Mining Approximate Functional Dependencies and
Concept Similarities to Answer Imprecise Queries

Ullas Nambiar
Dept of Computer Science & Engg
Arizona State University, USA

mallu@asu.edu

ABSTRACT

Current approaches for answering queries with imprecise
constraints require users to provide distance metrics and
importance measures for attributes of interest. In this pa-
per we focus on providing a domain and end-user indepen-
dent solution for supporting imprecise queries over Web
databases without affecting the underlying database. We
propose a query processing framework that integrates tech-
niques from IR and database research to efficiently deter-
mine answers for imprecise queries. We mine and use ap-
proximate functional dependencies between attributes to
create precise queries having tuples relevant to the given im-
precise query. An approach to automatically estimate the
semantic distances between values of categorical attributes
is also proposed. We provide preliminary results showing
the utility of our approach.

Keywords

Imprecise Queries, Tuple Similarity, Approximate Functional
Dependencies

1. INTRODUCTION

The rapid expansion of the World Wide Web has made a
variety of databases like bibliographies, scientific databases,
travel reservation systems, vendor databases etc. accessible
to a large number of lay external users. The increased vis-
ibility of these systems has brought about a drastic change
in their average user profile from tech-savvy, highly trained
professionals to lay users demanding “instant gratification”.
Often such users may not know how to precisely express
their needs and may formulate queries that lead to unsatis-
factory results. Although users may not know how to phrase
their queries, they can often tell which tuples are of inter-
est when presented with a mixed set of results with varying
degrees of relevance to the query.

Example: Suppose a user is searching a car database for
“sedans”. Since most sedans have unique model names, the
user must convert the general query sedan to queries binding
the attribute Model. To find all sedans in the database, the
user must iteratively change her search criteria and submit
queries to the database. Usually the user might know only
a couple of models and would end up just searching for
them. Thus limited domain knowledge combined with the

Copyright is held by the author/owner.
Seventh International Workshop on the Web and Databasds§B/2004),
June 17-18, 2004, Paris, France.

Subbarao Kambhampati
Dept of Computer Science & Engg
Arizona State University, USA

rao@asu.edu

inflexibility of the query interface can result in the user not
obtaining all the relevant results to a query. But if the
database were to provide similar answers to a query apart
from the exact answers, the user could find all sedans in the
database by asking a query such as Model like “Camry”. O

Problem Statement: Given a conjunctive query @ over a
relation R projected by the autonomous relational database
M, find all tuples of R that satisfy @ above a threshold of
relevance e. Specifically,

Ans(Q) = {z|z € R, Sim(Q,z) > ¢} where €€ {0,1}

The database M supports the boolean query processing
model (i.e. a tuple either satisfies or does not satisfy a
query). To access tuples of R one must issue structured
queries over R. The answers to (Q must be determined with-
out altering the data model of M. Moreover the solution
should require minimal domain-specific information. O

Challenges: Supporting imprecise queries over autonomous
Web enabled databases requires us to solve the following
problems:

e Model of similarity: Supporting imprecise queries ne-
cessitates the extension of the query processing model
from binary (where tuples either satisfy the query or
not) to a matter of the degree (to which a given tuple
is a satisfactory answer).

o Estimating Semantic similarity: Expecting ‘lay’ users
of the system to provide similarity metrics for esti-
mating the similarity among values binding a given
attribute is unrealistic. Hence an important but dif-
ficult issue we face is developing domain-independent
similarity functions that closely approximate “user be-
liefs”.

o Attribute ordering: To provide ranked answers to a
query, we must combine similarities shown over dis-
tinct attributes of the relation into a overall similarity
score for each tuple. While this measure may vary
from user to user, most users usually are unable to
correctly quantify the importance they ascribe to an
attribute. Hence another challenging issue we face is
to automatically (with minimal user input) determine
the importance ascribed to an attribute.

1.1 Overview of our approach

In response to these challenges, we propose a query pro-
cessing framework that integrates techniques from IR and
database literature to efficiently determine answers for im-
precise queries over autonomous databases. Below we begin
by describing the query representation model we use and ex-
plain how we map from imprecise to precise queries.

