
Noname manuscript No.
(will be inserted by the editor)

Query Processing Over Incomplete Autonomous Databases:
Query Rewriting Using Learned Data Dependencies

Garrett Wolf · Aravind Kalavagattu · Hemal Khatri · Raju Balakrishnan ·
Bhaumik Chokshi · Jianchun Fan · Yi Chen · Subbarao Kambhampati

Received: date / Accepted: date

Abstract Incompleteness due to missing attribute values
(aka “null values”) is very common in autonomous web
databases, on which user accesses are usually supported
through mediators. Traditional query processing techniques
that focus on the strict soundness of answer tuples often ig-
nore tuples with critical missing attributes, even if they wind
up being relevant to a user query. Ideally we would like
the mediator to retrieve such possible answers and gauge
their relevance by accessing their likelihood of being per-
tinent answers to the query. The autonomous nature of web
databases poses several challenges in realizing this objective.

G. Wolf
Arizona State University, Tempe, AZ, USA
E-mail: garrett.wolf@asu.edu

A. Kalavagattu
E-mail: aravindk@asu.edu

H. Khatri
E-mail: hemal.khatri@asu.edu

R. Balakrishnan
E-mail: rajub@asu.edu

B. Chokshi
E-mail: bmchoksh@asu.edu

J. Fan
E-mail: jianchun.fan@asu.edu

Y. Chen
E-mail: yi@asu.edu

S. Kambhampati
E-mail: rao@asu.edu Corresponding author. This research was sup-
ported in part by the NSF grants IIS 308139 and IIS 0624341, the
ONR grants N000140610058 and N000140910032, a Google research
award, as well as support from ASU (via ECR A601, the ASU Prop
301 grant to ET-I3 initiative.

Such challenges include the restricted access privileges im-
posed on the data, the limited support for query patterns, and
the bounded pool of database and network resources in the
web environment.

We introduce a novel query rewriting and optimization
frameworkQPIAD that tackles these challenges. Our tech-
nique involves reformulating the user query based on mined
correlations among the database attributes. The reformulated
queries are aimed at retrieving the relevant possible answers
in addition to the certain answers.QPIAD is able to gauge
the relevance of such queries allowing tradeoffs in reduc-
ing the costs of database query processing and answer trans-
mission. To support this framework, we develop methods
for mining attribute correlations(in terms of Approximate
Functional Dependencies),value distributions(in the form
of Näıve Bayes Classifiers), andselectivity estimates. We
present empirical studies to demonstrate that our approach
is able to effectively retrieve relevant possible answers with
high precision, high recall, and manageable cost.

Keywords Incomplete Databases· Query Rewriting·
Uncertainty

1 Introduction

Data integration in autonomous web database scenarios has
drawn much attention in recent years, as more and more data
becomes accessible via web servers which are supported by
back-end databases. In these scenarios, a mediator provides a
unified query interface as a global schema of the underlying
databases. Queries on the global schema are then rewritten
as queries over autonomous databases through their web in-
terfaces. Current mediator systems [28,24] only return to the
usercertain answersthat exactly satisfy all the user query

2

predicates. For example, in a used car trading application,
if a user is interested in cars made byHonda, all the re-
turned answers will have the value “Honda” for attribute
Make. Thus, anAccordwhich has amissingvalue forMake
will not be returned by such systems. Unfortunately, such an
approach is both inflexible and inadequate for querying au-
tonomous web databases which are inherently incomplete.
As an example, Table 1 shows statistics on the percentage of
incomplete tuples from several autonomous web databases.
The statistics were computed from randomly probed sam-
ples. The table also gives statistics on the percentage of miss-
ing values for theBody StyleandEngineattributes. For ex-
ample,AUTO TRADER source had 13 attributes, 25K tuples
of which 33.7% of tuples had null values. 3.6% of the total
tuples had null values in the body attribute, while 8.1% had
null values in the engine attributes.1

of # of % Missing Missing
Website Attrs. Tuples Incomp. Body Engine

Auto Trader 13 25127 33.7% 3.6% 8.1%
Cars Direct 14 32564 98.7% 55.7% 55.8%

Google Base 203+ 580993 100% 83.4% 91.9%

Table 1 Statistics on missing values in web databases.

Such incompleteness in autonomous databases should
not be surprising as it can arise for a variety of reasons, in-
cluding:

Incomplete Entry: Web databases are often populated by
lay individuals without any central curation. For example,
web sites such asCars.comand Yahoo! Autos, obtain in-
formation from individual car owners who may not fully
specify complete information about their cars, thus leaving
such databases scattered with missing values (aka “null” val-
ues). Consider the previous example where a car owner who
leaves theMakeattribute blank, assuming that it is obvious
as theModelof the car she is selling isAccord.

Inaccurate Extraction: Many web databases are being pop-
ulated using automated information extraction techniques.
As a result of the inherent imperfection of these extractions,
many web databases may contain missing values. Examples
of this include imperfections in web page segmentation (as
described in [17]) or imperfections in scanning and convert-
ing handwritten forms (as described in [2]).

Heterogeneous Schemas:Global schemas provided by me-
diator systems may often contain attributes that do not appear
in all of the local schemas. For example, a global schema

1 The significantly larger percentage of incomplete tuples in the case
of GOOGLEBASE are a consequence of the fact that in addition to being
uncurated,GOOGLEBASE also allows users to dynamically define their
own attribute names and fill them.

for the used car trading domain has an attribute calledBody
Style, which is supported byCars.com, but not byYahoo!
Autos. Given a query on the global schema for cars having
Body Styleequal toCoupe, mediators which only return the
certain answers are not able to make use of information from
theYahoo! Autosdatabase thereby failing to return a possibly
large portion of the relevant tuples.2

User-defined Schemas:Another type of incompleteness oc-
curs in the context of applications like Google Base [33]
which allow users significant freedom to define and list their
own attributes. This often leads to redundant attributes (e.g.
Makevs.Manufacturer), as well as proliferation of null val-
ues (e.g. a tuple that gives a value for Make is unlikely to
give a value for Manufacturer and vice versa).

Although there has been work on handling incomplete-
ness in databases (see Section 7), much of it has been focused
on single databases on which the query processor has com-
plete control. The approaches developed–such as the “impu-
tation methods” that attempt to modify the database directly
by replacing null values with likely values–are not applicable
for autonomous databases where the mediator often has re-
stricted access to the data sources. Consequently, when faced
with incomplete databases, current mediators only provide
the certain answers thereby sacrificing recall. This is partic-
ularly problematic when the data sources have a significant
fraction of incomplete tuples, and/or the user requires high
recall (consider, for example, a law-enforcement scenario,
where a potentially relevant criminal is not identified due to
fortuitous missing information or a scenario where a sum or
count aggregation is being performed).

To improve recall in these systems, one naı̈ve approach
would be to return, in addition to all the certain answers, all
the tuples with missing values on the constrained attribute(s)
aspossibleanswers to the query. For example, given a se-
lection query for cars made by “Honda”, a mediator could
return not only those tuples whoseMakevalues are “Honda”
but also the ones whoseMakevalues are missing(null). This
approach, referred to asALL RETURNED, has an obvious
drawback, in that many of the tuples with missing values
on constrained attributes areirrelevant to the query. Intu-
itively, not every tuple that has a missing value forMake
corresponds to a car made byHonda! Thus, while improving
recall, theALL RETURNED approach can lead to drastically
lower precision.

In an attempt to improve precision, a more plausible so-
lution could start by first retrieving all the tuples withnull
values on the constrained attributes, predicting their missing

2 Moreover, an attribute may not appear in a schema intentionally
as the database manager may suppress the values of certain attributes.
For example, the travel reservation websitePriceline.comsuppresses
the airline/hotel name when booking tickets and hotel.

3

values, and then deciding the set of relevant query answers
to show to the user. This approach, that we will callALL -
RANKED, has better precision thanALL RETURNED. How-
ever, most of the web-accessible database interfaces we’ve
found, such asYahoo Autos, Cars.com, Realtor.com, etc,do
not allow the mediator to directly retrieve tuples with null
values on specific attributes. In other words, we cannot issue
queries like “list all the cars that have a missing value for
Body Styleattribute”. Even if the sources do support binding
of null values, retrieving and additionally ranking all the tu-
ples with missing values involves high processing and trans-
mission costs.

Our Approach: In this paper, we presentQPIAD,3a system
for mediating over incomplete autonomous databases. To
make the retrieval of possible answers feasible,QPIAD by-
passes the null value binding restriction by generatingrewrit-
tenqueries according to a set of mined attribute correlation
rules. These rewritten queries are designed such that there
are no query predicates on attributes for which we would like
to retrieve missing values. Thus,QPIAD is able to retrieve
possible answers without binding null values or modifying
underlying autonomous databases. To achieve high precision
and recall,QPIAD learns Approximate Functional Depen-
dencies (AFDs) for attribute correlations, Naı̈ve Bayesian
Classifiers (NBC) for value distributions, and query selectiv-
ity estimates from a database sample obtained off-line. These
data source statistics are then used to gauge the relevance of a
possible answer to the original user query. Instead of ranking
all possible answers directly,QPIAD first ranks the rewrit-
ten queries in the order of the number of relevant answers
they are expected to bring as determined by the attribute
value distributions and selectivity estimations. Then the topk
rewritten queries are issued in the order of its relevance to the
user query. The retrieve tuples are ranked in accordance with
the query that retrieved them, which is the order of their rele-
vance. By ordering the rewritten queries rather than ranking
the entire set of possible answers,QPIAD is able to opti-
mize both precision and recall while maintaining efficiency.
This query rewriting framework can handle selection, aggre-
gation and join queries, as well as support multiple correlated
sources.

Contributions: First, to the best of our knowledge, the
QPIAD framework is the first that can retrieve relevant pos-
sible answers with missing values on constrained attributes
without modifying underlying databases. Consequently, it
is suitable for querying incomplete autonomous databases,
given a mediator ’s query-only capabilities and limited query
access patterns to these databases. Second, the idea of using
learned attribute correlations, value distributions, and query

3 QPIAD is an acronym for Query Processing over Incomplete
Autonomous Databases.

selectivity to rewrite and rank queries, which consider the
natural tension between precision and recall, is also a novel
contribution of our work. Third, our framework can leverage
attribute correlations among data sources in order to retrieve
relevant possible answers from data sources not supporting
the query attribute (e.g. local schemas which do not support
the entire set of global schema attributes). Furthermore, our
experimental evaluation over selection, aggregation, and join
queries shows thatQPIAD retrieves most relevant possible
answers while maintaining low query processing costs.

Last, but certainly not the least, we developed and imple-
mented AFDminer, a scalable technique for mining attribute
correlations in the form of approximate functional dependen-
cies. We believe that besides QPIAD, AFDminer can also be
used to improve the performance of variety of systems that
depend on AFDs (e.g. AIMQ [36] and CORDS [21]).

Significance:The need of returningmaybeanswers besides
certain answers when querying incomplete databases has
been well recognized for a long time [23,30,2] and is further
motivated by a recent work [29], which shows that the prob-
lem of query answering in data exchange can be reduced to
the problem of query answering over incomplete databases.
As discussed in Section 7, our work also has deep connec-
tions to probabilistic databases. Specifically, missing values
(null values) in a deterministic database can be modeled with
a probability distributionover a set of values. The unique
technical challenge addressed by QPIAD is retrieving in-
complete relevant tuples from incomplete databases without
materializing corresponding probabilistic databases. It does
this with the help of novel query rewriting techniques that
are driven by learned data dependencies.

Assumptions:In this paper we focus the discussion on rank-
ing tuples with a single null over the set of query con-
strained attributes, based on the probability that the miss-
ing value actually satisfies the query constraint. For tu-
ples with multiple nulls on constrained attributes, we out-
put them after all the tuples with zero or a single null
and simply rank them according to the number of null val-
ues, since they are much less likely to be interesting to
the user, and at the same time entail computation exponen-
tial to the number of nulls *to infer their relevance due to
attribute correlation). For example, assume the user poses
a query Q:σModel=Accord∧Price=10000∧Year=2001 on the re-
lation R(Make,Model,Price,Mileage,Year,BodyStyle). In
this case, a tuplet1(Honda,null,10000,30000,null,Coupe)
would be placed after tuples with a single null on one of the
constrained attributes because it has missing values ontwoof
its constrained attributes, namelyModelandYear. However,
we assume a tuplet2(Honda,null,10000,null,2001,Coupe)
would be ranked based on value inference as it only contains
a null on one constrained attribute, namelyModel. The sec-

4

ond missing value is onMileage, which is not a constrained
attribute.

