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Abstract 
We approach the problem of finding plans based on 
multiple optimization criteria from what would seem an 
unlikely direction: find one valid plan as quickly as 
possible, then stream essentially all plans that improve on 
the current best plan, searching over incrementally longer 
length plans.  This approach would be computationally 
prohibitive for most planners, but we describe how, by 
using a concise trace of the search space, the PEGG 
planning system can quickly generate most, if not all, plans 
on a given length planning graph.  By augmenting PEGG 
with a branch and bound approach the system is able to 
stream parallel plans that come arbitrarily close to a user-
specified preference criteria based on multiple factors.  We 
demonstrate in preliminary experiments on cost-augmented 
logistics domains that the system can indeed find very high 
quality plans based on multiple criteria over reasonable 
runtimes.  We also discuss directions towards extending the 
system such that it is not restricted to Graphplan’s scheme 
of exhaustively searching for the shortest step-length plans 
first. 

I. Introduction 
From a classical planning perspective a basic, multiple 
criteria optimization problem might entail finding a plan 
that optimizes two factors: 

x: the number of time steps 
y: the total ‘cost’ of the plan 

Here the optimization itself will be with respect to some 
user-specified criteria involving x and y.  Graphplan is a 
well-known classical planner that, in spite of the more 
recent dominance of heuristic state-search planners, is still 
one of the most effective ways to generate the so-called  
“optimal parallel plans”. State-space planners are drowned 
by the exponential branching factors of the search space of 
parallel plans (the exponential branching is a result of the 
fact that the planner needs to consider each subset of non-
interfering actions).  However, there is no known practical 
approach for finding cost-optimal plans with Graphplan, let 
alone optimizing over some arbitrary weighting of time 
steps and cost.  We describe and report on initial 
experiments with a Graphplan-based system that streams a 
sequence of plans that increasingly approach a user-
specified optimization formula based on multiple criteria.  
This system, which we call Multi-PEGG, seeks to find the 
plan that comes closest to matching the user’s preference 
expressed as a linear preference function on two variables.  

(e.g.  α x  + β y, where x and y might be defined as above).  
As we’ll discuss in Section V (future work) extending the 
system to handle more than two criteria is straightforward, 
as is implementation of criteria such as ‘the least cost plan 
with no more than k steps’. 
   Consider first how a plan satisfying multiple criteria 
might be generated by Graphplan if computation time were 
not an issue.   By alternating search episodes on the 
planning graph with extensions of the graph, Graphplan’s 
algorithm is guaranteed to return the shortest plan in terms 
of time steps (where a step might include multiple actions 
that do not conflict).  If Graphplan finds its shortest valid 
plan for the given problem on a k-level planning graph, a 
modest modification of the program could, in principal, 
find all possible valid k-length plans by conducting 
exhaustive search on the same planning graph.1  The final 
set of plans could then be post-processed to find the best 
one in terms of any other optimization criteria giving us, 
for example, the least cost, k-length plan.   However, not 
only is this approach computationally impractical for many 
problems/domains, but it can only handle a small subset of 
the multi-objective criteria one could envision.   Such a 
system for example, could not satisfy a user request for the 
least-cost plan of any length. 
 In a naive attempt to extend the system capabilities so its 
scope includes plans of length greater than k, we might 
iteratively extend the planning graph, restarting the solution 
search for valid plans at each successive level.  If we have a 
means of calculating ‘cost’ for the subgoal sets generated 
during the regression search, branch and bound techniques 
might be applied after finding the first valid plan to prune 
some of this search space.  Nonetheless, this will clearly be 
an intractable approach for any problem of sufficient size 
to be of interest. 
   The PEGG (Pilot Explanation Guided Graphplan) 
planning system dramatically boosts Graphplan’s ability to 
find step optimal plans by taking advantage of certain 
symmetries and redundancies in its search process 
[Zimmerman and Kambhampati, 2001, 2000].  We report 
here on preliminary work with extending PEGG in such a 
way that it leverages those planning graph related 
                                                 
1 There are few subtleties involved in doing this.  For example, 
care must be taken so that the subgoal sets generated in the 
regression search that directly leads to each valid plan are not 
memoized.  The standard Graphplan goal assignment routine 
memoizes goal sets at each planning graph level as it backtracks. 



 

 

symmetries to efficiently generate all plans of interest on 
any length graph.  The ‘Multi-PEGG’ planner, which we 
focus on in this study, employs this capability together with 
a heuristic-based branch and bound strategy to generate a 
stream of increasingly higher quality plans (relative to the 
user’s definition of quality).   Given a variety of linear user 
preference formulas, we show that this approach can 
efficiently stream monotonically improving solutions for 
two different logistics domains augmented with action cost 
values. 
   The rest of this paper is organized as follows:  Section II 
gives an overview of the PEGG system on which Multi-
PEGG is based, and reports on its performance relative to 
Graphplan and one of the faster heuristic state space 
planners.  Section III describes the extensions to PEGG 
that allow it to efficiently extract many, if not all, valid 
plans from a given length planning graph in reasonable 
time.  Section IV then describes how Multi-PEGG exploits 
this capability along with branch and bound techniques to 
stream plans that come increasingly closer to a user-
specified quality metric based on multiple criteria.  Section 
V contains our conclusions and ideas for future work. 

