

Generating parallel plans satisfying multiple criteria in anytime fashion

Terry Zimmerman & Subbarao Kambhampati
Department of Computer Science & Engineering

Arizona State University, Tempe AZ 85287
Email: {zim, rao}@asu.edu

Abstract
We approach the problem of finding plans based on
multiple optimization criteria from what would seem an
unlikely direction: find one valid plan as quickly as
possible, then stream essentially all plans that improve on
the current best plan, searching over incrementally longer
length plans. This approach would be computationally
prohibitive for most planners, but we describe how, by
using a concise trace of the search space, the PEGG
planning system can quickly generate most, if not all, plans
on a given length planning graph. By augmenting PEGG
with a branch and bound approach the system is able to
stream parallel plans that come arbitrarily close to a user-
specified preference criteria based on multiple factors. We
demonstrate in preliminary experiments on cost-augmented
logistics domains that the system can indeed find very high
quality plans based on multiple criteria over reasonable
runtimes. We also discuss directions towards extending the
system such that it is not restricted to Graphplan’s scheme
of exhaustively searching for the shortest step-length plans
first.

I. Introduction
From a classical planning perspective a basic, multiple
criteria optimization problem might entail finding a plan
that optimizes two factors:

x: the number of time steps
y: the total ‘cost’ of the plan

Here the optimization itself will be with respect to some
user-specified criteria involving x and y. Graphplan is a
well-known classical planner that, in spite of the more
recent dominance of heuristic state-search planners, is still
one of the most effective ways to generate the so-called
“optimal parallel plans”. State-space planners are drowned
by the exponential branching factors of the search space of
parallel plans (the exponential branching is a result of the
fact that the planner needs to consider each subset of non-
interfering actions). However, there is no known practical
approach for finding cost-optimal plans with Graphplan, let
alone optimizing over some arbitrary weighting of time
steps and cost. We describe and report on initial
experiments with a Graphplan-based system that streams a
sequence of plans that increasingly approach a user-
specified optimization formula based on multiple criteria.
This system, which we call Multi-PEGG, seeks to find the
plan that comes closest to matching the user’s preference
expressed as a linear preference function on two variables.

(e.g. α x + β y, where x and y might be defined as above).
As we’ll discuss in Section V (future work) extending the
system to handle more than two criteria is straightforward,
as is implementation of criteria such as ‘the least cost plan
with no more than k steps’.
 Consider first how a plan satisfying multiple criteria
might be generated by Graphplan if computation time were
not an issue. By alternating search episodes on the
planning graph with extensions of the graph, Graphplan’s
algorithm is guaranteed to return the shortest plan in terms
of time steps (where a step might include multiple actions
that do not conflict). If Graphplan finds its shortest valid
plan for the given problem on a k-level planning graph, a
modest modification of the program could, in principal,
find all possible valid k-length plans by conducting
exhaustive search on the same planning graph.1 The final
set of plans could then be post-processed to find the best
one in terms of any other optimization criteria giving us,
for example, the least cost, k-length plan. However, not
only is this approach computationally impractical for many
problems/domains, but it can only handle a small subset of
the multi-objective criteria one could envision. Such a
system for example, could not satisfy a user request for the
least-cost plan of any length.
 In a naive attempt to extend the system capabilities so its
scope includes plans of length greater than k, we might
iteratively extend the planning graph, restarting the solution
search for valid plans at each successive level. If we have a
means of calculating ‘cost’ for the subgoal sets generated
during the regression search, branch and bound techniques
might be applied after finding the first valid plan to prune
some of this search space. Nonetheless, this will clearly be
an intractable approach for any problem of sufficient size
to be of interest.
 The PEGG (Pilot Explanation Guided Graphplan)
planning system dramatically boosts Graphplan’s ability to
find step optimal plans by taking advantage of certain
symmetries and redundancies in its search process
[Zimmerman and Kambhampati, 2001, 2000]. We report
here on preliminary work with extending PEGG in such a
way that it leverages those planning graph related

1 There are few subtleties involved in doing this. For example,
care must be taken so that the subgoal sets generated in the
regression search that directly leads to each valid plan are not
memoized. The standard Graphplan goal assignment routine
memoizes goal sets at each planning graph level as it backtracks.

symmetries to efficiently generate all plans of interest on
any length graph. The ‘Multi-PEGG’ planner, which we
focus on in this study, employs this capability together with
a heuristic-based branch and bound strategy to generate a
stream of increasingly higher quality plans (relative to the
user’s definition of quality). Given a variety of linear user
preference formulas, we show that this approach can
efficiently stream monotonically improving solutions for
two different logistics domains augmented with action cost
values.
 The rest of this paper is organized as follows: Section II
gives an overview of the PEGG system on which Multi-
PEGG is based, and reports on its performance relative to
Graphplan and one of the faster heuristic state space
planners. Section III describes the extensions to PEGG
that allow it to efficiently extract many, if not all, valid
plans from a given length planning graph in reasonable
time. Section IV then describes how Multi-PEGG exploits
this capability along with branch and bound techniques to
stream plans that come increasingly closer to a user-
specified quality metric based on multiple criteria. Section
V contains our conclusions and ideas for future work.

