
To appear in Proceedings of AAAI-93

Relative Utility of EBG based Plan Reuse
in Partial Ordering vs. Total Ordering Planning

Subbarao Kambhampati� and Jengchin Chen
Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85287-5406

Email: rao@asuvax.asu.edu

Abstract
This paper provides a systematic analysis of the relative utility of basing EBG
based plan reuse techniques in partial ordering vs. total ordering planning
frameworks. We separate the potential advantages into those related to
storage compaction, and those related to the ability to exploit stored plans.
We observe that the storage compactions provided by partially ordered
partially instantiated plans can, to a large extent, be exploited regardless of
the underlyingplanner. We argue that it is in the ability to exploit stored plans
during planning that partial ordering planners have some distinct advantages.
In particular, to be able to flexibly reuse and extend the retrieved plans, a
planner needs the ability to arbitrarily and efficiently ‘‘splice in’’ new steps
and sub-plans into the retrieved plan. This is where partial ordering planners,
with their least-commitment strategy, and flexible plan representations, score
significantly over state-based planners as well as planners that search in the
space of totally ordered plans. We will clarify and support this hypothesis
through an empirical study of three planners and two reuse strategies.

1. Introduction
Most work in learning to improve planning performance through
EBG (explanation based generalization) based plan reuse has con-
centrated almost exclusively on state-based planners (i.e., planners
which search in the space of world states, and produce totally or-
dered plans;[3, 14, 11, 20].) In contrast, the common wisdom in
the planning community (vindicated to a large extent by the recent
formal and empirical evaluations [1, 12, 15]), has held that search in
the space of plans, especially in the space of partially ordered plans
provides a more flexible and efficient means of plan generation. It
is natural to enquire, therefore, whether partial order (PO) planning
retains its advantages in the context of EBG based plan reuse.

In our previous work [8], we have shown that the explanation-
based generalization techniques can indeed be extended in a system-
atic fashion to partially ordered partially instantiated plans, to give
rise to a spectrum of generalization strategies. In this paper, we will
address the issue of comparative advantages of doing EBG based
plan reuse in a partial order planning framework. We will do this
by separating two related but distinct considerations: the advantages
of storing plans as partially ordered and partially instantiated gener-
alizations and the advantages of using the stored generalizations in
the context of a PO planning framework.

Storing plans in a partially ordered and partially instantiated form
allows for compactness of storage, as well as more flexible editing
operations at retrieval time. We will point out, however, that these
advantages can be exploited whether the underlying planner is a
PO planner or a total ordering planner. We will argue that it is in
the ability to use the generalized plans during planning, that partial
ordering planners have some distinct advantages over total ordering
planners. In particular, to be able to flexibly reuse and extend the
retrieved plans (when they are only partially relevant in the new
problem situation), the planner needs to be able to arbitrarily and
efficiently ‘‘splice in’’ new steps and sub-plans into the retrieved
macro (and vice versa). Partial ordering planners, with their least-
commitment strategy, and flexible plan representations, are more
efficient than state-based planners as well as planners that search

�This research is supported by National Science Foundation under grant
IRI-9210997.

in the space of totally ordered plans, in doing this splicing. We
argue that in many plan reuse situations, this capability significantly
enhances their ability exploit stored plans to improve planning
performance. We will support our arguments through focused
experimentation with three different planners and two different
reuse strategies.

The rest of the paper is organized as follows: the next section
provides a brief characterization of different planners in terms of
how they refine plans during search. Section 3. uses this background
to characterize the advantages of partial order planners in exploiting
stored plan generalizations to improve performance. Section 4.1.
describes an empirical study to evaluate the hypotheses regarding
the comparative advantages of PO planning. Section 4.2. presents
and analyzes the results of the study. Section 5. argues in favor of
basing plan reuse and other speeduplearning research in partial order
planning, and clears some misconceptions regarding PO planning
which seem to have inhibited this in the past. Section 6. concludes
with a summary of contributions. All through this paper, we shall
refer to stored plan generalizations as macros, regardless of whether
they get reused as macro-operators, or serve as a basis for library-
based (case-based) plan reuse. We also use the terms ‘‘efficiency’’
and ‘‘performance’’ interchangeably to refer to the speed with which
a planner solves a problem.

2. A Characterization of Planners in terms of al-
lowable plan refinements

Whatever the exact nature of the planner, the ultimate aim of planning
is to find a ground operator sequence, which is a solution to the
given problem (i.e., when executed in a given initial state will take
the agent to a desired goal state). From a first principles perspective,
the objective of planning is to navigate this space, armed with
the problem specification, and find the operator sequences that are
solutions for the given problem. Suppose the domain contains three
ground actions a1, a2 and a3. The regular expression fa1ja2ja3g �

describes the potential solution space for this domain. If we are
interested in refinement planners (i.e., planners which add but do not
retract operators and constraints from a partial plan during planning)
which most planners are, then the planner’s navigation through the
space of potential solutions can be enumerated as a directed acyclic
graph (DAG), as illustrated in Figure 1.