II.  Using memory to expedite Graphplan’s 
search for step-optimal plans 

The approach we adopt to finding plans satisfying multiple 
criteria is rooted in the ability of the PEGG planner to 
efficiently find all valid plans implicit in a given length 
planning graph. The planning system makes efficient use of 
memory to transform the depth-first nature of Graphplan’s 
search into an interactive state space view in which a 
variety of heuristics are used to traverse the search space 
[Zimmerman and Kambhampati, 2001, 2002].  It 
significantly improves the performance of Graphplan by 
employing available memory for two purposes: 1) to avoid 
some of the redundant search Graphplan conducts in 
consecutive iterations, 2) and (more importantly), to 
transform Graphplan’s iterative deepening depth-first 
search into iterative expansion of a selected set of states 
that can be traversed in any desired order.  We briefly 
review in this section the PEGG algorithm before 
describing how it can be adapted to find all plans on the 
graph. 
   The original motivation for the development of PEGG 
and the related planner that preceded it, EGBG 
[Zimmerman and Kambhampati, 1999], was the 
observation of redundancy in Graphplan’s iterative-
deepening solution search.  Connections between 
Graphplan’s search and IDA* search was first noted by 
Bonet and Geffner, 1999.  One shortcoming of the standard 
IDA* approach to search is the fact that it regenerates so 
many of the same nodes in each of its iterations.  It’s long 
been recognized that IDA*s difficulties in some problem 
spaces can be traced to using too little memory.  The only 
information carried over from one iteration to the next is 
the upper bound on the f-value.  Given that consecutive 

iterations of search overlap significantly, we investigated 
methods for using additional memory to store a trace of the 
explored search tree in order to avoid repeated re-
generation of search nodes. Once we have a representation 
of the search space that has already been explored, we can 
transform the way this space is extended in the next 
iteration. In particular, we can (a) expand the nodes of the 
current iteration in the order of their heuristic merit (rather 
than in a default depth first order) and/or  (b) we can 
consider iteratively expanding a select set of states.   
   Although this type of strategy is too costly to 
implement in a normal IDA* search, the IDA*-search done 
by Graphplan is particularly well-suited to these types of 
changes as the kth level planning graph provides a compact 
way of representing the search space traversed by the 
corresponding IDA* search in its kth iteration.  Realization 
of this strategy however does require that we provide an 
efficient way of extending the search trace represented by 
the planning graph, starting from any of the search states.   
   Consider the Figure 1 depiction of the search space for 
three consecutive Graphplan search episodes leading to a 
solution for a fictional problem in an unspecified domain.  
Represented here are just the substates that result from 
Graphplan’s regression search on the ,X,Y,Z, goals, but not 
the mini CSP episodes that attempt to assign actions to 
each proposition in a state.  Thus, each substate on a given 
planning graph level is linked to it’s parent state and is 
composed of a subset of the parent’s goals and the 
preconditions of the actions that were assigned.  In each 
episode, we show substates generated for the first time in a 
unique shading and use the same shading when the states 
are regenerated one planning graph level higher in the 
subsequent search episode.  A double line box signifies 
states that eventually end up being part of the plan that is 
extracted.   As would be expected for IDA* search there is 
considerable similarity (i.e. redundancy) in the search 
space for successive search episodes as the plan graph is 
extended. In fact, the backward search conducted at level k 
+ 1 of the graph is essentially a replay of the search 
conducted at the previous level k with certain well-defined 
extensions as defined in (Zimmerman and Kambhampati, 
1999).    
   Certainly Graphplan’s search could be made more 
efficient by using available memory to retain at least some 
portion of the search experience from episode n to reduce 
redundant search in episode n+1.  This motivation was the 
focus of the EGBG system (Zimmerman and 
Kambhampati, 1999), which aggressively recorded the 
search experience in a given episode in a manner such that 
essentially all redundant effort could be avoided in the next 
episode.   Although that approach was found to run up 
against memory constraints for larger problems, it suggests 
a potentially more powerful use for a much more pared-
down search trace: leveraging the snapshot view of the 
entire search space of a Graphplan iteration to focus on the 
most promising areas.  This transformation can free us from 
the depth-first nature of Graphplan’s CSP search, 



 

 

permitting us to move about the search space to visit it’s 
most promising sections first -or even exclusively. 
    PEGG exploits the search trace it builds, extends, and 
prunes primarily for its view of the effective search space, 
and only secondarily to avoid some of the redundant search 

across episodes. The PEGG algorithm for building and 
using a search trace retains Graphplan’s iterative nature but 
significantly transforms its search process.  We make the 
following two informal definitions before describing the 
algorithm developed to transform Graphplan’s search: 

  Search segment: a node-state as generated during 
Graphplan’s regression search from the goal state 
(which is itself the first search segment), indexed to a 
specific level of the planning graph.  Key content of a 
search segment Sn at plan graph level k is the 
proposition list for the state, a pointer to the parent 
search segment (Sp ), and the actions assigned in 
satisfying the parent segments goals.  The last 
information is needed once a plan is found in order to 
extract the actions comprising the plan from the 
search trace. 
Search trace (ST):  the entire linked set of search 
segments (states) representing the search space 
visited in a Graphplan backward search episode.  It’s 
convenient to visualize it as a tiered structure with 
separate caches for segments associated with search 
on plan graph level k, k+1, k+2, etc.  We also adopt 
the convention of numbering the ST levels in the 
reverse order of the plan graph; the top ST level is 0 
(it contains a single search segment whose goals are 
the problem goals) and the level number is 
incremented as we move towards the initial state.  
When a solution is found the search trace will 
necessarily extend from the highest plan graph level 
to the initial state, and the plan actions can be 
extracted from the linked search segments in the ST 
without unwinding the search calls as Graphplan 
does. 
We also define some processes: 
Search trace translation:  For a search segment in 
the ST associated with plan graph level j after search 
episode n, associate it with plan graph level j+1 for 
episode n+1.  Iterate over all segments in the ST.  
The fact that search segments are mapped onto the 
plan graph helps minimize the memory requirements. 
In order to pickup Graphplan’s search from any state 
in the trace, the number of valid actions for the state 
goals and their mutex status must be known.  The 
simple expedient of successively linking the search 
segment to higher plan graph levels in later search 
episodes makes this bookkeeping feasible. 
Visiting a search segment:  For segment Sp at plan 
graph level j+1, visitation is a 3 –step process:  

1. Perform a memo check to ensure the subgoals 
of Sp are not a nogood at level j+1 

2. Initiate Graphplan’s CSP-style search to 
satisfy the segment subgoals beginning at level 
j+1.  A child search segment is created and 
linked to Sp  (extending the ST) whenever Sp’s 
goals are successfully assigned. 