II. Using memory to expedite Graphplan’s
search for step-optimal plans

The approach we adopt to finding plans satisfying multiple
criteria is rooted in the ability of the PEGG planner to
efficiently find all valid plans implicit in a given length
planning graph. The planning system makes efficient use of
memory to transform the depth-first nature of Graphplan’s
search into an interactive state space view in which a
variety of heuristics are used to traverse the search space
[Zimmerman and Kambhampati, 2001, 2002]. It
significantly improves the performance of Graphplan by
employing available memory for two purposes: 1) to avoid
some of the redundant search Graphplan conducts in
consecutive iterations, 2) and (more importantly), to
transform Graphplan’s iterative deepening depth-first
search into iterative expansion of a selected set of states
that can be traversed in any desired order. We briefly
review in this section the PEGG algorithm before
describing how it can be adapted to find all plans on the
graph.
 The original motivation for the development of PEGG
and the related planner that preceded it, EGBG
[Zimmerman and Kambhampati, 1999], was the
observation of redundancy in Graphplan’s iterative-
deepening solution search. Connections between
Graphplan’s search and IDA* search was first noted by
Bonet and Geffner, 1999. One shortcoming of the standard
IDA* approach to search is the fact that it regenerates so
many of the same nodes in each of its iterations. It’s long
been recognized that IDA*s difficulties in some problem
spaces can be traced to using too little memory. The only
information carried over from one iteration to the next is
the upper bound on the f-value. Given that consecutive

iterations of search overlap significantly, we investigated
methods for using additional memory to store a trace of the
explored search tree in order to avoid repeated re-
generation of search nodes. Once we have a representation
of the search space that has already been explored, we can
transform the way this space is extended in the next
iteration. In particular, we can (a) expand the nodes of the
current iteration in the order of their heuristic merit (rather
than in a default depth first order) and/or (b) we can
consider iteratively expanding a select set of states.
 Although this type of strategy is too costly to
implement in a normal IDA* search, the IDA*-search done
by Graphplan is particularly well-suited to these types of
changes as the kth level planning graph provides a compact
way of representing the search space traversed by the
corresponding IDA* search in its kth iteration. Realization
of this strategy however does require that we provide an
efficient way of extending the search trace represented by
the planning graph, starting from any of the search states.
 Consider the Figure 1 depiction of the search space for
three consecutive Graphplan search episodes leading to a
solution for a fictional problem in an unspecified domain.
Represented here are just the substates that result from
Graphplan’s regression search on the ,X,Y,Z, goals, but not
the mini CSP episodes that attempt to assign actions to
each proposition in a state. Thus, each substate on a given
planning graph level is linked to it’s parent state and is
composed of a subset of the parent’s goals and the
preconditions of the actions that were assigned. In each
episode, we show substates generated for the first time in a
unique shading and use the same shading when the states
are regenerated one planning graph level higher in the
subsequent search episode. A double line box signifies
states that eventually end up being part of the plan that is
extracted. As would be expected for IDA* search there is
considerable similarity (i.e. redundancy) in the search
space for successive search episodes as the plan graph is
extended. In fact, the backward search conducted at level k
+ 1 of the graph is essentially a replay of the search
conducted at the previous level k with certain well-defined
extensions as defined in (Zimmerman and Kambhampati,
1999).
 Certainly Graphplan’s search could be made more
efficient by using available memory to retain at least some
portion of the search experience from episode n to reduce
redundant search in episode n+1. This motivation was the
focus of the EGBG system (Zimmerman and
Kambhampati, 1999), which aggressively recorded the
search experience in a given episode in a manner such that
essentially all redundant effort could be avoided in the next
episode. Although that approach was found to run up
against memory constraints for larger problems, it suggests
a potentially more powerful use for a much more pared-
down search trace: leveraging the snapshot view of the
entire search space of a Graphplan iteration to focus on the
most promising areas. This transformation can free us from
the depth-first nature of Graphplan’s CSP search,

permitting us to move about the search space to visit it’s
most promising sections first -or even exclusively.
 PEGG exploits the search trace it builds, extends, and
prunes primarily for its view of the effective search space,
and only secondarily to avoid some of the redundant search

across episodes. The PEGG algorithm for building and
using a search trace retains Graphplan’s iterative nature but
significantly transforms its search process. We make the
following two informal definitions before describing the
algorithm developed to transform Graphplan’s search:

 Search segment: a node-state as generated during
Graphplan’s regression search from the goal state
(which is itself the first search segment), indexed to a
specific level of the planning graph. Key content of a
search segment Sn at plan graph level k is the
proposition list for the state, a pointer to the parent
search segment (Sp), and the actions assigned in
satisfying the parent segments goals. The last
information is needed once a plan is found in order to
extract the actions comprising the plan from the
search trace.
Search trace (ST): the entire linked set of search
segments (states) representing the search space
visited in a Graphplan backward search episode. It’s
convenient to visualize it as a tiered structure with
separate caches for segments associated with search
on plan graph level k, k+1, k+2, etc. We also adopt
the convention of numbering the ST levels in the
reverse order of the plan graph; the top ST level is 0
(it contains a single search segment whose goals are
the problem goals) and the level number is
incremented as we move towards the initial state.
When a solution is found the search trace will
necessarily extend from the highest plan graph level
to the initial state, and the plan actions can be
extracted from the linked search segments in the ST
without unwinding the search calls as Graphplan
does.
We also define some processes:
Search trace translation: For a search segment in
the ST associated with plan graph level j after search
episode n, associate it with plan graph level j+1 for
episode n+1. Iterate over all segments in the ST.
The fact that search segments are mapped onto the
plan graph helps minimize the memory requirements.
In order to pickup Graphplan’s search from any state
in the trace, the number of valid actions for the state
goals and their mutex status must be known. The
simple expedient of successively linking the search
segment to higher plan graph levels in later search
episodes makes this bookkeeping feasible.
Visiting a search segment: For segment Sp at plan
graph level j+1, visitation is a 3 –step process:

1. Perform a memo check to ensure the subgoals
of Sp are not a nogood at level j+1

2. Initiate Graphplan’s CSP-style search to
satisfy the segment subgoals beginning at level
j+1. A child search segment is created and
linked to Sp (extending the ST) whenever Sp’s
goals are successfully assigned.

3. Memoize Sp’s goals at level j+1 if all attempts
to consistently assign them fail.

We claim, without proof here, that as long as all the

1 6 7 2

Proposition Levels

Figure 1. Graphplan’s search space: 3 consecutive search
 episodes on the planning graph

 1 2 3 Proposition Levels 7 8

Init
State

 A
C
E
F
K

E
Y
R
S

.

.

.

.

. Goal
 X
 Y
 Z

E
Y
Q

X
W
Q

E
Y
R
T

.

.

W
T
S

D
T
Q

E
Y
K

E
F
J
G

E
F
J
K

A
W
E
F

X
D
E

W
D
Q

.

.

.