Organization: The rest of the paper is organized as fol-
lows. In the next section we cover some preliminaries and an
overview of our framework. Section 3 proposes online query
rewriting and ranking techniques to retrieve relevant possi-
ble answers from incomplete autonomous databases in the
context of selection, aggregation, and join queries, as well as
retrieving possible answers from data sources which do not
support the query attribute in their local schemas. Section 4
provides the details of learning attribute correlations, value
distributions, and query selectivity used in our query rewrit-
ing phase. A comprehensive empirical evaluation of our ap-
proach is presented in Section 5. In Section 6 we introduce
an improved attribute correlation mining algorithm used to
scaleQPIAD to large attribute sets. We discuss the relations
with existing work in Section 7 and present our conclusions
in Section 8.

2 Preliminaries and Architecture of QPIAD

We will start with formal definitions of complete/incomplete
tuples and certain/possible answers with respect to selection
queries.

Definition 1 (Complete/Incomplete Tuples) Let R(A1,

A2, · · · ,An) be a database relation. A tuplet ∈ R is said to be
complete if it has non-null values for each of the attributes
Ai ; otherwise it is considered incomplete. A complete tuple
t is considered to belong to the set of completions of an in-
complete tuplêt (denotedC (̂t)), if t and t̂ agree on all the
non-null attribute values.

Now consider a selection queryQ:σAm=vm over relation
R(A1, · · · ,An) where(1≤m≤ n).

Definition 2 (Certain/Possible Answers)A tuple ti is said
to be a certain answer for the queryQ:σAm=vm if ti .Am=vm.
ti is said to be an possible answer forQ if ti .Am=null, where
ti .Am is the value of attributeAm in ti .

Notice an incomplete tuple is a certain answer to a query,
if its null values are not on the attributes constrained in the
query.

There are several key functionalities thatQPIAD needs
in order to retrieve and rank possible answers to a user
query: (i) learning attribute correlationsto generate rewrit-
ten queries, (ii)assessing the value probability distributions
of incomplete tuples to provide a ranking scheme for possi-
ble answers, (iii)estimating query selectivityto estimate the
recall and determine how many rewritten queries to issue,

and based on the above (iv)ordering rewritten queriesto re-
trieve possible tuples that have a high degree of relevance to
the query.

The system architecture of theQPIAD system is pre-
sented in Figure 1. A user accesses autonomous databases by
issuing a query to the mediator. The query reformulator first
directs the query to the autonomous databases and retrieves
the set of all certain answers (called thebase result set). In
order to retrieve highly relevant possible answers in ranked
order, the mediator dynamically generates rewritten queries
based on the original query, the base result set, and attribute
correlations in terms of Approximate Functional Dependen-
cies(AFDs) learned from a database sample. The goal of
these new queries is to return anextended result set, which
consists of highly relevant possible answers to the original
query. Since not all rewritten queries are equally good in
terms of retrieving relevant possible answers, they are or-
dered before being posed to the databases. The ordering of
the rewritten queries is based on their expectedF-Measure
which considers the estimated selectivity and the value dis-
tributions for the missing attributes.

QPIAD mines attribute correlations, value distributions,
and query selectivity using a small portion of data sam-
pled from the autonomous database using random probing
queries. The knowledge mining module learns AFDs and
AFD-enhanced Näıve Bayesian Classifiers (where the AFDs
play a feature selection role for the classification task) from
the samples. Then the knowledge mining module estimates
the selectivity of rewritten queries. Armed with the AFDs,
the corresponding classifiers, and the selectivity estimates,
the query reformulator is able to retrieve the relevant possible
answers from autonomous databases by rewriting the origi-
nal user query and then ordering the set of rewritten queries
such that the possible answers are retrieved in the order of
their ranking in precision.

3 Retrieving Relevant Possible Answers

In this section, we describe theQPIAD query rewriting ap-
proach for effectively and efficiently retrieving relevant pos-
sible answers from incomplete autonomous databases. We
support queries involving selections, aggregations and joins.
This query rewriting framework can also retrieve relevant an-
swers from data sources not supporting the entire set of query
constrained attributes.

3.1 Handling Selection Queries

To efficiently retrieve possible answers in their order of pre-
cision,QPIAD follows a two-step approach. First, the origi-

5

Domain
Information

Sample
Database

Extended
Result Set

Result
Processor

Explainer

Sampler

QPIAD Architecture

Sampling
Queries

Result
Tuples

User Query

User
Query

Uncertain
Answers

Certain
Answers

AFDs,
Density Estimates (P),
Selectivity Estimates (R)

Rewritten
Queries

Explanation

Certain Answers +
Relevant Uncertain
Answers

Selectivity
Estimates (R)

Density
Estimates (P)

Statistics Miner
Density Function

(P) Estimator

Mine AFDs &
Compute
Attribute

Importance

Learn AFD-
Enhanced Naïve

Bayes Classifiers

Selectivity
Approximations

(R) Estimator

Compute

Selectivity

Approximations

Mine Query

Selectivity

Statistics

Query Reformulator
Selections Projections

Joins Aggregations

Base
Result Set

Autonomous Databases

Cars.com GoogleBase Realtor.com

Fig. 1 QPIAD System Architecture.

ID Make Model Year Body Style

1 Audi A4 2001 Convt
2 BMW Z4 2002 Convt
3 Porsche Boxster 2005 Convt
4 BMW Z4 2003 null
5 Honda Civic 2004 null
6 Toyota Camry 2002 Sedan

Table 2 Fragment of a Car Database

nal query is sent to the database to retrieve the certain an-
swers which are then returned to the user. Next, a group
of rewritten queries are intelligently generated, ordered, and
sent to the database. This process is done such that the query
patterns are likely to be supported by the web databases, and
only the most relevant possible answers are retrieved by the
mediator in the first place.

3.1.1 Generating Rewritten Queries

The goal of the query rewriting is to generate a set of rewrit-
ten queries to retrieve relevant possible answers. Let’s con-
sider the same user queryQ asking for all convertible cars.
We use the fragment of the Car database shown in Table 2 to
explain our approach. First, we issue the queryQ to the au-
tonomous database to retrieve all the certain answers which

correspond to tuplest1, t2 andt3 from Table 2. These certain
answers form thebase result setof Q. Consider the first tuple
t1=〈Audi,A4,2001,Convt〉 in the base result set. If there is a
tuple ti in the database with the same value forModel ast1
but missing value forBody Style, thenti .Body Styleis likely
to beConvt. We capture this intuition by mining attribute
correlationsfrom the data itself.

One obvious type of attribute correlation is “functional
dependencies”. For example, the functional dependency
Model→Makeoften holds in automobile data records. There
are two problems in adopting the method directly based
on functional dependencies: (i) often there are not enough
functional dependencies in the data, and (ii) autonomous
databases are unlikely to advertise the functional dependen-
cies. The answer to both these problems involveslearning
approximate functional dependencies from a (probed) sam-
ple of the database.

Definition 3 (Approximate Functional Dependency
(AFD)) Given a relationR, a subsetX of its attributes, and a
single attributeA of R, we say that there is an approximate
functional dependency (AFD) betweenX andA, denoted by
XÃA, if the corresponding functional dependencyX → A
holds on all but a small fraction of the tuples ofR. The set
of attributesX is called adetermining setof A denoted by
dtrSet(A).

6

For example, an AFDModelÃBody Stylemay be
mined, which indicates that the value of a car’sModel at-
tribute sometimes(but not always) determines the value of
its Body Styleattribute. According to this AFD and tuple
t1, we issue a rewritten queryQ′

1:σModel=A4 with constraints
on the determining setof the attributeBody Style, to re-
trieve tuples that have the sameModelast1 and therefore are
likely to beConvt in Body Style. Similarly, we issue queries
Q′

2:σModel=Z4 and Q′
3:σModel=Boxster to retrieve other rele-

vant possible answers.

3.1.2 Ordering Rewritten Queries

In the query rewriting step ofQPIAD, we generate new
queries according to the distinct value combinations among
the base set’s determining attributes for each of the con-
strained attributes. In the example above, we used the
three certain answers to the user queryQ to gener-
ate three new queries:Q′

1:σModel=A4, Q′
2:σModel=Z4 and

Q′
3:σModel=Boxster. Although each of these three queries re-

trieve possible answers that are likely to be more relevant to
Q than a random tuple with missing value forBody Style,
they may not all be equally good in terms of retrieving rele-
vant possible answers.

Thus, an important issue in query rewriting is the order
in which to pose the rewritten queries to the database. This
ordering depends on two orthogonal measures: theexpected
precisionof the query–which is equal to the probability that
the tuples returned by it are answers to the original query, and
theselectivityof the query–which is equal to the number of
tuples that the query is likely to bring in. As we shall show in
Section 4, both the precision and selectivity can be estimated
by mining a probed sample of the database.

For example, based on the value distributions in
the sample database, we may find that aZ4 model
car is more likely to be aConvertible than a car
whose model isA4. As we discuss in Section 4.2,
we build AFD-enhanced classifiers which give the
probability values P(Body Style=Convt|Model=A4),
P(Body Style=Convt|Model=Z4) and
P(Body Style=Convt|Model=Boxster). Similarly, the
selectivity of these queries can be different. For example,
we may find that the number of tuples havingModel=A4 is
much larger than that ofModel=Z4.

Given that we can estimate precision and selectivity of
the queries, the only remaining issue is how to use them to
order the queries. If we are allowed to send as many rewrit-
ten queries as we would like, then ranking of the queries can
be done just in terms of the expected precision of the query.
However, things become more complex if there are limits on
the number of queries we can pose to the autonomous source.
Such limits may be imposed by the network/processing re-

sources of the autonomous data source or possibly the time
that a user is willing to wait for answers.

Given the maximum number of queries that we can issue
to a database, we have to find a reasonable tradeoff between
the precision and selectivity of the queries issued. Clearly, all
else being equal, we will prefer high precision queries to low
precision ones and high selectivity queries to low selectivity
ones. The tricky issue is how to order a query with high se-
lectivity and low precision in comparison to another with low
selectivity and high precision. Since the tension here is simi-
lar to the precision vs. recall tension in IR, we decided to use
the well knownF-Measuremetric for query ordering. In the
IR literature,F-Measureis defined as the weighted harmonic
mean of the precision (P) and recall (R) measures:(1+α)∗P∗R

α∗P+R .
We use the query precision forP. We estimate the recall mea-
sureRof the query by first computing query throughput, i.e.,
expected number of relevant answers returned by the query
(which is given by the product of the precision and selec-
tivity measures), and then normalizing it with respect to the
expected cumulative throughput of all the rewritten queries.

In summary, we use the F-measure ordering to selectk
top queries, wherek is the number of rewritten queries we are
allowed to issue to the database. Once thek queries are cho-
sen, they are posed in the order of their expected precision.
This way the relevant possible answers retrieved by these
rewritten queries need not be ranked again, as their rank –
the probability that their null value corresponds to the se-
lected attribute– is the same as the precision of the retrieving
query.

Note that the parameterα in the F-measure, as well as
the parameterk (corresponding to the number of queries to
be issued to the sources), can be chosen according to source
query restrictions, source response times, network/database
resource limitations, and user preferences. The unique fea-
ture ofQPIAD is its flexibility to generate rewritten queries
accordingly to satisfy the diverse requirements. It allows the
tradeoff between precision and recall to be tuned by adjust-
ing theα parameter in itsF-Measurebased ordering. When
α is set to be0, the rewritten queries are ordered solely in
terms of precision. Whenα is set to be1, the precision and
recall are equally weighted. The limitations on the database
and network resources are taken into account by varyingk–
the number of rewritten queries posed to the database.

3.2 Query Rewriting Algorithm

In this section, we describe the algorithmic details of the
QPIAD approach. LetR(A1,A2, · · · ,An) be a database rela-
tion. SupposedtrSet(Am) is the determining set of attribute
Am (1≤ m≤ n), according to the highest confidence AFD
(to be discussed in Section 4.3).QPIAD processes a given

7

selection queryQ:σAm=vm according to the following two
steps.