When a refinement planner reaches an operator sequence that is
not a solution, it will try to refine the sequence further (by adding
more operators) in the hopes of making it a solution. Different types
of planners allow different types of transitions in the DAG. For
example, planners such as STRIPS and PRODIGY that do forward
search in the space of world states, will only add operators to the
end of the partial solution during refinement, and thus only transition
via the solid lines in Figure 1.1 Most planners used in learning
research to-date fall in this category. On the other hand, planners

1Notice that the so called linearity assumption, which specifies whether
the planner manages its list of outstanding goals as a stack or an arbitrary list,
has no effect on this. In particular, both PRODIGY, which makes linearity
assumption, and its extension NOLIMIT[19] which doesn’t (and thus allows
interleaving of subgoals), are both capable only of refining a partial plan by
adding operators to the end of the current plan.

Figure 1: Characterization of refinements allowed by various plan-
ning strategies (see text)

which do backward search in the space of world states, will only
add new operators to the beginning of the partial solution during
refinement, and thus allow the transitions shown in dashed lines.
Finally, planners which search in the space of plans, allow new
operators to be added anywhere in the partial solution, including in
the middle of the existing plan, and thus allow all of the refinements
shown in the figure.

All the planners we discussed above can be called total ordering
planners in that the partial plans they maintain during their search is
always a totally ordered sequence of operators. However, planners
searching in the space of plans have the option to either search in the
space of totally ordered plans, or in the space of partially ordered
(PO) plans. Many current-day planners such as NOAH, NONLIN,
SIPE belong to the latter class, called partial order or PO planners2

are generally more efficient as they avoid premature commitment
to inter-operator orderings, there by improving efficiency over
corresponding planners that search in the space of totally ordered
plans [1, 15].

3. Advantages of Partial Order planning in plan
reuse

3.1. Storage Compaction
A PO plan provides a compact representation for the possibly expo-
nential number of its underlying linearizations by specifying just the
steps, the partial ordering between steps and the codesignation and
non-codesignation constrains between the variables. This flexible
plan representation allows for a spectrum of order, precondition
and structure generalizations. Our previous work [8] provides a
systematic basis for generating these generalizations. Storing plans
in PO form also allows for more sophisticated editing operations at
retrieval time, when the macro is only partly applicable. Specifically,
any irrelevant steps and constraints of the plan can be edited out
by retracting the corresponding planning decisions. The retraction
itself can be facilitated by justifying individual planning decisions
in terms of the plan causal structures. Once such a justification
framework is in place, the retraction of irrelevant constraints can be
accomplished with the help of a polynomial time greedy algorithm
(c.f. [5, 8]).

However, all the advantages of storage compaction and plan
editing will hold whether the underlying planner generates a totally
ordered or partially ordered (PO) plans. For example, generalization
techniques described in our previous work on EBG for PO plans
[8] can be used whether the plan was initially produced by a
partial ordering or a total ordering planner. Similarly, even in
reuse frameworks based on total ordering planners (e.g. [20, 18]),
order generalization has been used as a way to separate independent
parts of the plan and store them separately, thereby containing the
proliferation of macros by reducing the redundancy among them. In
other words, although storage considerations motivate the use of PO

2Partial order planners have also been called nonlinear planners. We prefer
the former term since the latter gives the misleading impression that partial
order planning is related to linearity assumption. In fact, as we mentioned
earlier linearity assumption is concerned with order in which different goals
are attacked, and can be used in any planner. Linearity assumption causes
incompleteness in planners that search in the space of world states (such as
STRIPS and PRODIGY), but does not affect completeness in any way in
planners that search in the space of plans.

ART-IND (D0S1): (Ai prec : Ii add : Gi)
ART-MD (DmS1): (Ai prec : Ii add : Gi del : fIjjj < ig)
ART-MD-NS (DmS2):

(A1
i prec : Ii add : Pi del : fIjjj < ig)

(A2
i prec : Pi add : Gi del : fIj j8jg [fPjjj < ig)

Figure 2: The specification of Weld et. al.’s Synthetic Domains

plan representation during plan reuse, they do not necessarily argue
for the use of PO planning.

3.2. Ability to exploit stored plans during plan reuse
In this section, we argue that the real utility of using partial order
planning when doing EBG based plan reuse is that it provides a
flexible and efficient ability to interleave the stored plans with new
operators, thereby significantly increasing the planner’s ability to
exploit stored plans. To understand this, we need to look at the
various possible ways in which a stored plan can be extended during
planning.

