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Abstract Incompleteness due to missing attribute values Such challenges include the restricted access privileges im-
(aka “null values”) is very common in autonomous web posed on the data, the limited support for query patterns, and
databases, on which user accesses are usually supportetie bounded pool of database and network resources in the
through mediators. Traditional query processing techniquesweb environment.

that focus on the strict soundness of answer tuples often ig-  We introduce a novel query rewriting and optimization
nore tuples with critical missing attributes, even if they wind frameworkQPIAD that tackles these challenges. Our tech-
up being relevant to a user query. Ideally we would like nique involves reformulating the user query based on mined
the mediator to retrieve such possible answers and gaugeorrelations among the database attributes. The reformulated
their relevance by accessing their likelihood of being per- queries are aimed at retrieving the relevant possible answers
tinent answers to the query. The autonomous nature of weklin addition to the certain answei®PIAD is able to gauge
databases poses several challenges in realizing this objectiveéhe relevance of such queries allowing tradeoffs in reduc-
ing the costs of database query processing and answer trans-
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predicates. For example, in a used car trading applicationfor the used car trading domain has an attribute cabledy

if a user is interested in cars made Bipnda all the re- Style which is supported byars.com but not by Yahoo!
turned answers will have the value “Honda” for attribute Autos Given a query on the global schema for cars having
Make Thus, arAccordwhich has amissingvalue forMake Body Styleequal toCoupe mediators which only return the
will not be returned by such systems. Unfortunately, such ancertain answers are not able to make use of information from
approach is both inflexible and inadequate for querying au-theYahoo! Autoslatabase thereby failing to return a possibly
tonomous web databases which are inherently incompletelarge portion of the relevant tuplés.

As an example, Table 1 shows statistics on the percentage OLster—defined SchemasAnother type of incompleteness oc-
incomplete tuples from several autonomous web databasesCurS in the context of applications like Google Base [33]
The statistics were computed from randomly probed sam-

ples. The table also gives statistics on the percentage of mis
ing values for theBody Styleand Engineattributes. For ex-

ample,AuTo TRADER source had 13 attributes, 25K tuples
of which 33.7% of tuples had null values. 3.6% of the total

tuples had null values in the body attribute, while 8.1% had
null values in the engine attributés. Although there has been work on handling incomplete-

ness in databases (see Section 7), much of it has been focused
on single databases on which the query processor has com-

which allow users significant freedom to define and list their
Sown attributes. This often leads to redundant attributes (e.g.
Makevs.Manufacturer), as well as proliferation of null val-
ues (e.g. a tuple that gives a value for Make is unlikely to
give a value for Manufacturer and vice versa).

. # of # of % Missing Missing plete control. The approaches developed—-such as the “impu-
Website Attrs. Tuples Incomp.  Body Engine tation methods” that attempt to modify the database directly
Auto Trader 13 25127 33.7% 3.6% 8.1%  py replacing null values with likely values—are not applicable

Cars Direct 14 32564  98.7%  55.7%  55.8% .
Google Base 203+ 580993 100%  834% o919y forautonomous databases where the mediator often has re-

stricted access to the data sources. Consequently, when faced
with incomplete databases, current mediators only provide
the certain answers thereby sacrificing recall. This is partic-
) . ularly problematic when the data sources have a significant
Such mc_o_mpletepess n _autonomoug databases Sh(_)u'?jraction of incomplete tuples, and/or the user requires high
not *_’e surprising as it can arise for a variety of reasons, N recall (consider, for example, a law-enforcement scenario,
cluding: where a potentially relevant criminal is not identified due to
Incomplete Entry: Web databases are often populated by fortuitous missing information or a scenario where a sum or
lay individuals without any central curation. For example, count aggregation is being performed).
web sites such a€ars.comand Yahoo! Autos obtain in- To improve recall in these systems, ondveaapproach
formation from individual car owners who may not fully \yould be to return, in addition to all the certain answers, all
specify complete information about their cars, thus leaving the tuples with missing values on the constrained attribute(s)
such databases scattered with missing values (aka “null” val-zg possibleanswers to the query. For example, given a se-
ues). Consider the previous example where a car owner whqection query for cars made by “Honda”, a mediator could
leaves theMakeattribute blank, assuming that it is obvious yetyrn not only those tuples whobtakevalues are “Honda”
as theModelof the car she is selling i&ccord but also the ones whoséakevalues are missing(null). This
Inaccurate Extraction: Many web databases are being pop- approach, referred to aSLLRETURNED, has an obvious
ulated using automated information extraction techniques.drawback, in that many of the tuples with missing values
As a result of the inherent imperfection of these extractions, on constrained attributes angelevant to the query. Intu-
many web databases may contain missing values. Exampleffively, not every tuple that has a missing value fdake
of this include imperfections in web page segmentation (ascorresponds to a car made Hgndd Thus, while improving
described in [17]) or imperfections in scanning and convert- recall, theALL RETURNED approach can lead to drastically
ing handwritten forms (as described in [2]). lower precision.
Heterogeneous SchemasSlobal schemas provided by me- In an attempt to improve precision, a more plausible so-

diator systems may often contain attributes that do not appeafution could start by first retrieving all the tuples withll
in all of the local schemas. For example, a global schemavalues on the constrained attributes, predicting their missing

Table 1 Statistics on missing values in web databases.

1 The significantly larger percentage of incomplete tuples in the case 2 Moreover, an attribute may not appear in a schema intentionally
of GooGLEBASE are a consequence of the fact that in addition to being as the database manager may suppress the values of certain attributes.
uncuratedGOOGLE BASE also allows users to dynamically define their  For example, the travel reservation webdMeceline.comsuppresses
own attribute names and fill them. the airline/hotel name when booking tickets and hotel.



values, and then deciding the set of relevant query answerselectivity to rewrite and rank queries, which consider the
to show to the user. This approach, that we will dallL - natural tension between precision and recall, is also a novel
RANKED, has better precision thaLL RETURNED. How- contribution of our work. Third, our framework can leverage
ever, most of the web-accessible database interfaces we'vattribute correlations among data sources in order to retrieve
found, such a¥ahoo AutosCars.com Realtor.cometc,do relevant possible answers from data sources not supporting
not allow the mediator to directly retrieve tuples with null the query attribute (e.g. local schemas which do not support
values on specific attributek other words, we cannotissue the entire set of global schema attributes). Furthermore, our
gueries like “list all the cars that have a missing value for experimental evaluation over selection, aggregation, and join
Body Styleattribute”. Even if the sources do support binding queries shows tha)PIAD retrieves most relevant possible
of null values, retrieving and additionally ranking all the tu- answers while maintaining low query processing costs.

ples with missing values involves high processing and trans-  |ast, but certainly not the least, we developed and imple-
mission costs. mented AFDminer, a scalable technique for mining attribute

Our Approach: In this paper, we prese@PIAD,3a system  correlations in the form of approximate functional dependen-
for mediating over incomplete autonomous databases. Tocies. We believe that besides QPIAD, AFDminer can also be
make the retrieval of possible answers feasiQ®AD by- used to improve the performance of variety of systems that
passes the null value binding restriction by generatmgit- depend on AFDs (e.g. AIMQ [36] and CORDS [21]).

tenqueries according to a set of mined attribute correlation Significance: The need of returningiaybeanswers besides
rules. These rewritten queries are designed such that thergeriain answers when querying incomplete databases has
are no query predicates on attributes for which we would like peen well recognized for a long time [23,30, 2] and is further
to retrieve missing values. ThUQPIAD is able to retrieve  mqtivated by a recent work [29], which shows that the prob-
possible answers without binding null values or modifying |em of query answering in data exchange can be reduced to
underlying autonomous databases. To achieve high precisiofne problem of query answering over incomplete databases.
and recall QPIAD learns Approximate Functional Depen-  ag discussed in Section 7, our work also has deep connec-
dencies (AFDs) for attribute correlations, iMa Bayesian  tions to probabilistic databases. Specifically, missing values
Classifiers (NBC) for value distributions, and query selectiv- | values) in a deterministic database can be modeled with
ity estimates from a database sample obtained off-line. Thesg, probability distributionover a set of values. The unique
data source statistics are then used to gauge the relevance of@:nnical challenge addressed by QPIAD is retrieving in-

possible answer to the original user query. Instead of rankingompjete relevant tuples from incomplete databases without
all possible answers directi@PIAD first ranks the rewrit-  aterializing corresponding probabilistic databases. It does

ten queries in the order .of the number. of relevant aNSWerSinis with the help of novel query rewriting techniques that
they are expected to bring as determined by the attributeg e griven by learned data dependencies.

value distributions and selectivity estimations. Then thektop

rewritten queries are issued in the order of its relevance to theAssumptions:in this paper we focus the discussion on rank-
user query. The retrieve tuples are ranked in accordance witdnd tuples with a single null over the set of query con-
the query that retrieved them, which is the order of their rele- Strained attributes, based on the probability that the miss-
vance. By ordering the rewritten queries rather than rankinging value actually satisfies the query constraint. For tu-
the entire set of possible answefPIAD is able to opti- ples with multiple nulls on constrained attributes, we out-
mize both precision and recall while maintaining efficiency. Put them after all the tuples with zero or a single null
This query rewriting framework can handle selection, aggre- and simply rank them according to the number of null val-

gation and join queries, as well as support multiple correlatedUes, since they are much less likely to be interesting to
sources. the user, and at the same time entail computation exponen-

tial to the number of nulls *to infer their relevance due to

Contributions: First, to the best of our knowledge, the . .
attribute correlation). For example, assume the user poses

QPIAD framework is the first that can retrieve relevant pos- .
a query Q: Omodel=AccordPrice=10000\Year=2001 ON the re-

sible answers with missing values on constrained attributeﬁa,[ion R(Make Model, Price, Mileage YearBodyStylg. In
without modifying underlying databases. Consequently, it this case atupIQ(H(;ndaniJll 1000030000 null COL.IpQ

'S. suitable fgr qu’erymg incomplete r':\.u_tonomogs .databasech)uld be placed after tuples with a single null on one of the
given a mediator s query-only capabilities and limited query . . . e
. .constrained attributes because it has missing values@of
access patterns to these databases. Second, the idea of using . .
learned attribute correlations, value distributions, and quer IS constrained attributes, namafiodelandyear. However,
! ' AUETY\ve assume a tupte(Honda null, 1000Q null,2001,Coupg