Precise Query: A user query that requires data exactly
matching the query constraint is a precise query. For exam-

. queries to measure tuple
Map: Convert Derive Base similarities
“like” to “=" - |SEL A »l Usi . -
— = bs > U:lslng t.AFDE find Prune tuples below
= relaxation order
Q. = Map(Q) Aps = QR threshold
Derive Extended Set by Return Ranked Set

Use Base Set as set of
relaxable selection

executing relaxed queries

Use Concept similarity

Figure 1: FlowGraph of our Approach

ple, the query
Q : —CarDB(Make = “Ford”)

is a precise query, all of whose answer tuples must have
attribute ‘Make’ bound by the value ‘Ford’.

Imprecise Query: A user query that requires a close but
not necessarily exact match is an imprecise query. Answers
to such a query must be ranked according to their close-
ness/similarity to the query constraints. For example, the
query

Q : —CarDB(Make like “Ford”)
is an imprecise query, the answers to which must have the

attribute ‘Make’ bound by a value similar to ‘Ford’.

Algorithm 1 Finding Relevant Answers

Require: Imprecise Query Q, Relation R, Threshold Tsim,
Concept Similarities, Approximate Functional Dependen-
cies (AFDs)
begin
Let RelaxOrder = FindAttributeOrder(R, AFDs).

Let Qpr = Map(Q) such that Aps = Qpr(R) & |Aps| > 0.
for k=1 to |Ass| do
Qrer = CreateQueries(Aps[k], RelaxOrder)
for j=1 to |Qre| do
Arel = Qrelm(R)
for n=1 to |A,«| do
simval = MeasureSimilarity (Are:[n],Aps[K]).
if simval > Tsipm then
Aes - Aes + Arel[n]~
end if
end for
end for
end for
Return Top-K(Aes).
end

Finding Relevant Answers: Figure 1 shows a flow graph
of our approach for answering an imprecise query. Algo-
rithm 1 gives further details of our approach. Specifically,
given an imprecise query Q,

Q : —CarDB(Model like like “10k”)

over the relation CarDB(Make, Model, Price, Year), we be-
gin by converting Q to a precise base query (which is equiv-
alent to replacing all “like” predicates with equality predi-
cates) with non-null result set over the database, Qpr. Thus
the base query Qpr is

Qpr : —CarDB(Model = “Camry”, Price = “10k”)

“Camry”, Price

The tuples of CarDB satisfying Qp- also satisfy the impre-
cise query Q. Thus answers to Qpr form the base set of

'In this paper, we assume that the resultset of the base
query is non-null. If the resultset of the base query is null,
then by iteratively relaxing the base query we may obtain
a query that has a non—nuﬁ resultset. The attributes to be
relaxed can be arbitrarily chosen.

answers to Q, Aps. Suppose Aps contains the tuples

Make = “Toyota”, Model = “Camry”, Price = “10k”,Year = “2000”

Make = “Toyota”, Model = “Camry”, Price = “10k”,Year = “2001”

The tuples in Aps exactly satisfy the base query Qpr. But
the user is also interested in tuples that may be similar to
the constraints in Q. Assuming we knew that “Honda Ac-
cord” and “Toyota Camry” are similar cars, then we could
also show tuples containing “Accord” to the user if these
tuples had values of Price or Year similar to tuples in Aps.
Thus,

Make = “Honda”, Model = “Accord”, Price = “9.8k”,Y ear = “2000”

could be seen as being similar to the first tuple in Aps and

therefore a possible answer to Q. We could also show other
Camrys whose Price and Year values are slightly different to
those of the tuples in Aps. Specifically, all tuples of CarDB
that have one or more binding values close to some tuple in
Aps can be considered as potential answers to query Q.

By extracting tuples having similarity above a predefined
threshold, Ts;m, to the tuples in the Ays, we can get a larger
subset of potential answers called extended set,A.s. But to
extract additional tuples we would require new queries. We
can identify new queries by considering each tuple in the
base set, Aps, as a relaxable selection query. However ran-
domly picking attributes of tuples to relax could generate
a large number of tuples of possibly low relevance. In the-
ory, the tuples closest to a tuple in the base set will have
differences in the attribute that least affect the binding val-
ues of other attributes. Approzimate functional dependen-
cies(AFDs) [11] capture relationships between attributes of
a relation and can be used to determine the degree to which
a change in binding value of an attribute affects other at-
tributes. Therefore we mine approximate dependencies be-
tween attributes of the relation and use them to determine
a heuristic to guide the relaxation process. Details about
our approach of using AFDs to create a relaxation order
are in Section 2. Relaxation involves extracting tuples by
identifying and executing new relaxed queries obtained by
reducing the constraints on an existing query.

