
Answering Imprecise Database Queries : A Novel
Approach

Ullas Nambiar
Dept. of Computer Science

Arizona State University
USA

mallu@asu.edu

Subbarao Kambhampati ∗

Dept. of Computer Science
Arizona State University

USA

rao@asu.edu

ABSTRACT
A growing number of databases especially those published

on the Web are becoming available to external users. Users

of these databases are provided simple form-based query in-

terfaces that hide the underlying schematic details. Con-

strained by the expressiveness of the query interface users

often have difficulty in articulating a precise query over the

database. Supporting imprecise queries over such systems

would allow users to quickly find relevant answers without

iteratively refining their queries. For databases to support

imprecise queries they must provide answers that closely

match the query constraints. In this paper we focus on an-

swering imprecise user queries without changing the existing

database system. We propose to support imprecise queries

over a database by identifying a set of related precise queries

that provide answers that are relevant to the user given

query. We present a domain independent approach based

on information retrieval techniques to estimate the distance

between queries. To demonstrate the utility and usefulness

of our approach we perform usability tests and provide re-

sults.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational databases; H.3.3 [Information

Storage and Retrieval]: Query formulation, Retrieval mod-

els

General Terms
Data Management

Keywords
Imprecise queries, relational database, query similarity

∗This research is supported in part by Arizona State Uni-
versity grant ECR-A601.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIDM’03, November 7–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-725-7/03/0011 ...$5.00.

1. INTRODUCTION
The rapid expansion of the Internet has made a variety

of databases, including bibliographies, scientific databases,

travel reservation systems and vendor databases accessible

to a large number of lay external users. The increased vis-

ibility of these systems has brought about a drastic change

in their average user profile from tech-savvy, highly trained

professionals to lay users demanding “instant gratification”.

Therefore most databases available on the Internet and Web

provide easy to use form-based interface for users to inter-

act with the database. The user requests are automatically

converted to queries over the database. These form-based

interfaces although easy to use come at a price: reduced ex-

pressibility of the queries, allowing only conjunctive queries

with selection predicates to be issued over the database. The

user queries are specified by filling in the form fields, impos-

ing strict constraints (mostly equality) on the attribute val-

ues stored in the database. Such queries, however, can lead

to unsatisfactory results since the users must express their

information need as a conjunctive selection query. The dif-

ficulty is compounded by the increasing complexity of data

available in the databases like hypertext documents and im-

ages. The variety of datatypes make it difficult to formulate

exact queries on them. Often users must reformulate their

queries a number of times before they can obtain a satisfac-

tory answer. Thus the lack of knowledge about the contents

of the database and the limited query capability of the inter-

face can result in the user not obtaining satisfactory answers

from the database. The above problem can be solved by pro-

viding similar answers if exact answers are not present. The

answers can be ranked based on their relevance to the user

query. We use the example below to further motivate the

problem.

Example: Suppose Jane is searching a car database for

SUVs. Most SUVs have unique model names. Hence Jane

must convert the general query SUV to exact queries bind-

ing the attribute model. To find all SUVs in the database,

a user must know the model names of all SUVs. Usually

the user might know a couple of SUV models, say ”Nissan

PathFinder”, ”Ford Escape” and would end up just search-

ing for them. Thus, to get satisfactory results Jane must

iteratively change her search criteria and submit queries to

the database. But if the car database were to provide similar

answers to a query apart from the exact answers, Jane could



find all SUVs in the database by asking the query model=

”Ford Escape”.

Challenges: We refer to queries that require tuples not

exactly matching the constraints as imprecise queries while

those requiring exactly matching tuples are referred to as

precise queries. Supporting imprecise queries over databases

necessitates a system that integrates similarity search paradigm

over structured and semi-structured data. Given an impre-

cise query Q over such a system, the result should be a set of

tuples ranked according to their similarity to the query. Es-

timating the similarity between the query and the tuples of

the database is a difficult problem. To simplify the problem

existing approaches [7, 5] for answering imprecise queries as-

sume availability of a user given distance measure between

every pair of values binding an attribute. Also these sys-

tems redefine the operators for selection, projection, join

etc. to generate ranked set of tuples by using the distance

measures. Thus enabling support for imprecise queries over

existing databases involves modifying the database and is

clearly a costly endeavor.

