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Abstract

Most current planners assume complete domain models and
focus on generating correct plans. Unfortunately, domain
modeling is a laborious and error-prone task, thus real world
agents have to plan with incomplete domain models. While
domain experts cannot guarantee completeness, often they
are able to circumscribe the incompleteness of the model by
providing annotations as to which parts of the domain model
may be incomplete. In this paper, we study planning prob-
lems with incomplete STRIPS domain models where the an-
notations specify possible preconditions and effects of ac-
tions. We show that the problem of assessing the quality of
a plan, or its plan robustness, is #P -complete, establishing
its equivalence with the weighted model counting problems.
We introduce two approximations, lower and upper bound,
for plan robustness, and then utilize them to derive heuristics
for synthesizing robust plans. Our planning system, PISA,
incorporating stochastic local search with these novel tech-
niques outperforms a state-of-the-art planner handling incom-
plete domains in most of the tested domains, both in terms of
plan quality and planning time.

1 Introduction

In the past several years, significant strides have been made
in scaling up plan synthesis techniques. We now have tech-
nology to routinely generate plans with hundreds of ac-
tions. All this work, however, makes a crucial assumption—
that the action models of an agent are completely known
in advance. While there are domains where knowledge-
engineering such detailed models is necessary and feasible
(e.g., mission planning domains in NASA and factory-floor
planning), it is increasingly recognized (c.f. (Kambhampati
2007)) that there are also many scenarios where insistence
on correct and complete models renders the current plan-
ning technology unusable. The incompleteness in such cases
arises because domain writers do not have the full knowl-
edge of the domain physics, or when the planner is embed-
ded into an integrated architecture where the domain model
is being learned incrementally. One tempting idea is to wait
until the models become complete, either by manual revi-
sion or by machine learning. Alas, the users often don’t
have the luxury of delaying their decision making. For ex-
ample, although there exist efforts (Amir and Chang 2008;
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Yang, Wu, and Jiang 2007) that attempt to either learn mod-
els from scratch or revise existing ones, their operation is
contingent on the availability of successful plan traces, or
access to execution experience. There is thus a critical need
for planning technology that can get by with partially speci-
fied domain models, and yet generate plans that are “robust”
in the sense that they are likely to execute successfully in the
real world.

Although the domain modelers cannot provide complete
models, often they are able to provide “annotations” on the
partial model circumscribing the places where it is incom-
plete. In automated planning, Garland & Lesh (2002) was
the first, to the best of our knowledge, to allow annotations
on the specification of incomplete actions; these annotations
specify parts of the domains not affecting or being affected
by the corresponding actions. The notion of plan quality
in their work is defined in terms of four different types of
“risks”, which however has tenuous heuristic connections
with the likelihood of successful execution of plans.

Nguyen et al. (2010) propose annotations specifying pos-
sible preconditions and effects of actions. These annotations
facilitate, though only conceptually, the enumeration of all
“candidate” complete models, thus the counting of models
under which a plan succeeds. Their robustness measure for
plans, therefore, captures exactly the probability of success
for plans given such an incompleteness language. Weber
and Bryce (2011) use the same formulation and propose a
heuristic approach to search for plans minimizing their risks,
which is essentially one minus plan robustness. Their plan-
ner, DeFault, employs a systematic search guided by an FF-
like heuristic, breaking ties on a so called “prime implicant”
heuristic. It however does not directly estimate the risk or
robustness measures that are supposed to be optimized, but
rather uses them indirectly to break ties over the standard FF
heuristic. Using this tie breaking heuristic as the main guid-
ance for the search, as observed by Weber and Bryce, does
not result in an informative heuristic for generating low risk
plans.