When a macro is retrieved to be reused in a new problem situation,
it will only be a partial match for the problem under consideration:
(i) The macro may contain extraneous goals/constraints that are not
relevant to the problem at hand. (ii) There may be some outstanding
goals of the problem that the retrieved macro does not match. The
first situation can be handled largely through the editing operations
described earlier. In the second case, the planner may have to do
some further planning work even after the macro is incorporated
into the current plan. The way a planner extends the macro during
planning critically affects its ability to reuse stored plans in new
situations. This, in turn, depends upon whether the planner searches
in the space of world-states or plans (Section 2.).

Suppose a planner is solving a problem involving a setG of goals,
and retrieves a macro M which promises to achieve a subset G 0 of
these goals. Let g 2 (G�G0) be an outstanding goal of the problem.
We will say that M is sequenceable with respect to the outstanding
goal g if and only if there exists a subplan P for achieving g such
that M:P or P:M (where ‘‘.’’ is the sequencing operator) will
be a correct plan for achieving the set of goals G [fgg. M is
said to be interleavable3 with respect to g, if and only if there
exists a sub-plan P for achieving g such that P can be merged
with M without retracting any steps, ordering constraints or binding
constraints in M or P . In particular, if M corresponds to a plan
hTM ;OM ;BMi (where TM is the set of steps, OM is the partial
ordering on the steps and BM is the binding constraints on the
variables), and P corresponds to a plan hTP ;OP ;BP i, then there
exists a planP 0 : hTM [TP ;OM [OP [O

0;BM [BP [B
0i which

achieves the set of goals G [fgg.4

Clearly, interleavability is more general than sequenceability.
There are many situations when the macros are not sequenceable
but only interleavable with respect to the outstanding goals of the
planner. Consider the simple artificial domains, ART-IND, ART-
MD and ART-MD-NS (originally described in [1]) shown in Figure
2. These domains differ in terms of the serializability [10] of the
goals in the domain. ART-IND contains only independent goals
(notice that none of the actions have delete lists). The goals in ART-
MD are interacting but serializable while those in ART-MD-NS are
non-serializable.5 In particular, in the latter domain, macros will be

3Note that interleavability here refers to the ability to interleave plan steps.
This is distinct from the ability to interleave subgoals. In particular state-
based planners that don’t use linearity assumption can interleave subgoals,
but cannot interleave plan steps

4Interleavability of macros, as defined here differs from modifiability
(c.f. [5, 6]) in that the latter also allows retraction of steps and/or constraints
from the macro, once it is introduced into the plan. While modifiability is
not the focus of the current work, in our previous work [5], we have shown
that PO planners do provide a flexible framework for plan modification.
More recently, we have been investigating the utility tradeoffs involved in
incorporating a flexible modification capability in plan reuse [4].

5From the domain descriptions, it can be seen that a conjunctive goal

SNLP TOCL TOPI
scratch +SEBG +IEBG scratch +SEBG +IEBG scratch +SEBG

ART-MD
% Solved 100% 100% 100% 100% 100% 100% 100% 100%
Cum. time 80 306 136 92 177 2250 1843 3281

% Macro usage - 20% 100% - 20% 100% - 6%
ART-MD-NS

% Solved 40% 40% 100% 30% 26% 60% 40% 40%
cum. time 19228 21030 4942 22892 23853 14243 20975 23342

% Macro usage - 0% 100% - 0% 100% - 0%

Table 1: Performance statistics in ART-MD and ART-MD-NS domains.

interleavable, but not sequenceable with respect to any outstanding
goals of the planner. To illustrate, consider the macro for solving
a problem with conjunctive goal G1 ^G2 in ART-MD-NS, which
will be: A1

1 ! A1
2 ! A2

1 ! A2
2. Now, if we add G3 to the goal list,

the plan for solving the new conjunctive goal G1 ^G2 ^G3 will be
A1

1 ! A1
2 ! A1

3 ! A2
1 ! A2

2 ! A2
3 (where the underlined actions

are the new actions added to the plan to achieve G 3). Clearly, the
only way a macro can be reused in this domain is by interleaving
it with new operators (unless of course it is an exact match for the
problem).

Even when the goals are serializable, as is the case in ART-MD,
the distribution of stored macros may be such that the retrieved
macro is not sequenceable with respect to the outstanding goals. For
example, suppose the planner is trying to solve a problem with goals
G1 ^G2 ^G3 from ART-MD domain, and retrieves a macro which
solves the goals G1 ^G3: A1 ! A3. Clearly, the outstanding goal,
G2 is not sequenceable with respect to this macro, since the only
way of achievingG1^G2^G3 will be by the planA1 ! A2 ! A3,
which involves interleaving a new step into the retrieved macro.

