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ABSTRACT

Current approaches for answering queries with imprecise corahts require
users to provide distance metrics and importance measures fdtridutes of interest
- metrics that are hard to elicit from lay users. Moreover they ssume the ability
to modify the architecture of the underlying database. Giverthat most Web data-
bases are autonomous and may have users with limited expertiseeothe associated
domains, current approaches for answering imprecise querigg aot applicable to
autonomous databases such as those accessible on the Web.

This dissertation presentsAIMQ - a domain independentframework for sup-
porting imprecise queries over autonomous databases wittinimal input from users
and no modi cations to the underlying database. AIMQ provides answers satisfy-
ing an imprecise query by identifying and executing a set of prese queries similar
to the imprecise query. AIMQ begins by mapping the given imprése query to a
precise query with non-null resultset. Then using a approximat&unctional depen-
dency (AFD) based query relaxation heuristic AIMQ identi es a sebf precise queries
similar to the initially mapped precise query.

AIMQ measures the similarity between a tuple and the imprecise guy as
the weighted summation of similarity over attributes. Howevermeasuring similarity
requires distance metrics to be provided by the users or an expeften quite di cult
even for experts. Hence, aontext-sensitive domain-independent semantic similayi
estimation technique has also been developed as part of AIMQ.

Results of empirical evaluation conducted using multiple rédife databases

demonstrate both the domain independence and the e ciency cAIMQ's learning



algorithms. User study results presented in this thesis demonstratiee high relevance
of answers given by AIMQ. AIMQ is the only domain independent sysie currently
available for answering imprecise queries over autonomoudaizases. It can be (and
has been) implemented without a ecting the internals of a d&base or requiring
extensive domain speci ¢ inputs from the user, thereby demonsiting that AIMQ

can be implemented over any autonomous database.
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CHAPTER 1

INTRODUCTION

Everything is vague to a degree (that) you do not
realize till you have tried to make it precise.
- Bertrand Russell

The Philosophy of Logical Atomism

The rapid expansion of the World Wide Web has made a variety of au-
tonomous databases like bibliographies, scienti ¢ databasegavel reservation sys-
tems, vendor databases etc. accessible to a large number of lajeexal users. The
increased visibility of theseWeb databases (450,000 and growing [CHL* 04]) has
brought about a drastic change in their average user pro le fra tech-savvy, highly
trained professionals to lay users demanding \instant grati caon”. Moreover, most
users on the Web now prefer the easy-to-use keyword based quengiface and the
ranked retrieval model used bysearch engines However, unlike Web search engines

that take a few keywords, look up the index and provide a listingf best-matching

1The World Wide Web (the \Web" or \WWW" for short) is a hypertext system that  operates over
the Internet - a publicly available internationally interconnected system of computers and services

provided by them.
2\We use the term \Web database" to refer to a non-local autonomous database that is acceible

only via a Web (form) based interface.



web pages (usually based on relevance to keyword query comkiméth popularity of
the web page), the Web database systems expect users to know theneaof relation
to query, the eld to look in, and at times even the eld type. Moreover, database
guery processing models have always assumed that treer knows what she wanend

is able to formulate a query that accurately expresses her needlherefore, database
systems have always usea boolean model of query processing where there is a set of
answer tuples that exactly satisfy all the constraints ofd@lquery and thus are equally
relevant to the query Hence, to obtain a satisfactory answer from a Web database,
the user must formulate a query that accurately captures her farmation need; often

a di cult endeavor. Often users must reformulate their queris a number of times
before they can obtain a satisfactory answer. Thus, a lack of kntedge about the
schema and contents of the database combined with the booleanegy model can
often result in the user not obtaining satisfactory answers from database.

Although users may not know how to phrase their queries, they cariten tell
which tuples are of interest to them when presented with a mixeskt of results having
varying degrees of relevance to the query. Thus database guerocessing models
must embrace the IR systems' notion thatuser only has vague ideas of what she
wants is unable to formulate queries capturing her needs and waluprefer getting a
ranked set of answers. This shift in paradigm would necessitate sugpng imprecise
queries- queries that only require the answer tuples to match the constints closely
and not exactly. This sentiment is also re ected by several datmse researchers in a

recent database research assessment [LowO03].

3A formal de nition is given in Chapter 3



1.1. Imprecision in Database Systems

A guery against incomplete or imprecise data in a database, or aery whose
search conditions are imprecise can both result in answers thai dot satisfy the query
completely. Such queries can be broadly termed amprecise queries Eventhough
there has recently been much interest in looking at problemgising in storing and
retrieving data that is incompletely speci ed (hence impreise), such systems have not
gained widespread acceptance yet. The popular querying andtd storage models
(both in database and IR systems) still work with data that is prece. Hence, in this
thesis, we only focus on the problem of supporting queries with impseiconstraints
over databases containing precise data and supporting thelban query answering

model

1.1.1. Why Support Imprecision in Queries? Todays database systems
are designed largely foprecise queriesagainst a database ofprecise and complete
data. Range queries (e.gAge BETWEEN 20 AND 30) and disjunctive queries (e.g.,
Name=\G. W. Bush" OR Name=\George Bush") do allow for some imprecision in
gueries. However, these extensions to precise queries are unabt®mpletely capture
the expressiveness of an imprecise query. We use the following texamples to

motivate the need for supporting imprecise queries over databes.

Example 1.1: Suppose, we wish to express the query -Find a person whose lasiena
is like Napalu , is perhaps middle aged, and who drives anold white-ish

car with license plate thatcontains TR, over a demographics database. We



can represent the query formally as

Q:- Demographics(LastName like Napalu, Age like 50, Vehicl  eColor

like White, LicensePlate like "*TR*")

Note that for simplicity, we have used the relatiofike to represent all sim-
ilarity relationships such aswhite-ish, contains etc . Also we have used
some domain-knowledge in convertingerhaps middle-aged to Age like 50 .

While we can assume lay users to be able to do such trivial tramefations,

we cannot expect them to come up with alternate formulations tife above
guery that can be expressed using precise queries, such aseaanrgl disjunctive
queries, and thus extract relevant answers from existing dbteses. In fact, we

believe the task would be quite di cult even for experts.

Example 1.2: Suppose a user wishes to search feedanspriced around $10000n
a used car databaseCarDB(Make, Model, Year, Price, Location) . Based

on the database schema the user may issue the following query:
Q: CarDB (Model = Camry;Price < 10000)

On receiving the queryCarDBwill provide a list of Camrysthat are priced below
$10000 However, given thatAccord is a similar car, the user may also be
interested in viewing allAccords priced around $10000 The user may also be

interested in aCamrypriced $10500 2

In the above example, Example 1.2, the query processing modséd by CarDB

would not suggest theAccordsor the slightly higher pricedCamry as possible answers



of interest as the user did not speci cally ask for them in her qugr This will force the
user to enter the tedious cycle of iteratively issuing queriesif all \similar* models
before she can obtain a satisfactory answer. This is further cofiqated by the fact
that in many cases the user may not know what the similar modelsato begin with.
One way to automate this is to provide the query processor inforation about
similar models (e.g. to tell it that Accords are Q9 similar to Camrys). While such
approaches have been tried, their achilles heel has been #oguisition of such domain
speci ¢ similarity metrics{a problem that will only be exacerkated as the publicly

accessible databases increase in number.

1.1.2. Diculty in Adapting Current Database Systems. Supporting
imprecise queries over databases necessitates a system that irgtesgs similarity search
paradigm over structured and semi-structured data. Todays rational database sys-
tems, as they are designed to support precise queries against Eedaata, use such
precise access support mechanisms as indexing, hashing, and grtiSuch mecha-
nisms are used for fast selective searches of records within a éahhd for joining two
tables based on precise matching of values in join elds in thalbles. The imprecise
nature of the search conditions in queries will make such accesechanisms largely
useless. Thus, supporting imprecise queries over existing datalmseuld require
adding support for imprecision within the query engine and metdata management
schemes like indexes. Moreover, we will require access to damgpeci c metadata,
e.g. anobject thesaurusthat provides all possible synonyms for various objects in

the domain, descriptions about characteristics of the objestalong with rules for



matching similar names and descriptions. Recent surveys [NH97, 85 of existing

attempts at ontology design show that there is great diversityn the way ontologies
are designed and in the way they represent the real-world fact§hus, much work

needs to be done before mature, usable and universally accdgi¢eontologies are made
available. Therefore, at this time a solution based on addingodnain ontologies to

existing databases cannot be considered feasible.

Another challenge we must overcome is that the database is rerabt located
and will be autonomous in its behaviour i.e. the database mayndergo frequent
updates and may not be willing to support imprecise queries. Spprting imprecise
gueries would involve changing the query processing and dataistige models being
used by the database. Such a transformation would be a time consimg and costly
procedure and may aect a number of other systems that use the dstase. For
example, changing an airline reservation database will necdate changes to other
connected systems including travel agency databases, partnariae databases etc.
Hence, assuming that Web databases will themselves be inclinedstgpport imprecise
gueries would be a fallacy. Therefore, we must contend with ing able to access the
underlying data by using the existing query interfaces i.e. bigssuing precise queries.

In fact, the problem of answering imprecise queries is equallly cult even if
we assume that the query processing framework of the underlyingtdbase can be
modi ed to support imprecise queries. Even if the database is moable, we would
still require a domain expert and/or end user to provide the nexssary distance met-

rics and a domain ontology. Domain ontologies do not exist fa@ll possible domains



and the ones that are available are far from being complete.vén if we were to as-
sume availability of distance metrics and domain ontologiegiven by some expert)
that is true over a given database, most real-life databases usrgo frequent updates
and therefore the provided metrics and relationships will ab have to be updated
frequently - a non-trivial endeavour by itself. Thus, the prokem of answering impre-
cise queries over local databases also brings forth most of thaliénges that we have
when looking at autonomous sources.

Based on the above discussions, we can conclude that a feasible smiufor
answering imprecise queries should neither assume the ability noodify the proper-
ties of the database nor require users (both lay and expert) ta@vide much domain
speci c information. Therefore, in this thesis,our focus is enabling support for impre-
cise queries without changing the behaviour of the existirgtabase and with minimal
input (the imprecise query and similarity threshold) from thaisers. We assume the
databases are autonomous in nature and support the boolean quenodel where both
gueries and data are precise. The solution we propose in this $ieeis a middle-ware
that sits between the user issuing the imprecise query and the datse that only

supports precise queries.

1.2. Outline of the Thesis

Below we formally de ne the problem at hand, list the key cha#inges faced in
answering imprecise queries and then motivate and describe tbalution we present

in this dissertation.



1.2.1. The Problem. Given a conjunctive queryQ over an autonomous Web
database projecting the relatiorR, nd all tuples of R that show similarity to Q above

a threshold T, 2 (0; 1). Speci cally,
Answers(Q) = fxjx 2 R; Similarity (Q;x) > Tsmg

Constraints: (1) R supports the boolean query processing model (i.e. a tupliher
satis es or does not satisfy a query). (2) The answers tQ must be determined

without altering the data model or requiring additional gudance from users2

1.2.2. Challenges. Supporting imprecise queries over autonomous Web data-
bases brings forth the following challenges:
Supporting Imprecision:  Supporting imprecise queries necessitates the extension
of the query processing model from binary (where tuples eitheatisfy the query or
not) to a matter of the degree (to which a given tuple is a satistaory answer). Thus,
to support an imprecise queryQ over a databaseR (that supports the boolean query
answering model), we require the ability to identify all tupks ofR that are similar
to Q. A naive solution would be to compare each tuple in the relatito R against
the query. But accessing all tuples oR to answer each imprecise query is neither
feasible nor practical. Since, only a query based access to tlples of the database
is available and the underlying query answering model is bing extracting tuples
from R necessitates probing the database using precise queries whose ars¥all in
the neighbourhood of interest i.e. are highly relevant tQ.

Techniques like query relaxation and generalization [CCLI19 CCL92, Mot90]

have been attempted by researchers to generate new queriestesl to the user's



original query. The new queries can then be used to nd answershigh may be of
interest to the user but not in the scope of the original query. Hogver the abstraction

and re nement rely on the database having explicit hierarclgs of the values in the
domain. A generalized query is created by replacing valuas the given query with

corresponding values higher up in the hierarchy while replexg with values lower in

the hierarchy gives a re ned query. Since, as shown earliertime section, domain spe-
ci ¢ object hierarchies generally known as ontologies ardten not available and when
available are far from being complete, we consider the quergrgeralization approach
as not a promising approach to solving the imprecise query ansvvey problem.

On the other hand, query relaxation is very much a feasible sdian but re-
quires a initial query with a number of attributes bound. Assunmg we are able to
derive such a query from the imprecise query, further relaxatn would still bring up
the problem of what to relax rst. Depending on the attributesrelaxed we may re-
trieve few or many results with varying relevance. Randomlyreating precise queries
may result in queries that have too few answers or have answerstlare not relevant
to the imprecise queryQ. In either case we may end up creating and executing a large
number of precise queries thereby increasing cost of answerihg fjluery. Therefore to
e ciently answer an imprecise query, we must create and executanly those precise
queries that are likely to return answers relevant t® i.e. only thoseQ®who answers

have high precision. Precision of)®is the fraction of answers that are relevant taQ.

jAnswers(Q) T Answers(Q9)j
jAnswers(Q9j

P recision(QY =

Estimating Query-Tuple Similarity: A database system supporting imprecise
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gueries must provide information about how close an answer tpis to the given
imprecise query. Two tuples (a selection query can be seen as a@léuwith few
missing values) are considered similar if they have syntactical slarity (e.g. same
subset of attributes are bound in both queries, stems of a commorosd bind an
attribute, etc) or if the binding values are semantically similar.

Semantic similarity between two values is the similarity pereived by the user.
Since our motivation is to provide answers that are acceptablto the users, we
must use semantic similarity between values binding the query dnthe tuples to
decide the relevance of the answers. Semantic similarity, alsalled semantic close-
ness/proximity/nearness is a concept whereby a set of words (attribute values) are
assigned a metric based on the closeness of their meaning. An inugtway of dis-
playing terms according to their semantic similarity is by graping together closer
related terms and spacing more distantly related ones wider aft. This is commonly
achieved by using ontologies. However, as mentioned earlientaogies describing
relationships between all possible concepts for every domasriot available. Thus,
developing a domain independent solution for measuring the santic similarity be-
tween the query and the answer tuples becomes vital to answeagirmprecise queries
over autonomous databases.
Measuring Importance of an Attribute: Often users would like to see only the
top-k answers to a query. To provide ranked answers to a query, we musintbine
similarities shown over distinct attributes of the relation irto a overall similarity score

for each tuple. However, not all attributes may be equally imgrtant in determining
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the similarity of the answer to the query. Specically, a measw of importance
for the similarity shown over any attribute in the context of a gven query may be
necessary to determine the bedt matches. While this measure may vary from user to
user, most users usually are unable to correctly quantify the ingptance they ascribe
to an attribute. Hence another challenging issue we face is thaf computing the

importance to be ascribed to an attribute.

1.2.3. Motivation behind our approach. The problem of supporting im-
precise queries has already attracted considerable interegirh researchers including
those in fuzzy information systems [Mor90], cooperative quenswering [JWS81,
Jos82, Mot86] and query generalization [CCL92, Mot90]. Monecent e orts have
focussed at supporting imprecise queries over relational datsg®es by introducing
abstract data types and extending the query processor with siraility functions
[OB03, GSVGM98, ABC 02] (Chapter 9 has more details). However, all the pro-
posed approaches for answering imprecise queries require daagnounts of domain
speci ¢ information either pre-estimated or given by the userfahe query. Unfortu-
nately, such information is hard to elicit from the users. Furtler some approaches
require changing the data models and operators of the undgrg database. Recently
much work has been done on providing ranked answers to quer@&r a relational
database [BGMO02, FLNO1, IAEO3]. However, they assume complete aess to the
indexes of the databases. To summarize, the solutions attempted far require both
extensive input from the users and the capability to change thenderlying database -

requirements that are di cult to satisfy given the autonomousnature of the databases
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on the Web and the limited expertise of their users.

This is the motivation for the AIMQ system [NKO5, NKO4b, NKO4a, NKO3] - a
domain independent solution for supporting imprecise queri@ver autonomous Web
databases that we present in this thesis. Rather than shifting thieurden of providing
the value similarity functions and attribute orders to the uses, we propose a domain
independent approach that requires no additional input from the users and does not
necessitate any changes to be made to the underlying databaseur@otivation is to
mimic the interfaces provided by search engines, in that the useneed only provide
the queries and should get ranked answers that satisfy their nesedOur solution is
a paradigm shift that unites the database and information reteval technologies: it
brings the similarity searching/ranked retrieval paradigm fom IR systems into the
structured, type-rich access paradigm of databases, therebyadating the database
systems to support exible query interfaces. Thus unlike the rational database sys-
tems we retrieve answers that are ranked according to the degrof relevance to the
user query. The degree of relevance of an answer to a query iscamiatically esti-
mated using domain-independent similarity functions that ca closely approximate
the subjective interpretation of the user.

Speci cally, our intent is to mine the semantics inherently pesent in the tuples
(as they represent real-world objects) and the structure of theelations projected by
the databases. Our intent is not to take the human being out of # loop, but to
considerably reduce the amount of input she has to provide to tga satisfactory

answer. In short, we wish to testhow far we can go (in terms of satisfying users) by
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using only the information contained in the database? How skly can we model the
user's notion of relevance by using only the information avable in the database™
fact, our e ort should be seen as being similar in spirit to that oMVeb search engines
which try to model the user's notion of relevance of a documei the given keyword
guery based on information such as link structure, authoritiedyubs etc. that is mined

from the corpus itself.

1.2.4. Contributions.  In response to the above challenges, we propose the
query processing approachAIMQ, that integrates techniques from IR and database
research to e ciently determine answers for imprecise queries/er autonomous data-
bases supporting a boolean query processing model.

AIMQ: Given an imprecise query, AIMQ begins by deriving a precise que(called
base query) that is a specialization of the imprecise query. Theo extract other
relevant tuples from the database it derives a set of precise gigs by considering each
answer tuple of the base query aa relaxable selection query Relaxation involves
extracting tuples by identifying and executing new queriesbtained by reducing the
constraints on an existing query. However, randomly picking atbutes to relax could
generate a large number of tuples with low relevance. In thegpthe tuples closest to a
tuple in the base set will have di erences in the attribute thatleast a ect the binding
values of other attributes. Such relationships are capturedybapproximate functional

dependencies (AFDs). Therefore, AIMQ makes use of AFDs betweenr#tutes to

4The technique we use is similar to the pseudo-relevance feedback technique used in IR system
Pseudo-relevance feedback (also known as local feedback or blind feedback) involves ustog k
retrieved documents to form a new query to extract more relevant results.
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determine the degree to which a change in the value of an attrite a ects other
attributes. Using the mined attribute dependency informationAIMQ determines the
importance of each attribute and derives a heuristic to guidéhe query relaxation
process. To the best of our knowledge, there is no prior work thautomatically
learns attribute importance measures (required both for e eent query relaxation and
measuring similarity of answers). Hence, thest contribution of this dissertation is
a domain independent approach for learning attribute importae.

The tuples obtained after relaxation must be ranked in termsfaheir semantic
similarity to the query. While we can by default use aL, distance metri¢ such as
Euclidean distance to capture similarity between numericalalues, no such widely ac-
cepted measure exists for categorical attributes. Thereforthe second contribution of
this dissertation is an association based domain independepproach for estimating
semantic similarity between values binding categorical atbutes

Advantages of the developed framework are presented by applgiit in the
context of two real-life datasets: (1) Yahoo Autos and the (2) US Census Dataset
from UCI Machine Learning Repository.

AIMQ-Log: The AIMQ system's primary intent was minimizing the inputs a usemhas
to provide before she can get answers for her imprecise query. ldwear, in doing so,
AIMQ fails to include users' interest while deciding the answers. Aaive solution
would be to ask user to provide feedback about the answers she reeg But doing so

would negate the bene ts of AIMQ. The ideal solution would be tmbtain and use user

SAIMQ uses aL; distance metric or Manhattan distance to capture similarity between numeric
values.
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feedback implicitly. Database workloads - log of past user ques, have been shown as
being a good source for implicitly estimating the user interestACDGO03]. In a way,
this may be viewed as a poor mans choice of relevance feedbacll collaborative
Itering where a users nal choice of relevant tuples is not reorded. Despite its
primitive nature, such workload information can help deterrme the frequency with
which database attributes and values were often requested bgars and thus may be
interesting to new users.