.
W
T
R

W
E

E
F
R

W
R

 1 2 3 Proposition Levels 7 8 9

Init
State

 A
C
E
F
K

E
Y
R
S

.

.

.

.

. Goal
 X
 Y
 Z

E
Y
Q

X
W
Q

E
Y
R
T

.

.

W
T
S

D
T
Q

E
Y
K

E
F
J
G

E
F
J
K

A
W
E
F

X
D
E

W
D
Q

.

.

.

.
W
T
R

W
E

E
F
R

W
R

E
F
K
Q

E
F
K
R

E
F

E
J
G

Goal
 X
 Y
 Z

E
Y
Q

X
W
Q

E
Y
R
T

.

.

W
T
S

E
Y
R
S

.

.

W
T
R

A
C
E
F
K

 Init
State

.

.

W
E

E
F
R

W
R

D
T
Q

Planning Graph

segments in the ST are visited in this manner the planner is
guaranteed to find a ‘step-optimal’ plan in the same search
episode as Graphplan (though the number of actions in the
plan may differ).
 The entire PEGG trace building and search process is
detailed [Zimmerman and Kambhampati, 2001, 2002] and
we only outline it here. The search process is essentially 2-
phased: a promising state from the ST must be selected,
then depth-first CSP-type search on the state’s subgoals is
conducted. If the CSP search fails to find a plan, the
planner selects another ST search segment to visit. Our
work with a variety of different search trace architectures
has highlighted the importance of keeping the search trace
small and concise, both due to memory constraints and
because the search effort expended in non-solution bearing
episodes increases in direct proportion to the number of
segments in the ST. We’ve employ a variety of CSP
speedup techniques for the Graphplan style portion of the
search process and find that the benefits are compounded
because they greatly reduce the number of states visited -
and hence tracked in the ST. Chief amongst these methods
are explanation based learning (EBL), dependency directed
backtracking, domain preprocessing and invariant analysis,
and a bi-level plan graph.
 As described in [Zimmerman and Kambhampati, 2001,
2002], the search trace provides us with a concise state
space view of PEGG’s search space, and this allows us to
exploit the ‘distance based’ heuristics employed by state
space planners such as HSP-R (Bonet and Geffner, 1999)
and AltAlt (Nguyen and Kambhampati, 2000). Two of the
approaches for employing these heuristics in PEGG that we
have investigated are:

• Ordering the ST search segments according to a given
state space heuristic and visiting all of them in order
(we term this PEGG-b 2)

• Ordering the ST search segments according to a given
state space heuristic and retaining only the ‘best’
fraction for visitation (PEGG-c)

The first approach maintains Graphplan’s guarantee of step
optimality but focuses significant speedup only in the final
search episode. The second approach sacrifices the
guarantee of optimality in favor of pruning search in all
search episodes and bounds the size of the search trace that
is maintained in memory. As we’ve reported previously,
optimal length plans are generally found, regardless. For
this study, Multi-PEGG is run only under the PEGG-b
conditions (entire search space visited subject to branch &
bound constraints) and we defer further discussion of the
PEGG-c to the future work assessment of Section V.
 Table 1 compares the performance of PEGG operation to
standard Graphplan as well as Graphplan enhanced with
the CSP speedup techniques that have been incorporated in

2 The name scheme for PEGG operating in various modes
used in [Zimmerman and Kambhampati, 2001, 2002] is
retained here to avoid possible confusion.

PEGG (EBL, DDB, domain preprocessing, etc.). Clearly
the enhancements alone have a major impact on standard
Graphplan’s performance, significantly extending the range
of problems it can solve. Focusing on the PEGG-b column
its ability to leverage its inter-episodic memory becomes
apparent. PEGG-b accelerates planning, by factors of up to
300 over standard Graphplan and 2 - 14x over even the
enhanced Graphplan.
 When running in this mode, PEGG uses the ‘adjusted-
sum’ distance heuristic described in [Nguyen and
Kambhampati, 2000] to move about the search space
represented in the ST. Summarizing their description: The
heuristic cost h(p) of a single proposition is computed
iteratively to fixed point as follows. Each proposition p is
assigned cost 0 if it’s in the initial state and ∞ otherwise.
For each action, a, that adds p, h(p) is updated as:
 h(p) := min{h(p), 1+h(Prec(a) }
 where h(Prec(a)) is computed as the sum of the
h values for the preconditions of action a.
Define lev(p) as the first level at which p appears in the
plan graph and lev(S) as the first level in the plan graph in
which all propositions in state S appear and are non-

mutexed with one another. The adjusted-sum heuristic may
now be stated:
 It is essentially a 2-part heuristic; a summation, which is
an estimate of the cost of achieving S under the assumption
that its goals are independent, and an estimate of the cost
incurred by negative interactions amongst the actions that
must be assigned to achieve the goals. (Due to space
considerations, we limit our experimentation here to only
this distance heuristic.)
 As discussed in [Zimmerman and Kambhampati, 2001,
2002], PEGG-b exhibits speedup over Graphplan in spite
of the fact that it revisits (but doesn’t regenerate) every
state that Graphplan generates in each non-solution bearing
search episode. One primary sources of its advantage lies
in the fact that any state in the ST from the previous
episode can be extended in the new episode without
incurring the search cost needed to regenerate it. If a state
in the deepest levels can be extended to the initial state, we
will have found a solution while completely avoiding all
the higher level search required to reach it from the top
level problem goals. Hereafter we refer to a search trace
segment that is visited in the solution episode and extended
via backward search to find a valid plan as a seed segment.
Thus, to the extent that the search heuristic identifies a seed
segment deep in the ST in the solution episode, PEGG will
greatly shortcut the search in what is often the most costly
of Graphplan’s iterations.
 In the next section, we describe an extension to PEGG
that enables the system to find (in most cases) all step-
optimal plans implicit in a given planning graph. This will
prove to be key capability in order for Multi-PEGG to
generate plans satisfying multiple optimization criteria.

