
Unifying Classical Planning Approaches

Subbarao Kambhampati�& Biplav Srivastava
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

email: frao,biplavg@asu.edu
WWW: http://rakaposhi.eas.asu.edu/yochan.html

ASU CSE TR 96-006; July 1996

Abstract

State space and plan space planning approaches have traditionally been seen as fun-
damentally different and competing approaches to domain-independent planning. We
present a plan representation and a generalized algorithm template, called UCP, for unify-
ing these classical planning approaches within a single framework. UCP models planning
as a process of refining a partial plan. The alternative approaches to planning are cast
as complementary refinement strategies operating on the same partial plan representation.
UCP is capable of arbitrarily and opportunistically interleaving plan-space and state-space
refinements within a single planning episode, which allows it to reap the benefits of both.
We discuss the coverage, completeness and systematicity of UCP. We also present some
preliminary empirical results that demonstrate the utility of combining state-space and
plan-space approaches. Next, we use the UCP framework to answer the question “which
refinement planner is best suited for solving a given population of problems efficiently?”
Our approach involves using subgoal interaction analysis. We provide a generalized ac-
count of subgoal interactions in terms of plan candidate sets, and use it to develop a set of
guidelines for choosing among the instantiations of UCP. We also include some prelimi-
nary empirical validation of our guidelines. In a separate appendix, we also describe how
the HTN planning approach can be integrated into the UCP framework.

�This research is supported in part by NSF research initiation award (RIA) IRI-9210997, NSF young investi-
gator award (NYI) IRI-9457634 and ARPA/Rome Laboratory planning initiative grants F30602-93-C-0039 and
F30602-95-C-0247. We thank Laurie Ihrig and Amol Dattatreya Mali for helpful comments.

0

Contents

1 Introduction 3

2 Planning as Refinement Search: Overview 4

3 Representation of partial plans in UCP 5
3.1 World states and partial plans . 7
3.2 Relating Partial Plans and Refinements . 8
3.3 Classification of Partial Plans . 9
3.4 Candidate Sets and Least Commitment . 11

3.4.1 Quantifying least commitment . 11

4 The UCP planning algorithm 12
4.1 Progressive Refinements . 14

4.1.1 State-space Refinements . 14
4.1.2 Plan-space Refinements . 16

4.2 Non-progressive (Tractability) refinements 17
4.3 Termination Check . 18
4.4 Consistency Check . 19
4.5 An example planning trace of UCP . 19

5 Coverage, Completeness and Systematicity of UCP 21
5.1 Coverage . 21
5.2 Completeness . 21
5.3 Systematicity . 23

6 Controlling UCP 24

7 Empirical studies on the utility of interleaving refinements 25
7.1 Discussion . 27

8 Customizing UCP based on an analysis of subgoal interactions 28
8.1 Candidate Set Based definitions of Subplan Interactions 29
8.2 The Role of Planner vs. Partial Plans in subplan interactions 31
8.3 Characterizing Subgoal interactions . 31
8.4 Coverage of the candidate-set based analysis of subgoal interactions 33

8.4.1 Korf’s Subgoal Interactions . 33
8.4.2 Barrett and Weld’s Serializability 34
8.4.3 Relaxing the protected plan requirement 34

9 Factors Influencing the Selection of a Refinement Planner 35
9.1 Least committed plans and Serializability 36
9.2 An Empirical Validation of the Guidelines 37

1

10 Related Work 38

11 Conclusion and Future Work 39
11.1 Future Work . 40

A Extending UCP to include HTN Planning 43
A.1 Motivation for Task Reduction Refinements 44
A.2 Extending plan representation to allow non-primitive tasks 45

A.2.1 Reduction of non-primitive actions 46
A.3 Candidate Set Semantics for non-primitive plans 47

A.3.1 Presence of non-primitive actions in the plan and Least Commitment 48
A.3.2 Semantics of IPCs and Ordering constraints between non-primitive

actions . 49
A.4 Modeling Task Reduction as a refinement 49
A.5 Combining HTN refinement with other refinements 49

A.5.1 Extending PS refinement to consider non-primitive actions 49
A.5.2 Modifications to BSS and FSS refinements 53
A.5.3 Modifications to non-progressive Refinements 54

A.6 Ramifications of non-primitive actions on the consistency and completeness
of refinement planners . 55
A.6.1 Completeness of UCP in the presence of Task Reduction Refinements 55
A.6.2 Checking the Consistency of a Partial Plan 56

A.7 Related Work . 58

2

1 Introduction

Domain independent classical planning techniques fall into two broad categories– state space
planners which search in the space of states, and plan space planners which search in the
space of plans. By and large, these approaches have been seen as competing rather than
complementary, and several research efforts [2, 35] have been focused on showing the relative
superiority of one over the other. Our message in this paper is that the two approaches can
coexist and complement each other, that hybrid planners that use both approaches can perform
better than pure plan-space or state-space planners, and that a unified view clarifies our current
understanding of classical refinement planning. To this end, we develop a unified framework
that encompasses both state-space and plan-space planning approaches.

Previously, we have shown that viewing planning as a process of refinement search pro-
vides a powerful framework for unifying the large variety of plan-space planning approaches
[19, 17, 18]. In this paper, we show that the same framework can be extended to unify state-
space planning and plan-space planning approaches. In particular, we present UCP [21], a gen-
eralized algorithm for classical planning. UCP covers classical planning approaches through
three complementary refinement strategies, corresponding respectively to the plan-space, for-
ward state-space and backward state-space planning approaches. If it chooses to always use
plan-space refinements, it becomes a pure plan-space planner, and if it chooses to always use
state-space refinements, it becomes a pure state-space planner.

Since all three refinement strategies operate on the same general partial plan represen-
tation, UCP also facilitates opportunistic interleaving of the plan-space and state-space re-
finements within a single planning episode. Such interleaving could produce a variety of
hybrid planners (including the traditional means-ends analysis planners such as STRIPS and
PRODIGY [10]), and can thus help us reap the benefits of both state-space and plan-space
approaches in a principled manner. The traditional question “when should a plan-space plan-
ner be preferred over state space planners?” [2, 35] can now be posed in a more sophisticated
form: “when should a plan-space refinement be preferred over a state-space refinement (or
vice versa) within a single planning episode?.”

Since different instantiations of UCP correspond to a large variety of classical refinement
planners, we can also use the UCP framework as a substrate to revisit the question of “which
classical planner is best suited for efficiently solving a given population of problems?” Specif-
ically, we will consider the issue of selecting the right type of UCP instantiation for a given
problem population, and analyze it in terms of subgoal and subplan interactions. Although
subgoal and subplan interactions have been studied in the past [2, 24], they have been couched
in terms of the details of specific classical planners. We present a more generalized analy-
sis based on candidate set of subplans for individual subgoals [22]. Since subgoals interact
in terms of their subplans, we will start by characterizing two important ways in which par-
tial plans may interact – mergeability and serial extensibility. Informally, two subplans are
mergeable if there is a way of combining the constraints in them to generate a new plan that
solves the subgoals solved by both subplans. A subplan is said to be serially extensible with
respect to another subgoal if there is a way of adding further constraints to the subplan such
that the new plan solves both subgoals. The concepts of independence and serializability of

3

subgoals are derived by generalizing mergeability and serial extensibility over classes of par-
tial plans. We will then present some guidelines, based on this analysis, for selecting among
the instantiations of UCP, and validate the guidelines with some empirical results.

Finally, in an appendix at the end of the paper, we show how the HTN planning approach
can be integrated into the UCP framework. This involves significant extensions to the UCP
framework to handle non-primitive tasks in partial plans.

The rest of this paper is organized as follows. In Section 2, we review the preliminaries
of refinement planning. Section 3 describes the representation and semantics for partial plans
used in UCP. In Section 4, we describe the UCP algorithm and illustrate its operation through
an example. Section 5 discusses the coverage, completeness and systematicity of the UCP
algorithm. Section 6 describes several heuristic control strategies for UCP. Section 7 empiri-
cally demonstrates the utility of opportunistic interleaving of refinements in UCP. Section 8
describes two candidate set based characterizations of subplan interactions called mergeabil-
ity and serial extensibility, generalizes these notions to subgoals, and shows how the analyses
subsumes previous analyses of subgoal interactions. Section 9 discusses how the analysis
of subgoal interactions can be useful in selecting an appropriate refinement planner given a
domain. Section 10 discusses the related work and Section 11 presents the conclusions. Ap-
pendix A presents a comprehensive treatment on the integration of HTN planning into the
UCP framework.

2 Planning as Refinement Search: Overview

A planning problem is a 3-tuple hI; G;Ai, where I is the description of the initial state, G is
the (partial) description of the goal state, and A is a set of actions (also called “operators”).
An action sequence (also referred to as ground operator sequence) S is said to be a solution
for the planning problem, if S can be executed from I , and the resulting state of the world
satisfies all the goals.

Refinement planners [17, 18, 19] attempt to solve a planning problem by navigating the
space of sets of potential solutions (ground operator sequences). The potential solution sets
are represented and manipulated in the form of “partial plans.”1 Syntactically, a partial plan
P can be seen as a set of constraints (see below). Semantically, a partial plan is a shorthand
notation for the set of ground operator sequences that are consistent with its constraints. For
example, if the partial plan contains a single action o and a constraint that it be the first action,
then any ground operator sequence that starts with o will be a candidate of the plan. The set
of all candidates is called the candidate set of the partial plan, and denoted by hhPii. It can be
potentially infinite.

Refinement planning consists of starting with a “null plan” (denoted by P;), whose candi-
date set corresponds to all possible ground operator sequences, and successively refining the
plan (by adding constraints, and thus splitting their candidate sets) until a solution is reached.
Semantically, a refinement strategyR maps a partial plan P to a set of partial plans fP0ig such
that the candidate sets of each of the child plans are subsets of the candidate set of P (i.e.,

1For a more formal development of the refinement search semantics of partial plans, see [17, 19]

4

8P 0

i
hhP 0

iii � hhPii). A solution extraction function takes a partial plan and check to see if one
of its candidates solves the problem at hand. Since the candidate sets of partial plans are po-
tentially infinite, solution extraction functions restrict their attention to a distinguished finite
subset of the candidate set – the set of the plan’s minimal candidates. Informally, minimal
candidates are ground operator sequences in the candidate set of a plan that do not contain any
actions other than those explicitly mentioned in the partial plan (see Section 3.2).

Refinement planning involves repeatedly applying refinement strategies to a partial plan
until a solution can be picked from the candidate set of the resulting plan. It should be clear
that since termination occurs by checking the minimal candidates, for a refinement planner to
terminate, the refinements it uses should have the property that the length (in terms of number
of actions) of the minimal candidates increase when a plan is refined.

A refinement strategy R is said to be progressive if the minimal candidate of the partial
plan can increase in length after the application of R. Otherwise, it is said to be a non-
progressive refinement. Semantically, non-progressive refinements only partition the candi-
date set of the plan (i.e. if P is refined into n plans P1 � � � Pn, then hhPii = [ni=1hhPiii). Their
syntactic operation involves “re-arranging” the steps in the current partial plan. Progressive
refinements may reduce the number of candidates in consideration (hhPii � [ni=1hhPiii). Their
syntactic operation involves adding new steps into the plan. Non-progressive refinements can
thus be thought of as doing “scheduling” (action sequencing) type activity, while the progres-
sive refinements can be thought of as doing “planning” (or action selection).

A refinement strategyR is said to be complete if every solution belonging to the candidate
set of P belongs to the candidate set of at least one of the child plans. R is said to be system-
atic if the candidate sets of children plans are non-overlapping (i.e. 8Pi;Pj ;i6=j hhPiii\hhPjii =
;).

It is easy to see that as long as a planner uses only refinement strategies that are complete,
it never has to backtrack over the application of a refinement strategy. Similarly, if all the
refinement strategies are systematic, the search space of the planner will be systematic in that
no ground operator sequence will belong to the candidate sets of plans in more than one branch
of the search tree [25].

3 Representation of partial plans in UCP

In this section, we will develop a syntactic and semantic representation of partial plans that is
adequate to support both state-space and plan-space refinements. We start by observing that
whatever the representation for partial plans, a partial plan P is semantically a set of ground
operator sequences. Thus, if U is the universe of ground operator sequences, then P � 2U .
We consider a partial plan to be a set of constraints. The semantics of each of the constraints
are specified by stating which ground operator sequences satisfy that constraint. Given this,
the candidate set of a partial plan is the set of ground operator sequences that satisfy all the
constraints. The specific constraints that we use below are not meant to be exhaustive, but they
are sufficient to model partial plans used in existing classical planners. New constraint types
can be defined by simply providing their semantics in terms of satisfying action sequences.

5

A partial plan is a 5-tuple hT;O;B;ST ;Li where: T is the set of steps in the plan; T
contains two distinguished step names t0 and t1. ST is a symbol table, which maps step
names to actions. (Note that multiple steps can be mapped to the same action.) We will assume
that actions are modeled in the familiar STRIPS/ADL representation [29] with precondition
and effect (aka postcondition) lists. The special step t0 is always mapped to the dummy
operator start, and similarly t1 is always mapped to finish. The effects of start and
the preconditions of finish correspond, respectively, to the initial state and the desired goals
of the planning problem. O is a partial ordering relation over T . B is a set of codesignation
(binding) and non-codesignation (prohibited binding) constraints on the variables appearing
in the preconditions and post-conditions of the operators. A ground linearization of P is a
permutation on its steps that is consistent with O, with all variables instantiated to values that
are consistent with B.2 L is a set of auxiliary constraints that restrict the allowable orderings
and bindings among the steps. Three important types of auxiliary constraints are:

Interval Preservation Constraints: An interval preservation constraint (IPC) is specified

as a 3-tuple: (t
p

� t0). Syntactically, it demands that the condition p be preserved between t

and t0 in every ground linearization of the plan. Semantically, it constrains the candidates of
the partial plan such that in each of them, p is preserved between the operators corresponding
to steps t and t0.

Point Truth Constraints: A point truth constraint (PTC) is specified as a 2-tuple: hp; ti.
Syntactically, it demands that the condition p be necessarily true [6] in the situation before the
step t. Semantically, it constrains all solutions of the partial plan to have p in the state in which
the operator corresponding to t is executed.

Contiguity Constraints: A contiguity constraint is specified as a relation between two
steps: ti � tj. Syntactically, it demands that no step intervene between ti and tj in any ground
linearization of P . Semantically, it constrains all candidates of the partial plan to have no
operators intervening between the operators corresponding to ti and tj . From the definition, if
ti is immediately before tj, it also means that ti � tj . Further, since ti and tj are contiguous,
there cannot be any step t0 such that ti � t0 � tj , or ti � t0 or t0 � tj .

Readers who are familiar with the refinement search view of partial order planning devel-
oped in [19, 17, 18] may note that the only extension to the plan representation is the addition
of the new type of auxiliary constraints called contiguity constraints. We will see here that
this extension is enough to handle state space refinements.

Safe Ground Linearizations: A ground linearization is said to be a safe ground lineariza-
tion if it syntactically satisfies all the contiguity constraints, and the interval preservation con-
straints [19]. The semantic notion of the candidate set of the partial plan is tightly related to a

2Note that a ground linearization is in terms of step names while a ground operator sequence is in terms of
actions. A ground linearization corresponds to a ground operator sequence, modulo the step-action mapping ST .

6

hr@t1i

hv@t1i
hw@t1i

hu@t1it0 t1:o1

t2:o2 t3:o3

t4:o4

t5:o5 t1

(p)

(q) (s)

+s

+r, +p

+r

:r , +u

(t3
r
� t1)

(t1
q

� t2)

t0*t1 t5*t1

+w, +v

(r, u , v , w)

: r, +q

Figure 1: Example Partial Plan PE . The effects of the steps are shown above the steps, while
the preconditions are shown below the steps in parentheses. The ordering constraints between
steps are shown by arrows. The interval preservation constraints are shown by arcs, while the
contiguity constraints are shown by thick dotted lines. The PTCs are used to specify the goals
of the plan

syntactic notion of safe ground linearization [19, 17]. Specifically, safe ground linearizations
correspond to minimal length candidates of the partial plan [19]. If a partial plan has no safe
ground linearizations, it has an empty candidate set.

Example: Figure 1 illustrates these definitions through an example plan PE , which contains
the steps ft0; t1; t2; t3; t4; t5; t1g, the symbol table ft0 ! start; t1 ! end; t1 ! o1; t2 !
o2; t3 ! o3; t4 ! o4; t5 ! o5g, the ordering constraints ft1 � t2; t2 � t3; t3 � t5; t1 �
t4; t4 � t5g, the contiguity constraints ft0 � t1; t5 � tGg, the interval preservation constraints

f(t1
q

� t2); (t3
r
� t1)g, and the point truth constraints fhr; t1i; hu; t1i; hv; t1i; hw; t1ig.

The ground operator sequence o1o2o4o3o2o2o5 is a candidate of the plan PE , while the ground
operator sequences o3o1o2o3o3o5 and o1o2o3o4o5 are not candidates of PE (the former vio-
lates the contiguity constraint t0 � t1, and the latter violates the interval preservation constraint

(t3
r
� t1)). (Notice that the candidates may have more operators than the partial plan.)

t0t1t2t4t3t5t1 is a safe ground linearization, while t0t1t2t3t4t5t1 is not a safe ground lin-

earization (since the interval preservation constraint (t3
r
� t1) is not satisfied by the lineariza-

tion). The safe ground linearization corresponds to the minimal candidate (ground operator
sequence) o1o2o4o3o5.

Goal Achievement: A ground operator sequence S is said to achieve a goal g1 if executing
S from the initial state leads to a world state where g1 is true. A partial plan P is said to bear
a solution if one of its safe ground linearizations corresponds to a ground operator sequence
that achieve g1.