Identifying possibly relevant answers only solves part of
the problem since we must now rank the tuples in terms
of the similarity they show to the seed tuples. We assume
that a similarity threshold T%;,, is available and only the
answers that are above this threshold are to be provided to
the user. This threshold may be user given or decided by
the system. The tuple similarity is estimated as a weighted
sum of similarities over distinct attributes in the relation.
That is,

Sim(t1,t2) = i Sim(h (Ai),tz(Ai)) X Wi

where |attributes(R)| =n and >, W; = 1. In this paper
we assume that attributes have either discrete numerical or
categorical binding values. We assume that the Euclidean
distance metric captures the semantic similarity between
numeric values. But no universal measure is available for
measuring the semantic distances between values binding a

categorical attribute. Hence in the Section 3 we present
a solution to automatically learn the semantic similarity
among values binding a categorical attribute. While esti-
mating the similarity between values is definitely an impor-
tant problem, an equally important issue is that of assigning
weights to the similarity shown by tuples over different at-
tributes. Users can be expected to assign weights to be used
for similarity shown over a particular attribute. However,
in [19, 18], our studies found users are not always able to
map the amount of importance they ascribe to an attribute
into a good numeric weight. Hence after determining the
attribute order for query relaxation, we will automatically
assign importance weights to attributes based on their or-
der i.e. attribute to be relaxed first is least important and
so gets lowest weight.

1.2 Organization

The rest of the paper is organized as follows. Section 2
explains how we use approximate functional dependencies
between attributes to guide the query relaxation process.
Section 3 describes our domain-independent approach for
estimating the semantic similarity among concepts binding
a categorical attribute. In Section 4, we provide prelimi-
nary results showing the accuracy of our concept learning
approach and the effectiveness of the query relaxation tech-
nique we develop. In Section 5, we compare our work with
research done in the areas of similarity search, cooperative
query answering and keyword search over databases, all of
which focus on providing answers to queries with relaxed
constraints. Finally, in Section 6, we summarize our contri-
butions and list the future directions for expansion of this
work .

2. QUERY RELAXATION USING AFDS

Our proposed solution for answering an imprecise query
requires us to generate new selection queries by relaxing the
constraints of tuples in the initial set £75. The underlying
motivation there is to identify tuples that are closest to some
tuple t € t;5. Randomly relaxing constraints and executing
queries will produce tuples in arbitrary order of similarity
thereby increasing the cost of answering the query. In the-
ory the tuples most similar to ¢ will have differences only in
the least important attribute. Therefore the first attribute
to be relaxed must be the least important attribute. We de-
fine least important attribute as the attribute whose binding
value, when changed, has minimal effect on values bind-
ing other attributes. Approximate Functional Dependencies
(AFDs) [11] efficiently capture such relations between at-
tributes. In the following we will explain how we use AFDs
to identify the importance of an attribute and thereby guide
the query relaxation process.

2.1 Definitions
Functional Dependency: For a relational schema R, an ex-
pression of the from X — A where X C Rand A € R is
a functional dependency over R. The dependency is said
to hold in a given relation r over R if for all pairs of tuples
t,u € r we have

t[B] = u[B] = t[A] = u[A4]

where A,Be X

Several algorithms [13, 12, 7, 17] have proposed various
measures to approximate functional dependencies that hold
in a database. Among them, the gs measure proposed by
Kivinen and Mannila [12], has been widely accepted. The
gs measure is defined as the minimum number of tuples
that need be removed from relation r so that X — Y is
an FD divided by the number of tuples in r. Huhtala et
al [11] have developed an algorithm, TANE, for efficiently
discovering all AFDs in a database whose g3 approximation
measure is below a user specified threshold. We use TANE

to extract the AFDs and approximate keys. We mine the
AFDs and keys using the a subset of the database extracted
by probing.

