOARD
INTERPRETATION
Task FORM/MENU
specification SCHEDULES
Requester / \
goals M: Planner’s Model
Preferences (Partial)
PLANNER

Analyze the extracted
plan in light of M, and
provide critiques

= I /

DECISION SUPPORT

a3xyuNLoNYLS

1
1
1
1
1
1
1
1
1
1
1
1
1
cl
21
wi
o |
A |
gl
_|I
cl
xl
ml
ol
1
1
1
1
1
1
1
1
1
1
1
1

Crowd’s plan
Sub-goals

New actions
Suggestions

ALERTS
. ‘

Manikonda et al., Arizona State University 195



amazoanChanlcal turk (o ) 310,609 HITs B

ntelligence Your Account | HITs | Qualifications .. ~iizble now

All HITs | HITs Available To You | HITs Assigned To You

HITs v 0.00 -

Timer: 00:00:00 of 10 minutes Want to work on this HIT?  Want to see other HITs? Total Earned: Unavailable
|_Accept HIT Skip HIT Total HITs Submitted: 0

Tour to Chicago
Requester: Lydia Reward: $0.20 per HIT HITs Available: 10 Duration: 10 minutes
Qualifications Required: HIT approval rate (%) is greater than 50, Location is US

TOUR REQUEST
Going to New York City for on a month. Where is a must to eat at that | can make reservations at? With so little time, | don't exactly want to spend it waiting for hours to get
seated/get food. Also, what ar gs | should do and see in NYC? Off the beaten path things are preferred! :) I've been to NY'C before, so perhaps new speakasies, restaurants
and night life recommendations Ome.

e Have a breakfast at a godglocal ri nt. #breakfast

e [Maybe a museum to visit for around ¥ hours maximum. #museum
e Visit some iconic places with rich architecture. #architecture

e Have a quick light lunch. Budget is 30S. #lunch

e Do some shopping for a maximy

e Take a walk in some touristy pl@ HOW TO SUBMITA HIT

e Have dinner and drinks at a gog@
You can contribute by

= Suggesting a new activity
= Critiquing an existing activity
The "TO DO Tags" column contains information about the requester demands. and plan critiques that are
yet to be satisfied.
= To add a new activity, click on the "Add new activity" button, fill out the title, description and approximate
duration, attach the tag corresponding to this activity and click "Submit".
= To critique an existing activity, click on the "Critique existing activity" button, click on the activity that you
want to critique, enter your note, attach an appropriate tag (which will then be added to the list of TO DO
Tags) and click "Submit".
For each option you may add more than one suggestion if you wish. Activities with existing suggestions appear
in green; otherwise, they are red.

TO DO Tags:

macys_whattobuyin

macys_gettingto

manhattan_gettingto

museum

W TSI WMap data D2ZUTS Googie T Tarms ot Use  Hegort amap eror

Manikonda et al., Arizona State University 196



« Understanding the

goals and plans of the
humans (requester + crowd
from semi-structured or
unstructured text

* Impedance Mismatch

Extract from Plain Text

Impose structure
[Ling & Weld, 2010]
[Kim, Chacha & Shah, 2013]

1)

UNSTRUCTURED

CROWD
(Turkers)

REQUESTER
(Human)

)|n|<_>

Human-Computer

Interface

|

o o o
-
-

COLLABORATIVE
BLACKBOARD

Task
specification

FORM/MENU
SCHEDULES

-----

~

-~
-,

/

Requester
goals
Preferences

azxuNLoNdLs

[
z
(7]
=
A
(=
S
[
.y
m
o

Crowd’s plani

PLANNER

Sub-goals E
New actions | [EUZIH]
Suggestions |

Full Plan Recognition
[Kautz & Allen, 1986]
[Ramirez & Geffner, 2010]

STRUCTURED

Plan Recognition from Noisy Traces

Extract noisy traces first

[Zhuo, Yang & Kambhampati, 2012]

Manikonda et al., Arizona State University

197

4
o

~
-
e i e e ®

[N



Add a New Suggestion

TO DO Tags:
. Tag Location = Comments/Description Time Duration Cost
museum
*Select appropriate option from the dropdown list. Click the yellow option to type in your own tag.
lunch *All times must be in 24-hr format.
pe walk v [Manhattan Walk near the NY public library and the ch |14:00 v hours $ | -add-
dinner ‘

architecture

Add new activity »

Click 'add’ to enter new suggestions or ‘remove’ to delete one of your entries. Duration and cost is optional. Hit Submit after completing all your suggestions.