1. SendQ to the database and retrieve the base result set
RS(Q) as the certain answers ofQ. ReturnRS(Q) to the
user.

2. Generate a set of new queriesQ′, order them, and send
the most relevant ones to the database to retrieve the ex-
tended result set̂RS(Q) as relevant possible answers of
Q. This step contains the following tasks.

(a) Generate rewritten queries.Let πdtrSet(Am)(RS(Q))
be the projection ofRS(Q) ontodtrSet(Am). For each
distinct tuple ti in πdtrSet(Am)(RS(Q)), create a se-
lection queryQ′

i in the following way. For each at-
tributeAx in dtrSet(Am), create a selection predicate
Ax=ti .vx. The selection predicates ofQ′

i consist of the
conjunction of all these predicates.

(b) Select rewritten queries.For each rewritten queryQ′
i ,

compute the estimated precision and estimated recall
using its estimated selectivity derived from the sam-
ple. Then order allQ′

is in order of theirF-Measure
scores and choose the top-K to issue to the database.

(c) Re-order selected top-K rewritten queries.Re-order
the selected top-K set of rewritten queries according
to their estimated precision which is simply the con-
ditional probability ofPQ′i =P(Am=vm|ti) . /* By re-
ordering the top-K queries in order of their precision
we ensure that the returned tuples are retrieved in the
order of their precision, since each tuple will have the
same rank as the query that retrieved it. Thus there is
no need to (re)rank the retrieved tuples. */

(d) Retrieve extended result set.Given the top-K queries
{Q′

1,Q
′
2, · · · ,Q′

K} issue them in the according to their
estimated precision-base orderings. Their result sets
RS(Q′

1),RS(Q′
2), · · · ,RS(Q′

K) compose the extended
result set̂RS(Q). /* All results returned for a single
query are ranked equally */

(e) Post-filtering.If database does not allow binding of
null values, (i.e. access to database is via a web
form) remove fromR̂S(Q) the tuples withAm 6= null.
Return the remaining tuples in̂RS(Q) as the relevant
possible answers ofQ.

3.2.1 Multi-attribute Selection Queries

Although we described the above algorithm in the context
of single attribute selection queries, it can also be used for
rewriting multi-attribute selection queries by making a sim-
ple modification to Step 2(a). Consider a multi-attribute se-
lection queryQ : σA1=v1∧A2=v2∧···∧Ac=vc. To generate the set
of rewritten queriesQ′, the modification requires Step 2(a)
to run c times, once for each constrained attributeAi ,1 ≤

i ≤ c. In each iteration, the tuples fromπdtrSet(Ai)(RS(Q))
are used to generate a set of rewritten queries by replac-
ing the attributeAi with selection predicates of the form
Ax=ti .vx for each attributeAx∈ dtrSet(Ai). For each attribute
Ax ∈ dtrSet(Am) which is not constrained in the original
query, we add the constraints onAx to the rewritten query. As
we have discussed in Section 1, we only rank the tuples that
contain zero or onenull in the query constrained attributes.
If the user would like to retrieve tuples with more than one
null, we output them at the end without ranking.

For example, consider the multi-attribute selection query
Q:σModel=Accord∧Price between15000and 20000 and the mined
AFDs {Make,Body Style}Ã Model and{Year,Model}Ã
Price. The algorithm first generates a set of rewritten queries
by replacing the attribute constraintModel=Accordwith se-
lection predicates for each attribute in the determining set of
Model using the attribute values from the tuples in the base
set πdtrSet(Model)(RS(Q)). After the first iteration, the algo-
rithm may have generated the following queries:

Q′
1:σMake=Honda∧Body Style=Sedan∧Price between15000and 20000,

Q′
2:σMake=Honda∧Body Style=Coupe∧Price between15000and 20000

Similarly, the algorithm generates additional rewritten
queries by replacingPrice with value combination of its de-
termining set from the base set while keeping the original
query constraintModel=Accord. After this second iteration,
the following rewritten queries may have been generated:

Q′
3:σModel=Accord∧Year=2002,

Q′
4:σModel=Accord∧Year=2001,

Q′
5:σModel=Accord∧Year=2003

After generating a set of rewritten queries for each con-
strained attribute, the sets are combined and the queries are
ordered just as they were in Step 2(b). The remainder of the
algorithm requires no modification to support multi-attribute
selection queries.

3.2.2 Base Set vs. Sample

When generating rewritten queries, one may consider sim-
ply rewriting the original query using the sample as opposed
to first retrieving the base set and then rewriting. However,
since the sample may not contain all answers to the origi-
nal query, such an approach may not be able to generate all
rewritten queries. By utilizing the base set,QPIAD obtains
the entire set of determining set values that the source can
offer, and therefore achieves a better recall.

3.3 Retrieving Relevant Answers from Data Sources Not
Supporting the Query Attributes

In information integration, the global schema exported by
a mediator often contains attributes that are not supported

8

in some of the individual data sources. We adapt the query
rewriting techniques discussed above to retrieve relevant
possible answers from a data source not supporting the
constrained attribute in the query. For example, consider a
global schemaGSUsedCarssupported by the mediator over the
sourcesYahoo! AutosandCars.comas shown in Figure 2,
whereYahoo! Autosdoesn’t support queries onBody Style
attribute. Now consider a queryQ:σBody Style=Convt on the
global schema. The mediator that only returns certain an-
swers won’t be able to query theYahoo! Autosdatabase to
retrieve cars withBody Style Convt. None of the relevant
cars fromYahoo! Autoscan be shown to the user.

Mediator GS(Make,Model,Year,Price,Mileage,Body Style)
Cars.com LS(Make,Model,Year,Price,Mileage,Body Style)
Yahoo Autos LS(Make,Model,Year,Price,Mileage)

Fig. 2 Global schema and local schema of data sources

In order to retrieve relevant possible answers fromYa-
hoo! Autos, we apply the attribute correlation, value distri-
bution, and selectivity estimates learned on theCars.com
database to theYahoo! Autosdatabase. For example, sup-
pose that we have mined an AFDModelÃBody Stylefrom
theCars.comdatabase. To retrieve relevant possible answers
from theYahoo! Autosdatabase, the mediator issues rewrit-
ten queries toYahoo! Autosusing the base set and AFDs
from theCars.comdatabase.

The algorithm that retrieves relevant tuples from a source
Sk not supporting the query attribute is similar to theQPIAD
Algorithm presented in Section 3.2, except that the base re-
sult set is retrieved from thecorrelated sourceSc in Step 1.

Definition 4 (Correlated Source)For any autonomous data
sourceSk not supporting a query attributeAi , we define a
correlated sourceSc as any data source that satisfies the fol-
lowing: (i) Sc supports attributeAi in its local schema, (ii)
Sc has an AFD whereAi is on the right hand side, (iii)Sk

supports the determining set of attributes in the AFD forAi

mined fromSc.

From all the sources correlated with a given sourceSk,
we use the one for which the AFD forAi has the highest con-
fidence. Then using the AFDs, value distributions, and se-
lectivity estimates learned fromSc, ordered rewritten queries
are generated and issued in Step 2 to retrieve relevant possi-
ble answers for the user query from sourceSk.

3.4 Handling Aggregate Queries

As the percentage of incomplete tuples increases, aggre-
gates such asSumand Count need to take the incomplete

tuples into account to get accurate results. To support ag-
gregate queries, we first retrieve the base set by issuing the
user’s query to the incomplete database. Besides computing
the aggregate over the base set (certain answers), we also
use the base set to generate rewritten queries according to
theQPIAD algorithm in Section 3.2. For example, consider
the aggregate queryQ:σBody Style=Convt∧Count(∗) over the Car
database fragment in Table 2. First, we would retrieve the
certain answerst1, t2, andt3 for which we would compute
their certain aggregate valueCount(∗) = 3. As mentioned
previously, our first choice could be to simply return this
certain answer to the user effectively ignoring any incom-
plete tuples. However, there is a better choice, and that is
to generate rewritten queries according to the algorithm in
Section 3.2 in an attempt to retrieve relevant tuples whose
BodyStyleattribute isnull.

When generating these rewritten queries, tuplet2 from
the base set would be used to form the rewritten query
Q′

2:σModel=Z4 based on the AFDModelÃ Body Style. We
would find probability P(Body Style=Convt|Model=Z4)
and issue the rewritten query. We take this probability—
namely the query’s precision—and multiply this probabil-
ity with the aggregate result which is returned. The answer
obtained is then added to the certain aggregate answer. For
example, the contribution of the tuples having null values for
Body StyleandZ4 for Model to final count is calculated as

Countpossible
(
Model= Z4

)
=

Count(σModel=Z4∧Body Style=null)P(Convt|Z4)

Similarly the process is repeated for tuplest1 and t3
whose corresponding rewritten queries areQ′

1:σModel=A4

and Q′
3:σModel=Boxster respectively. Finally all these possi-

ble counts are added to the certain count from the complete
tuples to get the final count value.

In Section 5, we present the results of our empirical
evaluation on aggregate query processing in the context of
QPIAD. The results show an improvement in the aggregate
value accuracy when incomplete tuples are included in the
calculations.

3.5 Handling Join Queries

To support joins over incomplete autonomous data sources,
the results are retrieved independently from each source
and then joined by the mediator. When retrieving possible
answers, the challenge comes in deciding which rewritten
queries to issue to each of the sources and in what order.

We must consider both the precision and estimated se-
lectivity when ordering the rewritten queries. Furthermore,
we need to ensure that the results of each of these queries
agree on their join attribute values. Given that the mediator

9

provides the global schema, a join query posed to the medi-
ator must be broken down as a pair of queries, one over each
autonomous relation. In generating the rewritten queries, we
know the precision and selectivity estimates for each of the
pieces, thus our goal is to combine each pair of queries and
compute a combined estimate of precision and selectivity. It
is important to consider these estimates in terms of the query
pair as a whole rather than simply considering the estimates
of the pair’s component queries alone. For example, when
performing a join on the results of two rewritten queries, it
could be the case that the top ranked rewritten query from
each relation does not have join attribute values in common.
Therefore despite their high ranks at each of their local rela-
tions, the query pair could return little or no answers. As a
result, when retrieving both certain and possible answers to
a query, the mediator needs to order and issue the rewritten
queries intelligently so as to maximize the precision/recall of
the joined results.

In processing such join queries over relationsR1 andR2,
we must consider the orderings of each pair of queries from
the setsQ1∪Q1′ and Q2∪Q2′ whereQ1 and Q2 are the
complete queries derived from the user’s original join query
over the global schema andQ1′ andQ2′ are the sets of rewrit-
ten queries generated from the bases sets retrieved fromR1
andR2 respectively. Given that the queries must return tuples
whose join attribute values are the same in order for a tuple
to be returned to the user, we now consider adjusting theα
parameter in ourF-Measurecalculation so as to give more
weight to recall without sacrificing too much precision. The
details of the approach taken byQPIAD are as follows:4

1. Send complete queriesQ1 and Q2 to the databases
R1 and R2 to retrieve the base result setsRS(Q1) and
RS(Q2) respectively.

2. For each base set, generate a list of rewritten queriesQ1′

andQ2′ using theQPIAD rewriting algorithm described
in Section 3.2.

3. Compute the set of all query pairsQP by taking the
Cartesian product of each query from the setsQ1∪Q1′

andQ2∪Q2′. For each pair, calculate the new estimated
precision, selectivity, andF-Measurevalues.

(a) For each rewritten query inQ1′ andQ2′, use the NBC
classifiers to determine the join attribute value distri-
butionsJD1 andJD2 given the determining set at-
tribute values from the base setsRS1 andRS2 respec-
tively as discussed in Section 4.2.

(b) For each join attribute valuev j1 andv j2 in JD1 and
JD2 respectively, compute its estimated selectivity as
the product of the rewritten query’s precision, selec-

4 The selectivity estimation steps are only performed for the rewrit-
ten queries because the true selectivity of the complete queries is al-
ready known once the base set is retrieved.

tivity, and the value probability distribution for either
v j1 or v j2.