Our Contributions: In this paper we propose a domain-

independent solution for answering imprecise queries over a

database without modifying the existing database. We add a

middleware system, IQE (Imprecise Query Engine), between

the existing database and the users to support imprecise

queries. Given an imprecise query Q over a relation R, the

result is a set of tuples ranked according to their similarity to

Q. More precisely, apart from tuples exactly matching the

query constraints, answers to imprecise queries also contain

tuples that have values similar to the constraints. But exist-

ing databases only support precise queries i.e. queries requir-

ing tuples that exactly match the query constraints. There-

fore given Q, R will only return tuples exactly matching Q.

Then to extract tuples similar to Q from R, one must ex-

tract additional tuples by issuing other precise queries over

R and determine their similarity to Q.

The difficulty here is two-fold. First is identifying addi-

tional queries over R that have answers similar to Q. Sec-

ond is to keep the cost of issuing queries low while ensuring

enough tuples satisfying Q are obtained. This brings up

another difficult problem of estimating inter-query similar-

ity. To mitigate the problem of generating new queries with

non-empty answersets, we assume a workload of the database

containing queries over R is available. Given the workload,

our strategy is to map the imprecise query Q to a precise

query, say qp, in the workload. Then we will determine the

similarity of qp to other queries in the workload. To estimate

the similarity between two queries we use the document sim-

ilarity metric, Jaccard Similarity [3], over the answersets of

the two queries. The answer to query Q is a ranked set of tu-

ples formed by taking a union of the answer tuples of queries

similar to qp.

In the next section, Section 2, we give an overview of our

approach, define the needed terminology and describe a pos-

sible architecture for supporting imprecise queries. Section 3

describes a domain-independent approach to estimate query

similarity. In Section 4, we conduct a user study and pro-

vide results indicating the high precision of the answers we

provide to imprecise queries. Related work is discussed in

Section 5. A discussion regarding assumptions made and fu-

ture directions is done in Section 6. Finally we summarize

our contributions in Section 7.

2. OVERVIEW
Imprecise Query: A user query that only requires data

closely matching the query constraint is an imprecise query.

For example, the query ”Movie like Benhur” is an imprecise

query.

Precise Query: A user query that requires data exactly

matching the query constraint is a precise query. An impre-

cise query can be converted to a precise query by tightening

the relation in the query constraint. For example, tighten-

ing the relation ”like” to ”equal-to” in the imprecise query

above gives us the precise query ”Movie = Benhur”.

Let M be a relational database and R a relation of M

that is published on the Internet. M provides a form-based

interface for querying the data. Then, for any query Q, the

answer will be a set of tuples exactly matching the query con-

straint or an empty set. Thus all queries over M are treated

as precise queries. Hence to support imprecise queries over

M we add an imprecise query engine, IQE, as middleware

between the users and the database M . Figure 1 presents

a schematic of the proposed solution. Given an imprecise

query Qipr, the imprecise query engine must then identify

all tuples of R that are similar to Qipr. That is,

Ans(Qipr) = {x|Sim(Q, x) ∈ (0, 1], x ∈ R}

Ans(Qipr) can be divided into two sets, one containing

tuples only showing similarity value of 1 with Qipr and the

other containing all the remaining tuples. The first set con-

tains all the tuples that satisfy a precise query Qpr derived

from Qipr. The second set can be approximated as contain-

ing tuples that are similar to the tuples in the first set. Thus,

we can write Ans(Qipr) as

Ans(Qipr) = Tuples(Qpr) + R
′

where R
′ = {y|Sim(y, z) ∈ (0, 1), y ∈ R, z ∈ Tuples(Qpr)}

The database M accepts precise queries and hence we can

obtain tuples for Qpr from M . Then to find tuples similar to

tuples of Qpr, IQE must access the remaining tuples in M

and determine the similarity with the tuples of Qpr. Since

accessing all tuples of M to answer each imprecise query

encountered by IQE is not a feasible solution, we propose

an alternate approach to answer Qipr by issuing a set of

queries whose tuples may be similar to Qpr.

