
Relevance and Overlap in Text Resource
Selection

Wes Dyer

April 7, 2005

Chapter 1

Introduction

1.1 Background

1.1.1 Traditional Text Retrieval

Information retrieval is an integral part of modern life. People routinely need
to query information sources to acquire the knowledge they need. Often the
information is stored in text documents of some sort such as web pages, news
articles, emails, or even books. Text retrieval is information retrieval from
text sources. Text retrieval originated from the need to manage the vast
quantity of information stored in libraries [4]; however, over the past decade
text retrieval has been extended to the web.

The fundamental problem of text retrieval is to retrieve as many of the
most relevant documents in a collection of text documents as possible with
respect to a query from the user. Many models have been proposed for text
retrieval but the vector space model [24] has been generally accepted as the
current best method. The vector space model uses an inverted term index
in order to calculate term frequencies (tf) and inverse document frequencies
(idf). These two values measure respectively the frequency of a term within
a document and the frequency of a term within the collection. The two
measures are then combined to score each document with respect to a query.
Experiments and user studies have shown that the method seems to capture
some sense of relevance [4].

1

1.1.2 Distributed Text Retrieval

With the success of text retrieval systems both on the web and in other
areas, the number of text retrieval systems has grown rapidly over the past
years. This in turn poses new challenges to text retrieval. Often the answer
to a query is found in multiple collections which are possibly even separated
geographically. This inspired the idea of a virtual collection which mediates
the content supplied by other text collections [6]. When a query is submitted
to the mediated collection, the mediator predicts which text collections will
have the largest number of highly relevant documents within them. The
query is then forwarded to these collections for processing. The mediator
then ranks the results while removing irrelevant or redundant answers. The
final sorted list is then returned to the user.

1.1.3 Text Resource Selection

The problem of selecting the best subset of the available collections to call is
referred to as resource selection or collection selection [6]. In the case of col-
lections of text documents, it is called text resource selection. Text resource
selection can be performed over cooperative or uncooperative text collections.
The latter assumption complicates the problem because a representative for
each collection must be learned since the information is not readily available.
The text resource selection methods that use this assumption differ in how
they build a representative of the environment and the assumptions they
make about that environment.

One example of the need for text resource selection is found in the medi-
ation of various scientific abstract collections. Some of the many computer
science abstract providers are ACM Digital Library [1], ACM Guide [2], Sci-
enceDirect [25], Compendex [12], CiteSeer [10], DBLP [13], and CSB [11].
Often these collections vary in their ability to answer a given query. For
example, ACM Digital Library may contain more valuable information re-
garding queries on compilers whereas DBLP could have better information
about databases. The mediator should know to prefer ACM Digital Library
for the first query and DBLP for the second. Instead of querying both sources,
the mediator could call only the best or best-k sources. This reduces net-
work load and has even been shown to improve overall retrieval performance
compared to single source text retrieval [6]. Although this example shows
the utility of text resource selection, the benefit is apparent when mediation

2

over hundreds or even thousands of collections is considered. This kind of
environment is found in the news domain. It is apparent that some news
sources are more authoritative on financial matters while they may be less
so concerning sports for example. Furthermore, even a politically oriented
news feed may be quite biased in the articles that it provides. When the
mediator receives a query, it must quickly and accurately pick a small sub-
set of the collections that captures the best articles from the union of all of
the collections. The subset must also represent the diversity of information
available. Herein lies the difficulty of text resource selection in an uncertain
environment.

1.2 Challenges

It has already been noted that the primary challenge of text resource selection
in an uncooperative environment is the uncertainty regarding the contents
of each collection. It is also important to note that there are many impor-
tant characteristics of these collections which affect text resource selection
performance. Some of these characteristics are the quantity and quality of
relevant documents within a collection with respect to a query, the size of
each collection, and the overlap between collections.

The quantity of relevant documents in a collection is always measured
with respect to a query; however, it is not easy to measure. In order to
count the number of relevant documents, the notion of relevance must be
quantified; this has proven to be a very difficult problem. Once relevance is
quantified then how relevant must a document be to be counted? Further-
more, how are two documents, which vary in relevance, to be counted? The
quality of relevant documents in a collection is also important. Intuitively
users prefer a smaller number of highly relevant results to a larger number
of mediocre results. How can this be measured and compared between col-
lections? It is clear that collections will vary in the quality of their relevant
documents, yet how can this be captured? Another important characteristic
of the constituent collections is their sizes. How can accurate size estimates
be obtained from uncooperative sources? Also there exists the possibility
that collections contain overlap between each other. Overlap is a measure
of the number of similar enough documents that exist between two or more
collections. These characteristics should be reliably measured in order to
perform text resource selection under varying circumstances. Finally, it is

3

nontrivial to combine these notions together in order to score the overall
merit of a collection.

1.3 Overview of Proposed Solution

This thesis assumes that the environment is uncooperative, collections vary
in relevance with respect to queries, collections differ in size, and overlap
exists between collections. The solution presented in this thesis will address
all of these assumptions which have not heretofore been examined together.
The proposed solution is referred to as Relevance and Overlap Statistics for
COllection selection (ROSCO). The aim of ROSCO can be easily described
with the notion of the complete collection. The complete collection is the
union of all collections. It contains every document that is contained in at
least one collection. Distributed text retrieval over all of the collections can
now be thought of in terms of single source text retrieval from the complete
collection. The proposed solution will attempt to retrieve the highest per-
centage of top-k documents from the complete collection with respect to a
given query for each subset of size n of collections. The top-k documents
are those documents which are the first k documents in relevance ranked
order. Furthermore, we can consider that certain documents which are sim-
ilar enough form document classes and the problem is therefore to find the
highest percentage of top-k document classes.

ROSCO first builds a representative of each collection via query sam-
pling. The sampling serves three purposes. The first purpose is to provide
a basis upon which to estimate the relevance of a collection with respect to
a query. The second purpose is to determine the overlap between collec-
tions. The third purpose is to estimate the size of each collection. The first
and second purposes are accomplished together by using random sampling
whereas the third purpose specifically samples from frequent queries. This
phase constitutes the offline portion of the solution.

Once the representative has been constructed, the online portion can be
executed. When a new query arrives, the representative is used to determine
the collection which has the highest probability of containing the most docu-
ments in the top-k. This collection is selected first. Then the collection with
the highest residual number of documents in the top-k is selected. The term
residual is used because a collection may overlap with the first collection and
therefore contain several documents in the top-k documents in both collec-

4

tions. Only new relevant documents should be considered. This continues
until there are no collections which are thought to contain top-k documents.
At this time, ROSCO then ceases to consider top-k documents and rather
considers all documents which are results for the given query. The number of
documents which are results to the given query is termed coverage and the
number of new documents with respect to a query and previously selected
collections is called residual coverage. So the method selects the collection
with the highest residual coverage and proceeds until all collections have been
selected. Then the top-n collections are chosen as the best subset of size n.