)(max)()(cos:)(∑
∈ ∈

−+=
Sp

iSpiadjsum
i

i

plevSlevptSh

III Extracting all valid plans with PEGG
 As discussed in the introduction, extracting all valid plans
from even the k-level planning graph, where k is the first
level at which a problem solution can be found, is in
general intractable for Graphplan. Indeed, no existing
planner efficiently does this. We describe here a version
of PEGG, which we call PEGG-ap (All Plans) that can in
fact efficiently generate all such plans in reasonable time
for problems that are not highly solution dense and can
stream an arbitrarily large number of them even when there
are thousands. It’s the combination of PEGG’s search trace
and the planning graph that make this a feasible proposal
for PEGG.
Consider the depiction of Graphplan’s search space in the
solution episode (third graph) of Figure 1. This
corresponds to the ST as it exists immediately after the first
plan is found. At this point we’ve provably shown that
each state (set of subgoals) corresponding to the sets of
assigned actions in a step of this plan can be extended to
the initial state via Graphplan’s CSP-style search. These

states are the nine speckled search segments in the figure
and we will hereafter refer to any such state as a plan state.
In effect then, such a state at level m can be seen as the root
node of a subtree with at least one branch that extends
from level m to the initial state. We will call such a subtree
a plan stem (or just stem) and observe that there may be
many valid plans implicit in the given planning graph that
have the same plan stem as their base. Now consider a
planning system which seeks to find all valid plans on a
planning graph and that can keep track of such plan stems
each time it finds a new plan. If the system can efficiently
check during the regression search to see if the set of
subgoals, S, to be satisfied at a given level m corresponds
to one of these states, it has a powerful means of
shortcutting that search. Whenever S corresponds to one of
the plan stem nodes in memory the planner will have found
a new plan with a head consisting of the actions/steps
assigned in regression search to level m and a tail
consisting of the actions/steps corresponding to the plan
stem in memory. It can then immediately backtrack in
search of other plans.

Problem

Stnd GP

cpu sec

GP-e
(enhanced Graphplan)

cpu sec
(steps/acts)

PEGG-b
 heuristic: adjsum

cpu sec
(steps/acts)

PEGG-c
heuristic: adjsum
cpu sec (steps/acts)

Alt Alt (Lisp version)
 cpu sec (/ acts)
 heuristics:
adjusum2 combo

bw-large-B 234.0 101.0 (18/18) 12.2 (18/18) 9.4 (18/18) 87.1 (/ 18) 20.5 (/28)
bw-large-C ~ ~ ~ 60.5 (28/28) 738 (/ 28) 114.9 (/38)
bw-large-D ~ ~ ~ 460.9 (36/36) 2350 (/ 36) ~
Rocket-ext-a 846 39.8 (7/36) 2.8 (7/34) 1.1 (7/34) 43.6 (/ 40) 1.26 (/ 34)
Rocket-ext-b ~ 27.6 (7/36) 2.7 (7/34) 2.7 (7/34) 555 (/ 36) 1.65 (/34)
att-log-a ~ 31.8 (11/79) 2.6 (11/56) 2.2 (11/62) 36.7 (/56) 2.27(/ 64)
att-log-c ~ ~ ~ 22.9 (12 /57) 53.3 (/ 47) 19.0 (/67)
Gripper-8 ~ 28.8 (15/23) 16.6 (15/23) 8.0 (15/23) 6.6 (/ 23) *
Gripper-15 ~ ~ 47.5 (36/45) 16.7 (36/45) 14.1 (/ 45) 16.98 (/45)
Gripper-20 ~ ~ ~ 44.8 (40/59) 38.2 (/ 59) 20.92 (/59)
Tower-7 ~ 114.8 (127/127) 14.3 (127/127) 1.1 (127/127) 7.0 (/127) *
Tower-9 ~ ~ 118 (511/511) 23.6 (511/511) 121(/511) *
Mprime-1 17.5 4.8 (4/6) 3.6 (4/6) 2.1 (4/6) 722.6 (/ 4) 79.6 (/ 4)
Mprime-16 ~ 54.0 (8/13) 35.2 (8/13) 5.9 (4/6) ~ ~
8puzzle-1 2444 95.2 (31/31) 39.1 (31/31) 9.2 (31/31) 143.7 (/ 31) 119.5 (/39)
8puzzle-2 1546 87.5 (30/30) 31.3 (30/30) 7.0 (30/30) 348.3 (/ 30) 50.5 (/ 48)
8puzzle-3 50.6 19.7 (20/20) 2.7 (20/20) 1.8 (20/20) 62.6 (/ 20) 63.3 (/ 20)
aips-grid1 312 66.0 (14/14) 34.9 (14/14) 8.4 (14/14) 739.4 (/14) 640.5 (/14)
aips-grid2 ~ ~ ~ 129.1 (26/26) ~ ~

Table 1 PEGG performance vs. Graphplan, enhanced Graphplan and a BSS heuristic planner
 GP-e: Graphplan enhanced with bi-level PG, domain preprocessing, EBL/DDB, goal & action ordering
 PEGG-b: Same as PEGG, all segments visited as ordered by adjsum heuristic
 PEGG-c: bounded PE search, only best 20% of search segments visited, as ordered by adjsum heuristic
 Parentheses next to cpu time give # of steps/ # of actions in solution
 All planners in Allegro Lisp, runtimes (excl. gc time) on Pentium 500 mhz, Linux, 256 M RAM
 “adjusum2” and “combo” are the most effective heuristics used by AltAlt
 ~ indicates no solution was found in 30 minutes * indicates problem wasn’t run

The fact that PEGG conducts its search on a planning
graph suggests an efficient approach for retaining in
memory the states associated with a valid plan: the same
caches used to memoize states that cannot be consistently
satisfied during regression search (i.e. ‘nogoods’) can be
used to memoize the states in the extracted plan. Like
Graphplan, PEGG’s memo-checking routine checks these
planning graph level-specific caches anyway before
attempting to assign a set of subgoals in CSP fashion.
PEGG-ap, has a modified memo saving routine so that
when a valid plan is found, it memoizes each plan state at
its associated planning graph level, and includes a pointer
to the search segment in the ST. The PEGG-ap memo-
checking routine differentiates between a nogood memo
and a plan state memo such that when a search state
matches a plan memo (from some plan already identified),
the routine returns a pointer to the relevant search segment
in the ST. This enables PEGG-ap to construct a new
plan(s) without further search.3 Note that since all search
segments that are part of a valid plan are anyway contained
in the ST, it is not necessary to actually store each plan so
generated. As long as we maintain a list of the last search
segment in a plan tail (i.e. the state whose subgoals are
subsumed by the initial state) the upward-linked structure
of the ST allows us to extract all identified plans from it on
demand.
PROBLEM TOTAL