3.1 World states and partial plans

We will now define some structural attributes of a partial plan that relate the partial plan to
states of the world that are expected during the execution of its candidates. These definitions

7

will be useful in describing the UCP algorithm.
Given a plan P , a step tH is said to be the head step of the plan if there exists a sequence

of steps t1 � � � tn such that t0 � t1 � t2 � � � tn � tH and there is no step t0 such that tH � t0. The
sequence of steps t0; t1; � � � tn; tH is called the header of the plan. The state resulting from the
application of the operators corresponding to the header steps, in sequence, to the initial state,
is called the head state. The head fringe of a plan P is the set of all steps t that can possibly
come immediately after the tH in some ground linearization of the plan (i.e., all t such that
tH � t and there is no step t0 such that 2(tH � t0 � t)).

Similarly, a step tT of a plan P is said to be the tail step of the plan if there exists a
sequence of steps t1 � � � tn such that tT � t1 � t2 � � � tn � t1 and there is no step t0 such that
t0 � tT . The sequence of steps tT ; t1; � � � tn; t1 is called the trailer of the plan. The state
resulting from the backward application of the operators corresponding to the trailer steps, in
sequence, to the goal state, is called the tail state. The tail fringe of a plan P is the set of all
steps t that can possibly come immediately before the tail step tT in some ground linearization
of the plan (i.e., all t such that t � tT and there is no step t0 such that 2(t � t0 � tT)).

Example: In the example plan PE shown in Figure 1, t1 is the head step and t5 is the tail
step. t0t1 is the header and t5t1 is the trailer. ft2; t4g is the head fringe, and ft3; t4g is the tail
fringe. Head state is p ^ q while the tail state is r ^ u.

3.2 Relating Partial Plans and Refinements

Figure 2 explicates the schematic relations between a partial plan, its candidate set, and re-
finements. Each partial plan corresponds to a set of ground linearizations GL. The subset of
GL that satisfy the auxiliary constraints of the plan are said to be safe-ground linearizations
SGL of the plan. Each safe ground linearization of the plan corresponds to a ground operator
sequence Sm which is a minimal candidate of the partial plan. A potentially infinite number
of additional candidates may be derived from each minimal candidate of the plan by augment-
ing (padding) it with additional ground operators, without violating any auxiliary constraints.
Thus, the candidate set of a partial plan is potentially infinite, but the set of its minimal can-
didates is finite. The solution extractor functions start by looking at the minimal candidates
of the plan to see if any of them are solutions to the planning problem. Refinement process
can be understood as incrementally increasing the length of these minimal candidates so that
ground operator sequences of increasing lengths are examined to see if they are solutions to
the problem. This description points out that for a refinement strategy to form the basis for a
complete refinement planning algorithm, it should be able to increase the length of the mini-
mal candidates. Not all refinements used by refinment planners have this property. This is why
we distinguish between progressive refinements which have the property and non-progressive
refinements which do not.

Notice the dual view of plans that is being developed here. The correctness and the exe-
cution semantics of a plan P are defined in terms of its minimal candidates alone, while its
refinements are defined in terms of its full candidate set. The candidate set of P may contain

8

........Minimal Candidate 1 Minimal Candidate m

+

from Minimal. Candidate. m

Candidates derived
From Minimal. Candidate. 1

Candidates derived

+

Union of these sets is the candidate set of the partial plan

......

Ground linearizations that satisfy auxiliary constraints

Ground Linearization 1 Ground Linearization 2 Ground Linearization n

Corresponds to the ground operator sequence

Partial Plan (a set of ordering, binding, step and auxiliary constraints)

Safe Ground Linearization 1 Safe ground Linearization m

Topological sorts on steps of the partial plan

Syntactic View

 Semantic View

Figure 2: A schematic illustration of the relation between a partial plan and its candidate set.
The candidate set of a partial plan contains all ground operator sequences that are consistent
with its constraints. These can be seen in terms of minimal candidates (which correspond to
the safe ground linearizations of the partial plan) and ground operator sequences derived from
them by adding more operators.

possibly infinitely more other ground operator sequences each of which may or may not be
solutions.3

In what follows, we will show that state-space planning and plan-space planning ap-
proaches can essentially be modeled as two different varieties of refinement strategies op-
erating on the same partial plan representation.

3.3 Classification of Partial Plans

The plan representation discussed in this section is fairly general to allow many varieties of
plans. In the following we identify subclasses of partial plans which have interesting properties
from subgoal interaction point of view. The subclasses will be identified in terms of the
syntactic restrictions on the plan constraints (see Figure 3).

A plan P for achieving a subgoal g from the initial state I is called a prefix plan if all the
steps of the plan, except t1, are all contiguous. Any feasible prefix plan will also have the
property that the prefix steps can be executed from the initial state in sequence (as otherwise,
their candidate sets cannot contain any executable operator sequences). For example, a prefix

3In [11], Ginsberg argues for an elimination of this separation saying that a “good” plan will have a large
candidate set most of which will be able to achieve the goals of the problem.

9

t α

t α

Prefix Plan

P1 Puton(B,C)t0

C

A

B

Sussman Anomaly

A B C

t α

t α

t α

On(B,C)

Protected Prefix Plan

Puton(B,C)t0P5Puton(B,C)t0

t0

Non-minimal Prefix Plan

Puton(B,C)Puton(C,T)

Elastic plan

P2

Suffix Plan

Puton(B,C)t0P3

P4

Figure 3: The Sussman Anomaly problem, and a variety of plans for solving the subgoal
On(B;C). Each plan class is identified with a descriptive name. The solid arrows signify
precedence relations while the solid arrows with dashing under them signify contiguity rela-
tions.

plan for the subgoalOn(B;C) in the Sussman anomaly problem is P1: t0�Puton(B;C) � t1
shown in Figure 3. Planners that do forward search in the space of states produce feasible
prefix plans.

Similarly, a plan is said to be a suffix plan if all of the steps of the plan except t0 are
contiguous to each other. Any feasible suffix plan will have the property that the result of
regressing the goal state through the plan suffix is a feasible state. A suffix plan for On(B;C)
is P3: t0 � Puton(B;C) � t1 shown in Figure 3. Suffix plans are produced by planners that
do backward search in the space of states.

Planners that search in the space of plans typically generate plans in which actions are
ordered only by precedence (“�”) relations. Since any arbitrary number of new steps can
come in between two steps ordered by a precedence relation, we shall call such plans “elas-
tic plans.”4 An elastic plan for the subgoal On(B;C) in Sussman anomaly is P4: t0 �
Puton(B;C) � t1.

A plan P for a subgoal g is called a protected plan if it has IPC constraints to protect
the subgoal as well as every precondition of every step of P . Protection of a condition c at a

step s is done by adding an IPC (s0
c
� s) where s0 is a step in P which gives the condition

c to s. For example, a protected prefix plan for On(B;C) in Sussman anomaly is P5 : t0 �

Puton(B;C) � t1 with the IPCs (Puton(B;C)
On(B;C)

� t1); (t0
clear(B)

� Puton(B;C)); and

(t0
Clear(C)

� Puton(B;C)). (Note that since the partial plan is a prefix plan, no new steps can
come before Puton(B;C) in the plan. Thus, the last two IPCs are redundant, as they can
never be violated by new steps.)

Finally, it is useful to distinguish another kind of plan that we call a blocked plan. A
blocked plan P contains blocked subplans for each of its individual subgoals. A blocked sub-

4We use the term elastic rather than “partially ordered” since the latter has been used to refer to protected
elastic plans also (see below).

10

plan for a goal g1 contains contiguity constraints that set the absolute distance between every
pair of steps in P except the t0 and t1 steps. As an example, a blocked plan for the subgoal
On(A;B) in Sussman Anomaly problem will be t0 � Puton(C; Table)�Puton(A;B) � t1.

3.4 Candidate Sets and Least Commitment

Note that all the plans shown in Figure 3 solve the subgoal On(B;C) in the sense that if
On(B;C) were the only goal, then a solution extractor looking through minimal candidates
will be able to terminate on each of them. They all have different candidate sets however. As
we shall discuss at length in Section 8, the candidate set of the plan determines whether or not
the plan can be refined to cover other subgoals. For example, the plan P3 can be extended to
cover the subgoal On(B;C) only if its candidate set contains action sequences that achieve
both On(A;B) and On(B;C) (which it doesn’t in the current case – since no solution can
end with the action Puton(B;C)).

The larger the candidate set of a plan, the higher the chance that it will contain an action
sequence that also covers another subgoal. The size of the candidate set of a plan is determined
by how many constraints it has and what type of constraints it has. Given two plans P and
P 0 such that the constraints in P are a proper subset of the constraints in P 0, then clearly
hhP 0ii � hhP ii5 (since some of the candidates of P may not satisfy the additional constraints of
P 0). Thus, in Figure 3, hhP2ii � hhP1ii and hhP5ii � hhP4ii

Another factor affecting the size of the candidate set is the “type” of constraints that are
present in the plan. For example, consider the following two plans: (i)t0 � t1 : o1 � t1,
(ii)t0 � t1 : o1 � t1. The first plan has in general a smaller candidate set than the second
since the contiguity constraint is a stronger ordering constraint than the precedence constraint
(in particular t1 � t2 implies t1 � t2 but not vice versa). Thus, in Figure 3, we have hhP1ii �
hhP4ii and hhP3ii � hhP4ii.

The commonly used phrase “least commitment” is best understood in terms of candidate
sets – a least committed partial plan has a larger candidate set. Among the plans shown in
Figure 3 P4 is the least committed and P2 is the most committed.

The oft-repeated statement that partial order planners are less committed than state space
planners actually just means that the partial plans produced by planners using plan space
refinement have larger candidate set sizes than those using state space refinements. This makes
sense because, as we will see in the next section, the state space refinements post contiguity
constraints and the plan-space refinements post precedence constraints.

For example, in Figure 3, the plans P1 and P2 will be produced by forward state space re-
finements, P3 will be produced by backward state space refinements, and P4 will be produced
by plan space refinements. P5 will be produced by a combination of PS and FSS strategies.

3.4.1 Quantifying least commitment

Looking at least commitment in terms of candidate sets allows us to quantify the relative
commitment of two partial plans. In this section, we will illustrate this by seeing how partial

5We avoid making statements about the actual sizes of the candidate sets since they can both be infinite

11

plans with precedence relations (generated by PS refinements) compare to partial plans with
contiguity relations (generated by FSS and BSS refinements). Since partial plans can have
infinitely large candidate sets, we will calculate the candidates of length L or smaller, and take
the limit of the ratio of the candidate set sizes as L tends to 1.

Consider the consider the following two plans: P 0
1 : t0 � t1 : o1 � t1, P 0

2 : t0 � o1 � t1.
Suppose there are a total of a distinct actions in the domain. Let us enumerate the candidates
of size i for both the plans. For P 0

1, the candidates consist of all action sequences which start
with o1. Since we are looking for candidates of size i, this leaves i�1 positions in the sequence
which can be filled by any of the a actions, giving rise to a(i�1) i-length candidates. For P 0

2,
we are looking for action sequences that contain at least one instance of o1 any where in the
sequence. There are (a � 1)i i-length action sequences that contain no instances of operator
o1. Thus, the number of sequences that contain at least one instance of o1 are ai � (a� 1)i.

Now, the number of candidates of size L or smaller for P 01 is

�i1 =
LX
i=1

ai�1 =
aL � 1

a� 1

those for P 0
2 are

�i2 =
LX
i=1

�
ai � (a� 1)i

�
=

(aL+1 � 1)

(a� 1)
�

(a� 1)L+1 � 1

(a� 2)

We want limL!1
�i
2

�i
1

. Since, typically, the number actions in a realistic domain a is � 1, we

have, a�1
a

< 1, (a� 1) � (a� 2), (aL+1 � 1) � aL+1 and the limit becomes,

lim
L!1

�i2
�i1

� lim
L!1

a

1�

�
a� 1

a

�L!
= a

What this means is that asymptotically, partial plans produced by planners using plan space
refinements have candidate sets that are a times larger than those produced by planners using
state space refinements. Similar computations can be done for partial plans belonging to other
plan classes (e.g. P4 and P5 in Figure 3).

4 The UCP planning algorithm

The UCP algorithm uses the plan representation developed in the previous section to combine
plan-space and state-space approaches under one framework. Figure 4 shows the top level
control strategy of UCP. The algorithm starts by checking to see if a solution can be extracted
from the given plan. In step 1, UCP chooses among three different refinement strategies, cor-
responding, respectively, to the forward state-space planning, backward state-space planning
and plan-space planning approaches. We shall refer to them as FSS , BSS and PS refinements
respectively. Since all three refinements are complete, the choice here is not non-deterministic

12

Algorithm UCP(P) /*Returns refinements of P */

Parameters: sol: the solution extraction function
pick-refinement: a strategy for picking refinements

0. Termination Check: If sol(P) returns a ground operator sequence that solves the problem, return it
and terminate.

1. Progressive Refinement: Using pick-refinement strategy, select any one of (not a backtrack point):

� Refine-plan-forward-state-space(P)

� Refine-plan-backward-state-space(P)

� Refine-plan-plan-space(P) fCorresponds to a class of refinements g

Nondeterministically select one of the returned plans. Let this be P 0.

2. (optional) Non-progressive (Tractability Refinements) Select zero or more of:

� Refine-plan-conflict-resolve(P 0)

� Refine-plan-pre-ordering(P 0)

� Refine-plan-pre-positioning(P 0)

Nondeterministically select one of the returned plans. Let this be P 0.

3. (optional) Consistency Check: If the partial planP 0 is inconsistent (i.e., has no safe ground linearizations),
or non-minimal (e.g. has state loops) prune it.

4. Recursive Invocation: Call UCP(P 0) (if P 0 is not pruned).

Figure 4: UCP: A generalized algorithm template for classical planning

Algorithm Refine-plan-Forward-State-space (P) /*Returns refinements of P */

1.1 Operator Selection: Nondeterministically select one of the following (choice point):

1. Nondeterministically select a step told from head-fringe of P , such that all preconditions of the
operator ST (told) are satisfied in head-state of P . (If told is the tail step, then select it only if the
tail state is a subset of head-state.) or

2. Nondeterministically select an operator o from the operator library, such that all preconditions of
the operator o are satisfied in head-state of the plan. Make a step name tnew, and add the mapping
[tnew ! o] to ST .

1.2 Operator Application: Let tsel be the step selected above. Add the auxiliary constraint tH � tsel. (This
implicitly updates the head step to be tsel, and head state to be the result of applying ST (tsel) to head
state).

Figure 5: Forward State Space Refinement

13

Algorithm Refine-plan-backward-state-space (P) /*Returns refinements of P */

1.1 Operator Selection: Nondeterministically select one of the following (choice point):

1. Nondeterministically select a step told from tail-fringe of the plan, such that (a) none of the effects
of the operator ST (told) are negating the facts in the tail state and (b) at least one effect of the
operator ST (told) is present in the tail state. (If told is the head step, then select it only if the tail
state is a subset of head-state.) or

2. Nondeterministically select an operator o from the operator library, such that (a) none of the
effects of the operator o are negating the facts in the tail state and (b) at least one effect of the
operator ST (told) is present in the tail state of P . Make a step name tnew, and add the mapping
[tnew ! o] to ST .

1.2 Operator Application: Let tsel be the step selected above. Add the auxiliary constraint tsel � t1. (This
implicitly updates the tail step and tail state).

Figure 6: Backward State Space Refinement

(i.e., does not have to be backtracked over). The refinements themselves are described in
Figures 5, 6 and 7. UCP accepts an arbitrary control strategy pick-refinement as a
parameter. In each iteration, this control strategy is used to select one of the three refinement
strategies (see below). The selected refinement strategy is applied to the partial plan to gener-
ate the refinements. Since all three refinements are complete (see Section 5), UCP never has
to backtrack on the choice of the refinement strategy. In step 2, UCP optionally applies one or
more non-progressive refinements. These refinements essentially partition the candidate sets,
without increasing their minimal candidate sizes. Step 3 checks to see if the plan is consistent
(i.e., has non-empty candidate set), and step 4 invokes UCP on it recursively.

4.1 Progressive Refinements

4.1.1 State-space Refinements

Informally, the FSS refinement involves advancing the header state by applying an operator to
it (which involves putting a contiguity constraint between the current head step and the new
step corresponding to the operator that we want to apply). A step is considered to be applicable
if all its preconditions are satisfied in the head state of the partial plan. Completeness is ensured
by considering both the steps in the head fringe of the plan, and the operators in the operator
library. One special case arises when the tail step of the plan is one of the steps on the head
fringe. In this case, we can avoid generating partial plans that will not contain any solutions by
requiring a stronger check. Specifically, we will require that tail step be applied to head state
only when all the conditions in the tail state (rather than the preconditions of the tail step) are
present in the head state. This is because, once the tail step is introduced into the header, no
further steps can be added to the partial plan. (Of course, whether or not we use this stronger
check will have no bearing on the completeness of the refinement).

BSS refinement (Figure 6) is very similar to the FSS refinement, except that it regresses
the tail state by backward-applying new operators to the tail state. An operator is considered

14

Algorithm Refine-plan-plan-space (P) /*Returns refinements of P */
Parameters: pick-open: the routine for picking open conditions.

1.1 Goal Selection: Using the pick-open function, pick an open prerequisite hC; ti (where C is a precon-
dition of step t) from P to work on. Not a backtrack point.

1.2. Goal Establishment: Non-deterministically select a new or existing establisher step t0 for hC; ti. Intro-
duce enough constraints into the plan such that (i) t0 will have an effect C, and (ii) C will persist until
t. Backtrack point; all establishers need to be considered.

(Optional) [1.3. Bookkeeping:] Add interval preservation constraints noting the establishment decisions.
Specifically do one of:

Interval Protection: Add the IPC (t0
C
� t).

Contributor Protection: Add two IPCs (t0
C
� t) and (t0

:C
� t).

Figure 7: Plan Space Refinement

Algorithm Refine-plan-pre-order (P)
Use some given static ordering strategy, pre-order, to select a pair of unordered steps s1 and s2 and

generate two refinements of P : P + (s1 � s2) and P + (s1 6� s2) (note that the constraint s1 6� s2 is
equivalent to the constraint (s2 � s1) since candidates are all completely ordered).

Algorithm Refine-plan-pre-position(P)

Use some given static pre-positioning strategy, pre-position, to to select a pair of steps s1 and s2 and
generate two refinements of P : P + s1 � s2 and P + s1 6 �s2. In the special case where s1 is always
chosen to be the head step of the plan, the refinement is called the lazy FSS refinement and when s2 is
always chosen to be the tail step of the plan, it is called the lazy BSS refinement.