(c) For each query pairqp∈ QP compute the estimated
selectivity of the query pair to be

EstSel(qp)= ∑
v j1 ∈ JD1
v j2 ∈ JD2

EstSel(qp1,v j1)∗EstSel(qp2,v j2)

4. For each query pair, compute itsF-Measurescore using
the new precision, estimated selectivity, and recall val-
ues. Next, select the top-K query pairs from the ordered
set of all query pairs according to the algorithm described
in Section 3.2.

5. For each selected query pairqp, if the component queries
qp1 andqp2 have not previously been issued as part of
another query pair, issue them to the relationsR1 andR2
respectively to retrieve the extended result setŝRS1 and
R̂S2.

6. For each tuplêti1 in R̂S1 and t̂i2 in R̂S2 wheret̂i1.v j1 =
t̂i2.v j2 create a possible joined tuple. In the case where
either t̂i1.v j1 or t̂i2.v j2 is null, predict the missing value
using the NBC classifiers and create the possible join tu-
ple. Finally, return the possible joined tuple to the user.

4 Learning Statistics to Support Ranking and Rewriting

As we have discussed, to retrieve possible answers in the or-
der of their relevance,QPIAD requires three types of infor-
mation: (i) attribute correlations in order to generate rewrit-
ten queries (ii) value distributions in order to estimate the
precision of the rewritten queries, and (iii) selectivity esti-
mates which combine with the value distributions to order
the rewritten queries. In this section, we present how each of
these are learned. Our solution consists of three stages. First,
the system mines the inherent correlations among database
attributes represented as AFDs. Then it builds Naı̈ve Bayes
Classifiers based on the features selected by AFDs to com-
pute probability distribution over the possible values of the
missing attribute for a given tuple. Finally, it uses the data
sampled from the original database to produce estimates of
each query’s selectivity. We exploit AFDs for feature selec-
tion in our classifier as it has been shown that appropriate
feature selection before classification can improve learning
accuracy[5].

4.1 Learning Attribute Correlations by Approximate
Functional Dependencies(AFDs)

We mine AFDs from a (probed) sample of database to learn
the correlations among attribute. Recall that an AFDφ is a
functional dependency that holds on all but a small fraction

10

of tuples. According to [27], we define theconfidenceof an
AFD φ on a relationR as:con f(φ) = 1− g3(φ), whereg3

is the ratio of the minimum number of tuples that need to be
removed fromR to makeφ a functional dependency onR.
We utilize TANE [20] as a blackbox to mine AFDs whose
confidence is higher than a specified threshold.

In most cases, AFDs with high confidence are more de-
sirable than AFDs with low confider. However, not all high
confidence AFDs are useful for classification and subsequent
query generation to retrieve relevant uncertain tuples. The
latter include those whose determining set contains high con-
fidenceApproximate Keys (AKeys). Similarly as AFD, Akey
is defined as a key of all but a small fraction of tuples. For ex-
ample, consider a relationcar(VIN, Model, Make). We mine
that VIN is an AKey (in fact, a key) which determines all
other attributes. Given a tuplet with null value onModel,
its VIN is not helpful in estimating the missingModelvalue,
since there are no other tuples sharingt ’s VIN value. Thus,
comparing an AFD (VINÃMake), AFD (ModelÃMake),
though has a lower confidence, is more useful for classifi-
cation and query generation in order to retrieve relevant pos-
sible tuples from databases for queries with constrained at-
tributes onMake. After obtaining all AFDs and AKeys by
invoking TANE, we prune AFDs whose determining set is a
superset of a high-confidence AKey attributes. Specifically,
for each attribute, we find the best AKey whose confidence
is above a threshold. Then an AFD is pruned if the difference
between its confidence and the confidence of the correspond-
ing AKey is below a thresholdδ (currently set at0.3 based
on experimentation).

4.2 Learning Value Distributions using Classifiers

Given a tuple with a null value, we now need to estimate the
probability of each possible value of this null. We reduce this
problem to a classification problem using mined AFDs as se-
lected features. A classifier is a functionf that maps a given
attribute vectorx to a confidence that the vector belongs to
a class. The input of our classifier is a random sampleS of
an autonomous databaseR with attributesA1,A2, · · · ,An and
the mined AFDs. For a given attributeAm, (1≤m≤ n), we
compute the probabilities for all possible class values ofAm,
given all possible values of its determining setdtrSet(Am) in
the corresponding AFDs.

We construct a Näıve-Bayes Classifier(NBC)Am. Let a
valuevi in the domain ofAm represent a possible class for
Am. Let x denote the values ofdtrSet(Am) in a tuple with
null on Am. We use Bayes theorem to estimate the prob-
abilities: P(Am=vi |x) = P(x|Am=vi)P(Am=vi)

P(x) for all valuesvi

in the domain. To improve computation efficiency, NBC as-
sumes that for a given class, the featuresX1, · · · ,Xn are condi-

tionally independent, and therefore we have:P(x|Am=vi) =
∏
i

P(xi |Am=vi). Despite this strong simplification, NBC has

been shown to be surprisingly effective[13]. In the ac-
tual implementation, we adopt the standard practice of us-
ing NBC with a variant of Laplacian smoothing called m-
estimates[34] to improve the accuracy.

4.3 Combining AFDs and Classifiers

So far we glossed over the fact that there may be more
than one AFD associated with an attribute. In other words,
one attribute may have multiple determining set with dif-
ferent confidence levels. For example, we have the AFD
ModelÃMakewith confidence0.99. We also see that certain
types of cars are made in certain countries, so we might have
an AFDCountryÃMakewith some confidence value. As we
use AFDs as a feature selection step for NBC, we exper-
imented with several alternative approaches for combining
AFDs and classifiers to learn the probability distribution of
possible values for null. One method is to use the determin-
ing set of the AFD with thehighest confidencewhich we call
the Best-AFDmethod. However, our experiments showed
that this approach can degrade the classification accuracy if
its confidence is too low. Therefore we ignore AFDs with
confidence below a threshold (which is currently set to be
0.5 based on experimentation), and instead use all other at-
tributes to learn the probability distribution using NBC. We
call this approachHybrid One-AFD. At the other extreme,
we could ignore feature selection based on AFD completely
but use all the attributes to learn probability distribution us-
ing NBC. Our experiments described in Section 5 show that
Hybrid One-AFD approach has the best classification accu-
racy among these choices.5

4.4 Learning Selectivity Estimates

As discussed in Section 3, the F-measure ranking requires
an estimate of the selectivity of a rewritten query. This is
computed as

FMeasure(Q) = SmplSel(Q)∗SmplRatio(R)∗PerInc(R)

HereSmplSel(Q) is the selectivity of the rewritten queryQ
when it is issued to the sample.SmplRatio(R)is the ratio of
the original database size over the size of the sample. We

5 Another alternative to considering single AFDs is to consider mut-
liple AFDs and use them together to predict the missing attribute. We
did experiment with such an “ensemble learning” technique in the ini-
tial stages of the work, but found that its predictive accuracy was not
better than that provided by the single best AFD. An empirical evalua-
tion of this ensemble learning technique is available in [26].

11

Fig. 3 A screenshot of the QPIAD prototype (the results shown in the screenshot are in response to the queryQ : σModel=350z∧Body=convt)

send queries to both the original database and its sample off-
line, and use the cardinalities of the result sets to estimate the
ratio. PerInc(R)is the percentage of tuples that are incom-
plete in the database. It can be estimated as the percentage
of incomplete tuples that we encountered while creating the
sample database.

5 Empirical Evaluation

In this section, we describe the implementation and an em-
pirical evaluation of our systemQPIAD for query process-
ing over incomplete autonomous databases.

5.1 Implementation and User Interface

The QPIAD system is implemented in Java and has a web-
form based interface through which the users issue their
queries. A snapshot of the system in operation is shown in
Figure 3. Given a user query, the system returns each relevant
possible answer to the user along with aconfidencemeasure
equal to the probability that the incomplete tuple is an an-
swer to the query. Although the confidence estimate could
be biased due to the imperfections of the learning methods,
its inclusion can provide useful guidance to the users, over
and above the ranking.

In addition, QPIAD can optionally “explain” its rele-
vance assessment by providing snippets of its reasoning as
support. In particular, it justifies the confidence associated
with an answer by listing the AFD that was used in making

the probability/relevance assessment. In the case of our run-
ning example, the possible answert4 for the queryQ′ will be
justified by showing the learned AFDModelÃBody Style.

5.2 Experimental Settings

To evaluate theQPIAD system, we performed evaluations
over three data sets. The first dataset,Cars(year, make,
model, price, mileage, body style, certified), is built by ex-
tracting around 55,000 tuples fromCars.com. Databases like
this one are inherently incomplete as described in Table
1. The second dataset,Census(age, workshop, education,
marital-status, occupation, relationship, race, sex, capital-
gain, capital-loss, hours-per-week, native-country), is the
United States Censusdatabase made up of 45,000 tuples
which we obtained from the UCI data repository. The third
dataset,Complaints(model, year, crash, fail date, fire, gen-
eral component, detailed component, country, ownership,
car type, market), is aConsumer Complaintsdatabase which
contains roughly 200,000 tuples collected from the NHSTA
Office of Defect Investigations repository and is used in con-
junction with theCarsdatabase for evaluating join queries.

To evaluate the effectiveness of our algorithm, we need
to have a “ground truth” in terms of the true values corre-
sponding to the missing or null values. To this end, we cre-
ate our experimental datasets in two steps. First a “ground
truth dataset” (GD) is created by extracting a large num-
ber of completetuples from the online databases. Next, we
create the experimental dataset (ED) by randomly choosing
10% of the tuples from GD and making them incomplete (by

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg. of 5 Queries
 Q:(Body)

AllReturned
QPIAD

(a) Q:σBodyStyle

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg. of 5 Queries
 Q:(Year)

AllReturned
QPIAD

(b) Q:σYear

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg. of 6 Queries
 Q:(Relationship)

AllReturned
QPIAD

(c) Q:σRelationship

Fig. 4 Average precision/recall ofALL RETURNED andQPIAD for sets of queries onCars(a),(b) andCensus(c) datasets.

randomly selecting an attribute and making its value null).
Given our experience with online databases (see Table 1),
10% incompleteness is fairly conservative.

During the evaluation, the ED is further partitioned into
two parts: a training set (i.e. the sample from which AFDs
and classifiers are learned) and a test set. To simulate the rel-
atively small percentage of the training data available to the
mediators, we experimented with training sets of different
sizes, ranging in size from3%to 15%of the entire database,
as will be discussed in Section 5.5.

To compare the effectiveness of retrieving relevant pos-
sible answers, we consider two salient dimensions of the
QPIAD approach, namelyRankingand Rewriting, which
we evaluate in terms ofQuality andEfficiencyrespectively.
For the experiments, we randomly formulate single attribute
and multi attribute selection queries and retrieve possible an-
swers from the test databases.

We compareQPIAD with the ALL RETURNED and
ALL RANKED approaches. Recall thatALL RETURNED ap-
proach presents all tuples containing missing values on the
query constrained attribute without ranking them. TheALL -
RANKED approach begins by retrieving all the certain and
possible answers, as inALL RETURNED, then it ranks pos-
sible answers according to the classification techniques de-
scribed in Section 4. In fact, neither approach is feasible as
web databases are unlikely to support binding of null val-
ues in queries. In contrast, theQPIAD approach uses query
rewriting techniques to retrieve only relevant possible an-
swers in a ranked order and fits for web applications. Even
when bindings of null values are allowed, we show in this
section that theQPIAD approach provides better quality and
efficiency.

In the initial parts of the evaluation, we focus on com-
paring the effectiveness of retrieving relevant possible an-
swers. The plots in those parts ignore the “certain” answers
as all the approaches are expected to perform equally well
over such tuples. The exception are the results presented in
Section 5.3.1 which compare the performance of traditional

databases and QPIAD as the degree of incompleteness of the
underlying database increases.

5.3 Evaluation of Quality

To evaluate the effectiveness ofQPIAD ranking, we com-
pare it against theALL RETURNED approach which sim-
ply returns to the user all tuples with missing values on
the query attributes. Figure 4 shows the precision and recall
curves averaged over sets of queries on theCarsandCensus
databases. It shows that theQPIAD approach has signifi-
cantly higher precision when compared toALL RETURNED.

