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Abstract

This paper providesasystematic analysisof therelativeutility of basingEBG
based plan reuse techniques in partial ordering vs. total ordering planning
frameworks. We separate the potential advantages into those related to
storage compaction, and those related to the ability to exploit stored plans.
We observe that the storage compactions provided by partially ordered
partialy instantiated plans can, to a large extent, be exploited regardless of
theunderlyingplanner. Wearguethat it isin theability to exploit stored plans
during planning that partial ordering planners have some distinct advantages.
In particular, to be able to flexibly reuse and extend the retrieved plans, a
planner needsthe ability to arbitrarily and efficiently ‘‘splice in’’ new steps
and sub-plansinto the retrieved plan. Thisiswhere partial ordering planners,
with their least-commitment strategy, and flexible plan representations, score
significantly over state-based planners as well as plannersthat search in the
space of totally ordered plans. We will clarify and support this hypothesis
through an empirical study of three planners and two reuse strategies.

1. Introduction

Most work in learning to improve planning performance through
EBG (explanation based generalization) based plan reuse has con-
centrated almost exclusively on state-based planners (i.e., planners
which search in the space of world states, and produce totally or-
dered plans;[3, 14, 11, 20].) In contrast, the common wisdom in
the planning community (vindicated to alarge extent by the recent
formal and empirical evaluations[1, 12, 15]), hasheld that searchin
the space of plans, especially in the space of partially ordered plans
provides a more flexible and efficient means of plan generation. It
is natural to enquire, therefore, whether partial order (PO) planning
retainsits advantagesin the context of EBG based plan reuse.

In our previous work [8], we have shown that the explanation-
based generalizati on techniques can indeed be extended in asystem-
atic fashion to partially ordered partialy instantiated plans, to give
rise to a spectrum of generalization strategies. In this paper, we will
address the issue of comparative advantages of doing EBG based
plan reuse in a partial order planning framework. We will do this
by separating two related but distinct considerations: the advantages
of storing plans as partialy ordered and partially instantiated gener-
alizations and the advantages of using the stored generalizationsin
the context of a PO planning framework.

Storing plansin apartially ordered and partially instantiated form
allows for compactness of storage, as well as more flexible editing
operations at retrieval time. We will point out, however, that these
advantages can be exploited whether the underlying planner is a
PO planner or atotal ordering planner. We will argue that it isin
the ability to use the generalized plans during planning, that partial
ordering planners have some distinct advantagesover total ordering
planners. In particular, to be able to flexibly reuse and extend the
retrieved plans (when they are only partially relevant in the new
problem situation), the planner needs to be able to arbitrarily and
efficiently ‘*splice in’’ new steps and sub-plans into the retrieved
macro (and vice versa). Partial ordering planners, with their least-
commitment strategy, and flexible plan representations, are more
efficient than state-based planners as well as planners that search
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in the space of totally ordered plans, in doing this splicing. We
arguethat in many plan reuse situations, this capability significantly
enhances their ability exploit stored plans to improve planning
performance. We will support our arguments through focused
experimentation with three different planners and two different
reuse strategies.

The rest of the paper is organized as follows: the next section
provides a brief characterization of different planners in terms of
how they refine plansduring search. Section 3. usesthis background
to characterize the advantagesof partial order plannersin exploiting
stored plan generdlizations to improve performance. Section 4.1.
describes an empirical study to evaluate the hypotheses regarding
the comparative advantages of PO planning. Section 4.2. presents
and analyzesthe results of the study. Section 5. arguesin favor of
basing plan reuse and other speeduplearning researchin partial order
planning, and clears some misconceptions regarding PO planning
which seem to have inhibited this in the past. Section 6. concludes
with a summary of contributions. All through this paper, we shall
refer to stored plan generalizations as macros, regardless of whether
they get reused as macro-operators, or serve as a basis for library-
based (case-based) plan reuse. We aso use the terms ** efficiency’”
and ‘‘ performance’’ interchangeably to refer to the speed with which
aplanner solvesaproblem.

