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COORDINATION IN HUMAN-ROBOT TEAMS USING
MENTAL MODELING AND PLAN RECOGNITION

Bel[CommX] =
{at{mk1,room?2),
at{mk2,roomd),

at{commXroom3)}

Goal[CommX] =
{goal(commX triaged
(commXroom1),nor

mal)}

Butthowidoiwelgetithe
HumaniMoedels?

Talamadupula et al. — Arizona State University & Tufts University
@ / C‘) Coordination in Human-Robot Teams Using Mental Modeling & Plan Recognition
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How do we get the Human Models?
1

& Typically multi-agent planning methods assume all agents use similar
models

& E.g. All agents with STRIPS action models

® Unreasonable to expect similar sorts of action models for the robot
and the human..

¢ Human models (from the Robot’s point of view) are likely to be highly
incomplete.

® So how do we represent (and handle) incomplete models of human
capabilities?



Challenges in learning Incomplete Human
Models
L

® The temptation is to go with existing action models & introduce
incompleteness

¢ Atomic: MDP/POMDP
¢ Factored: STRIPS, RDDL, HTN etc
& Example work by Garland&Lesh(2002); Nguyen eal al (2010, 2014)
® While they are fine if someone hand-specifies them, they are much

harder to learn, given the kinds of information that is likely to be
available.

¢ Significant incompleteness in observations

Complete f\
. X X Observations y
& Sensor occlusion, noisy observations,

& [Zhuo & Kambhampati, |JCAI 2013]

¢ There may be significant gaps between observations Actual

Observations €

Our Solution: Capabl I |ty Models Observations (partial) with indefinite but bounded gaps
9



Capability

We start with the “default assumption” that domain models are
incomplete

= DEFINITION (CAPABILITY) — Given an agent, a
capability is a mapping S, X Ss — [0, 1], which is an
assertion about the probability oi.the existence of a
plan in fewer than or equal to T atoriic state
changes that can connect the twa states.

->: denote an atomic state change =" Partial states

{has_water(AG), has_coffee beans(AG)}
-> {has_boilling_water(AG), has_coffee beans(AG)}
-> {has_boilling_water(AG), has_ground_coffee_beans(AG)}
-> {has_coffee(AG)} Bound on the
gaps between

- => .
WhenT = 2 has_water(AG) has_ground_coffee_beans(AG) observations

has_boiling_water(AG) => has_coffee(AG)...

... (including all capabilities whenT = 2)
When T = 3 "L has_water(AG) => has_coffee(AG) 3



Capability Model
N

Capability model encodes all capabilities for a given T

(Generalization of 2-TBN model used in RDDL)

T-gap capability model

Initial State | | Eventual State

strong(AG) stror%(AG)
Synchroni
limks

can_carry(AG,PKG) can_carry(AG,PKG)

has_trolley(AG) D iac h ronic has_trc’ley(AG)

has_money(AG) has_mgney(AG)

deliverable(AG,PKG) links deliverabl&(AG,PKG)

delivered(PKG) delivercd(PKG)

(Imperfect analogy to) HTN Models. A capability can be thought of as an abstract task



Capability Model

DEFINITION 3 (CAPABILITY MODEL). A capability model of
an agent ¢, as a binomial ABN (G, F, p), has the following spec-
ifications:

o Vy=XyU X¢.
o YV, € Vi, the domain of V; is D(V;) = {true, false}.

o VYV, € Vi, F; = {Fu\Fi2, ...}, and each F;; is a root and
has a deisity function p3fi;) (0 < fi; < 1). (For each
value pa;; of the parents F¥A;, there is an associated vari-
able F};.)

o VV;, € V¢, P(V; = t'r'ue|paij,fz~1,. -fij, ) = fl.?

Initial State Eventual State -
strong(AG) strong(AG)

has_money(AG) has_mgney(AG)

can_carry(AG,PKG) can_carry(AG,PKG)
=
has_trolley(AG) has_trolley(AG)
deliverable(AG,PKG) deliverable(AG,PKG)
delivered(PKG) delivere'd(PKG)




Capability Model & Encoded Capabilities
I

A capability model encodes the following distributions:

Joint distribution over T

Initial State Eventual State

‘strong(AG)
T | has_money(AG) | | has_mgney(AG) |
P(X¢ , X¢) — / P(X¢ , X¢ , t) dt [can_carry(AG,PKG)| |can_carry AG,PKG)l
0

| has_trolley(AG) | | has_trc’ley(AG) |
| deliverable(AG,PKG) | | deliverable(AG,PKG) |
| delivered(PKG) | [ deliverSa(PKG) |

T-gap capability model
A capability: gap cap 4

P(X¢:SE|X¢=SI) S,=> Sg

A conditional probability
(specified by a partial initial and eventual state)



Learning from (gap-bounded) plan traces

Learning Capability Models

" Learning model structure

Causal relationships

(diachronic links); variable
correlations (synchronic links)

" Learning model parameters Conditional probabilities

©- Jo)
<]
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Observations (partial) with indefinite but bounded gaps
|



Parameter Learning e

servations O

We assume that the maximum number of missing state

observations between any two observations in the partial
plan trace is upper bounded by T

DEFINITION (T-GAP PARTIAL PLAN TRACE).A
T-gap partial plan trace is a partial plan trace

in which all k;, , ,<=T

> v A

T = <_Sj L‘L,Si+k1'7\3i+k27 >

e~

*  Learning samples

Apply Bayesian learning (assuming beta distributions):

p(fij|D) = beta(fiz; ai; + iz, bij + tij)