Therefore, as thethird contribution of this thesis, we developed AIMQ-log
a system that extends AIMQ by adding implicit user feedback to qug answering
process of AIMQ. AIMQ-Log di ers from AIMQ in the way it identies the set of
precise queries that are used to extract answers from the dataga AIMQ-Log iden-
ti es the set of relevant precise queries from the set of frequiequeries appearing in
the database workload. The idea is to use the collective knowllge of the previous
users to help the new user. For example, an user looking for vaicat rentals around
LA would not know that a majority of such rentals are neaiManhattan Beach a
popular tourist destination. However, since it is a popular degtation, other expe-
rienced tourists may submit queries asking for vacation rentalaround Manhattan
Beach, LA. Thus, by identifying the relevant set of queries from the pogdar queries
in the workload we are implicitly using user feedback. To detsrine the relevant
gueries, we compute the similarity between the base query andetlpopular queries
in the workload. The similarity is determined as thesimilarity among the answersets

generated by the queries. AIMQ-Log uses the same tuple ranking de as that of
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AIMQ.
Advantages of AIMQ-Log are presented by applying it in the contd of the

online bibliographic data source, BibFinder.

1.3. Expected Impact

This dissertation enables autonomous databases to e cientlyreswer imprecise
gueries with minimal user guidance and without modifying theexisting database.
The solutions developed build on popular techniques develeg in IR and database
communities to estimate the distance between values of categal attributes, to
automatically determine the order in which to relax the attibutes and to support a
ranked retrieval model over databases.

As described earlier, often the lay users of autonomous databasestems are
unable to precisely express their query. We found this to be egpaly true in our
experience with archaeological (KADIS, [Kin04]) and bioldgal sources (BioHavasu,
[HKO4]), where we need to deal with a broad range of scienti ¢ use many of whom
lack a speci ¢ knowledge to frame precise queries. Supportingprecise queries over
such sources would greatly enhance the ability of end users to @ently extract
critical information necessary for their research. Existing ggoaches for supporting
similarity search over databases are not applicable here as we ot have access to
internals of the data sources, and the users may not be able to iaulate domain
speci ¢ similarity metrics. A recent report on improving Homelad Security [Kim02]

also points out the need for supporting imprecise queries oveatdbases for e cient
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extraction of critical information.
The AIMQ system presented in this thesis, being domain independeaind
easily implementable over existing databases, would be quite @idein supporting

imprecise queries in many scenarios such as those mentioned abov

1.4. Thesis Organization

Chapter 2 starts by brie y reviewing the theory of query procssing in relational
databases and information retrieval systems. We also look at seakrecent attempts
to combine techniques from databases and information retsial systems.

Chapter 3 explains the data and query models used in this dissatibn and
gives an overview of the AIMQ approach for answering impreciseeries. Formal de-
nitions of precise and imprecise queries are provided. Also tlgiery-tuple similarity
estimation model used by AIMQ is described.

Chapter 4 presents the semantic similarity estimation approactleveloped as
part of the AIMQ system. The chapter begins by pointing out that seantic similarity
is context sensitive. Then the IR style model of identifying thecontext of a value
based on the associated values (features) is presented. A weigh#ttribute model
for estimating similarity is described.

Chapter 5 describes how AIMQ uses approximate functional depdegncies be-
tween attributes to guide the query relaxation process. We dedue the process of
extracting a representative sample of the database for miningp¢ dependencies using

probing queries and also highlight possible a ects of samplinghaur solution.
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Chapter 6 presents results showing the e ciency and e ectiverss of the AIMQ
system in answering imprecise queries. Speci cally, we investigathe robustness
of the estimated attribute importance and value similarities,evaluate the e ciency
of our query relaxation process and verify the relevance of amers we suggest by
conducting a user study.

Chapter 7 compares the e ciency and accuracy of AIMQ with a syst@ provid-
ing similar answers by using the ROCK categorical value clustey algorithm. User
study results comparing the relevance of the answers provideg both the systems
are presented.

Chapter 8 describes how AIMQ-Log, a system that extends AIMQ by injzitly
adding user relevance to the imprecise query answering modelAdMQ. We describe
how AIMQ-Log identi es the set of precise queries relevant to # given imprecise
qguery from a workload of the database. Results of a user study shagithe relevance
of the identi ed queries and the extracted answer tuples arerpsented.

Chapter 9 brie y describes several recent research e orts thdtave attempted
to integrate IR and database techniques and/or tried to ease &hdi culties faced by
lay users when trying to extract information from a database.

Finally, in Chapter 10, we summarize our contributions and dicusses potential

extensions for the techniques developed in this dissertation.



CHAPTER 2

BACKGROUND

This section discusses work that is relevant and/or has in uenckthe ideas put
forth by this thesis. By nature this thesis is interdisciplinaryas it adapts techniques
from information retrieval research into database query prassing. Hence we begin
by doing a high level overview of the underlying theory in (1Relational database
systems, (2) Web data integration and (3) Information Retrieva Then we brie y look

at some existing systems that (4) merge database and informatioatrieval systems.

2.1. Relational Database Systems

A databasas an information set with a regular structure. Databases resertibg
modern versions were rst developed in the 1960s. We can easilgsdify databases by
the programming model associated with the database. Historicgllthe hierarchical
model was implemented rst, then came the network model and ally ever-popular,
relational modef. Databases based on the relational model became knownraka-

tional databases The relational data model permits the designer to create a nsis-

1The object-oriented data model is a more expressive extension of the relational adel but has
not been widely accepted [CD96].
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tent logical model of the information to be stored. This logial model can be re ned
through a process of database normalization. The basic relat@ building block is
the domain or data type A tuple is a set ofattributes, which are ordered pairs of
domain and value. Arelation is an unordered set of tuples. Although these relational
concepts are mathematically de ned, they correspond loosely traditional database
concepts. A relation is similar to the traditional concept of &ble. A tuple is similar
to the concept of row. To perform queries under this model, wvmathematically
equivalent paradigms exist:

Relational Calculus is a purely declarative means of specifying the desired result.
Relational Algebra is a procedural language consisting of a set of (unary and
binary) operators that are applied to tables.

The Structural Query Language (SQL) to support relational systms is largely based
on relational calculus, although it incorporates several aspis of relational algebra

operators.

2.2. Multi Database Systems

All computer systems have limits. These limitations can be seen ihé amount
of memory the system can address, the number of hard disk drives wahican be
connected to it or the number of processors it can run in paralleln practice this
means that, as the quantity of information in a database becoes larger, a single
system can no longer cope with all the information that needs tbe stored, sorted

and queried. Although it is possible to build bigger and faster coputer systems, a
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more a ordable solution is to have several database servers thappear to the users
to be a single system, and which split the tasks between themselvesieEe are called
distributed databasesand have the common characteristics that they are stored on
two or more computers, called nodes, and that these nodes are wected over a

network.

2.2.1. Distributed Databases. = Depending on the level of autonomy given
to each of the component databases, we can further classify dibtrited databases

into two subsets.

Homogeneous databaseblomogeneous databases all use the same DBMS soft-
ware and have the same applications on each node. They have anowmn
schema (a le specifying the structure of the database), and carate varying
degrees of local autonomy. Local autonomy speci es how the sgst appears to
work from the user's and the programmer's perspective. For exgle, we can
have a system with little or no local autonomy, where all requestare sent to
a central node, called the gateway. From here they are assignedwhichever
node holds the information or application required. It has lte disadvantage
that the gateway into the system has to have a very large networ&nnection
and a lot of processing power to keep up with requests and routirige data

back from the nodes to the users.

Heterogeneous database#t the other end of the scale we have heterogeneous

databases, which have a very high degree of local autonomy. Bawde in the
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system has its own local users, applications and data and dealimgth them
itself, and only connects to other nodes for information it des not have. This
type of distributed database is often just called adatabase federation system
[SL90]. Such systems are also known a@atabase mediation systemdue to
their use of a mediation component that connects the variousekerogeneous

databases.

Database mediation systems are popular due to their scalabiliyeduced cost in
adding extra nodes, and the ability to include di erent datatase management systems
in the system. This makes them appealing to organizations sintteey can incorporate
legacy systems and data into new systems. The rapid spread of thedmet and
the WWW has opened up new opportunities to make databases assible via the
web (Web-enabled databases). Further, federated systems canwnbe derived by
connecting autonomous databases over the Web. In particulathis thesis focuses
on supporting queries over web-enabled databases and mediatsystems integrating
them. Therefore, in the following we will look at mediation sgtems over web-enabled
databases popularly known adata integration systemgCGMH™ 94, ACPS96, TRV98,

HKWY97, LRO96, KLN * 04, KNNV02].

2.2.2. Data Integration. A data integration system is an automated method
for querying across multiple heterogeneous databases in afonin way. In essence, a
mediated schema is a uniform set of relations serving as the ddmaf the application
and is used to provide the user with a uniform interface to a mutude of heteroge-

neous data sources that store the actual data. Figure 1 shows thechitecture of a



23

User
Queries

Mediated Schema ~

J'—l

Reformulator

Optimizer 4—<Stati3tiCS <7 Statistics
Miner

Query Processor

Executor

Query Results

Source Wrappers

l l l

Wrapper Wrapper Wrapper
\ J
N N N
Data Data Data
Source Source Source
~ ~ ~

Figure 1. Data Integration System (taken from [Nie04])

data integration system. In a data integration system, the user aska query over the
mediated schema and the data integration system reformulatekis into a query over
the data sources. The query optimizer will nd a high-quality auery plan using the
necessary statistics obtained from the statistics engine. The qyeexecutor will then
execute the plan by calling the wrappers for the integratedata sources.

Data integration systems can be further classi ed depending onhgther the
sources are cooperating in the integration process. Systems saslGarlic [HKWY97],

TSIMMIS [CGMH * 94] and HERMES [ACPS96] assume that databases are \aware
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of" and participate in building the integration system. At the opposite end are sys-
tems like Information Manifold [LRO96], DISCO [TRV98], Emeac [KLN* 04, LKG99]
and Havasu [KNNV02, NKHO3] which integrate databases that are autonwus and

do not provide any support in forming the integrated system.

2.3. Information Retrieval

Information retrieval (IR) is the art and science of searchindor information
from free-form natural language text. An alternate de nition of IR as a process of
identifying unstructured records satisfying a user query, is more suitable to the work
done in this thesis. Traditionally IR systems refer to a record aa documentand an
organized repository of documents as@llection. This section gives a background on
modern IR [BYRN99] brie y exploring models in IR and the criteiia used to compute

similarity between documents.

2.3.1. Goal of Information Retrieval. IR focuses on retrieving documents
based on the content of their unstructured components. Documisnare represented
as a collection of features (also called \terms"). An IR requesttypically called a
\query") may specify desired characteristics of both the struaired and unstructured
components of the documents to be retrieved (e.g. The docunte should be about
\Information retrieval" and their author must be \Smith"). I n this example, the query
asks for documents whose body (the unstructured part) is about@ertain topic and
whose author (a structured part) has a speci ed value. IR typiddy seeks to nd

documents in a given collection that belong to a user given tapor that satisfy an
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information need as expressed by the query. Documents that sti the given query
in the judgment of the user are said to beelevant An IR engine may use the query
to classify the documents in a collection (or in an incoming staen), returning to the
user a subset of documents that satisfy some classi cation criterioNaturally, the
higher the proportion of documents returned to the user that ghjudges as relevant,
the better the classi cation criterion. Alternatively, an IR engine may \rank" the
documents in a given collection. To say that documerD; has higher ranking than
documentD, with respect to a given query Q may be interpreted aB ; is more likely
to satisfy Q than D,.

Traditionally, success of an IR system has been evaluated usingotywopular
measures, both based on the concept of relevance of answers tovargguery. They

are.

Precision: Precision is de ned as the ratio of relevant items retrievetb all items
retrieved, or the probability given that an item is retrieved, it will be relevant
[BYRN99]. Measuring precision is easy; if a set of competent usersjodges
agree on the relevance or non-relevance of each of the retei@ documents, then
calculating the precision is straightforward. Of course, thimssumes that the
set of retrieved documents is of manageable size, as it must bét is to be of
value to the user. If the retrieved documents are ranked, onar always reduce
the size of the retrieved set by setting the threshold higher (e,gonly look at

the top 100, or the top 20).

Recall Recall is de ned as the ratio of relevant items retrieved tall relevant
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items, or the probability given that an item is relevant, it will be retrieved.
Measuring recall is much more di cult than measuring precisionbecause it
depends on knowing the number of relevant documents in theter collection,

which necessitates assessment of all documents in the collection.

However an obvious trade-o exists here. If one retrieves alf the documents in
a collection, then one is sure of retrieving all the relevantatuments in the collection
in which case the recall will be \perfect”, i.e., one. On the dter hand, in the common
situation where only a small proportion of the documents in a dlection are relevant
to the given query, retrieving everything will give a very lav precision (close to zero).
The usual plausible assumption is that the user wants the best ackhable combina-
tion of good precision and good recall, i.e., ideally she woulite to retrieve all the
relevant documents and no non-relevant documents. Howevam,practice, some users
attach greater importance to precision, i.e., they want to seeome relevant documents
without wading through a lot of junk. Others attach greater mportance to recall,
i.e., they want to see the highest possible proportion of relevadocuments. Hence,
Van Rijsbergen [Rij79] o ers theE (for E ectiveness) measure a weighted harmonic
mean of precision and recall that takes a high value only wheroth precision and

recall are high. The E measure is computed as

1

E 1
R

where P = precision;R=recall & 0< < 1
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2.3.2. Models of IR. Broadly, there are two major categories of IR tech-
nology and research: semantic and statistical. Semantic appabees attempt to im-
plement some degree of semantic analysis; in other words, they ty reproduce to
some degree the understanding of the natural language text tha human user would
provide. In statistical approaches, the documents that are raeved or that are highly
ranked are those that match the query most closely in terms of sorsttistical mea-
sure. By far the greatest amount of work to date has been devotdd statistical
approaches. In this thesis, | extend popular statistical modelsnd apply them for
determining similarity over structured records given by dathases. Hence in the fol-
lowing we will brie y look at the various statistical approactes used in IR. Statistical
approaches fall into a number of categoriedoolean, vector space, and probabilistic.
Statistical approaches break documents and queries into tes. These terms are the
population that is counted and measured statistically. Most comonly, the terms are
words that occur in a given query or collection of documents. &hy techniques for

extracting relevant terms have been developed over time, drhey include:

Stop-word elimination: Make a list of stop-words i.e. words it are too com-
mon to be meaningful e.g. prepositions and connectors. Picklprierms that

do no appear in the list for representing the document.

Stemming: Reduce words to their morphological root using a stener. The
stemming algorithm written by Martin Porter [Por80, JKW97] is popularly
used for stemming. This reduces the number of terms that are iaged and

also allows for easier term to term comparisons (e.g. \child" ah\childish" are
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considered as the same term).

Thesauri lookup: Use synonyms of terms to reduce the total numbef terms

and can be used to give some degree of exibility to users in posiggeries.

Other sophisticated techniques include using noun-phrases ieatl of single terms in
the hope that phrases will contain more semantic meaning.

A user speci es her information need to the system in the form of augry.
Given a representation of the user's information need and a dawent collection, an
IR system estimates the likelihood of a document in the collecin matching the user's
information need. The representation of documents and ques, and the metrics use
to compute the similarity among them constitute theretrieval model of the system.

Existing retrieval models can be broadly classi ed as:

Boolean Model Systems based on boolean retrieval partition the set of doc-
uments into either being relevant or irrelevant but do not povide degrees of
relevance of the document. In this model, each document ispresented as a
binary-valued vector of lengthk, wherek is the number of terms in the collec-
tion. The i" element of the vector is assigned \true" if the document contas
the corresponding term. For all terms not present in the docunmeé the cor-
responding element in the vector is set to \false". A query is repsented as
a Boolean expression in which operands are terms. A document shoset of

terms satis es the Boolean expression is relevant to the user.

Vector Space model Vector space model considers a document as a collection

of words (terms). A term may appear multiple times in a documen Hence the
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notion of frequency of a term, callederm frequency (tf)is used to determine the
importance of a word in a document. Further, a term may appean a number
of documents of the collection.Document frequency (df)of a term measures
the number of documents in which the term appears at least oncé high term
frequency value shows that the term is important in a given damment whereas
a high document frequency indicates that the term is not useffto discriminate
among documents and may not be useful for retrieval. Hence a reouseful
metric called inverse document frequency (idf)s popularly used to determine

size(collection )
B E—

the discrimination capability of a term and is computed agf = log

All terms in a document are assigned weights based on a combinatiof the
term and document frequency of the term. The product off and id has
proved to be a good estimation of the weights. Thus the weightfaerm i in
a document is denoted asv; = tf; idf;. Specically, if there are N distinct
terms in the collection of documents, then each document isewed as a point
in the N dimensional space. A query is also represented as a document with
weights for terms appearing in the query. To determine whicdocuments are
close to the query a similarity function is de ned. A number of neasures have
been identi ed [Rij79, BYRN99] to measure the similarity among dcuments.
The most common similarity measure is theosine similarity measure[Rij79,
BYRN99] where the cosine of the angle between the document andceguvectors

in the N dimensional space and the origin is measured. The cosine of thglen
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between query and document vector is computed as
D:Q = jDjjQjcos

Rearranging the above formula gives us:

D:Q XN

——— Wwhere D:Q= Di Qi
IDJIQJ

i=1

Similarity (D;Q) =

An alternate but equally popular similarity metric is the Jaccard Coe cient

[Rij79, BYRN99], and is measured as:

b\ Qi
bl Qi

Similarity (D;Q) =

Vector models are suited for situations where all terms used toeskcribe the

document content are of the same type, i.e. homogeneous.

Probabilistic Retrieval Models In these models the system estimates the prob-
ability of relevance of a document to the user's informationeed speci ed as a
guery. Documents are ranked in decreasing order of probatyilrelevance esti-
mate. Given a document and a query, the system comput€(R=d; g which
represents the probability that the documentd will be relevant to the user's
query g. These probabilities are computed and used to rank the docunten
using the Bayes' theorem and a set of independence assumptionstglibe dis-
tribution of terms in the documents. INQUERY [CCH92] is an examp of this

model.

Comparison of di erent models of IR is done by assessing their penfnance on

standard benchmarks like the TREC collections [NIS05]. Penfimance is qualitative
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unlike in databases (execution speed) and is measured using B®n and recall. IR
techniques are the driving force behind most the Internet sear engines like Altavista
[Eng05a], Google [Eng05b], Yahoo [Eng05c], etc. Even thougnost of these systems
have simple features, their success is suggested by the high poptyahey enjoy

among Internet users.



CHAPTER 3

ANSWERING IM_ PRECISE Q UERIES

In this chapter we present details about our domain independe approach,
AIMQ, developed for e ciently extracting and automatically ranking tuples satisfy-
ing an imprecise query. Our proposed approach for generatingl@vant results to an
imprecise query requires neither domain speci ¢ informationor changes to the archi-
tecture of the underlying database. Our solution involves maging the given imprecise
guery to a precise query (calledbase querythat is a specialization of the imprecise
qguery. Next AIMQ derives a set of precise queries by consideringchaanswer tuple
of the base query as relaxable selection queryThe heuristic for guiding the relax-
ation process is based on the approximate dependencies minexhf the underlying
database. Chapter 5 has more details about our heuristic relaon approach.

The tuples obtained after the relaxation are not all equallyrelevant to their
respective queries and hence must be ranked in terms of their gamty to the query.
For numerical attributes we can usé. , distance metrics to capture similarity. However
no such widely accepted measure exists for categorical attriles. Therefore, as part of

AIMQ, we developed a context-sensitive domain independent aggach for estimating
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the semantic similarity between values binding categoricalt@butes. More details
about the similarity estimation approach are in Chapter 4.