The foregoing shows that any planner that is capable of using
macros only when they are sequenceable with respect to the out-
standing goals is less capable of exploiting its stored plans than a
planner that can use macros also in situations where they are only
interleavable. From our discussion in Section 2., it should be clear
that planners that search in the spaceof world states, such as STRIPS,
PRODIGY, and NOLIMIT [19], which refine plans only by adding
steps to the beginning (or end, in the case of backward search in
the space of states) of the plan, can reuse macros only when they
are sequenceable with respect to the outstanding goals. In contrast,
planners that search in the space of plans can refine partial plans by
introducing steps anywhere in the middle of the plan, and thus can
reuse macros even when they are only interleavable with respect to
the outstanding goals. Of these latter, partial order planners, which
eliminate premature commitment to step ordering through a more
flexible plan representation, can be more efficient than total order
planners. Based on this, we hypothesize that partial order planners
not only will be able to reuse both sequenceable and interleavable
macrops, but will also be able to do it more efficiently. This, we
believe is the most important advantage of partial ordering planning
during reuse.

4. Empirical Evaluation
The discussion in the previous section leads to two plausible hypothe-
ses regarding the utility of PO planning in plan reuse frameworks.
(i) PO planners are more efficient in exploiting interleavable macros
than planners that search in the space of totally ordered plans, as
well as state-based planners and (ii) This capability significantly en-
hances their ability to exploit stored macros to improve performance
in many situations, especially in domains containing non-serializable

Gi ^Gj (where i < j) can be achieved in ART-IND domain by achieving
the two goals in any order, giving rise to two plansA i ! Aj andAj ! Ai.
Only the first of these two plans will be a correct plan in ART-MD domain,
since the delete literals in the actions demand that Gi be achieved before
Gj . Finally, in ART-MD-NS domain, the subplans for Gi and Gj have to
be interleaved to give the plan A1

i ! A1
j ! A2

i ! A2
j .

sub-goals. We have tested these hypothesesby comparing the perfor-
mance of three planners -- a partial ordering planner, a total ordering
planner, both of which search in the space of plans; and a state-based
planner -- in conjunction with two different reuse strategies.6 In the
following two subsections, we describe our experimental setup and
discuss the results of the empirical study.
4.1. Experimental Setup
Performance Systems: Our performance systems consisted of three
simple planners implemented by Barrett and Weld [1]: SNLP, TOCL
and TOPI. SNLP is a causal-link based partial ordering planner,
which can arbitrarily interleave subplans. TOCL is a causal link
based total ordering planner, which like SNLP can insert a new
step anywhere in the plan, but unlike SNLP, searches in the space
of totally ordered plans7. SNLP, by virtue of its least commitment
strategy, is more flexible in its ability to interleave operators than
is TOCL. The third planner, TOPI carries out a backward-chaining
world-state search. TOPI only adds steps to the beginning of the
plan. Thus, unlike SNLP and TOCL, but like planners doing search
in the space of plan states, such as STRIPS and PRODIGY, TOPI
is unable to interleave new steps into the existing plan. All three
planners are sound and complete. The three planners share many
key routines (such as unification, operator selection, and search
routines), making it possible to do a fair empirical comparison
between them.
Reuse modes: To compare the ability of each planner to exploit the
stored plan generalizations in solving new problems, the planners
were run in three different modes in the testing phase: Scratchmode,
SEBG (or sequenceable EBG) mode and IEBG (or interleavable
EBG) mode. In the scratch mode, the planner starts with a null
plan and refines it by adding steps, orderings and bindings until it
becomes a complete plan. In the SEBG mode, the planner first
retrieves a stored plan generalization that best matches the new
problem (see below for the details of the retrieval strategy). The
retrieved plan is treated as an opaque macro operator, and is added
to the list of operator templates available to the planner. The planner
is then called to solve the new problem, with this augmented set of
operators. The IEBG mode is similar to the SEBG mode, except
that it allows new steps and constraints to be introduced between
the constituents of the instantiated macro and the rest of the plan,
as the planning progresses. To facilitate this, whenever the planner
selects a macro to establish a precondition, it consider the macro as
a transparent plan fragment, and adds it to the existing partial plan.
This operation involves updating the steps, orderings and causal
links of the current partial plan with those of the macro. In the case
of SNLP, the exact ordering of the steps of the macro with respect
to the current plan can be left partially specified (e.g., by specifying
the predecessor of the first step of the macro, and the successor of
the last step of the macro), while in the case of TOCL, partial plans
need to be generated for each possible totally ordered interleaving of
the steps of the macro with respect to the steps of the current partial

6Code and test data for replicating our experiments can be acquired by
sending mail to rao@asuvax.asu.edu

7Each partially ordered plan produced by SNLP corresponds to a set of
totally ordered plans. TOCL generates these totally ordered plans whenever
SNLP generates the corresponding partially ordered plans.