2. A Characterization of Planners in terms of al-
lowable plan refinements

Whatever the exact nature of the planner, the ultimate aim of planning
is to find a ground operator sequence, which is a solution to the
given problem (i.e., when executed in a given initial state will take
the agent to adesired goal state). From afirst principles perspective,
the objective of planning is to navigate this space, armed with
the problem specification, and find the operator sequencesthat are
solutions for the given problem. Supposethe domain containsthree
ground actions a1, ¢2 and ¢3. Theregular expression {a1|a2|a3} *
describes the potential solution space for this domain. If we are
interested in refinement planners(i.e., plannerswhich add but do not
retract operatorsand constraintsfrom apartial plan during planning)
which most planners are, then the planner’ s navigation through the
space of potential solutions can be enumerated as a directed acyclic
graph (DAG), asillustrated in Figure 1.

When arefinement planner reaches an operator sequencethat is
not a solution, it will try to refine the sequence further (by adding
more operators) in the hopes of making it a solution. Different types
of planners alow different types of transitions in the DAG. For
example, planners such as STRIPS and PRODIGY that do forward
search in the space of world states, will only add operators to the
end of the partia solution during refinement, and thusonly transition
via the solid lines in Figure 1.' Most planners used in learning
research to-date fall in this category. On the other hand, planners

INotice that the so called linearity assumption, which specifies whether
the planner managesitslist of outstanding goalsas astack or an arbitrary list,
has no effect on this. In particular, both PRODIGY, which makes linearity
assumption, and its extension NOLIMIT[19] which doesn’t (and thus allows
interleaving of subgoals), are both capable only of refining a partial plan by
adding operatorsto the end of the current plan.



Figure 1: Characterization of refinements allowed by various plan-
ning strategies (see text)

which do backward search in the space of world states, will only
add new operators to the beginning of the partial solution during
refinement, and thus alow the transitions shown in dashed lines.
Finaly, planners which search in the space of plans, allow new
operators to be added anywherein the partial solution, includingin
the middle of the existing plan, and thus allow &l of the refinements
shownin thefigure.

All the planners we discussed above can be called total ordering
plannersin that the partial plansthey maintain during their searchis
always a totally ordered sequence of operators. However, planners
searchingin the space of plans havethe option to either searchin the
space of totally ordered plans, or in the space of partially ordered
(PO) plans. Many current-day planners such as NOAH, NONLIN,
SIPE belong to the latter class, called partial order or PO planners?
are generaly more efficient as they avoid premature commitment
to inter-operator orderings, there by improving efficiency over
corresponding planners that search in the space of totally ordered
plans[1, 15].

3. Advantages of Partial Order planning in plan
reuse
3.1. Storage Compaction

A PO plan provides a compact representation for the possibly expo-
nential number of itsunderlying linearizations by specifying just the
steps, the partial ordering between steps and the codesignation and
non-codesignation constrains between the variables. This flexible
plan representation allows for a spectrum of order, precondition
and structure generalizations. Our previous work [8] provides a
systematic basis for generating these generalizations. Storing plans
in PO form also allows for more sophisticated editing operations at
retrieval time, whenthemacroisonly partly applicable. Specifically,
any irrelevant steps and constraints of the plan can be edited out
by retracting the corresponding planning decisions. The retraction
itself can be facilitated by justifying individual planning decisions
in terms of the plan causal structures. Once such a justification
framework isin place, the retraction of irrelevant constraints can be
accomplished with the help of a polynomial time greedy agorithm
(cf.[5, 8]).

However, al the advantages of storage compaction and plan
editing will hold whether the underlying planner generatesa totally
ordered or partially ordered (PO) plans. For example, generalization
techniques described in our previous work on EBG for PO plans
[8] can be used whether the plan was initialy produced by a
partial ordering or a total ordering planner. Similarly, even in
reuse frameworks based on total ordering planners (e.g. [20, 18]),
order generalization has been used as away to separateindependent
parts of the plan and store them separately, thereby containing the
proliferation of macros by reducing the redundancy among them. In
other words, although storage considerationsmotivate the use of PO

2partial order plannershaveal so been called nonlinear planners. Weprefer
the former term since the latter gives the misleading impression that partial
order planning is related to linearity assumption. In fact, as we mentioned
earlier linearity assumption is concerned with order in which different goals
are attacked, and can be used in any planner. Linearity assumption causes
incompletenessin planners that search in the space of world states (such as
STRIPS and PRODIGY), but does not affect completeness in any way in
plannersthat search in the space of plans.