PLANS
RUN TIME
1ST PLAN

RUN TIME
ALL

PLANS

SIZE OF ST
(no. of states)
After 1st plan /
After all plans

BW-LARGE-A 1 1.3 2.9 52 / 107
HUGE-FCT 84 9.3 26.6 6642 / 16,728
FERRY6 384 15.8 17.2 377 / 427
GRIPPER8 1680 17.0 32.5 7670 / 10,730
TOWER6 1 1.9 2.3 315 / 440
EIGHT1 12 40.1 75.0 18,650 / 29,909
ROCKET-EXT-A (>2073) 2.9 (> 14,000) 188 / (238)
ROCKET-EXT-B 1111 1.1 77.0 194 / 2200
ATT-LOG-A 1639 2.9 2407 279 / 818

 The performance of PEGG-ap on a sampling of
benchmark planning problems is reported in Table 2. The
system was set to search in the PEGG-b mode; all ST
search segments are ordered and visited according to the
‘adjusted-sum’ heuristic. The first column of values
reports the total number of step-optimal plans generated at
the planning graph level at which the first problem solution

3 A search segment can be a stem root for more than one
valid plan since there may be more than one consistent
assignment of actions satisfying its goals.

was found. Clearly, the solution density varies greatly
across domains and problems, from the Tower of Hanoi
domain that can only have one solution to the logistics
domains that may have thousands of valid optimal plans
implicit in the planning graph at the solution level.
Columns 3 and 4 report run times in cpu seconds to find the
first plan and all plans respectively, and the figures testify
to the effectiveness of this approach in extracting the
remaining plans once the first plan has been found. For
example, on the HUGE-FCT problem it takes PEGG-ap 9.3
seconds to generated the first solution and then just over 17
seconds to find the remaining 83 on the 18-level planning
graph. The first solution to GRIPPER8 is found in 17
seconds and then the remaining 1679 solutions are
generated within another 16 seconds. Many logistics
domains problems are so solution dense however that there
are thousands of step-optimal plans on the planning graph
at the solution level. In the case of ROCKET-EXT-A, for
example PEGG-ap had streamed over 2000 plans in 3 ½
hours when the run was terminated.
 The fifth column provides a measure of the additional
memory required in order for PEGG-ap to extract all step-
optimal plans as compared to just the first plan found. We
compare here the size of the search trace at the time the
first plan is generated with its size after all plans have been
found. As expected, the ST grows as more of the states are
visited in an attempt to find other plans, but the growth is
not linear in the number of plans. This is a reflection of the
fact that for most domains/problems plans often share many
of the same ST states. The number of search segments
(states) in the ST increases by a factor of 11 in the worst
case here, but on average the increase is a factor of 2
larger. In no case has this memory demand exceeded the
available swap space on the machine used.

IV Streaming plans based on multiple
optimization criteria

Up to this point, all versions of PEGG we’ve discussed are
capable of optimizing the number of plan steps. This
ability is inherited from the IDA* nature of Graphplan’s
search process (The connections between Graphplan’s
search and IDA* was first noted by Bonet and Geffner,
1999.) In order for Multi-PEGG to also handle other
optimization criteria, we must have a means of estimating
the ‘cost’ of a achieving a state in terms of the criteria. We
start by assigning propositions in the initial states a cost of
zero and an execution cost for each action. Since PEGG
conducts regression search from the problem goals, the cost
of reaching those goals from any state generated during the
search (e.g. the states in the ST) is easily tracked as the
cumulative cost of the assigned actions up to that point.
Estimating the cost of reaching a given state from the initial
state however, is problematic. To evaluate that cost we
need to propagate the costs from the initial state to the state
using the mutual dependency between propositions and
actions. Specifically, the cost to achieve a proposition

Table 2 PEGG-ap experiments with extracting all plans at
the first solution level of the planning graph
Values in parentheses are partial results reported at the time the
run was terminated. All planners in Allegro Lisp, runtimes (excl.
gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98,
128 M RAM

depends on the cost to execute the actions supporting it,
which in turn depends on the costs to achieve propositions
that are their preconditions. The planning graph is well
suited to represent the relation between propositions and
actions, and we will make heavy use of it.
 There are two measures of action and state cost that we
calculate and propagate in Multi-PEGG:

• Max cost: the value of the proposition with the
maximum cost in a set of propositions (a state or the
preconditions of an action).

• Sum cost: the sum of the costs of all propositions in a set

The first measure is most accurate when all preconditions
of an action (state) depend on each other and the cost to
achieve all of them is equal to the cost to achieve the
costliest one. This measure never overestimates the cost
and is admissible. The second measure is most accurate
when a state or all preconditions of an action are
independent. Although clearly inadmissible, it has been
shown in [11; 2] to be more effective than the max
measure. Note that the sum cost will always decrease for an
action when the cost of one of its preconditions improves,
but this is not guaranteed for max cost. As described
below we will make use of these measures both separately
and in combination in deciding which states to expand
during search.
 In seeking a ‘compromise’ estimate of the true cost of
reaching the initial state from a given state, we have
considered linear combinations of the max and sum
measures. Noting that the last two terms of the adjusted-
sum heuristic (see section II) provide a measure of the
inter-dependence of the propositions in a state, we
experimented with using it as a weighting. The following
cost estimate for a state S, which we will call adjusted-
combo, has proven effective for the Multi-PEGG search
process we will describe below:

 where: lev(S) and lev(p) are as defined in section II, and
 glev(S) is the planning graph level at which state
 S is currently being evaluated.