3 QPIAD is an acronym for Qery Rocessing overricomplete ~ Would be ranked basgd on va[ue inference as it only contains
Autonomous Btabases. a null on one constrained attribute, nam®lpdel. The sec-




ond missing value is oMileage which is not a constrained and based on the above (mdering rewritten querieso re-
attribute. trieve possible tuples that have a high degree of relevance to

Organization: The rest of the paper is organized as fol- € query. _ _

lows. In the next section we cover some preliminaries andan 1€ system architecture of tHePIAD system is pre-
overview of our framework. Section 3 proposes online query Sented in Figure 1. A user accesses autonomous databases by
rewriting and ranking techniques to retrieve relevant possi- 'SSUINg a query to the mediator. The query reformulator f!rst
ble answers from incomplete autonomous databases in th&lirects the query to the autonomous databases and retrieves
context of selection, aggregation, and join queries, as well asn€ set of all certain answers (called these result s¢t In
retrieving possible answers from data sources which do notorder to retrieve highly relevant possible answers in ranked
support the query attribute in their local schemas. Section 4°rder, the mediator dynamically generates rewritten queries
provides the details of learning attribute correlations, value Pased on the original query, the base result set, and attribute
distributions, and query selectivity used in our query rewrit- COrrelations in terms of Approximate Functional Dependen-
ing phase. A comprehensive empirical evaluation of our ap- Ci€S(AFDs) learned from a database sample. The goal of
proach is presented in Section 5. In Section 6 we introducetN€Se Néw queries is to return extended result sewhich

an improved attribute correlation mining algorithm used to consists .Of highly reIevan't p053|ble. answers to the or|g|n.al
scaleQPIAD to large attribute sets. We discuss the relations 9Uery. Since not all rewritten queries are equally good in

with existing work in Section 7 and present our conclusions €rms of retrieving relevant possible answers, they are or-
in Section 8. dered before being posed to the databases. The ordering of

the rewritten queries is based on their expediddeasure
which considers the estimated selectivity and the value dis-
tributions for the missing attributes.

QPIAD mines attribute correlations, value distributions,

We will start with formal definitions of complete/incomplete and query selectivity using a small portion of data sam-

tuples and certain/possible answers with respect to selectior‘l)Ied _from the autonomous _dz_itabase using random probing
queries queries. The knowledge mining module learns AFDs and

AFD-enhanced Nae Bayesian Classifiers (where the AFDs

Definition 1 (Complete/Incomplete Tuples) Let R(A; play a feature selection role for the classification task) from
Ao, -+, Ay) be a database relation. A tugile Ris said to be the samples. Then the knowledge mining module estimates
complete if it has non-null values for each of the attributes the selectivity of rewritten queries. Armed with the AFDs,
Aj; otherwise it is considered incomplete. A complete tuple the corresponding classifiers, and the selectivity estimates,
t is considered to belong to the set of completions of an in- the query reformulator is able to retrieve the relevant possible

complete tupld (denoted? (1)), if t andf agree on all the =~ answers from autonomous databases by rewriting the origi-
non-null attribute values. nal user query and then ordering the set of rewritten queries

such that the possible answers are retrieved in the order of
Now consider a selection que@y. oa,—,, over relation  their ranking in precision.
R(A1,--+,An) where(1< m< n).

2 Preliminaries and Architecture of QPIAD

Definition 2 (Certain/Possible Answers)A tuplet; is said 3 Retrieving Relevant Possible Answers

to be a certain answer for the quedyoa,—v,, if ti.Am=Vm.

t; is said to be an possible answer @if t;.An=null, where In this section, we describe tl@@P1AD query rewriting ap-

ti.Am is the value of attributéy, in t;. proach for effectively and efficiently retrieving relevant pos-
sible answers from incomplete autonomous databases. We

Notice an incomplete tuple is a certain answer to a query,support queries involving selections, aggregations and joins.

if its null values are not on the attributes constrained in the This query rewriting framework can also retrieve relevant an-

query. swers from data sources not supporting the entire set of query

There are several key functionalities tl@@PIAD needs  constrained attributes.

in order to retrieve and rank possible answers to a user

query: (i) learning attribute correlationgo generate rewrit-

ten queries, (iipssessing the value probability distributions 3.1 Handling Selection Queries

of incomplete tuples to provide a ranking scheme for possi-

ble answers, (iilestimating query selectivitp estimate the  To efficiently retrieve possible answers in their order of pre-

recall and determine how many rewritten queries to issue,cision, QPIAD follows a two-step approach. First, the origi-
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| ID | Make | Model | Year | Body Style | correspond to tuples, t, andts from Table 2. These certain
1 Audi Ad 2001 Convt answers form thbase result setf Q. Consider the first tuple
5 BMW ! 2002 Convt t1:|<A,uqi’ Ah4, iOO],;:onvt) ?nhthhe base resullt s;tb.olcl; trllere isa
3 Porschel Boxster | 2005 Convt tup et_. in the database with the same value le .astl
2 BMW o 5003 aull but missing value foBody Stylethent;.Body Styles likely

il to be Convt We capture this intuition by mining attribute

o Honda Civic 2004 null correlationsfrom the data itself.
6 Toyota | Camry | 2002 Sedan One obvious type of attribute correlation i&ifictional

Table 2 Fragment of a Car Database dependenciés For example, the functional dependency

Model—Makeoften holds in automobile data records. There

are two problems in adopting the method directly based
nal query is sent to the database to retrieve the certain ang functional dependencies: (i) often there are not enough
swers which are then returned to the user. Next, a groupsynctional dependencies in the data, and (ii) autonomous
of rewritten queries are intelligently generated, ordered, andgatabases are unlikely to advertise the functional dependen-
sent to the database. This process is done such that the queRjes The answer to both these problems involeasning

patterns are likely to be supported by the web databases, angpnroximate functional dependencies from a (probed) sam-
only the most relevant possible answers are retrieved by theyje of the database.

mediator in the first place.

Definition 3 (Approximate  Functional Dependency
(AFD)) Given a relatiorR, a subseX of its attributes, and a
The goal of the query rewriting is to generate a set of rewrit- single attributeA of R, we say that there is an approximate
ten queries to retrieve relevant possible answers. Let's con{functional dependency (AFD) betwe&nandA, denoted by
sider the same user que@yasking for all convertible cars. X~~A, if the corresponding functional dependenty— A
We use the fragment of the Car database shown in Table 2 tdholds on all but a small fraction of the tuples Rf The set
explain our approach. First, we issue the qu@rip the au- of attributesX is called adetermining sebf A denoted by
tonomous database to retrieve all the certain answers whichdtrSet(A).

3.1.1 Generating Rewritten Queries



For example, an AFDModek~Body Stylemay be sources of the autonomous data source or possibly the time
mined, which indicates that the value of a cavi®del at- that a user is willing to wait for answers.
tribute sometimegbut not always) determines the value of Given the maximum number of queries that we can issue
its Body Styleattribute. According to this AFD and tuple to a database, we have to find a reasonable tradeoff between
t1, we issue a rewritten quefy;: Ovodel—aa With constraints the precision and selectivity of the queries issued. Clearly, all
on the determining sebf the attributeBody Style to re- else being equal, we will prefer high precision queries to low
trieve tuples that have the saf@delast; and therefore are  precision ones and high selectivity queries to low selectivity
likely to beConvtin Body StyleSimilarly, we issue queries  ones. The tricky issue is how to order a query with high se-
Q5: Omodel=z4 and Qf: Omodel-Boxster tO retrieve other rele-  lectivity and low precision in comparison to another with low
vant possible answers. selectivity and high precision. Since the tension here is simi-

lar to the precision vs. recall tension in IR, we decided to use
3.1.2 Ordering Rewritten Queries the well knownF-Measuremetric for query ordering. In the
IR literature F-Measurds defined as the weighted harmonic

In the query rewriting step oQPIAD, we generate new mean of the precisiorP) and recall R) measures%.
queries according to the distinct value combinations amongWe use the query precision fBr We estimate the recall mea-
the base set's determining attributes for each of the con-sureR of the query by first computing query throughput, i.e.,
strained attributes. In the example above, we used theexpected number of relevant answers returned by the query
three certain answers to the user quepy to gener- (which is given by the product of the precision and selec-
ate three new queries): Omodeaa, Q5:OMode~za and tivity measures), and then normalizing it with respect to the
Q5: Omode=Boxster Although each of these three queries re- expected cumulative throughput of all the rewritten queries.
trieve possible answers that are likely to be more relevantto  In summary, we use the F-measure ordering to sédect
Q than a random tuple with missing value Body Style top queries, wherkis the number of rewritten queries we are
they may not all be equally good in terms of retrieving rele- allowed to issue to the database. Oncekheeries are cho-
vant possible answers. sen, they are posed in the order of their expected precision.

Thus, an important issue in query rewriting is the order This way the relevant possible answers retrieved by these
in which to pose the rewritten queries to the database. Thisrewritten queries need not be ranked again, as their rank —
ordering depends on two orthogonal measuresespected  the probability that their null value corresponds to the se-
precisionof the query—which is equal to the probability that lected attribute— is the same as the precision of the retrieving
the tuples returned by it are answers to the original query, andquery.
the selectivityof the query—which is equal to the number of Note that the parameter in the F-measureas well as
tuples that the query is likely to bring in. As we shall show in the parametek (corresponding to the number of queries to
Section 4, both the precision and selectivity can be estimatedbe issued to the sources), can be chosen according to source
by mining a probed sample of the database. query restrictions, source response times, network/database

For example, based on the value distributions in resource limitations, and user preferences. The unique fea-
the sample database, we may find thatZd model  ture of QPIAD is its flexibility to generate rewritten queries
car is more likely to be aConvertible than a car  accordingly to satisfy the diverse requirements. It allows the
whose model isA4. As we discuss in Section 4.2, tradeoff between precision and recall to be tuned by adjust-
we build AFD-enhanced classifiers which give the ingthea parameter in it$-Measurebased ordering. When
probability values P(Body Style-=ConviModel=A4), a is set to bed, the rewritten queries are ordered solely in
P(Body Style=ConviModel=24) and terms of precision. When is set to bel, the precision and
P(Body Style-ConviModel=Boxstey. Similarly, the recall are equally weighted. The limitations on the database
selectivity of these queries can be different. For example, and network resources are taken into account by varging
we may find that the number of tuples havibgdel=A4 is the number of rewritten queries posed to the database.
much larger than that dflodel=24.

