
UbuntuWorld 1.0 LTS - A Platform for Automated Problem
Solving & Troubleshooting in the Ubuntu OS

Tathagata Chakraborti1 and Kartik Talamadupula2 and Kshitij P. Fadnis2
Murray Campbell2 and Subbarao Kambhampati1

1Department of Computer Science, Arizona State University, Tempe, AZ 85281, USA
{ tchakra2, rao } @ asu.edu

2IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
{ krtalamad, kpfadnis, mcam } @ us.ibm.com

Abstract

In this paper we present UbuntuWorld 1.0 LTS - a plat-
form for developing automated technical support agents in
the Ubuntu operating system. Specifically, we propose to use
the Bash terminal as a simulator of the Ubuntu environment
for a learning-based agent, and demonstrate the usefulness
of adopting reinforcement learning (RL) techniques for basic
problem solving and troubleshooting in this environment. We
provide a plug-and-play interface to the simulator as a python
package where different types of agents can be plugged in
and evaluated, and provide pathways for integrating data from
online support forums like Ask Ubuntu into an automated
agent’s learning process. Finally, we show that the use of this
data significantly improves the agent’s learning efficiency. We
believe that this platform can be adopted as a real-world test
bed for research on automated technical support.

Building effective conversational agents has long been the
holy grail of Artificial Intelligence (Turing 1950). Research
in this direction has, however, largely recognized that differ-
ent modes of conversation require widely different capabil-
ities from an automated agent, depending on the particular
context of the interaction; the focus has thus been on ap-
proaches targeted at specific applications. For example, con-
versational agents in the form of chat bots are required to be
more creative, responsive and human-like; while for automa-
tion in the context of customer service, qualities like preci-
sion and brevity are more relevant. Indeed, human agents
while providing customer support make a conscious effort
to be as structured as possible in their interactions with the
user. For successful automation in this particular mode of di-
alog (that we refer to as end-to-end goal-directed conversa-
tional systems or e2eGCS) we identify the following typical
characteristics -

- End-to-end. This is the ability of the agent to build and op-
erate on knowledge directly from raw inputs as available
from the world, and to generate the desired behavior.

- Goal-directed. The interactions in these settings are tar-
geted at achieving specific goals, i.e. to solve a particular
problem or reach a desired state.

- General purpose. It is infeasible to build fundamentally
different support agents for every possible environment,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and hence there must be a learning component to the agent
that facilitates automated building of domain knowledge.

- Adaptive. An agent must learn to adapt to its experience
and update its knowledge, and this further underlines the
importance of an agent’s capability to learn.

- Integrated. Finally, the agent must be able to interact with
the human in the loop and integrate (and subsequently
learn from) human intelligence in order to solve a wide
variety of problems effectively.

One of the canonical examples of such systems is technical
support. As in the case of customer service in general, au-
tomation for technical support requires an agent ascribing to
the e2eGCS paradigm to be able to:

• learn a model or understanding of its environment auto-
matically by means of experience, data and exploration;

• evaluate its knowledge given a context, and learn to sense
for more information to solve a given problem; and

• interact with the customer, maybe in multiple turns, in a
natural fashion to solve a given problem effectively.

In this paper we specifically address the learning problem,
and make a first attempt to lay a pathway towards achieving
fully fleshed-out e2eGCS of the future. Technical support
is a particular instance of customer service that deals with
problems related to the operation of a specific piece of tech-
nology, which means there often exists an underlying (albeit
unspecified) model to the operation of such a system, and the
model learning proposition becomes especially attractive in
this context. However, the critical problem here is that the
engineers who build the technology, the people who use it,
and the ones who provide support for it are often distinct
from each other. One solution then would be to make the ar-
chitects of the system also build the support engine follow-
ing the same software specifications; this quickly becomes
intractable (and might well require its own support!). A more
worthwhile alternative is to learn this model automatically.
Such an approach, while being considerably simpler to fol-
low, is also likely to be more effective in capturing domain
knowledge and providing directed personalized support.