ART-IND (D°SY): (4; prec: I; add : G;)
ART-MD (D™5Y): (4; prec: I add : G; del: {I;|j < i})
ART-MD-NS (D™ 5?):

(Al prec: I; add: P; del: {I;|j < i})

(4 prec: Piadd: Gidel: {I;|¥j}U{P;]j <i})

Figure 2: The specification of Weld et. al.’s Synthetic Domains

plan representation during plan reuse, they do not necessarily argue
for the use of PO planning.

3.2. Ability to exploit stored plansduring plan reuse

In this section, we argue that the real utility of using partial order
planning when doing EBG based plan reuse is that it provides a
flexible and efficient ability to interleave the stored plans with new
operators, thereby significantly increasing the planner’'s ability to
exploit stored plans. To understand this, we need to look at the
various possiblewaysin which astored plan can be extended during
planning.

Whenamacroisretrieved to bereused in anew problem situation,
it will only be a partial match for the problem under consideration:
(¢) The macro may contain extraneous goals/constraintsthat are not
relevant to the problem at hand. (z¢) There may be some outstanding
goals of the problem that the retrieved macro does not match. The
first situation can be handled largely through the editing operations
described earlier. In the second case, the planner may have to do
some further planning work even after the macro is incorporated
into the current plan. The way a planner extends the macro during
planning critically affects its ability to reuse stored plans in new
situations. This, in turn, dependsupon whether the planner searches
in the space of world-states or plans (Section 2.).

Supposeaplanner issolving aprobleminvolving aset G of goals,
and retrieves amacro M which promises to achieve a subset G’ of
thesegoals. Let g € (G — G') bean outstandinggoal of the problem.
Wewill say that M is sequenceablewith respect to the outstanding
goal g if and only if there exists a subplan P for achieving g such
that M.P or P.M (where ‘*."" is the sequencing operator) will
be a correct plan for achieving the set of goals G U {g}. M is
said to be interleavable® with respect to g, if and only if there
exists a sub-plan P for achieving g such that P can be merged
with M without retracting any steps, ordering constraintsor binding
constraints in M or P. In particular, if M correspondsto a plan
{Tne, Onr, Bar) (Where Tz is the set of steps, Ony is the partial
ordering on the steps and By is the binding constraints on the
variables), and P correspondsto a plan {(T'», Op, Bp), then there
existsaplan P’ : (T UTp, Ons UOpUO', Bar UBpUB') which
achievesthe set of goalsG U {g}.*

Clearly, interleavability is more general than sequenceability.
There are many situations when the macros are not sequenceable
but only interleavable with respect to the outstanding goals of the
planner. Consider the smple artificia domains, ART-IND, ART-
MD and ART-MD-NS (originally describedin [1]) shownin Figure
2. These domains differ in terms of the serializability [10] of the
goals in the domain. ART-IND contains only independent goals
(notice that none of the actions have deletelists). Thegoasin ART-
MD areinteracting but serializablewhile thosein ART-MD-NS are
non-serializable.® In particular, in the latter domain, macros will be

SNotethat interleavability hererefersto theability tointerleaveplan steps.
This is distinct from the ability to interleave subgoals. In particular state-
based planners that don't use linearity assumption can interleave subgoals,
but cannot interleave plan steps

“4Interleavability of macros, as defined here differs from modifiability
(cf. [5, 6]) inthat the latter also allows retraction of steps and/or constraints
from the macro, once it is introduced into the plan. While modifiability is
not the focus of the current work, in our previouswork [5], we have shown
that PO planners do provide a flexible framework for plan modification.
More recently, we have been investigating the utility tradeoffs involved in
incorporating a flexible modification capability in plan reuse [4].