This approach considers both relevance to a query and overlap between
collections. It accurately estimates collection merit and improves upon ex-
isting methods as is shown in this thesis.

1.4 Contributions of this Work

This work makes three primary contributions. First, it proposes a new
method that incorporates both relevance and overlap which has not been
done previously. Second, eight test beds are provided which vary three fun-
damental attributes: relevance, overlap, and size. These test beds allow a
method to be tested under a variety of conditions; this provides an under-
standing of the effect that these factors have on the method’s performance.
Third, a detailed evaluation of the proposed method as well as three other
major methods is undertaken using the eight test beds. This evaluation
describes the performance of these methods in detail.

1.5 Overview of Thesis

The thesis first discusses related work in Chapter 2. A detailed description
of ROSCO is given in Chapter 3. The results of the experiments as well as
discussion relating to the results is provided in Chapter 4. Suggestions for
future work are described in Chapter 5. Finally, the conclusions of this thesis
are made in Chapter 6.

5

Chapter 2

Related Work

There are many methods related to text resource selection. They differ dras-
tically in what assumptions they make about the underlying environment,
how they build a representation of that environment, and how they use the
information to make predictions. Other important related research areas are
query based sampling, collection size estimation, duplicate detection, and
gathering/using overlap statistics.

2.1 Text Resource Selection

Some methods assume that the underlying collections are cooperative and
provide the necessary metadata. These methods tend to emphasize protocols
of communication. One such method is STARTS [15] which differs sharply
from ROSCO which does not make this assumption. Most methods assume
that the collections are not cooperative. gGLOSS [16] assumes that the col-
lections use a common similarity measure when responding to queries. This
allows gGLOSS to use the notion of the sum of similarities since similarity
of a document with respect to a query can be compared across collections.
ROSCO differs from gGLOSS because it does not assume that collections
use a common similarity measure. In fact, the similarity measure of each col-
lection is not important. Most methods also do not make this assumption.
CVV [32] attempts to use the distribution of query terms across all collection
in order to rank collections. CORI [8], which is the most widely accepted
method, builds a virtual document corresponding to each collection through
query sampling. Then it performs single source text retrieval over the virtual

6

documents. The ranking of the virtual documents with respect to the query
is used to order the collections. Intuitively, this captures some sense of rele-
vance and corresponds closely with traditional information retrieval. French
and Powell [14] provide a survey of CORI, CVV, and gGLOSS. In this survey,
they show that CORI outperforms the two other methods in a wide variety
of settings. Each of these methods seek to approximate a relevance based
ranking of the collections; however, French and Powell also showed that they
often pick larger collections over smaller collections which corresponds to a
size based ranking. To address this, a new method named ReDDE was de-
signed that is not as susceptible to variations in size. Furthermore, ReDDE
seeks to locate the top-k documents which is a stronger form of relevance
based ranking. ROSCO differs from CORI, CVV, and gGLOSS because it
considers size. ROSCO also differs from ReDDE since it takes overlap into
account as well. Finally, COSCO [18] is a method that estimates the cover-
age and overlap of each collection with respect to a query. COSCO probes
the collections to build a set of frequent item sets. Coverage and overlap sta-
tistics for each collection are maintained with respect to these frequent item
sets. When a query is asked, the query is mapped to one or more frequent
item sets which then provide reliable estimates of coverage and overlap for
each collection with respect to the query. ROSCO contrasts with COSCO
because it attempts to find the top-k documents rather than all documents
which are returned by the collections.

2.2 Query Based Sampling

Query based sampling [7, 28] is used to build an accurate representative of
each collection. This representative is in turn used to estimate relevance
and size of the corresponding collections. Query based sampling can build
accurate representatives with a small number of queries and documents.

2.3 Collection Size Estimation

There are two main methods of collection size estimation. These methods
are the capture-recapture method [20] and the sample-resample method [29].
The capture-recapture method sends multiple queries to a collection and as-
sumes that the distribution of the results of the queries are independent.

7

This enables the method to measure the overlap between queries and use
this to estimate the collection size. The sample-resample method uses the
representative of a collection as well as the actual collection. A query is sent
to both the representative and the corresponding collection. The percent-
age of documents that are returned by the representative is known. Then it
is assumed that the representative is a good sample and therefore roughly
the same percentage of documents of the total collection are returned from
the actual collection. Thus it can estimate the collection size. The sample-
resample method requires significantly less interactions with the collection.
Both ROSCO and ReDDE make use of the sample-resample method to esti-
mate collection size.

2.4 Duplicate Detection

Measuring overlap requires the detection of duplicate or highly similar docu-
ments. A number of methods have been applied to this problem such dupli-
cate detection (exact similarity) [26, 9, 27] and document fingerprinting as
well as text retrieval techniques [17, 31].

2.5 Gathering/Using Overlap Statistics

Coverage and overlap statistics were first applied to the relational model by
Nie and Kambhampati [22]. Past queries are used to probe the sources and
build statistics based on frequency. New queries are then mapped to frequent
item sets to provide reliable statistics. In fact, COSCO is an extension of
this approach to the text retrieval domain.

8

Chapter 3

Relevance and Overlap

ROSCO is centered around the notions of relevance and overlap. It incorpo-
rates and extends ideas from ReDDE [28] and COSCO [18]. This is important
because on the one hand ReDDE addresses the need to find the top-k most
relevant documents but it does not deal with overlap. On the other hand,
COSCO deals with overlap but does not address top-k relevance. Further-
more, it is nontrivial to extend these methods to include the ideas that they
lack. This chapter describes how these ideas are used and how the methods
are extended to make them more viable.

3.1 Overview

There are two distinct components which are necessary for ROSCO: an online
component and an offline component. The goal of the offline component is to
build an accurate representation of the collections. This includes statistics
about collection relevance, collection size, and overlap between collections.
The offline component uses query based sampling [7] to acquire the neces-
sary sample for building the representative. Once the query based sampling
has finished then the statistics must be computed. Each collection’s size is
estimated as well in order to normalize later computations by the collection’s
size. An inverted term index is built for the union of the collection samples
while the source of each document in this index is noted. Finally, training
queries are used to find frequently jointly occurring query terms called fre-
quent item sets. Overlap statistics are then computed and stored in relation
to these frequent item sets. At this point the system is ready to answer

9

queries.
The second component of the system is the online component. When a

new query arrives, ROSCO queries the centralized inverted term index. Using
the results from this sample index as well as the estimated collection sizes,
an estimate of the number of top-k documents in each collection is made.
The collection with the largest number of top-k documents is selected first.
At this point the number of top-k documents is adjusted for each remaining
collection by the estimated overlap with regard to the query. The collection
with the highest residual number of new top-k documents is selected second.
This continues until all of the collections which are estimated to have at least
one top-k documents are selected. At this point, ROSCO loosens its notion
of relevance to allow all answers to a query. It will then use the COSCO
method to select the remaining collections. In the following sections, the two
components will be described in detail.