Algorithm Refine-plan-pre-satisfy(P)

Refine P such that some chosen auxiliary constraint C will hold in all the ground linearizations of P . If
the chosen constraint is an IPC, we call the refinement the Conflict Resolution refinement, which is

done as follows. For every IPC (s1
p

� s2) in plan P , and every step st which has an effect that unifies
with :p, generate refinements of P where st’s effect cannot violate the IPC. The refinements consist of
P +(st � s1)_ s2 � st) and P +�pst@st, where �pst denotes the preservation preconditions of st with
respect to p [29]. The first refinement is typically further split into two refinements, called promotion
and demotion refinements, to push the disjunction in the ordering constraints into the search space.

Figure 8: Non-progressive Tractability Refinements: Pre-ordering, Pre-positioning and Pre-
satisfaction refinements
.

15

to be backward-applicable if it does not delete any conditions in the tail state, and adds at least
one condition in the tail state (this latter part makes it goal-directed). The state resulting from
the backward application of the operator o contains all the conditions of the previous state,
minus the conditions added by o, plus the preconditions of o.

Making FSS Goal Directed: Although as stated, the FSS refinement is purely “data di-
rected” and “BSS ” refinement is purely “goal directed”, the issue of goal/data direction is
actually orthogonal to the issue of FSS /BSS refinements. The distinguishing properties of
FSS and BSS are that one adds actions to the prefix and the other adds them to the suffix. For
example, it is possible to focus both refinements by using state difference heuristics, which
prefer the refinements where the set difference between the tail state and the head state is the
smallest.

While the state difference heuristic works well enough for regression refinements, it does
not provide sufficient focus to progression refinements. The problem is that in a realistic
planning problem, there potentially may be many operators that are applicable in the current
head state, and only a few of them may be relevant to the goals of the problem. Thus, the
strategy of generating all the refinements and ranking them with respect to the state difference
heuristic can be prohibitively expensive. We need a method of automatically zeroing on those
operators which are possibly relevant to the goals.

One popular way of generating the list of relevant operators is to use means-ends analysis.
The general idea is the following. Suppose we have an operator o whose postconditions match
a goal of the problem. Clearly, o is a relevant operator. If the preconditions of o are satisfied
in the head state of the current partial plan, we can apply it directly. Suppose they are not
all satisfied. In such a case, we can consider the preconditions of o as subgoals, look for an
operator o0 whose postconditions match one of these subgoals, and check if it is applicable
to the head state. This type of recursive analysis can be continued to find the set of relevant
operators, and focus progression refinement. See [26] for an example of a FSS planner that
uses this type of subgoaling trees to focus its attention.

4.1.2 Plan-space Refinements

Both FSS and BSS refinements attempt to guess the relevance (i.e., is this step going to be part
of a solution for this problem) and position (i.e., when, during the execution of the solution
plan will this step be executed). Often, our guess about the relevance of an operator to a
problem is more informed than our guess about its position. For example, if one of our goals
is to be in San Francisco (SF), we might guess that the action of “taking a flight to SF” would
be part of our eventual solution plan. But, exactly when this action will occur in the solution
plan depends on what other goals we are trying to achieve, and how they interact with this
goal. This calls for a type of refinement that reasons about the relevance of the operator,
without fixing its position. The plan-space refinement (PS refinement for short), does this. PS
refinement strategy comes in several varieties, and a comprehensive discussion of these can
be found in [19]. Here, we will summarize the main points.

16

The heart of the PS refinement, given in Figure 7, is an establishment operation [19]. In
the establishment phase, a precondition p of a step s is selected, and a sufficient number of
step, ordering and binding constraints are added to ensure that the point truth constraint hp; si
is satisfied (i.e., p will be necessarily true at s). This involves selecting a step s0, either new
or existing one, and ensuring that, s0 � s, s0 gives p, and that no steps that come between s0

and s delete p. Additionally, if s0 is a new step, its preconditions will have to be established
later. See [19] for further details. The choice of which precondition to achieve does not have
to be backtracked over, but all possible ways of establishing the selected precondition must
be considered for completeness. Thus PS refinement corresponds to a family of complete
refinements, each distinguished by the precondition that is considered for establishment.

While PS refinement allows us to defer the decision about the position at which an operator
will occur in the final plan, the penalty we pay for this flexibility is that we do not have a
complete picture of the world preceding and following the execution of an action. Because
of this, a precondition that has been established once, might get deleted later when new steps
are introduced between the contributor and the consumer step. PS refinements handle this by
using an optional bookkeeping step where they keep track of intervals within the plan where
certain conditions need to be protected. The optional bookkeeping step can add auxiliary
(interval preservation) constraints to protect the establishment decisions. Specifically, when a

precondition p of a step s is established using another step s0, PS adds an IPC (s0
p

� s). Some
planners, like SNLP [25] not only protect the condition p from being deleted, but also ensure
that no other step intervening between s0 and s will give p. This is to ensure that s0 will be a
unique contributor of p to s, which in turn ensures the systematicity of plan space refinement.

This “contributor protection” can be done by simply posting two IPCs (s0
p

� s) and (s0
:p
� s).

4.2 Non-progressive (Tractability) refinements

It is easy to see that FSS , BSS and PS refinements are progressive refinements in that all of
them can increase the length of the minimal candidates of the plan. We will now discuss a
family of non-progressive refinements, shown in Figure 8. Unlike progressive refinements,
which are motivated in terms of progressing towards a solution, non-progressive refinements
by themselves do not take a refinement planner towards a solution. Non-progressive refine-
ments are not required for termination if we have a solution extraction function that looks at all
minimal candidates. However, they are motivated by the need to reduce the plan handling costs
(specifically, the costs of solution extraction and consistency checking) [19]. Non-progressive
refinements have thus been called “tractability refinements” [19] and “critics” [32].

There are essentially three types of non-progressive refinements used in refinement plan-
ning. The first two, called pre-ordering and pre-positioning refinements constrain the rel-
ative order and position of a pair of steps in mutually exclusive and exhaustive ways in the
different branches. The third type, called pre-satisfaction refinement attempts to make an
auxiliary constraint hold in all ground linearizations of the partial plan by adding additional
constraints.

Specifically, the pre-ordering refinements fix the relative ordering between two steps s1 and

17

s2 by considering separately the case where s1 � s2 and the case where s1 6� s2. Similarly,
the pre-positioning refinements fix the relative position of the chosen pair of steps, t1 and t2
by considering separately the case where t1 � t2 and the case where t1 6 �t2. To ensure that
the resulting plan is consistent, we must make sure that t1 does not delete any preconditions
of t2 (if it did, then no candidate of the plan will be executable). Two special cases of pre-
positioning refinements are of particular interest. When one of the pair of steps is either
always the head step or always the tail step, the pre-positioning refinements extend the header
and trailer sequences respectively, and thus lead to forward and backward state information.
Although they provide state information, unlike FSS and BSS however, these refinements are
not progressive– they do not consider adding steps into the plan, but merely order existing
steps in the plan. Because of this, we call them the lazy FSS and lazy BSS refinements
respectively. To ensure consistency of resulting plans, a lazy FSS is used only when the step
being made contiguous to the head step has all its preconditions satisfied in the head state. In
the case of lazy BSS , we make sure that the step being made contiguous to the tail step does
not delete any condition in the tail state.

Pre-ordering and pre-positioning refinements reduce the plan handling costs by reducing
the number of linearizations of the plan. The pre-satisfaction refinements reduce plan handling
costs by ensuring that all ground linearizations of the partial plan are safe with respect to a
given auxiliary constraint. An example of pre-satisfaction refinement is the conflict resolution

refinement which ensures that a plan satisfies an IPC. Specifically, given an IPC (s1
p

� s2) and
a step st which has an effect that negates p, conflict resolution refinement considers either
ordering st out of the range between s1 and s2 or adding “preservation preconditions” to st so
that it will not negate p. The latter is called the confrontation refinement.6 The former involves
putting a disjunctive ordering constraint (st � s1) _ (s2 � st) on the plan. Traditionally,
planners pushed this disjunction into the search space by generating two different plans, one
in which st � s1 is present and the other in which s2 � st is present.7

4.3 Termination Check

At each refinement cycle, the UCP algorithm checks to see if the search can be terminated
successfully. As we mentioned earlier, the maximum amount of computation to be done in
solution extraction involves checking if any of the minimal candidates of the partial plan are
solutions. Since minimal candidates correspond to safe ground linearizations, of which there
can be exponentially many, this will be an NP-hard computation. In fact, viewing the termi-
nation check this way allows us to consider it a sort of “scheduling” activity, and it is possible
in theory to use the techniques used to solve constraint satisfaction problems. that are effec-
tive for scheduling problems, to do solution extraction. The termination check can thus be

6The so-called separation refinement [2] is subsumed under the confrontation option as one way of ensuring
that st does not negate p is to add non-codesignation constraints that prevent the effect of st from unifying with
p.

7This splitting does not lead to loss of completeness since the candidates are all ground operator sequences,
and the only way the disjunctive ordering constraint can be satisfied is by satisfying one of the disjuncts.

18

done by any of the combinatoric search procedures used for supporting scheduling (e.g., SAT
procedures).

Notice that this termination check is enough to successfully terminate UCP whether it uses
only state space refinements, only plan-space refinements, or a combination of both. There
may of course be more specialized realizations of the termination check that are more efficient
for specific instantiations of UCP. For example, pure plan space planners using causal links
can use a causal link based termination check used in SNLP [25, 19], which continue to refine
a plan until all preconditions of all steps have been considered for establishment, and none of
the IPCs are violated. Similarly, if we are using only the FSS and BSS refinements, then the
plan can terminate as soon as the head step is introduced into the trailer, or vice versa.

4.4 Consistency Check

At each refinement cycle, UCP uses an optional consistency check to prune out unpromising
refinements. One important type of unpromising refinements are those partial plans which
have no safe ground linearizations (and thus have empty candidate sets). In addition, in the
presence of FSS and BSS refinements, we can also check for and prune plans containing state
looping. Forward state looping occurs when there are two steps t1 and t2 in the header of the
plan such that t1 precedes t2, and the state after t1 contains all the conditions that are present
in the state after t2. Similarly, backward sate looping occurs when there are two steps t0 and
t00 in the trailer of the plan such that t0 precedes t00 and the state preceding t0 contains all the
conditions that are present in the state preceding t00. In either case, it can be shown that the
candidate sets of the corresponding partial plans will not contain any minimal8 solutions, and
the partial plans can thus be pruned.

4.5 An example planning trace of UCP

Figure 9 illustrates UCP’s execution trace on a simple example. The problem has the initial
state fi0g and the goal state fG0g. The operators in the domain are described in the table
on the right. The search starts with the null plan P; in which t0 precedes t1. Suppose the
pick-refinement function suggests FSS refinement in the first iteration (such a sugges-
tion may be based on the expected cost of the refinement; see below). There are only two
library operators that are applicable to the header state (the tail fringe consists only of the tail
step t1 which is not applicable). Two refinements, P1 andP2, each corresponding to the appli-
cation of the respective operator to the header of P;, are produced. Next, suppose UCP picks
P1 from the search queue. At this point, a BSS refinement strategy is chosen. This produces
a single refinement P3, involving the application of the library operator o0 to the trailer. Next,
P3 is chosen from the search queue, and the PS refinement is selected, with the precondition
hp; t2i to be established. (To make the discussion simple, we assume a PS refinement that does
not impose any optional bookkeeping constraints.) Two refinements, P4 and P5 result. UCP

8A solution is minimal, if and only if no ground operator sequence derived by deleting some elements from
it is also a solution.

19

[P1] t0 � t1:oi � t1

[P;] t0 � t1

[P2] t0�t1:oq �t1

[P3]t0�t1:oi � t2:o
0 � t1

[P4]t0�t1:oi �t3:op1 � t2:o
0 �t1 [P5] t0�t1:oi �t3 :op2 � t2:o

0 �t1

[P6] t0�t1:oi �
�
t3:op1
t4:oq

�
� t2:o

0�t1

PS hq@t2i

PS hp@t2i

FSS

BSS

oi i1i0 -
op1 i1 p -
op2 i2 p -

oq q p-

add delPrec

o0 p,q G0 -

Figure 9: An example illustrating the refinement process of UCP. The domain description is
provided in the table on the right. The problem is specified with the initial state fi0g and the
goal state fG0g. The partial plans are shown in terms of their steps, ordering and contiguity
constraints.

chooses P4 from the search queue and refines it further with another PS refinement with hq; t2i
as the precondition to be established. This results in a single refinement, P6 which satisfies the
termination test (it has a single safe ground linearization which is a solution for the problem).
The search ends successfully when P6 is picked from the search queue in the next iteration
(note that in P6, the steps t3 and t4 are unordered with respect to each other).

In the current example we did not have to use any non-progressive refinements. Suppose
however that we had a less powerful solution extraction function of the type used in planners
such as SNLP, which wait until all the ground linearizations are safe, and the corresponding
candidates are solutions (this is not true in P6 since the linearization in which t3 comes before
t4 will be deleting the precondition p of step t2). In this case, we could have used9 non-
progressive refinements (e.g., pre-ordering, or if IPCs were being used by the PS refinement,
conflict resolution), until we end up with two refinements of P6 one in which t3 precedes t4
and the other in which it follows t4. The latter will then be a plan on which we can terminate.

The foregoing reinforces the point that nonprogressive refinements are needed only when
one is using specialized termination criterion (of possibly lower complexity).

9It is also possible to use FSS and BSS refinements until the steps becomes contiguous.

20

5 Coverage, Completeness and Systematicity of UCP

5.1 Coverage

It is easy to see that by choosing the pick-refinement function appropriately, we can
model the pure state space planners, as well as the pure plan-space planners as instantiations of
UCP. In particular, in [19, 17, 18], we showed that the plan space refinement template, given in
Figure 7 covers the complete spectrum of plan space planners, including UA, TO [28], SNLP
[25], and TWEAK [6]. What is more interesting, as shown in Section 4.5, is the fact that the
UCP algorithm also allows hybrid planners that can opportunistically apply plan-space as well
as state-space refinements within a single planning episode. For example, the classical means-
ends analysis planners such as STRIPS [9], or their descendents such as PRODIGY [10] can
be modeled by a pick-refinement strategy such as the following: If there is a step in
the head-fringe of the plan that is applicable to the head-state, pick FSS or lazy FSS . Else,
pick PS refinement. Finally, it is also possible to use a more ambitious pick-refinement
strategy: pick the refinement that has the least expected cost (see below) [13].

5.2 Completeness

To make matters simple, we will consider the completeness of UCP instantiations which use
a solution extraction function that looks through the minimal candidates for a solution for
the problem. All these instantiations will be complete (i.e., they will find solutions for all
solvable problems) as long as all the refinements used by the instantiation are individually
complete (i.e., they do not lose a solution candidate in the candidate set of the plan they refine).
Since all the non-progressive refinements partition the candidate set, they are by definition
complete. The three progressive refinements may lose some of the the candidates, but they
can all be shown to be complete in that they do not lose any potential solutions. Since all three
refinements are individually complete, any instantiation of UCP that uses these refinements
will also be complete (see Section 2). The completeness of UCP depends primarily on the
completeness of the refinement strategies.10 Recall that a refinement strategy R is complete
as long as every solution belonging to the candidate set of a plan P is guaranteed to belong to
the candidate set of at least one of the refinements produced by R from P .

The completeness of PS , BSS and FSS refinements is well known, if they start with a null
plan (as they would if we use instantiations of UCP that use a single refinement). Specifically,
the FSS refinement considers all possible executable prefixes, and BSS refinement consid-
ers all possible suffixes that can end in a goal state. The completeness of PS refinement is
somewhat more subtle, but follows from Pednault’s work [30].

The next order of business is to convince ourselves that these refinements remain complete
even when they are applied to an arbitrary plan in the UCP represenstation. In the case of PS

10Strictly speaking, it also does depends on the specific termination criterion used by UCP. However, this
dependency can be ignored as long as UCP uses a termination criterion that effectively checks if a minimal
candidate corresponds to a solution (see [19])

21

refinement, this follows readily, since the only constraint types that UCP plans have, and the
plans used in pure plan-space planners do not [19] are the contiguity constraints. However,
since contiguity constraints are strictly stronger than precedence constraints (in that the former
imply the latter), the completeness results will hold for UCP plans too. (This is why the PS
refinement in UCP is identical to the one given in [19]).

The completeness of FSS and BSS refinements on UCP plans is not as obvious since the
plans used by pure FSS and BSS planners do not contain precedence or IPC constraints. We
will sketch how FSS continues to be complete even when applied to an arbitrary plan. Similar
arguments apply to BSS refinement. The main difference between the plans that FSS operates
on in a pure forward state space planner, and those it operates on in UCP is that the former
contain no steps outside the plan prefix, while the latter do. If FSS only considers growing the
prefix of the plan by adding new operators from the library, then it may miss some solutions.
For example, consider a simple 1-way rocket domain, where the goal is to get the rocket from
earth to moon, and the domain contains a single action: F ly(E;M). Suppose we used a PS
refinement and came up with a partial plan P : t0 � t1 : F ly(E;M) � tG. Suppose at this
point we apply the FSS refinement to P . If we only consider growing prefix with operators
from the library, we will get a single refinement P0 : t0 � t2 : F ly(E;M) � t1 : F ly(E;M) �
tG. Unfortunately, the only solution for the problem, which is the action F ly(E;M) is no
longer a candidate of P0 (it was a candidate of P). This loss of completeness is averted in our
generalized FSS since it considers growing prefix with the help of all steps on the head fringe
also. Thus, we get a second refinement P00 : t0 � t1 : F ly(E;M) � tG, which does contain
the solution. Since both P 0 and P 00 are produced as refinements of P , completeness holds.