Given that we can estimate precision and selectivity of
the queries, the only remaining issue is how to use them t03.2 Query Rewriting Algorithm
order the queries. If we are allowed to send as many rewrit-
ten queries as we would like, then ranking of the queries canin this section, we describe the algorithmic details of the
be done just in terms of the expected precision of the query.QPIAD approach. LeR(A1,A,---,An) be a database rela-
However, things become more complex if there are limits on tion. SupposeltrSe{An) is the determining set of attribute
the number of queries we can pose to the autonomous sourcéd, (1 < m < n), according to the highest confidence AFD
Such limits may be imposed by the network/processing re- (to be discussed in Section 4.8)PIAD processes a given



selection quenQ: 0a,—v, according to the following two i < c. In each iteration, the tuples fromyse(a)(RSQ))
steps. are used to generate a set of rewritten queries by replac-

] ing the attributeA; with selection predicates of the form
1. SendQ to the database and retrieve the base result sefn, —t, v, for each attribute, € dtrSe(A)). For each attribute

RYQ) as the certain answers Qf RetunRSQ) tothe o ¢ qirSe(A,) which is not constrained in the original
user. query, we add the constraints Agto the rewritten query. As

2. Generate a set of new queri@s order them, and send e have discussed in Section 1, we only rank the tuples that
the most relevant ones to the database to retrieve the ex:

— ) tontain zero or oneull in the query constrained attributes.
tended result se®3Q) as relevant possible answers of ¢ yhe yser would like to retrieve tuples with more than one
Q. This step contains the following tasks.

null, we output them at the end without ranking.

(@) Generate rewritten queried.et T sera,) (RIQ)) For example, consider the multi-attribute selection query
be the projection 0RYQ) ontodtrSe(Am). Foreach  Q: Gyioder-AccordPrice betweert5000and 20000 and the mined
distinct tuplet; in Tgyseqa,) (RSQ)), create a se-  AFDs {Make Body Styl¢ ~» Model and{YearModel} ~-
lection queryQ; in the following way. For each at-  Price. The algorithm first generates a set of rewritten queries
tribute Ac in dtrSe(Am), create a selection predicate by replacing the attribute constraMiodel=Accordwith se-
A=ti.vx. The selection predicates Qf consistofthe  |ection predicates for each attribute in the determining set of
conjunction of all these predicates. Model using the attribute values from the tuples in the base

(b) Select rewritten querie$or each rewritten querg, set Tyrsemode) (RSQ)). After the first iteration, the algo-

compute the estimated precision and estimated recallrithm may have generated the following queries:
using its estimated selectivity derived from the sam-
ple. Then order als in order of theif--Measure
scores and choose the top-K to issue to the database.
(c) Re-order selected top-K rewritten queriéde-order ~ Similarly, the algorithm generates additional rewritten
the selected top-K set of rewritten queries according gueries by replacingrice with value combination of its de-
to their estimated precision which is simply the con- termining set from the base set while keeping the original
ditional probability Oqu:P(Am:Vm|ti) . [* By re- guery constrainodel=Accord After this second iteration,

ordering the top-K queries in order of their precision the following rewritten queries may have been generated:

Q’]f OMake=Honda\Body Style-SedanPrice betweerl5000and 20000
/.
Qz- OMake=Honda\Body Style-Coupe\Price betweer.5000and 20000

we ensure that the returned tuples are retrieved in the Q51 OModet-AccordnYear-2002
order of their precision, since each tuple will have the Q) OModel-AccordYear-2001,
same rank as the query that retrieved it. Thus there is Q5! OModel-AccordhYear-2003
no need to (re)rank the retrieved tuples. */ After generating a set of rewritten queries for each con-

(d) Retrieve extended result s&iven the top-K queries  strained attribute, the sets are combined and the queries are
{Q}.Q5,---,Qk } issue them in the according to their ordered just as they were in Step 2(b). The remainder of the
estimated precision-base orderings. Their result setsalgorithm requires no modification to support multi-attribute
RSQ}).RSQ,), --,RSQk) compose the extended selection queries.
result seﬁSQ). * All results returned for a single
query are ranked equally */ 3.2.2 Base Set vs. Sample

Post-filtering.If database does not allow binding of . . ) i .
null values, (i.e. access to database is via a web When generating rewritten queries, one may consider sim-

form) remove frorrRAS(Q) the tuples withAm % null. ply rewriting the original query using the sample as opposed

Return the remaining tuples RSQ) as the relevant tq first retrieving the base set anq then rewriting. Howev_er_,
possible answers @. since the sample may not contain all answers to the origi-

nal query, such an approach may not be able to generate all
rewritten queries. By utilizing the base s&PIAD obtains

the entire set of determining set values that the source can
offer, and therefore achieves a better recall.

(e

~

3.2.1 Multi-attribute Selection Queries

Although we described the above algorithm in the context
of single attribute selection queries, it can also be used for
rewriting multi-attribute selection queries by making a sim- 3.3 Retrieving Relevant Answers from Data Sources Not

ple modification to Step 2(a). Consider a multi-attribute se- Supporting the Query Attributes

lection queryQ : Oa,—v; AAy—von--rAc—ve- 10 gENerate the set

of rewritten queriesY, the modification requires Step 2(a) In information integration, the global schema exported by

to run c times, once for each constrained attribdel < a mediator often contains attributes that are not supported



in some of the individual data sources. We adapt the querytuples into account to get accurate results. To support ag-
rewriting techniques discussed above to retrieve relevantgregate queries, we first retrieve the base set by issuing the
possible answers from a data source not supporting theuser’s query to the incomplete database. Besides computing
constrained attribute in the query. For example, consider athe aggregate over the base set (certain answers), we also
global schem& S)seqcarssupported by the mediator over the use the base set to generate rewritten queries according to
sourcesYahoo! Autosand Cars.comas shown in Figure 2, the QPIAD algorithm in Section 3.2. For example, consider
whereYahoo! Autosioesn't support queries ddody Style  the aggregate que: dgody style-ConvinCount+) OVer the Car
attribute. Now consider a querQ: dgody style-convt ON the database fragment in Table 2. First, we would retrieve the
global schema. The mediator that only returns certain an-certain answersy, t,, andts for which we would compute
swers won't be able to query théahoo! Autogiatabase to  their certain aggregate val@ountx) = 3. As mentioned
retrieve cars withBody Style ConvtNone of the relevant  previously, our first choice could be to simply return this

cars fromYahoo! Autogan be shown to the user. certain answer to the user effectively ignoring any incom-
plete tuples. However, there is a better choice, and that is
Mediator GSMake Model YearPrice, Mileage Body Stylg to generate rewritten queries according to the algorithm in
Cars.com LS(Make Model, YearPrice, Mileage Body Styl¢ Section 3.2 in an attempt to retrieve relevant tuples whose
Yahoo Autos| LSMake Model,YearPrice, Mileage) BodyStyleattribute isnull.
Fig. 2 Global schema and local schema of data sources When generating these rewritten queries, tupléom

the base set would be used to form the rewritten query
Q,: Omode-z4 based on the AFModel ~~ Body StyleWe
In order to retrieve relevant possible answers frga would find probability P(Body Style-=ConviModel=Z4)
hoo! Autos we apply the attribute correlation, value distri- and issue the rewritten query. We take this probability—
bution, and selectivity estimates learned on @&s.com  namely the query’s precision—and multiply this probabil-
database to th&ahoo! Autosdatabase. For example, sup- ity with the aggregate result which is returned. The answer
pose that we have mined an ARDodel~Body Styldrom obtained is then added to the certain aggregate answer. For
the Cars.condatabase. To retrieve relevant possible answersexample, the contribution of the tuples having null values for
from theYahoo! Autosiatabase, the mediator issues rewrit- Body StyleandZ4 for Model to final count is calculated as
ten queries tovahoo! Autosusing the base set and AFDs
from theCars.comdatabase. Counbossioid Model = Z4) =
The algorithm that retrieves relevant tuples from a source Count(Ouvioder-z4/Body Style-null ) P(ConviZ4)
S hot supporting the query attribute is similar to @@ IAD
Algorithm presented in Section 3.2, except that the base re
sult set is retrieved from theorrelated sourcé&; in Step 1.

Similarly the process is repeated for tuples and ts
‘whose corresponding rewritten queries && Omodeaa

and Qj: Omodel-Boxster rfespectively. Finally all these possi-
ble counts are added to the certain count from the complete

Definition 4 (Correlated Source)For any autonomous data )
tuples to get the final count value.

sourceS not supporting a query attribut®, we define a

correlated sourc&; as any data source that satisfies the fol- In S_ectlon 5, we present the resuIFs O_f our empirical
lowing: (i) S supports attribute; in its local schema, (ii) evaluation on aggregate gquery processing in the context of

S has an AFD where\ is on the right hand side, (jii% QPIAD. The results show an improvement in the aggregate

supports the determining set of attributes in the AFDAor value accuracy when incomplete tuples are included in the
mined fromS; calculations.

From all the sources correlated with a given sousge
we use the one for which the AFD fé¢ has the highest con- 3.5 Handling Join Queries
fidence. Then using the AFDs, value distributions, and se- o )
lectivity estimates learned frof, ordered rewritten queries 10 SUPPOrt joins over incomplete autonomous data sources,

are generated and issued in Step 2 to retrieve relevant possi'€ results are retrieved independently from each source
ble answers for the user query from souge and then joined by the mediator. When retrieving possible

answers, the challenge comes in deciding which rewritten
queries to issue to each of the sources and in what order.
3.4 Handling Aggregate Queries We must consider both the precision and estimated se-
lectivity when ordering the rewritten queries. Furthermore,
As the percentage of incomplete tuples increases, aggrewe need to ensure that the results of each of these queries
gates such aSumand Countneed to take the incomplete agree on their join attribute values. Given that the mediator



provides the global schema, a join query posed to the medi-
ator must be broken down as a pair of queries, one over each
autonomous relation. In generating the rewritten queries, we
know the precision and selectivity estimates for each of the

pieces, thus our goal is to combine each pair of queries and EstSe{qp)=

compute a combined estimate of precision and selectivity. It

is important to consider these estimates in terms of the query
pair as a whole rather than simply considering the estimates4_
of the pair's component queries alone. For example, when
performing a join on the results of two rewritten queries, it
could be the case that the top ranked rewritten query from
each relation does not have join attribute values in common.
Therefore despite their high ranks at each of their local rela- 5
tions, the query pair could return little or no answers. As a
result, when retrieving both certain and possible answers to

a query, the mediator needs to order and issue the rewritten

tivity, and the value probability distribution for either
Vj1 Orvja.
(c) For each query paip € QP compute the estimated
selectivity of the query pair to be
> EStse(qplvvjl)*EStse(quvij)
vj1 €JD1
Vj2 € JD2
For each query pair, compute EsMeasurescore using
the new precision, estimated selectivity, and recall val-
ues. Next, select the top-K query pairs from the ordered
set of all query pairs according to the algorithm described
in Section 3.2.
For each selected query pagip, if the component queries
gp1 andqgp, have not previously been issued as part of
another query pair, issue them to the relatiBisandR2
respectively to retrieve the extended result $&8 and

queries intelligently so as to maximize the precision/recall of
the joined results.