3.2 Gathering Statistics

In order to build an accurate representation of each collection, ROSCO must
acquire the information necessary to support both the idea of relevance and
the idea of overlap. There are four parts to the offline component: query
based sampling, size estimation, computing relevance statistics, and com-
puting overlap statistics. To support each portion of the offline component,
it is assumed that a set of training queries are supplied to the system. A
very effective source for these training queries are those queries which have
been posed to the system in the recent past [18].

3.2.1 Query Based Sampling

During query based sampling, a number of random queries are sent to each
collection and a portion of the results are kept for the sample. The queries
that are chosen can easily be randomly picked from the training queries. It
has been shown that a relatively small number of queries is required to obtain
an accurate representation of each collection [7]. Furthermore, a refinement
can be made by using only the first few queries from the training data and
obtaining subsequent query terms from the documents which are returned.
During this exploration phase, the documents from each collection are sepa-
rately stored. An inverted index is built for each collection sample to provide

10

single source text retrieval from the sample.

3.2.2 Estimating Collection Size

Now that a sample from each collection is available, collection size estimates
are made. The sample-resample method [28] is used to estimate collection
size. It assumed that the sample is representative of the real collection. Then
a query is randomly selected from the training queries. This query is sent to
both the real collection and the sample. Note that the sample collection size
is known and is denoted as Nsample. The number of results in the sample is
denoted as Rsample whereas the number of results from the real collection is
denoted as R. Let N be the size of the collection. So the probability, P (A)
that the real collection contains the query term and the probability P (B)
that the sample contains the query term are shown below.

P (A) =
R

N
(3.1)

P (B) =
Rsample

Nsample

(3.2)

Now since, P (A) ≈ P (B) then we have the following.

N̂ =
R ·Nsample

Rsample

(3.3)

Si and Callan showed that when the mean of several estimates is used,
the absolute error ratio of the size estimate is small [28]. Note that the size of
the union of all of the collections can now be estimated. It is just the sum of
all of the individual estimates; however, this is not accurate in the presence
of overlap. The sample-resample method does not allow for overlap and thus
requires an extension. Let N̂ be the sum of the estimated collection sizes, let
N̂sample be the total number of documents sampled, and let N̂ ′

sample be the
total number of distinct documents sampled. Then the size of the union of
all the collections, N̂ ′, can be estimated as follows.

N̂ ′ =
N̂ · N̂ ′

sample

N̂sample

(3.4)

11

These estimates are stored for each collection and for the union of the
collections. The estimates are used in the online component for normalization
purposes.

3.2.3 Computing Relevance Statistics

Finally, all of the documents that have been sampled are indexed together
while noting from which sources each document has been obtained. Unlike
ReDDE, it cannot be assumed that each document came from exactly one
source. It is entirely possible that one document was sampled from multiple
sources. Furthermore, it is possible to not only consider duplicates as exact
replicates but also as documents which are similar enough. Again it can
easily be termed as document classes rather than just documents. Once an
inverted index is built for the union of the collections then the individual
collection indices can be removed.

3.2.4 Computing Overlap Statistics

Finally, it is necessary to compute statistics related to overlap. COSCO [18]
provides a comprehensive way to accomplish this goal and its approach is
adopted into ROSCO. The overlap between two collections i and j is defined
as the size of the intersection of the results from the collections. Let Ri denote
the set of results from collection i whereas Rj denotes the set of results from
collection j.

overlap(Ci, Cj) = |Ri ∩Rj| (3.5)

Note that higher order overlap statistics are not computed for efficiency
reasons. Also, intuitively these overlap statistics should provide diminishing
returns. Therefore for space and time considerations they are not included.

Before computing the overlap statistics, frequent item sets must be iden-
tified. The training set of queries is used to identify frequent item sets. Each
query is considered as a set of words as opposed to a bag of words where
multiple occurrence matters. Then the set of all non-empty subsets of the
query term set is the item set for this query. The Apriori algorithm [3] is
applied to these sets to discover which item sets are frequent.

The most frequent training queries are sent to each source to find result
sizes and compute overlap as mentioned above. Then the statistics for each

12

frequent item set is computed as a weighted average of the statistics for each
query that contains the frequent item set as a subset. It stores both the
result size and the overlap estimates in relation to every other collection.
Finally, the empty set is computed as the mean of all item sets. The empty
set statistics are necessary because some queries will not map to any item sets
although this should be rare if past behavior is indicative of future behavior.
These statistics are then stored.

3.3 Answering Queries

Now that statistics regarding relevance, size, and overlap have been stored,
it is now possible to answer queries. When a query is posed to the mediator,
it will first use the relevance and size statistics to find the collection with the
most top-k documents. Then the mediator will combine the relevance, size,
and overlap estimates to find the collections with the most remaining top-k
documents. This continues until the relevance estimates have been exhausted
at which point the result sizes are used instead of top-k relevance estimates.
The ROSCO resource selection algorithm is described below.

3.3.1 Finding the Most Relevant Collections

The idea of algorithm 1 is to find the collections with the highest number of
remaining top-k documents first and then find the collections with the most
remaining results. It accomplishes this by assigning each document a score
equal to the number of documents which are estimated to be more relevant
than itself. Each collection is then assigned a score which is the estimated
number of top-k documents in the collection. Finally, those collections with
the most remaining top-k documents are chosen and then it selects the rest of
the collections by choosing which collection has the most remaining results.
The algorithm is described in more detail below.

The algorithm begins by computing all non-empty subsets of the query
and finding the corresponding frequent item sets. If no frequent item sets are
found then the empty set statistics are used. Otherwise, the statistics are
the mean of the frequent item sets that are found. The query is then sent
to the total sample collection. Recall that this is the union of the individual
collection samples. The sample complete collection returns a ranked list of
documents which are relevant to the query. Next, the Count is initialized

13

Algorithm 1 ResourceSelection(query)→ OrderedResourceList

Load Overlap and Result Size statistics for the query
Query the total sample collection
Count← 0
for all results r in the query results in descending rank do

r.Document.Score← Count
Count← Count + mean(r.EstimatedSize/r.SampleSize)

end for
for all collections c do

c.Score← 0
for all documents d in c do

if d.Score < Threshold then
c.Score← c.Score + 1

end if
end for
c.Score← c.Score·c.EstimatedSize

c.SampleSize

end for
while exists a collection c with c.Score > 0 do

Pick a collection with argmax{ResidualRelevance(Collection)}
end while
while exists a collection c not yet selected do

Pick a collection with argmax{ResidualCoverage(Collection)}
end while
Return Order of Collections

14

to zero. This count indicates the estimated number of relevant documents
encountered thus far.