3. Memoize Sp’s goals at level j+1 if all attempts 
to consistently assign them fail. 

We claim, without proof here, that as long as all the 
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Figure 1.   Graphplan’s search space: 3 consecutive search   
                  episodes on the planning graph 
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segments in the ST are visited in this manner the planner is 
guaranteed to find a ‘step-optimal’ plan in the same search 
episode as Graphplan (though the number of actions in the 
plan may differ).   
   The entire PEGG trace building and search process is 
detailed [Zimmerman and Kambhampati, 2001, 2002] and 
we only outline it here.  The search process is essentially 2-
phased: a promising state from the ST  must be selected, 
then depth-first CSP-type search on the state’s subgoals is 
conducted. If the CSP search fails to find a plan, the 
planner selects another ST search segment to visit.  Our 
work with a variety of different search trace architectures 
has highlighted the importance of keeping the search trace 
small and concise, both due to memory constraints and 
because the search effort expended in non-solution bearing 
episodes increases in direct proportion to the number of 
segments in the ST.  We’ve employ a variety of CSP 
speedup techniques for the Graphplan style portion of the 
search process and find that the benefits are compounded 
because they greatly reduce the number of states visited -
and hence tracked in the ST.  Chief amongst these methods 
are explanation based learning (EBL), dependency directed 
backtracking, domain preprocessing and invariant analysis, 
and a bi-level plan graph. 
   As described in [Zimmerman and Kambhampati, 2001, 
2002], the search trace provides us with a concise state 
space view of PEGG’s search space, and this allows us to 
exploit the ‘distance based’ heuristics employed by state 
space planners such as HSP-R (Bonet and Geffner, 1999) 
and AltAlt (Nguyen and Kambhampati, 2000).  Two of the 
approaches for employing these heuristics in PEGG that we 
have investigated are: 

• Ordering the ST search segments according to a given 
state space heuristic and visiting all of them in order 
(we term this PEGG-b 2) 

• Ordering the ST search segments according to a given 
state space heuristic and retaining only the ‘best’ 
fraction for visitation (PEGG-c) 

The first approach maintains Graphplan’s guarantee of step 
optimality but focuses significant speedup only in the final 
search episode.  The second approach sacrifices the 
guarantee of optimality in favor of pruning search in all 
search episodes and bounds the size of the search trace that 
is maintained in memory.  As we’ve reported previously, 
optimal length plans are generally found, regardless.  For 
this study, Multi-PEGG is run only under the PEGG-b 
conditions (entire search space visited subject to branch & 
bound constraints) and we defer further discussion of the 
PEGG-c to the future work assessment of Section V.  
  Table 1 compares the performance of PEGG operation to 
standard Graphplan as well as Graphplan enhanced with 
the CSP speedup techniques that have been incorporated in 
                                                 
2 The name scheme for PEGG operating in various modes 
used in [Zimmerman and Kambhampati, 2001, 2002] is 
retained here to avoid possible confusion. 

PEGG (EBL, DDB, domain preprocessing, etc.).  Clearly 
the enhancements alone have a major impact on standard 
Graphplan’s performance, significantly extending the range 
of problems it can solve.   Focusing on the PEGG-b column 
its ability to leverage its inter-episodic memory becomes 
apparent.  PEGG-b accelerates planning, by factors of up to 
300 over standard Graphplan and 2 - 14x over even the 
enhanced Graphplan.   
   When running in this mode, PEGG uses the ‘adjusted-
sum’ distance heuristic described in [Nguyen and 
Kambhampati, 2000] to move about the search space 
represented in the ST.  Summarizing their description:  The 
heuristic cost h(p) of a single proposition is computed 
iteratively to fixed point as follows. Each proposition p is 
assigned cost 0 if it’s in the initial state and ∞ otherwise. 
For each action, a, that adds p,  h(p) is updated as: 
      h(p) := min{h(p), 1+h(Prec(a) }    
                   where h(Prec(a)) is computed as the sum of the 
h values for the preconditions of action a.  
Define  lev(p) as the first level at which p appears in the 
plan graph and  lev(S) as the first level in the plan graph in 
which all propositions in state S appear and are non-

mutexed with one another. The adjusted-sum heuristic may 
now be stated: 
  It is essentially a 2-part heuristic; a summation, which is 
an estimate of the cost of achieving S under the assumption 
that its goals are independent, and an estimate of the cost 
incurred by negative interactions amongst the actions that 
must be assigned to achieve the goals.   (Due to space 
considerations, we limit our experimentation here to only 
this distance heuristic.)  
   As discussed in [Zimmerman and Kambhampati, 2001, 
2002], PEGG-b exhibits speedup over Graphplan in spite 
of the fact that it revisits (but doesn’t regenerate) every 
state that Graphplan generates in each non-solution bearing 
search episode.  One primary sources of its advantage lies 
in the fact that any state in the ST from the previous 
episode can be extended in the new episode without 
incurring the search cost needed to regenerate it.  If a state 
in the deepest levels can be extended to the initial state, we 
will have found a solution while completely avoiding all 
the higher level search required to reach it from the top 
level problem goals.  Hereafter we refer to a search trace 
segment that is visited in the solution episode and extended 
via backward search to find a valid plan as a seed segment.  
Thus, to the extent that the search heuristic identifies a seed 
segment deep in the ST in the solution episode, PEGG will 
greatly shortcut the search in what is often the most costly 
of Graphplan’s iterations. 
   In the next section, we describe an extension to PEGG 
that enables the system to find (in most cases) all step-
optimal plans implicit in a given planning graph.  This will 
prove to be key capability in order for Multi-PEGG to 
generate plans satisfying multiple optimization criteria. 
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III Extracting all valid plans with PEGG 
 As discussed in the introduction, extracting all valid plans 
from even the k-level planning graph, where k is the first 
level at which a problem solution can be found, is in 
general intractable for Graphplan.  Indeed, no existing 
planner efficiently does this.   We describe here a version 
of PEGG, which we call PEGG-ap (All Plans) that can in 
fact efficiently generate all such plans in reasonable time 
for problems that are not highly solution dense and can 
stream an arbitrarily large number of them even when there 
are thousands.  It’s the combination of PEGG’s search trace 
and the planning graph that make this a feasible proposal 
for PEGG. 
Consider the depiction of Graphplan’s search space in the 
solution episode (third graph) of Figure 1.  This 
corresponds to the ST as it exists immediately after the first 
plan is found.  At this point we’ve provably shown that 
each state (set of subgoals) corresponding to the sets of 
assigned actions in a step of this plan can be extended to 
the initial state via Graphplan’s CSP-style search.  These 