The specific domain we look at in this work is technical
support in the Ubuntu operating system. This is undoubt-
edly a real-world environment where support is extremely
sought after. Indeed there is a thriving community on the



Figure 1: Graph (http://bit.ly/2blmZk1) showing
the number of zombie posts from 01/2011 to 07/2016. These
are the posts that have remained unanswered for more than
72 hours, and their number is growing exponentially.

online Ubuntu help forum Ask Ubuntu, a question and
answer site for Ubuntu users and developers hosted on the
Stack Exchange network of Q&A sites. Ask Ubuntu cur-
rently boasts more than 370k registered users and 238k ques-
tions asked till date, and ranks third overall in the family
of 158 Stack Exchange communities in terms of traffic or
number of users (as of August 2016). A closer look how-
ever reveals that this rank is not an indicator of the quality
of support. In terms of percentage of questions actually an-
swered (Stack Exchange 2016), Ask Ubuntu operates at
a lowly rate of 65%, ranking just five places off the bot-
tom of the list. Further, as shown in Figure 1, the number of
posts that go unanswered is exploding in recent times (Ask
Ubuntu 2014). While there are many causes that may have
led to these dire circumstances, some of which we discuss
below, one thing is quite certain - Ubuntu needs support,
and there isn’t enough of it out there.

Motivation Ask Ubuntu’s afflictions may be largely at-
tributed to the following main causes -

1. New users clogging up the system with simple problems
that experienced users do not care to respond to.

2. Duplicate questions, due to large numbers of users who
do not bother to look up existing solutions before posting.

3. An unhealthy newcomer to expert ratio in the community
as a result of Ubuntu’s rapidly growing popularity.

4. The continuous roll out of new software/OS versions and
corresponding problems with dependencies.

5. Incompletely specified problems, including insufficient
state information and error logs leaving members of the
community little to work with.

We claim here that a large number of these problems can
readily be solved through automation. While it may not be
reasonable to expect an automated agent to learn the most
nuanced details of the Ubuntu OS and solve niche issues that
the experts on Ask Ubuntu are more capable of address-
ing, the large majority of problems faced by users on the
forum are readily addressable. These are either (1) simple
problems faced by newbies that may be directly solved from

Figure 2: Use case - querying Ask Ubuntu for guidance.

the documentation, whose solutions can be learned from ex-
ploration in the terminal; or (2) duplicates of existing issues
which may have already been solved, whose solutions may
be retrieved using relevant data from Ask Ubuntu. The
learning approach then also indirectly addresses issues (3)
by freeing up (and in turn tapping into) support from Ask
Ubuntu; and (4, 5) since the domain knowledge built up
over time as well as local state information sensed by the
integrated support agent may be useful in providing more
directed and personalized support.

Figure 2 provides an illustration of the kind of tasks we
are interested in. Consider the simple task of opening a text
file. It can be achieved in a single step using gedit, or it
can be arbitrarily harder depending on the actual state of the
system - the agent might need to install gedit if it is not
available, and it may need to access the internet and gain
sudo permissions to install gedit. This is represented in
the top part of the figure. We want our agent to learn these
workflows and dependencies on its own, by exploring the
Bash environment. Thus when an error comes up, for e.g.
regarding administrative rights, the agent knows it needs to
execute the sudo command. Of course, this is one of a very
large number of traces that the agent will need to explore



Figure 3: A schematic representation of the UbuntuWorld 1.0 LTS prototype.

before it converges on the correct choices, and this is hard
for a setting such as Ubuntu due to the large number of ac-
tions that an agent can possibly perform at any given state.
Perhaps ironically, we turn to Ask Ubuntu itself in order
to make the learning agent’s life a little easier in this regard.