In processing such join queries over relatiGtisandR2,
we must consider the orderings of each pair of queries from
the setsQ1U Q1 and Q2U Q2 whereQ1 and Q2 are the
complete queries derived from the user’s original join query
over the global schema a@l’ andQ2 are the sets of rewrit-
ten queries generated from the bases sets retrievedRiom
andR2 respectively. Given that the queries must return tuples

whose join attribute values are the same in order for a tuple

to be returned to the user, we now consider adjustingithe

parameter in ouF-Measurecalculation so as to give more

weight to recall without sacrificing too much precision. The
details of the approach taken PIAD are as follows"

1. Send complete querieQ1 and Q2 to the databases
R1 and R2 to retrieve the base result sé&§Q1) and
RS Q2) respectively.

. For each base set, generate a list of rewritten quériés
andQ2’ using theQPIAD rewriting algorithm described
in Section 3.2.

. Compute the set of all query pai@P by taking the
Cartesian product of each query from the €@1sJ Q1
andQ2U Q2. For each pair, calculate the new estimated
precision, selectivity, anB-Measurevalues.

(a) For each rewritten query iQ1' andQ2', use the NBC
classifiers to determine the join attribute value distri-
butionsJD1 and JD2 given the determining set at-
tribute values from the base s&Sl andR respec-
tively as discussed in Section 4.2.

(b) For each join attribute valug; andvj, in JD1 and
JD2 respectively, compute its estimated selectivity as
the product of the rewritten query’s precision, selec-

4 The selectivity estimation steps are only performed for the rewrit-

R2.

. For each tuplé;; in RSL andf in R wheretjz.vj; =
fi>.vj, create a possible joined tuple. In the case where
eithertﬁ.vjl or th.ng is null, predict the missing value
using the NBC classifiers and create the possible join tu-
ple. Finally, return the possible joined tuple to the user.

4 Learning Statistics to Support Ranking and Rewriting

As we have discussed, to retrieve possible answers in the or-
der of their relevanceQ PIAD requires three types of infor-
mation: (i) attribute correlations in order to generate rewrit-
ten queries (ii) value distributions in order to estimate the
precision of the rewritten queries, and (iii) selectivity esti-
mates which combine with the value distributions to order
the rewritten queries. In this section, we present how each of
these are learned. Our solution consists of three stages. First,
the system mines the inherent correlations among database
attributes represented as AFDs. Then it build$w@8ayes
Classifiers based on the features selected by AFDs to com-
pute probability distribution over the possible values of the
missing attribute for a given tuple. Finally, it uses the data
sampled from the original database to produce estimates of
each query’s selectivity. We exploit AFDs for feature selec-
tion in our classifier as it has been shown that appropriate
feature selection before classification can improve learning
accuracy[5].

4.1 Learning Attribute Correlations by Approximate
Functional Dependencies(AFDs)

We mine AFDs from a (probed) sample of database to learn

ten queries because the true selectivity of the complete queries is althe correlations among attribute. Recall that an ApI> a

ready known once the base set is retrieved.

functional dependency that holds on all but a small fraction
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of tuples. According to [27], we define tleenfidenceof an tionally independent, and therefore we halkéx|Am=V;) =
AFD ¢ on a relationR as:conf(¢g) = 1— g3(®), wheregs 1P (xi|Am=V;). Despite this strong simplification, NBC has
is the ratio of the minimum number of tuples that need to be ti)een shown to be surprisingly effective[13].
removed fromR to makeg a functional dependency dR

We utilize TANE [20] as a blackbox to mine AFDs whose
confidence is higher than a specified threshold.

In most cases, AFDs with high confidence are more de-
sirable than AFDs with low confider. However, not all high
confidence AFDs are useful for classification and subsequenyy 3 combining AFDs and Classifiers
query generation to retrieve relevant uncertain tuples. The
latter include those whose determining set contains high con-So far we glossed over the fact that there may be more
fidenceApproximate Keys (AKeys$imilarly as AFD, Akey  than one AFD associated with an attribute. In other words,
is defined as a key of all but a small fraction of tuples. For ex- one attribute may have multiple determining set with dif-
ample, consider a relatiasar(VIN, Model, Make)We mine  ferent confidence levels. For example, we have the AFD
that VIN is an AKey (in fact, a key) which determines all Modek~Makewith confidence.99. We also see that certain
other attributes. Given a tuptewith null value onModel types of cars are made in certain countries, so we might have

In the ac-
tual implementation, we adopt the standard practice of us-
ing NBC with a variant of Laplacian smoothing called m-
estimates[34] to improve the accuracy.

its VIN is not helpful in estimating the missingodelvalue,  an AFDCountry-~Makewith some confidence value. As we
since there are no other tuples shariisgVIN value. Thus,  use AFDs as a feature selection step for NBC, we exper-
comparing an AFD (VIN~-Make), AFD (Modet~Make),  imented with several alternative approaches for combining

though has a lower confidence, is more useful for classifi- AFDs and classifiers to learn the probability distribution of
cation and query generation in order to retrieve relevant pos-possible values for null. One method is to use the determin-
sible tuples from databases for queries with constrained ating set of the AFD with théiighest confidenohich we call
tributes onMake After obtaining all AFDs and AKeys by  the Best-AFDmethod. However, our experiments showed
invoking TANE, we prune AFDs whose determining setis a that this approach can degrade the classification accuracy if

superset of a high-confidence AKey attributes. Specifically, its confidence is too low. Therefore we ignore AFDs with
for each attribute, we find the best AKey whose confidence confidence below a threshold (which is currently set to be

is above a threshold. Then an AFD is pruned if the difference 0.5 based on experimentation), and instead use all other at-

between its confidence and the confidence of the correspondtributes to learn the probability distribution using NBC. We

ing AKey is below a threshold (currently set ab.3 based  call this approactHybrid One-AFD At the other extreme,

on experimentation). we could ignore feature selection based on AFD completely
but use all the attributes to learn probability distribution us-
ing NBC. Our experiments described in Section 5 show that

4.2 Learning Value Distributions using Classifiers Hybrid One-AFD approach has the best classification accu-

racy among these choices.
Given a tuple with a null value, we now need to estimate the

probability of each possible value of this null. We reduce this
problem to a classification problem using mined AFDs as se-4.4 Learning Selectivity Estimates
lected features. A classifier is a functibérihat maps a given
attribute vectoix to a confidence that the vector belongs to As discussed in Section 3, the F-measure ranking requires
a class. The input of our classifier is a random san$ué an estimate of the selectivity of a rewritten query. This is
an autonomous databaRavith attributesAq, Ao, - - -, An and computed as
the mined AFDs. For a given attribufg,, (1 <m<n), we
compute the probabilities for all possible class valuesf FMeasur¢Q) = SmplSelQ) » SmplRati¢R)  Perinq(R)
given all possible values of its determining détSet{An) in
the corresponding AFDs.

We construct a Nae-Bayes Classifier(NBChy,. Let a
valuey; in the domain ofA,, represent a possible class for

Here SmplS€lQ) is the selectivity of the rewritten quey
when it is issued to the samplBmplRatio(R)s the ratio of
the original database size over the size of the sample. We

Anm. Let x denote the values aftrSe{Am) in a tuple with 5 Another alternative to considering single AFDs is to consider mut-
null on A. We use Bayes theorem to estimate the prob- liple AFDs and use them together to predict the missing attribute. We

i e . _ P(X|Am=V;)P(Am=V;) ) did experiment with such an “ensemble learning” technique in the ini-
abilities: P (Am=vi[x) = P(x) for all valuesv tial stages of the work, but found that its predictive accuracy was not

in the domain. To improve computation efficiency, NBC as- petter than that provided by the single best AFD. An empirical evalua-
sumes that for a given class, the featufgs- -, X, are condi- tion of this ensemble learning technique is available in [26].
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['welcome || | | | I | [ Help | About |

WELCOME TO QUIC/QPIAD WEB MEDIATOR

Click one of the buttons below to begin searching with QUIC or QPIAD.

Search with: QUIC | Search With: QPIAD

MYEAR: MAKE: MODEL: PRICE:

| E | | = | 2

MILEAGE: BODY:

| [

MYEAR MAKE MODEL PRICE MILEAGE BODY CERTIFIED Retrieved By  Explain

2005 nissan 350z 46900 5000 Convt N N/A N/A
2005 nissan 350z 39999 3008 Convt N N/A N/A

| 2004 nissan null 30990 16731 Convt N Query Why?. |
2004 nissan null 29995 28418 Convt N
2004 nissan null 28995 20000 Convt N ialthough this car has a missing
2005 nissan 350z 35995 5897 null N model value, it is 70.1% likely to
2005 nissan 350z 34200 3154 null N have model=350z and 2.3% likely
2005 nissan 350z 31995 38762 null N to have model=sl-class (which is
2004 nissan 350z 31927 4671 null N 27.0% similar to 350z) given that
2004 nissan 350z 31809 14368 null N its make=nissan and boedy=Convt.