0.0 10.0 20.0 30.0
Number of Problems

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

C
um

ul
at

iv
e

C
pu

 ti
m

e

Cumulative Statistics in MD-NS Domain

SNLP (40%)
TOCL (30%)
SNLP+SEBG (40%)
TOCL+SEBG (26%)
SNLP+IEBG (100%)
TOCL+IEBG (60%)

8.0 10.0 12.0 14.0
Plan length

0.0

200.0

400.0

600.0

800.0

1000.0

A
ve

ra
ge

 C
pu

 ti
m

e
(c

pu
 s

ec
)

Cpu time as a function of plan length in MD-NS domain

SNLP (40%)
TOCL (30%)
SNLP+SEBG (40%)
TOCL+SEBG (26%)
SNLP+IEBG (100%)
TOCL+IEBG (60%)

Figure 3: Performance across the three reuse modes in the ART-MD-NS domain

plan. SNLP is thus more efficient and least committed than TOCL
in interleaving macros.

It is easy to see that the SEBG strategy can reuse a macro if
and only if it is sequenceable with the other outstanding goals of
the plan, while the more general IEBG strategy can also reuse a
macro whenever it is interleavable with other outstanding goals of
the plan. From the description of the three planners above, it should
also be clear that only SNLP and TOCL can support IEBG mode.
TOPI, like other state-based planners such as STRIPS, PRODIGY
and NOLIMIT, cannot support IEBG mode.

Our SEBG and IEBG strategies differ from usual macro operator
based reuse strategies in that rather than use the entire plan library as
macro-operators, they first retrieve the best matching plan from the
library and use that as the macro-operator. The primary motivation
for this difference is to avoid the high cost of going through the entire
plan library during each operator selection cycle. (This cost increase
is due to both the cost of operator matching and instantiation, and
the increased branching factor). Instead of a single best match plan,
the strategies can be very easily extended to start with two or more
best matching plans, which between them cover complementary
goal sets of the new problem. This would thus allow for transfer
from multiple-plans. Here again, the ability to interleave plans will
be crucial to exploit multiple macros.
Storage and Retrieval Strategies: To control for the factors of
storage compaction, and flexible plan editing, no specialized storage
or editing strategies are employed in either of the planners. The
retrieval itself is done by a simple (if unsophisticated) strategy
involving matching of the goals of the new problem with those of
the macros, and selecting the one matching the maximum number
of goals. Although, there is much scope for improvement in these
phases (for example, retrieval could have been done with a more
sophisticated causal-structure based similarity metric, such as the
one described in [6]), our choices do ensure a fair comparison
between the various planners in terms of their ability to exploit
stored plans.
Evaluation strategy: As noted earlier, sequenceability and inter-
leavability of the stored macros with respect to the goals of the
encountered problems can be varied by varying the ratio of inde-
pendent vs. serializable vs. non-serializable goals in the problems.
The artificial domains described in Figure 2, and Section 3.2.
make ideal testbeds for varying the latter parameter, and were thus
used as the test domains in our study. Our experimental strategy
involved training all three planners on a set of 50 randomly generated
problems from each of these domains. The training problems all
have between 0 and 3 goals. During the training phase, each planner
generalizes the learned plans using EBG techniques and stores them.
In the testing phase, a set of 30 randomly generated problems, that
have between 4 and 7 goals (thus are larger than those used in the

training phase) are used to test the extent to which the planners are
able to exploit the stored plans in the three different modes. A limit
of 1000 cpu sec. per problem is enforced on all the planners, and
any problem not solved in this time is considered unsolved (This
limit includes both the time taken for retrieval and the time taken
for planning). To eliminate any bias introduced by the time bound
(c.f. [16]), we used the maximally conservative statistical tests for
censored data, described by Etzioni and Etzioni in [2], to assess the
significance of all speedups. All experiments were performed in
interpreted Lucid Commonlisp running on a Sun Sparc-II.

4.2. Experimental Results

Table 1 shows the cumulative statistics for solving the 30 test
problems from each domain for all three planners and all three reuse
modes. For each domain, the first row shows the percentage of
domain test problems that were correctly solved by each strategy
within the 1000 cpu. sec. time bound. The second row shows the
cumulative cpu. time. for running through all the test problems (as
mentioned, if a problem is not solved in 1000 cpu. seconds, we
consider it unsolved and add 1000 cpu. sec. to the cumulative time).
The third row shows the percentage of the solved problems whose
solutions incorporated retrieved library macros.

In the ART-MD domain, which has subgoals that are easily
serializable, none of the planners show much improvement through
reuse (although SNLP does perform significantly faster than TOCL
in the interleaving EBG mode). All three planners are able to solve
all the test problems from scratch within the 1000 cpu sec. time
limit. The addition of SEBG and IEBG strategies does not change
the solvability horizon. More importantly, the cumulative time taken
is slightly worse in both SEBG and IEBG strategies as compared
to from scratch planning. This is understandable given that the
problems in this domain are easy to solve to begin with, and any
improvements provided by reuse strategy are offset by the retrieval
costs.