Approximate Functional Dependency: The functional de-
pendency X — A is an approximate functional dependency
if it does not hold over a small fraction of the tuples. Specif-
ically, X — A is an approximate functional dependency if
and only if error(X — A) is at most equal to an error thresh-
old € (0 < € < 1), where the error is measured as the fraction
of tuples that violate the dependency.

Approzimate Key: An attribute set X is a key if no two
distinct tuples agree on X. Let error(X) be the minimum
fraction of tuples that need to be removed from relation r for
X to be a key. If error(X) is < € then X is an approximate
key.

Some of the AFDs determined in the used car database
CarDB are: error(Model — Make) < 0.1, error(Model —
Price) < 0.6, error(Make, Price — Model) < .7 and er-
ror(Make, Year — Model)< 0.7.

2.2 Generating the relaxation order

Algorithm 2 Query Relaxation Order

Require: Relation R, Tuples(R)

begin

for ¢ = 0.1 t0 0.9 do
Sarps = ExtractAFDs(R, ¢).
S'AKeyS = ExtractKeys(R, €).

end for .

Kpest = BestSupport(Sakeys)-

NKey = Attributes(R)-Kpest-

for k=1 to |Kpes:| do
Witk eyk|=[Kpest [k],Decides(NKey, Kpest [K], Sarps)].

end for

for j=1 to |[NKey| do
WinKkey[k]|=[NKey[k],Depends(Kpest,NKey[k],
Sarps)].

end for

Return [Sort(Wikey), Sort(Winkey)]-

end

The query relaxation technique we use is described in
Algorithm 2. Given a database relation R and a dataset
containing tuples of R, we begin by extracting all possible
AFDs and approximate keys by varying the error threshold.
Next we identify the approximate key (Kpest) with the least
error (or highest support). If a key has high support then it
implies that fewer tuples will have the same binding values
for the subset of attributes in the key. Thus the key can be
seen as almost uniquely identifying a tuple. Therefore we
can assume that two tuples are similar if the values binding
the key are similar. All attributes of relation R not found
in Kpes: are approximately dependent on Kpes:. Hence by
relaxing the non-key attributes first we can create queries
whose answers do not satisfy the dependency but have the
same key.

We now face the issue of which key (non-key) attribute to
relax first. We make use of the AFDs to decide the relax-
ation order within the two subsets of attributes. For each at-
tribute belonging to the key we determine a weight depend-
ing on how strongly it influences the non-key attributes.
The influence weight for an attribute is computed as

1 —error(A — Aj)

Weight(A;) = E A

=1

where A;€ ACR, j#i & n=|Attributes(R)]

If an attribute highly influences other non-key attributes
then it should be relaxed last. By sorting the key attributes

in ascending order of their influence weights we can ensure
that the least influencing attribute is relaxed first. On sim-
ilar lines we would like to relax the least dependent non-key
attribute first and hence we sort the non-key attributes in
descending order of their dependence on the key attributes.

The relaxation order we produce using Algorithm 2 only
provides the order for relaxing a single attribute of the
query. Basically we use a greedy approach towards re-
laxation and try to create all l-attribute relaxed queries
first, then the 2-attribute relaxed queries and so on. The
multi-attribute query relaxation order is generated by as-
suming independence among attributes and combining the
attributes in terms of their single attribute order. E.g., if
{al, a3, a4, a2} is the l-attribute relaxation order, then the

2-attribute order will be {ala3, ala4, ala2, a3a4,a3a2, ada}.

The 3-attribute order will be a cartesian product of 1 and
2-attribute orders and so on. Attribute sets appearing ear-
lier in the order are relaxed first. Given the relaxation order
and a query Q, we formulate new queries from Q by remov-
ing the constraints (if any) on the attributes as given in
the order. The number of attributes to be relaxed in each
query will depend on order (l-attribute, 2-attribute etc).
To ease the query generation process, we assume that the
databases do not impose any binding restrictions. For our
example database CarDB, the 1-attribute relaxation order
was determined as {Make, Price, Year, Model}. Conse-
quently the 2-attribute relaxation order becomes {(Make,
Price), (Make, Year), (Make, Model), (Price, Year), (Price,
Model), (Year, Model)}.