To reflect the “density” of the relevant answers along the
time line, we also plot the precision of each method at the
time when firstK(K=1,2, · · · ,100) answers are retrieved as
shown in Figures 5 and 6. AgainQPIAD is much better than
ALL RETURNED in retrieving relevant possible answers in
the firstK results, which is critical in web scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

A
vg

. A
cc

um
ul

at
ed

 P
re

ci
si

on

After Kth Tuple

 Avg. of 10 Queries
(Body Style and Mileage)

AllReturned
QPIAD

Fig. 5 Avg. Accumulated Precision After Retrieving the Kth Tuple
Over 10 Multi-Attribute Queries (Body Style and Mileage).

5.3.1QPIAD vs. Traditional Databases

In this section, we describe the experiments we have done
to evaluate the performance of QPIAD as the degree of in-

13

 0

 200

 400

 600

 800

 0 0.2 0.4 0.6 0.8 1

of

 T
up

le
s

R
eq

ui
re

d

Recall

Q:(Body Style=Convt)

QPIAD
AllRanked

Fig. 7 Number of Tuples Required to
Achieve a Given Level of Recall for
QueryQ(Cars):σBodyStyle=Convt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Query
 Q:(Price=20000)
 (K = 10 Rewritten
 Queries)

alpha = 0.0
alpha = 0.1

alpha = 1

Fig. 8 Effect of α on Precision
and Recall in QPIAD for Query
Q(Cars):σPrice=20000.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

A
cc

um
ul

at
ed

 P
re

ci
si

on

Kth Query

Query
 Q:(Body=Convt)

3% Sample
5% Sample

10% Sample
15% Sample

Fig. 9 Accumulated precision curve
with different sample sizes onCars
database.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200

A
vg

. A
cc

um
ul

at
ed

 P
re

ci
si

on

After Kth Tuple

Avg. of 10 Queries (Price)

AllReturned
QPIAD

Fig. 6 Avg. Accumulated Precision After Retrieving the Kth Tuple
Over 10 Queries (Price).

completeness in the underlying database increases. Figure 10
shows the results from our experiments for two example se-
lection queries. We setup the experiments by running each
selection query on a database with varying levels of incom-
pleteness on the attribute constrained by the query. For ex-
ample, the plot named “QPIAD 20%” in Figure 10(a) cor-
responds to running a selection query on marital status on a
database that has 20% incompleteness for that attribute (we
generated such a database by randomly introducing null val-
ues for that attribute into a copy of the master database that
is complete).

To put the QPIAD performance in perspective, the plots
also show the performance of traditional database techniques
(which ignore incomplete tuples) on the same databases.
Since traditional databases ignore incompleteness, they have
perfect precision on the tuples they return, but fail to return
relevant tuples that are incomplete. For example, on a 20%
incomplete database, you get full precision until 0.8 recall;
no results are returned beyond this. This abrupt loss of recall
is shown by the vertical lines in the plots.

Like the traditional databases,QPIAD approach is also
able to guarantee full precision on the complete tuples. How-
ever, unlike the traditional databases, QPIAD is able to con-
tinue and provide full recall with slightly reduced precision.

As can be expected, the degree of reduction in the precision
is correlated with the degree of incompleteness of the under-
lying database.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg on 4 Queries
 Q:(Marital Status)

QPIAD 40%
QPIAD 20%
QPIAD 10%
QPIAD 5%

Traditional 40%
Traditional 20%
Traditional 10%
Traditional 5%

(a) Q:σMaritalStatus

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg on 4 Queries
 Q:(Race)

QPIAD 40%
QPIAD 20%
QPIAD 10%
QPIAD 5%

Traditional 40%
Traditional 20%
Traditional 10%
Traditional 5%

(b) Q:σRace

Fig. 10 Precision/recall ofQPIAD and traditional databases for in-
creasing levels of incompleteness.

14

5.3.2 Effect of Alpha Value on F-Measure

To show the effect ofα on precision and recall, we’ve in-
cluded Figure 8 which shows the precision and recall of the
queryQ:σPrice=20000 for different values ofα. Here we as-
sume a 10 query limit on the number of rewritten queries
we are allowed to issue to the data source. This assumption
is reasonable in that we don’t want to waste resources by
issuing too many unnecessary queries. Moreover, many on-
line sources may themselves limit the number of queries they
are willing to answer in a given period of time (e.g. Google
Base).

We can see that as the value ofα is increased from 0,
QPIAD gracefully trades precision for recall. The shape of
the plots is a combined affect of the value ofα (which sets
the tradeoff between precision and recall) and the limit on the
number of rewritten queries (which is a resource limitation).
For any given query limit, for smaller values ofα, queries
with higher precision are used, even if they may have lower
throughput. This is shown by the fact that the lowerα curves
are higher up in precision but don’t reach high recall. Asα
increases, we allow queries with lower precision so that we
can get a higher throughput, thus their curves are lower down
but extend further to the right.

5.4 Evaluation of Efficiency

To evaluate the effectiveness ofQPIAD’s rewriting, we
compare it against theALL RANKED approach which re-
trieves all the tuples having missing values on the query con-
strained attributes and then ranks all such tuples according
to their relevance to the query.As we mentioned earlier, we
do not expect theALL RANKED approach to be feasible at
all for many real world autonomous sources as they do not
allow direct retrieval of tuples with null values on specific
attributes. Nevertheless, these experiments are conducted to
show thatQPIAD outperformsALL RANKED even when
null value selections are allowed. Figure 7 shows the number
of tuples that are retrieved by theALL RANKED andQPIAD
approaches respectively in order to obtain a desired level of
recall. As we can see, the number of tuples retrieved by the
ALL RANKED approach is simply the total number of tuples
with missing values on the query attribute, hence it is inde-
pendent of the desired level of recall. On the other hand, the
QPIAD approach is able to achieve similar levels of recall
while only retrieving a small fraction of the tuples retrieved
by ALL RANKED. The reason for this is that many of the tu-
ples retrieved byALL RANKED, while having missing values
on the query attributes, are not very likely to be the value
the user is interested in.QPIAD avoids retrieving irrelevant
tuples and is therefore very efficient. Moreover, theALL -

RANKEDapproach must retrieve the entire set of tuples with
missing values on constrained attributes in order to achieve
even the lowest levels of recall.

5.5 Evaluation of Learning Methods

5.5.1 Accuracy of Classifiers

Since we use AFDs as a basis for feature selection when
building our classifiers, we perform a baseline study on their
accuracy. For each tuple in the test set, we compute the prob-
ability distribution of possible values of a null, choose the
one with the maximum probability and compare it against
the actual value. The classification accuracy is defined as the
proportion of the tuples in the test set that have their null
values predicted correctly.

Database Best All Hybrid
AFD Attributes One-AFD

Cars 68.82 66.86 68.82
Census 72 70.51 72

Table 3 Comparison of null value prediction accuracy across different
AFD-enhanced classifiers

Table 3 shows the average prediction accuracy of various
AFD-enhanced classifiers introduced in Section 4.3. In this
experiment, we use a training set whose size is 10% of the
database. The classification accuracy is measured over 5 runs
using different training set and test set for each run. Consid-
ering the large domain sizes of attributes inCars database
(varying from2(Certi f ied) to 416(Model)), the classifica-
tion accuracy obtained is quite reasonable, since a random
guess would give much lower prediction accuracy. We can
also see in Table 3 that the Hybrid One-AFD approach per-
forms the best and therefore is used in our query rewriting
implementation.6

While classifier accuracy is not the main focus of our
work, we did do some comparison studies to ensure that
our classifier was competitive, as presented in Figure 11.
Specifically, we compared our AFD-enhanced NBC classi-
fier with a NBC classifier, a Bayesian network [18], and deci-
sion tree. For Bayes network learning, we experimented with
the WEKA Data Mining Software. We found that the AFD-
enhanced classifiers were significantly cheaper to learn than
Bayes networks; by synergistically exploiting schema-level
and value-level correlations, their accuracy was competitive.
The details of more evaluations are available [26].

6 In Table 3 the Best-AFD and Hybrid One-AFD approaches are
equal because there were high confidence AFDs for all attributes in
the experimental set. When this is not the case, the Hybrid One-AFD
approach performs better than the Best-AFD approach.

15

0

0.2

0.4

0.6

0.8

1

Year Make Model Price Mileage Body Certified

A
cc

u
ra

cy

NBC AFD-Enhanced NBC BayesNet Decision Tree

Fig. 11 Comparison of AFD-Enhanced NBC Classifiers and compet-
ing classifiers in terms of accuracy.

5.5.2 Robustness w.r.t. Confidence Threshold on Precision

QPIAD presents ranked relevant possible answers to users
along with a confidence so that the users can use their own
discretion to filter off answers with low confidence. We con-
ducted experiments to evaluate how pruning answers based
on a confidence threshold affects the precision of the results
returned. Figure 12 shows the average precision obtained
over 40 test queries on Cars database by pruning answers
based on different confidence thresholds. It shows that the
high confidence answers returned byQPIAD are most likely
to be relevant answers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Confidence

P
r
e
c
is

io
n

Fig. 12 Average Precision for various confidence thresholds(Cars).

5.5.3 Robustness w.r.t. Sample Size

The performance ofQPIAD approach, in terms of preci-
sion and recall, relies on the quality of the AFDs, Naı̈ve
Bayesian Classifiers and selectivity estimates learned by the
knowledge mining module. In data integration scenarios, the
availability of the sample training data from the autonomous
data sources is restrictive. Here we present the robustness of
the QPIAD approach in the face of limited size of sample
data. Figure 9 shows the accumulated precision of a selec-
tion query on the Car database, using various sizes of sample
data as training set. We see that the quality of the rewritten
queries all fluctuate in a relatively narrow range and there is
no significant drop of precision with the sharp decrease of

sample size from15% to 3%. We obtained a similar result
for the Census database [26].

5.6 Evaluation of Extensions

5.6.1 Effectiveness of using Correlation Between Data
Sources

We consider a mediator performing data integration over
three data sourcesCars.com(www.cars.com),Yahoo! Autos
(autos.yahoo.com) andCarsDirect (www.carsdirect.com).
The global schema supported by the mediator and the
individual local schemas are shown in Figure 2. The
schema ofCarsDirect and Yahoo! Autosdo not support
Body Styleattribute whileCars.comdoes support queries
on theBody Style. We use the AFDs and NBC classifiers
learned fromCars.comto retrieve cars fromYahoo! Autos
and CarsDirect as possible relevant possible answers for
queries onBody Style, as discussed in Section 3.3.

To evaluate the precision, we check the actualBody Style
of the retrieved car tuples to determine whether the tuple was
indeed relevant to the original query. The average precision
for the firstK tuples retrieved fromYahoo! AutosandCars-
Direct over the 5 test queries is quite high as shown in Fig-
ure 13. This shows that using the AFDs and value distribu-
tions learned from correlated sources,QPIAD can retrieve
relevant answers from data sources not supporting query at-
tribute.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
 20
 40
 60
 80
 100

Kth Tuple

P
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 5
 10
 15
 20
 25
 30
 35
 40

Kth Tuple

P
re

c
is

io
n

Yahoo! Autos
 CarsDirect

Fig. 13 Precision curves for firstK tuples retrieved using correlated
sourceCars.com.

5.6.2 Evaluation of Aggregate Queries

To evaluate our approach in terms of supporting aggregate
queries, we measured the accuracy of aggregation queries
in QPIAD where missing values in the incomplete tuples
are predicted and used to compute the final aggregate result.
We compare the accuracy of our query rewriting and missing
value prediction with the aggregate results from the complete
oracular database and the aggregate results from the incom-
plete database where incomplete tuples are not considered.
Next we will outline the details of our experiments.

16

We performed the experiments over anCars database
consisting of8 attributes. First, we created all distinct sub-
sets of attributes where the size of the subsets ranged from1
to 7 (e.g.{make}, {make,model}, {make,model,year}, ...,

{model}, {model,year}, ..., etc.). Next, we issued a query
to the sample database and selected the distinct combinations
of values for each of these subsets.