A key factor motivating our approach is our desire to minimizehe input a
user must provide to get an answer to her imprecise query. Speally, we wish
to provide an interface similar to that given by the increasinly popular Web search
engines, where the user only provides a set of keywords that vatjuspecify her query
and the search engine returns a ranked list of documents that ssfiy the user query
to some degree. On similar lineyur quest is to determine whether we can provide
relevant answers to a imprecise query by using only the infornwat contained in the
database Given that the database contains tuples generated by humanthey must
capture some amount of real-world semantics e.g. relationshipetween attributes
(features of the domain), similarity between values etc. Herdn developing AIMQ,
the question we wish to answer the questioHow closely can we model users' notion
of relevance by mining meta-data from the database?

Below we begin by giving the architecture of the AIMQ system, exain the
data and query model we use and nally describe AIMQ's approacloif answering

imprecise queries.

3.1. AIMQ Architecture

The AIMQ system as illustrated in Figure 2 consists of four subsystems:aia
Collector, Dependency Miner, Similarity Miner and the Quey Engine. The data col-

lector probes the autonomous databases to extract sample sulssef the databases.
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Figure 2. AIMQ system architecture

The extracted sample is processed for e cient extraction of attbute dependencies
and value similarities. Dependency Miner mines approximateegendencies and ap-
proximate keys from the probed data and uses them to determiedependence based
importance ordering among the attributes. This ordering is sed by the query en-
gine in query relaxation as well as to ascribe weights to similaes shown by each
attribute. The Similarity Miner uses an association based simitdy mining approach
to estimate similarities between categorical values. AIMQ alsontains wrappers to

access the Web databases. However, in this thesis we do not focuschallenges
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involved in generating and maintaining the wrappers Figure 3 is the interface for

asking imprecise queries provided by AIMQ.

£ AIMG - Answering IMprecise Queries

‘= Connect DB !autudh :v| | Execute Query | | Exit |

select * from autodh where Model like "Cherokee” and Price like "SSDD";|

iselect * from autodb where Make like "Toyota"” and myear like " 1996™;
select * from autodh where Model ike “Camny™;

|

l

Database changed. 0 tuples affected

Figure 3. AIMQ Query Interface

3.2. Data and Query Model

Attribute : An attribute is a template for possible values and set of functits, opera-
tors that operate on these values and de ne the behavior. All gyators and functions
except the similarity function are assumed to be built-in fundbns for any attribute.
The domain of an attribute is the set of all values following tts template.
Attribute-value:  An attribute-value (also called an instance of the attribute) § one
of all possible values in the domain of the attribute.

Tuple: Given a set ofn pairs (Aj;Di), 0 i n, whereA; is an attribute and D; is

its domain. A tuplet is an element of the cartesian product oD 1; D5;::::; Dy.

1Recent research done as part of the MetaQuerier[ZZC04] system has shown promisirgsults in
automatic interface extraction (wrapper generation).
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An attribute supports a number of related operators that are aplicable to
instances of the attribute. If the domain of the attribute hasa total order (e.g. is
numeric in nature) then the set of operators i§<; ;=; ;>g. The built-in predicates
in boolean model are based on crisp (boolean) retrieval semasti These predicates
are used to represent the conditions in traditional database ques. A similarity
version of each predicate is represented by su xindike to the predicate. In this
thesis we focus on the similarity predicatéke, as we are also interested in determining
similarity over attributes who domains are not ordered (e.gcategorical attributes).
However, for the ordered domainjike can be trivially extended to obtain like (=
);like(<); like(>); like( ) and like( ).

Query conditions can be of two types, crisp conditions which arexact matches
and similarity expressions which serve to rank the results. The sp conditions follow
the traditional boolean model of true and false.

Precise Query : A user query that requires data exactly matching the query ¢o
straint is a precise query. A precise query contains only crisp ruditions over the
attributes. For example, the query

Q:- CarDB(Make = Ford)
is a precise query, all of whose answer tuples must have attributéake bound by the
value Ford.
Imprecise Query : A user query that does not insist on exact match (and only
requires dataclosely matching the query constraint) is an imprecise query. Thus

an imprecise query contains similarity expressions that rank ehresults. Answers
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to such a query must be ranked according to their closeness/similgrto the query
constraints. For example, the query

Q:- CarDB(Make like Ford)

is an imprecise query, the answers to which must have the attribeiMake bound by

a value similar to Ford.

3.3. The AIMQ Approach

Dependency Miner Similaity Miner
Imprecise - . Use Base Set as set of Use Value similarities
Uery Enging , .
Query WLVEIGRE | QuEVENE | | e i - andattibute
0 | (ueries Importance to measure
| lap: Coner Derive Base tuple similarities
Tke' 0"~ Sl A, Using AFDs fid
) i relaxation order Prune tuples below
Qpr =Map(Q) Abs B Qpr(R) threshold

Derive Extended Set by

executng relaxed queris Retum Ranked Set

Figure 4. FlowGraph of the AIMQ approach

Below we give an overview of AIMQ's imprecise query answering @pach.

Continuing with the scenario in Example 1.2, let the user's itnded query be:
Q:- CarDB(Model like Camry, Price like 1000Q

We begin by assuming that the tuples satisfying some specializatiof Q { called the

base quenyQy,, are indicative of the answers of interest to the user. For example, it
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is logical to assume that a user looking for cars like Camry woulae happy if shown
a Camry that satis es most of her constraints. Hence, we deriv@,,2 by tightening
the constraints from\likeliness" to \equality" :
Qpr:- CarDB(Model = Camry, Price = 10000)

Our task then is to start with the answer tuples forQ,, { called the base set(1)
nd other tuples similar to tuples in the base set and (2) rank then in terms of
similarity to Q. Our idea is to consider each tuple in the base set as a (fully badjn
selection query, and issue relaxations of these selection querie the database to
nd additional similar tuples. The tuples of CarDB satisfying Q,; also satisfy the
imprecise query Q. Suppos@nswers@Q,,) contains the tuples

tl = [Make=Toyota, Model=Camry, Price=10000, Year=2000]

t2= [Make=Toyota, Model=Camry, Price=10000, Year=2001]
The tuplestl andt2 completely satisfy the constraints of the base que@,,. But the
user is also interested in tuples that have binding values similéo the constraints in
Q. Assuming we knew thatHonda Accordand Toyota Camry are similar cars, then
we could also show tuples containingccord to the user if these tuples had values of
Price or Year similar to tuples of Q. Thus,

t3= [Make=Honda, Model =Accord, Price=9800, Year=2000]
could be seen as being similar to the tupleEl and therefore a possible answer tQ.

We could also show otheCamrys whosePrice and Year values are slightly di erent

to those of tuples intl and t2. Speci cally, all tuples of CarDB that have one or

2We assume a non-null resultset forQ,r or one of its generalizations. The attribute ordering
heuristic we describe later in this thesis is also useful in relaxingp .
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more binding values close to some answer tuple @f, can be considered as potential
answers to queryQ. Thus by considering each tuple in the base set as a relaxable
selection query we can extract additional tuples from the dabase that are similar
to tuples in the base set. These new tuples form thextended sebf answers that are
relevant to the imprecise query.

However randomly picking attributes of tuples to relax couldyenerate a large
number of tuples of possibly low relevance. In theory, the tugb closest to a tuple in
the base set will have di erences in the attribute that least a &ts the binding values of
other attributes. Approximate functional dependenciefAFDs) capture relationships
between attributes of a relation and can be used to determindé degree to which
a change in binding value of an attribute a ects other attributes. Therefore, we
mine approximate dependencies between attributes of thelagon and use them to
determine a heuristic to guide the relaxation process. After theelaxation process, a
large number of tuples may be found as being possibly relevamt the tuples of the
base query. But not all tuples will be equally relevant. Ther®re we use Equation 3.1,
described below, to measure the semantic similarity of each tapin extended set to
the corresponding tuple in base set and provide a ranked list of swers that closely

match the given imprecise query.

3.3.1. Extracting Relevant Answers. A formal description of the AIMQ
approach for answering an imprecise selection query over a dadse is given in Al-
gorithm 1. Given an imprecise quen@ to be executed over relation R, the threshold

of similarity Tg,, and the attribute relaxation order /Qraax , we begin by mapping the
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Algorithm 1 Extracting Relevant Tuples

Require: Q, R, Reax, Teim

1. Let Qpr = fMap(Q)jAps = Qpr(R);jAbsj > Og
2. 812 Abs

3. Qu = CreateQueries(t, Rieiax)
4 8 92 Qe

5: Arel = CI(R)

6: 8 t02 Arel
7

8

9:

it Similarity (t; t9 > Tgm
: Acs = Aes tO
Return Top-k( Acs).

imprecise query Q to a precise quer@,, having a non-null answerset (Step 1). The
set of answers for the mapped precise query forms thase setA,s. By extracting
tuples having similarity above a prede ned threshold,Ts,, to the tuples in Ays we
can get a larger subset of potential answers callexktended se(Aes). Every tuple

t 2 Aps can be seen as a precise selection query with values binding bé# attributes.
Therefore by relaxing the constraints of tuplet we can generate new queries whose
answers will be similar tot and consequently relevant to the imprecise query Q. Ran-
domly relaxing constraints can lead to queries having no ansigeor that have many
irrelevant tuples. To ensure more relevant tuples are retried after relaxation, we
use the Algorithm 2 to determine an attribute relaxation order/f?rem. Using /Qre|aX,
we generate a set of precise queri€s, from each tuple inAps (Step 3). Executing
a queryg?2 Qe over R will give us a set of tuplesA,e, that are relevant to the cor-
responding tuplet 2 Ays (Step 5). Identifying possibly relevant answers only solves

part of the problem since we must now rank the tuples in terms ohe similarity they
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show to the tuplet. Therefore we measure the similarity of each tupl® 2 A, to
the tuple t 2 A, (Step 7). Only if t° shows similarity above the thresholdls,, do we
add it to the set of relevant answerdA.s for Q (Step 8). The algorithm returns only

the top-k® tuples (in terms of similarity to Q) to the user.

3.3.2. Estimating Query-Tuple Similarity. AIMQ measures the similar-
ity between an imprecise queryQ and an answer tuplet as aweighted summatiorof
the similarity scores of corresponding attributes iQ and t. Thus the similarity is
estimated as
V Sim(Q:Ai; t:Aj)
if Domain( A;) = Categorical

X
Sim(Q;t) = Wimp (Ai)

i=1

(3.1)

1 absolute(Q:A; t:A;)
QA

© VWK ARRXRRARIAARY/ ©O

if Domain( A;j) = Numerical

P
wheren = Count(boundattributes(Q)), Wimp (1=, Wimp = 1) is a factor correspond-

ing to the importance of an attribute and the functionVSim measures the similarity

s absolute(Q:A; t:Aj)

between the categorical values. If the distances computed ugi# OA; IS

greater than 1, we assume the distance to be 1 to maintain a lowexmd of O for
numeric similarity. AIMQ assumes the attributes to have either tcrete numerical
or categorical values. As mentioned earlier in Chapter 1, ourativation is to provide
answers that are acceptable to the users with minimal input fra the users them-

selves and hence we do no wish to burden the users by having to pdevthe necessary

3Algorithm 3 assumes that similarity threshold T and the number of tuples (k) to be returned
to the user are tuned by the system designers.
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distance metrics. Moreover, lay users will often nd it di cult to come up with dis-
tance metrics that capture their notions about similarity. Hexce we must compute the
similarity between values binding the query and the tuples usg automated solutions.
There are many ways in which we can determine the similarity bheeen two
objects. For example, for numeric data, the data values can bgewed as direct
arguments to a calculation function. For non-numeric datasome form of similarity
procedure can be developed that correlates non-numeric iagtes with numeric values
(e.g. represent non-numeric data using Unicode or ASCII represation). Such
methods commonly produce a numeric value indicating the deness of the values
according to some accepted convention and scale. However, irstrespect, it can be
argued that the reduction of non-numeric data to numeric pramity values can, for
some applications, be improved, particularly when the valudself has no meaning
except as a comparison. Even for numeric data, in many cases thgeful distance
between two values may not simply be the numeric di erence bween them. A useful
measure of similarity for some spatial applications, for examplenay be a measure
of the time taken to get from point A to point B rather than any of the numerous
methods of measuring physical proximity. The similarity betwentwo objects may also
be a function of their behavior with respect to other attribas in the relation Often,
users perception of similarity calledsemantic similarity is not based on the (syntax
of the) values themselves but on their behaviour as describeg their interactions
with other values. For example, nding cars similar toToyota Camry will require

comparing every feature o€Camry to those of other cars. Note that semantic similarity
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always subsumes the syntactical similarity. Since our motivaih is to provide answers
acceptable to users, we must measure the semantic similarity beewmethe query and
the answer tuples.

The user perception of similarity between numeric values is bad mostly on the
(physical or syntactic) distances between the values themsedveA L , distance metrics
such as Manhattan distance and Euclidean distance are widelycapted measures for
computing distances between numeric values irrespective dfet domain in which
these values appear. Hence in this dissertation we assume thatdistance captures
the semantic (user perceived) similarity between numeric vads. But no such domain
and user-independent measure is available for measuring the gamty between values
binding a categorical attribute.

In the context of AIMQ, the crucial rst step is in deciding the set of precise
gueries using which relevant tuples can be extracted from thagatabase. While the
task is important, the challenge there is not in extracting tle tuples but doing so
e ciently. Irrespective of the e ciency of the tuple extract ion phase, we do require
a distance metric for measuring the semantic similarity betweethe tuples and the
given imprecise query. Therefore, deciding the similarity ibseen categorical values
becomes very vital to the task of answering an imprecise query.

Hence in the following, we rst present a domain independent sdion for
estimating semantic similarity between categorical values i€hapter 4. Then in
Chapter 5 we present a heuristic for deciding which attributeto relax rst such that

the tuples that are likely to be more relevant are extractedaglier from the database.



CHAPTER 4

ESTIMATING SEMANTIC SIMILARITY

AMONG CATEGORICAL VALUES

The need to determinesemantic similarity between two lexically expressed
concepts is a problem that pervades much of natural languageocessing. Measures
of relatedness are used in such applications as word sense disaodiign, determining
the structure of texts, text summarization and annotation, inbrmation extraction and
retrieval, automatic indexing, lexical selection, and the atomatic correction of word
errors in text. We must note that semantic relatedness is a moresgeral concept than
semantic similarity. In natural language processing systensynonymywas considered
as the basic semantic relation.Similar words were considered semantically related
by virtue of their synonymy(e.g. bank { trust company), but dissimilar entities
may also be semantically related by lexical relationships sucts aneronymy* (e.g.
car - wheel) andantonymy? (e.g. hot - cold), or just by any kind of functional
relationship or frequent association (e.g. pencil - paper, pgain - Antarctica, rain

- ood). Computational applications typically require relatedness rather than just

1A meronym denotes a constituent part of, or a member of something.
2Antonymy holds between two words that can (in a given context) express opposi meanings.
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similarity. However, in this thesis, we measure only the semanticnsilarity between
words (attribute values) such that a ranked set of answers can begsented to a given
imprecise query. Therefore, our focus is only on learning tsgnonymy between words.

According to (a statement usually attributed to) Gottfried Liebniz, \two words
are synonyms if one can be used in place of the other without chizng the meaning
of the statement. However, linguists consider that for all synonyms there is atelst
one statement whose meaning is changed by the substitution of omerd for another.
Hence, a weaker de nition of synonym by Liebniz - dynonyms are words that are
interchangeable in some contextss considered more realistic. This de nition makes
synonymy (and thus similarity) relative to context.

The semantic similarity estimation approach we developed is amder. Given
a database of tuples, we assume that binding values that are semiaatly similar
have similar distributional behaviour. With this assumption, we can treat the values
that co-occur near a value as constituting features that desbe the context in which
the given value appears in the database. The semantic similaribetween two values
is then computed in terms of how similar is their contexts i.e.by measuring the
commonality of their features. An alternate interpretation s to consider the sets of
features co-occurring (associated) with a given value as regenting the context in
which the value appears. Then measuring the similarity betweethe features sets
of two values will tell us the degree of similarity of the conta in which the value
appears in the database or corpus. The closer this similarity, ¢hmore semantically

related would be the values. Simply puttwo values are (semantically) similar if



46

they share a number of common feature§ his model forms the basis of our domain
independent approach for measuring the semantic similarity beeen values binding
categorical attributes.

Below we present a association based context sensitive semantic kinty esti-
mation technique. In keeping with the discussion above, we deteine the similarity

between two values as their behavioral similarity or the coromality in their contexts.

4.1. AV-Pair

We call the combination of an attribute and a distinct value bnding it as an
AV-pair. E.g. Make=Ford is an AV-palir.

We consider two values as being associated if they occur in the sample.
Two AV-pairs are associated if their values are associated. The slanity between two
AV-pairs can be measured as the percentage of associated AV-pamsmon to them.
More speci cally, given a categorical value, all the AV-pairsassociated to the value
can be seen as the features describing the value. The set (bagum case) of features
together can be considered as capturing a speci ¢ context in wh the given AV-pair
appears. Consequently, the similarity between two values care kestimated by the
commonality in the features (AV-pairs) describing them and here the closeness of the
context in which they appear. For example, given tuplé =f Ford, Focus, 15k, 2003,
the AV-pair Make=Ford is associated to the AV-pairsModel=Focus, Price=15k and
Year=2002. The AV-pairs formed by combining distinct values binding theattributes

Model, Price and Year can be seen as the features describing the AV-pairs ovdake
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Similarly AV-pairs of Make, Price and Year for those ofModel and so on.

4.2. Supertuple

Databases on the web are autonomous and cannot be assumed to ewneta-
data such as possible distinct values binding an attribute. Hena®e must extract this
information by probing the database using sample queries. Frorhe data extracted

by probing we can identify a subset of all AV-pairs in the databasgover the relation.

Model Focus:5, ZX2:7, F150:8 ...
Mileage | 10k-15k:3, 20k-25k:5, ..
Price 1k-5k:5, 15k-20k:3, ..
Color White:5, Black:5, ...

Year 2000:6, 19995, ....

Table 1. Supertuple for Make=Ford

An AV-pair can be visualized as a selection query that binds only aingle
attribute. By issuing such a query over the extracted database wean identify a set
of tuples all containing the AV-pair. We represent the answerseatontaining each AV-
pair as a structure called thesupertuple The supertuple contains a bag of keywords
for each attribute in the relation not bound by the AV-pair. Table 1 shows the
supertuple for Make=Ford over the relation CarDB as a 2-column tabular structure.
To represent a bag of keywords we extend the semantics of a set efkords by

associating an occurrence count for each member of the set. THosattribute Color

3The number of AV-pairs identi ed is proportional to the size of the database extracted by
sampling. However we can incrementally add new AV-pairs as and when they are encounteredha
learn similarities for them. But in this paper we do not focus on the issue of incementally updating
the AV-pairs.
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in Table 1, we seé/Nhite with an occurrence count of ve, suggesting that there are

ve White coloredFord cars in the database that satisfy the AV-pair query.

4.3. Measuring Categorical Value Similarity

We measure the similarity between two AV-pairs as the similarityshown by
their supertuples. We use thelaccard Similarity metric [BYRN99] to estimate sim-
ilarity between the supertuples. The supertuples contain bags keywords for each
attribute in the relation. Hence we use Jaccard Similarity [HGHD2] with bag seman-
tics to determine the similarity between two supertuples. The dccard Coe cient

(Simj) is calculated as
jA\ Bj
iA[ Bj

Sim;(A;B) = (4.1)

Unlike pure text documents, supertuples would rarely share kepnds across
attributes. Moreover all attributes (features) may not be eqally important for decid-
ing the similarity between two categorical values. For exame] given two cars, their
prices may have more importance than theircolor in deciding the similarity between
them. Hence, given the answersets for an AV-pair, we generate bdgr each attribute
in the corresponding supertuple. The value similarity is thenamputed as a weighted
sum of the attribute bag similarities. Calculating the similarty in this manner allows
us to vary the importance ascribed to di erent attributes. Thus, similarity between
two values is calculated as

xn

VSIm(Vl,Vz) = Wimp (A,) SImJ(St1A|,St2A|) (42)

i=1
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where V; and V, are values binding a categorical attribute andSt;, St, are the
corresponding supertuples withm attributes, A; is the bag corresponding to the
i attribute in the supertuple, Wimp (Aj) is the importance weight ofA;. However,
determining a good weighing scheme to accurately re ect th@uocerns of the user is a
di cult task. While users may have an idea of what features (attibutes) are more or
less important given a AV-pair, it is not certain that they can accurately model their
preferences in terms of importance weights. This further mietes the need to learn
the importance of the attributes automatically. In the next chapter, Chapter 5, we
present a domain independent approach for estimating the impgance to be ascribed

to an attribute.

