Given no evidence:

\[P(AC) \neq P(A) \cdot P(C) \]

\[P(AC) = \sum_B P(ABC) \]

\[= \sum_B P(A) \cdot P(B/A) \cdot P(C/B) \]

Can't be simplified.

So A not independent of C.

Given B as evidence:

Need to show:

\[P(AC|B) = \frac{P(ABC)}{P(B)} \cdot P(C|B) \]

\[P(AC|B) = \frac{P(ABC)}{P(B)} \]

\[= \frac{P(A) \cdot P(B|A) \cdot P(C|B)}{P(B)} \]

\[= \frac{P(A) \cdot P(B|A) \cdot P(C|B)}{P(B)} \]

\[\text{QED} \]
Given no evidence need to show

\[P(AC) \neq P(A) \cdot P(C) \]

\[P(AC) = \sum_{B} P(ABC) \]

\[= \sum_{B} P(B) \cdot P(AB) \cdot P(C|B) \]

\[\text{Can't be simplified} \]

\[P(A) \cdot P(C) \]

So \(A \) is not independent of \(C \)