Using Capability Models
1 -

Single agent planning

= Robot can reason about whether a human can achieve
the task alone

Multi-agent planning (e.g. Robot and Human)

Multi-agent planner

= Robots can reason about a
joint plan with humans

Multi-agent systems



Planning with Capability Models

Initial State ‘ Eventual State -
strong(AG) strong(AG)
/ has_money(AG) has_mgney(AG)
can_carry(AG,PKG) can_carry(AG,PKG)
=
has._trolley(AG) has._trolley(AG)
deliverable(AG,PKG) deliverable(AG,PKG)
delivered(PKG) deIivere'd(PKG)

T-gap capability model
* Any planning state is a set of complete states: a belief state
{(complete state |), (complete state 2)...}
= Select a capability to apply: s,=>s; = P(Xy = sp | X¢ = s1)
» For each s* in the belief state,
> Applicable: s7 [ 8™
Success: compute a set of resulting states s, sg L s

P(s*=s)  P(X4=s|Xgs=s)
Failure: no change P(s* = sg) P(X4 = s5|Xs = 5%
» Inapplicable — no change to s* 2 PO=1

P(s) =




Single-agent Planning

“

strong(AG)=F.}.
has_money(Adj

o+ has_trolley(AG)=T *.,,
H: has_money(A@)=F <

has_trollgy(AG3=T

»styong(AG)=F -
elivered(PKG)=T

H:tas, trolley(AG)=T >
delivered(PKG)=T

** delivered(PKG)=T

IS
4,

deIivereH(PKG)=T

Initial State

strong(AG

has_money(AG)

I can_carry(AG,PKG) |
has_trolley(AG)

| deliverable(AG,PKG) |

[ delivered(PKG) |

Eventual State

strong(AG)

| has_mgney(AG) |

|can_carry AG,PKG)l
has_trolley(AG)

| detiverabie(AG,PKG) |

[ deliverSa(PKG) |

—

Initial State

strong(AG
has_money(AG)

| can_carry(AG,PKG) I
has_trolley(AG)

| deliverable(AG,PKG) |

[ delivered(PKG) |

Eventual State

strong(AG)

| has_mgney(AG) I

Ican_carry AG,PKG)l
has_trolley(AG)

| deliverable(AG,PKG) |

[ deliverSa(PKa) |

Unrolling of 2-gap capability model

23




Single Agent Planning Heuristic

Assumptions:

P(s; = sg) > P(st = sg)(T(s7) C T(s1) NF(s;) C F(s7))
P(s; = sg) > P(s; = sg)(T(sg) CT(sg)\F(sg) C F(s']?))

A* heuristic
Given any state s* in belief state b(S):
Compute f(s*) = g(s*) + h(s*)
g(s*) = cost of capabilities in the plan prefix
The cost of a capability is taken as the negative log of the
associated probability
h(s*) = argmax —log P(s-v = {v = true})
vEGg,850y
* G, is the set of variables that still need to be made true
e S_, is a complete state with all variables being TRUE except for v
e {v = true}is a partial state in which v is true

h(b(S)) =) P(s) - h(s)

seSsS

24



Multi-agent Planning Problem

state is straightforward

* For robotic, agents, we assume STRIPS action models
» Apply action model on any complete state in the belief

* For human agents, we assume capability models

DEFINITION 8. Given a set of robots R = {r}, a set of hu-
man agents ® = {¢}, and a set of typed objects O, a multi-
agent planning problem with mixed models is given by a tuple I1 =
(®,R,b(T),QG, p), where:

e Eachr € R is associated with a set of actions A(r) that are
instantiated from O and O, which v € R can perform; each
action may not always succeed when executed and hence is
associated with a cost.

e Each ¢ € ® is associated with a capability model G4 =
Vi, Eg), inwhich Vg = X4 U Xy. Xy C X, in which X,
represents the state variables of the world and agent ¢ and
X represents the joint set of state variables of all agents.

Planning with mixed models!

Robot actions

s’

25



Multi-agent Planning

strong(AG)=F

Frsstrong(AG)=F =
deliveredPKG)=T

has_trolley(AG)=T *s4f: has_trolley(AG)=T >

delivered(PKG)=T

delivered(PKG)=T

delivered(PKG)=T

Initial State

strong(AG)

has_money(AG)

can_carry(AG,PKG)

has_trolley(AG)

deliverable(AG,PKG)

delivered(PKG)

, Eventual State -
strong(AG)

has_mgney(AG)
can_carry(AG,PKG)

has_tro’ley(AG)

deliverable(AG,PKG)

deliverad(PKG)

2-gap capability model

26



Conclusions

» Introduced capability models ‘
for human modeling | ‘}‘ i

> Discussed learning and el 7
planning with capability

Multi-agent planner

E
models 3
> Preliminary evaluation in the  §
papetr.. :
Initial State Eventual State Start With the “defau’t
strong(AG) strong(AG) assumption” of incomplete
has_money(AG) has money(AG)| domains
can_cary(AG,PKG) _ [een_cartAGPKo) = | earn from observations
has_trolley(AG) has_trolley(AG) with indefinite but
deIiverabIe(AG,P{G) deliverable(AG,FiG) bounded gaps
delivered(PKG) deliver&j(PKG) B Non-ange'ic uncertainty

T-gap capability model C-plan .