As we noted before, users on Ask Ubuntu have been
solving these problems for a long time, and their solutions
can in fact be used to provide valuable guidance to a learn-
ing agent, as shown in in Figure 2 - here, the terminal has
produced a “Permission denied” error in response to a call
to an apt-get command without a sudo prefix. The agent
in response queries Ask Ubuntu with the text of the error
by using a pre-built Lucene (Lucene 2016) reverse index,
and finds answers such as “prefix the command with sudo”
that can be used to inform its own deliberative process. The
recommended action – in this case, sudo – is then extracted
by (TF-IDF based) similarity matching between the top re-
trieved answers and the description of the actions (we used
linux man pages for this) in our domain. Thus, in addition
to wanting our learning agent to explore and build a model
of Ubuntu, we also want to make sure that the exploration
is smart given the abundance of data already available on
troubleshooting in Ubuntu. We refer to this as data-driven
reinforcement learning, and we expand on this idea through
the rest of the paper.

Related Work Bringing AI techniques - particularly rea-
soning and decision-making - to the problem of automated
software agents has a rich history within the automated plan-
ning community. Of particular importance is the work on
building softbots for UNIX (Etzioni, Lesh, and Segal 1993;
Etzioni and Weld 1994), which is the most comprehen-
sive previous study on this problem. Indeed, as we intro-
duced earlier, many of the issues that are cataloged in that
work remain of importance today. The current work builds

upon the work of Etzioni et al., particularly their focus on a
goal-oriented approach to the problem (Etzioni et al. 1993);
however, it goes beyond that work (and related approaches
(Petrick 2007)) in actually realizing a learning-based agent
framework for the Ubuntu technical support domain. Suc-
cinctly, we seek to automate in the largest possible degree
the promise of the softbot approach by: (1) exploiting the
Bash shell as a robust simulator for learning agents to ex-
plore the world; and (2) using the large amounts of data gen-
erated by human experts on the internet.

On the learning side, Branavan et al.’s work on using re-
inforcement learning (RL) to map natural language instruc-
tions to sequences of executable actions (Branavan et al.
2009) explores a similar problem setting in a Windows OS
domain. However, that work focuses on the application of
RL techniques to the language processing problem, and on
mapping text instructions to executable actions. In contrast,
our work focuses on learning task-oriented models for solv-
ing the e2eGCS problem. Thus the most relevant prior ex-
plorations into this area are complementary to our work in
different ways; while the softbot work lays the groundwork
for our architecture, Branavan et al.’s work provides a report
on using learning on a related but different problem.

Contributions The contributions of the paper are -
• We provide a platform UbuntuWorld 1.0 LTS based

on the Ubuntu OS, and its interface to the Bash termi-
nal, where different types of agents can be plugged in and
evaluated. This can be adopted as a valuable real-world
test bed for research in automated technical support.

• We propose data-driven RL as a viable solution to the
model learning problem for automated technical support
in Ubuntu, by utilizing human intelligence – in the form
of data from online technical support forums like Ask
Ubuntu – to aid the traditional RL process.



UbuntuWorld 1.0 LTS
The main components of the proposed system (Figure 3)
are the agents, the environment, and the user. As mentioned
previously, the environment is the Ubuntu operating system.
The user and the agents are the two main actors in the setting
– they interact with the environment, or with each other, in
different capacities to perform tasks.

The Agent Ecosystem
Though the user interacts with a generic, fixed agent inter-
face, the internal nature of that agent could be one of several
types depending on the type of technology used:

Random Agent The Random Agent does not have any
learning component: it performs actions at random till it
achieves its goals. This is used as a baseline to evaluate how
difficult the planning problems are, and how much a learning
agent can gain in terms of performance.