4.4. Summary and Discussion

In this chapter we presented the context sensitive similarity eshation tech-
nique we use to compute the similarity between categorical vads. As already de ned,
we measure the similarity between two categorical values asetgimilarity of their con-
texts or supertuples. However, by computing the similarity beteen the supertuples
as the Jaccard Similarity between attribute bags, we are onimeasuring whether the
same exact AV-pair is co-occurring with both the values. Thus, ware approximating
the similarity between values by thedegree of equalitypetween their contexts. Mea-
suring only equality among categorical AV-pairs is acceptablsince we do not have
prior access to a distance metric for measuring similarity amongategorical values.

However, for numeric values this assumption contradicts withuy earlier claim of L,
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distance metrics like Euclidean or Manhattan being able to nasure similarity. Below
we highlight the challenges involved in computing the similety between numerical
AV-pairs in the context of measuring bag similarity.

We can measure the similarity between numeric elements (AV-Ra) of bags

as described in Equation 3.1, i.e.

abSO|th Pl:i Pz:j )

Sim(P1:i; P2ij) = min(Wtp, i Wtp,;) 1 P
1-

(4.3)

(P P23j)
P]_Zi

Moreover, as in Equation 3.1, if the distance computed using=et
is greater than 1, we can assume the distance to be 1 to maintain @averbound of
0 for numeric similarity. However, using Equation 3.1 we cannatapture similarity
between all pairs of numeric values. Speci cally, given soni®:i, Equation 3.1 will
only measure the true similarity ofP,:j with values in the range [02 P;:i]. The
similarity of all P,:j's with values greater than 2 P,:i will be considered as equal
to that of 2  P,:i irrespective of how large the actual value is from 2 P,:i. Thus,
while using Equation 4.3 is better than assuming equality, it des not always capture
true similarity between any two numeric values. While the simdrity measured by
Equation 4.3 for values not lying in the range [(2 P;:i] is an approximation, this
approximation is acceptable when testing whether a given tlgis having values close
to the user given value in the query. Speci cally, by using the §uation 3.1 we are
putting a bound,[0;2 Q:value] on the neighbourhood of interest within which we
will correctly rank the tuples.

A more critical issue that arises when using Equation 4.3 is thatf @eciding

the possible values foP,:j for a givenP;:i. If we assign all values irP, to P,:i we will
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get a similarity vector with size equal toP, for every P;:i. While a single number can
be obtained by summing up each such vector, it is not clear what gu number will
represent and at times can lead to false conclusions. We will #iwate the problem
using an example. Suppose we are interested in measuring the samty between
three bags of caPrices, P;, P, and P3;. Speci cally, we want to decide whetheiP; or
P3 is more similar toP,. Let P, = f10;20:1100: 1, P, =f10:125:295: 5
andPs; = f1:590: 4. Here the representation semantics is same as that of Figure 1.
If we use Equation 4.2 to measure similarity we will geSim(P,; P;) = 0:09 as only
one element 10 is common whil8im(P,; P3) = 0 as no elements are common between
them. Thus, P; will be considered as more similar td®, than P; - a result that is
intuitive given the closeness in distribution of elements i, and P,. Now let us use
Equation 4.3 to compute the similarity of each element oP, to all elements inP;
and Ps; and sum up the values to obtain a single number of similarity. We i/ get
Sim(Py;P) = f1+0:75+0:95g = 2:7 and Sim(P,; P3) = f4 0:95g = 3:8. Thus, by
using Equation 4.3 we would conclude that bothP; is more similar to P,. However,
such a conclusion does not seem intuitive given th&; has more distinct elements
similar with P, than Ps;. Thus, measuring similarity between bags as the similarity
of their elements instead of equality of elements does not gaatee measurement of
a more intuitive and user-acceptable similarity measure.

The above problem may have been introduced by computing similty between
all pairs of values in the bags. Instead, we can restrict computj the similarity of Py:i

to only the closest value possible aB,:j. However, nding the closest value entails
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additional computational cost (O(n?) additional comparisons for each pair of bags)
and cannot provide any more guarantees about the computed siarity measure. In
comparison, computing bag similarity by only considering eqlity among AV-pairs
has clean semantics - that of measuring commonality among theatures. Therefore,
when computing the categorical value similarities we do noti@rentiate between

numerical and categorical valued features and only look fequality of AV-pairs.



CHAPTER 5

LEARNING ATTRIBUTE IMPORTANCE
MEASURES FOR EFFICIENT QUERY

RELAXATION

The approach used by AIMQ for answering imprecise queries reqesrgenera-
tion of new selection queries by relaxing the constraints of ¢htuples in the base set
Aps. The underlying motivation there is to identify tuples that are closest to some
tuple t 2 Aps. In theory the tuples most similar tot will have di erences only in
the least important attribute. Therefore the rst attribute t o be relaxed must be the
least important attribute. We de ne the least important attribute as the attribute
whose binding value, when changed, has minimal e ect on vakidinding other at-
tributes. Approximate Functional Dependencies (AFD$HKPT98] e ciently capture
such relations between attributes. The underlying assumptiomiusing AFDs is the
belief that the database instances re ect the real world and Imee the signi cance
models held by users. In the following we will explain how we use BB to identify

the importance of an attribute and thereby guide the query Haxation process.
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5.1. Mining AFDs for Query Relaxation

The attribute relaxation heuristic we developed for supportig e cient query
relaxation is described below. We begin by giving necessary dé@ions and then

explain our approach for estimating attribute importance.

5.1.1. De nitions. Functional Dependency . For a relational schemaR,
an expression of the fronX !' A whereX R andA 2 R is a functional dependency
over R. The dependency is said tdold in a given relationr over R if for all pairs of

tuplest;u 2 r and 8B 2 X we havet:B = u:B) tA = uA.

Approximate Functional Dependency (AFD): The functional dependencyX !

A over relation r is an approximate functional dependencif it does not hold over
a small fraction of the tuples. Specically,X ! A is an approximate functional
dependency if and only iferror(X ! A)  Ter, Where the error thresholdTe, 2
(0; 1) and the error is measured as a ratio of the tuples that violatthe dependency

to the total number of tuples inr.

Approximate Key (AKey): An attribute set X R is a key over relationr if
no two distinct tuples in r agree onX. However, if the uniqueness oK does not
hold over a small fraction of tuples inr, then X is considered armapproximate key
Speci cally, X is an approximate key iferror(X)  Ter, Where Te, 2 (0;1) and
error (X) is measured as the minimum fraction of tuples that need to beemoved
from relation r for X to be a key.

Several authors [Lee87, KM95, DR00] have proposed variousaseres to ap-



55

proximate the functional dependencies and keys that hold ia database. Among
them, the gz measure proposed by Kivinen and Mannila [KM95], is widely acetd.

The gz measure is de ned as the ratio of minimum number of tuples thateed be
removed from relationR to make X ! Y a functional dependency to the total num-
ber of tuples inR. This de nition is consistent with our de nition of approximate

dependencies and keys given above. Hence we TA&E [HKPT98], the algorithm

developed by Huhtala et al for e ciently discovering AFDs and approximate keys
whosegs; approximation measure is below a given error threshold. A bfi@verview
of the TANE algorithm is given in Appendix A.

We mine the AFDs and keys using a subset of the database extracted by
probing. Some of the AFDs and approximate keys mined from a gred sample
of a user car database (used for evaluating our approach) are simowm Table 2.
Speci cally, the tuple showingMake, Price! Model with support 0:65 implies that
if you know the Make and Price of a car in the database then with @65 probability
you can guess theModel of the car. Similarly, the Q78 support for approximate
key Model, Mileagegives the probability of uniquely identifying a tuple giventhat

approximate key.

AFD Support
Model I  Make 0.96
Make, Price ! Model 0.65
Approximate Key Support
Model, Mileage 0.78
Make, Price 0.54

Table 2. Sample AFDs and Approximate Keys mined from CarDB
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5.1.2. Generating the Relaxation Order. Identifying the least important

attribute necessitates an ordering of the attributes in term®f their dependence on

each other. A simple solution is to make a dependence graph beem attributes and

perform a topological sort over the graph. Functional depemshcies can be used to

derive the attribute dependence graph that we need. But, fufunctional dependen-

cies (i.e. with 100% support) between all pairs of attributeéor sets encompassing all

attributes) are often not available. Therefore we use appraxiate functional depen-

dencies (AFDs) between attributes to develop the attribute deendence graph with

attributes as nodes and the relations between them as weiglk directed edges. How-

ever, the graph so developed often is strongly connected andhbe contains cycles

thereby making it impossible to do a topological sort over it. Qastructing a DAG

by removing all edges forming a cycle will result in much loss offormation.

Algorithm 2 Attribute Relaxation Order

Require: Relation R, Dataset r, Error threshold Terr

1. Sarp =fXxjx 2 GetAFDs(R,r), @(X) <Terg

2. Sak =fxjx 2 GetAKeys(R,r), 0z3(X) < Teng

3: AK =fkjk 2 Sak, 8k°2 Sax support(k) support(k’) g
4: AK = fkjik2 R AKg

5 8 k2 AK p PN

6: W tgecides(K)= %

N

where k?S/Q R, K2R A
WtAK_: Wt/_\K [k;Wtdecides(k)]

8 8 2AK

10:
11:

. P A
W tgepenas(j) = % where A R

th = th [] Wit depends(J )]
Return [Sort( Wtzc), Sort( Wtax )]

We therefore propose an alternate approach to break the cycléve partition

the attribute set into dependentand decidingsets, with the criteria being each mem-
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ber of a given group either depends or decides at least one membf the other group.
A topological sort of members in each subset can be done by estimgthow depen-
dent/deciding they are with respect to other attributes. Thenby relaxing all members
in the dependent group ahead of those in the deciding group wancensure that the
least important attribute is relaxed rst. We use the approximae key with highest
support to partition the attribute set. All attributes forming the approximate key be-
come members of theleciding setwhile the remaining attributes form the dependent
set Details of our attribute ordering approach is described in Ajorithm 2.

Given a database relation R and error thresholde,,, Algorithm 2 begins by
extracting all possible AFDs and approximate keys (AKeys). As meitned earlier,
we use the TANE algorithm to extract AFDs and AKeys whos&; measures are below
Terr (Step 1,2). Next we identify the approximate key with the higlest support (or
least error), AK , to partition the attribute set into the deciding group (attr ibutes
belonging to AK ) and those that are dependent orAK (belong to AK )(Step 3,4).
Then for each attribute k in deciding group we sum all support values for each AFD
where k belongs to the antecedent of the AFD (Step 5-7). Similarly we easure
the dependence weight for each attributg belonging to the dependent group by
summing up the support of each AFD wherg¢ is in the consequent (Step 8-10). The
two sets are then sorted in ascending order and a totally orderegt of attributes in
terms of their importance (i.e. how deciding an attribute is)is returned (Step 11).

Given the attribute order, we compute the weight to be assignetb each attribute
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S
k2 W tak th as

8
WT gecides (k)
Wt gecides (J)
if K2 Wtak

Wi(k) = RelaxOrder (k)

~ jAttributes (R)j 1)

WTdepends (k)
Wtdepends (J)

if k2 Wt

where RelaxOrder returns the position at whictk will be relaxed. The position ranges
from 1 for least important attribute to count(Attributes(R)) for the most important
attribute. The dependance and decidability measuresV Tyepends and W Tgeciges are
computed as

. P Al i
W tgepends(j ) = %
P

W tgecides(K) = % (5.2)

whereA Rk2Aj2R A

The relaxation order we produce using Algorithm 2 only providethe order for
relaxing a single attribute of the query at a time. Given the sigle attribute ordering,
we greedily generate multi-attribute relaxation assuming te multi-attribute ordering
strictly follows the single attribute ordering. For example,suppose the 1-attribute
relaxation order is

! a3! a! a

then the 2-attribute order will be

aaz! apar! apa! agas! azgiax! aya
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The 3-attribute order will be a cartesian product of 1 and 2-dtibute orders and so
on. Figure 5 shows the 1 and 2-attribute relaxation order we dged for the prototype

database CarDB we designed to evaluate AIMQ(see Chapter 6 for dés).

Make! Price ! Year! Model

Make, Price ! Make, Year! Make, Model! Price, Year |
Price, Model ! Year, Model

Figure 5. Attribute Relaxation Order in CarDB

5.2. Sampling the Databases

In order to learn the attribute importance and value similarties , we need
to rst collect a representative sample of the data stored in the soces. Since the
sources are autonomous, this will involve \probing" the sourcewith a representative
set of \probing queries". Below we describe the process of selagtprobe queries and

also highlight possible a ects of sampling on our solution.

5.2.1. Generating Probe Queries.  There are two possible ways of gener-
ating \representative" probing queries. We could either (1) gk our sample of queries
from a set ofspanning queries i.e., queries which together cover all the tuples stored
in the data sources or (2) pick the sample from the set of actual gties that are
directed at the system over a period of time. Although the seconcgproach is more
sensitive to the actual queries that are encountered, it has &icken-and-egg problem

as no statistics can be learned until the system has processed a seot number of
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user queries. In this thesis, we assume that the probing queries @edected from a
set of spanning queries (the second approach can be used for registatistics once
Su cient queries are issued over the system). In Chapter 8, we pragean exten-
sion of AIMQ that suggests similar queries by assuming availabilitpf a query log.
Spanning queries can be generated by considering a cartesiaaduct of the values
binding all attributes, and generating selection queries thaind attributes using the
corresponding values of the members of the cartesian produ&ssuming the avail-
ability of binding values for all attributes projected by anautonomous Web database
is not practical. A more feasible solution is to assume the avalidity of few binding
values for some attributes of the projected relation. Given amall seed set of values,
we can generate a subset of the spanning queries by consideringdesian product
of the values. New values can be identi ed from the results of tke spanning queries.
The process stops when no new binding values are identi ed onie have extracted
obtained the sample size of our choice.

In this thesis we assume that the system designer/ domain expert ibla to
provide a set of seed binding values for some attributes found the relation. For
example, in the used car database, it is fairly easy to come up Wwiseed values for
almost all attributes. Although a query binding single attribute will generate larger
resultsets, most often such queries will not satisfy the binding resttions of Web
sources as they are too general and may extract a large part betsources data. The
less general the query (more attributes bound), more likelyt will be accepted by

autonomous Web sources. But reducing the generality of the qyedoes entail an
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increase in the number of spanning queries leading to largeroping costs if sampling
is not done. Once we decide the issue of the space from which thelpng queries
are selected (in our case, a set of spanning queries), the next qu@stis how to
pick a representative sample of these queries. Clearly, sendinfpotential queries
to the sources is too costly. We use sampling techniques for keegpthe number of
probing queries under control. Two well-known sampling tectiques are applicable
to our scenario: (a) Simple Random Sampling and (b) Strati edRandom Sampling
[Coc77]. Simple random sampling gives equal probability ofelng selected to each
guery in the collection of sample queries. Strati ed random sapting requires that the
sample population be divisible into several subgroups. Howeverpgping categorical
attributes would require access to domain speci c informatio (e.g. ontologies) -
information, as we showed earlier, that is often not availabl Hence, we only use the

simple random sampling technique to obtain probe queries.

5.2.2. Issues Raised by Sampling. We note at the outset, that the details
of the dependency mining and value similarity estimation taskdo not depend on
how the probing queries are selected. However, we are approatmg the model of
attribute dependencies and value similarities found in theatabase by using a small
sample of the database. Therefore, we may end up learning degencies and value
similarities that do not re ect the actual distribution of the database. Intuitively, the
larger the sample obtained, the better our approximation oftte database. However,

as our experimental evaluations will show, assuming a uniformstribution of values
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in the database our approach will be able to modelthe relative ordering among
attributes and values from a sample of the database. The loss afcaracy due to
sampling is not a critical issue for us as it is theelative rather than the absolute
values of the dependencies and value similarities that are moimportant in query

relaxation and result ranking.

5.3. Summary and Discussion

In this chapter, we presented an AFD based query relaxation appach de-
veloped as part of AIMQ. E ective query relaxation is very essdial for AIMQ to
e ciently identify potential answers to an imprecise query. fveral approaches for
e cient query relaxation/re nement have been investigated under the aegis of coop-
erative query answering [Gas97, CCL91, CCL92, Mot86]. The stihns developed
assumed presence of user provided meta information about retatships between at-
tributes that could be exploited to extend the scope of a giveguery. Some solutions
assume availability of concept hierarchies that could be used tsuggest alternate
binding values for the query. A detailed discussion about theselstions is in Sec-
tion 9.2. Given our intent of minimizing user input, we could ot adapt any of the
suggested user dependent solutions. Moreover, as pointed outlieatin this disserta-
tion, concept hierarchies and ontologies are not readily avable and hence could not

be used as a basis for driving query relaxation under AIMQ.

LIn [AC99], authors use uniformity of data assumption to build and maintain histograms using
answers of queries issued over the database. They show that such histograms areebb learn the
underlying data distributions with little loss of accuracy even for distributions with moderate skew.
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The solution therefore was to try and learn a query relaxatiorheuristic by
mining the database. The underlying motivation was to automically learn an ap-
proximation of the users' notion of relevance of an attribute.Once an approximate
model is identi ed, we could re ne it by accepting implicit feedback from users. At
the outset, the idea of mining patterns from data that re ect eal world models might
seem to be wishful thinking. On the contrary,functional dependenciess a form of
real-world relevance among attributes is widely acceptechd used in databases. In
[RNO3], Russell and Norvig point out that functional dependenes express a strict
form of relevance that can be learned from observations of theal world - as in tuples
in a real-world database. They argue thatlependencies provide su cient informa-
tion to allow construction of hypotheses concerning the targeattribute. Therefore, in
AIMQ we use functional dependencies between attributes to d&inine a relevance
(importance) based relaxation heuristic. However, full funabnal dependencies, de-
pendencies that are true for every tuple in the database, do hcover all attributes of
the relation. Hence, we use approximate functional dependées - dependencies that
are true over a majority of the tuples, to identify the query réaxation heuristic. A
recent work in query optimization [IMH" 04] also learns approximate functional de-
pendencies from the data but uses it to identify attribute set$or which to remember
statistics. In contrast, we use it for capturing semantic patterngrom the data.

In AIMQ, we used AFDs to identify the attribute that is least likely to cause
other attributes in a relation. However, AFDs are not the only bol that can represent

causal relationships. Causal Bayesian Networks [C0097, CH] and GalAssociation



64

Rules [SsBMU98] are alternative techniques that are useful iedrning causal rela-
tionships among attributes. Indeed, before deciding to use AFDse looked at the
feasibility of using the above mentioned techniques in AIMQ.

A Bayesian networkis a valuable tool for reasoning about probabilistic (ca-
sual) relationships. A Bayesian network for a set of attributeX = X 1;;Xn is a
directed acyclic graph with a network structureS that encodes a set of conditional
independence assertions about attributes iX , and a setP of local probability dis-
tributions associated with each attribute. Acausal Bayesian networks a Bayesian
network in which the predecessors of a node are interpreted aisedtly causing the
variable associated with that node. However, the possible causatworks are ex-
ponential in the number of variables and so practical algotiims must use heuristics
to limit the space of networks. The process of identifying a goothusal model can
be helped by providing prior distribution . In general it is casidered that good
heuristics combined with prior information could lead to pratical causal Bayesian
systems. But developing good heuristics and providing prior iofmation are tasks
that can be performed by a domain expert. Since our motivatiowas to avoid the use
of domain speci c information in developing AIMQ, using causal Byesian networks
for determining attribute causality was not a feasible solutin.