Fig. 3 A screenshot of the QPIAD prototype (the results shown in the screenshot are in response to tkie: qRdE— 3501 Body=convt)

send queries to both the original database and its sample offthe probability/relevance assessment. In the case of our run-
line, and use the cardinalities of the result sets to estimate thaning example, the possible answigfor the query will be

ratio. Perinc(R)is the percentage of tuples that are incom- justified by showing the learned AFRModek~Body Style

plete in the database. It can be estimated as the percentage

of incomplete tuples that we encountered while creating the

sample database. 5.2 Experimental Settings

To evaluate theQPIAD system, we performed evaluations
5 Empirical Evaluation over three data sets. The first datasesrs(year, make,
model, price, mileage, body style, certifiet) built by ex-
In this section, we describe the implementation and an em-tracting around 55,000 tuples fro@ars.comDatabases like
pirical evaluation of our systef@PIAD for query process-  this one are inherently incomplete as described in Table
ing over incomplete autonomous databases. 1. The second datasefiensus(age, workshop, education,
marital-status, occupation, relationship, race, sex, capital-
gain, capital-loss, hours-per-week, native-countrng) the
5.1 Implementation and User Interface United States Censusatabase made up of 45,000 tuples
which we obtained from the UCI data repository. The third
The QPIAD system is implemented in Java and has a web- datasetComplaints(model, year, crash, fail date, fire, gen-
form based interface through which the users issue theireral component, detailed component, country, ownership,
queries. A snapshot of the system in operation is shown incar type, market)is aConsumer Complaindatabase which
Figure 3. Given a user query, the system returns each relevantontains roughly 200,000 tuples collected from the NHSTA
possible answer to the user along withanfidencaneasure  Office of Defect Investigations repository and is used in con-
equal to the probability that the incomplete tuple is an an- junction with theCarsdatabase for evaluating join queries.
swer to the query. Although the confidence estimate could  To evaluate the effectiveness of our algorithm, we need
be biased due to the imperfections of the learning methodsto have a “ground truth” in terms of the true values corre-
its inclusion can provide useful guidance to the users, oversponding to the missing or null values. To this end, we cre-
and above the ranking. ate our experimental datasets in two steps. First a “ground
In addition, QPIAD can optionally “explain” its rele-  truth dataset” (GD) is created by extracting a large num-
vance assessment by providing snippets of its reasoning aber of completetuples from the online databases. Next, we
support. In particular, it justifies the confidence associatedcreate the experimental dataset (ED) by randomly choosing
with an answer by listing the AFD that was used in making 10% of the tuples from GD and making them incomplete (by
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Fig. 4 Average precision/recall giLL RETURNED and QPIAD for sets of queries oBars(a),(b) andCensugc) datasets.

randomly selecting an attribute and making its value null). databases and QPIAD as the degree of incompleteness of the
Given our experience with online databases (see Table 1)underlying database increases.
10% incompleteness is fairly conservative.

During the evaluation, the ED is further partitioned into
two parts: a training set (i.e. the sample from which AFDs
and classifiers are learned) and a test set. To simulate the rel-|-o evaluate the effectiveness @PIAD ranking, we com-
atively small percentage of the training data available to the
mediators, we experimented with training sets of different
sizes, ranging in size fro®%to 15%of the entire database,
as will be discussed in Section 5.5.

5.3 Evaluation of Quality

pare it against théALLRETURNED approach which sim-
ply returns to the user all tuples with missing values on
the query attributes. Figure 4 shows the precision and recall
curves averaged over sets of queries onGhesandCensus

To compare the effectiveness of retrieving relevant pos- databases. It shows that tigPIAD approach has signifi-
sible answers, we consider two salient dimensions of thecantly higher precision when comparedXaL RETURNED.
QPIAD approach, namelyRankingand Rewriting which To reflect the “density” of the relevant answers along the
we evaluate in terms duality and Efficiencyrespectively.  time line, we also plot the precision of each method at the
For the experiments, we randomly formulate single attribute time when firstK (K=1,2,---,100) answers are retrieved as
and multi attribute selection queries and retrieve possible an-shown in Figures 5 and 6. Aga@PIAD is much better than
swers from the test databases. ALLRETURNED in retrieving relevant possible answers in

We compareQPIAD with the ALLRETURNED and the firstK results, which is critical in web scenarios.

ALLRANKED approaches. Recall thétLL RETURNED ap-
proach presents all tuples containing missing values on the 1 :

T T

query constrained attribute without ranking them. e - § Avg. of 10 Queries

. .. . S 08 (Body Style and Mileage) i
RANKED approach begins by retrieving all the certain and @
possible answers, as WLL RETURNED, then it ranks pos- % 06 L AlReturned ==r==]
sible answers according to the classification techniques de- s QPIAD ——
scribed in Section 4. In fact, neither approach is feasible as g 0.4
web databases are unlikely to support binding of null val- < 02 b ]
ues in queries. In contrast, tliEP1AD approach uses query 5’ LA i S
rewriting techniques to retrieve only relevant possible an- 0 . : :

0 50 100 150 200

swers in a ranked order and fits for web applications. Even
when bindings of null values are allowed, we show in this

section that th€@PIAD approach provides better quality and Fig. 5 Avg. Accumulated Precision After Retrieving the Kth Tuple
efficiency. Over 10 Multi-Attribute Queries (Body Style and Mileage).

After Kth Tuple

In the initial parts of the evaluation, we focus on com-
paring the effectiveness of retrieving relevant possible an-
swers. The plots in those parts ignore the “certain” answerss,.3.1 QPIAD vs. Traditional Databases
as all the approaches are expected to perform equally well
over such tuples. The exception are the results presented itn this section, we describe the experiments we have done
Section 5.3.1 which compare the performance of traditional to evaluate the performance of QPIAD as the degree of in-
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Fig. 6 Avg. Accumulated Precision After Retrieving the Kth Tuple

Over 10 Queries (Price).

completeness in the underlying database increases. Figure 10
shows the results from our experiments for two example se-
lection queries. We setup the experiments by running each

selection query on a database with varying levels of incom-

pleteness on the attribute constrained by the query. For ex-

ample, the plot namedQ@PIAD 20% in Figure 10(a) cor-
responds to running a selection query on marital status on a

database that has 20% incompleteness for that attribute (we
generated such a database by randomly introducing null val-
ues for that attribute into a copy of the master database that

is complete).

To put the QPIAD performance in perspective, the plots

also show the performance of traditional database techniques -
(which ignore incomplete tuples) on the same databases. |
Since traditional databases ignore incompleteness, they have

perfect precision on the tuples they return, but fail to return

relevant tuples that are incomplete. For example, on a 20%

incomplete database, you get full precision until 0.8 recall;

no results are returned beyond this. This abrupt loss of recall

is shown by the vertical lines in the plots.

Like the traditional database@PIAD approach is also

able to guarantee full precision on the complete tuples. How-

Recall Kth Query

Fig. 9 Accumulated precision curve
with different sample sizes o@ars
database.

As can be expected, the degree of reduction in the precision
is correlated with the degree of incompleteness of the under-
lying database.
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ever, unlike the traditional databases, QPIAD is able to con-Fig. 10 Precision/recall ofQPIAD and traditional databases for in-
tinue and provide full recall with slightly reduced precision. creasing levels of incompleteness.
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5.3.2 Effect of Alpha Value on F-Measure RANKEDapproach must retrieve the entire set of tuples with
missing values on constrained attributes in order to achieve

To show the effect ofx on precision and recall, we've in- even the lowest levels of recall.

cluded Figure 8 which shows the precision and recall of the

query Q: Oprice=20000 for different values ofa. Here we as-

sume a 10 query limit on the number of rewritten queries 2-5 Evaluation of Learning Methods

we are allowed to issue to the data source. This assumption -~

is reasonable in that we don't want to waste resources by>->-1 Accuracy of Classifiers

issuing too many unnecessary queries. Moreover, many on-_. . .

line sources may themselves limit the number of queries theyS"_]C? we use AF_I_DS as a basis for featur_e selection whe_:n

are willing to answer in a given period of time (e.g. Google building our classifiers, we perform a baseline study on their

Base). acgyragy. Fpr gach tuple m the test set, we compute the prob-
ability distribution of possible values of a null, choose the

We can see that as the valueafis increased from 0, one with the maximum probability and compare it against
QPIAD gracefully trades precision for recall. The shape of P OLabIty p . g
the actual value. The classification accuracy is defined as the

the plots is a combined affect of the valuealwhich sets roportion of the tuples in the test set that have their null
the tradeoff between precision and recall) and the limit on the prop : P

) ; o S values predicted correctly.
number of rewritten queries (which is a resource limitation).
For any given query limit, for smaller values af queries
with higher precision are used, even if they may have lower Database | Best All Hybrid
throughput. This is shown by the fact that the lowezurves AFD | Atributes | One-AFD
are higher up in precision but don't reach high recall.dAs EZLSSUS 63'282 ?ggi 63'282
increases, we allow queries with lower precision so that we '
can get a higher throughput, thus their curves are lower downTable 3 Comparison of null value prediction accuracy across different

. AFD-enhanced classifiers
but extend further to the right.

Table 3 shows the average prediction accuracy of various

5.4 Evaluation of Efficiency AFD-enhanced classifiers introduced in Section 4.3. In this

experiment, we use a training set whose size is 10% of the
To evaluate the effectiveness @IPIAD’s rewriting, we  database. The classification accuracy is measured over 5 runs
compare it against th&LLRANKED approach which re-  ysing different training set and test set for each run. Consid-
trieves all the tuples having missing values on the query con-ering the large domain sizes of attributesGars database
strained attributes and then ranks all such tuples accordinqvarying from2(Certified) to 416 Model)), the classifica-
to their relevance to the queriks we mentioned earlier, we  tjon accuracy obtained is quite reasonable, since a random
do not expect thé\LL RANKED approach to be feasible at  guess would give much lower prediction accuracy. We can
all for many real world autonomous sources as they do not glso see in Table 3 that the Hybrid One-AFD approach per-
allow direct retrieval of tuples with null values on specific forms the best and therefore is used in our query rewriting
attributes Nevertheless, these experiments are conducted tqmplementatiorf.
show thatQPIAD outperformsALLRANKED even when While classifier accuracy is not the main focus of our
null value selections are allowed. Figure 7 shows the numbel‘work, we did do some comparison studies to ensure that
of tuples that are retrieved by tha L RANKED andQPIAD our classifier was competitive, as presented in Figure 11.
approaches respectively in order to obtain a desired level ofspecifically, we compared our AFD-enhanced NBC classi-
recall. As we can see, the number of tuples retrieved by thefier with a NBC classifier, a Bayesian network [18], and deci-
ALLRANKED approach is simply the total number of tuples sjon tree. For Bayes network learning, we experimented with
with missing values on the query attribute, hence it is inde- the WEKA Data Mining Software. We found that the AFD-
pendent of the desired level of recall. On the other hand, theenhanced classifiers were significantly cheaper to learn than
QPIAD approach is able to achieve similar levels of recall Bayes networks; by synergistically exploiting schema-level
while only retrieving a small fraction of the tuples retrieved and value-level correlations, their accuracy was competitive.
by ALLRANKED. The reason for this is that many of the tu- The details of more evaluations are available [26].
ples retrieved bYX.LLRANKED, while hav_ing missing values 6 In Table 3 the Best-AFD and Hybrid One-AFD approaches are
on the query attributes, are not very likely to be the value equal because there were high confidence AFDs for all attributes in

the user is interested iIQPIAD avoids retrieving irrelevant  the experimental set. When this is not the case, the Hybrid One-AFD
tuples and is therefore very efficient. Moreover, theL - approach performs better than the Best-AFD approach.
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1 sample size fron15% to 3%. We obtained a similar result