The next two agents we describe make use of a state-based
representation of the Ubuntu environment in order to make
more informed choices about the next action to execute. An
example of such a state is shown below. In the current im-
plementation, the relevant variables and predicates need to
be provided by the software developer for both approaches.
internet-on : True
sudo-on : False
installed gedit : False
installed firefox : True
installed vlc : False
open gedit file : False
open firefox file : False
open vlc file : False

Planning Agent The Planning Agent uses PDDL mod-
els (Mcdermott et al. 1998) of the domain to compute
plans. It is integrated with the Fast-Downward planner
(Helmert 2006) that can be used to produce the optimal plan
given a problem and domain description. The problem de-
scription is built on the fly given the current state being
sensed by the agent and the target (partial) goal state. An
excerpt of the domain is shown below (a link to the en-
tire domain file and a sample problem for a simple “open
file” task are available at http://bit.ly/2c8kJ4Q
and http://bit.ly/2clwwKI respectively):
(:action AptGet_True
:parameters (?s - software)
:precondition (and (sudo-on)

(internet-on))
:effect (and (installed ?s)))

(:action VLC_True
:parameters (?o - item)
:precondition (and (not (sudo-on))

(installed vlc))
:effect (and (open vlc ?o)))

The domain itself may either be hand-coded from the soft-
ware developer’s knowledge , or learned from execution
traces (Zhuo, Nguyen, and Kambhampati 2013). The former
can serve as the ground truth for evaluating the performance
of various agents, while the latter provides a valuable base-
line to compare against the other learning agents.

RL Agent The reinforcement learning (RL) paradigm in-
volves learning policies or models of the environment by
acting and learning from experiences in the world and as-
sociated feedback. One of the standard forms of RL is Q-
learning (Sutton and Barto 1998), where an agent learns a
function Q : S ×A→ R that maps state-action pairs to real
values that signify the usefulness or utility of doing action
a ∈ A in state s ∈ S. The learning step is the well-known
Bellman update when a transition from state s to s′ is ob-
served due to an action a, and a reward R : S×A×S → R
is received -

Q(s, a)← (1− α)Q(s, a) + α{R(s, a, s′) + γmax
a∈A

Q(s′, a)}

Here, α is the learning rate, and γ is the discount factor.
During the learning phase, the agent does an exploration-
exploitation trade-off by picking an action a given the cur-
rent state s (represented by a|s) based on several intentions
given probability thresholds ε, β, and (1− ε− β), as shown
below. This forms the core of what we refer to as the “data-
driven” ε-random Q-learning agent.

a|s← argmax
a∈A

Q(s, a) (1)

- Exploitation of the learned representation - This option
(Equation 1) allows the RL agent to pick the action with the
maximum Q-value in the current state. In the current im-
plementation, the system employs a tabular Q-learning ap-
proach where the state variables are the Boolean predicates
(in the domain as well as those that appear in the goal) from
the reference planning model shown above. Note that the
state representation integrates both the goal information and
the current value of the state variables, in order to ensure that
the agent learns goal-directed policies.

a|s ∼ U(A) (2)

- Random Exploration - This is done by choosing the next
action randomly with probability ε (Equation 2). This is the
standard ε-random Q-learning agent.

a|s← argmax
a∈A

Da ∩ AskUbuntu+(Fa) (3)

- Exploration by querying the Ask Ubuntu data - Here
the agent explores by choosing an action a that maximizes
the similarity between the action documentation Da and the
relevant questions and their solutions in the forum posts, in
order to pick the next best action (Equation 3). The action
documentation Da of an action a in our implementation is
the entire content of the man page associated with that ac-
tion. The relevant questions and answers are retrieved by
querying Ask Ubuntu with the footprint Fa of action a.
The action footprint in our case is the text output on the ter-
minal as a result of executing that action. The accepted an-
swers to the top 5 posts are then used to query the man page
descriptions of the Ubuntu commands available to the agent
in order to determine the set of relevant actions to perform
next. The action that produced the maximum similarity was
selected for execution.

The parameter β was varied according to a damped sine
function to alternate between the ε-random exploration men-
tioned above, and the data driven exploration described here.



The intuition behind this is to alternate between the sugges-
tions from Ask Ubuntu and the agent’s own exploration
function alternatively early on, and then gradually fall back
on exploitation later. This ensures that the agent can utilize
good suggestions from the forum to guide the initial learn-
ing process, but at the same time does not get stuck with
bad suggestions that may creep in either due to noise in the
data or during the retrieval and similarity matching step. The
results of this scheme are detailed in the evaluation section.