5From the domain descriptions, it can be seen that a conjunctive goal



SNLP TOCL TOPI
scraich | +SEBG | +IEBG || scraich | +SEBG | +IEBG || scratch | +SEBG

ART-MD

% Solved 100% 100% 100% 100% 100% 100% 100% 100%

Cum. time 80 306 136 92 177 2250 1843 3281
% Macro usage - 20% 100% - 20% 100% - 6%
ART-MD-NS

% Solved 40% 40% 100% 30% 26% 60% 40% 40%

cum. time 19228 | 21030 4942 22892 23853 14243 20975 | 23342
% Macro usage - 0% 100% - 0% 100% - 0%

Table 1: Performance statisticsin ART-MD and ART-MD-NS domains.

interleavable, but not sequenceable with respect to any outstanding
goals of the planner. To illustrate, consider the macro for solving
a problem with conjunctive goal G1 A G2 in ART-MD-NS, which
will be: A} - A} — A2 — A2 Now, if weadd G to the goal list,
the plan for solving the new conjunctivegoal G1 A G2 A Gz will be
Al Al AL — A2 5 A3 — A3 (wherethe underlined actions
are the new actions added to the plan to achieve G 3). Clearly, the
only way a macro can be reused in this domain is by interleaving
it with new operators (unless of courseit is an exact match for the
problem).

Even when the goals are seridizable, asisthe casein ART-MD,
the distribution of stored macros may be such that the retrieved
macro is not sequenceablewith respect to the outstanding goals. For
example, supposethe planner istrying to solveaproblem with goals
G1 A Gy A Gz from ART-MD domain, and retrieves a macro which
solvesthe goads G1 A Gs: A1 — As. Clearly, the outstanding goal,
G, is not sequenceable with respect to this macro, since the only
way of achieving G1 A G2 A Gs will beby theplan A; — A, — As,
which involvesinterleaving a new step into the retrieved macro.

The foregoing shows that any planner that is capable of using
macros only when they are sequencesble with respect to the out-
standing goalsis less capable of exploiting its stored plans than a
planner that can use macros also in situations where they are only
interleavable. From our discussion in Section 2., it should be clear
that plannersthat searchin the spaceof world states, suchas STRIPS,
PRODIGY, and NOLIMIT [19], which refine plans only by adding
steps to the beginning (or end, in the case of backward search in
the space of states) of the plan, can reuse macros only when they
are sequenceablewith respect to the outstanding goals. In contrast,
plannersthat search in the space of planscan refine partial plans by
introducing steps anywhere in the middle of the plan, and thus can
reuse macros even when they are only interleavable with respect to
the outstanding goals. Of these latter, partial order planners, which
eliminate premature commitment to step ordering through a more
flexible plan representation, can be more efficient than total order
planners. Based on this, we hypothesize that partial order planners
not only will be able to reuse both sequenceable and interleavable
macrops, but will also be able to do it more efficiently. This, we
believe is the most important advantage of partial ordering planning
during reuse.

4. Empirical Evaluation

Thediscussionintheprevioussection leadsto two plausible hypothe-
ses regarding the utility of PO planning in plan reuse frameworks.
(%) PO plannersare more efficient in exploiting interleavable macros
than planners that search in the space of totally ordered plans, as
well as state-based plannersand (z2) This capability significantly en-
hancestheir ability to exploit stored macrosto improve performance
inmany situations, especially in domainscontaining non-serializable

G; N G; (wherez < 7) can be achieved in ART-IND domain by achieving
thetwo goalsinany order, givingrisetotwoplansA; — A; and4; — A;.
Only the first of these two planswill be a correct planin ART-MD domain,
since the delete literals in the actions demand that G ; be achieved before
G;. Finally, in ART-MD-NS domain, the subplansfor G; and G; haveto

beinterleavedto givetheplan A} — A} — AZ — AZ.

sub-goals. We havetested these hypothesesby comparing the perfor-

mance of three planners-- apartia ordering planner, atotal ordering
planner, both of which searchin the spaceof plans; and astate-based
planner -- in conjunction with two different reuse strategies® In the
following two subsections, we describe our experimental setup and
discussthe results of the empirical study.