Ans(Qipr) ≈ Tuples(Qpr) + Tuples(Qot) ∼ Tuples(Qpr)

The difficulty arises in determining queries whose results

will be similar to that of Qpr. Issuing queries at random will

lead to retrieval of a large number of tuples which are not

similar to the user query. Also it would be expensive in terms

of the cost of querying the sources and identifying the similar

tuples. Moreover to generate queries other than Qpr, the

IQE will need to know the various values that satisfactorily

bind the different attributes of the relation. The problem of



Similarity Estimator


similarity


estimation


Workload


SimQuery


Engine


Ranked


Results


WWW

Precise 


Query


Optimizer


Exact


Matches
Database


Web Database System


bags


Queries /  Resultsets


parsing


similarity matrix


Similarity Estimator


similarity


estimation


Workload


SimQuery


Engine


Ranked


Results


WWW

Precise 


Query


Optimizer


Exact


Matches
Database


Web Database System


bags


Queries /  Resultsets


parsing


similarity matrix


Figure 1: Imprecise Query Engine

additional queries can be resolved by maintaining a query

log, Qlog, of frequent queries issued on the database. This

still leaves open the question of finding the correct set of

additional queries whose results will show similarity to Qpr.

For this we propose to identify queries that are similar to Qpr

from the queries appearing in the workload of the database

M .

Ans(Qipr) ≈ Tuples(Qpr) + Tuples(Q′)

where Q
′ ∼ Qpr, Q

′ ∈ Qlog

Therefore, to answer an imprecise query Qipr over relation

R, IQE will first identify a set of precise queries similar to

Qipr from the workload and issue them over R. The answer

to Qipr is an ordered union of the answers of the precise

queries, with each tuple in the union inheriting the similar-

ity of its generating precise query. The similarity between

queries can be due to the data they share and/or due to a

similarity perceived by the user. Depending on the similarity

measure chosen, the query similarities would be calculated

as under,

• Data Similarity: Given two queries Q1 and Q2 binding

same attributes, the similarity shown by them over the

unbound attributes is called as data similarity. The

similarity is defined by a distance function associated

with each attribute of the database relation. In this

paper we will use equality as the distance measure for

all the attributes.

• Semantic Similarity: We define semantic similarity be-

tween two queries Q1 and Q2, as a user perceived dis-

tance between the queries based on the semantic rela-

tionships between values binding the query attributes.

Domain ontologies can be used to determine the se-

mantic distances between values of an attribute. The

semantic distance between two queries can then be es-

timated as a weighted sum of the semantic distance

between their values.

Estimating semantic similarity between queries requires

access to domain-specific information e.g. ontologies, value

hierarchies etc. Our motivation is to propose a domain-

independent approach for answering imprecise queries. Hence

we use data similarity metric to compute the similarity among

queries.

2.1 Architecture
The schematic diagram of a web database system extended

to support imprecise queries is given in Figure 1. Although

we chose a web database to explain our system, our ap-

proach is applicable to structured databases that are not

Internet accessible. We start with an existing Web database

accepting only precise queries over a form-based interface.

Mapping from the form-based interface to database schema

is done by the precise query optimizer of the database. To

this existing architecture we add :

• A SimQuery Engine, that converts the imprecise

query into equivalent precise query. If the precise query

is not present in the workload seen by the database,

the SimQuery Engine will determine queries that are

close generalizations of the precise query. It then iden-

tifies the related precise queries, extracts the results

and presents a ranked list of tuples for the imprecise

query. All answer tuples of a precise query inherit the

similarity shown by the query.