Using the distinct value combinations for each of these
subsets, we created queries by binding the values to the
corresponding attribute in the subsets. We then issued each
query to the complete database to find its true aggregate
value. We also issued the same query to the incomplete
database and computed the aggregate value without consid-
ering incomplete tuples. Finally, we issued the query to the
incomplete database only this time we predicted the miss-
ing values and included the incomplete tuples as part of the
aggregate result.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.9 0.925 0.95 0.975 1

F
ra

ct
io

n
of

 Q
ue

rie
s

Accuracy

Query
 Q:Sum(Price)

No Prediction
Prediction

(a) Q(Cars):σSum(Price)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.9 0.925 0.95 0.975 1

F
ra

ct
io

n
of

 Q
ue

rie
s

Accuracy

Query
 Q:Count(*)

No Prediction
Prediction

(b) Q(Cars):σCount(∗)

Fig. 14 Accuracy of aggregate queries with and without missing value
prediction.

In Figure 14, we show the percentage of queries achiev-
ing different levels of accuracy with and without missing
value prediction. The results are significant, as the QPIAD
prediction approach almost dominates the no prediction ap-
proach for both Figure 14(a) and 14(b). In particular, signifi-
cantly more fraction of queries achieve 94-99% accuracy for
prediction approach than for no prediction approach.7

5.6.3 Evaluation of Join Queries

Although QPIAD does have the ability to support general
joins (as explained in Section 3.5), a tricky issue is that a
join can, in general, result in tuples that are no longer guar-
anteed to be independent and can be mutually exclusive. For
example, suppose that a tuple with a null value on attribute
“model” is inferred to be “Accord” with probability of 0.6

7 One seeming anomaly is that the fraction of queries with accuracy
one with prediction approach is slightly less compared to no prediction.
This however is due to a few queries in the test set containing answers
only from the complete tuples, and return fully correct result sets with-
out prediction.

and be “Civic” with probability of 0.4. This tuple can be
joined with two complete tuples, one with the model “Ac-
cord” and one with model “Civic.” These two tuples gener-
ated by the join are clearly mutually exclusive (since a car
can be of only one model). The presence of mutually exclu-
sive tuples presents problems in terms of displaying results
to the users in an intelligible fashion (since the users can no
longer assume that a given subset of the result tuples are ac-
tually feasible together). Because of this, in our experiments
we focused on a sub-class of join queries that correspond to
the join of the results of two selection queries.

Specifically, we performed a set of experiments on the
CarsandComplaintsdatabases. In the experiments, we join
the Cars andComplaintsrelations for a particular value of
theModelattribute . The experimental results shown in Fig-
ure 15 involve join queries where the attributes from both
the relations are constrained. We evaluate the performance
of our join algorithm in terms of precision and recall with
respect to a complete oracular database.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Query
Q:(Gen. Comp.=Engine and Engine Cooling)
 JOIN ON
 (Model=Grand Cherokee)
 (K = 10 Rewritten Queries)

Alpha=0.0
Alpha=0.5

Alpha=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
P

re
ci

si
on

Recall

Query
Q:(Gen. Comp.=Electrical System)
 JOIN ON
 (Model=f150)
 (K = 10 Rewritten Queries)

Alpha=0.0
Alpha=0.5

Fig. 15 Precision-Recall Curves for Queries onCars ./Model
Complaints

We present the results for a join queryModel =
Grand Cherokee∧ General Component= Engine and
Engine Cooling. We setα to 0, 0.5 and 2 to measure the ef-
fect of giving different preferences to precision and recall. In
addition, we restricted the number of rewritten queries which
could be sent to the database to 10 queries. Figure 15(a)
shows the precision-recall curve for this query. We can see
that for α = 0 high precision is maintained but recall stops
at 0.34. Forα = 0.5 the precision is the same as whenα = 0
up until recall reaches 0.31. At this point, the precision de-
creases although, a higher recall, namely 0.66, is achieved.
The precision whenα = 2 is similar to the case where
α = 0.5 but achieves 0.74 recall with only a small loss in
precision near the tail of the curve. When looking at the top
10 rewritten queries for each of theseα values we found that
whenα = 0, too much weight is given to precision and thus
incomplete tuples are never retrieved from theCarsdatabase.
This is due to our ability to predict missing values which
happens to be better on theComplaintsdatabase and hence
the top 10 rewritten queries tend to include the complete

17

query from theCars database paired with an incomplete
query from theComplaintsdatabase. However, whenα =
0.5 or α = 2 incomplete tuples are retrieved from both the
databases because in this approach the ranking mechanism
tries to combine both precision and recall. Similar results for
the queryQ :Model= f 150∧General Component=Electrical Systemare
shown in Figure 15(b).

6 Enhancing the Scalability ofQPIAD on Large
Attribute Sets

At the start of this work, theQPIAD system utilized TANE
[20] as a blackbox to mine approximate functional depen-
dencies (AFD) that meet a confidence threshold on a sam-
ple of the databases. However, when we began working with
datasets containing larger sets of attributes, we discovered
that the TANE algorithm does not scale. It can not handle a
database with more than 20 attributes, which limits the ap-
plicability of QPIAD. To address this problem and enable
QPIAD to handle databases with large attribute sets, we de-
veloped an algorithm called AFDMiner. As will be shown
in 6.3, the quality of the query results (in terms of precision
and recall) using AFDMiner is similar to that by invoking
TANE, while AFDMiner provides a significantly better run-
ning time performance. AFDMiner’s performance advantage
allowsQPIAD to scale to datasets which were not possible
when using the TANE algorithm. In this section, we start
with the intuition of how AFDMiner achieves performance
speedup, discuss the details of the algorithm in Section 6.1
and Section 6.2, and finally present a performance evaluation
in Section 6.3.

It is easy to see that the number of possible AFDs in
a database is exponential in the number of attributes in the
database, thus AFD mining is in general expensive. As dis-
cussed in Section 4.1, not all AFDs with high confidence
are useful in terms of generating rewritten queries to retrieve
relevant possible answers. In Section 4.1, we prune “useless”
AFDs during a post-processing step after all the AFDs and
AKeys are discovered by TANE. In this section, we present
a technique that pro-actively prunes “useless” AFDs as well
as AFDs with extraneous attributes during the mining pro-
cess itself, thus pruning the search space and improving the
efficiency.

6.1 Specificity-based Pruning

In this section, we propose a measure called “specificity”
which generalizes the intuition discussed in Section 4.1 to
quantify how likely an AFD will be useful toQPIAD in
terms of retrieving relevant possible answers in query rewrit-
ing. Furthermore, the value of specificity can be computed

independently with other AFDs, and thus can be exploited to
prune search space during AFD mining.

Recall that a high confidence AKey is not useful for re-
trieving relevant possible answers. For example, consider the
case whereVIN is a high confidence AKey (in fact, a key).
Given a query that selects cars whoseMake is Honda, the
dependencyVIN → Makehas perfect accuracy, however it
is not useful in retrieving tuples that have a missing value
for Makebut are likely to beHonda. This is because no two
tuples have the sameVIN.

This example illustrates that the distribution of values for
the determining set is an important measure in judging the
“usefulness” of an AFD in terms of query rewriting. For an
AFD X Ã A, the fewer distinct values there are ofX, and
the more tuples in the database that have the same value, po-
tentially the more relevant possible answers can be retrieved
through query rewriting. To quantify this, we first define the
support of a valueαi of an attribute setX, support(αi), as
the occurrence frequency of valueαi in the training set:

support(αi) = count(αi)/N,

whereN is the number of tuples in the training set.
Now we measure how the values of an attribute setX are

distributed using specificity, which is defined as the informa-
tion entropy of the set of all possible values of attribute setX:
{α1, α2, . . . ,αm }, normalized by the maximum possible en-
tropy (which is achieved whenX is a key). Thus, specificity
is a value that lies between 0 and 1:

specificity (X) =
−∑m

1 support(αi)× log2(support(αi))
log2(N)

When there is only one possible value ofX, then this
value has the maximum support and is the least specific, thus
we have specificity equals to 0. When all values ofX are
distinct, each value has the minimum support and is most
specific. In fact,X is a key in this case and has specificity
equal to 1.

The specificity of an AFD is defined as the specificity of
its determining set.

specificity (X Ã A) = specificity (X)

Intuitively, using AFDs with lower specificity values in
query rewriting allows QPIAD to retrieve more relevant pos-
sible answers per issued query.
Monotonicity of specificity: Specificity has a useful mono-
tonicity property that can be exploited in pruning candidate
AFDs during the mining phase (see Section 6.2). Given two
candidate AFDsX Ã A andY Ã A, whereX andY are deter-
mining attribute sets andY is a superset ofX, it is easy to see
that the specificity of the second AFD is greater than or equal

18

to the specificity of the first (sinceY has more attributes than
X, the number of distinct values ofY is no less than that of
X). In other words, given an AFD that already has a speci-
ficity beyond a desirable threshold, we do not need to con-
sider adding additional attributes to its determining set.

6.2 A specificity-sensitive algorithm for mining AFDs

We now discuss our algorithm for mining a set of AFDs from
a relational table, such that the mined AFDs all have confi-
dence above thresholdminConfidence, and specificity below
maxSpecificity.

ABCD

Ø

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

Fig. 16 Set containment lattice of 4 attributes

The operation of the algorithm can be best understood in
terms of a search through a set containment lattice, made of
attributes in the relation being mined. Specifically, in this lat-
tice, a directed edge connects an attribute set with its superset
that contains one more attribute. For example consider a re-
lation with four attributes,A, B, C, D. The set containment
lattice for this relation is shown in Figure 16.

Our algorithm does a bottom-up breadth-first search in
the lattice to mine AFDs that satisfy the thresholds. The
search starts from singleton sets of attributes and works its
way to larger attribute sets through the set containment lat-
tice. When the algorithm navigates the edge from a setX
to its supersetX ∪ {A}, it tests whether AFDs of the form
X Ã A has a confidence higher thanminConfidence. Two
pruning strategies are interleaved into this navigation.

Specificity-based Pruning.We do not test candidate AFDs
whose specificity is guaranteed to violate the specified
threshold,maxSpecificity. Recall that for two attribute setsX
andY, if Y⊃ X, then specificity (Y)≥ specificity (X). Thus,
if an AFD X Ã A has specificity higher than the threshold,
then any AFDY Ã A, Y ⊃ X, must also have its specificity

higher than the threshold, and thus does not need to be con-
sidered. Based on this property, during the lattice navigation,
if specificity (X) is higher than the threshold, then we do not
need to further consider any path in the lattice starting from
X. This implicitly prunes all AFDs whose determining set is
a superset ofX.

For example, in Figure 16, if specificity (AB) is higher
than the threshold, then we do not need to traverse the path
from AB to ABC, fromAB to ABD, and recursively fromABC
to ABCD, from ABD to ABCD. This indicates that we do not
need to consider AFDsAB Ã C, AB Ã D, and recursively
ABCÃ D, ABDÃ C.

Redundancy-based Pruning.Although our algorithm’s fo-
cus is on AFDs and rather than FDs (functional dependen-
cies), the FDs it mines along the way do provide power-
ful pruning on the subsequent AFD mining. Given a func-
tional dependencyX→A, we do not test for candidate AFDs
Y Ã A, whereY is a superset ofX. Note that we only prune
AFDs whose determining sets subsume that of an FD. As we
have discussed before, given an AFDX Ã A, we still have to
testY Ã A,Y⊃X, as the latter may have a higher confidence
and therefore can be a better AFD.

To efficiently prune the search space, for each node (i.e.
attribute set)X in the lattice, we useR(X) to record the set
of attributes, such that∀A∈R(X), X Ã A can be a potential
AFD that does not have extraneous attributes on the deter-
mining set, and thus needs to be further tested for confidence.
For example, consider the relation with attributesA, B, C, D.
If we haveA→ B, thenB should not be in any of the follow-
ing sets:R(AC), R(AD), or R(ACD).

To computeR(X), we start by initializing it toU −X,
whereU is the set of all attributes in the relation. If we dis-
cover a FDX → A, then we updateR(X) = R(X)−{A}.
When we navigate an edge in the lattice fromX to X∪{B},
we updateR(X∪{B}) = R(X∪{B})∩R(X). In this way,
for all nodesY in the lattice such thatY ⊇ X, A is removed
from R(Y) recursively during the bottom-up navigation.