After this initialization, the algorithm then iterates through all of the
results with the most relevant results being visited first. The document that
corresponds to the result has its score set to Count which is the number of
relevant documents encountered. Therefore, the score of each document is
the estimated number of documents that are more relevant than it in the
entire collection. To see why, note that Count is incremented by the mean of
the ratio of each collection’s estimated size to its sample size. The collections
that are included in this computation are those in which the result can be
found. The mean of this ratio is the number of documents in the real union
of collections that the sample result is representing.

In the next step, each collection is examined and its score is initially set
to zero. Then for all the documents which are in the sample collection and
have a score less than some threshold, the collection will receive one more
point. The documents that contribute represent the documents which are in
the top-k documents overall where k is the threshold. Finally, the collection’s
score is scaled by the ratio of the estimated collection size to the sample size.

At this point, each collection’s score is an estimate of the number of
documents in the top-k documents overall. The algorithm then proceeds to
select the collection with the highest residual relevance while there exists
collections with a score greater than zero. Thus all of the collections that
originally were thought to contain documents in the top-k documents are
selected before any of the collections thought to not contain such documents.
The equation for computing residual relevance is included below.

ResidualRelevance(C) = C.Score · (1− Overlap(C)

C.EstimatedSize
) (3.6)

The overlap component is the number of documents in the collection that
overlap with documents in the previously selected collections. Therefore,
this essentially reduces the estimated number of relevant documents in the
collection. The overlap equation is described below.

Overlap(C) =
∑

Overlap(C, Ci) (3.7)

Each Ci is a previously selected collection and the statistics for this have
been computed at the first step of the algorithm.

15

3.3.2 Using Overlap to Find New Results

Once all of the collections which probably contain top-k documents have
been selected, then the notion of relevance is expanded to include all results
instead of just top-k documents. This is the goal of the COSCO algorithm.
Therefore, ROSCO will now switch into COSCO mode where it will continue
to pick the collection with the highest residual coverage until all collections
have been picked. Residual coverage is computed as follows.

ResidualCoverage(C) = C.ResultSize−
∑

Overlap(C) (3.8)

Now that all of the collections have been selected then the order in which
they were selected is returned. This ordering constitutes the approximated
best subset of collections of size n where n is the first n collections in the list.

The algorithm for resource selection is based on ideas first proposed in
COSCO and ReDDE; however, ROSCO clearly extends both of these ideas
by unifying the notions of relevance and overlap. This is important because
in real world scenarios it most likely the case that collections vary in relevance
with respect to a given query and collections have overlap. The algorithm is
very efficient because most of the computation is performed offline and users
will not see the more intensive calculations there.

16

Chapter 4

Experimental Evaluation

In order to evaluate the performance of ROSCO, an extensive series of ex-
periments were performed under varying circumstances. These experiments
show many facets of the performance of ROSCO but also demonstrate var-
ious properties of the other resource selection methods including COSCO
[18], ReDDE [28], and CORI [8]. This chapter begins by describing how per-
formance of the various methods is measured and describing the upper and
lower bounds of performance. Then it describes in detail how the test beds
were created to evaluate performance. A detailed analysis of these test beds
shows that they do indeed provide an diverse and substantial array of envi-
ronments in which to test the various methods. Each of the tested methods
will be described in detail as well as how the training was performed. The
actual testing process is described in the next section followed by the results
of these tests.

4.1 Measuring Performance

It is the goal of this thesis to provide a method to select a subset of resources
such that they return the highest possible percentage of top-k documents
for such a subset size. This naturally leads to a metric to describe the per-
formance of the resource selection system. Percent recall is the cumulative
number of documents in the top-k documents that have been returned di-
vided by the total number of documents in the top-k documents. Therefore,
if collection i returns results Ri and the total number of documents in the
top-k documents is R then the following equation describes percent recall.

17

R∗ =
| ∪Ri|
|R|

(4.1)

The method that maximizes the R∗ overall is called greedy ideal. It is
greedy because given a subset of size n that is greedy maximal then it will
pick a subset of size n + 1 that is also greedy maximal and therefore it never
backtracks. The greedy ideal has complete knowledge of every collection
and will always pick the collection with the most documents in the top-
k first followed by the collection with the real highest residual relevance
next and so on. It understands both higher order and lower order overlap.
Greedy ideal provides an upper bound on performance over the long run.
This is the method that ROSCO tries to approximates. Another metric that
illustrates collection performance is the ratio between a method’s percent
recall and greedy ideal’s percent recall. This shows how well the algorithm
approximates the greedy ideal.

Interestingly, most methods with the notable exception of COSCO do
not attempt to approximate greedy ideal. They approximate relevance based
ranking. Relevance based ranking is the same as greedy ideal when selecting
the first collection but relevance based ranking does not take overlap into
account on subsequent selections. Therefore, when overlap does not exist
then greedy ideal is the same as relevance based ranking; however, when
overlap does exist then the difference between these two rankings shows how
much effect overlap has on resource selection.

French and Powell [14] showed that most resource selection algorithms
and especially gGLOSS and CVV inadvertently follow a size based ranking.
Size based ranking selects the largest collection first and then the next largest
and so on. Therefore, including the size based ranking in the experiments
allowed an examination of whether the various methods seem to follow that
ranking.

Finally, random resource selection provides a lower bound on long run
performance. Any algorithm should outperform random in the long run.
The difference between a given method and the random method shows the
degree of improvement over the baseline performance.

18

4.2 Test Bed Creation

One of the goals of this thesis was to provide an accurate examination of the
performance of the proposed solution in a variety of settings. Therefore, three
important factors were chosen that describe various collections: the variabil-
ity of the size of collections, the distribution of relevant documents, and the
presence or absence of overlap. The first factor was chosen because it has
been shown that some methods seem to perform poorly when collection sizes
differ whereas others perform well with similar sized collections. The second
factor is important because intuitively some collections are more relevant on
some topics than others. Furthermore, relevance based methods assume that
this is the case. Therefore, the effect of the distribution of relevant docu-
ments should be important to these methods. Finally, it is necessary to show
the performance of the methods both with overlap and without it. Varying
these three factors produces eight combinations. These combinations form
the basis of the eight test beds included in the experiments.