= m for the Census database [26].
0.8

0.6

g 5.6 Evaluation of Extensions
5
8 0.4 . . .
< 5.6.1 Effectiveness of using Correlation Between Data
02 Sources
0 L L L We consider a mediator performing data integration over
Year Make Model Price  Mileage Body Certified

three data sourceSars.com(www.cars.com)Yahoo! Autos
(autos.yahoo.com) an@arsDirect (www.carsdirect.com).
The global schema supported by the mediator and the
individual local schemas are shown in Figure 2. The
schema ofCarsDirect and Yahoo! Autosdo not support
5.5.2 Robustness w.r.t. Confidence Threshold on Precision Body Sty|eattr|bute whileCars.comdoes Support queries

. on theBody Style We use the AFDs and NBC classifiers
QPIAD presents ranked relevant possible answers 0 USerSiggmeqd fromCars.comto retrieve cars fron¥ahoo! Autos

along with a confidence so that the users can use their owngn carsDirect as possible relevant possible answers for
discretion to filter off answers with low confidence. We con- queries orBody Styleas discussed in Section 3.3.

ducted experiments to evaluate how pruning answers based To evaluate the precision, we check the acBady Style

on a confidence threshold affects the precision of the results o¢ e retrieved car tuples to determine whether the tuple was
returned. Figure 12 shows the average precision obtained;,jeqq relevant to the original query. The average precision

over 40 test queries on Cars database by pruning answergq, yhe firstk tuples retrieved fronvahoo! AutosindCars-
based on different confidence thresholds. It shows that theDirect over the 5 test queries is quite high as shown in Fig-

high confidence answers returned®®AD are most likely
to be relevant answers.

ONBC OAFD-Enhanced NBC @BayesNet MDecision Tree

Fig. 11 Comparison of AFD-Enhanced NBC Classifiers and compet-
ing classifiers in terms of accuracy.

ure 13. This shows that using the AFDs and value distribu-
tions learned from correlated sourc€3RIAD can retrieve
relevant answers from data sources not supporting query at-

o tribute.
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Fig. 12 Average Precision for various confidence thresholds(Cars). T m w e % e
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Fig. 13 Precision curves for firsK tuples retrieved using correlated

. sourceCars.com
5.5.3 Robustness w.r.t. Sample Size

The performance oQPIAD approach, in terms of preci-

sion and recall, relies on the quality of the AFDs,i¥a  5.6.2 Evaluation of Aggregate Queries

Bayesian Classifiers and selectivity estimates learned by the

knowledge mining module. In data integration scenarios, the To evaluate our approach in terms of supporting aggregate
availability of the sample training data from the autonomous queries, we measured the accuracy of aggregation queries
data sources is restrictive. Here we present the robustness dfi QPIAD where missing values in the incomplete tuples
the QPIAD approach in the face of limited size of sample are predicted and used to compute the final aggregate result.
data. Figure 9 shows the accumulated precision of a selec\We compare the accuracy of our query rewriting and missing
tion query on the Car database, using various sizes of sampl&alue prediction with the aggregate results from the complete
data as training set. We see that the quality of the rewrittenoracular database and the aggregate results from the incom-
queries all fluctuate in a relatively narrow range and there isplete database where incomplete tuples are not considered.
no significant drop of precision with the sharp decrease of Next we will outline the details of our experiments.
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We performed the experiments over @ars database and be “Civic” with probability of 0.4. This tuple can be
consisting of8 attributes. First, we created all distinct sub- joined with two complete tuples, one with the model “Ac-
sets of attributes where the size of the subsets rangedffrom cord” and one with model “Civic.” These two tuples gener-
to 7 (e.g.{makeg, {makemodel}, {makemodelyear}, ..., ated by the join are clearly mutually exclusive (since a car
{model;, {modelyear}, ..., etc). Next, we issued a query can be of only one model). The presence of mutually exclu-
to the sample database and selected the distinct combinationsive tuples presents problems in terms of displaying results
of values for each of these subsets. to the users in an intelligible fashion (since the users can no

Using the distinct value combinations for each of these longer assume that a given subset of the result tuples are ac-
subsets, we created queries by binding the values to theually feasible together). Because of this, in our experiments
corresponding attribute in the subsets. We then issued eackve focused on a sub-class of join queries that correspond to
query to the complete database to find its true aggregatehe join of the results of two selection queries.
value. We also issued the same query to the incomplete  Specifically, we performed a set of experiments on the
database and computed the aggregate value without considcarsandComplaintsdatabases. In the experiments, we join
ering incomplete tuples. Finally, we issued the query to the the Cars and Complaintsrelations for a particular value of
incomplete database only this time we predicted the miss-theModel attribute . The experimental results shown in Fig-
ing values and included the incomplete tuples as part of theure 15 involve join queries where the attributes from both
aggregate result. the relations are constrained. We evaluate the performance

of our join algorithm in terms of precision and recall with
respect to a complete oracular database.
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Fig. 14 Accuracy of aggregate queries with and without missing value
rediction. Fig. 15 Precision-Recall Curves for Queries o@ars diyodel
p

Complaints

In Figure 14, we show the percentage of queries achiev-
ing different levels of accuracy with and without missing We present the results for a join queiModel =
value prediction. The results are significant, as the QPIAD Grand Cherokee\ General Component= Engine and
prediction approach almost dominates the no prediction ap-Engine CoolingWe seta to 0, 0.5 and 2 to measure the ef-
proach for both Figure 14(a) and 14(b). In particular, signifi- fect of giving different preferences to precision and recall. In
cantly more fraction of queries achieve 94-99% accuracy for addition, we restricted the number of rewritten queries which

shows the precision-recall curve for this query. We can see

that fora = 0 high precision is maintained but recall stops
at 0.34. Form = 0.5 the precision is the same as wher= 0

Although QPIAD does have the ability to support general UP until recall reaches 0.31. At this point, the precision de-
joins (as explained in Section 3.5), a tricky issue is that a créases although, a higher recall, namely 0.66, is achieved.
join can, in general, result in tuples that are no longer guar- "€ precision whero = 2 is similar to the case where
anteed to be independent and can be mutually exclusive. Fof = 0.5 but achieves 0.74 recall with only a small loss in

example, suppose that a tuple with a null value on attribute precisiqn near th_e tail of the curve. When looking at the top
“model” is inferred to be “Accord” with probability of 0.6 10 rewritten queries for each of thesevalues we found that
whena = 0, too much weight is given to precision and thus
7 One seeming anomaly is that the fraction of queries with accuracy incomp|ete tup|es are never retrieved from@esdatabase.
one with prediction approach is slightly less compared to no prediction. This is due to our ability to predict missing values which
This however is due to a few queries in the test set containing answers .
only from the complete tuples, and return fully correct result sets with- N@PPens to be better on t®mplaintsdatabase and hence

out prediction. the top 10 rewritten queries tend to include the complete

5.6.3 Evaluation of Join Queries
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query from theCars database paired with an incomplete independently with other AFDs, and thus can be exploited to
guery from theComplaintsdatabase. However, when = prune search space during AFD mining.
0.5 or o = 2 incomplete tuples are retrieved from both the Recall that a high confidence AKey is not useful for re-
databases because in this approach the ranking mechanisinieving relevant possible answers. For example, consider the
tries to combine both precision and recall. Similar results for case wheré&/IN is a high confidence AKey (in fact, a key).
the queryQ :modelf1501General ComponentElectrical Systemale Given a query that selects cars whddaekeis Hondg the
shown in Figure 15(b). dependencyWIN — Make has perfect accuracy, however it
is not useful in retrieving tuples that have a missing value
for Makebut are likely to beHonda This is because no two
tuples have the saméN.

This example illustrates that the distribution of values for

At the start of this work, th@PIAD system utilized TANE ¢ UStermining set is an important measure in judging the
usefulness” of an AFD in terms of query rewriting. For an

[20] as a blackbox to mine approximate functional depen- AFD X — A, the fewer distinct values there are %f and

dencies (AFD) that meet a confidence threshold on a sam-, .
. .. the more tuples in the database that have the same value, po-
ple of the databases. However, when we began working with

- . . entially the more relevant possible answers can be retrieved
datasets containing larger sets of attributes, we discovere

that the TANE algorithm does not scale. It can not handle a hrough query rewriting. To qu.ant|fy this, we first define the
) . S support of a valuen; of an attribute seX, suppor{a;), as

database with more than 20 attributes, which limits the ap- the occurrence frequency of valagin the training set:

plicability of QPIAD. To address this problem and enable ’

QPIAD to handle databases with large attribute sets, we de-

veloped an algorithm called AFDMiner. As will be shown

in 6.3, the quality of the query results (in terms of precision whereN is the number of tuples in the training set.

and recall) using AFDMiner is similar to that by invoking Now we measure how the values of an attributeXsate

TANE, while AFDMiner provides a significantly better run-  distributed using specificity, which is defined as the informa-

ning time performance. AFDMiner’s performance advantage tion entropy of the set of all possible values of attributeset

allows QPIAD to scale to datasets which were not possible {ay, az, ...,0mn }, normalized by the maximum possible en-

when using the TANE algorithm. In this section, we start tropy (which is achieved wheX is a key). Thus, specificity

with the intuition of how AFDMiner achieves performance is a value that lies between 0 and 1:

speedup, discuss the details of the algorithm in Section 6.1

;ngesciicot:]og.gzz, and finally present a performance evaluatlonSpeCifiCity — sMsu ppor(olli) » Egz(su ppor(a;))
It is easy to see that the number of possible AFDs in 02 (N)

a database is exponential in the number of attributes in the  When there is only one possible value Xf then this

database, thus AFD mining is in general expensive. As dis-value has the maximum support and is the least specific, thus

cussed in Section 4.1, not all AFDs with high confidence we have specificity equals to 0. When all valuesXofire

are useful in terms of generating rewritten queries to retrievedistinct, each value has the minimum support and is most

relevant possible answers. In Section 4.1, we prune “useless’specific. In fact,X is a key in this case and has specificity

AFDs during a post-processing step after all the AFDs andequal to 1.