• A Similarity Estimator, to calculate the similarity

between each pair of queries in the query log. As shown

in Figure 1, the Content Similarity Estimator begins

by extracting workload queries whose occurrence fre-

quency is above a pre-defined threshold. If results of

these queries were not materialized as part of the work-

load, Similarity Estimator will probe the database to

extract and materialize the results. The resultsets are

then parsed to extract frequently occurring keywords

for every attribute in the resultset. For every query ex-

tracted from the workload a corresponding document

containing the bags of keywords is created. The simi-

larity between two queries is then estimated as the data

similarity shown by their corresponding documents.

In the next section, we describe our approach for comput-



Author=Ullman

Co-author C. Li:5, R. Motwani:7, ....

Title data-mining:3, optimizing:5, ....

Subject integration:5, learning:2, ....

Conference SIGMOD:5, VLDB:5, ....

Year 2000:6, 1999:5, ....

Table 1: SuperTuple for query Publica-

tions(Author=Ullman)

ing data similarity and provide two similarity coefficients to

estimate the similarity between queries.

3. ESTIMATING QUERY SIMILARITY
Suppose query Q is an imprecise query over a database M

and Q̂ is a set of precise queries appearing in the workload of

M . To answer the imprecise query Q, we must first identify

all the queries in Q̂ that are similar to Q. The similarity

between two queries is calculated as the similarity between

their answer tuples. Under the relational data model, two

tuples are similar only if they show same values for all the at-

tributes. Therefore using the relational model to determine

similarity between queries would result in identifying over-

lapping queries (having same answer tuples) as being similar.

But two queries can be considered similar even if their tuples

only match partially, or if they show transitive correlations

i.e. they are both similar to a common query. E.g., let

Author=Ullman and Author=Widom be two queries on the

relation Publications. The author names show no similarity,

yet the authors may have publications that fall under the

same Subject or appear in the same Conference or Year or a

combination of all these. We are interested in capturing and

using such relationships to identify the precise queries re-

lated to a given imprecise query. If we maintained the strict

tuple structure for queries, queries would be similar only if

they contained the same tuples. Hence only if, Ullman and

Widom, were co-authors would they be seen as related. But

Ullman and Widom are related because they work in the

same area and write papers in related topics. We believe

moving from the relational model to a vector space model

will help in capturing additional relations between queries.

Therefore we represent query results as a document of key-

words and not as a set of tuples thereby moving from the

relational model to a vector space model.

We convert the resultset for each query q ∈ Q̂ to a struc-

ture called supertuple. The supertuple contains a bag of

keywords for each attribute in the relation not bound by the

query. The keywords are extracted from the resultset of the

query. For categorical attributes, each distinct value the at-

tribute takes is considered a keyword. The Table 1 shows

the supertuple for the query (Author = Ullman) over the

relation Publications as a 2-column tabular structure. To

represent a bag of keywords we extend the semantics of a

set of keywords by associating an occurrence count for each

member of the set. Thus for attribute Conference in Table 1,

we see ’Sigmod’ with an occurrence count of 5, suggesting

that Author has 5 tuples that bind the attribute Conference

with value ’Sigmod’.

The similarity between two queries is estimated as the

similarity between the supertuples of the queries. We use

the Jaccard Similarity metric to estimate similarity between

supertuples. The supertuples contain bags of keywords for

each attribute in the relation R over which the queries are

issued. Hence we use Jaccard Similarity [3] with bag seman-

tics to determine the similarity between two supertuples.

The Jaccard Coefficient (SimJ) is calculated as

SimJ(A, B) =
|A ∩ B|

|A ∪ B|

We developed the following two similarity measures based

on Jaccard Similarity to estimate the similarity between

queries:

• Doc-Doc similarity: In this method, we consider each

supertuple STQ, as a document. A single bag repre-

senting all the words in the supertuple is generated.