states are the nine speckled search segments in the figure 
and we will hereafter refer to any such state as a plan state.  
In effect then, such a state at level m can be seen as the root 
node of a subtree with at least one branch that extends 
from level m to the initial state.  We will call such a subtree 
a plan stem (or just stem) and observe that there may be 
many valid plans implicit in the given planning graph that 
have the same plan stem as their base.  Now consider a 
planning system which seeks to find all valid plans on a 
planning graph and that can keep track of such plan stems 
each time it finds a new plan.  If the system can efficiently 
check during the regression search to see if the set of 
subgoals, S, to be satisfied at a given level m corresponds 
to one of these states, it has a powerful means of 
shortcutting that search.  Whenever S corresponds to one of 
the plan stem nodes in memory the planner will have found 
a new plan with a head consisting of the actions/steps 
assigned in regression search to level m and a tail 
consisting of the actions/steps corresponding to the plan 
stem in memory.  It can then immediately backtrack in 
search of other plans. 

 
Problem 

Stnd GP 
 
 
cpu sec 

GP-e   
(enhanced Graphplan) 

cpu sec 
(steps/acts) 

PEGG-b 
 heuristic:   adjsum 

cpu  sec 
(steps/acts) 

PEGG-c 
heuristic: adjsum 
cpu sec  (steps/acts) 

Alt Alt  (Lisp version) 
    cpu sec  ( / acts) 
       heuristics: 
adjusum2        combo 

bw-large-B  234.0   101.0   (18/18)   12.2   (18/18)  9.4    (18/18) 87.1 (/ 18 )     20.5 (/28 ) 
bw-large-C  ~   ~    ~  60.5  (28/28)  738 (/ 28)     114.9 (/38) 
bw-large-D  ~   ~    ~  460.9  (36/36)  2350 (/ 36)       ~  
Rocket-ext-a   846   39.8   (7/36)   2.8    (7/34)  1.1    (7/34) 43.6 (/ 40)       1.26 (/ 34) 
Rocket-ext-b    ~   27.6   (7/36)   2.7    (7/34)  2.7    (7/34) 555 (/ 36)        1.65 ( /34) 
att-log-a       ~   31.8   (11/79)   2.6    (11/56)  2.2    (11/62) 36.7 ( /56)       2.27( / 64) 
att-log-c ~   ~   ~  22.9  ( 12 /57) 53.3 (/ 47)       19.0 ( /67) 
Gripper-8   ~   28.8   (15/23)  16.6    (15/23)  8.0    (15/23) 6.6   (/ 23)          * 
Gripper-15  ~   ~  47.5    (36/45)  16.7   (36/45) 14.1 (/ 45)       16.98 (/45) 
Gripper-20  ~   ~  ~  44.8   (40/59) 38.2 (/ 59)       20.92 (/59) 
Tower-7   ~  114.8 (127/127)  14.3   (127/127)   1.1    (127/127)   7.0 (/127)          * 
Tower-9   ~   ~  118    (511/511)  23.6   (511/511)  121(/511)           *      
Mprime-1         17.5    4.8      (4/6) 3.6       (4/6)  2.1     (4/6)  722.6 (/ 4)      79.6 (/ 4) 
Mprime-16       ~   54.0    (8/13) 35.2     (8/13)  5.9     (4/6)    ~                      ~ 
8puzzle-1      2444   95.2   (31/31)  39.1    (31/31) 9.2     (31/31) 143.7 ( / 31)   119.5 ( /39) 
8puzzle-2     1546   87.5   (30/30)  31.3    (30/30)  7.0    (30/30) 348.3  (/ 30)    50.5 (/ 48) 
8puzzle-3      50.6   19.7    (20/20) 2.7      (20/20) 1.8     (20/20)  62.6  (/ 20)     63.3  (/ 20) 
aips-grid1 312  66.0    (14/14) 34.9   (14/14) 8.4     (14/14) 739.4 (/14)     640.5 (/14) 
aips-grid2 ~   ~  ~ 129.1   (26/26)  ~                       ~ 

Table 1  PEGG performance  vs. Graphplan, enhanced Graphplan and a BSS heuristic planner  
 GP-e: Graphplan enhanced with bi-level PG, domain preprocessing, EBL/DDB, goal & action ordering 
  PEGG-b:   Same as PEGG, all segments visited as ordered by adjsum heuristic 
  PEGG-c:  bounded PE search, only best 20% of search segments visited, as ordered by adjsum heuristic 
  Parentheses next to cpu time give # of steps/ # of actions in solution 
  All planners in Allegro Lisp, runtimes (excl. gc time) on Pentium 500 mhz, Linux, 256 M RAM 
   “adjusum2”  and  “combo”  are the most effective heuristics used by AltAlt  
  ~ indicates no solution was found in 30 minutes    * indicates problem wasn’t run 

 



 

 

The fact that PEGG conducts its search on a planning 
graph suggests an efficient approach for retaining in 
memory the states associated with a valid plan: the same 
caches used to memoize states that cannot be consistently 
satisfied during regression search (i.e. ‘nogoods’) can be 
used to memoize the states in the extracted plan.  Like 
Graphplan, PEGG’s memo-checking routine checks these 
planning graph level-specific caches anyway before 
attempting to assign a set of subgoals in CSP fashion.  
PEGG-ap, has a modified memo saving routine so that 
when a valid plan is found, it memoizes each plan state at 
its associated planning graph level, and includes a pointer 
to the search segment in the ST.  The PEGG-ap memo-
checking routine differentiates between a nogood memo 
and a plan state memo such that when a search state 
matches a plan memo (from some plan already identified), 
the routine returns a pointer to the relevant search segment 
in the ST.  This enables PEGG-ap to construct a new 
plan(s) without further search.3  Note that since all search 
segments that are part of a valid plan are anyway contained 
in the ST, it is not necessary to actually store each plan so 
generated.  As long as we maintain a list of the last search 
segment in a plan tail (i.e. the state whose subgoals are 
subsumed by the initial state) the upward-linked structure 
of the ST allows us to extract all identified plans from it on 
demand. 
PROBLEM TOTAL  