Note that since no state S will ever be generated in
regression search at a planning graph level lower than
lev(S), the two weighting terms (in brackets) will always
sum to one. This cost estimate has the desired property
that the higher the degree of negative interactions between
the subgoals in S, the larger the fraction of the estimate
comes from summing the cost of its subgoals. This is
clearly an inadmissible heuristic since it can overestimate
the cost of a state, but this is of somewhat less concern
since Multi-PEGG seeks to stream plans of increasing
quality.

 We also must confront the issue of normalizing the cost
component to the length component when they are
combined in a user’s linear preference formula. The intent
of a preference formula such as α length + β cost will not
be met if there is no base upon which they can be
compared. Ideally, we’d like to normalize each component
over its optimal value, but in general, we don’t know those
values. However, as described below, Multi-PEGG in fact
first finds a step-optimal plan and then seeks to find a
better plan with respect to the user’s preference. As such,
at the point where it needs a value for plan quality in order
to conduct branch and bound search, it has the optimal plan
length and one possible plan cost in hand. When
generating the quality value, q for a candidate plan we use
these base values (opt-length and base-cost , respectively)
to perform a rough normalization of the actual plan
parameters (length and cost) in Multi-PEGG as follows:

 We can now give an overview of the high-level algorithm
used by Multi-PEGG to stream plans that increasingly
approach q, a specified optimization formula involving
more than just plan length:

1. Find the first valid plan -which will be step optimal-
using PEGG’s approach for conducting search using
a search trace. Memoize its constituent states as
successful plan states and return the plan to the user.
Whenever the planning graph is extended, propagate
not only mutex information but also action and
proposition max and sum cost information.

2. With a valid plan in hand, determine it’s quality
value based on the user-specified criteria, q.

3. Define the search space for the next search episode
in the following manner: Sort the remaining search
segments (states) in the ST based on their q criteria.
Plan length is set by the current length of the
planning graph (say, k) and estimates of a state’s
cost are made based on the propagated cost of its
subgoals using the adjusted-combo formula.

4. Seek increasingly ‘higher quality’ plans by
conducting branch and bound search (using the q
value of the best plan found) on the sorted ST states.
Any candidate state is visited (as defined in section
II) as long as its estimated q value is less than that of
the current best plan. New plans are generated in
the manner described for PEGG-ap; either by
reaching the initial state or an existing plan state.
Whenever the branch and bound finds a lower cost
plan, return it to user, memoize its plan states, and
update the bounding q value.

5. When the branch & bound search space is exhausted
at level k, extend the planning graph (propagating
cost information), translate the ST up one level, and
sort the search states as described in step 3 -with
two additions:
a. Filter from the search space for this episode any

state that does not have a decreased sum cost

)max(
1)(

)(max)(
1

)(
1)(

)(max)(

S
Sglev

plevSlev

Ssum
Sglev

plevSlev
cst

iSp

iSp
comboadj

i

i

−

−
−

+

−

−
=

∈

∈
−

costbase
cost

lengthopt
length

−
+

−
= βαq

value. (If the cost has not decreased there is no
way that it can be extended to a lower cost plan
than the current best.)

b. Each state S, visited in the previous episode at
associated planning graph level k that does not
extend to a plan effectively provides an updated
estimate of lev(S). Instead of the original lev(S)
value, which is the first level at which the
propositions are binary non-mutex, we now have
an n-ary non-mutex level estimate, which is just k.

6. Return to step 4.

This algorithm could of course go on seeking a better plan
indefinitely, so in practice we enforce a maximum runtime.
 To date Multi-PEGG has been tested on three classical
problem domains that we modified to enable testing of its
ability to handle multi-criteria.

 ROCKET domain
The standard version of this highly parallel logistics
domain involves multiple rockets that fly between locales
carrying cargo and people. We added cost values to the
domain actions as follows:

• rockets’ MOVE action> 4
• REFUEL> 3
• LOAD and UNLOAD actions> 1

The benchmark ROCKET-EXT-A and B problems involve
2 rockets, 4 locales, and 10 people and cargo items that
must reached goal locations. For both problems Graphplan
finds a step-optimal plan of length 7, (which involves using
both rockets) but there are a large number of such step
optimal plans on the 7-level planning graph (see Table 2)
and the number of actions in them may vary between 30
and 36. For this fairly simple problem structure it’s
straightforward to manually determine the optimal plans in
terms of actions or cost; if only one rocket is used the goals
can be reached in two fewer rocket trips, but it requires one
additional plan step. Beyond 8 steps no other cost
reductions are achievable.
 Table 3 reports on Multi-PEGG’s performance in seeking
an optimal plan based on different linear combinations of
the plan length and plan cost criteria. Here we attempt to
give a feel for the dynamic nature of the plan streaming by
reporting for each user preference formula , the plan length

and cost and its calculated q value for the first plan found,
and then after 30, 120, and 1200 cpu seconds of runtime.
(We don’t report values for the 1.0 L + 0 C formula since
this is basic Graphplan’s bias. Because cost is absent from
the optimization expression, all plans found at the first
solution level will have equal ‘quality’.) The table reveals
several interesting characteristics of Multi-PEGG’s search
process. Once the first plan is found on the 7-level
planning graph, the branch and bound search for a lower
cost plan on that graph is quite effective in pruning the
search space. Whereas PEGG-ap was still searching for all
possible plans at level 7 after 14,000 seconds, Multi-
PEGG, after 1200 seconds, completes its search at level 7,
extends the planning graph, and conducts search on the 8
level graph for all but the first row optimization criteria.
The higher the cost weighting of the criteria, the more the
search is pruned on a given planning graph level. The
inadmissible nature of the adjusted-combo cost heuristic is
manifest in the fact that the .8L + .2C and .5L + .5C
formulas find some slightly lower cost plans on the 7-level
graph than the two formulas with higher cost weightings.
However the user’s preference appears to be reasonably
served for these latter two formulas in that they move on
fairly quickly to find some much higher quality (lower q
value) plans -at least based on their criteria- on the 8-level
planning graph.
 The ROCKET domain problem provides limited
exercise for the type of multiple criteria optimizing that
Multi-PEGG does, so we look next at a more complex
logistics domain involving more than one mode of
transportation with different associated costs.

