

Capability Models and Their Applications in Planning

Yu Zhang, Sarath Sreedharan &

Subbarao Kambhampati

Arizona State University

Planning with Humans in the Loop

Multi-agent planner

Human-in-the-Loop Planning & Decision Support

AAAI 2015 Tutorial

rakaposhi.eas.asu.edu/hilp-tutorial

Subbarao Kambhampati

Arizona State University

Kartik Talamadupula

IBM T.J. Watson Research Center

Funding from ONR, ARO and NSF gratefully acknowledged ¹

Interactive Session Paper TuD2.10

COORDINATION IN HUMAN-ROBOT TEAMS USING MENTAL MODELING AND PLAN RECOGNITION

But how do we get the Human Models?

Talamadupula et al. – Arizona State University & Tufts University Coordination in Human-Robot Teams Using Mental Modeling & Plan Recognition

How do we get the Human Models?

- Typically multi-agent planning methods assume all agents use similar models
 - ♦ E.g. All agents with STRIPS action models
- Onreasonable to expect similar sorts of action models for the robot and the human..
 - Human models (from the Robot's point of view) are likely to be highly incomplete.
- So how do we represent (and handle) incomplete models of human capabilities?

Challenges in learning Incomplete Human Models

- The temptation is to go with existing action models & introduce incompleteness
 - Atomic: MDP/POMDP
 - ♦ Factored: STRIPS, RDDL, HTN etc
 - Example work by Garland&Lesh(2002); Nguyen eal al (2010, 2014)
- While they are fine if someone hand-specifies them, they are much harder to learn, given the kinds of information that is likely to be available.
 - ♦ Significant incompleteness in observations
 - Sensor occlusion, noisy observations,
 - ♦ [Zhuo & Kambhampati, IJCAI 2013]
 - There may be significant gaps between observations

Our Solution: Capability Models

Observations (partial) with indefinite but bounded gaps

Capability

We start with the "default assumption" that domain models are incomplete

• DEFINITION (CAPABILITY) – Given an agent, a capability is a mapping $S_{\phi} \times S_{\phi} \to [0, 1]$, which is an assertion about the probability of the existence of a plan in fewer than or equal to 7 atomic state changes that can connect the two states

->: denote an atomic state change

{has_water(AG), has_coffee_beans(AG)}
-> {has_boilling_water(AG), has_coffee_beans(AG)}
-> {has_boilling_water(AG), has_ground_coffee_beans(AG)}
-> {has_coffee(AG)}
When T = 2 { has_water(AG) => has_ground_coffee_beans(AG)
has_boiling_water(AG) => has_coffee(AG)...
When T = 3 { ... (including all capabilities when T = 2)
has_water(AG) => has_coffee(AG)

Partial states

Capability model encodes all capabilities for a given T

(Imperfect analogy to) HTN Models. A capability can be thought of as an abstract task

Capability Model

DEFINITION 3 (CAPABILITY MODEL). A capability model of an agent ϕ , as a binomial ABN (G_{ϕ} , F, ρ), has the following specifications:

- $V_{\phi} = X_{\phi} \cup \dot{X}_{\phi}$.
- $\forall V_i \in V_i$, the domain of V_i is $D(V_i) = \{true, false\}$.
- $\forall V_i \in V_5$, $F_i = \{F_{i1}, F_{i2}, ...\}$, and each F_{ij} is a root and has a density function $\rho_{ij}(f_{ij})$ ($0 \leq f_{ij} \leq 1$). (For each value pa_i : of the parents PA_i , there is an associated variable F_{ij} .)

•
$$\forall V_i \in V_{\phi}, P(V_i = true | pa_{ij}, f_{i1}, \dots, f_{ij}, \dots) = f_{ij}.$$

Capability Model & Encoded Capabilities

A capability model encodes the following distributions:

Joint distribution over T

A capability:

$$P(\dot{X}_{\phi} = s_E \mid X_{\phi} = s_I) \iff \mathbf{S}_{\mathsf{I}} \Longrightarrow \mathbf{S}_{\mathsf{E}}$$

A conditional probability (specified by a partial initial and eventual state)

Learning Capability Models

Learning model structure Causal relationships (diachronic links); variable correlations (synchronic links)