Perceptive readers may have noticed that in the rocket example the candidate set of one
of the refinements is a proper subset of the other (hhP0ii � hhP 00ii). This might suggest that
we could retain completeness even if we ignore library operators which have been considered
as part of the head-fringe (thus, we would not have generated P0). This is unfortunately not
true – the candidate set of a plan generated by putting a step ti : oi in the head-fringe into the
header will not always be a superset of the candidate set of a plan generated by putting a new
instance of oi, tnew : oi (from library) into the header. Informally, this is because ti : oi may
already be taking part in other auxiliary constraints in the plan, which do not burden the new
instance tnew : oi. To see this, consider a scenario where we have two operators o1 and o2
such that o1 has two effects p, r, and and o2 has two effects q and :p. o1 has no preconditions
and o2 has one precondition r. We are interested in achieving the goal p ^ q, starting from an
empty initial state.

Consider a partial plan P which has the steps and orderings t0 � t1 : o1 � t1, and an IPC

(t1
p

� t1) (presumably generated by a PS refinement using interval protection, and working
on the subgoal p@t1.) Suppose we apply the FSS to P . We will get two plans:

P1 : (t0 � t1 : o1 � t1) + (t1
p

� t1)

and
P2 : (t0 � tnew : o1 � t1 : o1 � t1) + (t1

p

� t1)

with the first generated by putting t1 into the header, and the second generated by introducing

22

a fresh instance of o1 from library into the header. In this case, it is clear that hhP2ii 6� hhP1ii.
In fact, it is easy to see that hhP1ii does not contain any solutions (since a solution must have o2
and we cannot introduce o2 into P1 without violating the IPC. Only hhP2ii contains solutions!
Thus, if we did not generate P2, we would have lost completeness.

In summary, FSS refinement must generate plans corresponding to both existing instances
as well as fresh instances of operators that are applicable in the head state. (This situation is
similar to plan-space planners which must consider both existing and new instances of a step
during establishment). Of course, this may mean that the plans generated by FSS refinement
will have overlapping candidate sets (thus leading to loss of systematicity). In the next section,
we will show that as long as the PS refinement uses contributor protections, systematicity will
still be guaranteed.

5.3 Systematicity

It is possible to prove that any instantiation of UCP that uses a systematic PS refinement is
systematic, regardless of the way it chooses to interleave the FSS , BSS and PS refinements.
Recall that as pointed out by McAllester (see [25, 19]), PS refinement is systematic as long
as the book-keeping step uses contributor protections (that is, whenever a precondition p of a

step t is established through the effects of another step t0, two IPCs (t0
p

� t) and (t0
:p
� t) are

added to the list of auxiliary constraints of the plan [19]).
We sketch the proof of systematicity of any instantiation of UCP that uses a PS refinement

with contributor protections. To make exposition simple, we will concentrate on the system-
aticity of FSS refinement both in isolation, and in the presence of other refinements. Similar
arguments hold for the systematicity of BSS and PS refinements.

If UCP uses only FSS refinement, its head fringe will always consist only of the goal step
t1, and thus the only way FSS refines the plan is by introducing operators from library into
the header. Since each FSS refinement will have a different library operator instance added
to the end of the header, and since the operators in the header of a partial plan will form the
prefix of each candidate of that partial plan, the candidate sets of different FSS refinements
will be disjoint.

The above argument about differing prefixes may not hold when FSS is being used in con-
junction with BSS and PS since in such cases FSS refinements will involve transferring steps
from both the library and the head fringe into the header. It is possible in such cases to have
the same operator instance (say o) introduced into the header in more than one refinement–
once from the head fringe and once from the library. We will now show that systematicity
still holds as the candidates of different refinements differ in terms of the number of instances
of the operator o. We need to consider two cases – one in which the instance of o on header
fringe has been introduced by a previous PS refinement, and the other in which it is introduced
by a previous BSS refinement.
Case 1 o introduced by BSS : The illustration on the left hand side of Figure 10 shows a
scenario where the step to : o on the head fringe has been introduced by BSS (and thus it is
part of the trailer). Now consider two refinements P1 and P2 generated by FSS by introducing

23

(every cand. contains exactly

two instances of o)

(every cand. contains at least three

instances of o)

t0 * t1:o� to:o� t2:o2 * t1

p

[P1] t0*t1:o*to:o� t2:o2*t1

o from Fringe

o from Library

[P2] t0*t1:o*tn:o� to:o� t2:o2 * t1

o from Libraryo from Fringe
FSS

t0 * t1:o� to:o * t1

[P1] t0*t1:o*to:o * t1

(Every candidate contains

exactly two instances of o)

(every candidate contains at least

three instances of o)

o from Library

[P2] t0*t1:o*tn:o�to:o*t1 p

p

Figure 10: Examples illustrating the systematicity of UCP. The curved lines on the right cor-
respond to IPCs on the plan.

to : o from the fringe, and tn : o from library, respectively into the header. It is easy to see that
the candidates of P1 will have exactly two instances of o, while candidates of P2 will have
three or more instances of o.
Case 2 o introduced by PS : The illustration on the right hand side of Figure 10 shows a
scenario where the step to : o on the head fringe has been introduced by PS (using contributor
protection, as per our premise). Suppose without loss of generality that to : O was introduced
to contribute some condition p to t1. This means that the partial plan contains two IPCs

(to
p

� t1) and (to
:p
� t1). Now consider two refinements P1 and P2 generated by FSS by

transferring an instance of o from the fringe, and from the library, respectively to the header.
Once again the candidates of P1 and P2 will differ in terms of the number of instances of o. In
the example plan shown in Figure 10, every candidate of P1 will have exactly two instances

of o (no new instances o can come after the header since they will violate the IPC (to
:p
� t1)),

whereas every candidate of P2 will at least have three instances of o.

6 Controlling UCP

In this section, we will consider the types of control strategies (heuristics, pruning techniques,
selection strategies etc.) that are appropriate for UCP. In general, UCP requires heuristic guid-
ance in selecting a partial plan to be refined next, and in picking the refinement strategy to
apply to the selected partial plan. Additionally, if a plan-space refinement strategy is chosen,
UCP needs guidance regarding which goal to select for establishment. The first is a backtrack-
able decision, while the latter two don’t need to be backtracked.

For plan selection, in addition to the heuristics that are applicable to pure plan space and
state space planners, UCP can also use hybrid heuristics tailored to its partial plan representa-
tion. For example, its plan selection heuristics could prefer FSS refinements that correspond
to applying head fringe operators (rather than new operators from library) to the header; or

24

evaluate the promise of the plan in terms of the set difference between the tail state and the
head state. Further more, among the head-fringe steps, we can prefer those that are not taking
part in any conflicts currently [1]. This is to ensure that there is no reason to suspect that the
step will move out of head-fringe after conflict resolution.

The selection of refinement strategy can be done in many ways, and the tradeoffs offered
by the various strategies is still an open question. In our preliminary studies (reported in
the next section), we experimented with three hybrid strategies. The first, called UCP-MEA
prefers FSS whenever a head fringe step is applicable to the head state, and PS otherwise.
UCP-MEA has a generalized means-ends analysis flavor and thus simulates planners such
as STRIPS and PRODIGY. The second, called UCP-MBA is similar to UCP-MEA, with the
exception that before picking PS , it checks to see if a step on tail-fringe is applicable to the
tail state, and if so, picks BSS . The third one, called UCP-LCFR, estimates the number of
refinements generated by each of the three refinement strategies and selects the one that has
the least number of refinements. This strategy is inspired by the least cost flaw refinement
strategy, that was recently suggested in [13].

If a PS refinement is selected, UCP still faces the question of which goal to achieve first
(each choice corresponds to a complete PS refinement with respect to that goal). In addition
to the goal selection strategies used by pure plan space planners, UCP could also use the head
state information. For example, it might prefer those goals that are not already true in the head
state, or give preference to satisfying the preconditions of operators on the head fringe that
have least number of unsatisfied preconditions.

7 Empirical studies on the utility of interleaving refinements

We have implemented the UCP algorithm on top of the Refine-Plan implementation described
in [19]. Since UCP provides a framework to interleave the three different refinements within a
single problem episode, we conducted several preliminary experiments to evaluate the advan-
tages of such interleaving.

Experimental Setup: We considered six different instantiations of UCP. The first three,
UCP-PS , UCP-FSS and UCP-BSS , always pick the same type of refinement, and corre-
spond respectively to plan-space, forward state-space and backward state-space planners. The
other three, UCP-MEA, UCP-MBA and UCP-LCFR correspond to the three hybrid refinement
strategies described in the previous section.

Although the plan space refinement can have considerable variation [19] based on the pro-
tection and goal selection strategies used, in our experiments, we kept them constant. We used
a simple LIFO strategy for selecting the open-condition to be established, contributor protec-
tions for bookkeeping, and conflict resolution for tractability refinements. This is equivalent to
the refinement strategy used by SNLP [25, 19]. (In [19] we discuss the performance tradeoffs
offered by the other ways of instantiating the plan-space refinement).

All the experiments used best-first search, with the ranking function defined as the sum
of number of steps, open conditions, unsafe links, and the number of conditions of tail state

25

1.0 3.0 5.0 7.0 9.0
goals

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

Link Chain domain
of Veloso & Blythe

UCP-PS
UCP-FSS
UCP-BSS
UCP-MEA
UCP-LCFR
UCP-MBA

1.0 3.0 5.0 7.0 9.0
goals

0.0

1000.0

2000.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

Theta2-DmS1 Domain
of Barrett & Weld

UCP-PS
UCP-FSS
UCP-BSS
UCP-MEA
UCP-LCFR
UCP-MBA

1.0 3.0 5.0 7.0
goals

0.0

1000.0

2000.0

3000.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

R-Theta2-DmS1 Domain

UCP-PS
UCP-FSS
UCP-BSS
UCP-MEA
UCP-LCFR
UCP-MBA

Figure 11: Plots illustrating the performance of various instantiations of UCP (measured in
terms of the number of refinements made). Each point in the plot corresponds to the average
over ten problems of a given number of goals. Missing points in a plot signify that the planner
could not solve some of the ten problems within the allotted cpu time.

1.0 3.0 5.0 7.0 9.0
goals

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o
 o

f
re

fi
n

em
en

t

Link Chain domain
LCFR ratio

FSS
BSS
PS

1.0 3.0 5.0 7.0 9.0
goals

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o
 o

f
re

fi
n

em
en

ts

Theta2-Dms1 Domain
LCFR ratio

FSS
BSS
PS

1.0 3.0 5.0 7.0
goals

0.0

0.2

0.4

0.6

0.8

ra
ti

o
 o

f
re

fi
n

em
en

t

R-Theta2-DmS1 Domain
LCFR ratio

FSS
BSS
PS

Figure 12: Plots showing the fractions of various refinements used by UCP-LCFR (Domain
names shown on top of the plots)

not present in the head state. Additionally, partial plans that are inconsistent, or contain state
looping (see Section 4) are pruned. Each planner was given a cpu time limit of 120 seconds for
solving any problem. The time limit was increased to 300 seconds in the case of UCP-LCFR
as our simple implementation estimates the branching factors of each refinement by actually
simulating the refinement (other more efficient approximate estimation methods are of course
possible; see [13]).

26

Domains and Results: We conducted experiments both in blocks world and in a variety of
artificial domains designed by various researchers to illustrate the advantages of one planning
approach over another. Our intent was to show that appropriate hybrid instantiations of UCP
may do well in all such domains.

The first domain, called link-chain domain, was designed by Veloso & Blythe [35] to
showcase the advantages of state space means-ends analysis planners over plan-space plan-
ners. This domain contains ten actions A1 to A10. Each action Ai requires the preconditions
G1; G2; � � �Gi�1, adds Gi, and G1; G2; � � �Gi�2 and deletes Gi�1. The leftmost plot in Fig-
ure 11 shows the results of our experiments in this domain. We note that UCP-MBA and
UCP-LCFR outperform all the other planners including UCP-MEA. (the plots of UCP-MBA,
UCP-LCFR and UCP-FSS are all together as their performance was very close). The first plot
in Figure 12 shows the fraction of times the three individual refinements were employed by
UCP-LCFR during planning. We note that as the problem size increases the relative frequency
of FSS increases with respect to BSS . This correlates well with the fact that UCP-LCFR tracks
the performance of UCP-FSS in terms of number of partial plans refined, while UCP-BSS
worsens its performance as the problem size increases.

The second domain, called �2D
mS1, is one of the domains designed by Barrett & Weld

[2] to demonstrate the advantages of plan space planning over state space planning. In this
domain, each top level goal Gi can be achieved by either of two actions A1

i or A2
i . All actions

of type A1
i require P� while all actions of type A2

1 require P� as a precondition. The initial
state contains either P� or P� (but not both). The results of our experiments in this domain
are shown in the second plot in Figure 11. Once again, we note that a hybrid instance of
UCP, viz., UCP-LCFR, outperforms UCP-PS. An analysis of the pattern of refinements used
by UCP-LCFR, shown in the second plot in Figure 12 reveals that it outperforms UCP-PS by
opportunistically using BSS and FSS refinements in a small percentage of iterations. In other
words, even a domain that motivates pure plan-space planning over pure state space planning
[2], can benefit from a proper mix of the two types of refinements!

Finally, Figure 13 compares the performance of pure and hybrid instantiations of UCP
in the standard blocks world domain (which, unlike the three artificial domains, is a non-
propositional domain). The problems were generated using the random blocks world problem
generator described in [27]. Each data point represents the average over 10 random problems
containing a specified number of blocks. The data points in the graph correspond to situations
where all 10 random problems were solved by the specific instantiation of UCP. UCP-BSS
failed to achieve 100% solvability anywhere in this problem population, while UCP-FSS does
quite well. Moreover, the performance of UCP-LCFR is close to that of UCP-FSS . The
second plot shows the distribution of individual refinements used by UCP-LCFR. We note
that UCP-LCFR achieves its performance by judiciously combining a small fraction of FSS
and BSS refinements with a majority of PS refinements.

7.1 Discussion

Our results show that hybrid instances of UCP, that opportunistically interleave state space and
plan space refinements, can do better than either the pure plan space or the pure state space

27

2.0 4.0 6.0
blocks

0.0

20.0

40.0

60.0

80.0

100.0

120.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

Blocks World domain
random problems

UCP-PS
UCP-FSS
UCP-BSS
UCP-LCFR

2.0 4.0 6.0 8.0 10.0
blocks

0.0

0.2

0.4

0.6

0.8

ra
ti

o
 o

f
re

fi
n

em
en

ts

Blocks World domain
LCFR ratio (random problems)

FSS
BSS
PS

Figure 13: Performance of the instantiations of UCP in blocks world

refinements. They thus demonstrate the potential benefits of finding appropriate strategies
for interleaving different refinements. Although our hybrid control strategies showed some
promise, we believe that the question of the right control strategy is still an open one. In par-
ticular, even though UCP-LCFR did well in both link-chain and �2DmS1 domains, we found
that it is by no means infallible. Our experiments with a variant of �2DmS1, called R�2DmS1,
results of which are shown in the third plots in Figures 11 and 12 demonstrate that UCP-LCFR
can be mislead under some circumstances11 as the branching factor of a refinement is not a
fool-proof indicator of its heuristic utility. We have also experimented with a variant of LCFR
strategy that weights the branching factors of different refinements with factors that are pro-
portional to their relative candidate set sizes. For example, if there are nf FSS refinements and
np PS refinements, we could weight np by a factor a (where a is the number of actions in the
domain) (see Section 3.4.1). The results were not uniformly encouraging. In the next section,
we explore a different track – that of using subgoal interactions to decide which instantiation
of UCP is best suited to a given problem population.

8 Customizing UCP based on an analysis of subgoal inter-
actions

Given that the instantiations of the UCP algorithm template represent a large variety of classi-
cal and hybrid planners, an important question is how one should choose among the different
instantiations, in solving a set of problems. Discovering control strategies, such as LCFR, that
automatically adapt the UCP algorithm template to a given problem, is one way of doing this.

11In this domain, the initial state contains either Q� or Q�. There are two sets of five actions each of which,
when done in sequence will convertQ� into P� and Q� into P� . Finally, there are a set of dummy actions which
add P� or P� but their preconditions are never satisfied.

28

Another, more macro-level, approach is to predict which of a variety of pre-specified instantia-
tions of UCP will perform best on a given problem population. In this section, we will attempt
to answer this question using an analysis of subgoal interactions in the problem population. To
understand the idea of subgoal interactions, we start with the notion of a sub-plans. Consider a
problem with initial state I and the goal state specified as a conjunction of subgoals g1^ g2. A
plan P is said to be a subplan for the goal g1 if all the ground linearizations of P are safe and
their corresponding ground operator sequences achieve g1. Subgoal interactions arise when
the subplan made for one subgoal is extended to also achieve another subgoal, or when the
independently produced subplans for two subgoals are “merged” to create a plan that solves
the conjunction of the two subgoals.

Although considerable work has been done on understanding subgoal interactions [24, 2,
35, 14], much of this has been done in terms of the specifics of state space [24] or plan-space
planners [2]. It turns out that both subplan extension and merging could be understood cleanly
in terms of the candidate set semantics of the partial plans developed in Section 3. In the
following, we provide such an analysis. In Section 9, we show how this analysis can be used
to predict the fit between an instantiation of UCP and a given problem population.

8.1 Candidate Set Based definitions of Subplan Interactions

Given two goals g1 and g2 to be achieved conjunctively from an initial state I , and specific
subplans for achieving either of those goals, there are two scenarios in which the combinatorics
of finding a plan achieving both goals is controlled:

1. We can find a plan P1 for g1 and a plan P2 for g2 independently, and then merge the
plans together to produce a plan for g1 and g2. When subplans are mergeable this way,
then we can parallelize the planning effort by working independently on the subgoals
first and then working on merging the plans.

2. We can find a plan P1 for g1 that can be refined into a new plan for achieving both
g1 and g2 without violating any commitments made in P1. When serial extension is
possible, we will essentially be able to work on the second subgoal without ever having
to backtrack on (i.e., undoing) the refinements made in planning for the first subgoal.

We will capture these two notions from a candidate set perspective in the definitions of
mergeability and serial extension below.