In order to form the eight test beds, a large number of documents were
required. Therefore, 38323 abstracts were obtained from various scientific
abstract providers [1, 2, 11, 12, 25, 10, 13, 19, 21]. Each test bed has 100 col-
lections within it. The difference between the test beds is how they distribute
the abstracts amongst the collections. The collections are always presented
in the same order which allows a quick inspection to determine the effect of
size of various attributes of the test bed. The first two figures in each section
describe the sizes of the contained collections as well as the average overlap
of each collection with every other collection. The third figure shows the
number of queries for which the collections could provide at least 1 result
in the top-100 results. The figure graph shows the mean number of results
that the collections have when they have at least 1 result. Finally, the last
figure describes the performance of greedy ideal, relevance based ranking,
size based ranking, and random ranking in terms percent top-k recall.

4.2.1 Test Bed 1: Same Size, Random Distribution,
No Duplicates

The first test bed was created by distributing the abstracts in a round robin
fashion. Therefore, each collection has roughly the same number of docu-
ments (Figure 4.1) and the documents were distributed randomly (Figures
4.3 and 4.4). Also, there are no duplicates since each document was assigned

19

Collection Sizes

382.4
382.6
382.8

383
383.2
383.4
383.6
383.8

384
384.2

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

S
iz

e

Figure 4.1: The collection sizes in test bed 1

to exactly one collection (4.2).
Figure 4.5 shows that with no overlap that greedy ideal and relevance

based ranking perform identically. Also, since all collections are the same
size, size based ranking performs similar to random ranking.

4.2.2 Test Bed 2: Same Size, Random Distribution,
Duplicates

This test bed was created by randomly assigning 1000 documents to each
collection. The documents were picked with replacement which leads to
overlap (Figure 4.7), but note that the collections are the same size (Figure
4.6) and have a random distribution of relevant documents (Figures 4.8 and
4.9).

Figure 4.10 shows the effect that duplicates have on relevance based rank-
ing. Again size based ranking does not perform well when all collections have
the same size. Also note that random ranking is not linear in the presence
of overlap.

20

Overlap

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73 82 91 100

Collection

O
ve

rl
ap

Figure 4.2: The overlap in test bed 1

Answerable Queries

0

10

20

30

40

50

60

70

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

A
ns

w
er

ab
le

 Q
ue

ri
es

Figure 4.3: The number of answerable queries in test bed 1

21

Mean Relevant Documents (no zeros)

0

0.5

1

1.5

2

2.5

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

M
ea

n
R

el
ev

an
t D

oc
um

en
ts

Figure 4.4: The mean number of relevant results for answerable queries in
test bed 1

4.2.3 Test Bed 3: Varying Size, Random Distribution,
No Duplicates

The third test bed also used a round robin assignment but assigned varying
numbers of relevant documents to each collection (Figure 4.11). With most
of the documents going to only a handful of collections. Since assignment
did not include replacement, there are no duplicates (Figure 4.12). Also, the
assignments were random so relevance is randomly distributed (Figures 4.13
and 4.14).

Figure 4.15 shows several important points regarding test bed 3. Note
that greedy ideal and relevance based ranking perform equally well since
there is no overlap; however, size based ranking significantly outperforms
random because the collections vary in size and documents are randomly
distributed. Clearly, larger collections have a better chance of containing
relevant documents.

22

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 T
op

-K
 R

ec
al

l

Greedy Ideal
Random
Size Based
Relevance Based

Figure 4.5: Percent recall performance in test bed 1

23

Collection Sizes

0

200

400

600

800

1000

1200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

S
iz

e

Figure 4.6: The collection sizes in test bed 2

Overlap

23.5
24

24.5
25

25.5
26

26.5
27

27.5

1 10 19 28 37 46 55 64 73 82 91 100

Collection

O
ve

rl
ap

Figure 4.7: The overlap in test bed 2

24

Answerable Queries

0
10
20
30
40
50
60
70
80
90

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

A
ns

w
er

ab
le

 Q
ue

ri
es

Figure 4.8: The number of answerable queries in test bed 2

Mean Relevant Documents (no zeros)

0

0.5

1

1.5

2

2.5

3

3.5

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

M
ea

n
R

el
ev

an
t D

oc
um

en
ts

Figure 4.9: The number of relevant results for answerable queries in test bed
2

25

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 T
op

-K
 R

ec
al

l

Greedy Ideal
Random
Size Based
Relevance Based

Figure 4.10: Percent recall performance in test bed 2

26

Collection Sizes

0

500

1000

1500

2000

2500

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

S
iz

e

Figure 4.11: The collection sizes in test bed 3

Overlap

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73 82 91 100

Collection

O
ve

rl
ap

Figure 4.12: The overlap in test bed 3

27

Answerable Queries

0
10
20
30
40
50
60
70
80
90

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

A
ns

w
er

ab
le

 Q
ue

ri
es

Figure 4.13: The number of answerable queries in test bed 3

Mean Relevant Documents (no zeros)

0

1

2

3

4

5

6

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Collection

M
ea

n
R

el
ev

an
t D

oc
um

en
ts

Figure 4.14: The number of relevant results for answerable queries in test
bed 3

28

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 T
op

-K
 R

ec
al

l

Greedy Ideal
Random
Size Based
Relevance Based

Figure 4.15: Percent recall performance in test bed 3

29

Collection Sizes

0

2000

4000

6000

8000

10000

12000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

S
iz

e

Figure 4.16: The collection sizes in test bed 4

4.2.4 Test Bed 4: Varying Size, Random Distribution,
Duplicates

This test bed randomly picked a size for each test bed and then randomly
picked the documents with replacement from the total pool of documents.
The sizes were picked in an exponential fashion thereby yielding significant
differences in size (Figure 4.16). Also note that there is overlap in this test
bed (Figure 4.17). Again, the distribution of relevance is random in this test
bed (Figures 4.18 and 4.19).

This test bed is interesting (Figure 4.20) because several of the collections
contained over a fourth of the total documents each. This means that most
of the documents can be accessed by querying just the largest collections.
This is shown by the excellent performance of sized based ranking.

4.2.5 Test Bed 5: Same Size, Clustered Distribution,
No Duplicates

In order to create this test bed, k-means clustering was used on the pool of
documents to create 250 clusters. Then clusters were combined together to

30

Overlap

0

50

100

150

200

250

300

1 10 19 28 37 46 55 64 73 82 91 100

Collection

O
ve

rl
ap

Figure 4.17: The overlap in test bed 4

Answerable Queries

0

20

40

60

80

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

A
ns

w
er

ab
le

 Q
ue

ri
es

Figure 4.18: The number of answerable queries in test bed 4

31

Mean Relevant Documents (no zeros)

0

5

10

15

20

25

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

M
ea

n
R

el
ev

an
t D

oc
um

en
ts

Figure 4.19: The number of relevant results for answerable queries in test
bed 4

form 100 roughly equivalent size test beds (Figure 4.21). In reality, the sizes
of the collections appear to be normally distributed but this is close enough
for the purposes of the experiment. The k-means clustering serves to provide
varying relevance (Figures 4.23 and 4.24) among collections with respect to
various queries. Also note that there is no overlap (Figure 4.22).