PLANS 
RUN TIME 
1ST PLAN 

RUN TIME 
ALL 

PLANS 

SIZE OF ST 
(no. of states) 
After 1st plan / 
After all plans 

BW-LARGE-A  1 1.3 2.9 52  /  107 
HUGE-FCT 84 9.3 26.6 6642  /  16,728 
FERRY6 384 15.8 17.2 377  /  427 
GRIPPER8 1680 17.0 32.5 7670  /  10,730 
TOWER6 1 1.9 2.3 315  /  440 
EIGHT1 12 40.1 75.0 18,650  /  29,909 
ROCKET-EXT-A ( >2073 ) 2.9 (> 14,000)  188  / ( 238) 
ROCKET-EXT-B 1111 1.1 77.0 194  /  2200 
ATT-LOG-A 1639 2.9 2407 279  /  818 

  The performance of PEGG-ap on a sampling of 
benchmark planning problems is reported in Table 2.  The 
system was set to search in the PEGG-b mode; all ST 
search segments are ordered and visited according to the 
‘adjusted-sum’ heuristic.  The first column of values 
reports the total number of step-optimal plans generated at 
the planning graph level at which the first problem solution 
                                                 
3  A search segment can be a stem root for more than one 
valid plan since there may be more than one consistent 
assignment of actions satisfying its goals. 
 

was found.  Clearly, the solution density varies greatly 
across domains and problems, from the Tower of Hanoi 
domain that can only have one solution to the logistics 
domains that may have thousands of valid optimal plans 
implicit in the planning graph at the solution level.  
Columns 3 and 4 report run times in cpu seconds to find the 
first plan and all plans respectively, and the figures testify 
to the effectiveness of this approach in extracting the 
remaining plans once the first plan has been found.  For 
example, on the HUGE-FCT problem it takes PEGG-ap 9.3 
seconds to generated the first solution and then just over 17 
seconds to find the remaining 83 on the 18-level planning 
graph.  The first solution to GRIPPER8 is found in 17 
seconds and then the remaining 1679 solutions are 
generated within another 16 seconds.  Many logistics 
domains problems are so solution dense however that there 
are thousands of step-optimal plans on the planning graph 
at the solution level.  In the case of ROCKET-EXT-A, for 
example PEGG-ap had streamed over 2000 plans in 3 ½ 
hours when the run was terminated. 
  The fifth column provides a measure of the additional 
memory required in order for PEGG-ap to extract all step-
optimal plans as compared to just the first plan found.  We 
compare here the size of the search trace at the time the 
first plan is generated with its size after all plans have been 
found.  As expected, the ST grows as more of the states are 
visited in an attempt to find other plans, but the growth is  
not linear in the number of plans. This is a reflection of the 
fact that for most domains/problems plans often share many 
of the same ST states.   The number of search segments 
(states) in the ST increases by a factor of 11 in the worst 
case here, but on average the increase is a factor of 2 
larger.  In no case has this memory demand exceeded the 
available swap space on the machine used.   

IV  Streaming plans based on multiple 
optimization criteria 

Up to this point, all versions of PEGG we’ve discussed are 
capable of optimizing the number of plan steps.  This 
ability is inherited from the IDA* nature of Graphplan’s 
search process (The connections between Graphplan’s 
search and IDA* was first noted by Bonet and Geffner, 
1999.)  In order for Multi-PEGG to also handle other 
optimization criteria, we must have a means of estimating 
the ‘cost’ of a achieving a state in terms of the criteria.  We 
start by assigning propositions in the initial states a cost of 
zero and an execution cost for each action. Since PEGG 
conducts regression search from the problem goals, the cost 
of reaching those goals from any state generated during the 
search (e.g. the states in the ST) is easily tracked as the 
cumulative cost of the assigned actions up to that point.   
Estimating the cost of reaching a given state from the initial 
state however, is problematic.  To evaluate that cost we 
need to propagate the costs from the initial state to the state 
using the mutual dependency between propositions and 
actions. Specifically, the cost to achieve a proposition 

Table 2 PEGG-ap experiments with extracting all plans at 
the first solution level of the planning graph 
Values in parentheses are partial results reported at the time the 
run was terminated.   All planners in Allegro Lisp, runtimes (excl. 
gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98, 
128 M RAM 



 

 

depends on the cost to execute the actions supporting it, 
which in turn depends on the costs to achieve propositions 
that are their preconditions.  The planning graph is well 
suited to represent the relation between propositions and 
actions, and we will make heavy use of it. 
   There are two measures of action and state cost that we 
calculate and propagate in Multi-PEGG: 

• Max cost:  the value of the proposition with the 
maximum cost in a set of propositions (a state or the 
preconditions of an action). 

• Sum cost:  the sum of the costs of all propositions in a set 

The first measure is most accurate when all preconditions 
of an action (state) depend on each other and the cost to 
achieve all of them is equal to the cost to achieve the 
costliest one. This measure never overestimates the cost 
and is admissible. The second measure is most accurate 
when a state or all preconditions of an action are 
independent. Although clearly inadmissible, it has been 
shown in [11; 2] to be more effective than the max 
measure. Note that the sum cost will always decrease for an 
action when the cost of one of its preconditions improves, 
but this is not guaranteed for max cost.   As described 
below we will make use of these measures both separately 
and in combination in deciding which states to expand 
during search. 
   In seeking a ‘compromise’ estimate of the true cost of 
reaching the initial state from a given state, we have 
considered linear combinations of the max and sum 
measures.  Noting that the last two terms of the adjusted-
sum heuristic (see section II) provide a measure of the 
inter-dependence of the propositions in a state, we 
experimented with using it as a weighting.  The following 
cost estimate for a state S, which we will call adjusted-
combo, has proven effective for the Multi-PEGG search 
process we will describe below: 

 
 where:  lev(S) and lev(p) are as defined in section II, and  
              glev(S) is the planning graph level at which state  
                          S is currently being evaluated. 