 ATT LOGISTICS domain
The standard version of this domain involves two modes of
transporting packages; via airplane and via truck.
However, the trucks can only operate within a city (hauling
packages from the Post Office to the airport) and the
airplanes are used to fly between cities. We’ve extended
this domain by not only giving costs to the actions, but
enabling trucks to travel between cities that are within
range of their fuel capacity. They must refuel at each such
city. (For simplicity, we’ve not introduced actual refueling
actions for airplanes, but it’s straightforward to do so). The
trucks are constrained from traveling directly to any city by

Optimization
Criteria
L: length C: cost

1st Plan
[step length/cost] q val cpu sec.

Best plan at 30 sec
[step length/cost] q val

Best plan at 2 min.
[step length/cost] q val

Best plan at 20 min.
[step length/cost] q val

.8 L + .2 C [7 / 56] 1.0 3 [7 / 52] .98 [7 / 52] .98 [7 / 50] .97

.5 L + .5 C [7 / 56] 1.0 3 [7 / 52] .96 [7 / 52] .96 [8 / 49] .95

.2 L + .8 C [7 / 56] 1.0 3 [7 / 56] 1.0 [7 / 56] 1.0 [8 / 45] .89

0 L + 1.0 C [7 / 56] 1.0 3 [7 / 56] 1.0 [8 / 49] .86 [8 / 45] .80

Table 3. Multi-PEGG streaming of plans on the ROCKET-EXT-A problem, modified to include action costs.
 All planners in Allegro Lisp, runtimes (excl. gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98, 128 M RAM

a ‘NEXT-TO’ fact added to the ‘DRIVE’ operator and a
set of facts in the initial condition that prescribe which
cities are directly next to each other. The cost values for
actions are as follows:

• LOAD-TRUCK, UNLOAD-TRUCK> 1
• LOAD-AIRPLANE, UNLOAD-AIRPLANE> 1
• DRIVE-TRUCK1 (local, in-city trip)> 1
• DRIVE-TRUCK2 (inter-city trip)> 3
• REFUEL-TRUCK (needed inter-city only) 1
• FLY> 20

This cost structure is such that, depending on such things as
where the truck and package(s) are located in a city,
whether their destination is the airport or a post office of a
distant city, and how many times a truck must be refueled,
transporting the cargo via truck may be cheaper than flying.
Note that delivery via truck could also take fewer steps
than via airplane because transfer of the cargo from truck to
airplane is avoided.
 The original benchmark ATT-LOG-A problem that we
focus on here features 8 packages to be transported, 3 cities
(LA, PGH, BOS) each having one airport and one post
office, 1 truck in each city (initially), and both airplanes are
in one city. The step-optimal plan for the standard problem
is 11 steps and PEGG-ap finds that there are plans ranging
from 52 to 76 actions on this 11-level planning graph. (In
terms of our introduced cost structure the least cost, 11-step
plan would have a value of 128).
 Our modified ATT-LOG-A problem retains all the
original parameters except that we introduce connected
cities linking the three destination cities (and thus
permitting truck travel) as follows:

• 4 cities between BOS and PGH
• 6 cities between PGH and LA
• 6 cities between BOS and LA

Each of these connecting cities contains an airport (but no
post office) so airplanes can also visit them and, feasibly
load/unload cargo. We designed the routing structure so
that, in combination with the cost structure, truck
transportation of cargo will only provided a cost advantage

between the cities of BOS and PGH, albeit at the expense
of time steps. We note that the additional transportation
routes increases the branching factor of this problem
considerably, so that although PEGG-ap extracts all step-
optimal plans of the original problem within about 40
minutes, it is unable to do so in twice that long on our
modified version.
 Table 4 reports the performance of Multi-PEGG on this
problem for the same optimization formulas and runtime
intervals discussed for Table 3. Here there is much greater
variation in the quality of the streamed plans due to the
more complex structure of the logistical domain. Broadly
speaking, the streaming process on this problem has two
main phases once the first, step-optimal plan is found; 1)
optimizing over the cost of various action sets in alternative
11-step plans 2) searching beyond 11 steps for longer, but
less costly plans that use inter-city truck transportation
between PGH and BOS instead of airplanes. The branch
and bound on plan cost again greatly helps in pruning the
search space, as Multi-PEGG begins examining plans of
greater than the step-optimal length within 20 minutes for
three of the four optimization formulas. For the formulas
in the last two rows of the table, Multi-PEGG in fact
examines 13-step plans and greatly improves on its least
cost 11-step plan by finding some that use the PGH truck to
transport three packages to BOS instead of flying them.
 The reported results also indicate that, while increasing
the bias towards low cost plans causes a more rapid move
in this direction for the first two formulas, the trend does
not continue with the third formula (compare plan cost
trends for these formulas in columns 3 or 4). This is
probably due to the complex interactions between how the
ST search space is visited (which is directed by the cost
heuristic) and the subsequent memoization of both failing
nodes and successful plan stem nodes.

V Conclusions and Future Work
We have conducted an investigation into the feasibility of

Optimization
Criteria
L: length C: cost

1st Plan
[step length/cost] q val cpu sec.