The similarity between two queries Q1 and Q2 is then

determined as

Simdoc−doc(Q1, Q2) = SimJ(STQ1, STQ2)

• Weighted-Attribute similarity: Unlike pure text docu-
ments, supertuples would rarely share keywords across
attributes. Also users may not give the same impor-
tance to all the attributes while determining similarity
between tuples in a relation. E.g., even if two authors
published papers in different years, their papers could
be quite similar if the topic of the publications are
related. Hence in this approach, given two queries,
we first generate bags for each attribute in the corre-
sponding supertuple. Next we estimate the similarity
between bags of same attributes of the two supertuples.
Finally the similarity between queries is computed as
a weighted sum of the attribute bag similarities. Cal-
culating the similarity in this manner allows us to give
more importance to attributes of interest to the user.
The weighted-attribute similarity between supertuples
is calculated as

Simwatr(Q1, Q2) =

m∑

i=1

SimJ (BagQ1(Ai), BagQ2(Ai))×Wi

where Q1, Q2 have m attributes

Query Similarity Matrix

Using Algorithm 1 we compute a similarity matrix for the

queries in query log. The similarity between every pair of

queries in the query log is calculated using both the Doc-Doc

and Weighted-Attribute similarity metrics. Since,

SimJ(Q1, Q2) = SimJ(Q2, Q1)

the similarity matrix is symmetric. Therefore we need to

only compute the upper-half of the matrix. A minimal sim-

ilarity threshold τ is used to prune the number of queries

found similar to a query. The weight vector W, assigns a

weight given to the similarity shown by each attribute while

computing the Weighted-Attribute similarity. The sum of

weights given to all the attributes is 1. Determining a good

weighing scheme to accurately reflect the concerns of the

user is a difficult task.



Algorithm 1 Creating Query Similarity Matrix

Require: Query log size - N , No of Attributes - m, At-

tribute Bags, Attribute Weights W , Similarity Threshold

τ

BEGIN

SimMatrix = null.

for i = 1 to N-1 do

iBags = Get Attribute Bags(i).

for j = i + 1 to N do

jBags = Get Attribute Bags(j).

for k = 1 to m do

iDoc = Append(iDoc,iBags[k]).

jDoc = Append(jDoc,jBags[k]).

AtSim[k] = |iBags[k]∩jBags[k]|
|iBags[k]∪jBags[k]|

end for

Simdd = |iDoc∩jDoc

|iDoc∪jDoc|

If (Simdd < τ)Simdd = 0.

Simwa =
∑m

k=1 AtSim[k] × W [k]

If (Simwa < τ)Simwa = 0.

SimMatrix[i][j] = [Simdd, Simwa]

SimMatrix[j][i] = SimMatrix[i][j].

end for

end for

Return SimMatrix.

END

4. EXPERIMENTS

4.1 Experimental Setup
To evaluate the effectiveness of our approach in answering

imprecise queries, we set up a prototype database system

that extends BibFinder [6]. BibFinder is a publicly-available

Web data integration system, projecting a unified schema

over multiple bibliography databases. BibFinder provides a

formed-based interface and accepts queries over the relation

Publications(Author, T itle, Conference, Journal, Y ear)

Several features of BibFinder validate the assumptions we

make while developing our approach. Queries over BibFinder

are conjuncts of attribute-value pairs. Even though BibFinder

integrates multiple Web data sources with varying query ca-

pabilities, it displays the behavior similar to that of a re-

lational database. BibFinder only returns tuples that ex-

actly match the user query. Results generated by BibFinder

contain values for all attributes in the relation. BibFinder

can only access the underlying data using queries, hence

any approach at answering imprecise queries that requires

BibFinder to access all the tuples would not be feasible.

Our prototype system is designed over the architecture

shown in Figure 1. We use the precise query optimizer and

the query log of BibFinder to identify the queries from which

to learn the similarity matrix. Table 2 lists the time taken

and size of results produced at various stages of our algo-

rithm. A Linux server running on Intel Celeron- 2.2 Ghz

with 512Mb RAM was used to process the queries and to

calculate the query similarities. We used 10000 queries from

Algorithm Step Time Size

SuperTuple Generation 126 sec 21 Mb

Similarity Estimation 10 hours 6.0 Mb

Table 2: Timing Results and Space Usage

BibFinder’s query log1 in our prototype system.