In [SsBMU98], authors look at the applicability of constraintbased causal
discovery in identifying causal relationships in market baskedata. They build on
ideas presented in [Co097] to determine a subset of causal relaghips. They argue

that causal Bayesian networkss impossible to to infer in large scale data mining
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applications but the constraint-based techniques are feasthl Speci cally, they use
information about dependence and independence among setafables to constrain
the number of causal relationshipamong a subset of the variables. Simply put, if
it is know that attributes A and B are independent, then one can easily infer that
no causal relationships exist between them. In general, the ctraint-based causal
network learners also attempt to form a complete causal modeh@ have exponential-
time complexity. However, by only looking at relationships oazurring between sets of
three variables that are pairwise correlated, authors are &bto provide a polynomial
time algorithm in [SsBMU98]. In doing so, the algorithm is only kle to nd a very
small subset of the relations between the attributes. Moreoveauthors assume several
other constraints on the underlying data the most important bang the applicability
of Markov Condition - If A and B are nodes in a Bayesian Network an8 is not a
descendent oA in the network, then the Markov condition is said to hold A and B
are independent conditioned on the parents &. Since the algorithm does not nd
all relationships between attributes, any attribute relevace estimate obtained using
such an algorithm would be highly erroneous to begin with ancherefore we do not

use it in AIMQ.



CHAPTER 6

EVALUATING ROBUSTNESS, EFFICIENCY

AND ACCURACY OF AIMQ

In this chapter we present evaluation results showing the e ciecy and ef-
fectiveness of AIMQ in answering imprecise queries. Speci callye investigate the
robustness of the estimated attribute importance and value sitarities, evaluate the
e ciency of the query relaxation process and verify the releance of answers we sug-
gest by conducting a user study. We used the online used car databasdhoo Autos

to evaluate our system.

6.1. Experimental Setup

We set up a MySQL based used car search system that projects the redat
CarDB(Make, Model, Year, Price, Mileage, Location, Color)and populated it us-
ing 10Q 000 tuples extracted fromYahoo Autos To populate CarDB we probed the

Yahoo Autosdatabase by generating probe queries as described in Sectiaa 5The

1Available at http://autos.yahoo.com.
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probe queries over Yahoo Autos bound the attributedake and Location. We con-
sidered the attributesMake, Model, Year, Locationand Color in the relation CarDB
as being categorical in nature. Additional details about theestbed are given in the
Appendix C. Figure 6 presents a ranked set of answers returned by MD. The
AIMQ system is written in Java. The evaluations were conductedroa Windows

based system with 1.5GHz CPU and 768MB RAM.

Implemented Algorithms: We designed two query relaxation algorithmsGuide-
dRelaxand RandomRelaxfor creating selection queries by relaxing the tuples in the
base set. GuidedRelaxmakes use of the AFDs and approximate keys and decides a
relaxation scheme as described in Section 5.1.2. TRandomRelaxalgorithm was
designed to mimic the random process by which users would relaxegies. The

algorithm randomly identi es a set of attributes to relax andcreates queries.

£ Similar Tuples - GuidedRelax

Simfaue . make | model | myear | pice | mieage | location | color
Jesp (Cherokee 11997 5500 [104000 rF:emon:cA While
0.8758461... Jeep IChErOkEE'I Mot 25 (119219 FremontCA [Whie
B.. Jeep Cherokee 1999 6900 [G1000  [FremonkCA Whte
(Cheolet SWPwkup NG9 5495 99000 FremontCA [Wnte
Rerostar 19@? f (104000 Fremum A _mee

0.7936027.. eep ?G_rarrd(:he...ﬁ@-ﬁﬁ 93000 [Fremont CA Wihite
07754701, |Jeap (Cherokee (1997 f i Orange:CA White
0.768390... lJeep Wrangler 1947 5 104366 [LaCresce.. e
07580962, Portiac  TransAm  |1994 | Je617 SanFrann Hiite
| Honda  [Chie 1997 6498 84000 FremontCh [Wnite
07533116, Chewolel Msto 1997 6900 104000 FremomCA WWhie

.(i .l."j

Figure 6. Ranked Answers
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6.2. Robustness of AIMQ

As pointed out in Section 5.2, both the similarity estimation aad attribute
importance estimation processes depend on the sample datasetaeited by probing.
Hence, one could argue that our approach is susceptible to varoas in the distribu-
tion of the probing queries and consequently on the amount ofaith extracted. Below
we empirically show that while the absolute support for the AFDs rad approximate
keys does vary over di erent data samples, their relative ordmg is not considerably

a ected.

6.2.1. Robust Attribute Importance Estimation. Using simple random
sampling without replacement we constructed three subsets of (B containing 15k,
25k and 50k tuples. Then we mined AFDs and approximate keys froach subset
and also from the 100k tuples of CarDB. Using only the AFDs we commad the
dependence of each attribute on all other attributes in thealation (seeW tgepends in
Equation 5.2).

The attributes Price, Mileage and Location did not appear in any consequent.
Figure 7 shows the dependence of remaining attributes in CaD We can see that
Modelis the least dependent among the dependent attributes whiMakeis the most
dependent. The dependence values are highest when estimateerdhe 100k sample
and lowest when estimated over 15k sample. This variation (due tsampling) is
expected, however the change in the dataset size does not a d¢oe relative ordering

of the attributes and therefore will not impact our attribute ordering approach.
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Figure 8 compares the quality of approximate keys mined frorthe sample
datasets to that mined over the entire CarDB database (100Kk). @ality of an approx-
imate key is de ned as the ratio of support over size (in terms @ittributes) of the key.
The quality metric is designed to give preference to shorter ¥& Speci cally, given
two keys with same support we would pick the key with less numbeif attributes.
In Figure 8, the approximate keys are arranged in increasingder of their quality in
the database. Only 4 of the 26 approximate keys in the databaseeanot present in
the sampled datasets. These 4 keys have low quality and would na&ve been useful
in query relaxation. The approximate key with the highest quity in the database
also has the highest quality in all the sampled datasets. Thus, eventh the smallest
sample (15k) of the database we would have picked the right agpimate key during

the query relaxation process.

Value Similar Values 25k | 100k
Make=Kia Hyundai 0.17 | 0.17
Isuzu 0.15 | 0.15
Subaru 0.13 | 0.13
Model=Bronco| Aerostrar 0.19 | 0.21
F-350 0 0.12
Econoline Van | 0.11 | 0.11
Year=1985 1986 0.16 | 0.18
1984 0.13 | 0.14
1987 0.12 | 0.12

Table 3. Comparison of Value Similarities computed using 25knd 100k samples of
CarDB

6.2.2. Robust Similarity Estimation. We estimated value similarities for

the attributes Make, Model, Year, Locationand Color using both the 100k and 25k
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Figure 7. Robustness of Attribute Ordering

Algorithm Step Time-25k | Time-100k
SuperTuple Generation| 3 min 4 min
Similarity Estimation 15 min 26 min

Table 4. Computation Time for Value Similarity Estimation over CarDB

datasets. Time required for similarity estimation directly degnds on the number of
AV-pairs extracted from the database and not on the size of the tiset. This is
re ected in Table 6 where the time required to estimate similaty over 100k dataset
is only twice that of the 25k dataset even though the dataset sizecreased four times.
Figure 9 provides a graphical representation of the estimatesimilarity between some
of the values binding attribute Make The values Ford and Chevrolet show high

similarity while BMW is not connected toFord as the similarity is below threshold.
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Figure 8. Robustness in mining Keys

We found these results to be intuitively reasonable and feel oapproach is able to
e ciently determine the distances between categorical valkes. Later in the section
we will provide results of a user study that show our similarity mesures as being
acceptable to the users.

As shown above, the number of AV-pairs may vary depending on thezsi of
the dataset used to learn the value similarities. Even though thenissing values in
smaller samples does a ect the answers we suggest, we are able twectly rank
the values occurring in the sample dataset. Table 3 shows the t8pvalues similar
to Make=Kia, Model=Bronco and Year=1985 that we obtained from the 100k and

25k datasets. Even though the actual similarity values are lowéor the 25k dataset,
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Figure 9. Similarity Graph for Make=Ford

the relative ordering among values is maintained. Similaresults were also seen for
other AV-pairs. Once again, we reiterate the fact that it is therelative and not the
absolutevalue of similarity (and attribute importance) that is crucial in providing

ranked answers.

6.3. E ciency of query relaxation

To verify the e ciency of the query relaxation technique we pesented in Chap-
ter 5, we setup a test scenario using the CarDB database and a set ofrh@domly
picked tuples. For each of these tuples our aim was to extract 20ples from CarDB

that had similarity above threshold T, (0:5 Tsm < 1). To measure the e ciency
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Figure 10. E ciency of GuidedRelax

of our relaxation algorithms we used the metric

- .
W ork=RelevantT uple= 1-Exracted ] (6.1)

jTReIevant J

where Texracted  gives the total tuples extracted whileTreevant IS the number of ex-
tracted tuples showed similarity above the thresholdg, . Speci cally Work/RelevantTuple
is a measure of the average number of tuples that an user wouldvkdo look at before
nding a relevant tuple.

The graphs in Figure 10 and Figure 11 show the average number taples
that had to be extracted by GuidedRelaxand RandomRelaxrespectively to identify
a relevant tuple for the query. Intuitively the larger the exected similarity, the

more the work required to identify a relevant tuple. While bth algorithms do follow
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Figure 11. E ciency of RandomRelax

this intuition, we note that for higher thresholds RandomRelax(Figure 11) ends up
extracting hundreds of tuples before nding a relevant tup. GuidedRelax(Figure 10)
is much more resilient to the variations in threshold and genaly needs to extract
about 4 tuples identify a relevant tuple. Thus by usingsuidedRelax a user would have
to look at considerably less number of tuples before obtainirggtisfactory answers.
The evaluations presented above aimed to study the accuracyde ciency
of our query relaxation approach. However these experimentglchot verify whether
the tuples returned were acceptable to the user. In the next demn we present results

from a user study showing the high relevance of the answers we swgge
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6.4. Relevance of answers given by AIMQ

The results presented so far only verify the robustness and e ciey of the
imprecise query answering model we propose. However these resdtisnot show
that the attribute importance and similarity relations we cgpture are acceptable to the
user. Hence, in order to verify the correctness of the attributend value relationships
we learn and use, we setup a small user study over the used car datab@seDB.
We randomly picked 14 tuples from the 100tuples in CarDB to form the query set.
Next, using both the RandomRelax and GuidedRelax methods, weddti ed 10 most
similar tuples for each of these 14 queries. For tuples extradtdoy RandomRelax
we gave equal importance all attribute similarities. We used # 25k dataset to
learn the attribute importance weights used by GuidedRelaxThe categorical value
similarities were also estimated using the 25k sample dataset. Bvéhough in the
previous section we presented RandomRelax as almost a \strawmalgorithm”, it
is not true here. Since RandomRelax looks at a larger percage of tuples in the
database before returning the similar answers it is likely thait can obtain a larger
number of relevant answers (i.e. with higher similarity). Theld queries and the
two sets of ranked answers were given to 8 graduate studémblunteers. To keep
the feedback unbiased, information about the approach geming the answers was
withheld from the users. Users were asked to re-order the answersa@ding to their
notion of relevance (similarity). Tuples that seemed complety irrelevant were to be

given a rank of zero.

2Graduate students by virtue of their low salaries are all considered experts irused cars.



76

Results of user study: We used MRR (mean reciprocal rank) [Voo99], the metric
for relevance estimation used in TREC QA evaluations, to comparthe relevance of
the answers provided by RandomRelax and GuidedRelax. In TREQA evaluations,
the reciprocal rank (RR) of a query, Q, is decided as the recipcal of the position
at which the single correct answer was found. Thus, if correct awer is at position
1: RR(Q)=1, if at position 2: RR(Q)= 3 and so on. If no answer is correct then
RR(Q)=0. The MRR over a set of questions is the average of the rpcocal rank of
each question. While TREC QA evaluations assume unigue answer &ach query, we
assume a unique answer for each of the top-10 answers of a queryusitve re-de ne

MRR for a query Q as

1
jUserRank(tj) SystemRank(t;)j+ 1

MRR (Q) = Avg (6.2)

wheret; is i answer toQ. Figure 13 shows the average MRR ascribed to both the
guery relaxation approaches.

The higher average MRR value given to GuidedRelax for most ques points
to the fact that the ranked answers provided by GuidedRelax we considered more
relevant by the users. Thus, even though it only looks at fewer ples of the database,
GuidedRelax is able to extract more relevant answers. Thus, tredtribute ordering
heuristic is able to closely approximate the importance userseaibe to the various
attributes of the relation. The overall high relevance (avege MRR=0.4) given to
the answers shows that the value similarities learned have higitcuracy and are
found relevant by the users. Evaluating the user study results inoojunction with

those checking e ciency ( Section 6.3), we can claim that AIMQSs e ciently able to
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provide ranked answers to imprecise queries with high levelsuser satisfaction.

--+- RandomRelax

—u— GuidedRelax

Average MRR

1 2 3 4 5 [+ T 8 9 10 11 12 13 14
Queries

Figure 12. Average MRR for GuidedRelax and RandomRelax overa@DB

6.5. Summary and Discussion

We evaluated the e ciency and e ectiveness of AIMQ in answeringmprecise
gueries over CarDB, a database constructed from the online usear databaseYahoo
Autos. Both, the categorical value similarities estimation preseed in Chapter 4
and the attribute importance learning and query relaxationalgorithms presented in
Chapter 5, require a sample of the database to learn the necessatgtistics. As

pointed out in Section 5.2.2, the probing phase required to g&act samples may lead

to inaccuracies in the estimated statistics.
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To mitigate the concerns arising due to probing, we performetbbustness
analysis of the learning algorithms by using samples of CarDB.h€ closeness in
statistics mined from the samples to those mined from the entireathbase proves
that the AIMQ algorithms are resilient to the size of sample extreted during the
probing phase. We acknowledge that such a conclusion is only pbssiif we assume
normal or only a slightly skewed distribution of data in the datdase. But, if the
database consists of a number of disjoint sets, then the statisticsatat from the
samples may or may not accurately re ect the behavior over thentire database.
However, we must point out that this drawback is expected for anlearning algorithm
that has to rely on a probed sample of the database. The solution such a situation
would be to use probing queries that span most subsets. However, thraay lead to
extracting the entire database. On the other hand, we could yrto look at past usage
of the database and learn the statistics for regions most often gued by users. Thus,
database workloads when available can be e ectively used to mmize the e ects of
sampling. Databases being autonomous may not provide their vktoads, but AIMQ
can maintain a log of queries issued by the users (both imprecisedaprecise) and
use them to improve e ciency of the probing phase.

Results of the user study demonstrated high levels of user satisfact for the
imprecise query answers provided by our system. These results cdspabe seen as
validating the value similarities estimated by the context sesitive semantic similarity

estimation model developed in Chapter 4.

Why compare only with RandomRelax? In this chapter, we presented com-
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parison results between our relaxation algorithnGuidedRelaxand RandomRelax- an
algorithm designed to mimic the random process by which users wd relax queries.
Speci cally, given a tuple in the base seRandomRelaxidenti es a random relaxation
order and uses it to relax queries. One critique that might ariseegarding our eval-
uation is that RandomRelaxis a strawman algorithm and so the comparison is not
conclusive. We believe such an argument has no merit given traléwing two facts -
(1) prior to GuidedRelax, there are is no domain-independeéguery relaxation algo-
rithm and (2) in the absence of any domain knowledge, a user atibgting to extract
information from a database would be only a random search. Thefore, Random-
Relax should be considered as thbenchmarkwhose performance must be matched
by any domain independent query relaxation algorithm. We lok at several domain
and/or user dependent relaxation algorithms in Section 9.2.

The most important component of any query relaxation algortim is the heuris-
tic used to determine the relaxation order of attributes. In AIMQ (for GuidedRelax
we use AFDs to derive such a heuristic. While domain-independehturistics for
estimating attribute importance and query relaxation are nb available, several re-
searchers have developed domain-independent heuristics determining the impor-
tance of attribute values by looking at the underlying link stuctures [ABC* 02, HP02]
or based on the frequency with which they occur in the databasae@queries [ACDGO03].
Since, AIMQ assumes a single database relation, the link structubased approaches
are not feasible. We discuss such approaches and highlight thimitations in Sec-

tion 9.1.
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The QFIDF measure introduced in [ACDGO03] for measuring themportance
of an attribute valueis based on the much populafF-IDF measure used in IR sys-
tems. In fact, IDF measure is inQFIDF mimicks IDF measure in IR by measuring
how frequently the attribute value appears in all the tuplesn the database. TheQF
measure computes the frequency of an attribute value in the & workload - a log
of past queries issued by users. BotQF and IDF are measuring popularity of the
value in the workload and the database. However, popularity @ value as measured
by both QF and IDF does not provide any information about how it interacts with
values binding other attributes i.e. no dependence inforrtian between values can
be obtained by looking their individual QFIDF values. Given the lack of dependence
information, identifying relaxed queries by removing thedast or most popular at-
tribute value will not guarantee a non-empty resultset. The rason being that the
bound attributes may often in uence the choice of the bindig value(s) for the free
attribute(s). Thus, the relaxation heuristic based onQFIDF can give no more guar-
antees thanRandomRelax In fact, one can argue that theQFIDF based relaxation
algorithm would be a type of random relaxation where the ramaim number is replaced
by the QFIDF value. Therefore, we usedRandomRelaxwhich is both domain and

user independent to compare the performance GfuidedRelax



CHAPTER 7

COMPARISON STUDY TO SHOWCASE

DOMAIN-INDEPENDENCE AND

CONSISTENCY

The robustness and e ciency of AIMQ system in answering imprecise gues
has been clearly demonstrated by the evaluation results preset in the previous
chapter, Chapter 6. Eventhough AIMQ did not make use of any donma speci c
information about used cars in answering imprecise queries ov8arDB, to make
a conclusive argument about the domain independence of AIMQ wmeust evaluate
over additional domains. Therefore, in this chapter, we evaate AIMQ using the
Census datasetwvailable from the UCI Machine Learning Repository Furthermore,
to further highlight the e ciency and robustness of AIMQ's algorithms, we compare
the performance of AIMQ in terms of the relevance of answers s@gted with that of
an alternate imprecise query answering system that implementseé ROCK categorical

value clusteringalgorithm [GRS99].
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7.1. Comparison Study: AIMQ versus ROCK

7.1.1. ROCK based Imprecise Query Answering System. We set up
another query answering system that uses the ROCK clustering algghm to cluster
all the tuples in the dataset and then uses these clusters to det@ne similar tuples.
We chose ROCK to compare as it is also a domain independent sotutilike AIMQ
and does not require users to provide distance metrics. RO&Hi ers from AIMQ in
the way it identi es tuples similar to a tuple in the base set. Spe cally, given a tuple
t belonging to the base set, ROCK rst determines the cluster to wkh the tuple t
belongs and then returns the most similar tuples from that clustr. Clustering using
ROCK consists of extracting a small random sample from the databe, applying the
link based clustering algorithm on the sampled points and thernsaigning the remain-
ing points from the dataset to the clusters. A detailed overviewf the approach used

by ROCK for clustering tuples containing categorical valueg given in Appendix B.

7.1.2. Experimental Setup.  We used two real-life databases:- (1) the online
used car databaseYahoo Autog and (2) the Census Datasetfrom UCI Machine
Learning Repository, to compare the performance of AIMQ and ROCK.
Implemented Algorithms: We compare the performance of both the query relax-
ation algorithms, GuidedRelaxand RandomRelax described in the previous chapter
with that of ROCK. The RandomRelaxalgorithm was designed to mimic the ran-

dom process by which users would relax queries. The algorithmndomly identi es

IHenceforth, we use ROCK to refer to the query answering system using ROCK.
2 Available at http://autos.yahoo.com.
3Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.