4.1. Experimental Setup

Perfor mance Systems: Our performance systemsconsisted of three
simple plannersimplemented by Barrett and Weld [1]: SNLP, TOCL
and TOPI. SNLP is a causal-link based partial ordering planner,
which can arbitrarily interleave subplans. TOCL is a causal link
based total ordering planner, which like SNLP can insert a new
step anywhere in the plan, but unlike SNLP, searchesin the space
of totally ordered plans’. SNLP, by virtue of its least commitment
strategy, is more flexible in its ability to interleave operators than
is TOCL. Thethird planner, TOPI carries out a backward-chaining
world-state search. TOPI only adds steps to the beginning of the
plan. Thus, unlike SNLP and TOCL, but like planners doing search
in the space of plan states, such as STRIPS and PRODIGY, TOPI

is unable to interleave new steps into the existing plan. All three
planners are sound and complete. The three planners share many

key routines (such as unification, operator selection, and search
routines), making it possible to do a fair empirical comparison
between them.

Reuse modes: To comparethe ability of each planner to exploit the
stored plan generalizations in solving new problems, the planners
wereruninthreedifferent modesin thetesting phase: Scratchmode,
SEBG (or sequenceableEBG) modeand |EBG (or interleavable
EBG) mode. In the scratch mode, the planner starts with a null
plan and refines it by adding steps, orderings and bindings until it
becomes a complete plan. In the SEBG mode, the planner first
retrieves a stored plan generalization that best matches the new
problem (see below for the details of the retrieval strategy). The
retrieved plan is treated as an opagque macro operator, and is added
to thelist of operator templates availableto the planner. The planner
is then called to solve the new problem, with this augmented set of
operators. The IEBG mode is similar to the SEBG mode, except
that it allows new steps and constraints to be introduced between
the constituents of the instantiated macro and the rest of the plan,
as the planning progresses. To facilitate this, whenever the planner
selects a macro to establish a precondition, it consider the macro as
a transparent plan fragment, and adds it to the existing partial plan.
This operation involves updating the steps, orderings and causal

links of the current partial plan with those of the macro. In the case
of SNLP, the exact ordering of the steps of the macro with respect
to the current plan can be left partially specified (e.g., by specifying
the predecessor of the first step of the macro, and the successor of
the last step of the macro), whilein the case of TOCL, partia plans
need to be generated for each possibletotally ordered interleaving of
the steps of the macro with respect to the steps of the current partial

6Code and test data for replicating our experiments can be acquired by
sending mail to rao@asuvax.asu.edu

"Each partially ordered plan produced by SNLP correspondsto a set of
totally ordered plans. TOCL generatesthese totally ordered plans whenever
SNL P generates the corresponding partially ordered plans.
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Figure 3: Performance across the three reuse modesin the ART-MD-NS domain

plan. SNLP is thus more efficient and least committed than TOCL
in interleaving macros.

It is easy to see that the SEBG strategy can reuse a macro if
and only if it is sequenceable with the other outstanding goals of
the plan, while the more general IEBG strategy can also reuse a
macro whenever it is interleavable with other outstanding goals of
the plan. From the description of the three planners above, it should
also be clear that only SNLP and TOCL can support IEBG mode.
TORPI, like other state-based planners such as STRIPS, PRODIGY
and NOLIMIT, cannot support IEBG mode.

Our SEBG and |IEBG strategies differ from usual macro operator
based reuse strategiesin that rather than usethe entire planlibrary as
macro-operators, they first retrieve the best matching plan from the
library and use that as the macro-operator. The primary motivation
for thisdifferenceisto avoidthe high cost of going through theentire
plan library during each operator selection cycle. (This cost increase
is due to both the cost of operator matching and instantiation, and
theincreased branching factor). Instead of a single best match plan,
the strategies can be very easily extended to start with two or more
best matching plans, which between them cover complementary
goal sets of the new problem. This would thus alow for transfer
from multiple-plans. Here again, the ability to interleave plans will
be crucial to exploit multiple macros.

Storageand Retrieval Strategies. To control for the factors of
storage compaction, and flexible plan editing, no specialized storage
or editing strategies are employed in either of the planners. The
retrieval itself is done by a simple (if unsophisticated) strategy
involving matching of the goals of the new problem with those of
the macros, and selecting the one matching the maximum number
of goals. Although, there is much scope for improvement in these
phases (for example, retrieval could have been done with a more
sophisticated causal-structure based similarity metric, such as the
one described in [6]), our choices do ensure a fair comparison
between the various planners in terms of their ability to exploit
stored plans.