For our environment, the reward function is defined as fol-
lows: The agent gets a negative reward every time it does an
action, so that it learns to prefer shorter policies. If, however,
the state changes due to an action, the amount of negative re-
ward is less, since the agent at least tried an action that was
applicable in the current state. Finally, there is a large reward
when the agent attains a state that models the goal.

R(s, a, s′) = −10 if s′ 6= ⊥
+= 5 if s′ 6|= s

+= 100 if s′ |= G

Note that this definition of the reward function is generic to
any environment, and does not preclude added (domain spe-
cific) information such as whether an action was successful
or not, etc. This also means that the learning process will suf-
fer from the same issues that are common in traditional RL
techniques with regards to delayed rewards, and the many
approaches that have been investigated in the contemporary
literature to mitigate such problems also apply here.

The Environment
The Environment in our case is the Ubuntu OS, which both
the agent and the user have access to via Bash commands
on the terminal. Through the terminal the agent can execute
actions, as well as sense the state of different environment
variables and the current output on the terminal. The way
these interactions are used depends on the specific type of
the agent. Currently, the agents only have access to actions
whose effects are all reversible, i.e. the UbuntuWorld
1.0 LTS environment is currently ergodic.

Agent Interactions
As mentioned previously, both the user and the agent can in-
teract with the environment through the terminal to accom-
plish specific tasks. The user can also interact with the agent
and ask it to complete basic tasks (automated problem solv-
ing), as well as invoke the agent in case she encounters an
error on the terminal (automated troubleshooting). The agent
may, in trying to solve a task, interact with the user in trying
to find the correct parameters for an action or ask for more
clarifications to solve the task, or even query Ask Ubuntu
to search for a possible solution to a problem.

Implementation Details The system architecture has
three main components (Figure 4) - the Agent Class, the En-
vironment Class and the ubuntuconfig package.

The Agent may be asked to solve a task, or train and test
on a set of problem instances. The base agent implements
the Random Agent, while all the other agents such as the
Planning Agent and the RL Agent inherit from it. The key

Figure 4: Architecture diagram showing different compo-
nents of the UbuntuWorld 1.0 LTS prototype.

difference is (1) how, given a state, the “get next action”
process is done, e.g. the Random Agent picks the next ac-
tion at random, the Planning Agent re-plans optimally from
the current state and picks the first action from the remain-
ing plan, and the Q-learning RL Agent picks the action that
has the maximum Q-value in the current state; and (2) what
the Agents do with the result of executing he action, e.g. the
Random Agent ignores it, while the learning agents may use
it to learn a representation - such as a PDDL domain or a Q-
function - of the environment. Finally the Agents also have
abilities to take snapshots of themselves and reboot, and dis-
play learning curves and progress statistics during training.

The Environment Class acts as the interface between the
Agent Class and the ubuntuconfig package by using
generic interaction semantics - the agent can access the En-
vironment by sending an action to it and receiving the output
as a result of it, while the specific environment package im-
plements the actual execution pathways and provides the ac-
tion footprints to the environment. Thus specific agents and
environments may be swapped in and out while their inter-
face remains identical.

Thus the two main functionalities of the Environment
Class are (1) reading in an environment description, such as
from ubuntuconfig, and setting up the environment; and
(2) simulating this environment as required by the agents
plugged into it. It can also generate training and testing prob-
lem instances given the environment description. The Ubun-
tuWorld Class inherits from the basic Environment Class
and implements Ubuntu specific methods that can sense and
set values of state variables as required.