Attribute Type Distinct Values
Age Numerical NA
Workclass Categorical | 8
Demographic-weight | Numerical NA
Education Categorical | 16
Marital-Status Categorical | 7
Occupation Categorical | 14
Relationship Categorical | 6
Race Categorical | 5
Sex Categorical | 2
Capital-gain Numerical NA
Capital-loss Numerical NA
Hours-per-week Numerical NA
Native-country Categorical | 41

Table 5. Schema Description of CensusDB
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a set of attributes to relax and creates queriesGuidedRelaxmakes use of the AFDs
and approximate keys and decides a relaxation scheme as ddsamliin Algorithm 2.
ROCK's computational complexity is O(n®), wheren is the number of tuples in the
dataset. In contrast, AIMQ's complexity is O(m k?) where m is the number of
categorical attributes, k is the average number of distinct values binding each cate-
gorical attribute and m <k <n . AIMQ and ROCK were both developed using Java.
The evaluations were conducted on a Windows based system witthGHz CPU and
768MB RAM.

The time required by AIMQ and ROCK to compute the necessary statigts

is given in Table 6. The overall processing time required by AIM@s signi cantly

lesser than that for ROCK. We can clearly see that AIMQ is much more cient than
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CarDB (25k) CensusDB (45k)

AIMQ

SuperTuple Generation 3 min 4 min
Similarity Estimation 15 min 20 min
ROCK

Link Computation (2k) 20 min 35 min
Initial Clustering (2k) 45 min 86 min
Data Labeling 30 min 50 min

Table 6. Computation Time for AIMQ and ROCK over CarDB and CenssDB

ROCK. Note that the Link Computation and Initial Cluster identi cation phase of
ROCK only uses very small sample (2000 tuples in our case) of thevgn datasets.
Even though ROCK uses the same sized (2000 tuples) initial sampte both CarDB
and CensusDB, the time required to compute links and derive dters in CensusDB
is almost twice that required in CarDB. The variation is due tothe larger attribute
space that ROCK has to search through in the CensusDB. EventhoughiMQ also
requires more computation time over CensusDB, the increase inme is negligible
thereby demonstrating that AIMQ's learning algorithms are meh less in uenced by

the number of attributes in the database.

7.2. Comparison Study using CarDB

To compare the performance of AIMQ with that of ROCK we began bgetting
up a small user study over the used car database CarDB. We used thealadse CarDB
described in Section 6 as the rst database over which to compattee performance of

AIMQ and ROCK. As described earlier CarDB projects the relationCarDB(Make,
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Figure 13. Average MRR of AIMQ and ROCK over CarDB

Model, Year, Price, Mileage, Location, Color)and is populated using 10000 tuples
extracted from Yahoo Autos

We randomly picked 14 tuples from the 100tuples in CarDB to form the query
set. Next, using both theRandomRelaxand GuidedRelaxmethods, we identi ed 10
most similar tuples for each of these 14 queries. We also chose 10 answising
ROCK. We used the 25k sample of CarDB to learn the attribute impance weights
used byGuidedRelax The categorical value similarities were also estimated usinbe
25k sample dataset. BotrRandomRelaxand ROCK give equal importance to all the
attributes and only di er in the similarity estimation model t hey use. The 14 queries
and the three sets of ranked answers were given to 8 graduate statlvolunteers. To

keep the feedback unbiased, information about the approactemerating the answers
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was withheld from the users. Users were asked to re-order the anssvaccording to
their notion of relevance (similarity). Tuples that seemed aopletely irrelevant were
to be given a rank of zero.

We again used MRR (mean reciprocal rank) [Vo099], the metrioff relevance
estimation used in TREC QA evaluations, to compare the relevaecof the answers
provided by AIMQ and ROCK. Figure 13 shows the average MRR ascmd to both
the query relaxation approaches of ROCKGuidedRelaxhas higher MRR thanRan-
domRelaxand ROCK. ROCK only ensures that the set of all \clusters" togethe
optimize a criterion function but cannot guarantee that alltuples belonging to a
cluster are equally similar. Moreover, ROCK uses equality as ¢hmeasure to test
similarity for categorical attributes. These limitations together lead to the poor over-
all performance of ROCK. Even thoughGuidedRelaxlooks at fewer tuples of the
database, it is able to extract more relevant answers thaRandomRelaxand ROCK.
Thus, the attribute ordering heuristic is able to closely apprwimate the importance
users ascribe to the various attributes of the relation. Furtermore, the much higher
relevance attributed to answers oRandomRelaxthan those of ROCK show that our
similarity estimation model is superior to that employed by RO® and is able to

learn value similarities that are more acceptable to users.

7.3. Comparison Study using CesusDB

The results presented above do show that AIMQ is considerably bett than

ROCK - a contemporary domain independent categorical valugmilarity estimation
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Figure 14. Classi cation Accuracy of AIMQ & ROCK over CensusDB

approach. However, one could argue that CarDB may be biased tas the heuristics
used by AIMQ and hence ROCK performs badly over CarDB. Therefer we also
evaluated the performance of both the systems over the Censugatase, CensusDB.

The Census database we used projected the relati@ensusDB(Age, Work-

class, Demographic-weight, Education, Marital-Status, @upation, Relationship, Race,

Value Similar Values | Similarity

Education=Bachelors Some-college 0.6
HS-Grad 0.42
Masters 0.27

Workclass=Federal-Gov | State-Gov 0.59
Local-Gov 0.38
Private 0.14

Table 7. CensusDB Value Similarities
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Sex, Capital-gain, Capital-loss, Hours-per-week, Nativee@ntry) and was populated
with 45; 000 tuples provided by theCensus datasetSchema description of CensusDB
with the count of number of distinct values binding the categacal values is given in
Table 5. Each tuple was pre-classi ed into one of the two classest) (ncome> 50K
and (2) Income<= 50K . Even though the tuples in the dataset were pre-classi ed,
during the attribute importance estimation and value similaity learning phases we
ignored the class labels. We used the classi cation to test the rgnce of the similar
answers returned by AIMQ and ROCK. Each tuple in the database ctans infor-
mation that can be used to decide whether the surveyed individills yearly income
is > 50k' or '<=50k". An example user query over CensusDB could be
Q:-CensusDB(Education like Bachelors, Hours-per-week li ke 40)
The user issuingQ is interested in nding all individuals (tuples in CensusDB) wio
have Education similar to a Bachelorsdegree and work foraround 40 hours a week.
Since Hours-per-weekis continuous valued we can use ah, metric such asEuclid-
ean distanceto decide values close to 40. But:ducation is a categorical attribute
and hence determining values similar t®achelorsbecomes a non-trivial task in the
absence of a user-given distance metric. Moreover, other aliites like Age, Occupa-
tion, WorkClass etcalso are important in determining similarity among individuds
(tuples of CensusDB). Thus answering quer® would require learning both the im-
portance to be ascribed to each attribute and the similaritiebetween values binding
the categorical attributes - two tasks that are e ciently and accurately accomplished

by AIMQ.
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To answer imprecise queries such &3 over CensusDB, we began by using a
sample of 1% tuples of CensusDB to learn the attribute dependencies and eajori-
cal value similarities. AIMQ picked the approximate keyAge, Demographic-Weight,

Hours-per-weekas the best key and used it to derive relaxation order shown in Fig

ure 15.

Occupation ! Capital-loss ! Education ! Relationship ! Race!
Marital-Status ! Sex! Capital-gain ! Native-country !
Demographic-Weight !  Hours-per-week ! Workclass ! Age

Figure 15. Attribute Relaxation Order in CensusDB

The ordering is intuitive since it is a known fact that on an aveage a more
experienced person (higher age) would earn more. On the otheand, no particular
occupation (e.g. Sales, managemetwill exclusively divide an income range and
hence occupation alone cannot conclusively decide your ylgaincome. Therefore
occupation must be have low importance as is re ected in the dering. Table 7
shows a few similarities estimated by AIMQ between the values ldimg the categorical
attributes.

We randomly selected 2000 tuples from CensusDB as the initial spla to give
as input to ROCK. From the 2000 tuples, we were able to obtain B0initial clusters.
ROCK then assigned the remaining tuples to these 300 clusters.

We used the class information to check the relevance of the anssveve pro-
vide. Speci cally, tuples belonging to the same class are mosenilar than those in

opposite classes. Therefore, we estimated the relevance of AIM@iswers based on
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the number of answers having identical class as the query. We dsEO0O tuples not
appearing in the 15k sample as queries to test the system. The gesrwere equally
distributed over the two classes. For each query, usifguidedRelaxwe identi ed the
rst 10 tuples that had similarity above 0:4. We also used ROCK to learn 10 answers
to each of the test queries. Figure 14 compares the average claasion accuracy of
the top-k (where k=f10,5,3,1g) answers given by both AIMQ and ROCK to each of
the 1000 queries. We can see that the accuracy increases as waagedhe number of
similar answers given to each query. Once again, AIMQ comprelsavely outperforms
ROCK in all the cases thereby proving that AIMQ is domain indepedent and that

its learning algorithms are e cient and able to better modelthe value similarities.

7.4. Summary and Discussion

In this chapter, we compared the performance of AIMQ against a siem that
used the ROCK categorical value clustering algorithm to decedsimilarity between
tuples. We used two databaseSarDB and CensusDBto compare the performance of
the two systems. The almost constant and considerably lesser time vagd by AIMQ
in computing the necessary statistics over both domains demonstes the e ciency,
scalability and domain independence of AIMQ's algorithms.

The much higher relevance of answers given by AIMQ over CarDB drthe
higher classi cation accuracy of AIMQ's results over CensuDB showhat AIMQ is
able to return answers that are considerably more relevant thé users. This validates

our claim that AIMQ is a domain independent solution and is apptable over a
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multitude of domains. The evaluation results presented in Chaer 6 and Chapter 7
provide substantial evidence that we have successfully achievaar goal of providing
answers to imprecise queries without a ecting any changes tdé query answering
model of the original database and more importantly, withourequiring the users to
provide any additional input other than the imprecise querytself. Eventhough, the
high relevance of our suggested answers is heartening, it wasereour intent to take
the user out of the loop. We believe that adding some sort of useleeance feedback
to the AIMQ approach can considerably improve the solution we psent. However,
asking users to grade the relevance of the answers they obtaingduld amount to
burdening the users post the query execution phase. This wouldgate all the bene ts
of our approach. Hence, any feedback to be added must be obtalneplicitly. A
popular technique is use the database workloads to obtain fdeatk about the types
of queries users issue over the database. With the assumption thaetfuture queries
will closely follow current trends, we can identify the populaqueries and thereby the
answers that users are interested in and provide these rst whended with a new
query. Therefore, in the next chapter, Chapter 8, we presenAIMQ-Log, a system
that extends AIMQ by adding implicit feedback to the imprecisequery answering

approach of AIMQ.



CHAPTER 8

AIMQ-Log: USING WORKLOAD TO CAPTURE

USER INTEREST

The imprecise query answering approach, AIMQ, presented so farasvmoti-
vated by our desire to support imprecise queries over autonon®databases without
changing the database or burdening the user with the need to pfide much domain
speci ¢ information apart from the query.

In this chapter we present a domain-independent approach, Al@Log, that
extends the AIMQ system to account for user interest. However, weestill interested
in generating relevant results to an imprecise query withoutequiring the user to
provide any domain specic information or any changes to therahitecture of the
underlying database.

Answering imprecise queries using AIMQ-Log involves mapping thggven im-
precise query to a set of precise queries obtained from a worldodog of past queries
issued over the database. The set of precise queries relevant te tlser given im-
precise query are decided based on the similarity they show to tluser query. The

similarity between queries is estimated as the similarity amantheir answer tuples.
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Under the relational data model, two queries are similar onlyf ithey contain same
values for all their attributes or if their answer sets had comwn answer tuples. But
two queries can be considered similar even if their tuples onlgatch partially. We
can consider the answers of a query as describing the context bétquery and use
the context-sensitive similarity estimation technique (Chaper 4) of AIMQ to measure
the similarity of queries in the query log.

We implemented AIMQ-Log over BibFinder [NKHO3], a publicly- aailable
Web data mediator. Below, we describe the AIMQ-Log approach dmprovide results
of a user study showing the high relevance of the precise queries identify and

thereby that of the answers suggested by AIMQ-Log.

8.1. Overview of AIMQ-Log

SimQuery Similarity Estimator SimQuery Engine
. Engine SimQuer .
Imprecise Engine Use Value similaries
Query | From he querylog - andatiibute
Q | Map: Conver dentiy set o precise importance: to measure
—| 0= B Derive Base | queries simiarto o[> e simariies
_ Set A
=Ma b Prune tuples below
s?féh thatp(QQp)r S Derive Extended Set threpshold
helongs to A= Q) by executing idenfied
querylog precise queries Return Ranked Set

Figure 16. FlowGraph of the AIMQ-Log approach



94

The AIMQ system's primary intent was minimizing the inputs a userhas to
provide before she can get answers for her imprecise query. Hasvewn doing so,
AIMQ fails to include users' interest while deciding the answers. Aaive solution
would be to ask user to provide feedback about the answers she reeg But doing so
would negate the bene ts of AIMQ. The ideal solution would be t@btain and use user
feedback implicitly. Databaseworkloads- log of past user queries, have been shown as
being a good source for implicitly estimating the user interestACDGO03]. Hence, we
developedAIMQ-Log a system that di ers from AIMQ in the way it determines the
set of precise queries used to extract relevant answers from thatabase. Instead of
the query relaxation approach followed by AIMQ, in AIMQ-Log weuse the database
workload to identify precise queries of interest. We only cord@r queries that occur
frequently (i.e. more than a given threshold) in the workloador determining the
relevant set. The more frequent a query, more likely it will beseen as relevant by
a new user. The owgraph of AIMQ-Log's query answering approaclts given in
Figure 16.

Given an imprecise queryQ and the database workloadQ,, containing past
precise queries issued oveR, AIMQ-Log begins by by identifying a precise query
2 Qg that can be mapped ontoQ. Query Q, is said to map into Q if the set
of constrained attributes of Q, is a subset of the constrained attributes of the.
Moreover both the precise and imprecise query constraints shduhave the same
binding values. After determiningQ,,, we can then extract other queries fronQqq

that are similar to the query Q,,, thereby forming a set of precise queries whose



95

Author=Ullman

Co-author C. Li:5, R. Motwani:7, ....

Title data-mining:3, optimizing:5, ....
Subject integration:5, learning:2, ....
Conference SIGMOD:5, VLDB:5, ....

Year 2000:6, 19995, ....

Table 8. SuperTuple for query Author=Uliman

answers will be relevant to the imprecise querQ. That is,

Ans(Q) TuplegQ9
where Q02 Qlog; S|m(Q0; Qpr) > T sim

As is the case with by AIMQ, the answer tdQ will be an ordered union of the answers
of the precise queries where the similarity of a tuple to the que Q is computed as
explained in Chapter 4. We can obtain a sample of the database Hby unifying
the answersets of the queries we select from the query log. Thes, explained in
Chapter 4 and Chapter 5 we can determine the attribute impoence measures and

value similarities required to measure the similarity of answeuples to the imprecise

query.

8.2. Generating Similarity Matrix

In this section, we explain how we compute the similarity betwen the queries.

Suppose Author=Ullman and Author=Widom are two queries on the relatiorPubli-
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cations. The author names show no similarity, yet the authors may haveyblications

that fall under the sameSubjector appear in the sameConferenceor Year or a combi-
nation of all these. Thus, even though the queries (terms) are hthe same, the fact
that their contexts as de ned by their resultsets are similar wald make the queries
similar. Hence, we can provide answers to the queAuthor=Widom to an user who
issued a queryAuthor like Ullman. If we maintained the strict tuple structure for

gueries, queries would be similar only if they contained the sanuples. Hence, only
if Ullman and Widom were co-authors would they be seen as related. Butlman and

Widom are related because they write papers on related topics. Thuset answers
to the query (and therefore the supertuple) can be seen as deborg the context

of the query. Hence, the similarity between two queries can bestenated using the

context-sensitive similarity estimation approach described ihapter 4.

Speci cally, the similarity between two queries is measuredsathe similarity
shown by their supertuples. As described in Chapter 4, we use thaccard Similarity
metric [BYRN99] to estimate similarity between the supertuples. We comped the
similarity between the queries using two similarity estimationmetrics derived from

Equation 4.2 based on how the importance weights were assignéthe derived metrics

are

Doc-Doc similarity: In this method, we gave equal importance to all attributes
belonging to a supertuple. Thus, the supertuple then can be codsred a

document - a single bag representing all the values occurringthe supertuple.
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The similarity between two queriesQ; and Q, is then computed as

Simgq(Q1; Q2) = Sim;(Sto1; Sto2)

Weighted-Attribute similarity: Here we use AIMQ's query-tuple similarity esti-
mation function. The importance measures for each attributevere mined from
a sample dataset obtained by unifying the answers for all populgueries in the

guery log. The similarity between two querie®); and Q, is then determined as

Simya(Q1;Q2) = V Sim(Stos; Sto2)

Using Algorithm 3 we compute a similarity matrix for the queries m query
log. The similarity between every pair of queries in the querlpg is calculated using
both the Doc-Doc and Weighted-Attribute similarity metrics. A minimal similarity

threshold T, is used to prune the number of queries found similar to a given ey.

8.3. Evaluation

8.3.1. Experimental Setup.  To evaluate the e ectiveness of our approach
in answering imprecise queries, we implemented AIMQ-Log ovBibFinder [NKHO3,
Bib05]. BibFinder is a publicly-available Web data integration system that progcts
a uni ed schema over multiple bibliography databases. BibFiner provides a form-

based interface and accepts queries over the relation

P ublications(Author; Title; Conference; Journal; Y ear)
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Algorithm 3  Creating Query Similarity Matrix

Require: Query log size n, No of Attributes - m, Attribute Bags, Attribute Weights
Wimp , Similarity Threshold T,
1. SimMatrix = null.
2: fori=1ton-1
3: iBags = Get_Attribute _Bags(i).

4. forj=i+1lton

5: jBags = Get_Attribute _Bags(j).

6: fork=1tom

7 iDoc = Append(iDoc,iBags[K]).
8: jDoc = Append(jDoc,jBags[k]).
o Asm = el

10: Simyq = }:ng}%

11: if (Simgg < 'lF',sim)Simdd =0

12: SiMwa = oy AISIM[K]  Wimp [K]
13: if (Simya < Tsim)Simya =0

14: SimMatrix[i][j] = [ Simgq, SiMya]

15: SimMatrix[j][i] = SimMatrix[i][j].
16: Return SimMatrix.

Several features of BibFinder validate the assumptions we madh this thesis.
Queries over BibFinder are conjuncts of attribute-value pss. Even though BibFinder
integrates multiple Web data sources with varying query cagalities, it displays the
behaviour similar to that of a Web database supporting booleanugry answering
model i.e. BibFinder only returns tuples that exactly matchthe user query. Results
generated by BibFinder contain values for all attributes inthe relation. BibFinder
can only access the underlying data using queries, hence any Ey@ch at answering

imprecise queries that requires BibFinder to access all thegles would not be feasible.

8.3.2. AIMQ-Log Architecture. The schematic diagram of AIMQ-Log as

implemented over BibFinder is given in Figure 17. We add theoflowing components
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Figure 17. AIMQ-Log Implementation Over BibFinder

Queries / Resultsets

as a middle-ware between the user and BibFinder:

A SimQuery Engine , that converts the given imprecise query into a set of
precise queries. Given, an imprecise quefY, the SimQuery Engine begins by
converting Q into a precise queryQ,,. Next it checks if Qp, is present in the
query log. If present, a list of queries that show similarity toQ, above the
threshold T, is returned. If Q, is not present in the query log, then it will
check if any subset (specialization) of),, is present in the query log. The
subset ofQp, that is present in the query log is picked as the precise querydh
representsQ. SimQuery Engine then returns a ranked list of queries that skao
similarity above T, to the chosen subset 0Q,,. Results for the set of precise

gueries are then extracted from BibFinder and presented as anked list of
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tuples for the imprecise query Q.

A Similarity Estimator , to calculate the similarity between each pair of
gueries in the query log. As shown in Figure 17, the Similarity &imator
begins by probing the database using the queries in the quengloThe answers
to each query are temporarily materialized for use in geneiag the query simi-
larity matrix. Finally we estimate query similarities by computing the similarity

between their supertuples.