The complexity of the similarity estimation algorithm, Al-

gorithm 1 is O(N2), where N is the number of queries in the

query log. Hence the similarity matrix creation time is high,

10 hours, as we must compare each query with every other

query in the query log as shown in Algorithm 1. We cal-

culated both the doc-doc and weighted-attribute similarity

between each pair of queries in the query log. To estimate

the weighted-attribute similarity we assigned a weight of 0.3

for similarity over attribute Author, 0.4 for Title, 0.25 for

Conference and 0.05 for year. We used a lower bound of 0.08

on the similarity between queries to reduce the number of

similar queries. The same set of queries were used to com-

pare the accuracy of similar queries identified by doc-doc

similarity and weighted-attribute similarity.

To determine the correctness of the queries we suggest as

being similar, we setup a user study. We asked 3 graduate

students, who are frequent users of BibFinder to evaluate

the relevance of the queries we suggest. Each student was

provided with a GUI (see Figure 2) that allowed them to ask

any query from among the 10000 queries in our prototype

system. The GUI can execute both precise and imprecise

queries. When a precise query is issued, only those tuples

that exactly match the query are returned. For an imprecise

query, a list of queries in descending order of similarity to

the imprecise query is returned. The user can view the re-

sults of the related query by selecting the query. Each user

was asked to pick 30 queries of their choice. For each im-

precise query issued by the user, he/she had to determine

how many among the top10 similar queries they considered

similar. Also users were asked to report whether they found

a query Q′ similar to Q based on:

• Q′ having related terms: The values binding attributes

of Q′ are related to the those in Q. E.g. term e-learning

is relevant to Web-based learning and hence queries

containing these terms would be considered similar to

each other.

• Q′ having related results: The results of Q′ are relevant

to Q, although no terms binding Q′ are found relevant

to Q. E.g. the query Author=”Jaiwei Han” has results

closely related to query Title=”Data Mining” but the

terms in the query itself are not related.

For the queries they found not relevant, the users were to

describe the reason why they thought it was not relevant.

1BibFinder does not materialize the results of queries in its
query log. Hence we extracted the results of the workload
queries by probing BibFinder. Time to probe is approxi-
mately 1 hour if we exclude the delay between queries. The
probing phase can be avoided by caching the results of the
queries asked over the system.



Figure 2: User Interface

‘

0


0.25


0.5


0.75


1


1
 11
 21


Query 


R
e

le
v

a
n

c
e

 E
s

ti
m

a
ti

o
n

 E
rr

o
r


Doc-Doc Similarity


Weighted-Attribute Similarity


Figure 3: Error in Top-10 Estimation

4.2 Results of User Study
Table 3 contains a sample set of queries recommended as

being similar to three imprecise queries. Figure 3 illustrates

the error in estimating the top-10 queries to a user query.

The error is calculated as the number of queries among the

top−10 that were classified as not relevant by the user. The

error is calculated as,

Error(Related(Q)) =
|Not Relevant(Related(Q))|

10

=
10 − Relevant(Related(Q))

10

75


80


85


 R
e

le
v

a
n

c
e

 o
f 

to
p

-1
0




1
 2
 3


User


Doc-Doc


Weighted-attribute


Figure 4: Precision of Top-10 Queries

= 1 − Precison(Related(Q))

Both doc-doc and weighted-average show less than 25%

average loss of precision. The almost similar performance

of doc-doc and weighted-average is surprising, even though

weighted-attribute uses additional domain specific informa-

tion in deciding the relevance. In fact, 2 out of 3 users

found the weighted-attribute similarity to be less relevant

than doc-doc as seen in Figure 4. This supports the hypoth-

esis that converting the domain knowledge to a set of weights

that capture the knowledge is a difficult task. The overall

high relevance shown by both the approaches is encouraging.