Figure 4.25 shows that greedy ideal performs the same as relevance based
ranking as expected. Size based ranking performs nearly identical to random
ranking because collections are roughly the same size. Random ranking is
linear because there is no overlap.

4.2.6 Test Bed 6: Same Size, Clustered Distribution,
Duplicates

This test bed also used k-means clustering to create 250 clusters; however,
it randomly assigned clusters with replacement to create 100 collections of
nearly identical size (Figure 4.26). Therefore, there is overlap in this test bed
(Figure 4.27) and clustered distribution (Figures 4.28 and 4.29).

In this test bed, the effect of overlap can be clearly seen by the disparity

32

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 T
op

-K
 R

ec
al

l

Greedy Ideal
Random
Size Based
Relevance Based

Figure 4.20: Percent recall performance in test bed 4

33

Collection Sizes

0

200

400

600

800

1000

1200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Collection

S
iz

e

Figure 4.21: The collection sizes in test bed 5

Overlap

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73 82 91 100

Collection

O
ve

rl
ap

Figure 4.22: The overlap in test bed 5

34

Answerable Queries

0

10

20

30

40

50

60

1 10 19 28 37 46 55 64 73 82 91 100

Collection

A
ns

w
er

ab
le

 Q
ue

ri
es

Figure 4.23: The number of answerable queries in test bed 5

Mean Relevant Documents (no zeros)

0

1

2

3

4

5

6

1 9 17 25 33 41 49 57 65 73 81 89 97

Collection

M
ea

n
R

el
ev

an
t D

oc
um

en
ts

Figure 4.24: The number of relevant results for answerable queries in test
bed 5

35

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 T
op

-K
 R

ec
al

l

Greedy Ideal
Random
Size Based
Relevance Based

Figure 4.25: Percent recall performance in test bed 5

36

Collection Sizes

0
200
400
600
800

1000
1200
1400
1600

1 10 19 28 37 46 55 64 73 82 91 100

Collection

S
iz

e

Figure 4.26: The collection sizes in test bed 6

Overlap

0
5

10
15
20
25
30
35
40

1 10 19 28 37 46 55 64 73 82 91 100

Collection

O
ve

rl
ap

Figure 4.27: The overlap in test bed 6

37

Answerable Queries

0
10
20
30
40
50
60
70
80

1 10 19 28 37 46 55 64 73 82 91 100

Collection

A
ns

w
er

ab
le

 Q
ue

ri
es

Figure 4.28: The number of answerable queries in test bed 6

Mean Relevant Documents (no zeros)

0

1

2

3

4

5

1 9 17 25 33 41 49 57 65 73 81 89 97

Collection

M
ea

n
R

el
ev

an
t D

oc
um

en
ts

Figure 4.29: The number of relevant results for answerable queries in test
bed 6

38

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 T
op

-K
 R

ec
al

l

Greedy Ideal
Random
Size Based
Relevance Based

Figure 4.30: Percent recall performance in test bed 6

between greedy ideal and relevance based ranking in figure 4.30. Since col-
lection sizes are approximately the same, sized based ranking and random
ranking perform similarly.

4.2.7 Test Bed 7: Varying Size, Clustered Distribu-
tion, No Duplicates

To create this test bed, k-means was used to cluster the documents but only
100 clusters were created. These clusters became the 100 collections for the
test bed. Thus, there is no overlap (Figure 4.32) and the collection sizes vary
(Figure 4.31). Also, the collections vary in relevance (Figures 4.33 and 4.34).

Figure 4.35 shows that greedy ideal and relevance based ranking perform
identically while size based ranking performs significantly better than random
ranking because of the variable size.

39

Collection Sizes

0

500

1000

1500

2000

2500

1 10 19 28 37 46 55 64 73 82 91 100

Collection

S
iz

e

Figure 4.31: The collection sizes in test bed 7

Overlap

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73 82 91 100

Collection

O
ve

rl
ap

Figure 4.32: The overlap in test bed 7

40

Answerable Queries

0
10
20
30
40
50
60
70
80

1 10 19 28 37 46 55 64 73 82 91 100

Collection

A
ns

w
er

ab
le

 Q
ue

ri
es

Figure 4.33: The number of answerable queries in test bed 7

Mean Relevant Documents (no zeros)

0

2

4

6

8

10

1 10 19 28 37 46 55 64 73 82 91 100

Collection

M
ea

n
R

el
ev

an
t D

oc
um

en
ts

Figure 4.34: The number of relevant results for answerable queries in test
bed 7

41

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 T
op

-K
 R

ec
al

l

Greedy Ideal
Random
Size Based
Relevance Based

Figure 4.35: Percent recall performance in test bed 7

42

Collection Sizes

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 10 19 28 37 46 55 64 73 82 91 100

Collection

S
iz

e

Figure 4.36: The collection sizes in test bed 8

4.2.8 Test Bed 8: Varying Size, Clustered Distribu-
tion, Duplicates

The last test bed was also created using k-means clustering with 250 clusters.
This time though, each collection was randomly assigned 3 clusters with
replacement. The sizes of the collections vary quite a bit (Figure 4.36) and
there is overlap between the collections (Figure 4.37). Also, it is a clustered
distribution so relevance varies from collection to collection according to the
query (Figures 4.38 and 4.39).

This test bed is particularly interesting because it is probably most like
real world scenarios. Figure 4.40 shows that overlap does have an effect while
sized based ranking improves on random ranking because of the variable sizes.

4.3 Tested Methods

In order to demonstrate the efficiency of ROSCO, it is compared to three
other methods. The other methods that are examined COSCO [18], ReDDE
[28], and CORI [8]. In the following sections, the implementation of each

43

Overlap

0

50

100

150

200

250

1 10 19 28 37 46 55 64 73 82 91 100

Collection

O
ve

rl
ap

Figure 4.37: The overlap in test bed 8

Answerable Queries

0
10
20
30
40
50
60
70
80
90

1 10 19 28 37 46 55 64 73 82 91 100

Collection

A
ns

w
er

ab
le

 Q
ue

ri
es

Figure 4.38: The number of answerable queries in test bed 8

44

Mean Relevant Documents (no zeros)

0

1

2

3

4

5

6

7

1 9 17 25 33 41 49 57 65 73 81 89 97

Collection

M
ea

n
R

el
ev

an
t D

oc
um

en
ts

Figure 4.39: The number of relevant results for answerable queries in test
bed 8

method is briefly discussed.