We use the query log (workload) of BibFinder to identify the geries from
which to learn the similarity matrix. We used 10000 queries fra BibFinder's query
log in our prototype system. We only picked queries that appead more than 3
times in the query log. Table 9 lists the time taken and size of selts produced at
various stages of our similarity estimation algorithm. A Linuxserver running on Intel
Celeron- 2.2 Ghz with 512Mb RAM was used to process the queriedan calculate

the query similarities.

Algorithm Step Time Size

Probing 29 hours | 35 Mb
Supertuple Generation | 126 sec | 21 Mb
Similarity Estimation 10 hours | 6.0 Mb

Table 9. Computation Time and Space Usage over BibFinder

We maintained a 10 second interval between each query issuedrdsiFinder.
Hence the time required to probe BibFinder using queries froné query log is quite

high in Table 9. Time to create the similarity matrix is high, a we must compare each



101

qguery with every other query in the query log (see Algorithm 3).The complexity of
the similarity estimation algorithm is O(n?), wheren is the number of queries in the
query log. We calculated both thedoc-docand weighted-attributesimilarity between
each pair of queries in the query log. The similarity threshold, was set to 02
in our case since the resultsets were often very small and did notvieavery many

features in common.

8.3.3. Evaluating the Relevance of Suggested Answers. To determine
the correctness of the queries we suggest as being similar, we geduuser study.
We asked our graduate student volunteers (8 of them) to evaluatthe relevance of
the queries we suggest. Each student was provided with a GUI thatl@aved them
to ask any query from among the 10000 queries in our prototypestgm. The GUI
can execute both precise and imprecise queries. When a precisergus issued, only
those tuples that exactly match the query are returned. For aimprecise query, a list
of queries in descending order of similarity to the imprecise gty is returned. The
user can view the results of the related query by selecting the eny. The user's were
given 30 sample queries. For each imprecise query issued by the userfshe had to
determine how many among the top-10 similar queries they codsred relevant. Also

users were asked to report whether they found a que@® relevant to Q based on:

Q%having relevant terms: The values binding attributes ofQ° are related to the
those inQ. For example, the terme-learningis relevant to Web-based learning
and hence queries containing these terms would be consideretévant to each

other.
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Q%having relevant results: The results of%are relevant toQ, although no terms
binding Q%are found relevant toQ. For example, the queryAuthor=Jaiwei Han
has results relevant to queryfitle=Data Mining but the terms in the query itself

are not related.

For the queries they found not relevant, the users were to degoe the reason
why they thought it was not relevant. The same set of queries werused to de-
cide accuracy of queries identi ed using both the doc-doc artie weighted-attribute

similarity.

- # - Doc-Doc Similarity

—=—Weighted-Attribute
0.75 1 Similarity

0.5

0.25

Relevance Estimation Error

Query

Figure 18. Error in Estimating Top-10 Similar Queries in Bibknder Querylog

Table 10 contains a sample set of queries recommended as beinglar to three
imprecise queries. Figure 18 illustrates the error in estimatinthe top-10 relevant

precise queries to a given imprecise query. The error is cabgd as the number of
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Result-
relevant,
35%

Query-
Relevant,
65%

Figure 19. Relevance classi cation

gueries among theaop-10 that were classi ed as not relevant by the user. The error

is calculated as,

Error (Related(Q)) =1  Precison(Related(Q))

_ 10 Relevant(Related(Q))
a 10

Both doc-doc and weighted-average show less than 25% averags bf precision
with weighted-average showing better performance in genéthan doc-doc where all
attributes were given equal importance. The high relevancef suggested answers
(75% acceptable to users) demonstrates that the implicit userddback mined from
the workload is able to improve the ability of AIMQ framework © better model user's

notion of relevance of answers.



Imprecise Query

Title like web-based learning

Related Queries

Title=E Learning

Title=Web Technology

Conference=WISE

Imprecise Query

Title like Information Extraction

Related Queries

Title=information lItering

Title=Text Mining

Title=Relevance Feedback

Imprecise Query

Author like Abiteboul

Related Queries

Author=vianu

Author =Dan Suciu

Author=Rakesh Agarwal

Table 10. Similar Queries from BibFinder's Querylog
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Figure 19 shows that on an average users found 65% of the queties users

found as relevant had related terms to the imprecise query thieasked. For the

remaining 35%, users had to execute the query and look at thestdts. Most similar

gueries that were classi ed as not relevant by users containedveidely used term

present in the imprecise query, but the query was not relevant.E.g.

the query

Title=data warehouseis suggested as relevant to the queryitle=data integration,

but users found it to be non relevant. This problem can be mit@ted by giving

weights to terms appearing in the query, with the common and idely used terms

e.g. XML, data, mining etc getting lower weightage.
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8.4. Summary and Discussion

We introduced a domain-independent approach, AIMQ-Log, thaextends the
AIMQ system presented earlier in the thesis for answering imprecigaeries by adding
implicit user feedback to the query answering process. The useedback is added by
picking the set of precise queries relevant to the given impiise query from a set of
frequent queries appearing in the database workload.

To evaluate the e ectiveness of our approach, we performedmiments over a
elded autonomous Web database system, BibFinder. Results of @er study of our
system show high levels of user satisfaction for the imprecise quaryswers provided
by our system. The system was implemented without a ecting the esting database

thereby showing that it could be easily implemented over any esting databases.

A Hybrid Imprecise Query Answering System: The only constraint facing
AIMQ-Log is the need to access the workload of a database. Sincethis thesis we
assume databases to be autonomous in nature, we cannot assumerth@rkloads
to be accessible to us. Therefore, AIMQ-Log cannot be seen as a Solutthat

can be implemented directly over any existing system. MoreoveAIMQ-Log based
system has the drawback that an imprecise query that cannot be mped to the
workload becomes unanswerable. On the other hand, AIMQ doestrexploit the

implicit feedback available from the workload. Thereforewe believe that any system
for answering imprecise queries will be hybrid of both AIMQ and AIMQ-Log, say

AIMQ 4. Below we will brie y describe how an imprecise query will be awered by

such a hybrid system.
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On receiving an imprecise quenQ, AIMQ 4 will rst map Q to a precise
query Q,. If Qp is one of the queries in the workload then based on the AIMQ-Log
approach, we can identify a set of precise queries similar @, and obtain relevant
answers for quenQ. If Qp is not present in the workload, then using the AFD based
guery relaxation techniqueAIMQ 4 can derive a set of relaxed precise queries and for
all the queries in the workload derive similar queries using hAIMQ-Log approach
and extract relevant answers foQ,. Note that this procedure allows us to avoid the
need to execute the quer®, over the database and performing multiple relaxations,
one over each answer tuple oQ,. Moreover, by picking similar queries from the
workload ensures that every query will produce answers that erguaranteed to be
similar to the query Q. In the unlikely event that none of the relaxations ofQ, are
present in the workload, we can use the AIMQ approach to obtain evant answers.
Having the hybrid approach mitigates the problem of not beingble to queries not
present in the workload.

Eventhough the AIMQ-Log system and consequenthAIMQ  only assumes
the presence of a workload of precise queries, we can easily extdre system to
make use of a log of imprecise queries once they become avaslablowever, unlike
the precise query log, the imprecise query log will need to méam a list of precise
gueries issued to answer each imprecise query. Once such a log piré@tise queries
becomes available, instead of looking for a precise query thataps to the given
imprecise query and also appears in the precise query log, we ctart by checking

if the given query appears in the imprecise query log and quigk nd the answers.



CHAPTER 9

RELATED WORK

The fundamental assumption of the relational models is that htata is repre-
sented as mathematical relations, i.e., a subset of the cartesiproduct of n sets. In
this model, reasoning about the data is done in two-valued pileeate logic, meaning
there are two possible evaluations for each proposition: eith&ue or false Thus
users of these systems are expected to formulgiescise queriegqueries evaluated
using two-valued logic) that accurately captures their infonation need. But, often
users may nd it di cult to convert their information need (usu ally not clearly de-
ned) into a precise query. Such users could be better served byopiding a ranked
set of answers from which they may be able to identify relevantnawers. In con-
trast, IR systems tend to provide ranked sets of answers based on igais notions
of relevance. In this dissertation we looked at adapting teclgues used in IR for
supporting ranked retrieval of items that are relevant to theuser query issued over an
autonomous database using the relational model. We are not thest to attempt the
task of combining IR and DB systems. A rich body of work relating téhe integration

of IR and DBMS systems exists although their solutions do not solwée problem of
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supporting imprecise queries over autonomous databases. Below brie y describe
several recent research e orts that have attempted to integta IR and database tech-
niques and/or tried to ease the di culties faced by lay users whan trying to extract

information from a database.

Early approaches for retrieving answers to imprecise queriesre based on the-
ory of fuzzy sets. Fuzzy information systems [Mor90] store attrilies with imprecise
values, like height=\tall" and color=\blue or red", allowin g their retrieval with fuzzy
guery languages. The WHIRL [Coh98] system provides ranked ansa/ély converting
the attribute values in the database to vectors of text and raking them using the
vector space model. In [Mot98], Motro extends a conventiondiatabase system by
adding asimilar-to operator that uses distance metrics given by an expert to answer
vague queries. Binderberger [OB03] investigates methods tiend database systems
to support similarity search and query re nement over arbitray abstract data types.
In [GSVGM98], Goldman et al propose to provide ranked answers tjueries over Web
databases but require users to provide additional guidance deciding the similarity.
However, [OBO03] requires changing the data models and opeyet of the underlying
database while [GSVGM98] requires the database to be represhtas a graph. In
contrast, our solution provides ranked results without re-oranizing the underlying
database and thus is easier to implement over any database.

The problem of answering imprecise queries is related to thregher prob-
lems. They are (1)Empty answerset problemwhere the given query has no answers

and needs to the relaxed. In [Mus04], Muslea focuses on solving #mpty answerset
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problem by learning binding values and patterns likely to geerate non-null resultsets.
The relaxation is done by identifying a rule that best matcheghe given query but is a
generalization of the query. However, the author considerd &liples to be equally rel-
evant and therefore does not provide any criteria for rankonthe results. Cooperative
guery answering approaches have also looked at solving this lplesm by identifying
generalizations that will return a non-null result [Gas97]. Mre details about co-
operative query answering techniques is given in Section 9.22) Structured query
relaxation - where a query is relaxed using only the syntactical informatn about the
qguery. Such an approach is often used in XML query relaxationge. [SAYS02]. (3)
Keyword queries in databasesRecent research e orts [ABC 02, HP02] have looked
at supporting keyword search style querying over databases. Themgproaches only
return tuples containing at least one keyword appearing in #gnquery. The results are
then ranked using a notion of popularity captured by thdinks. A detailed discussion
about these approaches is given below in Section 9.1.

The imprecise query answering problem di ers from the rst prokem in that
we are not interested in just returning some answers but those thatre likely to be
relevant to the user. It di ers from the second and third problens as we consider the

semantic relaxations rather than the purely syntactic ones.

9.1. Keyword Search in Databases

At rst look, the keyword-based search popularized by Web searchngines

[Eng05b, Eng05c¢c, Eng05a], where a user can specify a string ofvkerds and expect
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to retrieve relevant documents, possibly ranked by their relewice to the query may
seem quite connected to our work. However, search engines ondg uhe syntactic
similarity between the query and the document to determine t relevance of the
document. Hence only documents that exactly match the quens iprovided as an
answer. Thus the queries accepted by search engines are pregiseries. Therefore
a search-engine user is still faced with the problem of having formulate a query
that precisely speci es her needs. To get a satisfactory answer gthuiser may have to
iteratively re ne her query. Clearly keyword-based search ds not solve the problem
we solve. In fact, our solution can be extended to enable searahgmes to accept
imprecise queries.

Several recent research e orts [ABC02, HP02, GSVGM98, ACDGO03] have
looked at supporting keyword search style querying and/or praeding ranked an-
swers over databases. Both Banks [AB®2] and Discover [HP02] focus on using
primary/foreign key relationships to determine proximity d the tuples across rela-
tions. In [ABC*02], a database is viewed as a graph with objects/tuples as nsde
and relationships as edges. Relationships are de ned based oe firoperties of each
application. For example an edge may denote a primary to fagn key relationship.
The answers to keyword queries are provided by searching foreBter trees! that
contain all keywords. Heuristics are used to approximate the Sker tree problem.

A drawback of this approach is that a graph of the tuples must bereated and main

1The Steiner tree problem is a NP-complete combinatorial optimization problem in mahematics.
It involves a graph G with weighted edges and some vertices designated as termilsa A Steiner tree
is a subtree of G that connects the terminals with the minimum total weight (sum of weights of all
edges in the tree). This problem is similar to minimum spanning tree where but there we & looking
for a tree that connects all vertices of G. The Steiner tree problem has applications in cauit layout
or network design. Although NP-complete, some restricted cases can be solved in [gnomial time.
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tained for the database. Furthermore, the important structual information provided

by the database schema is ignored and the algorithms work on leudata graphs. In
contrast, [HP02] uses the properties of the schema of the databadés algorithms

work on the schema graph, which is much smaller than the data gra, and does not
need to keep any extra data representations. It exploits the pperties of the data-
base schema to produce the minimum number of SQL queries neetednswer to the
keyword query. However this approach requires the underlygndatabase to export
schema information. Thus it is not applicable over autonomaudatabases that only
provide a query interface (e.g. Web-enabled databases). In $8GM98], the user
guery speci es two sets of objects, th€ind set and the Near set These objects may
be generated from two corresponding sets of keywords. The systeanks the objects
in Find set according to their distance from the objects in theNear. An algorithm

is presented that e ciently calculates these distances by buiing hub indices. While
their approach is useful when the structure is unknown, they dkirely on access to
database internals which may not be possible over autonomoustaaases. Further
they pre-compute the distances between nodes to determineetiproximity and do

not consider the possibility of updates to the underlying datalanging the distances.
Moreover given that most users will lack knowledge about the seima and organiza-
tion of data it is highly impossible for a user to specify which olects are close to the
objects of interest. In [ACDGO03], the authors give an appro&cto provide top k

answers to a relational query by determining the similarity beveen the query and

each tuple. Authors develop two ranking functionsiDF similarity - based on cosine
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similarity with tf-idf weighting used in IR and QF similarity - based on occurrence
frequencies of values in workload queries. Providing a rarmkeet of results would
entail a system to look at each tuple in the database to determirits similarity to the
guery. In [ACDGO03], authors avoid this problem by assuming a¥ability of indexes
on attributes that allow sorted access to the values. The authsrthen use a modi-
ed version of Fagin's Threshold Algorithm and its derivatives[FLNO1, BGMO02] to

retrieve the topk tuples without accessing all the tuples in the database.

9.2. Query Re nement

Research done in the context of cooperative query answeringnche seen as
being close to our work. Grice [Gri75] de nes a cooperative swer as being correct,
non-misleading and useful. Most research in cooperative answeritries to follow
this de nition. Initial work in cooperative answering focussd on natural language
dialogue systems and employed natural language interfaces482, JWS81, PHW82].
Our work on the other hand can be seen as adding a similarity predte to a re-
lational query language without explicitly modifying the bnguage. Cooperative an-
swering techniques for databases have been considered in [CCLOCL92, Mot86].
Motro [Mot86] considers modi cations to the relational modewhich would allow for
cooperative behaviors in a relational database. In [Mot90Motro describes a user
interface for relational database systems that would allow useto interact with the
system in more cooperative ways. The databases can then correakeqes that have

apparent mistakes or that return no answers.
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Query generalization is also a form of cooperative answeringhere the scope
of the query is extended so that more information can be prowd in the answers.
Chu, Chen and Lee [CCL91, CCL92] explore methods to generaiew queries related
to the user's original query by generalizing and re ning the ser queries. The new
gueries can then be used to nd answers which may be of interest the user but
not in the scope of the original query. The abstraction and re ament rely on the
database having explicit hierarchies of the relations and me@s in the domain. A
generalized query is created by replacing relations/termsitl corresponding values
higher up in the hierarchy while replacing with terms lowern the hierarchy gives a
re ned query. In [Mot90], Motro proposes allowing the user to $ect directions of
relaxation, thereby indicating which answers may be of intest to the user.

While the above approaches for cooperative answering focusimproving the
interaction mechanisms between user and the system, we focus dloveng the user
to obtain satisfactory answers without any repetitive re nemet of the query. Further
we do not require any domain-dependent information like ten hierarchies to provide

related answers.

9.3. Measuring Semantic Similarity

A contextual hypothesis of semantic similarity was rst investigted in a do-
main of 65 synonymous nouns by Rubenstein and Goodenough [REGGEsINg rating
and co-occurrence methods of semantic and contextual simitgr In a co-occurrence

test of contextual similarity, one lists all words present in thecontext set of item
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A and all words present in the context set of item B; then one conupes the nor-
malized coe cient representing the proportion of words comrmn to both lists. The
more words the lists have in common, the higher the correlaticcoe cient is and the
more similar the two context sets are. Thus the authors concled that \ similarity
of context is reliable as a criterion for detecting pairs of wogdthat are very similar".
Miller and Charles [MC91] selected 30 of those pairs, and studisdmantic similarity
as a function of the contexts in which words are used. Their relssifurther strengthen
the context-sensitive view of semantic similarity.

In fact, Chales [ChaQ0] states thatthe results presented in [MC91] suggest that
to know the meaning of a word is to know how to use it, and thatcennters with the
natural linguistic contexts of a word yield a contextual repsentation that summarizes
information about the contexts in which the word may be used.hd notion of a
contextual representation of a word borrows from a common amgent in linguistics
and in psychology that most word meanings are derived from @uistic) contexts.”"On
similar lines, Morris and Hirst [MHO4] show that while most researchroestimating
semantic relations have been context-free i.e. the relatisrare considered out of
any textual context and are then assumed to be relevant withineixtual contexts,
empirical evaluations show that semantic similarity (and evemeronymy, antonymy
etc.) is often constructed in context, and cannot be determed purely from an apriori
lexical resource such as WordNet or any other taxonomy.

Resnik [Res95] provides an alternate interpretation of contesensitive nature

of word similarity. Speci cally, he suggests that the behavioof one word can be
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approximated by smoothing its observed behavior together witthe behavior of words
to which it is similar. For example, a speech recognizer that Banever seen the
phraseate a peachcan still conclude thatJohn ate a peachs a reasonable sequence
of words in English if it has seen other sentences likéary ate a pearand knows that
peachand pear have similar behavior. Resnik [Res95] claims that as in inforrtian
retrieval, the corpus based similarity estimation techniquesan also use the "feature”
representation of a word and compute the similarity between wds by computing
distance in a highly multi-dimensional space. However, he caatis that the di culty
with most distributional methods is that of interpreting the measured similarity. He
argues that although word classes resulting from distributiodaclustering are often
described as \semantic”, they may often capture syntactic, pgmatic or stylistic
factors as well.

Support for the contextual approach to measuring semantic sifarity also
comes from the computational model of meaning known as latesemantic analysis
(LSA) [Lau98]. LSA is a theory for extracting and representinghe contextualized
meanings of words by statistical computations over a large quora of text. The main
idea is that the aggregate of all the word contexts in which aevd can and cannot
occur provides a set of constraints that determines the simildy of meaning of words.
Cell entries in a matrix of rows and columns symbolize the fregncies with which a
word appears in texts or contexts denoted by a column. LSA timeuses singular value

decomposition to infer semantic representations from the text
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9.4. Categorical Value Similarity Estimation

Clustering consists of partitioning a data set into subsets (clusts), so that the
data in each subset (ideally) share some common trait - often simuilty or proximity
for some de ned distance measure. However, as we show below, camgao the
similarity mining approach of AIMQ, these solutions are ine cient and/or require
much input from the user. Recently the problem of clustering ¢agorical data has
received much attention [DMR98, GRS99, GGR99, GKR98]. In [BS99], a hier-
archical clustering algorithm, ROCK, that optimizes a critgion function de ned in
terms of number of \links" (neighbours) between tuples is give In Chapter ?? we
compared AIMQ with ROCK and presented results that show AIMQ is maz e -
cient and provides answers with higher relevance. In [GKR98$TIRR, an iterative
algorithm based on non-linear dynamical systems is used to is@atwo groups of
attribute values with large positive and small negative valug that correspond intu-
itively to projections of clusters on the attribute. Howeverthe authors of [GGR99]
show that STIRR is unable to capture certain classes of clustersd therefore the
corresponding value similarities. In [GGR99] authors assume atiute independence
and monotonicity property to compute clusters using a Apriori stle association min-
ing algorithm. Unfortunately real-life data rarely satis es the attribute independence
assumption and hence this assumption a ects the quality of the u$ters given by
[GGR99]. Das et al [DMR98], compute the similarity between tw attribute values
by generating probe queries binding features (other attriies) de ning the values.