| ==

Manikonda et al., Arizona State University 198



ADDING A CRITIQUE

TOUR REQUEST

Going to New York City for only a day in about a month. Where is a must to eat at that | can make reservations at? With so little time, | don't exactly want to spend it waiting for hours to get
seated/get food. Also, what are the must things | should do and see in NYC? Off the beaten path things are preferred! ;) I've been to NYC before, so perhaps new speakasies, restaurants
and night life recommendations would be awesome.

e Have a breakfast at a good local restaurant. #breakfast

*-‘F nere
Existing Activities Your Critiques L‘} ) .
+ r Hill
Tag: Location: |facy " Hoboken os)
Select to provide orderings B =D S 0 ; Jgtrict =
among activities e . pway s Vs
Description: |Awesome clothes and the head quartg Time: a0 * T
Jersey City N i v
10:00 % N l‘f'lll\'.f‘" &
Macys: Awesome clothes and ) B, s
- Duration: |1 Cost: -rEMOVE- e o
the head quarters (10:00 hrs) (1 | | \ New York 2
hours) #shop *Select your options from the column on the left. \,ﬁ"c' * Brooklyn %8
c.“ Liberty nbo Navy Yard
Manhattan: Walk near the NY *All times must be in 24-hr format. vibe J ag®®" State Pork .
3]
public library and the charging \g'-'( &2 - Brooklyn
bull (14:00 hrs) #walk . o w Chint
Map data ©2014 Google | Terms of Us= ' Report amap arrar

Click on the existing activities to enter your critiques. All form fields are required. Hit Submit when you are finished.

 simi | oo

Manikonda et al., Arizona State University 199



TOUR REQUEST

Going to New York City for only a day in about a month. Where is a must to eat at that | can make reservations at? With so little time, | don't exactly want to spend it waiting for hours to get

seated/get food. Also, what are the must things | should do and see in NYC? Off the beaten path things are preferred

and night life recommendations would be awesome.

Existing Activities

Select to provide orderings
among activities

Macys: Awesome clothes and
the head quarters (10:00 hrs) (1
hours) #shop

Manhattan: Walk near the N
public library and the charging
bull (14:00 hrs) #walk

Click on the existing activities to enter your critiques. All form fields are required

Have a breakfast at a good local restaurant. #breakfast

Your Critiques

) I've been to NY'C before, so perhaps new speakasies, restaurants

lunch

*Select your optio

v touristy Y -remove-

nmn on the left.

*All times must be in 24-hr format.

. Hit Submit when you are finished.

Manikonda et al., Arizona State University
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CHALLENGE: DECISION SUPPORT

COLLABORATIVE
REQUESTER BLACKBOARD

» Steering the crowd o
workers towards w < EEai )
producing a plan

collaboratively T
« Partial domain dynamics sees et 8 Y,
 Incomplete preferences Suagestons |

CROWD
(Turkers)

e [terative Process

Problem Decomposition
[Nau et al., 2003]

Plan Critiquing Plan Generation

SHALLOW MODEL APPROXIMATE MODEL

Constraint & Arithmetic Checking Regression

Mobi [Zhang et al., 2012] Match sub-goals
Cobi [Zhang et al., 2013] with actions

Manikonda et al., Arizona State University 201



TO DO Tags:

macys_whattobuyin

macys_gettingto

manhattan_gettingto

museum

lunch




SUB-GOAL GENERATION

DECISION SUPPORT & COMMUNICATION

* Planner uses a high level PDDL action model
* Action examples: visit, lunch, shop ...

* Generic preconditions

» Unsatisfied sub-goals thrown as alerts

Entrance fee

for ?p .
GOQAJ Main Action
Visiting Sub-Goal-2 Visit ?p Effect »  Visited ?p
hours of ?p
NG
2>
(90
b/
Getting to
’p

Manikonda et al., Arizona State University
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TOUR REQUEST

Going to New York City for only a day in about a menth. Where is a must to eat at that | can make reservations at? With so little time, | don't exactly want to spend it waiting for hours to get
seated/get food. Also, what are the must things | should do and see in NYC? Off the beaten path things are preferred! ;) I've been to NYC before, so perhaps new speakasies, restaurants

and night life recommendations would be awesome.
e Have a breakfast at a good local restaurant. #breakfast

e IMaybe a museum to visit for around 2 hours maximum. #museum

* Visit some iconic places with rich architecture. #architecture

e Have a quick light lunch. Budget is 30S. #lunch

e Do some shopping for a maximum of 2 hours. | can spend upto 3008 on shopping. #shop

e Take a walk in some touristy place. #walk #touristy

e Have dinner and drinks at a good local restaurant. | want to spend a maximum time of 3 hours here. #dinner