3. LEARNING CONCEPT SIMILARITIES

Below we provide an approach to solve the problem of
estimating the semantic similarity between values binding a
categorical attribute. We determine the similarity between
two values as the similarity shown by the values correlated
to them.

Concept: We define a concept over the database as any
distinct attribute value pair. E.g. Make=“Ford” is a con-
cept over database CarDB(Make,Model,Price,Year).
Concept Similarity: Two concepts are correlated if they
occur in the same tuple. We estimate the semantic simi-
larity between two concepts as the percentage of correlated
concepts which are common to both the concepts. More
specifically, given a concept, the concepts correlated to a
concept can be seen as the features describing the concept.
Consequently, the similarity between two concepts is the
similarity among the features describing the concepts.

For example, suppose the database CarDB contains a
tuple t ={Ford, Focus, 15k, 2002}. Given ¢, the concept
Make=“Ford” is correlated to the concepts Model=“Focus”,
Price=“15k” and Year=%“2002”. The distinct values bind-
ing attributes Model, Price and Year can be seen as fea-
tures describing the concepts over Make. Similarly Make,
Price and Year for Model and so on. Let Make=“Ford”
and Make=“Toyota” be two concepts over attribute Make.
Suppose most tuples containing the two concepts in the
database CarDB have same Price and Year values. Then we
can safely assume that Make=“Ford” and Make= “Toyota”
are similar over the features Price and Year.

3.1 Semantics of a Concept

Databases on the web are autonomous and cannot be as-
sumed to provide any meta-data such as possible distinct
values binding an attribute. Hence we must extract this
information by probing the database using sample queries.
We begin by extracting a small subset of the database by
sampling the database. From the extracted subset we can
then identify a subset of concepts? over the relation.

2The number of concepts identified is proportional to the
size of the database extracted by sampling. However we

Model Focus:5, Z2X2:7, F150:8 ...
Mileage | 10k-15k:3, 20k-25k:5, ..
Price 1k-5k:5, 15k-20k:3, ..
Color White:5, Black:5, ...

Year 2000:6, 1999:5,

Table 1: Supertuple for Concept Make=‘Ford’

A concept can be visualized as a selection query called
concept query that binds only a single attribute. By issuing
the concept query over the extracted database we can iden-
tify a set of tuples all containing the concept. We represent
the answerset containing each concept as a structure called
the supertuple. The supertuple contains a bag of keywords
for each attribute in the relation not bound by the concept.
Table 1 shows the supertuple for the concept Make=‘Ford’
over the relation CarDB as a 2-column tabular structure.
To represent a bag of keywords we extend the semantics
of a set of keywords by associating an occurrence count for
each member of the set. Thus for attribute Color in Table 1,
we see ‘White’ with an occurrence count of five, suggesting
that there are five White colored Ford cars in the database
that satisfy the concept-query.

3.2 Measuring Concept Similarities

The similarity between two concepts is measured as the
similarity shown by their supertuples. The supertuples con-
tain bags of keywords for each attribute in the relation.
Hence we use Jaccard Coefficient [10, 2] with bag semantics
to determine the similarity between two supertuples. The
Jaccard Coefficient (Sim.) is calculated as

_ |AnB|
" JAu B|

We developed the following two similarity measures based
on Jaccard Coefficient to estimate the similarity between
concepts:

Doc-Doc similarity: In this method, we consider each su-
pertuple ST, as a document. A single bag representing
all the words in the supertuple is generated. The similarity
between two concepts C; and Cs is then determined as

Simdocfdoc(cl, 02) = S’imJ(STcl, STCQ)

Weighted- Attribute similarity: Unlike pure text documents,
supertuples would rarely share keywords across attributes.
Moreover all attributes may not be equally important for
deciding the similarity among concepts. For example, given
two cars, their prices may have more importance than their
color in deciding the similarity between them. Hence, given
the answersets for a concept, we generate bags for each at-
tribute in the corresponding supertuple. The similarity be-
tween concepts is then computed as a weighted sum of the
attribute bag similarities. Calculating the similarity in this
manner allows us to vary the importance ascribed to dif-
ferent attributes. The supertuple similarity will then be
calculated as

SimJ(A, B)

Simuwatr(C1,Cs) =Y Simy(Bago1(As), Bagea(Ai)) x Wi

i=1

where C1, C2 have m attributes

4. EVALUATION

To evaluate the effectiveness of our approach in answer-
ing imprecise queries, we set up a prototype used car search

can incrementally add new concepts as and when they are
encountered and learn similarities for them. But in this
paper we do not focus on the issue of incremental updating
of the concept space.