Note that since no state S will ever be generated in 
regression search at a planning graph level lower than 
lev(S), the two weighting terms (in brackets) will always 
sum to one.   This cost estimate has the desired property 
that the higher the degree of negative interactions between 
the subgoals in S, the larger the fraction of the estimate 
comes from summing the cost of its subgoals.  This is 
clearly an inadmissible heuristic since it can overestimate 
the cost of a state, but this is of somewhat less concern 
since Multi-PEGG seeks to stream plans of increasing 
quality.   

   We also must confront the issue of normalizing the cost 
component to the length component when they are 
combined in a user’s linear preference formula.  The intent 
of a preference formula such as α length + β  cost will not 
be met if there is no base upon which they can be 
compared.  Ideally, we’d like to normalize each component 
over its optimal value, but in general, we don’t know those 
values.  However, as described below, Multi-PEGG in fact 
first finds a step-optimal plan and then seeks to find a 
better plan with respect to the user’s preference.   As such, 
at the point where it needs a value for plan quality in order 
to conduct branch and bound search, it has the optimal plan 
length and one possible plan cost in hand.  When 
generating the quality value, q for a candidate plan we use 
these base values (opt-length and base-cost , respectively) 
to perform a rough normalization of the actual plan 
parameters (length and cost ) in Multi-PEGG as follows: 

   We can now give an overview of the high-level algorithm 
used by Multi-PEGG to stream plans that increasingly 
approach q, a specified optimization formula involving 
more than just plan length: 

1. Find the first valid plan -which will be step optimal- 
using PEGG’s approach for conducting search using 
a search trace.  Memoize its constituent states as 
successful plan states and return the plan to the user. 
Whenever the planning graph is extended, propagate 
not only mutex information but also action and 
proposition max and sum cost information. 

2. With a valid plan in hand, determine it’s quality 
value based on the user-specified criteria, q.  

3. Define the search space for the next search episode 
in the following manner:  Sort the remaining search 
segments (states) in the ST based on their q criteria.  
Plan length is set by the current length of the 
planning graph (say, k) and estimates of a state’s 
cost are made based on the propagated cost of its 
subgoals using the adjusted-combo formula. 

4. Seek increasingly ‘higher quality’ plans by 
conducting branch and bound search (using the q 
value of the best plan found) on the sorted ST states.  
Any candidate state is visited (as defined in section 
II) as long as its estimated q value is less than that of 
the current best plan.  New plans are generated in 
the manner described for PEGG-ap; either by 
reaching the initial state or an existing plan state.  
Whenever the branch and bound finds a lower cost 
plan, return it to user, memoize its plan states, and 
update the bounding q value. 

5. When the branch & bound search space is exhausted 
at level k, extend the planning graph (propagating 
cost information), translate the ST up one level, and 
sort the search states as described in step 3 -with 
two additions: 
a.  Filter from the search space for this episode any 

state that does not have a decreased sum cost 
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value.  (If the cost has not decreased there is no 
way that it can be extended to a lower cost plan 
than the current best.) 

b.  Each state S, visited in the previous episode at 
associated planning graph level k that does not 
extend to a plan effectively provides an updated 
estimate of lev(S).  Instead of the original lev(S) 
value, which is the first level at which the 
propositions are binary non-mutex, we now have 
an n-ary non-mutex level estimate, which is just k. 

6. Return to step 4. 
 
This algorithm could of course go on seeking a better plan 
indefinitely, so in practice we enforce a maximum runtime.    
   To date Multi-PEGG has been tested on three classical 
problem domains that we modified to enable testing of its 
ability to handle multi-criteria.      

 ROCKET domain 
The standard version of this highly parallel logistics 
domain involves multiple rockets that fly between locales 
carrying cargo and people.  We added cost values to the 
domain actions as follows: 

• rockets’ MOVE action>             4 
• REFUEL>                                  3 
• LOAD and UNLOAD actions>  1 

The benchmark ROCKET-EXT-A and B problems involve 
2 rockets, 4 locales, and 10 people and cargo items that 
must reached goal locations.  For both problems Graphplan 
finds a step-optimal plan of length 7, (which involves using 
both rockets) but there are a large number of such step 
optimal plans on the 7-level planning graph (see Table 2) 
and the number of actions in them may vary between 30 
and 36.  For this fairly simple problem structure it’s 
straightforward to manually determine the optimal plans in 
terms of actions or cost; if only one rocket is used the goals 
can be reached in two fewer rocket trips, but it requires one 
additional plan step.  Beyond 8 steps no other cost 
reductions are achievable.  
   Table 3 reports on Multi-PEGG’s performance in seeking 
an optimal plan based on different linear combinations of 
the plan length and plan cost criteria.  Here we attempt to 
give a feel for the dynamic nature of the plan streaming by 
reporting for each user preference formula , the plan length 

and cost and its calculated q value for the first plan found, 
and then after 30, 120, and 1200 cpu seconds of runtime. 
(We don’t report values for the 1.0 L + 0 C formula since 
this is basic Graphplan’s bias.  Because cost is absent from 
the optimization expression, all plans found at the first 
solution level will have equal ‘quality’.)  The table reveals 
several interesting characteristics of Multi-PEGG’s search 
process.  Once the first plan is found on the 7-level 
planning graph, the branch and bound search for a lower 
cost plan on that graph is quite effective in pruning the 
search space.  Whereas PEGG-ap was still searching for all 
possible plans at level 7 after 14,000 seconds, Multi-
PEGG, after 1200 seconds, completes its search at level 7, 
extends the planning graph, and conducts search on the 8 
level graph for all but the first row optimization criteria.  
The higher the cost weighting of the criteria, the more the 
search is pruned on a given planning graph level.  The 
inadmissible nature of the adjusted-combo cost heuristic is 
manifest in the fact that the .8L + .2C and .5L + .5C 
formulas find some slightly lower cost plans on the 7-level 
graph than the two formulas with higher cost weightings.  
However the user’s preference appears to be reasonably 
served for these latter two formulas in that they move on 
fairly quickly to find some much higher quality (lower q 
value) plans -at least based on their criteria- on the 8-level 
planning graph.   
  The ROCKET domain problem provides limited 
exercise for the type of multiple criteria optimizing that 
Multi-PEGG does, so we look next at a more complex 
logistics domain involving more than one mode of 
transportation with different associated costs. 