Evaluation strategy: As noted earlier, sequenceability and inter-
leavability of the stored macros with respect to the goals of the
encountered problems can be varied by varying the ratio of inde-
pendent vs. seridizable vs. non-seriaizable goals in the problems.
The artificia domains described in Figure 2, and Section 3.2.
make ideal testbeds for varying the latter parameter, and were thus
used as the test domains in our study. Our experimental strategy
involvedtraining all three plannerson aset of 50 randomly generated
problems from each of these domains. The training problems all
have between 0 and 3 goals. During the training phase, each planner
generaizesthelearned plansusing EBG techniquesand storesthem.
In the testing phase, a set of 30 randomly generated problems, that
have between 4 and 7 goals (thus are larger than those used in the

training phase) are used to test the extent to which the plannersare
able to exploit the stored plansin the three different modes. A limit
of 1000 cpu sec. per problem is enforced on all the planners, and
any problem not solved in this time is considered unsolved (This
limit includes both the time taken for retrieval and the time taken
for planning). To eliminate any bias introduced by the time bound
(c.f. [16]), we used the maximally conservative statistical tests for
censored data, described by Etzioni and Etzioni in [2], to assessthe
significance of al speedups. All experiments were performed in
interpreted Lucid Commonlisp running on a Sun Sparc-11.

4.2. Experimental Results

Table 1 shows the cumulative statistics for solving the 30 test
problems from each domain for all three plannersand all threereuse
modes. For each domain, the first row shows the percentage of
domain test problems that were correctly solved by each strategy
within the 1000 cpu. sec. time bound. The second row shows the
cumulative cpu. time. for running through all the test problems (as
mentioned, if a problem is not solved in 1000 cpu. seconds, we
consider it unsolved and add 1000 cpu. sec. to the cumulative time).
The third row shows the percentage of the solved problems whose
solutions incorporated retrieved library macros.

In the ART-MD domain, which has subgoals that are easily
serializable, none of the planners show much improvement through
reuse (although SNLP does perform significantly faster than TOCL
in the interleaving EBG mode). All three planners are able to solve
all the test problems from scratch within the 1000 cpu sec. time
limit. The addition of SEBG and IEBG strategies does not change
the solvability horizon. More importantly, the cumulativetime taken
is dightly worse in both SEBG and IEBG strategies as compared
to from scratch planning. This is understandable given that the
problems in this domain are easy to solve to begin with, and any
improvements provided by reuse strategy are offset by the retrieval
costs.

The situation in ART-MD-NS domain is quite different. We see
that none of the planners are able to solve more than 40% of the
problemsin the from-scratch mode. Of the two reuse modes, SEBG
remains at the same level of correctness as from-scratch. Thisis
not surprising, since as discussed in Section 3.2., in ART-MD-NS
domain, the stored plans are not sequenceable with respect to any
remaining outstanding goals of the planner. Thus, unless the macro
is an exact match (i.e., solvesthe full problem), it cannot be reused
by an SEBG strategy.

The IEBG strategy on the other hand, dramatically improves
the correctness rates of TOCL and SNLP from 40% to 60% and
100% respectively, while TOPI, which cannot support IEBG, stays
unaffected. Moreover, as hypothesized, SNLP's improvement is
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Figure 4: Cumulative performance as a function of % of non-serializable sub-goals