4.3.1 ROSCO

The offline component of ROSCO was implemented as described previously.
A large set of queries from the Bibfinder system [5] was used as the training
queries. Each collection in each test bed was sampled by using 10 randomly
selected training queries. The samples were used to build the representative.
Next, 10 size estimates were made for each collection. The final size estimate
is the mean of these estimates. Finally, queries that appeared more than 5
times were used in the frequent item set computation. A support value of
.05% was required during the Apriori algorithm. For the purposes of these
experiments overlap meant duplicate documents.

4.3.2 COSCO

ROSCO and COSCO [18] require the same set of statistics. So these two
methods shared their statistics for the experiments. ROSCO differs from

45

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 T
op

-K
 R

ec
al

l

Greedy Ideal
Random
Size Based
Relevance Based

Figure 4.40: Percent recall performance in test bed 8

46

COSCO in that it uses top-k relevance and overlap during its first phase
while COSCO always considers coverage and overlap. The second phase of
ROSCO is identical to COSCO. So COSCO does not use the size estimates
and relevance representative.

4.3.3 ReDDE

ReDDE [28] and ROSCO use the same set of statistics so these were also
shared. ROSCO contrasts with ReDDE because it considers overlap. ReDDE
does not use the overlap statistics. ReDDE has no notion of residual relevance
and all calculations are done with the assumption that every document (or
document class) belongs to precisely one collection.

4.3.4 CORI

Until recently, CORI [8] has been widely accepted as the best, most stable
method for resource selection; hence, it was included in this study. CORI
models each collection as a virtual document. It can be viewed as a df-icf
method where df is the document frequency of a term within a collection and
icf is the inverse collection frequency of a term. Single source text retrieval
is performed over the collection of these virtual documents to determine the
order in which the collections should be called.

CORI used the same sample as ROSCO and ReDDE. Once this sample
was obtained then the document frequency or the number of documents
containing each term in a collection was determined. Also, the collection
frequency of a term was determined by finding the number of collections in
the test bed which contain the term. CORI forms a belief network associated
with each term.

P (tk|Ci) = 0.4 + 0.6 · T · I (4.2)

T =
df

df + 50 + 150 ∗ cw
c̄w

(4.3)

I =
log(|C|+0.5

cf
)

log(|C|+ 1.0)
(4.4)

In these equations, df is the number of documents in collection Ci contain-
ing term tk whereas cf is the number of collections in the test bed containing

47

term tk. |C| denotes the number of collections in the test bed and cw is the
number of terms in collection Ci. Finally, c̄w is the average cw for all of the
collections.

4.4 Testing

For the experiments, 100 queries which were disjoint from the training queries
were sent to each method. The percent recall at each step was determined
for every method. Then the results were averaged in order to provide a clear
look at performance. In the next section, the results of these experiments
are described in detail.

4.5 Experimental Results

The results show that ROSCO clearly outperforms the other methods when
selecting a small subset of collections (5% - 25%). Figure 4.41 shows that
ROSCO performs consistently higher than all of the methods except CORI
which appears quite unstable. An interesting note is that in this test bed,
CORI outperforms greedy ideal over a small range. Note that this is not a
contradiction because it is the greedy ideal. It is possible for another method
to outperform greedy ideal over a small range; however, over the long run
this is not possible if the method is also greedy. Also note that CORI appears
quite unstable over varying size subsets.

Figure 4.42 shows that in the presence of overlap that CORI’s perfor-
mance suffers dramatically. Furthermore, in this case ROSCO outperforms
all of the other methods.

Figures 4.43 and 4.44 show the performance of the methods in test beds 3
and 4 where collection sizes vary and the distribution of relevant documents
is random. This is probably not like real world scenarios since collections
most likely do not have randomly assigned documents but are authoritative
on certain topics. In these test beds, both ROSCO and ReDDE suffer in the
beginning. COSCO performs very well but not much better than size based
ranking does. Finally, CORI performs very poorly especially in the presence
of overlap.

In test bed 5, figure 4.45 shows that ROSCO outperforms all of the other
methods. Furthermore, CORI and COSCO suffer in this testbed presumably

48

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 G
re

ed
y

Id
ea

l

ROSCO
COSCO
ReDDE
CORI

Figure 4.41: Percent of greedy ideal for test bed 1

49

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 G
re

ed
y

Id
ea

l

ROSCO
COSCO
ReDDE
CORI

Figure 4.42: Percent of greedy ideal for test bed 2

50

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 G
re

ed
y

Id
ea

l R
ec

al
l

ROSCO
COSCO
ReDDE
CORI

Figure 4.43: Percent of greedy ideal for test bed 3

51

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 G
re

ed
y

Id
ea

l R
ec

al
l

ROSCO
COSCO
ReDDE
CORI

Figure 4.44: Percent of greedy ideal for test bed 4

52

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 G
re

ed
y

Id
ea

l R
ec

al
l

ROSCO
COSCO
ReDDE
CORI

Figure 4.45: Percent of greedy ideal for test bed 5

because relevance is now not random and some collections are much more
relevant than others for a given query.

Figure 4.46 again illustrates that ROSCO outperforms all of the other
methods. CORI’s performance degrades significantly in the presence of over-
lap.

Test beds 7 and 8 represent those that are most likely encountered in the
real world. The collections vary in size and they have a clustered distribution.
In test bed 7, ROSCO outperforms the other methods at every step except
for a small range where CORI performs the best; but, CORI is very unstable
in this test bed. In test bed 8, ROSCO outperforms the other methods
until about half of the collections have been selected when COSCO begins to
outperform ROSCO; however, since resource selection aims to select a small
subset of collections, it is more important to perform well early on. Notice
that CORI’s performance deteriorates quickly because of the presence of
overlap.

53

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 G
re

ed
y

Id
ea

l R
ec

al
l

ROSCO
COSCO
ReDDE
CORI

Figure 4.46: Percent of greedy ideal for test bed 6

54

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 G
re

ed
y

Id
ea

l R
ec

al
l

ROSCO
COSCO
ReDDE
CORI

Figure 4.47: Percent of greedy ideal for test bed 7

55

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of Collections Selected

P
er

ce
nt

 G
re

ed
y

Id
ea

l R
ec

al
l

ROSCO
COSCO
ReDDE
CORI

Figure 4.48: Percent of greedy ideal for test bed 8

56

ROSCO performs the best over all the collections with the exception
of test beds 3 and 4; however, these test beds reflect scenarios that are
unlikely in the real world. It should also be noted that ReDDE follows
ROSCO closely but ROSCO consistently improves on ReDDE by 3%-7%.
Furthermore, ROSCO is an improvement on COSCO as well. The presence
of overlap does not seem to negatively affect the performance of ROSCO in
relation to COSCO. CORI suffers whenever overlap is present and seems to
be much less stable than the other three methods.