Definition 1 (Mergeability) We say that a plan P1 for achieving a goal g1 from an initial
state I is mergeable with respect to a plan P2 for achieving goal g2 from I , if there is a plan
P 0 that achieves both g1 and g2 (from the same initial state), and hhP 0ii � hhP1ii\ hhP2ii. (Thus
syntactically, P 0 contains all the constraints of P1 and P2).

In addition, the plans are said to be simple mergeable if every step in P 0 is present in
either P1 or P2 (i.e., P 0 does not contain any new steps), and the number of steps in P 0 is the
sum of number of steps in P1 and P2. Finally, the plans are said to be trivial mergeable if P 0

contains no more or less constraints (steps, orderings, bindings) than P1 and P2.

29

In general, merging two plans involves either combining steps in the plans being merged,
or adding steps that are not present in either of them. Simple mergeability essentially en-
sures that the plans can be merged without adding any new steps, or combining existing steps
(thus bounding the amount of effort required in the merging phase). In contrast, the merging
involving addition and combination of steps can be as costly as planning itself [37]. Even
simple mergeability can lead to costly merging phases (as a possibly exponential number of
combined linearizations of the two plans need to be considered). Trivial mergeability is the
most restrictive as it requires that the merging operation only involve unioning the constraint
sets of the two plans.

To illustrate these ideas, consider the blocks world situation with four blocks A;B;C
and D all on table in the initial state. The plan t0 � Puton(A;B) � t1 for subgoal
On(A;B) is trivial mergeable with the plan t0 � Puton(C;D) � t1 for On(C;D). In
contrast, the plan t0 � Puton(A;B) � t1 for On(A;B) is simple mergeable with the
plan t0 � Puton(B;C) � t1 for On(B;C) (but not trivial mergeable). The plan t0 �
Puton(A;B) � t1 forOn(A;B) is not simple mergeable with the plan t0 � Puton(B;C) �
t1 for On(B;C), although it is mergeable. This is because the only way of merging these
plans will be to insert additional steps giving rise to a plan such as t0 � Puton(A;B) �
Puton(A; Table) � Puton(B;C) � Puton(A;B) � t1.

Finally, an example of mergeability that requires combining steps in the plans being merged
is the “one-way rocket” problem which involves transporting objects A and B from the earth
to the moon with the help of a single one-way rocket. The plan for taking object A to the
moon will be P1 : t0 � load(A) � F ly(Rocket) � unload(A) � t1, and the plan for
taking object B to Moon will be P2 : t0 � load(B) � F ly(Rocket) � unload(B) � t1,
However, merging P1 and P2 to solve both the goals requires combining the two instances of
F ly(Rocket), since every complete plan can only have one instance of F ly(Rocket).

Next, we will consider the idea of serial extension:

Definition 2 (Serial Extension) We say that a plan P for achieving g1 from a given initial
state I (i.e., executing P from I will get us to a state where g1 is true) is serially extensible
with respect to a second goal g2 if hhP ii \ L(g1 ^ g2) 6= ;, where L(g1 ^ g2) is the set of all
ground operator sequences that can achieve both g1 and g2 from the initial state.

Any plan P 0 whose candidate set is a subset of hhP ii \ L(g1 ^ g2) will achieve both g1 and
g2. Since all candidates of P 0 are also candidates of P , P 0 has all the constraints of P (plus
more). Thus, we never have to backtrack over any refinements that lead to P in coming up
with P 0.

Continuing the three block stacking example, the plan t0 � Puton(A;B) � t1 for
On(A;B) is serially extensible with respect to the goalOn(B;C), but the plan t0 � Puton(B;C)�
t1 for On(B;C) is not serially extensible with respect to the subgoal On(A;B). To see the
latter, note that no solution for Sussman anomaly can have Puton(B;C) as the final step.

30

8.2 The Role of Planner vs. Partial Plans in subplan interactions

Perhaps surprisingly, our characterization of subgoal interactions shifts the attention from the
type of planner to the nature of partial plans that are being merged or extended. The critical
role played by a “planner” is in coming up with a plan for an initial subgoal. If the candidate
set of that plan does contain a solution for the two goals together, then any refinement planner
which uses only complete refinement strategies – be they forward state space, backward state
space, plan-space or a combination thereof – will be able to extend the plan. This distinction
may seem artificial given that most traditional planners use the same refinement strategy to
generate the first subplan as well as to extend it. However, the distinction becomes more
useful in the case of UCP, which can use multiple refinements.

For example, we noted that the plan P1 : t0 � Puton(B;C) � t1 for subgoal On(B;C)
in the Sussman anomaly is serially extensible with respect to subgoal On(A;B). This means
that any complete refinement – including forward and backward state space refinement strate-
gies – can extend this plan into a solution. To illustrate, here is a series of forward state
space refinements that will convert P1 into a solution. (i) Apply an instance of the operator
Puton(C; Table), to the head state giving P2: t0 � Puton(C; Table) � Puton(B;C) � t1.
(ii) Apply the Puton(B;C) step to the head state of P2 giving P3: t0 � Puton(C; Table) �
Puton(B;C) � t1 and finally (iii) Apply an instance of the step Puton(A;B) to the head
state of P3 giving rise to a solution. It is not the case that we need a plan space refinement for
this purpose.

8.3 Characterizing Subgoal interactions

Mergeability and serial extension are defined in terms of specific plans for individual subgoals.
Since a particular subgoal may have a variety of plans, given two subgoals g1 and g2, some
of the plans for g1 may be mergeable with some of the plans of the second subgoal g2, while
some others may be serially extensible with respect to g2. In order to exploit the computational
advantages of mergeability and serial extension, we need to consider “all possible” plans of g1
(and g2). Since, as discussed in Section 3.3, there are in general a variety of partial plans and,
depending on the refinements one uses, only a subset of these plans may actually be realized
by a refinement planner, it makes more sense to qualify the claims with respect to a class of
plans, as we do below:

Definition 3 (Parallelizability) We will say that two subgoals g1 and g2 are parallelizable
modulo a class of plans bP , if each plan P1 2 bP for achieving g1 is mergeable with any plan
P2 2 P that achieves g2.

The subgoals g1 and g2 are said to be simple parallelizable modulo the class of plans bP
if any plan of g1 in bP is simple mergeable with any plan of g2 in bP to give rise to a plan for
g1 and g2. The subgoals are trivial parallelizable if the plans for the subgoals are trivially
mergeable.

The subgoals g1 and g2 are said to be optimal parallelizable modulo the class of plans bP
if any optimal plan of g1 from bP is mergeable with any optimal plan of g2 of bP to give rise to
an optimal plan for g1 and g2.

31

From the complexity point of view, parallelizability allows us to use divide-and-conquer
approaches for planning. If g1 and g2 are parallelizable, then the cost of solving the conjunctive
goal is additive in the cost of solving the individual goals, plus the cost of merging the plans.
However, parallelizability does not in itself imply that actually parallelizing the goals is either
efficient (since the merging phase can be costly) or desirable (since the merged plan may be
in optimal). For parallelization to be a win, the cost of merging should be small. The cost
depends upon the type of merging (trivial, simple or non-simple). While trivial mergeability
takes constant time, and simple mergeability can be NP-hard [37], merging involving the
addition and deletion of actions can be as costly as planning itself.

Given any domain where all the actions are reversible, any pair of subgoals from that do-
main will be parallelizable (since we can always “undo” the actions of the individual plans
for both the goals and then add actions to find a correct plan for the overall problem). Of
course, this not only makes the merging step costlier than the original planning problem, but
also leads to very inefficient plans. Thus, for parallelizability to be desirable, we need to have
the guarantee that the divide and conquer approach will find “optimal plans” for the conjunc-
tive goal by starting from optimal plans for the individual goals. This leads to the notion of
optimal parallelizability. The optimality and efficiency restrictions on parallelizability can of
course be combined. In fact, Korf’s definition of subgoal independence [24], implies optimal
and trivial parallelizability of all subgoals.

Definition 4 (Serializability) Given a class bP of plans, we will say that g1 is serializable
with respect to g2 modulo bP if every plan P1 2 bP of g1 is serially extensible with respect to g2.

Serializability does not necessarily give rise to savings in planning effort. The main reason
is that while parallelizability is a commutative relation, serializability is non-commutative. It
is possible for g1 to be serializable with respect to g2 but for g2 not to be serializable with
respect to g1. Thus for the planner to be able to exploit serializability, it needs to work on g1
first and then on g2. When there are multiple subgoals, the chance of picking the correct goal
order is low and thus serializability does not imply improvements in planning cost. Following
Barrett and Weld [2], we thus further extend the notion of serializability to consider trivial and
laborious serializability.

Definition 5 (Serialization Order [2]) Given a set of n subgoals g1; g2 : : : gn, a permutation
� on these subgoals is considered a serialization order (modulo a class of plans bP), if every
plan for achieving �[1] can be serially extended to �[2] and any resulting plan can be serially
extended to �[3] and so on.

The set of subgoals are considered trivially serializable if all the permutations correspond
to serialization orders, and are considered laboriously serializable if a significant number of
permutations (> 1

n
) correspond to non-serialization orderings.

Relation Between Serializability and Parallelizability: Finally, it is instructive to note that
while any form of parallelizability implies serializability, even trivial serializability does not
guarantee any form of parallelizability. To see this, consider a simple domain with only two
goals g1 and g2 and four operators defined below:

32

A trivially serializable but un-parallelizable domain
Op Prec Add Del
o1 p g1 w

o01 r g1 q

o2 w g2 p

o02 q g2 r

Suppose in a given problem, the initial state contains p; q; r and w and we want to achieve
g1 and g2. It is easy to see that if g1 is achieved by o1 then we cannot achieve g2 using o2 and
have to use o02. Thus not all plans of g1 are mergeable with all plans of g2. However, g1 and g2
are trivially serializable since any plan for g1 or g2 can be extended into a plan for both goals.

8.4 Coverage of the candidate-set based analysis of subgoal interactions

Readers familiar with previous efforts on characterization of subgoal interaction will note that
our notions of serializability and parallelizability are defined modulo a class of plans. In this
section, we will explain how our characterization subsumes the existing work by identifying
the specific classes of plans over which the existing characterizations of subgoal interactions
are implicitly based.

8.4.1 Korf’s Subgoal Interactions

Korf [24] defines two subgoals to be serializable if there exists an ordering among the subgoals
such that they can be planned for sequentially, such that once the first goal is achieved, the
agent never passes through a state where the first goal is violated.12

The Sussman anomaly has non-serializable subgoals according to this definition. For ex-
ample, suppose we work on On(B;C) first and then On(A;B). A state in which On(B;C)
is true is: S:On(B;C)^On(C;A). However, we cannot go from S to any goal state without
violating On(B;C).13

The following proposition shows that Korf’s definition can be seen as a special case of our
subgoal serializability for the class of protected prefix plans.

Proposition 1 (Korf’s Serializability) Two subgoals g1 and g2 are Korf-Serializable, if they
are serializable with respect to the class of protected prefix plans.

12Joslin and Roach [14] give a similar analysis of subgoal interactions in terms of the state space graph. In
particular, they consider the state transition graph of the domain, and identify each subgoal with a subgraph of the
transition graph (where all the states in that subgraph satisfy that goal). These subgraphs in general may contain
several connected components. The set of subgoals is said to be nonlinear if any of the subgraphs corresponding
to the subgoals have a connected component that does not contain a goal state. The idea is that if the planner
finds itself in a component of the sub-graph of the goal, it cannot achieve the second goal without undoing the
first.

13There is of course another state On(B;C) ^ On(C; Table) ^ On(A; Table) from which we can reach a
solution state without violating On(B;C). However, serializability requires that this be true of every state that
has On(B;C) true.

33

The qualification about “protected plans” is needed as Korf requires that the goal g1 re-
mains achieved while P1 is being extended. The “prefix plan” qualification is needed since
Korf’s analysis assumes that the search is being done in the space of world states and that
the plan for the first goal takes us to a completely specified world state. Indeed, in Sussman

anomaly, the plan t0 � Puton(B;C) � t1, with the IPC (Puton(B;C)
On(B;C)

� t1) is seri-
ally extensible with respect to On(B;C); although the plan t0 � Puton(B;C) � t1, with the
same IPC is not.

8.4.2 Barrett and Weld’s Serializability

Barett and Weld [2] extended Korf’s [24] subgoal interaction analysis to plan space planners,
and showed that problems like Sussman anomaly are serializable for the partial order planner
SNLP. Although their analysis concentrated on specific planning algorithms, it can also be
understood in terms of the class of plans with respect to which serializability is being defined.
Specifically, we have:

Proposition 2 (Barrett and Weld’s Serializability) Two subgoals g1 and g2 are serializable
by Barrett and Weld’s definition if they are serializable with respect to the class of protected
elastic plans.

Since prefix plans have smaller candidate sets than elastic plans with the same set of steps,
the latter naturally have a higher likelihood of being serially extensible with the second goal.
Indeed, the Sussman anomaly problem is “serializable” for the class of elastic plans.

8.4.3 Relaxing the protected plan requirement

We saw that both Korf’s and Barrett & Weld’s notions of serializability implicitly involve
protected plans, which post IPCs to protect the establishment of all the preconditions in the
plan. Relaxing the requirement for protected plans leads to classes of problems that may not
be serializable for the class of protected plans, but are serializable for the class of unprotected
plans. This should not be surprising, given the discussion above, since everything else being
equal, plans with IPCs have higher commitment (and thus smaller candidate sets) than plans
without IPCs.

Note that the Sussman anomaly problem is indeed serializable for the class of un-protected
prefix plans. In particular, the plan t0�Puton(B;C) � t1 is serially extensible to the solution
plan t0�Puton(B;C)�Puton(B; Table)�Puton(C; Table)�Puton(B;C)�Puton(A;B)�
t1 (which happens to be a non-minimal solution).14

We note that the protected plans made by a causal link planner such as SNLP are more
constrained than the unprotected plans made by non-causal link planners such as TWEAK [6]

14On the other hand, the one way rocket problem is not serializable even without the protection restriction;
the critical issue for this problem is the prefix plan requirement. Since by Korf’s original definition, both these
problems are non-serializable, and thus indistinguishable, we note that by considering serializability in terms of
classes of plans, we can make finer-grained distinctions among different problems.

34

and UA [28], or planners that use disjunctive protections (e.g. multi-contributor causal links)
such as MP and MP-I [16]. Thus, there may be domains with subgoals that are not serializable
with respect to SNLP but are serializable with respect to these latter planners. ART-MD-RD,
first described in [16], and shown below, is one such domain:

ART-MD-RD domain from [16]
Op Prec Add Del

Ai (i even) Ii; he Gi; hf fIjjj < ig [fheg
Ai (i odd) Ii; hf Gi; he fIjjj < ig [fhf g

To see this, consider a problem where the initial state contains I1; I2; : : : In and he and we
want to achieve two subgoals g1 and g2. If we consider the class of protected elastic plans, we
are forced to decide which step gives the condition he to the step A2 achieving g2, and since
some of the possibilities, such as the initial state, eventually become infeasible in the presence
of the second subgoal g1, the problem will not be trivially serializable for this class. This
difficulty goes away when we restrict our attention to the class of unprotected elastic plans.

In [35], Veloso and Blythe also provide a range of domains where protection commitments
become the critical issues with respect to serializability. In particular, they compare SNLP
with a state space means ends analysis planner which doesn’t use any protection and conclude
that in these domains, the protections can hurt the performance of SNLP.

Although Veloso and Blythe’s observations have been made in the context of a state-space
vs. plan-space planner comparison, they can be generalized by noting that the critical issue
once again is the commitment inherent in the plan for the first subgoal, rather than the planner
being used to extend it. In particular, similar performance tradeoffs would be observed if the
planners being compared were both state-space or both plan-space planners (e.g., one being
TWEAK [6] and the other being SNLP), as long as one planner uses protections and the other
doesn’t.

9 Factors Influencing the Selection of a Refinement Planner

Based on our characterization of subgoal interactions, a general method for selecting a partic-
ular refinement planner (instantiation of UCP) involves (a) delineating the class of plans with
respect to which most of the goals of the domain are trivially serializable, and (b) finding a
refinement planner that is capable of generating exactly that class of plans. However, “a” and
“b” are not completely independent. Since the serializability and parallelizability notions are
defined in terms of a given class of plans (see Sections 3.3 and 8.3), and we have not put any
restrictions on the legal classes of plans, it is theoretically possible to find a sufficiently small
class of plans with respect to which any given set of subgoals are trivially serializable. This
is not useful in and of itself if there is no (domain-independent) refinement planner that can
generate exactly that class of plans.

Consider, for example, the artificial domain shown below (originally described as the
D�S1C2 domain by Barrett and Weld [2]):

35

D�S1C1 domain of Barrett and Weld
Op Prec Add Del
A1
i Ii Gi G�

A2
i Ii Gi

All problems have the initial state where all Ii and G� are true. Whenever the goals of
the problem include both Gi (i � n) and G�, the problems will not be trivially serializable
for the class of elastic plans, since some of the elastic plans for the Gi subgoals will contain
the steps A1

i which delete G�. The problems will however be serializable for the subclass
of elastic plans that do not contain any of the A1

i steps. Unfortunately, this latter fact is of
little help in exploiting the subgoal interactions in the domain since elastic plans are generally
generated by plan space refinements, and domain independent plan-space refinement will not
be able to avoid generating the plans with A1

i steps. The domain is also trivially serializable
with respect to the class of feasible suffix plans (see Section 3.3), which can be produced by
BSS refinements. This leads to the following guideline:

Guideline 1 Given a domain, we should try to select a subclass of plans with respect to which
the subgoals are trivially serializable, such that there is a domain independent way of gener-
ating that subclass of plans.

9.1 Least committed plans and Serializability

Often, we have more than one subclass of plans that satisfy the requirements of the guideline
1. One feature that affects the selection of subclasses in such cases is the commitment level
inherent in the various subplan classes. The conventional wisdom is that least committed plans
lead to more efficient planning, and we will evaluate this idea here.

Although given two plans with the same set of steps, the plan with less commitment is
always more likely to be serially extensible with respect to another goal than a more committed
one, this dominance does not directly translate to subgoal serializability, which is defined in
terms of all plans of a specific class.15 In particular, as we saw above, the domain D�S1C2 is
not trivially serializable for the class of elastic plans, but is trivially serializable for the class
of feasible suffix plans (even though the latter are more constrained).