more significant than that of TOCL 2 Theplotsin Figure 3 compare
the performance of TOCL and SNLP for all three reuse strategies
in this domain. The left one plots the cumulative planning time as
afunction of the problem number (with the problems sorted in the
increasing order of difficulty). The right plot showsthe average cpu
time taken by each planner as a function of the plan length. We see
that in IEBG mode SNLP significantly outperforms TOCL in the
ability to exploit stored plans both in terms of cumulative time, and
in terms of solvability horizon.
Experimentsin Mixed Domains. The test domains ART-MD and
ART-MD-NS above were somewhat extreme in the sense that the
former only has serializable goals while the latter only has non-
serializable goals. More typically, we would expect to see amixture
of independent, serializable and non-serializable goalsin aproblem
distribution. To understand how the effectiveness of the various
reuse strategies vary for such mixed problem distributions, we ex-
perimented with amixed domain obtained by combining the actions
of ART-IND (thedomainwith independent subgoals) and ART-MD-
NS (the domain with non-serializable subgoals) domains (shown in
Figure 2). Fivedifferent training and testing suites, each containing
adifferent (pre-specified) percentageof non-serializablegoasinthe
problem distribution, were generated. We experimented with prob-
lem sets containing O, 25, 50, 75 and 100% non-serializable goals
(where 0% corresponding to the problem set having goals drawn
solely from ART-IND, and 100% corresponding to the problem set
with goals drawn solely from ART-MD-NS). For each mixture, 50
training problemsand 30 testing problemswere generated randomly,
as discussed before. Given the inability of TOPI to support |EBG,
we concentrated on comparisons between SNLP and TOCL.
Theplotsin Figure 4 summarizethe performancein each problem
set as a function of the percentage of the non-seriaizable goasin
the problem set. The plot on the left compares the cumulative time
taken by each strategy for solving all the problemsin the test suite of
each of the 5 problem sets The plot onthe right showsthe percentage
problems successfully solved within the time bound by each strategy
for each problem set. Once again, we note that SNLP using IEBG
shows the best performance in terms of both the cumulative time
and the percentage problems solved. |EBG strategy is also the best
strategy for TOCL, but turns out to be considerably less effective
thanthe | EBG strategy for SNLP. Moreinterestingly, we seethat the

8Using the statistical tests for censored data advocated by Etzioni in [2],
we find that the hypothesis that SNLP+IEBG is faster than SNLP as well
as the hypothesis that SNLP+IEBG is faster than TOCL+IEBG are both
supported with very high significance levels by our experimental data. The
p-value is bounded above by 0.000 for both the signed test, and the more
conservative censored signed-rank test. The hypothesisthat TOCL+IEBG is
faster than TOCL is however supportedwith amuch lower significancelevel
(with ap-valueof .13for sign test and .89 for the censored signed-rank test).

performance of IEBG strategy compared to the base-level planner
improves as the percentage of non-serializable goasin the problem
set increasesfor both SNLP and TOCL. By the same token, we also
note that the relative performance of SEBG strategy worsens with
increased percentage of non-serializable goals for both SNLP and
TOCL.

Summary: The resultsin our empirical studies are consistent with
our hypothesis regarding the superiority of PO plannersin exploit-
ing stored macros. First, we showed that TOPI fails to improve
its performance when faced with interleavable macros, while SNLP
and TOCL can both exploit them. Next we showed that SNLP is
more efficient in exploiting stored macrosthan TOCL. In particular,
the strategy of using SNLP planner with |EBG reuse strategy signif-
icantly outperforms all the other strategies including TOCL+IEBG,
in most cases. The higher cost of TOCL+IEBG strategy canitself be
explained by the fact that TOCL generatespartia plans correspond-
ing to each possible interleaving of the macro with the new steps,
while SNLP can maintain partially ordered plan and interleave the
steps as necessary.

5. Rdated Work

Starting with STRIPS, stored plans havetraditionally beenreused as
opaque macro operators that cannot be interleaved during planning.
We believe that this was largely due to the limitations imposed by
the underlying state-based planners. It is of course possible to
get the effect of reuse of interleavable macros within state-based
planning indirectly through the use of single operator macros (aka
preference search control rules[14]). However, it is not clear what
are the advantages of starting with a simplistic planner and get
interleavability indirectly, when more sophisticated planners, such
as PO planners, alow interleavability naturally. More generaly,
we believe that eager compilation strategies such as search control
rules are complementary to rather than competing with more lazy
learning strategies such as plan reuse. In some cases, the planner
is better served by the lazy strategy of retrieving and modifying
a large plan, rather than the eager strategy of compiling each
incoming plan into search control rules. In the former, the ability
to interleave is essential, and planners like STRIPS would be at
a natural disadvantage. Interestingly enough, this was one of the
original reasonsfor the shift from state based planning of STRIPS
to plan-space based partial-order planning of NOAH, within the
planning community. As McDermott [13, p. 413] remarks, if you
want the ability improve performance by piecing large canned plans
together, postponing decisions about how these plans will interact,
then partial order planning isin some sensethe inevitable choice.