However, [DMR98] requires users to choose the features of imjaorce - a task that
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we believe is often di cult and/or undesirable for a lay user. h contrast to above
approaches, AIMQ, without assuming independence between alttes or requiring
users to provide the importance of an attribute, provides an e@ent, domain and

user independent solution for answering imprecise queries.



CHAPTER 10

CONCLUSION & FUTURE WORK

10.1. Conclusion

This dissertation has motivated the need for supporting imprese queries over
databases. The dissertation presents AIMQ, a domain independenp@oach for
answering imprecise queries over autonomous databases.

Supporting imprecise queries over autonomous databases d@stavercoming
critical challenges like developing techniques for e cielty extracting relevant tuples
and measuring the similarity of the answers to the query. Overaaung these challenges
necessitated developing techniques for estimating tiraportance to be ascribed to each
attribute and for measuring the semantic similarity between values binding egorical

values As part of AIMQ, we have developed techniques for:

Learning Attribute Importance: We mine and use approximate functional de-
pendencies between attributes from a small sample of the datse to identify
the importance to be ascribed to the attribute. This measure ishen used
to derive a heuristic to identify queries whose answers are litegto have high

relevance to the given imprecise query.
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Measuring Semantic Similarity: We use an IR-style feature representation to
develop a context sensitive semantic similarity estimation tectique for values
binding categorical attributes. We present a structure calledupertuplethat
represents the context in which a value appears in the databas€éhe attribute
importance estimated by AIMQ is used in weighing the similarity sbwn by

di erent features describing a value.

As part of this dissertation, we have implemented the AIMQ system aheval-
uated its e ciency and e ectiveness using three real-life datbaseBibFinder, Yahoo

Autos and Census databasd he evaluation results demonstrate that:

AIMQ is able to overcome inaccuracies that arise due to samplirand is able

to e ciently learn the attribute importance and value similarity measures.

AIMQ is able to provide answers to imprecise queries with highvels of user

satisfaction as seen from the results of the user studies.

The solution provided by AIMQ is truly domain-independent andcan be applied

to any autonomous database irrespective of the domain beingpresented.

To the best of our knowledge, AIMQ is the only domain independésystem
currently available for answering imprecise queries. It can b@nd has been) imple-
mented without a ecting the internals of a database thereby sbwing that it could

be easily implemented over any autonomous Web database.
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10.2. Future Work

In this dissertation we have focussed only on answering imprecisgeges over
a single autonomous Web database. But more than one Web databasay project a
given relation. Even if all these systems were extended to suppanprecise queries,
it is not feasible for the user to query all of them to obtain most othe relevant
answers. Hence a single point of contact where the user can issue thprecise query
and retrieve a single ranked set of answers from all the databasescomes essential.

Mediators in data integration systems do provide a single poirdgf contact but
for e ciently answering precise queries. The imprecise query amwering approach we
proposed aims to identify similar answers by issuing a set of precigaeries that are
similar to the query. Hence on rst look, a mediator based system owéhe databases
of interest may seem to solve our problem. In fact, in Chapter 8, evhave imple-
mented an extended version of AIMQ over the bibliography medier BibFinder. For
each precise query given to such a mediator, it would generate execution plan that
will have the highest net utility (e.g. high coverage and lowast). However, the best
plan for answering the precise query developed may not be thesb@lan to execute
to obtain answers relevant to the imprecise query. Therefore, future extension of
our work is to support imprecise queries over a mediation systerSupporting impre-
cise queries over multiple sources (mediator) will involve termining the number of
relevant tuples each database is likely to contain for everyogsible imprecise query.
Since learning and storing the statistics for all possible imprese queries is infeasible,

we will have to learn the same for classes of imprecise queries. Haeond step is
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to provide an e cient plan for searching the databases to e cietly identify the best
answers for a given imprecise query. The solutions we develofl Wwave to satisfy the

following constraints:

The databases will show varying degrees of overlap among eatieo. Duplicate

elimination is considered a costly operation.

We will return only the best k (top-k) relevant answers for any imprecise query.
The relevance measures we use are system designed and not thatrgiye a

user.

Only tuples having similarity scores above some pre-decidedréishold is con-
sidered as relevant. Determining whether a tuple is relevamr not is a costly

operation (in terms of time).

The cost of determining the k best answers for an imprecise query @er R
will be
X
Cost(Q(R)) = Cost(IsRelevant(t;; )+ Duplicate(t;))+ ExecutionCost((R))
i=1 k=1
where n is the number of distinct tuples extracted from whichk best answers are
obtained while | is the number of precise queries issued to obtain the answers.
Thus, we can reduce the cost of obtaining the tok-answers by reducing the number
of irrelevant tuples and duplicates. Further reduction in cet can be obtained by
reducing the number of precise queries issued to obtain the tapanswers. Intuitively,

we must rst call sources that return a large percentage of relamt answers. However,
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we should not invoke databases whose answers would overlap whie answers already
extracted.

In [KNNV02, NKNV01, NNVKO02] we mine and use coverage and overlap sta-
tistics of each source with respect to a precise query for decigdithe best plan for
extracting the answers. On similar lines, for every imprecise gyeand database pair
we must store both the percentage of top-k answers returned asIwas the total
number of answers extracted. We must also estimate possible ovpdawith other

sources. Hence for every pair of query and database we will havectimpute:

1. B(Q,D): The best ranked tuple among the top-k returned by database D.

2. W(Q,D): The worst ranked tuple among the top-k returned by database D.

3. Percentage(k) The percentage of tuples returned by D that were in tojx-

4. jQ(D)j: Total number of answers for Q extracted from database D.

In [YPMO3], two algorithms for merging results from ranked deaibases are
provided. However, no overlap among databases is consideredefefore extensions
of the given algorithms to account for overlap among databas@eeds to be developed.
The attribute importance estimation and semantic similarity etimation algorithms
presented in this dissertation will be required even for answeg imprecise queries

over multiple sources.
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TANE: An E cient Algorithm for Discovering Functional and

Approximate Dependencies

The solution for supporting imprecise queries proposed in thisissertation
requires computing the approximate functional dependeres between attributes of
the database. These dependencies are used by AIMQ to learn the mnj@ance to be
ascribed to each attribute, which in turn is used for e ective gery relaxation and
guery-tuple similarity estimation. While several researchetsave proposed algorithms
to mine the approximate functional depedencies, we foun@iANE, the algorithm
proposed by Huhtala et al [HKPT98] as the most intuitive and e cient. Below we
give a brief overview of the algorithm. For details about therarious procedures of the

algorithm, correctness of the proofs and performance resulfdease read [HKPT98].

A.1l. Measuring Approximate Dependency

TANE de nes the approximateness of a dependency ! A as the minimum
number of tuples that need to be removed form the relation for X ! A to hold in

r. The errore(X ! A)is dened as

minfisjjs X ! A holds in rnsg

X! A)= i

The measuree can be interpreted as the fraction of tuples with exceptioner
errors a ecting the dependency. Given an error thresholg 0 " 1, X! Alsan
approximate (functional) dependencyf and only if (X ! A) is at most ".

TANE's approach for discovering dependencies is based on consiug sets of

tuples that agree on some sets of attributes. Determining wheth a dependency
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holds or not is done by checking whether the tuples agree onethight-hand side of
the dependency whenever they agree on the left-hand side. mally, it can described
using equivalence classes and partitions.

Partitions:  Two tuples t and u are equaivalentwith respect to a given setX of
attributes if t[A] = u[A] for all A 2 X. Any such attribute set X can then patrtition
the tuples into equivalence classedf the equivalence class of 2 r with respect to

X R is [t]x then, the set of equivalence classesx = f[t]xjt 2 rg is a partition

of r under X. Thus, x is a collection of disjoint sets (equivalence classes) of tuples
each of which has a unique value for the attribute seX and their union equals the
relation r.

A simple test to determine ifX ! A holds is to check iff xj =] xi agJ- Then
we can compute the erroe(X ! A) as follows. Since any equivalence classof
will be a union of one or more equivalence classe$,c::: of x[f Ag: tuples in all but
one of thec’s must be removed foiX ! A to hold. The minimum number of tuples
to remove to makeX ! A hold in cis given by subtracting the size of the largest’s
from size ofc. Summing over all equivalence classe® x gives the total number of

tuples to remove. Thus

X maxfj§jc®2 xrag and @ cog

X1 A)=1 —
e( ) I

C2x

A.2. Searching non-trivial dependencies:

To test the minimality of a potential dependencyXnfAg ! A, TANE must

ensure thatYnfAg ! A holds for some proper subseY of X. This information is
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stored by TANE in the set of right-hand candidates ofY, C(Y). To nd minimal
dependencies, it su ces to test dependencie¥ fAg! A, whereA 2 X and A 2
C(XnfBg) for all B 2 X. HereC(X) is the collection ofinitial rhs candidates of the
setX R andis dened asC(X) = RnC(X) where C(X) = fA 2 XjXnfAg !
A holdsg.

Eventhough the initial rhs candidates are su cient to guarartee the minimality
of discovered dependencies, TANE uses improvelds™ candidatesC* (X ) to prune

the search more e ectively:
C'(X)=fA2Rj8B 2 X;X nfA;Bg!f Bg does not hold

TANE does not compute the partitions from scratch for each attbute set.
Instead it computes a partition as a product of two previously amputed partitions.
The partitions ¢aq4, for eachA 2 R is computed directly from the database. However
partitions x for jXj 2 are computed as product of any two subsets of sigej 1.
Once TANE has the partition y, it computes the errore(X ) as described above.

The worst case time complexity of TANE with respect to the number o#t-
tributes is exponential, but that is expected since the numbief minimal dependencies
can be exponential in the number of attributes. However, withespect to the number
of tuples, the time complexity of TANE is linear (provided the setf dependencies do
not change as the number of tuples increase). This linearity akes TANE especially
suitable for relations with a large number of tuples but with srall attributes sizes,

e.g. most databases on the Web.
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ROCK: A Robust Clustering Algorithm for Categorical Attribt ues

In this dissertation we have compared the performance of AIMQ amst that
of ROCK, a domain-independent algorithm developed b$. Guha, R. Rastogi and K.
Shim to cluster categorical attributes. Below we brie y describe tk inner workings
of the algorithm. For a more detailed description of the algahm, please refer to

[GRS99].

B.1. Links and Neighbours

The ROCK algorithm is based on the concept of clustering based dimks
between data points, instead of distances based on the metric or the Jaccard
coe cient. In contrast to clustering approaches that only use he similarity between
the points while clustering, ROCK's link-based approach is aimed as being global
in nature as it captures the global knowledge of neighbougndata points.

ROCK starts out by assuming that a pair of points areneighboursif their
similarity exceeds a certain pre-de ned threshold. The simitéty between points can
be based onL, distances or Jaccard coe cient or any other non-metric fungon
given by a domain expert. ROCK de neslink(p;; p;) to be the number of common
neighbours betweerp, and p;.

Authors argue that points belonging to a single cluster will in gneral have a
large number of common neighbours and consequently more Bakrhus during clus-
tering, ROCK merges the clusters/points with the most number ofinks rst. Specif-

ically, ROCK aims to maximize the sum oflink (pq; pr) for all pairs of points py; pr
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belonging to a single cluster and at the same time, minimize the suof link (pg; Ps)

for pg; ps In di erent clusters. This results in a criterion function E;:

X X link (pg; pr)
Er=n _1+2fq( )

i=1 Pq;Pr 2Ci nl

where C; denotes cluster of sizen;. To prevent a clustering wherein all points are
assigned to a single cluster, the criterion functiok, is de ned as the weighted fraction
of total number of links involving pairs of points in clusterC; to the expected number
of links in C;. The weight isn;, the number of points inC;. Assumingnif( ) points in
Ci, the expected number of links between points @; will be nilm( ), Dividing by
the expected number of links irg, prevents points with very few links between them
from being put in the same cluster.

Handling of Categorical Data: ROCK considers data sets with categorical at-
tributes by modeling each record as a transaction containingems. For every valuev
in the domain of a categorical attributeA, ROCK introduces an itemA:v. A trans-
action T; corresponding to a record in the database will contaiA:v if and only if the
values of attribute A in the record isv. If A has missing values then the correspond-
ing transaction will not contain any items for the attribute. Then similarity between

records (points) is measured as the Jaccard similarity betwedhe corresponding

transactions.

B.2. The ROCK clustering Algorithm

The process of clustering data using ROCK involves three crutisteps: (1)

ROCK begins by drawing a random sample from the database, (2) ples a hier-
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archical clustering algorithm that employs links on the samgd points and nally,
(3) uses the clusters involving only the sampled points to assighd remaining data
points to the appropriate clusters.

As described above, ROCK uses the criterion function to estimatee "good-
ness" of clusters and considers the best clustering between themsito be ones that
result in highest values for the criteria function. On similar ihes, authors de ne the

goodness measure between pair of clust&s C; to be

link [Ci; G/

1+2f 1+2f
(n + my)r2r0 i 2O

9(Ci; Cy) =

where link (C;; Cj) = P 0a2Ci:pr 2C; link (pg; Pr). The pair of clusters for which the
above goodness measure is maximum is the best pair of clusters éorberged at any
given step.

Given a setS of n sampled points that are randomly drawn from the original
data set to be clustered and the number of desired clusteks ROCK begins by
computing the number of links between pairs of points. Initily each point is a
separate cluster. For each cluster, ROCK builds a local heapq[i] that contains
every clusterj for which link [i;j ] is non-zero. The clusterg in i] are ordered in
decreasing order of the goodness measw(& j ). In addition to the local heap, the
algorithms also computes a global hea@ that contains all the clusters. Similar to
the clusters in the local heaps, the clusters iQ are also ordered in decreasing order
of their best goodness measurej; max (q[j])), where max(q[j]) denotes the best
cluster in gfj ] to merge with cluster;j .

ROCK iteratively clusters the data points by picking at each s¢p,the clusterj
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with maximum goodness inQ and the cluster inq[j ] that shows maximum goodness
to j, as the best pairs of clusters to merge. The process continudkdither k clusters
only remain or when no two clusters have links between them.

In the nal labeling phase, ROCK assigns the remaining data pota to the
clusters generated from the sample points as follows. First, aftion of points from
each clusteri, L; is obtained. Then each poinip in the original dataset is assigned to
the clusteri in which p has the maximum number of neighbours. .+ 1) () is the
expected number of neighbours fop in set L;. Thus labeling each pointp requires
at most ¥, jLij operations.

Time complexity:  ROCK's clustering algorithm, along with the computation of
neighbour lists and links has a worst-case time complexity 6f(n2+ nm,,m,+ n?logn)
wherem,, is the maximum number of neighboursm, is the average number of neigh-
bours andn is the number of input data points. Note that ROCK only computes
the clusters using a very small sample of the data set. In the worstsm&the link
computation algorithm will have O(n®) complexity. However, the authors argue that
on average the number of neighbours will be small causing tha@Ki matrix to be
sparse. For such matrices they provide an algorithm whose comytg is O(nmy,mj,)
in general but become®(n?m,) in the worst case.

The labeling phase of ROCK has the complexityD(ngkn;) where nq is the
total number of points in the original dataset,k is the number of clusters derived

from sample data points and, is the average number of neighbours in each cluster.
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We designed our rst testbed,CarDB, to mimic the online used car database

Yahoo Autos CarDB was designed using a MySQL database and projects the rédat
CarDB (Make; Model; Y ear; Price; Mileage; Location; Coloi)

To populate CarDB, we probed thevahoo Autosdatabase by generating probe queries
that bound the attributes Make and Location and extracted 100000 distinct tuples.
A 10 second delay between each probe query was maintained. Madues for Make
were provided by Yahoo Autos. The potential binding values fokocation consisted

of all cities of US.

Attribute Type Distinct Values (100k) Distinct Values (25k)
Make Categorical 90 63

Model Categorical 1152 747

Year Categorical 55 45

Price Numerical NA NA
Mileage Numerical NA NA
Location Categorical 1319 1082

Color Categorical 2427 1085

Table 11. Schema Description of CarDB

Below is a listing of the approximate functional dependenceand approximate
keys with their percentage support that we mined from the 265sample of CarDB.

Approximate Functional Dependencies mined from CarDB:

Color > Model ;: 0.12
Location > Model: 0.13

Location > Color: 0.20

LAvailable at http://autos.yahoo.com.
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Price > Model: 0.21

Model > Color : 0.22

Price. > Location : 0.23

Price > Color : 0.24

Color > Year: 0.31 Location > Year: 0.33
Price > Make : 0.34

Color > Make : 0.35
Location > Make : 0.36
Model > Year: 0.39

Price > Year: 0.4

Model > Make : 0.92

Make, Color > Year: 0.41
Make, Location > Model : 0.42
Year, Location > Make : 0.43
Make, Location > Year : 0.49
Location, Color > Year: 0.54
Model, Color > Year : 0.55
Location, Color > Make : 0.6
Make, Price > Model : 0.62
Make, Price > Year : 0.65
Model, Location > Year: 0.71

Model, Price > Year : 0.82
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Year, Price, Color > Make : 0.81

Make, Price, Location > Year: 0.91

Approximate Keys mined from CarDB:

Price : 0.2

Mileage : 0.8

Model, Color : 0.33
Location, Color : 0.43
Make, Price : 0.52

Price, Color : 0.61

Model, Location : 0.65
Model, Price : 0.73

Price, Location : 0.75

Year, Mileage : 0.91

Make, Mileage : 0.97
Mileage, Location : 0.97
Mileage, Color : 0.98

Price, Mileage : 0.98
Model, Mileage : 0.99
Make, Year, Location : 0.57
Make, Year, Price : 0.7
Year, Location, Color : 0.72

Make, Location, Color : 0.72



Year, Price, Color : 0.79

Model, Year

Make, Price,

Year, Price,

Make, Price,

Model, Location, Color : 0.91

, Location : 0.83

Color : 0.83

Location : 0.89

Location : 0.9

Model, Price, Color : 0.93

Model, Price, Location : 0.95

Price, Location, Color : 0.96

Make, Year, Location, Color : 0.88
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Make Model Year | Price | Mileage | Location Color
Ford Contour 1996 | 3252 86120 | Tucson Red
Jeep Cherokee 1999 | 10232 | 94264 | Tucson Gray
Cadillac DeVille 1999 | 20646 | 47095 | Port Richey Silver
Mercury Mountaineer | 1999 | 8986 80801 | Glendale Heights | White
BMW 7 SERIES 1995 | 13995 | 48543 | Devon Black
GMC Jimmy 1989 | 1995 | 191687 | Langhorne Black
Nissan Altima 1993 | 5248 | 126152 | Warminster Burgundy
Ford Thunderbird | 1995 | 4290 72790 | Orland Park Pewter
Mitsubishi Galant 1993 | 2481 | 137958 | Miami Beige
Toyota Tercel 1987 | 3491 | 130265 | Miami Blue
Nissan 300ZX 1986 | 7900 65611 | Coconut Creek Red
Ford Bronco 1l 1986 | 4490 | 140479 | Longwood Red
Chevrolet El Camino 1966 | 7500 | 100000 | Sutter Creek Red
Mercedes-Benz | SL Class 1988 | 17950 | 73906 | Anaheim Red
Volkswagen Quantum 1984 | 1995 | 118579 | San Leandro Brown
Mercedes c280 1994 | 6999 | 108455 | Fremont Pewter

Table 12. Queries over CarDB used to conduct user study
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