Finally, it may not always be a good idea to run the
agents on an environment directly - e.g. installing software
takes time, and trying to train agents whose potential per-
formances are completely unknown may be a waste of re-
sources. Keeping this in mind, the Environment Class also
implements a wrapper that emulates an environment de-
scription without running it. This, of course, cannot be done
with the full environment, since the model is not known. It
can, however, in the simulation mode emulate a known part
of the environment and help in debugging and setting up (for
example) the parameters of the learning agent, etc.

The ubuntuconfig Package contains the description
of the UbuntuWorld domain, i.e. the actions available to the
agent, state variables that can be sensed, methods to execute
each of these actions and parse their outputs, etc.

Each action in the UbuntuWorld environment is imple-
mented as a separate class - the individual classes implement
how the interactions with the terminal play out for specific
actions or commands, e.g. a permissions (sudo) check fol-
lowed by a memory usage check for the apt-get com-
mand. Each action class comes with methods to execute it,
get its output, and optionally check for its success (this is not
used in the RL setting since the model is not known).

The Command Class implements the basic functionalities
of all commands, including a generic interaction with the
shell with or without invocation with the sudo prefix. Spe-
cific action classes inherit from it and implement their own
parameters and shell interactions. Apart from the modular
and concise nature of the command definitions, making the
Ubuntu commands available as separate class objects also
leaves the processing at an agent’s end as general purpose
as possible, with scope for caching and reuse depending on
the nature of the agent. If the commands do not have any
unique semantics, then these command classes are gener-
ated automatically from a list of the action names and their
bindings to specific Bash commands in Ubuntu. Since this
is the case most of the time (i.e. most Bash commands do
not involve sophisticated interactions with the shell) this al-
leviates scalability concerns with this particular approach,
while at the same time providing surprising flexibility with
how the Ubuntu shell may be accessed by automated agents.

Experiments and Looking Forward
As a preliminary evaluation of our system, the environment
was set up to handle open/close, install/remove, internet ac-
cess, and root privilege tasks as discussed before in Figure
2. In the following, we will discuss the relative performance
of the our data-driven RL agent in the context of these tasks.

Learning rate. Figure 5 shows the performance of a sim-
ple ε-random Q-learning RL Agent trained on the emulator
on simple tasks involving opening files, as described before.
We measure the performance of an agent in terms of the
lengths of the sequences (plans) required to solve a given
problem, and compare these with those of the optimal plan.
This optimal length is generated by the Planning Agent us-
ing the underlying complete PDDL model (which acts as
the ground truth), and the Random Planner (which acts as a
simple baseline). Figure 5a shows convergence of the agent

(a) Learning performance (episode lengths) of the RL agent in
course of training over 1000 problems instances, replayed four ad-
ditional times. The episodes were terminated after 30 steps. The
agent shows clear signs of learning beyond 3000 episodes.

(b) Test performance (plan lengths) of the RL agent in 200 ran-
domly generated tasks, against the optimal and the random agents.
The performance is close to and mimics closely the optimal plans,
while being a significant improvement from the random agent.

Figure 5: Training and testing performances on simple tasks
involving opening files from various start configurations.

beyond around 3000 episodes, as the moving average length
settles around the ground truth range (original plans require
up to 5 actions). The test performance of the agent is shown
in Figure 5b. The agent mimics the optimal plans impres-
sively, and is significantly better than a random agent, sig-
nifying that the learning tasks are non-trivial as well as the
fact the tasks have been learned effectively by the agent.

The data-driven agent. Figure 6 shows the relative con-
vergence rates of an ε-random RL Agent with and without
data support, run on the actual terminal without the emu-
lator. The data driven agent converges to the same level as
the original ε-random RL Agent in Figure 5a within a 1000
episodes, without the need for replays. This promising boost
in the learning rate reiterates the need for integrating human
intelligence in the form of existing data available on online
technical support forums into the learning process of auto-
mated learning agents.