180

160

*-- Tho.7
—®—Th0.6

Algorithm Step Time Size
SuperTuple Generation | 181 sec 11 MB
Similarity Estimation | 1.5 hours | 6.0 MB

Table 2: Timing Results and Space Usage

database system that accepts precise queries over the rela-
tion

CarDB(Make, Model,Y ear, Price, Mileage, Location, Color)

The database was setup using the open-source relational
database MySQL. We populated the relation CarDB using
30,000 tuples extracted from the publicly accessible used
car database Yahoo Autos [20]. The system was hosted on a
Linux server running on Intel Celeron- 2.2 Ghz with 512Mb
RAM.

4.1 Concept Similarity Estimation

Chevrolet

Toyota’

Figure 2: Concept Similarity Graph for Make

The attributes Make, Model, Location, Color in the re-
lation CarDB are categorical in nature and contained 132,
1181, 325 and 100 distinct values. We estimated concept
similarities for these attributes as described in Section 3.
Time to estimate the concept similarity is high (see Table 2),
as we must compare each concept with every other concept
binding the same attribute. We calculated only the doc-doc
similarity between each pair of concepts. The concept sim-
ilarity estimation is a preprocessing step and can be done
offline and hence the high processing time requirement for
this process can be ignored. Figure 2 provides a graphical
representation of the estimated semantic similarity between
some of the values binding attribute Make. The concepts
Make=“Ford” and Make= “Chevrolet” show high similarity
and so do concepts Make=“Toyota” and Make=“Honda”
while the concept Make=“BMW?” is not connected to any
other node in the graph. We found these results to be intu-
itively reasonable and feel our approach is able to efficiently
determine the semantic distances between concepts. More-
over in [19, 18] we used a similar approach to determine
the semantic similarity between queries in a query log. The
estimated similarities were validated by doing a user study
and our approach was found to have above 75% accuracy.

4.2 Efficient query relaxation

To verify the efficiency of the query relaxation technique
we propose in Section 2, we setup a test scenario using the
CarDB database and a set of 10 randomly picked tuples.
For each of these tuples our aim was to extract 20 tuples
from CarDB that had similarity above some threshold Tsim,
(0.5 < Tsim < 1). We designed two query relaxation algo-
rithms GuidedRelax and RandomRelaz for creating selection
queries by relaxing the tuples in the initial set. GuidedRelax
makes use of the AFDs and approximate keys and decides
a relaxation scheme as described in Algorithm 2. The Ran-
domRelax algorithm was designed to somewhat mimic the

140 4 —-A-Th05

120 4

100 4

80

60

Work/Relevant Tuple

40 o o

*- . - *- v \;
e g g A g
1 2 3 4 5 6 7 8 9 10
Queries

Figure 3: Work/RelevantTuple using GuidedRelax

* *- Tho.7

800 —mThosé

200 ~&-Tho5
o 600 IS
=
5
= 500
=
g
g
S 400
$.
= 300 8
2

200 ¢

*
100 * -
N . , ~
0 - . e, e =, g

Queries

Figure 4: Work/RelevantTuple using RandomRelax

random process by which users would relax queries. The al-
gorithm randomly identifies a set of attributes to relax and
creates queries. We put an upper limit of 64 on the num-
ber of queries that could be issued by either algorithm for
extracting the 20 similar answers to a tuple from the initial
set.

To measure the efficiency of the algorithms we use a met-
ric called Work/RelevantTuple defined as

T
Work/RelevantTuple = [Testracted|

|TRelevant |

where TEgtracted gives the total tuples extracted while Treievant

is the number of extracted tuples that were found as rele-
vant. Specifically Work/RelevantTuple is a measure of the
average number of tuples that an user would have to look at
before finding a relevant tuple. Tuples that showed similar-
ity above the threshold Ts;,, were considered relevant. Sim-
ilarity between two tuples was estimated as the weighted
sum of semantic similarities shown by each attribute of the
tuple. Equal weightage was given to the similarity shown
by all attributes.