AKeys are discovered by TANE. In this section, we present  The specificity of an AFD is defined as the specificity of

a technique that pro-actively prunes “useless” AFDs as well its determining set.

as AFDs with extraneous attributes during the mining pro-

cess itself, thus pruning the search space and improving the specificity K ~» A) = specificity K)

efficiency.

6 Enhancing the Scalability of QPIAD on Large
Attribute Sets

suppor{a;) = count(a;)/N,

Intuitively, using AFDs with lower specificity values in
query rewriting allows QPIAD to retrieve more relevant pos-

6.1 Specificity-based Pruning sible answers per issued query.
Monotonicity of specificity: Specificity has a useful mono-
In this section, we propose a measure callsgetificity” tonicity property that can be exploited in pruning candidate

which generalizes the intuition discussed in Section 4.1 to AFDs during the mining phase (see Section 6.2). Given two
quantify how likely an AFD will be useful t@QPIAD in candidate AFDX ~» AandY ~ A, whereX andY are deter-
terms of retrieving relevant possible answers in query rewrit- mining attribute sets andis a superset oX, it is easy to see
ing. Furthermore, the value of specificity can be computed that the specificity of the second AFD is greater than or equal
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to the specificity of the first (sincé has more attributes than
X, the number of distinct values &fis no less than that of
X). In other words, given an AFD that already has a speci-

ficity beyond a desirable threshold, we do not need to con-

sider adding additional attributes to its determining set.

6.2 A specificity-sensitive algorithm for mining AFDs

We now discuss our algorithm for mining a set of AFDs from
a relational table, such that the mined AFDs all have confi-
dence above threshofdinConfidenceand specificity below
maxSpecificity

<; 2 >

Fig. 16 Set containment lattice of 4 attributes

AB

>

The operation of the algorithm can be best understood in
terms of a search through a set containment lattice, made of

attributes in the relation being mined. Specifically, in this lat-

higher than the threshold, and thus does not need to be con-
sidered. Based on this property, during the lattice navigation,
if specificity (X) is higher than the threshold, then we do not
need to further consider any path in the lattice starting from
X. This implicitly prunes all AFDs whose determining set is

a superset oX.

For example, in Figure 16, if specificityAB) is higher
than the threshold, then we do not need to traverse the path
from ABto ABC, from ABto ABD, and recursively frordABC
to ABCD, from ABD to ABCD. This indicates that we do not
need to consider AFDAB ~~ C, AB ~» D, and recursively
ABC~ D, ABD~~ C.

Redundancy-based PruningAlthough our algorithm’s fo-
cus is on AFDs and rather than FDs (functional dependen-
cies), the FDs it mines along the way do provide power-
ful pruning on the subsequent AFD mining. Given a func-
tional dependenc}t — A, we do not test for candidate AFDs

Y ~~ A, whereY is a superset oX. Note that we only prune
AFDs whose determining sets subsume that of an FD. As we
have discussed before, given an ARD~ A, we still have to
testy ~ A, Y D X, as the latter may have a higher confidence
and therefore can be a better AFD.

To efficiently prune the search space, for each node (i.e.
attribute set)X in the lattice, we useZ(X) to record the set
of attributes, such thatA € 2(X), X ~» A can be a potential
AFD that does not have extraneous attributes on the deter-
mining set, and thus needs to be further tested for confidence.
For example, consider the relation with attribute8, C, D.
If we haveA — B, thenB should not be in any of the follow-
ing sets:Z(AC), Z(AD), or Z(ACD).
To computeZ(X), we start by initializing it toU — X,
whereU is the set of all attributes in the relation. If we dis-

tice, a directed edge connects an attribute set with its superse¢over a FDX — A, then we updatez(X) = Z(X) — {A}.
that contains one more attribute. For example consider a reMWhen we navigate an edge in the lattice fréno X U {B},

lation with four attributesA, B, C, D. The set containment
lattice for this relation is shown in Figure 16.

Our algorithm does a bottom-up breadth-first search in
the lattice to mine AFDs that satisfy the thresholds. The

we updateZ(X U{B}) = Z(X U{B}) NZ(X). In this way,
for all nodesy in the lattice such that D X, A is removed
from Z(Y) recursively during the bottom-up navigation.

For example, referring to Figure 16, originally we have

search starts from singleton sets of attributes and works its%Z(A) = {B,C,D}. Suppose that we have discovered a FD

way to larger attribute sets through the set containment lat-

tice. When the algorithm navigates the edge from aXset
to its superseX U {A}, it tests whether AFDs of the form
X ~» A has a confidence higher thaninConfidence Two
pruning strategies are interleaved into this navigation.

Specificity-based Pruning.We do not test candidate AFDs
whose specificity is guaranteed to violate the specified
thresholdmaxSpecificity Recall that for two attribute se¥
andyY, if Y D X, then specificity (Y)> specificity ). Thus,

if an AFD X ~ A has specificity higher than the threshold,
then any AFDY ~~ A, Y D X, must also have its specificity

A — B, we updateZ(A) = {C,D}. As we navigate the edge
from Ato AC, we haveZ(AC) = Z(AC)NZ(A) = {B,D}n
{C,D} = {D}, denoting that the only AFD that hasC as
determining set and needs to be considerg{is~ D. Sim-
ilarly, Z(AD) = Z(AD)NZ(A) = {B,C} n{C,D} = {C};
Z(AB) = Z(AB)NZ(A) = {C,D}n{C,D} = {C,D}. The
process is recursively performed when we navigate the lat-
tice further up. Traversing the edge fr@¥@ to ACD, we have
Z(ACD) = {B}n{D} =0.

Furthermore, notice thati# (X) = 0, thenZ(Y) = 0 for
all superset¥ of setX. So we do not need to further consider
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all paths in the lattice starting froiX. This indicates that all
AFDs whose determining set is a superseXafre pruned.

described in Section 4.1 where an AFD that has a close confi-
dence with an AKey is pruned in a postprocessing step after

Using the above pruning strategies, the FDs or AFDs all AFDs and AKeys above a confidence threshold are ob-
mined at the lower levels can reduce the computation at thetained.

higher levels thus resulting in efficient AFD mining.
Algorithm 1 presents the outline of our approach.

Through lines 8 through 12 it computes all the AFDs and
FDs that are not pruned yet at a given level of the lattice, and

outputs the ones which meet tienConfidencehreshold. It
also updatesz(X) (line 13) for pruning AFDs with extra-

neous attributes. Lines 17-18 correspond to the pruning of
empty Z(X) sets; and Lines 19-20 correspond to the prun-

ing based omasspecificity threshold. Line 21 corresponds

to the process of generating the next level of lattice based or

the nodes at the current level.

Algorithm 1 AFDMiner(minConfidencemaxSpecificity)
1: Lo:={0}

2: Z(0) =R

3: Li:={{A}|AeR}

4: (=1

: while Ly # 0do
. forall XelL,do

A (X) = Naex Z(X\{A})
forall X e L, do

forall Ae XN Z(X) do

CoNOO

10: if ConfidencéX\ {A} — A) > minConfidencehen

11: if (X \{A} — A) holds exactlythen

12: outputX — Aas an FD

13: removeA from Z(X)

14: else

15: outputX ~» A as an AFD with itsConfidence

16: forall X e L, do

17: if Z(X) =0then

18: delete path starting fromd from L,

19: if Calculatespecificit{X) > maspecificity then

20: delete path starting fromd from L,

21: Ly ={X||X|=¢+1andvYs.t.YC Xand|Y| =/ we have
Yely }

22: (=r+1

6.3 Evaluation of AFDMiner in the Context @PIAD

Now we present an empirical evaluation of AFDMiner and
TANE in terms of both speed and the quality of the mined
AFDs. (A more comprehensive evaluation is available in
[25])

We performed the evaluation over tBars andCensus
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Fig. 17 Varying size of the attribute set for AFDMiner vs. TANE over
theCensusExtataset.

6.3.1 Evaluation of Efficiency and Scalability

To evaluate the efficiency of the AFDMiner algorithm,
we ran experiments varying the specificity parameter and
recorded the time taken to generate the AFDs. For all the
efficiency experiments over the extendgehsusiataset, the
minimal confidence threshold was set to be 0.8 and the max-
imal specificity threshold was evaluated at 0.4 and 1.0. The
number of tuples and number of attributes, if unspecified, are
taken to be 5000 and between 3 and 25 respectively.

As we can see in Figure 17, AFDMiner with a specificity
threshold of 0.4 (referred to asFDMINERO.4 in the fig-
ure), significantly outperforms both the TANE approach and
the AFDMiner approach with specificity threshold set to 1.0
(referred to asAFDMINERL.0 in the figure), which we’'ll
refer to as AFDMiner1.0. In comparison to the TANE ap-
proach, AFDMiner0.4 performs better due to the early prun-
ing of AFDs that don’t meet the specificity threshold. The
key point to notice is that as the size of the attribute set
grows larger, the performance increase due to AFDMiner’s
early pruning strategy becomes significantly more important.
AFDMiner is able to process the entire Census dataset with
25 attributes in under 25 seconds, whereas TANE has trouble
processing a 20-attribute dataset in under 1.75 hours, and is

datasets described in Section 5.2. In addition, an extended/Nable to process the 25-attribute dataset.

version of theCensuslataset, referred to &ensusE xtwas

Similarly, when we consider the comparison between

used which contains 25 attributes for the performance eval-AFDMINERO.4andAFDMINERL.Owhere the only differ-

uation. In the following experiments, whenever the TANE

ence is the specificity threshold, we again see thiaD-

approach is mentioned, we are referring to the approach ad¥/!NERO.4 is the clear winner. This shows that setting
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Fig. 18 Average precision/recall of using AFDs mined from TANE and AFDMiner for sets of querigsans (a),(b),(c) andCensug(d),(e),(f)
datasets.

a lower specificity threshold effectively prunes the search eraged and were used to plot the precision/recall curves in
space and dramatically improves running time performance.Figure 18.