For example, referring to Figure 16, originally we have
R(A) = {B,C,D}. Suppose that we have discovered a FD
A→ B, we updateR(A) = {C,D}. As we navigate the edge
from A to AC, we haveR(AC) = R(AC)∩R(A) = {B,D}∩
{C,D} = {D}, denoting that the only AFD that hasAC as
determining set and needs to be considered isACÃ D. Sim-
ilarly, R(AD) = R(AD)∩R(A) = {B,C}∩{C,D} = {C};
R(AB) = R(AB)∩R(A) = {C,D}∩{C,D}= {C,D}. The
process is recursively performed when we navigate the lat-
tice further up. Traversing the edge fromAC toACD, we have
R(ACD) = {B}∩{D}= /0.

Furthermore, notice that ifR(X) = /0, thenR(Y) = /0 for
all supersetsY of setX. So we do not need to further consider

19

all paths in the lattice starting fromX. This indicates that all
AFDs whose determining set is a superset ofX are pruned.

Using the above pruning strategies, the FDs or AFDs
mined at the lower levels can reduce the computation at the
higher levels thus resulting in efficient AFD mining.

Algorithm 1 presents the outline of our approach.
Through lines 8 through 12 it computes all the AFDs and
FDs that are not pruned yet at a given level of the lattice, and
outputs the ones which meet theminConfidencethreshold. It
also updatesR(X) (line 13) for pruning AFDs with extra-
neous attributes. Lines 17-18 correspond to the pruning of
emptyR(X) sets; and Lines 19-20 correspond to the prun-
ing based onmaxspecificity threshold. Line 21 corresponds
to the process of generating the next level of lattice based on
the nodes at the current level.

Algorithm 1 AFDMiner(minConfidence, maxSpecificity)
1: L0 := { /0}
2: R(/0) := R
3: L1 := {{A} | A∈ R}
4: ` := 1
5: while L` 6= /0 do
6: for all X ∈ L` do
7: R(X) :=

⋂
A∈X R(X\{A})

8: for all X ∈ L` do
9: for all A∈ X ∩R(X) do

10: if Con f idence(X\{A}→ A) ≥minCon f idencethen
11: if (X \{A}→ A) holds exactlythen
12: outputX→ A as an FD
13: removeA from R(X)
14: else
15: outputX Ã A as an AFD with itsConfidence
16: for all X ∈ L` do
17: if R(X) = /0 then
18: delete path starting fromX from L`

19: if Calculatespeci f icity(X) ≥ maxspecificity then
20: delete path starting fromX from L`

21: L`+1 = {X | |X| = ` + 1 and∀ Y s.t. Y⊂ X and|Y|= `, we have
Y ∈ L` }.

22: ` := ` + 1

6.3 Evaluation of AFDMiner in the Context ofQPIAD

Now we present an empirical evaluation of AFDMiner and
TANE in terms of both speed and the quality of the mined
AFDs. (A more comprehensive evaluation is available in
[25])

We performed the evaluation over theCars andCensus
datasets described in Section 5.2. In addition, an extended
version of theCensusdataset, referred to asCensusExt, was
used which contains 25 attributes for the performance eval-
uation. In the following experiments, whenever the TANE
approach is mentioned, we are referring to the approach as

described in Section 4.1 where an AFD that has a close confi-
dence with an AKey is pruned in a postprocessing step after
all AFDs and AKeys above a confidence threshold are ob-
tained.

�����

����

���

�

��

���

����

�����

������

� � �� �� �� ��

��
�
�
	

��
�

�

�

� ������������
���� ��� �!�� "�#$ ��� �!�� "���$

Fig. 17 Varying size of the attribute set for AFDMiner vs. TANE over
theCensusExtdataset.

6.3.1 Evaluation of Efficiency and Scalability

To evaluate the efficiency of the AFDMiner algorithm,
we ran experiments varying the specificity parameter and
recorded the time taken to generate the AFDs. For all the
efficiency experiments over the extendedCensusdataset, the
minimal confidence threshold was set to be 0.8 and the max-
imal specificity threshold was evaluated at 0.4 and 1.0. The
number of tuples and number of attributes, if unspecified, are
taken to be 5000 and between 3 and 25 respectively.

As we can see in Figure 17, AFDMiner with a specificity
threshold of 0.4 (referred to asAFDM INER0.4 in the fig-
ure), significantly outperforms both the TANE approach and
the AFDMiner approach with specificity threshold set to 1.0
(referred to asAFDM INER1.0 in the figure), which we’ll
refer to as AFDMiner1.0. In comparison to the TANE ap-
proach, AFDMiner0.4 performs better due to the early prun-
ing of AFDs that don’t meet the specificity threshold. The
key point to notice is that as the size of the attribute set
grows larger, the performance increase due to AFDMiner’s
early pruning strategy becomes significantly more important.
AFDMiner is able to process the entire Census dataset with
25 attributes in under 25 seconds, whereas TANE has trouble
processing a 20-attribute dataset in under 1.75 hours, and is
unable to process the 25-attribute dataset.

Similarly, when we consider the comparison between
AFDM INER0.4 andAFDM INER1.0 where the only differ-
ence is the specificity threshold, we again see thatAFD-
M INER0.4 is the clear winner. This shows that setting

20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg on 5 Queries
 Q:(Year)

AFDMiner
TANE

(a) Q:σYearTANE(Model,Mileage Ã
Year)AFDMiner(ModelÃ Year)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg on 10 Queries
 Q:(Model)

AFDMiner
TANE

(b) Q:σModelTANE(Make,Body Ã
Model)AFDMiner(AllAttrs. Ã Model)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg on 5 Queries
 Q:(Body)

AFDMiner
TANE

(c) Q:σBodyTANE(Model Ã
Body)AFDMiner(MakeÃ Body)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg on 4 Queries
 Q:(Marital Status)

AFDMiner
TANE

(d) Q:σMaritalStatusTANE(Age,RelationshipÃ
MaritalStatus)AFDMiner(RelationshipÃ
MaritalStatus)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg on 6 Queries
 Q:(Workshop)

AFDMiner
TANE

(e) Q:σWorkshopTANE(Occupation Ã
Workshop)AFDMiner(Occupation Ã
Workshop)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Avg on 3 Queries
 Q:(Race)

AFDMiner
TANE

(f) Q:σRaceTANE(Workshop,RelationshipÃ
Race)AFDMiner(NativeCountryÃ Race)

Fig. 18 Average precision/recall of using AFDs mined from TANE and AFDMiner for sets of queries onCars (a),(b),(c) andCensus(d),(e),(f)
datasets.

a lower specificity threshold effectively prunes the search
space and dramatically improves running time performance.
It should be noted that as specificity increases, it becomes
closer and closer to the TANE approach, wherein specificity
based pruning is not taken into account. As Figure 17 shows,
AFDM INER1.0 imitates TANE in its inability to scale well
to larger attribute sets. In fact, we notice that for larger at-
tribute sets,AFDM INER1.0 seems to be performing worse
than the TANE approach. The reason for its poor perfor-
mance over such datasets is due to the non-minimality of the
rules it produces. Given thatAFDM INER1.0 is essentially
not utilizing any specificity based pruning due to the maxi-
mal threshold, the search space that it must traverse is similar
to that of TANE except thatAFDM INER1.0 will also have
to traverse the paths of non-minimal rules. This explains its
poor performance compared to TANE.

6.3.2 Evaluation of Quality

To evaluate the quality of the AFDs generated by AFD-
Miner with those generated by the TANE approach, we mea-
sured the precision/recall of queries issued over theCarsand
Censusdatasets. For each dataset, we selected several at-
tribute binding patterns and for each binding pattern, we is-
sued a variety of queries, each time binding a different value
to the bound attributes. The results of these queries were av-

eraged and were used to plot the precision/recall curves in
Figure 18.

As the plots show, the precision/recall achieved by AFD-
Miner’s AFDs is on par with those produced by TANE.
In some query patterns, the AFDs produced by AFDMiner
show higher quality (Figure 18 (a),(f)); in some query pat-
terns, those from TANE show higher quality (Figure 18 (d))
while the remaining plots (Figure 18 (b),(c),(e)) show no
clear winner, either equal or tend to alternate as the curves
progress.

As shown in the experiments, AFDMiner is more ef-
ficient and scalable than TANE for AFD mining; in fact,
AFDMiner is the only solution among the two that scales
well enough to maintain its usability in the presence of large
attribute sets. The quality of the AFDs generated by AFD-
Miner is similar to that generated by TANE. Given the signif-
icant performance gains while maintaining comparable qual-
ity, AFDMiner is used in the current prototype ofQPIAD; it
allowsQPIAD to handle data with large attribute sets.

7 Related Work and Discussion

Querying Incomplete Databases:The need of returning
maybeanswers besidescertain answers when querying in-
complete databases has been well recognized for a long time

21

(a)

id Make Model Body Style
1 BMW Z4 Convt
2 Audi A4 null
. . . .

(b)

id Make Model Body Style Prob
1 BMW Z4 Convt 1
2 Audi A4 Convt 0.7
2 Audi A4 Sedan 0.3
.

(c)

Prob Make Model Model Prob:
1 BMW Z4 Convt 1
2 Audi A4 Convt 0.7
.

Table 4 Illustration of processing queryQ : σBodyStyle=Convt on a deterministic but incomplete database, shown in Table (a). Table (b) represents a
learned probabilistic database consisting of possible completions of incomplete tuples in Table (a). Table (c) represents the result of evaluatingQ on
Table (b).

[23,30,2] and is further motivated by a recent work [29],
which shows that the problem of query answering in data
exchange can be reduced to the problem of query answering
over incomplete databases.

There are two typical approaches for query answering
on incomplete databases. The first ([23,30,2]) handlesnull
using one of three different methods, each with an increas-
ing generality: (i) Codd Tables where all thenull values
are treated equally as a special value; (ii) V-tables which
allow many differentnull values marked by variables; and
(iii) Conditional tables which are V-tables with additional
attributes to record conditions.

The second type ([7,3,44,16]) takes a probabilistic ap-
proach to quantify the degree of relevance of a possible an-
swer by considering the distribution of possible completions
of an incomplete tuple. Our work falls in this second cate-
gory. The critical novelty of our work is that our approach
learns the distribution automatically, and it allows the me-
diator to query autonomous incomplete databases without
modifying the original database in any way. [7] handles in-
completeness for aggregate queries in the context of OLAP
databases, by relaxing the original queries using the hierar-
chical OLAP structure. Whereas our work learns attribute
correlations, value distributions and query selectivity esti-
mates to generate and rank rewritten queries.

Querying Probabilistic Databases:There are deep con-
nections between incomplete databases and probabilistic
databases [42,42,9,41,43]. Specifically, missing values (null
values) in a deterministic database can be modeled with a
probability distributionover a set of values. Thus, once this
distribution is assessed, it can be used to turn an incom-
plete deterministic database into a probabilistic database.
The probabilistic database that results has “attribute-level
uncertainty” (where the uncertainty only arises in terms of
which specific value a missing attribute is going to take). In
[10], Dalvi & Suciu study the problem of modeling databases
with attribute level uncertainty with a special class of prob-
abilistic databases called disjoint-independent probabilistic
databases (DI databases). In DI databases, all correlations
are confined to within individual tuples, and inter-tuple inde-
pendence holds.

Through mining attribute and value dependencies,
QPIAD models a deterministic incomplete database as a
probabilistic complete database. For instance, the incom-
plete database in Table 4(a) is modeled by the probabilistic
database in Table 4(b), where the tuples with the same ids
are mapped from the same deterministic tuple in the source
database and are considered as mutually exclusive; and tu-
ples with different ids are mapped from different tuples in
the source database and are mutually independent. It is easy
to see that this probabilistic database is a DI database. The
query results generated by QPIAD are the same as the ones
generated by processing the query directly on a DI database.

The unique technical challenge addressed by QPIAD
is retrieving incomplete relevant tuples from incomplete
databases without materializing corresponding probabilistic
databases. This is the only viable solution for querying au-
tonomous databases where the mediator does not have capa-
bilities to modify the underlining deterministic databases to
probabilistic ones; and a solution that promises efficiency for
top k query processing. QPIAD implements this solution by
rewriting the original query to a set of probabilistic queries.
Answers to these probabilistic queries in the original incom-
plete database in Table 4(a) will be the same as the answers
to the original user query on the probabilistic database in Ta-
ble 4(b). Further, these rewritten queries are ranked and is-
sued in the order of their probability, thereby generating and
presenting the results in the order of probability.