The graphs in figures Figure 3 and Figure 4 show the
average number of tuples that had to be extracted by Guid-
edRelax and RandomRelax respectively to identify a rele-
vant tuple for the query. Intuitively the larger the expected
similarity, the more the work required to identify a rele-
vant tuple. While both algorithms do follow this intuition,
we note that for higher thresholds RandomRelax (see Fig-
ure 4) ends up extracting hundreds of tuples before finding
a relevant tuple. GuidedRelax is much more resilient to the
variations in threshold and generally needs to extract about
4 tuples to identify a relevant tuple. Thus by using Guide-
dRelax, a user would have to look at much less number of
tuples before obtaining satisfactory answers.

The initial results we obtained are quite encouraging.
However for the current set of experiments we did not verify

whether the tuples considered relevant are truly relevant as
measured by the user. We plan to conduct a user study
to verify that our query relaxation approach not only saves
time but also provides answers that are truly relevant ac-
cording to the user. The evaluations we performed were
aimed at studying the accuracy and efficiency of our con-
cept similarity learning and query relaxation approaches in
isolation. We are currently working on evaluating our ap-
proach for answering imprecise queries over BibFinder [1,
21], a fielded autonomous bibliography mediator that inte-
grates several autonomous bibliography databases such as
DBLP, ACM DL, CiteSeer. Studies over BibFinder will en-
able us to better evaluate and tune the query relaxation
approach we use. We also plan to conduct user studies to
measure how many of the answers we present are considered
truly relevant by the user.

5. RELATED WORK

Early approaches for retrieving answers to imprecise queries
were based on theory of fuzzy sets. Fuzzy information sys-
tems [14] store attributes with imprecise values, like height=
“tall” and color=*“blue or red”, allowing their retrieval with
fuzzy query languages. The WHIRL language [6] provides
approximate answers by converting the attribute values in
the database to vectors of text and ranking them using the
vector space model. In [16], Motro extends a conventional
database system by adding a similar-to operator that uses
distances metrics over attribute values to interpret vague
queries . The metrics required by the similar-to operator
must be provided by database designers. Binderberger [22]
investigates methods to extend database systems to sup-
port similarity search and query refinement over arbitrary
abstract data types. In [9], the authors propose to provide
ranked answers to queries over Web databases but require
users to provide additional guidance in deciding the similar-
ity. These approaches however are not applicable to existing
databases as they require large amounts of domain specific
information either pre-estimated or given by the user of the
query. Further [22] requires changing the data models and
operators of the underlying database while [9] requires the
database to be represented as a graph.

In contrast to the above, the solution we propose pro-
vides ranked results without re-organizing the underlying
database and thus is easier to implement over any database.
In our approach we assume that tuples in the base set are all
relevant to the imprecise query and create new queries. The
technique we use is similar to the pseudo-relevance feedback
[3, 8] technique used in IR system. Pseudo-relevance feed-
back (also known as local feedback or blind feedback) in-
volves using top k retrieved documents to form a new query
to extract more relevant results.

In [4, 5], authors explore methods to generate new queries
related to the user’s original query by generalizing and re-
fining the user queries. The abstraction and refinement rely
on the database having explicit hierarchies of the relations
and terms in the domain. In [15], Motro proposes allowing
the user to select directions of relaxation, thereby indicating
which answers may be of interest to the user. In contrast,
we automatically learn the similarity between concepts and
use functional dependency based heuristics to decide the
direction for query relaxation.

6. CONCLUSION AND FUTURE WORK

In this paper we first motivated the need for support-
ing imprecise queries over databases. Then we presented
a domain independent technique to learn concept similari-
ties that can be used to decide semantic similarity of val-
ues binding categorical attributes. Further we identified
approximate functional dependencies between attributes to
guide the query relaxation phase. We presented preliminary

results showing the efficiency and accuracy of our concept
similarity learning and query relaxation approaches.