The situation in ART-MD-NS domain is quite different. We see
that none of the planners are able to solve more than 40% of the
problems in the from-scratch mode. Of the two reuse modes, SEBG
remains at the same level of correctness as from-scratch. This is
not surprising, since as discussed in Section 3.2., in ART-MD-NS
domain, the stored plans are not sequenceable with respect to any
remaining outstanding goals of the planner. Thus, unless the macro
is an exact match (i.e., solves the full problem), it cannot be reused
by an SEBG strategy.

The IEBG strategy on the other hand, dramatically improves
the correctness rates of TOCL and SNLP from 40% to 60% and
100% respectively, while TOPI, which cannot support IEBG, stays
unaffected. Moreover, as hypothesized, SNLP’s improvement is

0.0 25.0 50.0 75.0 100.0
% of non-serializable goals (from ART-MD-NS)

0.0

10000.0

20000.0

30000.0

C
um

ul
at

iv
e

C
pu

 ti
m

e

Cumulative time as a function of % of non-serializable goals

SNLP
TOCL
SNLP+SEBG
TOCL+SEBG
SNLP+IEBG
TOCL+IEBG

0.0 25.0 50.0 75.0 100.0
% of non-serializable goals (from ART-MD-NS)

0.0

20.0

40.0

60.0

80.0

100.0

%
 P

ro
bl

em
s

so
lv

ed
 w

ith
in

 ti
m

e
bo

un
d

% Problems solved as a function of % of non-serializable goals

SNLP
TOCL
SNLP+SEBG
TOCL+SEBG
SNLP+IEBG
TOCL+IEBG

Figure 4: Cumulative performance as a function of % of non-serializable sub-goals

more significant than that of TOCL.8 The plots in Figure 3 compare
the performance of TOCL and SNLP for all three reuse strategies
in this domain. The left one plots the cumulative planning time as
a function of the problem number (with the problems sorted in the
increasing order of difficulty). The right plot shows the average cpu
time taken by each planner as a function of the plan length. We see
that in IEBG mode SNLP significantly outperforms TOCL in the
ability to exploit stored plans both in terms of cumulative time, and
in terms of solvability horizon.
Experiments in Mixed Domains: The test domains ART-MD and
ART-MD-NS above were somewhat extreme in the sense that the
former only has serializable goals while the latter only has non-
serializable goals. More typically, we would expect to see a mixture
of independent, serializable and non-serializable goals in a problem
distribution. To understand how the effectiveness of the various
reuse strategies vary for such mixed problem distributions, we ex-
perimented with a mixed domain obtained by combining the actions
of ART-IND (the domain with independentsubgoals)and ART-MD-
NS (the domain with non-serializable subgoals) domains (shown in
Figure 2). Five different training and testing suites, each containing
a different (pre-specified) percentage of non-serializable goals in the
problem distribution, were generated. We experimented with prob-
lem sets containing 0, 25, 50, 75 and 100% non-serializable goals
(where 0% corresponding to the problem set having goals drawn
solely from ART-IND, and 100% corresponding to the problem set
with goals drawn solely from ART-MD-NS). For each mixture, 50
training problems and 30 testing problems were generated randomly,
as discussed before. Given the inability of TOPI to support IEBG,
we concentrated on comparisons between SNLP and TOCL.

The plots in Figure 4 summarize the performance in each problem
set as a function of the percentage of the non-serializable goals in
the problem set. The plot on the left compares the cumulative time
taken by each strategy for solving all the problems in the test suite of
each of the 5 problem sets The plot on the right shows the percentage
problems successfully solved within the time bound by each strategy
for each problem set. Once again, we note that SNLP using IEBG
shows the best performance in terms of both the cumulative time
and the percentage problems solved. IEBG strategy is also the best
strategy for TOCL, but turns out to be considerably less effective
than the IEBG strategy for SNLP. More interestingly, we see that the

8Using the statistical tests for censored data advocated by Etzioni in [2],
we find that the hypothesis that SNLP+IEBG is faster than SNLP as well
as the hypothesis that SNLP+IEBG is faster than TOCL+IEBG are both
supported with very high significance levels by our experimental data. The
p-value is bounded above by 0:000 for both the signed test, and the more
conservative censored signed-rank test. The hypothesis that TOCL+IEBG is
faster than TOCL is however supported with a much lower significance level
(with a p-value of :13 for sign test and :89 for the censored signed-rank test).

performance of IEBG strategy compared to the base-level planner
improves as the percentage of non-serializable goals in the problem
set increases for both SNLP and TOCL. By the same token, we also
note that the relative performance of SEBG strategy worsens with
increased percentage of non-serializable goals for both SNLP and
TOCL.
Summary: The results in our empirical studies are consistent with
our hypothesis regarding the superiority of PO planners in exploit-
ing stored macros. First, we showed that TOPI fails to improve
its performance when faced with interleavable macros, while SNLP
and TOCL can both exploit them. Next we showed that SNLP is
more efficient in exploiting stored macros than TOCL. In particular,
the strategy of using SNLP planner with IEBG reuse strategy signif-
icantly outperforms all the other strategies including TOCL+IEBG,
in most cases. The higher cost of TOCL+IEBG strategy can itself be
explained by the fact that TOCL generates partial plans correspond-
ing to each possible interleaving of the macro with the new steps,
while SNLP can maintain partially ordered plan and interleave the
steps as necessary.