The intuition about least commitment being more conducive to efficient planning is true
in general however, especially when the domain contains a set of goals, not all of which are
serializable with respect to any one subclass of plans. To see this, consider the domain below
which is similar to the domain D�S1C2 except for the augmented delete lists of the actions.

Variant of D�S1C1 domain
Op Prec Add Del
A1
i Ii Gi G�, Ii�1

A2
i Ii Gi Ii�1

15If we are considering case-based planning, rather than generative planning, then generating and storing
partial plans with fewer constraints is more likely to be a win, as they can be reused and extended in more novel
situations; see [12].

36

These delete lists ensure that every solution for a problem involving the goals Gi and
Gj (i < j) will have the action achieving Gi before the action achieving Gj . Now, in this
situation, if the problem contains more than one of the Gi subgoals, then it will not be trivially
serializable with respect to the class of suffix plans, whereas any problem that does not contain
G� will be trivially serializable for the class of elastic plans. If we have to pick a plan for the
first subgoal without knowing what the next subgoal is going to be, we are still better off in
general picking a less constrained partial plan. The empirical results of Barrett and Weld [2]
in domains that are laboriously serializable for all their planners, do support this view to some
extent.

Although less constrained plans are more likely to be serially extensible, more constrained
plans do have their advantages. They are typically easier to “handle” in terms of consistency
and terminations checks [19]. Given a domain containing subgoals that are trivially serializ-
able for two classes of plans bP1 and bP2, it can be more efficient to do planning with the more
constrained class of plans. The foregoing discussion can be summarized as follows:

Guideline 2 If the set of subgoals in a domain are trivially serializable with respect to two
different subclasses of plans, choose the subclass containing more constrained plans.

Guideline 3 If the set of subgoals in a domain are not trivially serializable with respect to any
one subclass of plans, and no subclass is a clear winner in terms of percentage of problems
that will be trivially serializable with respect to it, choose the subclass containing the less
constrained plans.

9.2 An Empirical Validation of the Guidelines

Although the guidelines 1-3 above are still very high level and need to be fleshed out further,
they do extend our understanding about the selection of refinement planners. For example,
they tell us that given a planning domain containing arbitrary subgoals, a reasonable way
of improving average case performance would be to consider the most constrained class of
subplans with respect to which the maximum number of subgoals are trivially serializable,
and use a refinement planner, which only produces plans in this class. Given a domain, where
the individual subgoals are all serializable by Korf’s definition, but the subplans for these
subgoals can contain many potential interactions, the set of goals will be trivially serializable
for both the class of elastic plans and the class of blocked plans. However, the latter are more
restrictive class of plans, and thus using a refinement strategy that produces them can lead to
improved planning performance.

We tested this hypothesis in a variation of Barrett and Weld’s D1S2 domain shown below:

Variant of D1S2 domain
Op Prec Add Del

Ai (i odd) Ii Mi; he hf

Ai (i even) Ii Mi; hf he

Bi (i odd) Mi; he Gi he

Bi (i even) Mi; hf Gi hf

37

1.0 2.0 3.0 4.0 5.0 6.0
goals

0.0

1000.0

2000.0

3000.0

p

ar
ti

al
 p

la
n

s
re

fi
n

ed

ART-MD Variation
Nodes expanded

UCP-PS
UCP-BLK
UCP-MEA
UCP-FSS

Figure 14: Results showing that the right class of subplans for a given domain may have
intermediate level of commitment

The domain contains a set of goals of the form gi which can be achieved by actions Bi.
Each Bi in turn needs the condition Mi given by action Ai. Ai also provides he or hf con-
ditions to Bi, and Bi. Because he and hf conditions are deleted by many steps, the subplans
for individual top-level goals will have many interactions, even though the overall plans are
all serially extensible. We tested this domain on several instantiations of UCP [21] that gen-
erate different subclasses of plans, including prefix plans (UCP-FSS), protected elastic plans
(UCP-PS) and blocked plans (UCP-BLK). The results are shown in the plot in Figure 14. Our
results show that blocking of steps of a top-level goal in a serializable domain improves per-
formance both over plan-space (PS) refinements alone or over state-space refinements alone.
The former is because of the plan handling cost while the latter is because the domain is not
trivially serializable for prefix or suffix plans.

The results are also interesting in that they put the role of “least commitment” in a sharper
perspective. As suggested in our guidelines, least commitment is a secondary rather than a
primary indicator of the fit between the planner and the problem population. Indeed both UCP-
PS which produces least committed plans, and UCP-FSS which produces most committed
plans, are out performed by UCP-BLK which produces plans that are more committed than
those of UCP-PS and less committed than those of UCP-FSS.

10 Related Work

Earlier work on unifying classical planning approaches includes Rosenchien’s work [31] on
bigression planner, which combines a forward state space search and a backward state space
search; and our own more recent work [19, 17, 18] unifying a variety of plan-space planning
frameworks into one algorithm template. To our knowledge, this paper is the first to rationally
place the plan-space and state-space refinements in one unifying framework.

The semantic model of refinement planning used in this paper is mostly similar to the one

38

developed in our earlier work [19]. One key difference is the differentiation of progressive and
non-progressive refinements that is introduced in this paper. In [19] the description of PS re-
finement is folded with the description of the non-progressive refinements, while in this paper
they are separated. As the discussion in this paper should show, non-progressive refinements
do not help the refinement planner in progressing towards termination. Their main purpose is
to partition the candidate set to make the plan handling cheaper. As such any set of mutually
exclusive, and exhaustive constraints can form the basis of a non-progressive refinement. In
contrast, we only have three basic types of progressive refinements.

Fink and Veloso [10] describe the PRODIGY 4.0 planner which does an interesting com-
bination of forward state space refinement combined with means-ends analysis. The partial
plans maintained by PRODIGY 4.0 contain a header sequence, and many backward chaining
subgoal-trees starting from the goal state (called the “tail”). During each iteration, the planner
selects a partial plan from the search queue, and modifies it in one of two ways. The first con-
sists of growing one of the subgoaling branches in the tail. The second modification consists
of shifting a leaf-level step on one of the subgoaling branches of the tail, that is applicable in
the world state at the end of header sequence, to the header part of the plan. Planning ends
when the current header state contains the goal state, regardless of the state of the tail. In terms
of UCP algorithm template, Prodigy 4.0 approach corresponds (loosely) to the instantiation
that uses a lazy FSS whenever there is a step in the head fringe that is applicable in the head
state, and a plan space refinement otherwise.

Finally, our candidate set based subgoal interaction analysis builds on existing work on
subgoal interaction analysis [24, 2, 35]. A detailed discussion of the relations can be found in
Section 8.4.

11 Conclusion and Future Work

In this paper, we presented a generalized algorithm template, called UCP, which allows plan-
space and state-space refinements on a single partial plan representation. UCP provides a
parameterized planner template whose completeness and systematicity are ensured by the cor-
responding properties of the individual refinements. It thus provides a framework for op-
portunistic combination of plan-space and state-space refinements within a single planning
episode. Depending upon the control strategy used, instantiations of UCP correspond to pure
state-space, pure plan-space as well as hybrid planners that facilitate strategies such as means-
ends analysis. We have discussed the issues of coverage, completeness and systematicity of the
instantiations of UCP. Apart from its significant pedagogical advantages, our unified frame-
work also promises considerable algorithmic advantages. To begin with, our implementation
of UCP provides a normalized substrate for comparing the various refinement strategies. Our
experiments with this implementation also demonstrate the potential benefits of opportunisti-
cally interleaving the plan-space and state-space refinements.

We have used the UCP framework to take a fresh look at the question “which refinement
planner is best suited for a given problem population.” For us, the “which refinement planner”
part of the question translates to “which instantiation of UCP.” To predict the fit between an

39

instantiation of UCP and the given problem population, we use the notion of subgoal inter-
actions. This involved first generalizing the existing accounts of subgoal interactions. We
then developed some guidelines for choosing among the instantiations of UCP in terms of
the generalized subgoal interaction analysis. Finally, we provided some preliminary results to
demonstrate the predictive power of our analysis.

Finally, we have made considerable progress towards integrating task reduction refine-
ments into the UCP framework, so that they too can be interleaved with the other refinements.
Specifically, we have completed the theoretical formulation, but the implementation is pend-
ing. Appendix A provides the details of our formalization of HTN planning within UCP. Our
approach differs from that advocated by Erol et. al. [8], where HTN planning is seen as funda-
mentally different from STRIPS-action based planning. We take the view that HTN planning
simply involves introducing non-primitive actions into the domain model. Accordingly, the
general scheme used in integrating HTN approach into UCP framework is (a) to augment
plan-space refinements to consider primitive as well as non-primitive actions in establishing
conditions and (b) to add a new non-progressive refinement called “Pre-reduction” refinement
that replaces a non-primitive refinement with plan-fragments that contain primitive and non-
primitive actions with the help of user supplied reduction schemas. The augmented plan-space
refinement, which we call the HPS refinement, considers both primitive and non-primitive ac-
tions during establishment. It is thus well-suited for planning even in domains that are partially
hierarchicalized, and need both establishment and reduction refinements. In augmenting the
plan-space refinement, care is taken to ensure that the new refinement remains systematic,
and that it respects the user-intent inherent in the specification of the task reduction schemas.
Our treatment clarifies several misconceptions surrounding HTN planning, including its com-
pleteness and the need for phantom reductions (which we argue are really an artifact of doing
plan-space refinment in the presence of non-primitive tasks).

11.1 Future Work

An interesting research direction involves using the UCP framework to unify and explain
the relation between some of the newer refinement planning algorithms such as Graphplan
[5] and Descartes [15]. Although these planners look very different from the conventional
refinement planners that are covered by UCP, we believe that it is possible to extend UCP in
such a way that conventional techniques as well as the newer planners become a special case
of the extended framework. We have initiated work in this direction. Specifically, in [23],
we show that algorithms like Graphplan fit into the UCP framework quite squarely, once we
realize that a partial plan representation can involve “disjunctive constraints.” We show there
that Graphplan can be seen as a planner that uses FSS refinement, but keeps the refinements
of a plan together by disjoining them (rather than pushing the disjunction into the search
space). Such disjunctive representations have traditionally been shunned with the assumption
that handling disjunctive plans will be too costly. However, we show that by using constraint
propagation techniques, we can reduce the plan handling costs, while sharply reducing the
search space size.

40

Indeed, our current view is that disjunctive representations come by default, and that it is
only a historical accident that all classical planners split the disjuction in the plan represen-
tation into the search space. Specifically, a (progressive) refinement is best seen as operating
on a set of partial plans to give rise to a new set of partial plans, the union of whose can-
didate sets is closer to the set of all solutions than the candidate set of the original plan set.
We can handle the partial plan sets directly (which leads to disjunctive plan representations),
or consider different plans in the set in different search branches (which leads to splitting of
the disjunction into the search space). The formal properties of soundness, completeness and
systematicity will hold no matter which approach is taken. The efficiency tradeoff is guided
by issues such as the ease of constraint propagation in the disjunctive representation. We are
currently actively engaged in sharpening this understanding.

References

[1] J.A. Ambros-Ingerson and S. Steel. Integrating Planning, Execution and Monitoring. In
Proc. 7th AAAI, 1988.

[2] A. Barrett and D. Weld. Partial Order Planning: Evaluating Possible Efficiency Gains.
Artificial Intelligence, Vol. 67, No. 1, 1994.

[3] A. Barrett and D. Weld. Schema Parsing: Hierarchical Planning for Expressive Lan-
guages. In Proc. AAAI-94.

[4] A. Barrett. Frugal Hierarchical Task-Network Planning. Ph.D. Thesis. Department of
Computer Science and Engineering. University of Washington. 1996.

[5] A. Blum and M. Furst. Fast planning through planning graph analysis. In Proc. IJCAI-95,
1995.

[6] D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333–377, 1987.

[7] S. Chien. Static and Completion analysis for planning knowledge base development and
verification. In Proc. AIPS-96, 1996.

[8] K. Erol, J. Hendler, D.S. Nau and R. Tsuneto. A critical look at critics in HTN planning.
In Proc. IJCAI-95, 1995.

[9] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. In Readings in Planning. Morgan Kaufmann, 1990.

[10] E. Fink and M. Veloso. Formalizing the Prodigy Planning Algorithm. CMU CS Tech.
Report, Fall 1994.

[11] M. Ginsberg. Approximate Planning. Artificial Intelligence, Special Issue on Planning,
Scheduling and Control. 1995.

41

[12] L. Ihrig and S. Kambhampati. On the Relative Utility of Plan-space vs. State-space
planning in a case-based framework ASU CSE TR 94-006; Dec 1994. (Submitted for
publication)

[13] D. Joslin and M. Pollack. Least-cost flaw repair: A plan refinement strategy for partial
order planning. Proceedings of AAAI-94, 1994.

[14] D. Joslin and J. Roach. A Theoretical Analysis of Conjunctive Goal Problems. Research
Note, Artificial Intelligence, Vol. 41, 1989/90.

[15] D. Joslin and M. Pollack. Passive and active decision postponement in plan generation.
In Proc. 3rd European Workshop on Planning, 1995.

[16] S. Kambhampati. Multi-Contributor Causal Structures for Planning: A Formalization
and Evaluation. Artificial Intelligence, Vol. 69, 1994. pp. 235-278.

[17] S. Kambhampati. Refinement search as a unifying framework for analyzing planning
algorithms. In Proc. KR-94, May 1994.

[18] S. Kambhampati. Design Tradeoffs in Partial Order (Plan Space) Planning. In Proc. 2nd
Intl. Conf. on AI Planning Systems (AIPS-94), June 1994.

[19] S. Kambhampati, C. Knoblock and Q. Yang. Planning as Refinement Search: A Unified
framework for evaluating design tradeoffs in partial order planning. Artificial Intelligence
special issue on Planning and Scheduling. Vol. 76. 1995.

[20] S. Kambhampati. A comparative analysis of partial-order planning and task reduction
planning. ACM SIGART Bulletin, Special Section on Evaluating Plans, Planners and
Planning agents, Vol. 6., No. 1, January, 1995.

[21] S. Kambhampati and B. Srivastava. Universal Classical Planner: An algorithm for uni-
fying state space and plan space approaches. In New Trends in AI Planning: EWSP 95,
IOS Press, 1995.

[22] S. Kambhampati, L. Ihrig and B. Srivastava. A Candidate Set based analysis of Subgoal
Interactions in conjunctive goal planning In Proc. AIPS-96, 1996.

[23] S. Kambhampati and X. Yang. On the role of Disjunctive Representations and Constraint
Propagation in Refinement Planning In Proc. KR-96, 1996. (In Press).

[24] R. Korf. Planning as Search: A Quantitative Approach. Artificial Intelligence, Vol. 33,
1987.

[25] D. McAllester and D. Rosenblitt. Systematic Nonlinear Planning. In Proc. 9th AAAI,
1991.

[26] D. McDermott. A heuristic estimator for means-ends analysis in planning. In Proc.
AIPS-96, 1996.

42

[27] S. Minton. Learning Effective Search Control Knowledge: An Explanation-Based Ap-
proach. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, 1988.

[28] S. Minton, J. Bresina and M. Drummond. Total Order and Partial Order Planning: a
comparative analysis. Journal of Artificial Intelligence Research 2 (1994) 227-262.

[29] E.P.D. Pednault. Synthesizing Plans that contain actions with Context-Dependent Ef-
fects. Computational Intelligence, Vol. 4, 356-372 (1988).

[30] E.P.D. Pednault. Generalizing nonlinear planning to handle complex goals and actions
with context dependent effects. In Proc. IJCAI-91, 1991.

[31] S. Rosenchien. Plan Synthesis: A logical perspective. Proc. IJCAI-81, 1981.

[32] E. Sacerdoti. The nonlinear nature of plans. In Proc. IJCAI-75, 1975.

[33] A. Tate. Generating Project Networks. In Proceedings of IJCAI-77, pages 888–893,
Boston, MA, 1977.

[34] D. Wilkins. Practical Planning. Morgan Kaufmann (1988).

[35] M. Veloso and J. Blythe. Linkability: Examining causal link commitments in partial-
order planning. Proceedings of AIps-94, 1994.

[36] D. Weld. Introduction to Partial Order Planning. AI Magazine, Vol. 15, No. 4, 1994.

[37] Q. Yang, D. Nau and J. Hendler. Merging separately generated plans with restricted
interactions. Computational Intelligence, 8(2):648-676, February 1992

[38] E. Fink and Q. Yang. Planning with Primary Effects: Experiments and Analysis. In
Proc. IJCAI-95, 1995.

[39] R.M. Young, M.E. Pollack and J.D. Moore. Decomposition and Causality in Partial-
Order Planning. In Proc. 2nd Intl. Conf. on AI Planning Systems, 1994.

A Extending UCP to include HTN Planning

In this section, we will show how the hierarchical task network planning (HTN) can be inte-
grated into the UCP framework. The exercise also illuminates many little-understood proper-
ties of HTN refinements, and their relations to the FSS , BSS and PS refinements. The general
scheme in modeling HTN refinements into UCP framework will be (a) to augment plan-space
refinements to consider primitive as well as non-primitive actions and (b) to add a new non-
progressive refinement called “Pre-reduction” refinement that replaces a non-primitive step
with plan-fragments that contain primitive and non-primitive actions.

43

Buyticket(train)

GobyTrain(source,dest)

Getin(train,source) Getout(train,dest) Getin(bus,source) Buyticket(bus) Getout(bus,dest)

Gobybus(source,dest)

Travel(source,dest)

Hitchhike(source,dest)

Figure 15: Hierarchy of actions in a sample travel domain

A.1 Motivation for Task Reduction Refinements

In both the state-space and plan-space refinements, the only knowledge that is available about
the planning task is in terms of primitive actions (that can be executed by the underlying hard-
ware), and their preconditions and postconditions. Often, one has more structured planning
knowledge available in a domain. For example, in a travel planning domain (see Figure 15)
we might have the knowledge that one can reach a destination by either “taking a bus” or by
“taking a train”. We may also know that “taking a train” in turn involves making a reservation,
buying a ticket, getting into the train at the source, and getting off of it at the destination etc.
In such a situation, we can consider “taking a train” as an abstract (non-primitive) action that
cannot be directly executed by the hardware. This abstract action can then be reduced to a plan
fragment consisting of other abstract or primitive actions (in this case “making a reservation”,
“buying a ticket”, “going to the airport”, “getting on the plane”). This way, if there are some
high-level problems with the “taking flight” action and other goals, (e.g. there is not going to
be enough money to take a flight as well paying the rent), we can resolve them before we work
on low level details such as getting to the airport. This idea forms the basis for task reduction
refinement.