Demo: Interacting with the agent. We offer a demonstra-
tion of our system deployed on an Ubuntu shell – a screen
capture of the demonstration is available at the following
link: http://bit.ly/2coKICX. First, the user asks for
suggestions on how to open Firefox (or asks the agent to



Figure 6: Superior learning rate of the data-driven RL Agent
underlines the value of leveraging data from online technical
support forums like Ask Ubuntu in providing guidance to
the model learning process of an automated agent.

open Firefox), and the (trained RL) agent responds by eval-
uating its Q-function with the current state and available ac-
tions. Then we make the task a bit harder by uninstalling
Firefox and asking again. The agent now responds by acti-
vating its root privileges, installs Firefox and opens it, thus
demonstrating that it has learned simple dependencies in the
Ubuntu OS and can help the user with issues with the same.

Work in progress. As an emerging application of AI tech-
niques, there are many avenues of extension. First, we are
in the process of expanding the scope of the environment
both in terms of the terminal commands available to the
agent, as well as the model or representation of the world
being learned. Another area of future improvement centers
on the data-driven ε-random Q-learning agent; the current
agent is a preliminary exploration into using existing un-
structured data to aid the learning process. We are currently
looking at augmenting the retrieval mechanism with more
advanced word-embedding techniques in order to retrieve
the most relevant posts from the vast amount of unstruc-
tured data available in online technical support forums like
Ask Ubuntu and Ubuntu Chat Forum, and as well as
structured data available as documentation in manual pages
and release notes.

Finally, the current work is able to use a basic tabular Q-
learning approach because the size of the environment as
well as the action space is quite limited. As the action and
state space sizes increase, our current approach will have to
make way for more scalable RL approaches such as function
approximation (Sutton et al. 1999), and newer approaches
that can take into account large action spaces in discrete do-
mains (Dulac-Arnold et al. 2015).

Acknowledgments A significant part of this work was ini-
tiated and completed while Tathagata Chakraborti was an
intern at IBM’s T. J. Watson Research Center. The continua-
tion of his work at ASU is supported in part by an IBM Ph.D.
Fellowship. Kambhampati’s research is supported in part
by the ONR grants N000141612892, N00014-13-1-0176,
N00014-13-1-0519 and N00014-15-1- 2027.

References
Ask Ubuntu. 2014. Unanswered questions - what to do?
http://goo.gl/pmwg6n.
Branavan, S. R. K.; Chen, H.; Zettlemoyer, L. S.; and Barzi-
lay, R. 2009. Reinforcement learning for mapping instruc-
tions to actions. In ACL, 82–90.
Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.;
Lillicrap, T.; and Hunt, J. 2015. Deep reinforcement learning
in large discrete action spaces. arXiv:1512.07679v2.
Etzioni, O., and Weld, D. 1994. A softbot-based interface to
the internet. Commun. ACM 37(7):72–76.
Etzioni, O.; Levy, H. M.; Segal, R. B.; and Thekkath, C. A.
1993. Os agents: Using ai techniques in the operating system
environment. Tech. Rep. UW-CSE-93-04-04, University of
Washington.
Etzioni, O.; Lesh, N.; and Segal, R. 1993. Building softbots
for unix (preliminary report). Technical report.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Int. Res. 26(1):191–246.
Lucene. 2016. Apache Lucene. http://goo.gl/
FZz8Y6.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl - the
planning domain definition language. Technical Report TR-
98-003, Yale Center for Computational Vision and Control,.
Petrick, R. P. A. 2007. Planning for desktop services. In
Proceedings of the ICAPS 2007 Workshop on Moving Plan-
ning and Scheduling Systems into the Real World.
Stack Exchange. 2016. Stack Exchange - Percentage An-
swered. http://goo.gl/iiX6rq.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; Mansour, Y.;
et al. 1999. Policy gradient methods for reinforcement
learning with function approximation. In NIPS, volume 99,
1057–1063.
Turing, A. M. 1950. Computing machinery and intelligence.
Mind 59(236):433–460.
Zhuo, H. H.; Nguyen, T.; and Kambhampati, S. 2013. Refin-
ing incomplete planning domain models through plan traces.
In IJCAI, 2451–2457.