5. Related Work
Starting with STRIPS, stored plans have traditionally been reused as
opaque macro operators that cannot be interleaved during planning.
We believe that this was largely due to the limitations imposed by
the underlying state-based planners. It is of course possible to
get the effect of reuse of interleavable macros within state-based
planning indirectly through the use of single operator macros (aka
preference search control rules [14]). However, it is not clear what
are the advantages of starting with a simplistic planner and get
interleavability indirectly, when more sophisticated planners, such
as PO planners, allow interleavability naturally. More generally,
we believe that eager compilation strategies such as search control
rules are complementary to rather than competing with more lazy
learning strategies such as plan reuse. In some cases, the planner
is better served by the lazy strategy of retrieving and modifying
a large plan, rather than the eager strategy of compiling each
incoming plan into search control rules. In the former, the ability
to interleave is essential, and planners like STRIPS would be at
a natural disadvantage. Interestingly enough, this was one of the
original reasons for the shift from state based planning of STRIPS
to plan-space based partial-order planning of NOAH, within the
planning community. As McDermott [13, p. 413] remarks, if you
want the ability improve performance by piecing large canned plans
together, postponing decisions about how these plans will interact,
then partial order planning is in some sense the inevitable choice.

In [19, 20], Veloso et. al. advocate basing learning techniques
within state-based (total ordering) planning without linearity as-
sumption, rather than within partial order planning. They justify this

by arguing that the former have all the advantages of PO planners,
and also scale up better to more expressive action representations
because checking necessary truth of a proposition becomes NP-hard
for partially ordered plans containing such actions. To begin with,
as we discussed in Section 2., the inability to interleave macros
is due to the limited refinement strategies allowed by a state-based
planner, and has little to do with whether or not the planner makes
linearity assumption. Secondly, the argument regarding the relative
difficulty of scaling up the partial ordering planners to more ex-
pressive action representations is based on the (mistaken) premise
that a PO planner has to interpret the full (necessary and sufficient)
modal truth criterion for PO plans during each search iteration. Re-
cent work [7, 12, 15] amply demonstrates that sound and complete
partial ordering planners do not necessarily have to interpret the
full-blown modal truth criterion at each iteration (since they only
need completeness in the space of ground operator sequences rather
than in the space of PO plans), and thus can retain their relative
advantages over total ordering planners even with more expressive
action representations. This, coupled with our experiments showing
the superiority of PO planners in exploiting stored plans, make PO
planning an attractive framework for doing plan reuse.

The concentration on state-based planning has also been true
of much of the speedup learning work within planning, including
search control rules and precondition abstraction. In [14, p. 83]
Minton et. al. seem to justify this by the observation: ‘‘[..] the
more clever the underlying problem solver is, the more difficult the
job will be for the learning component’’. Preferring a state-based
planning strategy only to make learning easier seemsto be some what
unsatisfactory, especially given that there exist more sophisticated
planning strategies that avoid many of the inefficiencies of the
state-based planners. Moreover, we believe that the shift to more
sophisticated planning strategies is not just an implementation issue;
it may also lead to qualitatively different priorities in techniques as
well as target concepts worth learning. As an example, one source
of the inefficiency of STRIPS and other state-based planners stems
from the fact that they confound the execution order (i.e., the order
in which the goals are achieved during execution) with the planning
order (i.e., the order in which the goals are attacked during planning).
As we shift to planners that search in the space of plans, such as PO
planners, planning order is cleanly separated from execution order;
and many of the inefficiencies of state-based planners are naturally
avoided. Thus, learning strategies and target concepts that are
designed with state-based planners in mind may be of limited utility
when we shift to more flexible planners. As an example, ‘‘goal order
preference rules’’ of the type ‘‘work on on(y; z) before on(x; y)’’,
learned by EBL strategies in blocks world, are not that useful for
partial order planners, which avoid premature step orderings to begin
with. Similarly, in [17] Smith and Peot argue that may of the static
abstractions generated with state-based planners in mind (e.g. [9]),
impose unnecessaryand sometimes detrimental ordering constraints,
when used in conjunction with the more flexible and efficient partial
order planning strategies. All of this, in our view, argues in favor
of situating research on learning to improve planning performance
within the context of more flexible and efficient planning paradigms
such as partial order planning.