We believe that a larger corpus of queries would have im-

proved the relevance numbers even further. Hence we plan

to conduct a larger user study by extending BibFinder itself



Result-


relevant, 


35%


Query-


Relevant, 


65%


Figure 5: Relevance classification

Imprecise Query Title=”web-based learning”

Related Queries 0.19 Title=”e Learning”

0.16 Title=”Web Technology”

0.13 Conference=”WISE”

Imprecise Query Title=”Information Extraction”

Related Queries 0.16 Title=”information filtering”

0.13 Title=”Text Mining”

0.12 Title=”Relevance Feedback”

Imprecise Query Author=”Abiteboul”

Related Queries 0.3 Author=”vianu”

0.16 Author =”Dan Suciu”

0.13 Author=”Rakesh Agarwal”

Table 3: Relevant queries for 3 Imprecise queries

with the ability to support imprecise queries.

Figure 5 shows that on an average users found 65% of

the queries that users found as relevant had related terms

to the imprecise query they asked. For the remaining 35%,

users had to execute the query and look at the results. Most

similar queries that were classified as not relevant by users

contained a widely used term present in the imprecise query

or its answers. E.g. the query Title=”data warehouse” is

suggested as relevant to the query Title=”data integration”,

but users found it to be non relevant. This problem can

be mitigated by giving weights to terms appearing in the

query, with the common and widely used terms e.g. XML,

data, mining etc getting lower weights. Information retrieval

systems are faced with a similar problem of identifying query

keywords that are rare. These systems use the IDF (inverse

document frequency) value of keywords to identify and lower

the weights to frequently occurring keywords.

5. RELATED WORK
Early approaches for retrieving answers to imprecise queries

were based on theory of fuzzy sets. Fuzzy information sys-

tems [4] store attributes with imprecise values, like height=

“tall” and color=“blue or red”, allowing their retrieval with

fuzzy query languages. The WHIRL language [1] provides

approximate answers by converting the attribute values in

the database as vectors of text and ranking them using the

vector space model. In [5], Motro extends a conventional

database system to use data distances to interpret vague

queries by adding a similar-to operator. The data met-

rics required by the similar-to operator must be provided

by database designers. Binderberger [7] investigates meth-

ods to extend database systems to support similarity search

and query refinement over arbitrary abstract data types. A

number of similarity predicates and operators are defined

and an algebra over ranked sets is presented. The similarity

metrics to be used to compare various data types must be

provided by the users of the system. In [2], Goldman et.

al. propose to provide ranked answers to queries over Web

databases but require users to provide additional guidance

in deciding the similarity. Users must issue a find query and

a near query. The find query is the one for which ranked

results are desired. All the objects that are close to the set

of objects returned by the near query are considered as the

results for the find query. To make use of the proposed sys-

tem users would have to know what objects in the database

are closest to the objects they seek.

All the above systems, however are not applicable to exist-

ing databases since they assume non-standard data formats

and require new operators to estimate the inter-tuple dis-

tance metrics. More specifically without re-modelling and

restructuring the existing data and the operators, current

approaches cannot be used on existing databases. Further

they require large amounts of domain specific information

either pre-estimated or given by the user of the query and

may require access to all the tuples in the database to iden-

tify relevant queries. We proposed a domain independent

approach to provide similar answers to a query that does not

require the user to have in-depth knowledge of the system.

Further, our solution does not warrant any re-modelling of

the existing data or access to the entire database and hence

is easy to implement over existing Web databases and Web

mediation systems.

To control the cost of extracting related answers, we must

reduce the overlap shown by related queries. Ideally we

should execute the queries that will give high precision and

are least overlapped with queries already executed. In [6],

authors learn and use coverage and overlap statistics to ex-

ecute a single query over multiple overlapping sources. On

the other hand we execute multiple queries related to the

imprecise query over a single database while keeping over-

laps to a minimum. The difficulty is in maintaining a high

relevance of the results while reducing overlaps.

6. DISCUSSION AND FUTURE DIRECTIONS
In our discussions in this paper we assume that a query is

either completely precise or imprecise. But a user may want

to issue a query where the imprecision is over a subset of

the bound attributes, but has precise needs for the remain-

ing attributes. In the current approach we do not consider

such partially imprecise queries. Both precise and impre-

cise queries are represented as a conjunction of attribute

value pairs. The user decides whether the query is pre-

cise or imprecise based on her need for ranked answers. We

can easily extend our system to support partially imprecise



queries. Given any partially imprecise query Q′ we can split

its bound attributes into two distinct sets: precisely bound

and imprecisely bound. Using these two sets of attributes

we can create two new queries, one completely precise and

the other completely imprecise, each more general than Q′.