Learning model parameters Conditional probabilities

Observations (partial) with indefinite but bounded gaps

We assume that the maximum number of missing state observations between any two observations in the partial plan trace is upper bounded by T

Observations

DEFINITION (T-GAP PARTIAL PLAN TRACE).A T-gap partial plan trace is a partial plan trace in which all $k_{[1, 2...]} \leq T$

$$\mathcal{T} = \langle s_i, s_{i+k_1}, s_{i+k_2}, ... \rangle$$

Learning samples

Apply Bayesian learning (assuming beta distributions):

$$\rho(f_{ij}|D) = beta(f_{ij}; a_{ij} + s_{ij}, b_{ij} + t_{ij})$$

Using Capability Models

Single agent planning

 Robot can reason about whether a human can achieve the task alone

Multi-agent planning (e.g. Robot and Human)

Planning with Capability Models

T-gap capability model

Any planning state is a set of complete states: a belief state

{(complete state I), (complete state 2)...}

- Select a capability to apply: $\mathbf{s}_{I} \Rightarrow \mathbf{s}_{E} = P(\dot{X}_{\phi} = s_{E} | X_{\phi} = s_{I})$
- For each s* in the belief state,

> Applicable: $s_I \sqsubseteq s^*$

Success: compute a set of resulting states s, $s_E \sqsubseteq s_B$

Failure: no change $P(s) = \frac{P(s^* \Rightarrow s)}{P(s^* \Rightarrow s_E)} = \frac{P(\dot{X}_{\phi} = s | X_{\phi} = s^*)}{P(\dot{X}_{\phi} = s_E | X_{\phi} = s^*)}$ Inapplicable - no change to s^* $\sum_{s \in S} P(s) = 1$

Single-agent Planning

Unrolling of 2-gap capability model

Single Agent Planning Heuristic

Assumptions:

 $P(s_I \Rightarrow s_E) \ge P(s'_I \Rightarrow s_E)(T(s'_I) \subseteq T(s_I) \land F(s_I) \subseteq F(s'_I))$ $P(s_I \Rightarrow s_E) \ge P(s_I \Rightarrow s'_E)(T(s_E) \subseteq T(s'_E) \land F(s_E) \subseteq F(s'_E))$

A* heuristic

Given any state s* in belief state b(S):
Compute f(s*) = g(s*) + h(s*)
g(s*) = cost of capabilities in the plan prefix
The cost of a capability is taken as the negative log of the associated probability
h(s*) = argmax - log P(s¬v ⇒ {v = true})
G_s is the set of variables that still need to be made true
S_{~v} is a complete state with all variables being TRUE except for v

• {v = true} is a partial state in which v is true

$$h(\hat{b}(\mathcal{S})) = \sum_{s \in \mathcal{S}} P(s) \cdot h(s)$$

Multi-agent Planning Problem

For robotic, agents, we assume STRIPS action models

- Apply action model on any complete state in the belief state is straightforward
- For human agents, we assume capability models

DEFINITION 8. Given a set of robots $R = \{r\}$, a set of human agents $\Phi = \{\phi\}$, and a set of typed objects O, a multiagent planning problem with mixed models is given by a tuple $\Pi = \langle \Phi, R, b(\mathcal{I}), G, \rho \rangle$, where:

- Each $r \in R$ is associated with a set of actions A(r) that are instantiated from \mathcal{O} and O, which $r \in R$ can perform; each action may not always succeed when executed and hence is associated with a cost.
- Each $\phi \in \Phi$ is associated with a capability model $G_{\phi} = \langle V_{\phi}, E_{\phi} \rangle$, in which $V_{\phi} = X_{\phi} \cup \dot{X}_{\phi}$. $X_{\phi} \subseteq X$, in which X_{ϕ} represents the state variables of the world and agent ϕ and X represents the joint set of state variables of all agents.

Planning with mixed models!

Multi-agent Planning

2-gap capability model

Conclusions

- Introduced capability models for human modeling
- Discussed learning and planning with capability models
- Preliminary evaluation in the paper..

T-gap capability model

Start with the "default assumption" of incomplete domains

- Learn from observations with indefinite but bounded gaps
- Non-angelic uncertainty