6. Concluding Remarks
In this paper, we have addressed the issue of relative utility of
basing EBG based plan reuse strategies in partial ordering vs. total
ordering planning. We observed that while storage compactions
resulting from the use of PO plans can be exploited irrespective of
whether the underlying planner is a PO planner or a total ordering
planner, the PO planners do have distinct advantages when it comes
to the issue of effectively reusing the stored plans. In particular,
we showed that PO planners are significantly more efficient in
exploiting interleavable macros than state-based planners as well as
planners that search in the space of totally ordered planners. We
also showed that this capability substantially enhances the ability to
exploit stored macros to improve performance in many situations,
where the domain goals and problem distributions are such that a

significant percentage of stored macros are only interleavable with
respect to the outstanding goals of the planner. Although this can
happen both in domains with serializable subgoals and domains with
non-serializable subgoals, our experiments show that the effect is
particularly strong in the latter.

When taken in the context of recent work on comparative ad-
vantages of PO planners in plan generation [1, 12, 15], our study
strongly argues for situating EBG based plan reuse strategies within
the context of PO planning framework. We believe that such a
move would also benefit other learning strategies such as search
control rules and abstractions [4], and are currently working towards
verifying these intuitions.

Acknowledgements: We wish to thank Tony Barrett and Dan Weld
for distributing the code for SNLP, TOCL and TOPI planners.
We also thank Oren Etzioni, Laurie Ihrig, Smadar Kedar, Suresh
Katukam, Prasad Tadepalli and (anonymous) reviewers of AAAI-93
and ML-93 for helpful comments on a previous draft.

References
[1] A. Barrett and D. Weld. Partial order planning: Evaluating possible

efficiency gains. Technical Report 92-05-01, Department of Computer
Science and Engineering, University of Washington, June 1992.

[2] O. Etzioni and R. Etzioni. Statistical methods for analyzing speedup
learning experiments. Machine Learning. (To Appear).

[3] R. Fikes, P. Hart, and N. Nilsson. Learning and executing generalized
robot plans. Artificial Intelligence, 3(4):251--288, 1972.

[4] S. Kambhampati. Utility tradeoffs in incremental plan modification and
reuse. In Proc. AAAI Spring Symp. on Computational Considerations
in Supporting Incremental Modification and Reuse, 1992

[5] S. Kambhampati and J.A. Hendler. A validation structure based theory
of plan modification and reuse. Artificial Intelligence, 55(2-3), June
1992.

[6] S. Kambhampati. Exploiting causal structure to control retrieval and
refitting during plan reuse. Computational Intelligence (To appear).

[7] S. Kambhampati and D.S. Nau. On the Nature and Role of Modal
Truth Criteria in Planning. University of Maryland Inst. for Systems
Res. Tech. Rep. ISR-TR-93-30, 1993.

[8] S. Kambhampati and S. Kedar. A unified framework for explanation-
basedgeneralizationof partially orderedand partially instantiated plans.
Technical Report (ASU-CS-TR 92-008), Arizona State University,
1992. (A preliminary version appears in Proc. 9th AAAI, 1991).

[9] Craig Knoblock. Learning abstraction hierarchies for problem solving.
In Proc. 8th AAAI, pages 923--928, 1990.

[10] R. Korf. Planning as Search: A quantitative approach. Artificial
Intelligence, 33(1), 1987.

[11] J. Allen and P. Langley and S. Matwin. Knowledge and Regularity
in Planning. In Proc. AAAI Symp. on Computational Consideration in
Supporting Incremental Modification and Reuse, 1992.

[12] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In
Proc. 9th AAAI, 1991.

[13] D. McDermott. Regression Planning. Intl. Jour. Intell. Systems, 6:357-
416, 1991.

[14] S. Minton, J.G. Carbonell, C.A. Knoblock, D.R. Kuokka, O. Etzioni and
Y. Gil. Explanation-based Learning: A problem solving perspective.
Artificial Intelligence, vol 40, 1989.

[15] S. Minton, M. Drummond, J. Bresina, and A. Philips. Total order
vs. partial order planning: Factors influencing performance. In Proc.
KR-92

[16] A. Segre, C. Elkan, and A. Russell. A critical look at experimental
evaluation of EBL. Machine Learning, 6(2), 1991.

[17] D.E. Smith and M.A. Peot. A critical look at Knoblock’s hierarchy
mechanism. In Proc. 1st Intl. Conf. on AI Planning Systems, 1992.

[18] P. Tadepalli and R. Isukapalli. Learning plan knowledge from sim-
ulators. In Proc. workshop on Knowledge compilation and speedup
learning.

[19] M. M. Veloso, M. A. Perez, and J. G. Carbonell. Nonlinear planning
with parallel resource allocation. In Proc. DARPA Planning workshop
pages 207--212, November 1990.

[20] M.M. Veloso. Learning by Analogical Reasoning in General Problem
Solving. PhD thesis, Carnegie-Mellon University, 1992.