 ATT LOGISTICS domain 
The standard version of this domain involves two modes of 
transporting packages; via airplane and via truck.  
However, the trucks can only operate within a city (hauling 
packages from the Post Office to the airport) and the 
airplanes are used to fly between cities.  We’ve extended 
this domain by not only giving costs to the actions, but 
enabling trucks to travel between cities that are within 
range of their fuel capacity.  They must refuel at each such 
city.  (For simplicity, we’ve not introduced actual refueling 
actions for airplanes, but it’s straightforward to do so).  The 
trucks are constrained from traveling directly to any city by 

Optimization  
Criteria  
L: length  C: cost 

1st Plan 
[ step length/cost ]  q val   cpu sec. 

Best plan at 30 sec 
[ step length/cost ]  q val 

Best plan at 2 min. 
[ step length/cost ] q val 

Best plan at 20 min. 
[ step length/cost ]  q val 

.8 L  +  .2 C [ 7 / 56 ]            1.0         3 [ 7 / 52 ]            .98 [ 7 / 52 ]            .98 [ 7 / 50 ]           .97 

.5 L  +  .5 C [ 7 / 56 ]           1.0           3 [ 7 / 52 ]            .96 [ 7 / 52 ]             .96 [ 8 /  49]          .95 

.2 L  +  .8 C [ 7 / 56 ]           1.0           3 [ 7 / 56 ]            1.0 [ 7 / 56 ]            1.0 [ 8 / 45 ]          .89 

0  L  +  1.0 C [ 7 / 56 ]            1.0           3 [ 7 / 56 ]            1.0 [ 8 / 49 ]           .86 [ 8 / 45 ]         .80 

Table 3.  Multi-PEGG streaming of plans on the ROCKET-EXT-A problem, modified to include action costs. 
         All planners in Allegro Lisp, runtimes (excl. gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98, 128 M RAM 



 

 

a ‘NEXT-TO’ fact added to the ‘DRIVE’ operator and a 
set of facts in the initial condition that prescribe which 
cities are directly next to each other.   The cost values for 
actions are as follows: 

• LOAD-TRUCK, UNLOAD-TRUCK>               1 
• LOAD-AIRPLANE, UNLOAD-AIRPLANE>   1 
• DRIVE-TRUCK1 (local, in-city trip)>               1 
• DRIVE-TRUCK2 (inter-city trip)>                     3 
• REFUEL-TRUCK (needed inter-city only)         1 
• FLY>                   20  

This cost structure is such that, depending on such things as 
where the truck and package(s) are located in a city, 
whether their destination is the airport or a post office of a 
distant city, and how many times a truck must be refueled, 
transporting the cargo via truck may be cheaper than flying.  
Note that delivery via truck could also take fewer steps 
than via airplane because transfer of the cargo from truck to 
airplane is avoided.  
   The original benchmark ATT-LOG-A problem that we 
focus on here features 8 packages to be transported, 3 cities 
(LA, PGH, BOS) each having one airport and one post 
office, 1 truck in each city (initially), and both airplanes are 
in one city.  The step-optimal plan for the standard problem 
is 11 steps and PEGG-ap finds that there are plans ranging 
from 52 to 76 actions on this 11-level planning graph.  (In 
terms of our introduced cost structure the least cost, 11-step 
plan would have a value of 128). 
   Our modified ATT-LOG-A problem retains all the 
original parameters except that we introduce connected 
cities linking the three destination cities (and thus 
permitting truck travel) as follows: 

• 4 cities between BOS and PGH 
• 6 cities between PGH and LA 
• 6 cities between BOS and LA 

Each of these connecting cities contains an airport (but no 
post office) so airplanes can also visit them and, feasibly 
load/unload cargo.  We designed the routing structure so 
that, in combination with the cost structure, truck 
transportation of cargo will only provided a cost advantage 

between the cities of BOS and PGH, albeit at the expense 
of time steps.  We note that the additional transportation 
routes increases the branching factor of this problem 
considerably, so that although PEGG-ap extracts all step-
optimal plans of the original problem within about 40 
minutes, it is unable to do so in twice that long on our 
modified version. 
   Table 4 reports the performance of Multi-PEGG on this 
problem for the same optimization formulas and runtime 
intervals discussed for Table 3.  Here there is much greater 
variation in the quality of the streamed plans due to the 
more complex structure of the logistical domain.   Broadly 
speaking, the streaming process on this problem has two 
main phases once the first, step-optimal plan is found; 1) 
optimizing over the cost of various action sets in alternative 
11-step plans 2) searching beyond 11 steps for longer, but 
less costly plans that use inter-city truck transportation 
between PGH and BOS instead of airplanes.  The branch 
and bound on plan cost again greatly helps in pruning the 
search space, as Multi-PEGG begins examining plans of 
greater than the step-optimal length within 20 minutes for 
three of the four optimization formulas.   For the formulas 
in the last two rows of the table, Multi-PEGG in fact 
examines 13-step plans and greatly improves on its least 
cost 11-step plan by finding some that use the PGH truck to 
transport three packages to BOS instead of flying them. 
    The reported results also indicate that, while increasing 
the bias towards low cost plans causes a more rapid move 
in this direction for the first two formulas, the trend does 
not continue with the third formula (compare plan cost 
trends for these formulas in columns 3 or 4).  This is 
probably due to the complex interactions between how the 
ST search space is visited (which is directed by the cost 
heuristic) and the subsequent memoization of both failing 
nodes and successful plan stem nodes. 

V  Conclusions and Future Work 
We have conducted an investigation into the feasibility of 

Optimization  
Criteria  
L: length  C: cost 

1st Plan 
[ step length/cost ]  q val   cpu sec. 