The answer tuples satisfying Q′ can be found by executing

the precise general query over the resultset of the imprecise

general query.

Only imprecise queries that are present in the query log

or map to some query in the query log are answered by our

system. Moreover to answer an imprecise query we need a

corresponding precise query that has a non-empty resultset.

We plan to extend our approach to answer queries that does

not map to any query in the query log. A possible solution

is to use co-occurrence analysis and scalar clustering tech-

niques to identify terms that are related to terms appearing

in the imprecise query [9]. Given an imprecise query Q over

relation R, we can identify another imprecise query Q′ from

the query log whose terms are closest those of Q. The queries

related to Q′ can then be used to find queries related to Q.

Another solution is to execute Q as a precise query over R

and to identify rare keywords appearing in the answerset.

Assuming we created a similar mapping for all the queries

in the query log, we can measure the similarity between Q

and other queries as the number of common keywords.

Large databases may contain thousands of queries in its

query log. BibFinder itself contains over 30, 000 queries in

its query log. Hence reducing the time for similarity esti-

mation is of utmost importance. Figure 6 presents the fre-

quency distribution of queries over BibFinder. 10% of the

keyword queries were asked 60% of the time. Thus we can

considerably reduce the time to estimate the similarity ma-

trix by only calculating the similarity for only the frequently

asked queries. Thus the algorithm complexity would become

O(K × N), where K << N . The number of queries can be

reduced even further by removing queries that were not re-

cently issued over the system. Since queries with too few

tuples would only be similar to small number of queries we

can remove them by keeping a lower limit on the selectivity

of queries stored in the query log. Reducing the queries used

for comparison, might reduce the precision of our results.

7. CONCLUSION
In this work, we introduced a new approach for answering

imprecise queries over a database. We use an information

retrieval based approach to find the similarity among queries

and use it to identify relevant precise queries to a given im-

precise query. To evaluate the effectiveness of our approach,

we performed experiments over a real Web database system,

BibFinder. The experiments indicate that the proposed ap-

proach is able to answer imprecise queries with high levels

of user satisfaction. The approach can be (and has been)

implemented without affecting the internals of a database

thereby showing that it could be easily implemented over

many of the existing databases.

Figure 6: Query frequency distribution (taken from

[8])

8. REFERENCES
[1] W. Cohen. Integration of heterogeneous databases

without common domains using queries based on

textual similarity. Proc. of SIGMOD, pages 201–212,

June 1998.

[2] R. Goldman, N .Shivakumar, S. Venkatasubramanian,

and H. Garcia-Molina. Proximity search in databases.

VLDB, 1998.

[3] T. Haveliwala, A. Gionis, D. Klein, and P Indyk.

Evaluating strategies for similarity search on the web.

Proceedings of WWW, Hawai, USA, May 2002.

[4] J.M. Morrissey. Imprecise information and uncertainty

in information systems. ACM Transactions on

Information Systems, 8:159–180, April 1990.

[5] A. Motro. Vague: A user interface to relational

databases that permits vague queries. ACM

Transactions on Office Information Systems,

6(3):187–214, 1998.

[6] Z. Nie, S. Kambhampati, and T. Hernandez.

BibFinder/StatMiner: Effectively Mining and Using

Coverage and Overlap Statistics in Data Integration.

VLDB, 2003.

[7] Micheal Ortega-Binderberger. Integrating Similarity

Based Retrieval and Query Refinement in Databases.

PhD thesis, UIUC, 2002.

[8] Z. Nie and S. Kambhampati. A Frequency Based

Approach for Mining Coverage Statistics in Data

Integration. to appear in ICDE 2004.

[9] R. Baeza-Yates and B. Ribiero-Neto. Modern

Information Retrieval. Addison Wesley Longman

Publishing, May 1999.