Note that in order to facilitate task reduction refinements, we need to allow non-primitive
actions into partial plans, and supply ways of reducing the non-primitive actions to plan frag-
ments containing more primitive actions. Planners that use task reduction refinements are
commonly called HTN planners. HTN planners such as SIPE [34] and NONLIN [33] have
been used in many fielded applications, and it is commonly believed that HTN planners pro-
vide a more flexible basis for encoding and reasoning with “realistic” planning problems.
Another aspect of task reduction planning is that it also provides a natural way of modeling
planning problem at various levels of detail, and delegating the lower level details to special-
ized planners.

In [20] we examine these claims and conclude that the main advantage of task-reduction
refinements are that they allow the user/designer a natural way of expressing knowledge about
desirable ways of constructing partial plans. In particular, by specifying the task reduction
schemas appropriately, the user can control the planner’s access to the primitive actions of the
domain. Through this flexibility the user is able to both bias the planner to efficiently generate

44

desired plans, and also avoid generating undesirable plans. For example, in Figure 15, the
user is able to disallow traveling by hitchhiking since the top level travel action can never be
reduced into a plan containing hitchhiking action.

While inferring task reduction schemas given the description of domain in terms of prim-
itive actions is a learning task and can thus be non-trivial, task reduction schemas may be
readily available in domains where there exists human expertise (essentially the humans do
the the task of inducing good task reduction schemas through experience and design). This
view also implies that it is possible for task reduction refinements to co-exist with other types
of refinements. In particular there exist many domains where human expertise exists but is
incomplete. In encoding such domains, we have task reduction knowledge for parts of the do-
main, and the planner needs to rely on primitive actions for other parts. (The tricky thing here
would be ensuring that we respect the user-intent as much as possible. See Section A.5.1).

In the rest of this section, we discuss how task reduction refinements can be modeled
within UCP. Our formalization allows task reduction refinements to co-exist with other types
of refinements. This is in contrast to most existing work that see HTN planners and other
refinement planners as competing rather than complementary.

A.2 Extending plan representation to allow non-primitive tasks

To allow task reduction refinements within UCP, we need to extend our partial plan represen-
tation to allow for non-primitive steps (also called tasks in HTN parlance) in the partial plan.
Specifically, the steps T in the partial plan hT;O;B;ST ;Li, are mapped to two types of ac-
tions: primitive actions which correspond to the usual executable actions, and non-primitive
(abstract) actions. The non-primitive actions have similar precondition/effect structure as the
primitive actions, but an operator sequence containing non-primitive actions is not executable
(and can thus not be a solution). Candidates of the plan will still be primitive operator se-
quences.

A partial plan is said to be primitive if it contains only primitive actions, and non-primitive
otherwise.

The domain specification links each non-primitive action o to a set of reduction schemas.
Each reduction schema Si can be seen as a two tuple: hPi;ML

i i where Pi is the partial plan
fragment which can replace o, and ML

i maps the auxiliary constraints involving o into new
auxiliary constraints involving steps of Pi.

Consider for example the reduction schema for reducing a non-primitive action Travel(Phx; SF)
(see Figure 15):

*
P :

*
t1 : Getin(bus; PHX) � t2 : Buyticket(bus) � t3 : Getout(bus; SF)

L : f(t1
In(bus)

� t3); (t2
have(ticket)

� t3)g

+

ML : f(?
have(money)

� t2); (t3
at(SF)
� ?)g

+

This schema specifies that Travel(Phx; SF) action can be replaced by the plan fragment
containing three actions of getting into the bus, buying the ticket, and getting out of the bus

45

at the destination. The plan fragment also contains IPCs specifying that the ticket should be
kept throughout the journey and that the agent should stay in the bus throughout the journey.
Finally, the mapping part of the schema states that any IPC incident on the Travel(Phx; SF)
action which preserves the condition have(money) should be redirected to t2 of the new plan
fragment (since the identity of the source of the IPC is not known until reduction time, the
schema denotes it by “?.” Note that the plan fragment specified by the reduction method not
only contains steps and orderings, but also auxiliary constraints, such as those corresponding
to the IPCs, PTCs and contiguity constraints recommended in the reduction schema.

Two specializations of this general redirection strategy are widely used in the implemented
planners. Both of them standardize the redirection so that the reduction schemas do not have
to specify them. These strategies are:

Start-Finish redirection: Here it is assumed that the IPC (t1
p

� t2) signifies that the condition
p must be protected from the last primitive action of t1 to the first primitive action of
t2. This can be achieved by incrementally translating the IPCs every time a reduction
occurs. Specifically, the IPCs incident on the non-primitive action t are redirected to the
start step t00 of the plan fragment P specified by the reduction schema S, and the IPCs
emanating from t are redirected to the finish step t01 of P . This is the most widely used
strategy [33, 34].

Unique main action redirection: In this strategy [37], it is assumed that each reduction schema
P 0 that can reduce a non-primitive action t names a unique main action t0u 2 P

0 that re-
quires all the preconditions of t and gives all effects of t. Thus, the IPCs emanating as
well as terminating at the non-primitive action t are redirected to t0u.

Whether or not these standardized redirection schemes are appropriate for a set of re-
duction schemas is for the domain specialist to decide. Unless specified otherwise, in the
remaining we will assume that the redirection is is specified by the reduction schemas.

A.2.1 Reduction of non-primitive actions

Armed with the specification of reduction schemas and non-primitive partial plans, in this
section, we consider the details of how a reduction schema is used to reduce a non-primitive
action.

Consider a plan P : hT;O;B;ST ;Li containing an abstract action t. Let

S : hP 0 : hT 0; O0;B0;ST 0;L0i;MLi

be a reduction schema for t.
The partial plan that results from the reduction of the action t in P with the reduction

schema P 0 is denoted by Reduce(P; t;S), and is given as follows:

Reduce(P; t;S) = PR :

* f(T � t) [T 0g; f(O �Ot) [O0 [Omg;
fB [B0 [B0mg; fST [ST 0g;
f(L � Lt) [L

0 [M(Lt)g

+

46

Where Ot and Lt are the ordering and auxiliary constraints involving t. These are replace
by Om and M(Lt) during reduction. Notice that in replacing t with its reduction, we need
to redirect any constraints that explicitly name t, to steps in its reduction. The redirection of
IPCs is done in terms of the mapping M specified by the reduction schema. For the ordering
constraints, the redirection is done automatically as follows. When t is reduced, the last step(s)
of P 0 are e forced to precede all the steps t0 such that t � t0 before the reduction. Similarly,
the first step(s) of P 0 are forced to follow all steps t00 such that t00 � t before the reduction.
The redirection of contiguity constraints is similar to that of ordering constraints.

A.3 Candidate Set Semantics for non-primitive plans

As we shall see below, the presence of non-primitive actions necessitates extensions to the
semantic model of partial plans .

We will start by providing semantics for the candidate set of a non-primitive partial plan.
(The semantics developed in Section 3 hold only for primitive partial plans). We will do this
in terms of the concretizations of a non-primitive partial plan. Informally, a concretization of a
partial plan P is a primitive partial plan P 0 that is obtained by repeatedly reducing (replacing)
the non-primitive actions in P with the help of the specified reduction schemas. Thus,

Concretizations(P) = fPg if P is a primitive plan

Concretizations(P) =
[

P 00 = Reduce(P; t;S); t 2 P;
non� primitive(t);

S is a reduction schema for t

Concretizations(P 00)

Clearly, the concretizations of P are all concrete partial plans, whose candidate sets are
well defined. We now define the candidate set of a non-primitive partial plan P in terms of its
concretizations as:

hhPii =
[

P 002concretizations(P)

hhP 00ii

This definition means that the candidate set of a plan is empty if it has no concretizations.
It thus handles the case of partial plans which contain abstract actions that cannot eventually
be reduced to concrete plan fragments through repeated reductions.

We will also define the concretizations of a non-primitive action as the concretizations of
a plan containing that action alone. That is

Concretizations(on)
�
= Concretizations(Pon : (t0 � t : on � t1))

Notice that the candidate set of a plan containing a non-primitive action depends on, and
is constrained by, the ways of reducing non-primitive actions. This has consequences on
the completeness of task reduction refinements and the consistency checks for non-primitive
partial plans, as we shall see later.

47

A.3.1 Presence of non-primitive actions in the plan and Least Commitment

We know that the presence of a primitive step t : o in a partial plan constraints its candidate set
by disallowing all ground operator sequences that do not contain at least one instance of the
operator corresponding to o. How does the presence of non-primitive steps in the plan affect its
candidate set? The definition of the candidate set of non-primitive partial plans above answers
this question. Specifically, the presence of a non-primitive step t0 : o0 in a plan P constrains
its candidate set by disallowing all ground operator sequences which do not contain all the
operators corresponding to at least one concretization of o0.

This has some ramifications on the complexity of solution extraction based on inspection
of minimal candidates. We have seen earlier that a primitive partial plan has at most an expo-
nential number of minimal candidates. In the case of a non-primitive partial plan, the number
of minimal candidates depends on the number of concretizations of the plan. If every non-
primitive action has at most an exponential number of concretizations, then we will still have
an exponential number of minimal candidates (exponential number of primitive plans with
exponential number of minimal candidates each). The restriction of exponential number of
concretizations will hold as long as the reduction schemas are “non-recursive” (in that a non-
primitive action o can never be reduced into another non-primitive plan fragment containing
o).

We can also explain the conventional wisdom that non-primitive partial plans are less com-
mitted than primitive partial plans. The presence of a non-primitive action only requires that
at least one of its concretizations be present in each candidate, which is a weaker requirement
than asking that a specific operator be present in all of them. To see this, consider a non-
primitive action o, which can be reduced eventually into one of the single primitive actions
o1; o2 � � � on (we are assuming that the reductions replace each action by a single sub-action,
for simplicity). In this case, assuming that the number of primitive actions is a, the number of
candidates of length L or smaller for the plan P1 : t0 � t : o � t1 will be:

�i3 =
LX
i=1

�
ai � (a� n)i

�
=

(aL+1 � 1)

(a� 1)
�

(a� n)L+1 � 1

(a� 2)

In contrast the number of candidates of length L or less for the primitive plan P1 : t1 �
t : o1 � t1 will be (from Section 3.4.1):

�i2 =
LX
i=1

�
ai � (a� 1)i

�
=

(aL+1 � 1)

(a� 1)
�

(a� 1)L+1 � 1

(a� 2)

It is easy to see that �i3 is larger than �i2 since the quantity being subtracted is smaller in the
former. Combined with the results of Section 3.4.1, this shows that plans produced by HTN
planners are less committed than those of plans produced by plan space refinements which in
turn are less committed than those produced by state space refinements.

48

A.3.2 Semantics of IPCs and Ordering constraints between non-primitive actions

We know the semantic import of ordering and IPC constraints between two primitive steps in
a plan (see Section 3). The semantics of these constraints is not so clear if one of the steps
involved is a non-primitive step. Their semantics are ultimately fixed by the way they are
redirected during reduction.

Consider the case of ordering constraints (the case of contiguity constraints is similar).
When the plan contains an ordering between two non-primitive actions t1 � t2, it is signifies
that every primitive step resulting from the expansion of t1 shall precede every primitive step
resulting from the expansion of t2.

An IPC (t1
p

� t2) involving two non-primitive actions t1 and t2 means that p needs to be
protected between some (not necessarily the last) primitive step in the eventual expansion of
t1 and some other (not necessarily the first) primitive step in the eventual expansion of t2. As
we have mentioned earlier, it is the responsibility of individual reduction schemas to specify
how the IPCs incident and emanating from the reduced step are distributed.

A.4 Modeling Task Reduction as a refinement

We will model the HTN approach in terms of a non-progressive refinement called Pre-Reduce,
which picks a non-primitive action and reduces it with the help of the reduction schemas. The
reduction schemas prescribe plan fragments that will replace the non-primitive action. The
pre-reduction refinement is shown in Figure 16. It takes a partial plan P containing non-
primitive and primitive actions, picks a non-primitive action t corresponding to an abstract
action o, and for each reduction schema S that can be used to reduce o, generates a refinement
of P , Reduce(P; t;S).

The pre-reduction is non-progressive, since by considering the different reductions of
the non-primitive step separately, it in effect partitions the set of concretizations of the non-
primitive step, which in turn leads to the partition of the candidate set of the plan containing
that non-primitive step.

Given the definition of the candidate set of a partial plan P containing non-primitive ac-
tions, it is easy to see that pre-reduction refinement is complete in that it considers all possible
ways of reducing the non-primitive action, and thus the set of concretizations of P is subsumed
by the union of the sets of concretizations of the task reduction refinements.

A.5 Combining HTN refinement with other refinements

A.5.1 Extending PS refinement to consider non-primitive actions

The straightforward idea of introducing HTN approach into UCP would be to say that the
Pre-Reduction refinement will be selected whenever the partial plan contains non-primitive
actions. Non-primitive actions can enter the partial plan in two different ways. First off, the
initial planning problem may be specified in terms of some non-primitive actions that need
to be carried out (rather than just in terms of top level goals to be achieved). For example,

49

Algorithm Pre-reduce(P) Parameters: pick-action: the routine for picking non-primitive
actions for reduction

1.10. Action Selection: Using the pick-action function, pick an unreduced action t 2 T from P

to work on. Not a backtrack point.

1.20. Task Reduction: Non-deterministically select a reduction schema S : P0 for reducing t. Re-
place t in P with P0 (This involves removing t from P , merging the step, binding, ordering,
symbol table and auxiliary constraints fields of P0 with those of P , and modifying the ordering
and auxiliary constraints in P which refer to t so that they refer to elements of P0.

Backtrack point; all reduction possibilities need to be considered

Figure 16: Pre-reduction Refinement

the initial plan for planning a round trip from Phoenix to San Francisco may have two non-
primitive actions Travel(Phx; SFO) and Travel(SFO; Phx). The second way is for a non-
primitive action to be introduced into the plan as a part of establishing a goal.

For this to happen, the PS refinement which does establishment, must consider non-
primitive actions. Writing such a hybrid establishment (we shall call it the hybrid plan space
refinement or HPS refinement) poses several challenges. Consider the travel domain shown
in Figure 15. Suppose our top level goal is At(SF), and we have At(Phx) in the ini-
tial state. The seven actions – Getout(bus; SF), Getout(train; SF); Gobybus(Phx; SF),
GobyTrain(Phx; SF), and hitchhike(car; SF) all are capable of achieving this condition.
The question is which of these actions should HPS refinement consider in its different estab-
lishment branches?

We start by noting that if HPS refinement only considers the primitive actions, then it will
already be a complete refinement. Thus, if we add the branches corresponding to non-primitive
actions also, then we will have a redundant search space. As an example, if HPS refinement
considered all seven actions as establishment possibilities in this example, then two of its re-
finements would be P1 : t0 � Gobybus(Phx; SF) � t1 and P2 : t0 � Getout(bus; SF) �
t1. Since the non-primitive action Gobybus(Phx; SF) ultimately gets reduced into a plan
containing the primitive action Getout(bus;NY), the plans have overlapping candidate sets
(i.e. hhP1ii \ hhP2ii 6= ;), thus making HPS refinements non-systematic. At the same time,
ensuring systematicity by considering only primitive actions during HPS refinement will vi-
olate the user’s intent in providing the non-primitive actions and reduction schemas. In the
travel domain example, by including the non-primitive actions, Gobybus and Gobytrain, and
providing their task reductions, the user is telling the planner that legal ways of traveling in-
clude going by bus and train (which involve buying tickets). This excludes solutions such as
hitchhike(Phx; SF) which are legal, but do not have any parse in terms of non-primitive
actions.

Considering undominated actions to ensure systematicity: To avoid non-systematicity,
and to preserve user-intent, we use the convention that a goal should be achieved by consid-
ering the dominance relations between actions. We consider an action t to be dominated by

50

Algorithm Refine-plan-hybrid-plan-space (P) /*Returns refinements of P */
Parameters: pick-open: the routine for picking open conditions.

pre-order: the routine which adds orderings to the plan to make conflict resolution tractable.
conflict-resolve: the routine which resolves conflicts with auxiliary constraints.

1.1 Goal Selection: Using the pick-open function, pick an open prerequisite hC; ti (where C is a precon-
dition of step t) from P to work on. Not a backtrack point.

1.2. Goal Establishment: Non-deterministically select a new or existing establisher step t0 for hC; ti which is
capable of giving C. If t0 is a new step, make sure that it is maximally non-primitive. (i.e., there is no
non-primitive action t00 which can also give C and which can eventually be reduced into t0) Introduce
enough constraints into the plan such that (i) t0 will have an effect C, and (ii) C will persist until t.
Backtrack point; all establishers need to be considered.

1.3. Bookkeeping: (Optional) Add interval preservation constraints noting the establishment decisions, to en-
sure that these decisions are not violated by latter refinements. This in turn reduces the redundancy in
the search space.

1.4. Phantom Establishment: In addition to the plans generated above, consider also the “phantom plan” P
with the PTC C@t (this will never again be picked for establishment).

Figure 17: Plan Space Refinement Modified to work in the presence of non-primitive actions

another action t0, if there exists a reduction of t0 that contains t. In the travel domain shown
in Figure 15, the action Gobybus(source; dest) dominates Getout(bus; dest) and is domi-
nated by Travel(source; dest). We can ensure that the plans generated by HPS refinement
have non-overlapping candidate sets by requiring that neither of actions considered during the
establishment of a given goal are dominated by the other actions being considered.