Best plan at 30 sec
[step length/cost] q val

Best plan at 2 min.
[step length/cost] q val

Best plan at 20 min.
[step length/cost] q val

.8 L + .2 C [11 / 208] 1.0 12 [11 / 182] .98 [11 / 166] .97 [11 / 128] .94

.5 L + .5 C [11/ 208] 1.0 12 [11 / 166] .95 [11 / 144] .94 [11 / 128] .90

.2 L + .8 C [11 / 208] 1.0 12 [11 / 180] .96 [11 / 160] .95 [13 / 111] .78

0 L + 1.0 C [11 / 208] 1.0 12 [11 / 166] .91 [13 / 115] .80 [13 / 107] .71

Table 4. Multi-PEGG streaming of plans on the ATT-LOG-A problem, modified to include action costs.
All planners in Allegro Lisp, runtimes (excl. gc time) in cpu seconds on Pentium III, 900 mhz, Windows 98, 128 M RAM

streaming parallel plans satisfying multiple criteria using a
Graphplan-based planning system. Our preliminary work
shows that Multi-PEGG’s use of a concise search trace can
be exploited to allow it to efficiently generate a stream of
plans that monotonically approach a user’s preference for
plan quality when expressed as a linear preference function
on two variables. On the admittedly limited number of
problems examined to date, Multi-PEGG is not only
capable of finding the least cost step-optimal plan, but it
finds longer length plans that come closer to satisfying the
multi-objective optimization criteria.
 Extending the current system to handle different
optimization criteria and more than two does appears to be
a straightforward task. Each such criterion requires a
suitable estimation function, and the ‘cost’ values must be
propagated in the planning graph separately. However, the
approach to ordering states in the ST according to a multi-
variable linear preference functions remains unchanged. It
is also not a difficult undertaking to extend the type of
criteria the user can employ to such things as ‘I am not
interested in plans costing over x’ or ‘Give me only plans
shorter than length y’.

Overcoming the make-span bias of Multi-PEGG
 In spite of the early success of the approach reported in
this paper, it clearly has some disadvantages. It inherently
starts with a step-optimal plan and, with some help from
branch and bound techniques, searches on incrementally
longer planning graphs streaming it’s current best plan as it
does so. If the user’s primary plan quality criteria is cost,
not length, and the types of low cost plans that are likely to
be of interest are many steps longer than the shortest length
plan, this approach could be unsatisfactory. Although we
recognized this limitation early in the investigation, we also
had in mind two major augmentations that might well
overcome it, and so proceeded with a test of the simpler
system reported here. We discuss these two augmentations
to Multi-PEGG next.
 Liberation from Graphplan’s level-by-level search
 There is in fact nothing formidable that requires Multi-
PEGG to finish its search on a given planning graph level
before considering possible plans on extensions of the
planning graph. The search trace again proves to be very
useful in this regard. Once the first valid plan has been
found and a plan quality value established for subsequent
branch and bound search, the ST can be translated up any
desired number of levels (subject to the ability to extend
the graph correspondingly and propagate the cost values)
and used in a search for plans of arbitrary length. Referring
back to Figure 1, this is equivalent to translating the ST
tree of the third search episode pictured upward on the
planning graph so that the XYZ root node now lies on some
level higher than 9. If we then assess the multi-criteria q
values for the search segments (states) in the ST at these
higher levels we can co-mingle them with the same search
segments from lower levels and order all of them together
for visitation according to our plan quality formula. To the
extent that we have an effective estimation formula for

identifying the lowest cost plans, this will essentially enable
Multi-PEGG to concurrently consider multiple length plans
in its branch and bound search for a better plan.
 This would be a prohibitive idea in terms of memory
requirements if we had to store multiple versions of the ST,
but we can retain only the one version of it and simply store
any level-specific cost and heuristic information in its
search segments as values indexed to their associated
planning graph levels. Interesting problems that arise
include such things as what range of plan lengths should be
considered at one time and how to avoid having to deal
with plans with steps consisting entirely of ‘persists’
operators.
 Shortcutting the search in a given episode
 Of the two modes for employing distance heuristics
discussed in section II, we have only reported the
performance of Multi-PEGG when it visits all states in the
ST (i.e. PEGG-b mode), modulo the branch and bound
process. It’s also possible to augment the branch and
bound pruning of search by screening from consideration
those states that do not meet some threshold criteria based
on a distance heuristic. Such states generated in
Graphplan’s regression search hold little or no promise of
being extended into a solution, yet their inclusion in the
search trace means PEGG will have to expand them
eventually in each intermediate search episode. We have
found that the distance-based heuristics are effective in
identifying such states, and have experimented with various
threshold options for restricting those maintained in the ST.
Although such filtering of the search space forfeits the
guarantee that PEGG will return a step-optimal solution, in
practice we find that that even restricting the active ST to
the heuristically best 10-15% of the generated states has no
impact on the quality of returned plans. When PEGG
operates in this mode, (tagged as ‘PEGG-c’ in Table 1)
there is a dramatic reduction of both the size of the working
ST and the time spent in non-solution bearing search
episodes. As indicated, PEGG-c solves many more
problems than either standard or enhanced Graphplan (GP-
e) and exhibits speedups of 40x or more over GP-e where
both find solutions. The table also reports the length of the
plans produced (in terms of steps and actions). In all cases,
PEGG-c finds a plan of equivalent step-length to the
Graphplan optimal plan.
 The intuition for Multi-PEGG is that, besides looking for
the ‘next best plan’ we only want to visit a search segment
in the ST that has a high likelihood of being extended into a
valid plan. Of course, this may also screen out some of the
longer length but lower cost plans that we may be
interested in, so this is an empirical issue that needs to be
investigated.
 Bounding the length of plans that need to be considered
 Another interesting issue associated with this approach to
optimizing over multiple criteria is whether we can assess
when the streaming process can be terminated due to no (or
low) possibility of improving on the current best plan. The
planning graph may again prove to be a useful structure for
deducing such bounds on the search process.

References
Zimmerman, T. and Kambhampati, S. 1999. Exploiting
Symmetry in the Planning-graph via Explanation-Guided
Search. In Proceedings of AAAI-99, 1999.

Zimmerman, T. and Kambhampati, S. 2002. Using
memory to transform Graphplan’s search. Submitted to
Eighteenth National Conference American on Artificial
Intelligence, (AAAI 2002).

Zimmerman, T., Kambhampati, S. 2001. Effective
Interplay of State Space and CSP Views in a Single
Planner. ASU CSE TR-01-008.

Bonet, B. and Geffner, H. 1999. Planning as heuristic
search: New results. In Proceedings of ECP-99, 1999.

Nguyen, X. and Kambhampati, S., 2000. Extracting
effective and admissible state space heuristics from the
planning graph. In Proc. AAAI-2000.