TO DO manhattan_gettingto

manhattan_gettingto

#shop

Macys: Awesome clothes and the head quarters (10:00 hrs) (1 hours)

hrs) #walk

Manhattan: Walk near the NY public library and the charging bull (14:00 a

museum

lunch

ik

Island

~- o Hudson K3
r River Park >
§ z s
Hog () & &
T, Tunne \ -] e
Hollan g A = v
)
- Marsves e,
Love t
Manhattan -
A &
& S
& hmatowr
New York
ial e
9
et ‘t\\;\ ‘9’0,
..‘,‘a
©
%
= d %
e Brookhyn

Map data ©2014 Google ' Tarms of Use

Walabout
B4y

Broo
Navy

Flushing

NS
Report a map =ror
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INTERPRETATION

DECISION SUPPORT

COMMUNICATION

PLANNING FOR

HUMAN-ROBOT TEAMING

Open World Goals
Continual (Re)Planning

Plan & Intent Recognition

Continual (Re)Planning

Plan & Intent Recognition

Model Updates

PLANNING FOR
CROWDSOURCING

Activity Suggestions
Activity Critiques

Ordering Constraints

Sub-goal Generation
Constraint Violations

Continual Improvement

Sub-goal Generation

ASE STUDY: HRT + CROWD-PLANNING

Manikonda et al., Arizona State University

205



OVERVIEW

COMMUNICATION

SUMMARY

206



Recap ===

IBM Research

* HILP raises several open challenges for
planning systems, depending on the modality
of interaction between human and the planner

* Contributions of this tutorial:
— Surveyed HILP scenarios
— Discussed the dimensions along which they vary

— ldentified the planning challenges posed by HILP
scenarios

* Interpretation, Decision Support and Communication

— Outlined current approaches for addressing these
challenges

— Presented detailed case-studies of two recent HILP
systems (from our group ©)
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Dimensions of HIL Planning

Cooperation | Communication What is
. . . Knowledge Level
Modality Modality Communicated
DIEIEEEN Incomplete Preferences
Crowdsourcmg (Advice from Custom Interface Critiques, subgoals Incomplete Dynamics

planner to humans)

Incomplete Preferences

Human-Robot Teaming/ Natural Language Goals, Tasks, Model Incomplete Dynamics
Teaming Collaboration Speech information (Open World)
“Grandpa Awarene_s_s (o Prespecified : No explicit Incomplete Preferences

specified (Safety / Interaction - :

Hates Robots” constraints) Constraints) communication Complete Dynamics

Interaction
MAPGEN (Planner takes Direct Modification of Direct modifications, Incomplete Preferences
binding advice from Plans decision alternatives Complete Dynamics

human)



Challenges for the Planner

* Interpret what humans are doing
— Plan/goal/intent recognition

* Decision Support

— Continual planning/Replanning
« Commitment sensitive to ensure coherent interaction
e Handle constraints on plan

— Plan with incompleteness

* Incomplete Preferences

* Incomplete domain models

— Robust planning with “lite” models
— (Learn to improve domain models)

* Communication
— Explanations/Excuses
e Excuse generation can be modeled as the (conjugate of) planning problem

— Asking for help/elaboration
* Reason about the information value



(Other Relevant) Challenges (that are
out-of-scope of this tutorial)

Human Factors

— How to make planning support “acceptable” to the
humans in the loop?

— How to adjust the planner autonomy to defer to the
humans in the loop?

Speech and Natural Language Processing in
Collaborative Scenarios

Learning to Improve models
— Learning from demonstrations..

Advances in multi-agent planning
— Problem decomposition; Coordination etc.



Human-in-the-Loop Planning is
making inroads...

* Several papers that handle these challenges of
Human-Aware Planning have been presented at
recent AAAI conferences (and ICAPS, [JCAI, 1AALI...)

— Significant help from applications tracks, robotics
tracks and demonstration tracks

— Several planning-related papers in non-ICAPS venues
(e.g. AAMAS and even CHI) have more in common
with the challenges of Human-aware planning

e ..so consider it for your embedded planning
applications
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IMAGINE
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Imagine there's no Landmarks

It's easy if you try
No benchmarks below us Imagine there’s no models
Above us only blai | wonder if you can
Imagine all the planners No need for preferences or groundings
Planning for real A diversity of plans

Imagine all the planners
Imagine there's no state Living life incomplete
It isn't hard to do
Nothing to regress or relax You may say that I'm a whiner
And no cost guidance too But I'm not the only one
Imagine all the planners | hope someday you'll join us
Lifting all the worlds And the ICAPS will be more fun

You may say that I'm a whiner
But I'm not the only one

| hope someday you'll join us
And the ICAPS will be more fun