57

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis presents a new method for resource selection, ROSCO, that com-
bines and extends notions presented in COSCO and ReDDE. The method is
effective and has been shown to be an improvement over both of the other
methods as well as the currently accepted method, CORI. ROSCO success-
fully captures the ideas of relevance and overlap which are two of the most
fundamental characteristics of collections in resource selection. This work
also successfully created a set of eight test beds which represent a variety of
conditions. Finally, a detailed evaluation of the proposed method as well as
three other major methods is described.

5.2 Future Work

Several extensions to the work presented in this thesis are possible. Two such
extensions are presented below: an expansion to the experiments presented
in the thesis and capturing non-binary relevance.

5.2.1 Expansion of Experimental Evaluation

An expansion of the experiments performed in this thesis could lead to further
discovery. It would be beneficial to study the effectiveness of each method
when the number of documents within a collection is much larger and perhaps

58

the number of collections is greater as well. These improvements would pro-
vide a more complete view of the performance of the methods. Specifically,
the creation of eight similar test beds from the TREC data would enable com-
parisons with other experiments to be made more easily and would increase
the size of the constituent collections.

5.2.2 Capturing Non-Binary Relevance

In this thesis, relevance is binary. Either a document is relevant enough or
it is not. A document is considered relevant if it belongs in the top-k overall
documents for a given query. It would be interesting to consider documents
of varying degrees of relevance. In this case it might be more important
to find the most relevant documents even at the expense of retrieving more
less relevant documents. In order to study this a new metric needs to be
proposed that captures how well a resource selection method performs in
this regard. Once this is done, then methods that approximate the ideal
could be implemented and tested.

59

Bibliography

[1] The ACM Digital Library. http://www.acm.org/dl, 2004.

[2] The ACM Guide to Computing Literature. http://www.acm.org/guide,
2004.

[3] Agrawal, R. and Srikant, R. Fast algorithms for mining association
rules. In Proceedings of VLDB Conference, 1994.

[4] Baeza-Yatesm, R. A. and Ribeiro-Neto, B. A. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[5] BibFinder: A Computer Science Bibliography Mediator.
http://rakaposhi.eas.asu.edu/bibfinder, 2004.

[6] Callan, J. Distributed Information Retrieval. In W.B. Croft, editor,
Advances in Information Retrieval, 127-150. Kluwer Academic Pub-
lishers, 2000.

[7] Callan, J. and Connell, M. Query-based sampling of text databases.
Information Systems, 19(2):97-130, 2001.

[8] Callan, J., Lu, Z., and Croft, W. B. Searching Distributed Collections
with Inference Networks. In Proceedings of 18th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 1995.

[9] Chowdhury, A., Frieder, O., Grossman, D., and McCabe, M. C. Col-
lection statistics for fast duplicate document detection. In ACM Trans-
actions on Information Systems, 20(2):171-191, 2002.

[10] CiteSeer - Computer and Information Science Papers.
http://citeseer.org, 2004.

60

[11] The Collection of Computer Science Bibliographies.
http://liinwww.ira.uka.de/bibliography, 2004.

[12] Compendex Database. http://www.engineeringvillage2.org, 2004.

[13] DBLP – Computer Science Bibliography. http://www.informatik.uni-
trier.de/˜le, 2004.

[14] French, J. C., Powell, et al. Comparing the Performance of Database
Selection Algorithms. In Proceedings of ACM SIGIR Conference, 1999.

[15] Gravano, L., Chang, C., Garcia-Molina, H., and Paepcke, A. STARTS:
Stanford proposal for internet metadata searching. In Proceedings of
the 20th ACM-SIGMOD Internal Conference on Management of Data,
1997.

[16] Gravano, L., Garćıa-Molina, H., and Tomasic, A. GlOSS: text-source
discovery over the Internet. In ACM Transactions on Database Sys-
tems, 1999.

[17] Haveliwala, T., Gionis, A., Klein, D., and Indyk, P. Evaluating Strate-
gies for Similarity Search on the Web. In Proceedings of the World
Wide Web Conference, 2002.

[18] Hernandez, T. Improving Text Collection Selection with Coverage and
Overlap Statistics. Masters thesis. Arizona State University, 2004.

[19] IEEE Xplore. http://ieeexplore.ieee.org, 2004.

[20] Liu, K. L., Yu, C., Meng, W., Santos, A., and Zhang, C. Discover-
ing the representative of a search engine. In Proceedings of 10th ACM
International Conference on Information and Knowledge Managment
(CIKM), 2001.

[21] Network Bibliography. http://www.cs.columbia.edu/˜hgs/netbib, 2004.

[22] Nie, Z. and Kambhampati, S. A frequency-based approach for mining
coverage statistics in data integration. In Proceedings of the Interna-
tional Conference on Data Engineering, 2004.

61

[23] Powell, L. P. and French, J. C. Comparing the performance of col-
lection selection algorithms. In ACM Transations on Information Sys-
tems, 21(4):412-456, 2003.

[24] Salton, G., Wong, A., and Yang, C. A vector space model in informa-
tion retrieval. In Communications of the ACM, 1975.

[25] ScienceDirect. http://www.sciencedirect.com, 2004.

[26] Shivakumar, N. and Garćıa-Molina, H. Finding near-replicas of docu-
ments on the web. In Proceedings of WebDB, 1999.

[27] Shivakumar, N. andGarćıa-Molina, H. SCAM: A copy detection mech-
anism for digital documents. In Proceedings of the Conference on the
Theory and Practice of Digital Libraries, 1995.

[28] Si, L. and Callan, J. Relevant Document Distribution Estimation
Method for Resource Selection. In Proceedings of the 26th Annual In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, 2003.

[29] Si, L. and Callan, J. Using sampled data and regression to merge search
engine results. In Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, 2002.

[30] Voorhees, E. M., Gupta, N. K., and Johnson-Laird, B. The collection
fusion problem. In Text REtrieval Conference, TREC, 1994.

[31] Yu, C. T., Liu, K., Wu, W., Meng, W., and Rishe, N. Finding the
most similar documents across multiple text databases. In Advances in
Digital Libraries, pages 150-162, 1999.

[32] Yuwono, B. and Lee, D. L. Server ranking for distributed text retrieval
systems on the internet. In Database Systems for Advanced Applica-
tions, pages 41-50, 1997.

62