Best plan at 30 sec 
[ step length/cost ]  q val 

Best plan at 2 min. 
[ step length/cost ] q val 

Best plan at 20 min. 
[ step length/cost ]  q val 

.8 L  +  .2 C [ 11 / 208 ]         1.0          12 [ 11 / 182 ]            .98 [ 11 / 166 ]            .97 [11 / 128 ]           .94 

.5 L  +  .5 C [ 11/ 208 ]           1.0           12 [ 11 / 166 ]            .95 [ 11 / 144 ]             .94 [ 11 /  128]          .90 

.2 L  +  .8 C [ 11 / 208 ]           1.0          12 [ 11 / 180 ]            .96 [ 11 / 160 ]            .95 [ 13 / 111 ]          .78 

0  L  +  1.0 C [ 11 / 208 ]            1.0          12 [ 11 / 166 ]            .91  [ 13 / 115]             .80 [ 13 / 107 ]          .71 

Table 4.  Multi-PEGG streaming of plans on the ATT-LOG-A problem, modified to include action costs. 
All planners in Allegro Lisp, runtimes (excl. gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98, 128 M RAM 



 

 

streaming parallel plans satisfying multiple criteria using a 
Graphplan-based planning system.  Our preliminary work 
shows that Multi-PEGG’s use of a concise search trace can 
be exploited to allow it to efficiently generate a stream of 
plans that monotonically approach a user’s preference for 
plan quality when expressed as a linear preference function 
on two variables.  On the admittedly limited number of 
problems examined to date, Multi-PEGG is not only 
capable of finding the least cost step-optimal plan, but it 
finds longer length plans that come closer to satisfying the 
multi-objective optimization criteria. 
   Extending the current system to handle different 
optimization criteria and more than two does appears to be 
a straightforward task.  Each such criterion requires a 
suitable estimation function, and the ‘cost’ values must be 
propagated in the planning graph separately.  However, the 
approach to ordering states in the ST according to a multi-
variable linear preference functions remains unchanged.  It 
is also not a difficult undertaking to extend the type of 
criteria the user can employ to such things as ‘I am not 
interested in plans costing over x’ or ‘Give me only plans 
shorter than length y’. 

Overcoming the make-span bias of Multi-PEGG 
   In spite of the early success of the approach reported in 
this paper, it clearly has some disadvantages.  It inherently 
starts with a step-optimal plan and, with some help from 
branch and bound techniques, searches on incrementally 
longer planning graphs streaming it’s current best plan as it 
does so.  If the user’s primary plan quality criteria is cost, 
not length, and the types of low cost plans that are likely to 
be of interest are many steps longer than the shortest length 
plan, this approach could be unsatisfactory.   Although we 
recognized this limitation early in the investigation, we also 
had in mind two major augmentations that might well 
overcome it, and so proceeded with a test of the simpler 
system reported here.  We discuss these two augmentations 
to Multi-PEGG next. 
   Liberation from Graphplan’s level-by-level search 
   There is in fact nothing formidable that requires Multi-
PEGG to finish its search on a given planning graph level 
before considering possible plans on extensions of the 
planning graph.  The search trace again proves to be very 
useful in this regard.  Once the first valid plan has been 
found and a plan quality value established for subsequent 
branch and bound search, the ST can be translated up any 
desired number of levels (subject to the ability to extend 
the graph correspondingly and propagate the cost values) 
and used in a search for plans of arbitrary length.  Referring 
back to Figure 1, this is equivalent to translating the ST 
tree of the third search episode pictured upward on the 
planning graph so that the XYZ root node now lies on some 
level higher than 9.  If we then assess the multi-criteria q 
values for the search segments (states) in the ST at these 
higher levels we can co-mingle them with the same search 
segments from lower levels and order all of them together 
for visitation according to our plan quality formula.  To the 
extent that we have an effective estimation formula for 

identifying the lowest cost plans, this will essentially enable 
Multi-PEGG to concurrently consider multiple length plans 
in its branch and bound search for a better plan.    
   This would be a prohibitive idea in terms of memory 
requirements if we had to store multiple versions of the ST, 
but we can retain only the one version of it and simply store 
any level-specific cost and heuristic information in its 
search segments as values indexed to their associated 
planning graph levels.  Interesting problems that arise 
include such things as what range of plan lengths should be 
considered at one time and how to avoid having to deal 
with plans with steps consisting entirely of ‘persists’ 
operators. 
   Shortcutting the search in a given episode 
   Of the two modes for employing distance heuristics 
discussed in section II, we have only reported the 
performance of Multi-PEGG when it visits all states in the 
ST (i.e. PEGG-b mode), modulo the branch and bound 
process.  It’s also possible to augment the branch and 
bound pruning of search by screening from consideration 
those states that do not meet some threshold criteria based 
on a distance heuristic.  Such states generated in 
Graphplan’s regression search hold little or no promise of 
being extended into a solution, yet their inclusion in the 
search trace means PEGG will have to expand them 
eventually in each intermediate search episode.  We have 
found that the distance-based heuristics are effective in 
identifying such states, and have experimented with various 
threshold options for restricting those maintained in the ST.  
Although such filtering of the search space forfeits the 
guarantee that PEGG will return a step-optimal solution, in 
practice we find that that even restricting the active ST to 
the heuristically best 10-15% of the generated states has no 
impact on the quality of returned plans.  When PEGG 
operates in this mode, (tagged as ‘PEGG-c’ in Table 1) 
there is a dramatic reduction of both the size of the working 
ST and the time spent in non-solution bearing search 
episodes.  As indicated, PEGG-c solves many more 
problems than either standard or enhanced Graphplan (GP-
e) and exhibits speedups of 40x or more over GP-e where 
both find solutions.  The table also reports the length of the 
plans produced (in terms of steps and actions).  In all cases, 
PEGG-c finds a plan of equivalent step-length to the 
Graphplan optimal plan. 
   The intuition for Multi-PEGG is that, besides looking for 
the ‘next best plan’ we only want to visit a search segment 
in the ST that has a high likelihood of being extended into a 
valid plan.  Of course, this may also screen out some of the 
longer length but lower cost plans that we may be 
interested in, so this is an empirical issue that needs to be 
investigated. 
  Bounding the length of plans that need to be considered 
   Another interesting issue associated with this approach to 
optimizing over multiple criteria is whether we can assess 
when the streaming process can be terminated due to no (or 
low) possibility of improving on the current best plan.  The 
planning graph may again prove to be a useful structure for 
deducing such bounds on the search process. 
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