It should be noted that as specificity increases, it becomes As the plots show, the precision/recall achieved by AFD-
closer and closer to the TANE approach, wherein specificity Miner's AFDs is on par with those produced by TANE.
based pruning is not taken into account. As Figure 17 shows,In some query patterns, the AFDs produced by AFDMiner
AFDMINERL.0imitates TANE in its inability to scale well  show higher quality (Figure 18 (a),(f)); in some query pat-
to larger attribute sets. In fact, we notice that for larger at- terns, those from TANE show higher quality (Figure 18 (d))
tribute setsAFDMINER1.0 seems to be performing worse while the remaining plots (Figure 18 (b),(c),(e)) show no
than the TANE approach. The reason for its poor perfor- clear winner, either equal or tend to alternate as the curves
mance over such datasets is due to the non-minimality of theprogress.

rules it produces. Given th&FDMINERL1.0 is essentially As shown in the experiments, AFDMiner is more ef-
not utilizing any specificity based pruning due to the maxi- ficient and scalable than TANE for AFD mining; in fact,
mal threshold, the search space that it must traverse is similasFDMiner is the only solution among the two that scales
to that of TANE except thaAFDMINERL1.0 will also have well enough to maintain its usability in the presence of large
to traverse the paths of non-minimal rules. This explains its attribute setsThe quality of the AFDs generated by AFD-

poor performance compared to TANE. Miner is similar to that generated by TANE. Given the signif-
icant performance gains while maintaining comparable qual-
6.3.2 Evaluation of Quality ity, AFDMiner is used in the current prototype QP IAD; it

allows QPIAD to handle data with large attribute sets.

To evaluate the quality of the AFDs generated by AFD-

Miner with those generated by the TANE approach, we mea-

sured the precision/recall of queries issued oveftisand 7 Related Work and Discussion

Censusdatasets. For each dataset, we selected several at-

tribute binding patterns and for each binding pattern, we is- Querying Incomplete Databases:The need of returning
sued a variety of queries, each time binding a different value maybeanswers besidesertain answers when querying in-

to the bound attributes. The results of these queries were aveomplete databases has been well recognized for a long time
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(@) (b) (©

id | Make | Model | Body Style id | Make | Model | Body Style | Prob Prob | Make | Model | Model | Prob:

1 | BMW Z4 Convt 1 | BMW Z4 Convt 1 1 BMW Z4 Convt 1

2 | Audi A4 null 2 | Audi A4 Convt 0.7 2 Audi A4 Convt 0.7
2 | Audi Ad Sedan 0.3

Table 4 lllustration of processing quer® : ggodystyle-convt ON @ deterministic but incomplete database, shown in Table (a). Table (b) represents a
learned probabilistic database consisting of possible completions of incomplete tuples in Table (a). Table (c) represents the result ofQesaluating
Table (b).

[23,30,2] and is further motivated by a recent work [29], Through mining attribute and value dependencies,
which shows that the problem of query answering in data QPIAD models a deterministic incomplete database as a
exchange can be reduced to the problem of query answeringprobabilistic complete database. For instance, the incom-
over incomplete databases. plete database in Table 4(a) is modeled by the probabilistic

There are two typ|ca| approaches for guery answering database in Table 4(b), where the tUpleS with the same ids
on incomplete databases. The first ([23,30, 2]) handigs are mapped from the same deterministic tuple in the source
using one of three different methods, each with an increas-database and are considered as mutually exclusive; and tu-
ing generality: (i) Codd Tables where all tmaill values  Ples with different ids are mapped from different tuples in
are treated equally as a special value; (i) V-tables which the source database and are mutually independent. It is easy
allow many differentnull values marked by variables; and to see that this probabilistic database is a DI database. The

(iiiy Conditional tables which are V-tables with additional duery results generated by QPIAD are the same as the ones
attributes to record conditions. generated by processing the query directly on a DI database.

The second type ([7,3,44,16]) takes a probabilistic ap-  The unique technical challenge addressed by QPIAD
proach to quantify the degree of relevance of a possible an4s retrieving incomplete relevant tuples from incomplete
swer by considering the distribution of possible completions databases without materializing corresponding probabilistic
of an incomplete tuple. Our work falls in this second cate- databases. This is the only viable solution for querying au-
gory. The critical novelty of our work is that our approach tonomous databases where the mediator does not have capa-
learns the distribution automatically, and it allows the me- bilities to modify the underlining deterministic databases to
diator to query autonomous incomplete databases withoutprobabilistic ones; and a solution that promises efficiency for
modifying the original database in any way. [7] handles in- top k query processing. QPIAD implements this solution by
completeness for aggregate queries in the context of OLAPrewriting the original query to a set of probabilistic queries.
databases, by relaxing the original queries using the hierar-Answers to these probabilistic queries in the original incom-
chical OLAP structure. Whereas our work learns attribute plete database in Table 4(a) will be the same as the answers
correlations, value distributions and query selectivity esti- to the original user query on the probabilistic database in Ta-
mates to generate and rank rewritten queries. ble 4(b). Further, these rewritten queries are ranked and is-
sued in the order of their probability, thereby generating and

Querying Probabilistic Databases: There are deep con- éaresenting the results in the order of probability.

nections between incomplete databases and probabilisti
databases[42,42,9,41,43]. Specifically, missing valuek ( The connection between QPIAD and the DI model of
values) in a deterministic database can be modeled with gorobabilistic databases also provides additional computa-
probability distributionover a set of values. Thus, once this tional justification to some of the practical design choices
distribution is assessed, it can be used to turn an incom-made in QPIAD. Specifically, as we have discussed, QPIAD
plete deterministic database into a probabilistic databasesupports conjunctive selections, joins across different data
The probabilistic database that results has “attribute-levelsources, projections after selections (but not joins), and ag-
uncertainty” (where the uncertainty only arises in terms of gregation functions SUM and COUNT. The practical mo-
which specific value a missing attribute is going to take). In tivation in supporting these queries is that they are popu-
[10], Dalvi & Suciu study the problem of modeling databases larly used in application scenarios involving querying au-
with attribute level uncertainty with a special class of prob- tonomous web databases by lay users. An additional theo-
abilistic databases called disjoint-independent probabilistic retical justification for this choice is that this set of queries
databases (DI databases). In DI databases, all correlationsorresponds well to the set of queries that are known to be
are confined to within individual tuples, and inter-tuple inde- polynomial time for DI databases [37]. While QPIAD ar-
pendence holds. chitecture can be extended to support more general queries,
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should the need arise, such a step may lead to higher compuMining Approximate Functional Dependencies:There is

tational complexity of query processing. some existing work on mining FDs [46,45,32,31,38] and
Arecent work [11] studies the problem of inferring query on mining AFDs with high confidence level [19,22]. Sim-

answer probabilities when querying a mediated view of de- ilar to [19] and [38], we take a candidate-generate-and-test

terministic or probabilistic databases by exploiting the statis- approach for AFD mining. Different from all existing work,

tical information of the view. Our work addresses the prob- we propose a metric callespecificityto quantify whether

lem of querying a mediated view over deterministic incom- an AFD is useful for generating rewritten queries to re-

plete databases in the absence of such statistical informatrieve relevant incomplete tuples in the contextQ®IAD

tion. We focus on the unique technical challenges of effi- framework. Then we develop a novel AFD mining tech-

cient and accurate learning of data dependencies, and effecrique which by proactively pruning AFDs that fail specificity

tive rewriting of the original deterministic query to proba- threshold, achieves performance speedup.

bilistic queries in order to retrieve relevant answers in the  Conditional Functional Dependencies (CFDs) are deter-

order of their expected relevance without materializing the ministic dependencies holding true only for certain values of

equivalent probabilistic databases. the determining attributes [6,14]. [15] presents techniques to

Querying Inconsistent DatabasesWork on handling in- mine CFDs. It is an open guestion how to exploit CFDs for

consistent databases also has some connections. While mo§t/€rying incomplete databases, which we plan to investigate.

approaches for handling inconsistent databases are more

similar to the “possible worlds approaches” used for han-

dling incompleteness (e.g. [4]), some recent work (e.g. [1]) .

uses probabilistic approaches for handling inconsistent data.8 Conclusion

Query Reformulation & Relaxation: There are work on  |ncompleteness is inevitable in autonomous web databases.
query reformulation and query relaxation to handle the casesRetrieving highly relevant possible answers from such
where the original query has an empty result or a small sizégatabases is challenging due to the restricted access privi-
of query result [36,35]. Our work has a different goal: re- leges of mediator, limited query patterns supported by au-
trieving and ranking tuples that have missing values on con-tsnomous databases, and sensitivity of database and network
strained attributes and yet are relevant to the user query,,orkload in web environment. We developed a novel query
WhiCh requires fundamentally different query rewriting tech- rewriting technique that tackles these challenges. Our ap-
niques. proach involves rewriting the user query based on the knowl-
Learning Missing Values: There has been a large body of edge of database attribute correlations. The rewritten queries
work on missing values imputation [12,39,40,44,3]. Com- are then ranked by leveraging attribute value distributions ac-
mon imputation approaches include substituting missing cording to their likelihood of retrieving relevant possible an-
data values by the mean, the most common value, defaulswers before they are posed to the databases. We discussed
value of the attribute in question, or using k-Nearest Neigh- rewriting techniques for handling queries containing selec-
bor [3], association rules [44], etc. Another approach used totion, joins and aggregations. To support such query rewrit-
estimate missing values mrameter estimatiarMaximum ing techniques, we mine attribute correlations in the form
likelihood procedures that use variants of the Expectation-of AFDs and the value distributions in the form of AFD-
Maximization algorithm [12,39] can be used to estimate the enhanced classifiers, as well as query selectivity from a small
parameters of a model defined for the complete data. In thissample of the database itself. To order to handle data sources
paper, we are interested not in the standard imputation probwith large attribute sets, we developed a novel technigque for
lem but a variant that can be used in the context of query AFD mining that utilizes effective pruning strategies while
rewriting. In this context, it is important to have schema level maintains comparable high quality. We also discuss the se-
dependencies between attributes as well as distribution infor-nantics of our approach based on its relationship to query
mation over missing values. evaluation on probabilistic databases. Comprehensive exper-
Another related problem is entity resolution, or dedupli- iments demonstrated the effectiveness of our query process-
cation, which recognizes different tuples that correspond toing and knowledge mining techniques.
the same real world entities using textual similarity and setof ~ As we mentioned, part of the motivation for handling
constraints, including aggregation constraints [8], groupwise incompleteness in autonomous databases is the increasing
constraints, etc.. While this paper mines approximate func-presence of databases on the web. In this context, a related
tional dependencies for missing value imputation; and in- issue is handling query imprecision—most users of online
stead of “repairing” the database, we focus on query rewrit- databases tend to pose imprecise queries which admit an-
ing techniques for retrieving relevant tuples. swers with varying degrees of relevance (c.f. [36]). In our
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ongoing work, we are investigating the issues of simultane-

ously handling data incompleteness and query imprecision.
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