Both the concept similarity estimation and AFDs and
keys extraction process we presented heavily depend on the
size of the initial dataset extracted by probing. Moreover
the size of the initial dataset also decides the number of
concepts we may find for each attribute of the database.
A future direction of this work is to estimate the effect of
the probing technique and the size of the initial dataset on
the quality of the AFDs and concept similarities we learn.
Moreover the data present in the databases may change
with time. We plan to investigate ways to incrementally
update the similarity values between existing concepts and
develop efficient methods to compute distances between ex-
isting and new concepts without having to recompute the
entire concept graph. In this paper we only looked at an-
swering imprecise selection queries over a single database
relation. Answering imprecise queries spanning multiple re-
lations forms an interesting extension to our work.
Acknowledgements: We thank Hasan Davulcu for helpful
discussions during the development of this work. This work
is supported by ECR A601, the ASU Prop301 grant to ETT?

initiative.

7. REFERENCES

[1] BibFinder: A Computer Science Bibliography Mediator. Avail-
able at :http://kilimanjaro.eas.asu.edu/.

[2] R. Baeza-Yates and B. Ribiero-Neto. Modern Information Re-
trieval. Addison Wesley Longman Publishing, 1999.

[3] C. Buckley, G. Salton, and J. Allan. Automatic Retrieval with
Locality Information Using Smart. TREC-1, National Institute
of Standards and Technology, Gaithersburg, MD, 1992.

[4] W.W. Chu, Q. Chen, and R. Lee. Cooperative query answering
via type abstraction hierarchy. Cooperative Knowledge Based
Systems, pages 271-290, 1991.

[5] W.W. Chu, Q. Chen, and R. Lee. A structured approach for
cooperative query answering. I[EEE TKDE, 1992.

[6] W. Cohen. Integration of heterogeneous databases without com-
mon domains using queries based on textual similarity. Proc. of
SIGMOD, pages 201-212, June 1998.

M. Dalkilic and E. Robertson. Information Dependencies. In

Proc. of PODS, 2000.

[8] N.E. Efthimiadis. Query Expansion. In Annual Review of In-
formation Systems and Technology, Vol. 31, pages 121-187,
1996.

[9] R. Goldman, N .Shivakumar, S. Venkatasubramanian, and

H. Garcia-Molina. Proximity search in databases. VLDB, 1998.

T. Haveliwala, A. Gionis, D. Klein, and P Indyk. Evaluat-

ing strategies for similarity search on the web. Proceedings of

WWW, Hawai, USA, May 2002.

Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen. Efficient

discovery of functional and approximate dependencies using par-

titions. Proceedings of ICDE, 1998.

J. Kivinen and H. Mannila. Approximate Dependency Inference

from Relations. Theoretical Computer Science, 1995.

T. Lee. An information-theoretic analysis of relational

databases-part I: Data Dependencies and Information Metric.

IEEE Transactions on Software Engineering SE-13, October

1987.

J.M. Morrissey. Imprecise information and uncertainty in infor-

mation systems. ACM Transactions on Information Systems,

8:159-180, April 1990.

A. Motro. Flex: A tolerant and cooperative user interface to

database. IEEE TKDE, pages 231-245, 1990.

A. Motro. Vague: A user interface to relational databases that

permits vague queries. ACM Transactions on Office Informa-

tion Systems, 6(3):187-214, 1998.

K. Nambiar. Some analytic tools for the Design of Relational

Database Systems. In Proc. of 6th VLDB, 1980.

U. Nambiar and S. Kambhampati. Providing ranked relevant

results for web database queries. To appear in WWW Posters

2004,, May 17-22, 2004.

U. Nambiar and S. Kambhampati. Answering imprecise

database queries: A novel approach. ACM Workshop on Web

Information and Data Management, November 2003.

[20] Yahoo! autos. Awvailable at hitp://autos.yahoo.com/ .

[21] Z. Nie, S. Kambhampati, and T. Hernandez.

BibFinder/StatMiner: Effectively Mining and Using Cov-

erage and Overlap Statistics in Data Integration. In Proc. of

VLDB, 2003.

M. Ortega-Binderberger. Integrating Similarity Based Re-

trieval and Query Refinement in Databases. PhD thesis, UIUC,

2003.

[7

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

(22]