The connection between QPIAD and the DI model of
probabilistic databases also provides additional computa-
tional justification to some of the practical design choices
made in QPIAD. Specifically, as we have discussed, QPIAD
supports conjunctive selections, joins across different data
sources, projections after selections (but not joins), and ag-
gregation functions SUM and COUNT. The practical mo-
tivation in supporting these queries is that they are popu-
larly used in application scenarios involving querying au-
tonomous web databases by lay users. An additional theo-
retical justification for this choice is that this set of queries
corresponds well to the set of queries that are known to be
polynomial time for DI databases [37]. While QPIAD ar-
chitecture can be extended to support more general queries,

22

should the need arise, such a step may lead to higher compu-
tational complexity of query processing.

A recent work [11] studies the problem of inferring query
answer probabilities when querying a mediated view of de-
terministic or probabilistic databases by exploiting the statis-
tical information of the view. Our work addresses the prob-
lem of querying a mediated view over deterministic incom-
plete databases in the absence of such statistical informa-
tion. We focus on the unique technical challenges of effi-
cient and accurate learning of data dependencies, and effec-
tive rewriting of the original deterministic query to proba-
bilistic queries in order to retrieve relevant answers in the
order of their expected relevance without materializing the
equivalent probabilistic databases.

Querying Inconsistent Databases:Work on handling in-
consistent databases also has some connections. While most
approaches for handling inconsistent databases are more
similar to the “possible worlds approaches” used for han-
dling incompleteness (e.g. [4]), some recent work (e.g. [1])
uses probabilistic approaches for handling inconsistent data.

Query Reformulation & Relaxation: There are work on
query reformulation and query relaxation to handle the cases
where the original query has an empty result or a small size
of query result [36,35]. Our work has a different goal: re-
trieving and ranking tuples that have missing values on con-
strained attributes and yet are relevant to the user query,
which requires fundamentally different query rewriting tech-
niques.

Learning Missing Values: There has been a large body of
work on missing values imputation [12,39,40,44,3]. Com-
mon imputation approaches include substituting missing
data values by the mean, the most common value, default
value of the attribute in question, or using k-Nearest Neigh-
bor [3], association rules [44], etc. Another approach used to
estimate missing values isparameter estimation. Maximum
likelihood procedures that use variants of the Expectation-
Maximization algorithm [12,39] can be used to estimate the
parameters of a model defined for the complete data. In this
paper, we are interested not in the standard imputation prob-
lem but a variant that can be used in the context of query
rewriting. In this context, it is important to have schema level
dependencies between attributes as well as distribution infor-
mation over missing values.

Another related problem is entity resolution, or dedupli-
cation, which recognizes different tuples that correspond to
the same real world entities using textual similarity and set of
constraints, including aggregation constraints [8], groupwise
constraints, etc.. While this paper mines approximate func-
tional dependencies for missing value imputation; and in-
stead of “repairing” the database, we focus on query rewrit-
ing techniques for retrieving relevant tuples.

Mining Approximate Functional Dependencies:There is
some existing work on mining FDs [46,45,32,31,38] and
on mining AFDs with high confidence level [19,22]. Sim-
ilar to [19] and [38], we take a candidate-generate-and-test
approach for AFD mining. Different from all existing work,
we propose a metric calledspecificityto quantify whether
an AFD is useful for generating rewritten queries to re-
trieve relevant incomplete tuples in the context ofQPIAD
framework. Then we develop a novel AFD mining tech-
nique which by proactively pruning AFDs that fail specificity
threshold, achieves performance speedup.

Conditional Functional Dependencies (CFDs) are deter-
ministic dependencies holding true only for certain values of
the determining attributes [6,14]. [15] presents techniques to
mine CFDs. It is an open question how to exploit CFDs for
querying incomplete databases, which we plan to investigate.

8 Conclusion

Incompleteness is inevitable in autonomous web databases.
Retrieving highly relevant possible answers from such
databases is challenging due to the restricted access privi-
leges of mediator, limited query patterns supported by au-
tonomous databases, and sensitivity of database and network
workload in web environment. We developed a novel query
rewriting technique that tackles these challenges. Our ap-
proach involves rewriting the user query based on the knowl-
edge of database attribute correlations. The rewritten queries
are then ranked by leveraging attribute value distributions ac-
cording to their likelihood of retrieving relevant possible an-
swers before they are posed to the databases. We discussed
rewriting techniques for handling queries containing selec-
tion, joins and aggregations. To support such query rewrit-
ing techniques, we mine attribute correlations in the form
of AFDs and the value distributions in the form of AFD-
enhanced classifiers, as well as query selectivity from a small
sample of the database itself. To order to handle data sources
with large attribute sets, we developed a novel technique for
AFD mining that utilizes effective pruning strategies while
maintains comparable high quality. We also discuss the se-
mantics of our approach based on its relationship to query
evaluation on probabilistic databases. Comprehensive exper-
iments demonstrated the effectiveness of our query process-
ing and knowledge mining techniques.

As we mentioned, part of the motivation for handling
incompleteness in autonomous databases is the increasing
presence of databases on the web. In this context, a related
issue is handling query imprecision–most users of online
databases tend to pose imprecise queries which admit an-
swers with varying degrees of relevance (c.f. [36]). In our

23

ongoing work, we are investigating the issues of simultane-
ously handling data incompleteness and query imprecision.

References

1. P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty
databases: A probabilistic approach. InICDE, 2006.

2. L. Antova, C. Koch, and D. Olteanu. 10 10 6 worlds and beyond:
Efficient representation and processing of incomplete information.
Proc. ICDE, 2007.

3. G. E. A. P. A. Batista and M. C. Monard. A study of k-nearest
neighbour as an imputation method. InHIS, 2002.

4. L. Bertossi. Consistent query answering in databases.ACM SIG-
MOD Record, 35(2):68–76, 2006.

5. A. Blum and P. Langley. Selection of relevant features and exam-
ples in machine learning.Artificial Intelligence, 1997.

6. P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for data cleaning. InICDE,
pages 746–755. IEEE, 2007.

7. D. Burdick, P. Deshpande, T. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over uncertain and imprecise data.The
VLDB Journal, 16(1):123–144, 2007.

8. S. Chaudhuri, A. D. Sarma, V. Ganti, and R. Kaushik. Leveraging
aggregate constraints for deduplication. InSIGMOD Conference,
pages 437–448, 2007.

9. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating proba-
bilistic queries over imprecise data. InSIGMOD Conference, 2003.

10. N. Dalvi and D. Suciu. Management of probabilistic data: foun-
dations and challenges. InProceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 1–12. ACM New York, NY, USA, 2007.

11. N. N. Dalvi and D. Suciu. Answering queries from statistics and
probabilistic views. InVLDB, pages 805–816, 2005.

12. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeli-
hood from incomplete data via em algorithm. InJRSS, pages 1–38,
1977.

13. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of
disparate data sources: A machine-learning approach. InSIGMOD
Conference, 2001.

14. W. Fan. Dependencies revisited for improving data quality. In
PODS, pages 159–170, 2008.

15. L. Golab, H. J. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional depen-
dencies.PVLDB, 1(1):376–390, 2008.

16. T. J. Green and V. Tannen. Models for incomplete and probabilistic
information. IEEE Data Eng. Bull., 29(1):17–24, 2006.

17. R. Gupta and S. Sarawagi. Creating Probabilistic Databases from
Information Extraction Models. PROCEEDINGS OF THE IN-
TERNATIONAL CONFERENCE ON VERY LARGE DATA BASES,
32(2):965, 2006.

18. D. Heckerman. A tutorial on learning with bayesian networks,
1995.

19. Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Tane: An
Efficient Algorithm for Discovering Functional and Approximate
Dependencies.The Computer Journal, 42(2):100–111, 1999.

20. Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen. Efficient
discovery of functional and approximate dependencies using parti-
tions. InICDE Conference, pages 392–401, 1998.

21. I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords:
automatic discovery of correlations and soft functional dependen-
cies. InSIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 647–658,
New York, NY, USA, 2004. ACM.

22. I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords:
automatic discovery of correlations and soft functional dependen-
cies. InSIGMOD Conference, pages 647–658, 2004.

23. T. Imieliski and J. Witold Lipski. Incomplete information in rela-
tional databases.Journal of ACM, 31(4):761–791, 1984.

24. Z. Ives, A. Halevy, and D. Weld. Adapting to source properties in
processing data integration queries.Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, pages
395–406, 2004.

25. A. Kalavagattu. Mining Approximate Functional De-
pendencies as Condensed Representations of Association
Rules. Master’s thesis, Arizona State University, 2008.
http://rakaposhi.eas.asu.edu/Aravind-MSThesis.pdf.

26. H. Khatri. Query Processing Over Incomplete Autonomous
Web Databases. Master’s thesis, Arizona State University, 2006.
http://rakaposhi.eas.asu.edu/hemal-thesis.pdf.

27. J. Kivinen and H. Mannila. Approximate dependency inference
from relations. InICDT Conference, 1992.

28. D. Lembo, M. Lenzerini, and R. Rosati. Source inconsistency and
incompleteness in data integration. InKRDB Workshop, 2002.

29. L. Libkin. Data exchange and incomplete information. InPODS,
pages 60–69, 2006.

30. W. Lipski. On semantic issues connected with incomplete infor-
mation databases.ACM TODS, 4(3):262–296, 1979.

31. S. Lopes, J. Petit, and L. Lakhal. Functional and approximate de-
pendency mining: database and FCA points of view.Journal of
Experimental & Theoretical Artificial Intelligence, 14(2):93–114,
2002.

32. S. Lopes, J.-M. Petit, and L. Lakhal. Efficient discovery of
functional dependencies and armstrong relations. InEDBT
’00: Proceedings of the 7th International Conference on Extend-
ing Database Technology, pages 350–364, London, UK, 2000.
Springer-Verlag.

33. J. Madhavan, A. Halevy, S. Cohen, X. Dong, S. Jeffery, D. Ko, and
C. Yu. Structured Data Meets the Web: A Few Observations.IEEE
Data Eng. Bull.

34. T. Mitchell. Machine Learning.McGraw Hill, 1997.
35. I. Muslea and T. J. Lee. Online query relaxation via bayesian

causal structures discovery. InAAAI, pages 831–836, 2005.
36. U. Nambiar and S. Kambhampati. Answering Imprecise Queries

over Autonomous Web Databases.Proceedings of the 22nd Inter-
national Conference on Data Engineering (ICDE’06)-Volume 00,
2006.

37. N. Nilesh and D. Suciu. Efficient query evaluation on probabilistic
databases.Proc. of VLDB Conference, pages 864–875, 2004.

38. N. Novelli and R. Cicchetti. FUN: An Efficient Algorithm for Min-
ing Functional and Embedded Dependencies.LECTURE NOTES
IN MATHEMATICS-SPRINGER VERLAG-, pages 189–203, 2000.

39. M. Ramoni and P. Sebastiani. Robust learning with missing data.
Mach. Learn., 45(2):147–170, 2001.

40. D. B. R. Roderick J. A. Little. Statistical Analysis with Missing
Data,Second edition. Wiley, 2002.

41. A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom. Working
models for uncertain data. InICDE, 2006.

42. D. Suciu and N. Dalvi. Tutorial: Foundations of probabilistic an-
swers to queries. InSIGMOD Conference, 2005.

43. J. Widom. Trio: A system for integrated management of data, ac-
curacy, and lineage. InCIDR, pages 262–276, 2005.

44. C.-H. Wu, C.-H. Wun, and H.-J. Chou. Using association rules for
completing missing data. InHIS Conference, 2004.

45. C. M. Wyss, C. Giannella, and E. L. Robertson. Fastfds: A
heuristic-driven, depth-first algorithm for mining functional depen-
dencies from relation instances - extended abstract. InDaWaK,
pages 101–110, 2001.

46. H. Yao and H. Hamilton. Mining functional dependencies from
data. Data Mining and Knowledge Discovery, 16(2):197–219,
2008.