In [19, 20], Veloso et. al. advocate basing learning techniques
within state-based (total ordering) planning without linearity as-
sumption, rather than within partial order planning. They justify this



by arguing that the former have all the advantages of PO planners,
and also scale up better to more expressive action representations
because checking necessary truth of a proposition becomesNP-hard
for partialy ordered plans containing such actions. To begin with,
as we discussed in Section 2., the inability to interleave macros
is due to the limited refinement strategies allowed by a state-based
planner, and has little to do with whether or not the planner makes
linearity assumption. Secondly, the argument regarding the relative
difficulty of scaling up the partial ordering planners to more ex-
pressive action representations is based on the (mistaken) premise
that a PO planner hasto interpret the full (necessary and sufficient)
modal truth criterion for PO plans during each search iteration. Re-
cent work [7, 12, 15] amply demonstrates that sound and complete
partial ordering planners do not necessarily have to interpret the
full-blown modal truth criterion at each iteration (since they only
need completenessin the space of ground operator sequencesrather
than in the space of PO plans), and thus can retain their relative
advantages over total ordering planners even with more expressive
action representations. This, coupled with our experiments showing
the superiority of PO plannersin explaiting stored plans, make PO
planning an attractive framework for doing plan reuse.

The concentration on state-based planning has also been true
of much of the speedup learning work within planning, including
search control rules and precondition abstraction. In [14, p. 83]
Minton et. a. seem to justify this by the observation: ‘‘[..] the
more clever the underlying problem solver is, the more difficult the
job will be for the learning component’’. Preferring a state-based
planning strategy only to makelearning easier seemsto be somewhat
unsatisfactory, especially given that there exist more sophisticated
planning strategies that avoid many of the inefficiencies of the
state-based planners. Moreover, we believe that the shift to more
sophisticated planning strategiesis not just an implementation issue;
it may also lead to qualitatively different priorities in techniquesas
well astarget conceptsworth learning. As an example, one source
of theinefficiency of STRIPS and other state-based planners stems
from the fact that they confound the execution order (i.e., the order
in which the goal's are achieved during execution) with the planning
order (i.e., theorder in which the goal sare attacked during planning).
Aswe shift to plannersthat searchin the space of plans, such as PO
planners, planning order is cleanly separated from execution order;
and many of the inefficiencies of state-based planners are naturally
avoided. Thus, learning strategies and target concepts that are
designed with state-based plannersin mind may be of limited utility
whenweshift to moreflexible planners. Asan example, ‘*goal order
preferencerules’ of thetype ‘‘work on on(y, z) before on(z, )",
learned by EBL strategies in blocks world, are not that useful for
partial order planners, which avoid premature step orderingsto begin
with. Similarly, in [17] Smith and Peot argue that may of the static
abstractions generated with state-based plannersin mind (e.g. [9]),
impose unnecessary and sometimesdetrimental ordering constraints,
when used in conjunctionwith the more flexible and efficient partial
order planning strategies. All of this, in our view, argues in favor
of situating research on learning to improve planning performance
within the context of moreflexible and efficient planning paradigms
such aspartial order planning.

6. Concluding Remarks

In this paper, we have addressed the issue of relative utility of
basing EBG based plan reuse strategies in partial ordering vs. total
ordering planning. We observed that while storage compactions
resulting from the use of PO plans can be exploited irrespective of
whether the underlying planner is a PO planner or atotal ordering
planner, the PO plannersdo have distinct advantageswhen it comes
to the issue of effectively reusing the stored plans. In particular,
we showed that PO planners are significantly more efficient in
exploiting interleavable macros than state-based plannersaswell as
planners that search in the space of totally ordered planners. We
also showed that this capability substantially enhancesthe ability to
exploit stored macros to improve performance in many situations,
where the domain goals and problem distributions are such that a

significant percentage of stored macros are only interleavable with
respect to the outstanding goals of the planner. Although this can
happen both in domainswith serializable subgoal sand domainswith
non-serializable subgoals, our experiments show that the effect is
particularly strong in the latter.

When taken in the context of recent work on comparative ad-
vantages of PO planners in plan generation [1, 12, 15], our study
strongly arguesfor situating EBG based plan reuse strategies within
the context of PO planning framework. We believe that such a
move would aso benefit other learning strategies such as search
control rules and abstractions[4], and are currently working towards
verifying theseintuitions.
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