Considering maximally non-primitive actions to respect user-intent: An action t is said
to be maximally non-primitive if it is not dominated by any other action. We can respect
user intent if we ensure that all the actions considered for establishment are maximally non-
primitive. Thus, we will select Travel(Phx; SF) action rather than the Gobybus(Phx; SF)
orGobytrain(Phx; SF) actions to establishAt(Phx) conditon. The maximal non-primitiveness
restriction applies only to step-addition establishment and not for simple establishment refine-
ments. This makes sense since once a primitive action capable of giving the condition is
already in the plan, we may as well use it.

Handling partially hierarchicalized domains: In satisfying the “maximal non-primitiveness”
restriction, there is a question as to whether or not HPS refinement should consider primitive
actions which can establish the condition under question, but are not dominated by any other
actions (e.g. the hitchhike() action in the travel domain example). If the user feels that the do-
main has been completely hierarchicalized with respect to that particular conditio (in the sense
that all desired solutions for achieving that goal will be parseable by the reduction schemas),
then no primitive actions need be considered directly for any goals that are also given by non-
primitive actions. Primitive actions will be considered if they are the only ones capable of
giving the condition. Else, if the domain is still being hierarchicalized, then we will allow

51

un-dominated primitive actions, but bias the search such that establishment branches corre-
sponding to non-primitive actions are preferred over the branches corresponding to primitive
ones.

Indexing non-primitive actions under primary effects to avoid non-minimal plans: An-
other potential concern is that selecting maximally non-primitive actions to establish a goal
may lead us into scenarios where a complex plan is being performed only because the agent is
interested in a secondary side effect of the plan. For example, suppose the planner has a single
top level goal “have(trainticket)” (presumably because the agent is an avid ticket collector).
The action buytrainticket() will give the condition, and so presumably does the more abstract
action Gobytrain(x; y). Since the latter dominates the former, maximal non-primitive step
restriction would require us to select the Gobytrain() action to achieve have(trainticket),
which leads to a non-minimal (and inoptimal) plan for the agent. We can handle this type
of scenario by noting that non-primitive actions do not have to be indexed under every one
of their effects, but only some distinguished subset of them we call “primary effects.” Thus,
we index the Gobytrain() action only under the At(x) goal and not under have(trainticket)
goal. During the establishment phase, the planner will consider all actions that are indexed
under the goal that is being established. Note that the primitive actions will continue to be
indexed under all their effects. Since PS refinement is complete with just the primitive actions
anyway, indexing non-primitive actions in terms of primary effects does not affect complete-
ness. This is in contrast to the use of primary effects in primitive plans, as described by Fink
and Yang [38].

Phantom Establishment to handle Non-primitive actions: Probably the most significant
change to PS refinement that is necessitated because of the presence of non-primitive actions
in the plan is with respect to condition establishment. When HPS refinement is working on a
condition p@t and action library contains non-primitive actions, the normal step addition and
simple establishment operations will not suffice to guarantee completeness of the establish-
ment. To see this consider a case where we have one non-primitive action A with a single
effect p. Suppose there are only two primitive actions, A1 and A2, and a single reduction
schema that reduces A to the plan fragment A1 � A2. A1 requires the condition w and has the
effects l; r and :w. A2 has the precondition l and the effects p and q. Consider the planning
problem where the initial state has the single condition w and the goal state has the conditions
p ^ r. When we consider p for establishment, we will make a single plan t0 � t1 : A � t1
(since A is the maximally non-primitive action capable of giving p). Next, we consider the
subgoal r, and since the stepA does not give p, we have a single refinement t0 �

�
t1:A
t2:A1

�
� t1.

At this point, we decide to use pre-reduction refinement on A, and we will get the single plan:

t0 �

t11 : A1 � t21 : A2

t2 : A1

!
� t1

This plan will not lead to a solution since the precondition every candidate of this plan
will have two instances of A1 and any such sequence will be unexecutable since A1 deletes

52

its precondition w and no other operator can add it back. Thus, the planner will decide that
the problem has no solution. However, it does have a solution since the single action plan
t0 � t1 : A1 � A2 � t1 solves it.

What went wrong? Essentially, at the time we introduced A1 to support r, we did not
anticipate the possibility that the non-primitive action A will eventually be reduced in such
a way that one of the steps in its reduction can give the condition r (which is exactly what
happened here).

It might seem that the problem would not have arisen if the partial plan did not have any
non-primitive actions at the time the condition r was picked up for establishment. Alas, this
is not the case. If we considered r first, we would have the first plan t1 � t1 : A1 � t1, and
next when we consider p, we would have the plan t0 �

�
t2:A
t1:A1

�
� t1, which after reduction

becomes:

t0 �

t12 : A1 � t22 : A2

t1 : A1

!
� t1

Again a plan containing no solutions. (The only way to be sure that this problem will not
arise is if all actions are primitive since every action explicitly advertises all the conditions it
can support.)

The traditional way of taking care of this problem is to use the so-called “phantom-
establishment”. This involves returning the current plan with p@t as a PTC. Since the condi-
tion p@t has been picked for establishment once, it will never again be picked up for establish-
ment. Thus, the only way the PTC p@t will hold (and it must for a candidate to be a solution)
will be if at some later point, the reductions of the steps in the plan will wind up giving that
condition.16

Other alternative ways of handling this problem is to make the pre-reduction refinement
“context sensitive,” or allow action merging to occur during the pre-reduction refinement.
Allowing action merging can have significant ramifications on the refinement semantics. As an
illustration of the context sensitive reduction, when reducing A, in the plan t0 �

�
t2:A
t1:A1

�
� t1,

the pre-reduction refinement should take into account the fact that the existing instance of A1

can play the role of A1 specified in the reduction schema (and thus only part of the reduction
viz., A2, needs to be introduced into the plan). Barrett [4] is the first to propose this idea. He
calls it “frugal hierarchical task reduction” and argues that it cannot be avoided when one has
actions with conditional and quantified effects. It is not clear how the performance will be
affected by the increased complexity of context sensitive pre-reduction refinements.

The HPS refinement, which is a generalized version of PS refinement that incorporates the
changes described above, is shown in Figure 17.

A.5.2 Modifications to BSS and FSS refinements

The BSS and FSS refinements need also be generalized in the presence of partial plans con-
taining non-primitive actions. For example FSS refinement, as given, should not be attempted

16In [19, 20], we use a similar idea to handle “filter” conditions.

53

until the head fringe contains only primitive actions. The former restriction is required since a
non-primitive action on the head-fringe may give rise to primitive actions on the head-fringe
after some task reduction refinements, which cannot be considered if FSS is done earlier. In
the travel domain, suppose we have only the actions corresponding to train travel, and we are
considering refining a partial plan P1 : t0 � Gobytrain() � t1. Applying FSS refinement
to this plan will lead to the plan P2 : t0 � buy(trainticket) � Gobytrain() � t1 (since
buy(trainticket) is the only action that can be done in the current initial state. However, the
solution Buy(trainticket) � Getintrain(x) � Getouttrain(y), which belongs to the can-
didate set of P1 does not belong to the candidate set of P2 (because each minimal candidate
of P2 will have two instances of buy(trainticket), with the second instance coming from the
reduction of Gobytrain(). Similar restrictions have to be applied for the BSS refinements.

A.5.3 Modifications to non-progressive Refinements

The easiest way of extending non-progressive refinements to handle non-primitive actions is to
continue to restrict their use to primitive actions. In particular, pre-order and pre-positioning
refinements should be allowed for only primitive actions, while the pre-satisfaction refine-
ments should be applied only when an IPC involving two primitive actions is threatened by
another primitive action.

It is also possible to extend pre-position and pre-ordering refinements to non-primitive
actions if we extend the semantics of positioning and ordering refinements to non-primitive
actions. Thus, we can pre-order two actions ti and tj by generating two refinements one in
which ti � tj and the other in which ti 6� tj . Notice that the latter constraint is not equal to
tj � ti since unlike primitive actions, two non-primitive actions may not only come before or
after each other, but also may come interspersed with each other in any eventual solution.

Same type of treatment can be given to positioning constraints. Notice that when we allow
such generalized positioning constraints, lazy FSS and lazy BSS routines do not necessarily
give us state information. In particular, putting a contiguity constraint between a non-primitive
action ti in the head fringe, the head step extends the prefix, but does not uniquely define the
state at the end of the prefix.

Once we are ready to disassociate state information from positioning constraints, we can
also extend FSS and BSS refinements to consider putting non-primitive actions in the header
and trailer. Of course, this involves handling both primitive and non-primitive actions for
extension of the header, and raise the issues similar to those handled in designing the HPS
refinement.

Generalizing pre-satisfaction refinements to non-primitive actions presents more prob-

lems. For example, consider the conflict resolution refinement involving an IPC (t1
p

� t2)
which is threatened by the step tt, where all the steps are non-primitive. To avoid this threat,
we need only ensure that the specific primitive step tpt , which actually deletes p in the eventual
reduction of tt should come outside the interval between tp1 and tp2, where the latter two are the
primitive steps resulting from reduction of t1 and t2 that give and take p respectively. Since the
identity of tpt , t

p
1 and tp2 will not be known until the three non-primitive actions are completely

reduced, there is no way we can post simple ordering relation between these non-primitive

54

actions to resolve the threat. Thus, pre-satisfaction refinements can be applied only with
respect to IPCs and threats where the producer and consumer steps of the IPC as well as the
threatening step are all primitive.17

A.6 Ramifications of non-primitive actions on the consistency and com-
pleteness of refinement planners

Introduction of task reduction refinements has some ramifications on the completeness of UCP
as well as the consistency checks used by UCP.

A.6.1 Completeness of UCP in the presence of Task Reduction Refinements

In Section 2, we noted that the completeness of the planner is guaranteed as long as the re-
finement strategies are complete. Given the definition of the candidate set of a non-primitive
partial plan in Section A.2, it is easy to see that the Pre-Reduction refinement is complete. In
particular, since the task reduction refinement strategy computes all possible reductions of t
in P , the union of candidate sets of the refinements of P is thus equal to the candidate set of
P (as defined in Section A.3). Thus, every solution that belongs to the candidate set of P also
belongs to the candidate set of one of the refinements of P .

There is however one twist. In the case of state-space and plan-space refinements, it can
be shown that UCP will eventually find every minimal ground operator sequence that is a
solution. However, when UCP uses pre-reduction and HPS refinements (with HPS ignoring
primitive actions during establishment), this guarantee does not hold – there may be ground
operator sequences that are solutions, but UCP using task reduction refinements may be unable
to find them. For example, in Figure 15, the solution hitchhike(Phx; SF) will never be
found, even though it does solve the problem.

Specifically, a ground operator sequence S that solves the problem is generated as a solu-
tion if and only if there is a way of reducing the initial null plan to S in terms of the reduction
schemas provided to the planner. In [3], Barrett explains this in terms of the “parseability”
of potential solutions in terms of the reduction schemas. From the refinement search point of
view, task reduction refinements split the candidate set of a partial plan in a way that automat-
ically prunes all ground operator sequences that will not have such a parse. Because of this,
the solution space explored by task reduction refinement is different from that of plan space
and state space refinements, and depends on the reduction schemas.

It is important to understand the practical utility of this difference in solution spaces. In
many realistic planning problems, not every operator sequence that solves a problem may be
an acceptable solution, as the users tend to have strong preferences about the types of solutions
they are willing to accept. Consider the following two examples:

17Erol et. al. [8] provide a more elaborate description of handling pre-satisfaction refinements. However, they
seem to suggest that pre-satisfaction refinements have to be postponed until there are no non-primitive actions
in the interval between the producer and consumer. This is not strictly necessary as in our approach we merely
require that the threatening steps and producer/consumer steps be primitive.

55

Example 1. A travel domain, where the user wants to eliminate travel plans that involve
building an airport to take a flight out of the city (or even, stealing money to buy a ticket).

Example 2. A process planning domain with the task of making a hole, where there are two
types of drilling operations, D1 and D2 and two types of hole-positioning operations H1 and
H2. A hole can be made by selecting one hole-positioning and one hole-drilling operation.
The user wants only those hole-making plans that pair D1 with H1 or D2 with H2.

In both the examples, the user is not satisfied with every plan that satisfies the goals, but
only a restricted subset of them. Handling such restrictions in partial order planning would
involve either attempting to change the domain specification (drop operators, or change their
preconditions); or implementing complex post-processing filters to remove unwanted solu-
tions. While the second solution is often impractical, the first one can be too restrictive. For
example, one way of handling the travel example above is to restrict the domain such that
the “airport building” action is not available to the planner. This is too restrictive since the
there may be other “legitimate” uses of airport building operations that the user may want the
planner to consider.

HTN approach provides the user a more general and flexible way of exercising control
over solutions. In particular, by allowing non-primitive actions, and controlling their reduction
through user-specified task-reduction schemas, HTN planning allows the user to control the
planner’s access to the actions in the domain.

This flexibility does not come without a price however, since the specification of reduction
schemas needs to take into account the possible interactions between high level tasks. Errors
in task-reduction schema specification may lead to loss of desirable solutions. Often times,
the errors can be subtle and require an understanding of various interactions that may occur.
For example, suppose one is modeling a transportation domain, and wants to write a reduction
schema for the Transport � by � plane(plane; package; dest) action. The straightforward
way of specifying this would involve a reduction load(package; plane) � fly(plane; dest) �
unload(package; plane). While this reduction is reasonable, direct usage of it in situations
where multiple packages are required, will lead to inoptimal plans that use two planes and
two trips. Avoiding such inoptimality will involve specifying schemas in such a way that
phantom establishments can be used to avoid the second trip [8] (which is not possible given
the way the reduction schema is written), or using more complex context dependent forms
of pre-reduction refinements [4] (see Section A.5.1). The former requires complex domain
engineering and the latter may increase the complexity of pre-reduction refinement. There is
some recent work [7] that addresses the automated debugging of task reduction schemas, but
much needs to be done.

A.6.2 Checking the Consistency of a Partial Plan

One consequence of the use of task reduction refinements in UCP is on the consistency check
used by UCP. Specifically, checking whether a non-primitive partial plan is inconsistent (i.e.,
has an empty candidate set) would involve reasoning with all the concretizations of the plan.
It would seem at first that non-primitive plans with empty candidate sets can be detected by

56

Figure 18: Example showing that the candidate set of a plan containing non-primitive actions
may be non-empty even if it has no safe ground linearizations

checking for the absence of safe ground linearizations (as is done for primitive partial plans).
Unfortunately however, unlike the safe ground linearizations of primitive plans, which have a
direct relation to minimal candidates of the plan (see Figure 2), partial plans containing non-
primitive actions correspond to many concretizations and thus do not directly correspond to
any minimal candidates. So, the existence or the lack of safe ground linearizations of a partial
plan containing non-primitive actions has no relation to its inconsistency.

Another way of looking at this is in terms of evaluation of the truth of a constraint in a par-
tial plan. Given an IPC and a primitive partial plan, we can check if the plan currently satisfies
the IPC by checking if any of its ground linearizations satisfy it. However, this type of check
does not work with non-primitive partial plans, since it may well be that the concretizations
of the plan do have safe ground linearizations. We illustrate this by the example in Figure 18.

This is illustrated by the example in Figure 18. The plan at the top has two non-primitive
actions A and B, with effects as shown, and four IPCs. It is easy to see that the plan has no
safe ground linearizations (as there is no ground linearization that is safe with respect to all
the IPCs). Suppose there is a way of reducing A to A1 ! A2 and B to B1 ! B2, where
A1; A2; B1 and B2 are all primitive. In this case, the lower plan, which results after these
reductions, is a primitive plan, and is thus a concretization of the top plan. We note that this
plan does have safe ground linearizations. Thus, we cannot prune the top plan, and the absence
of safe ground linearizations of a non-primitive partial plan cannot be taken as an indication
of empty candidate set for a non-primitive plan.

A variant of the above point was first noticed by Yang [37], who pointed out that non-
primitive partial plans with unresolvable conflicts (which imply no safe ground linearizations),
cannot always be pruned without loss of completeness. Yang also points out that one sufficient
condition for making such pruning admissible involves redirecting all the IPCs emanating and
terminating into a single non-primitive actions to another unique action after the reduction
(the unique main action redirection discussed in Section A.2). Whether this type of constraint
can be satisfied by natural encodings of planning domains is not clear. Clearly, the restriction
is not satisfied in the example in Figure 18, since the IPCs incident on and emerging from a
single action, A, are redirected to different actions (A1 and A2 after reduction).

57

A.7 Related Work

HTN planning has been considered by many, including some of the recent authors [8] to be a
fundamentally different type of planning that should not be combined with “STRIPS” action
baed planning. This stand leads to re-invention of many of the plan-space planning ideas. For
example, NONLIN [33] allows nonprimitive actions of type Achieve(c), which essentially
take the part of condition establishment. Here we took the view that the main idea of HTN
planning is to allow non-primitive actions on top of primitive actions, and showed how non-
primitive actions can be consistently combined into UCP framework, which already covers
the state-space and plan-space approaches. Our view allows for domains that are “partially
hierarchicalized” in that reduction structure exists only for part of the domain. It also shows
that things like “phantomization” are really an artifact of doing plan-space refinement in the
presence of non-primitive actions.

Other research efforts, including IPEM [1] and DPOCL [39], attempted to combine task
reduction and plan-space planning. Neither of these approaches however guarantees an in-
tegration that preserves both systematicity and user-intent inherent in the specified reduction
schemas. For example, DPOCL allows for the establishment of a precondition both with a
non-primitive action and a primitive action which can be its descendant. As we argued ear-
lier, this can lead to a loss of systematicity as well as violation of user-intent. Our approach
also provides clear semantics of plans containing non-primitive actions, and thus explains the
essential differences between the completeness results for primitive and non-primitive partial
plans.

Another research effort that allows combination of task reduction and state-space refine-
ments is that of Chien and his co-workers [7]. They argue that the task reduction and plan-
space refinements should be kept orthogonal with the former working on activity goals while
the latter work on state goals. Domain information pertaining to these techniques is also kept
separate. While our approach allows for such a separation, it also allows for task reduction
and plan-space refinements to work on the same class of goals in a principled way.

58