In this paper, we propose a principled heuristic approach
to synthesizing robust plans for incomplete STRIPS action
models with possible precondition and effect annotations.
Our idea is to use the robustness measure more directly in
guiding the search. We show however that there is an im-
mediate technical hurdle: the problem of assessing the ro-
bustness of a given plan is equivalent to weighted model



counting, and is thus #P -complete. We then exploit two
interesting structures in the logical constraints on plan cor-
rectness proposed by Nguyen et al. (2010), introducing
the lower and upper approximations for the robustness for
a given plan. We incorporate these approximations in the
extraction of robust relaxed plans and guiding the search,
resulting in a comprehensive approach for synthesizing ro-
bust plans. The experiments show that our planner, PISA
(Planning with Incomplete STRIPS Actions), outperforms
DeFault in most of the tested domains, both in terms of plan
robustness and in planning time.

The paper is organized as follows. Section 2 formulates
the planning problems with incomplete STRIPS action mod-
els. In Section 3, we discuss the robustness measure for
plans, and then a method to assess the plan robustness mea-
sure using weighted model counting. We also show the com-
plexity of the plan robustness assessment problem in this
section. Section 4 presents our approach to synthesizing ro-
bust plans, which includes our method to approximate plan
robustness and our procedure for extracting robust relaxed
plans. Section 5 presents the experiment results. We dis-
cuss the related work in Section 6 and conclude our work in
Section 7.

2 Problem Formulation
We define an incomplete STRIPS action model D̃ as D̃ =
〈R, O〉, where R is a set of predicates with typed variables,
O is a set of STRIPS operators, each might be incompletely
specified. In particular, in addition to the sets of known pre-
coditions Pre(o) ⊆ R, add effects Add(o) ⊆ R and delete
effects Del(o) ⊆ R, each operator o ∈ O also contains:

• possible precondition set P̃ re(o) ⊆ R that operator o
might need as its preconditions;

• possible add (delete) effect set Ãdd(o) ⊆ R (D̃el(o) ⊆
R) that o might add (delete, respectively) during execu-
tion.

In addition, each possible precondition, add and delete
effect r ∈ R of an operator o is (optionally) associ-
ated with a weight wpre

o (r), wadd
o (r) and wdel

o (r) (0 <

wpre
o (r), wadd

o (r), wdel
o (r) < 1) representing the domain

modeler’s assessment of the likelihood that r will actually
be realized as a precondition, add and delete effect of o, re-
spectively.1 We assume that the “annotations” on possible
preconditions and effects are uncorrelated, thus can be re-
alized independently (both within each operator and across
different ones).2

Given an incomplete STRIPS domain D̃, we define its

completion set 〈〈D̃〉〉 as the set of complete domain mod-
els whose operators have all the known and “realized” pre-

conditions and effects. Since any subset of P̃ re(o), Ãdd(o)

and D̃el(o) can be realized as preconditions and effects of

o, there are 2K possible complete domain models in 〈〈D̃〉〉,

1Possible preconditions and effects whose likelihood of realiza-
tion is not given are assumed to have weights of 1

2
.

2While we cannot completely rule out a domain modeler capa-
ble of making annotations about correlated sources of incomplete-
ness, we assume that this is less likely.

where K =
∑

o∈O(|P̃ re(o)|+ |Ãdd(o)|+ |D̃el(o)|). There
is exactly one (unknown) complete model, denoted by D∗,
that is the ground truth.

A planning problem P̃ with respect to an incomplete do-

main D̃ and a set of typed objects O is defined as P̃ =
〈F, A, I, G〉 where F is the set of propositions instantiated
from predicates R and objects O, A is the set of actions in-
stantiated from O and O, I ⊆ F is the set of propositions
that are true, or T, in the initial state (and all the remaining
are false, or F), and G ⊆ F is the set of goal propositions.
Note that in the same complete model D, actions instantiated
from the same operator have the same realized preconditions
and effects.

An action a ∈ A is applicable in a state s ⊆ F if
Pre(a) ⊆ s, and the resulting state is defined as γ(〈a〉, s) =

(s \ Del(a)) ∪ Add(a) ∪ Ãdd(a). The projection of an
action sequence π = 〈a1, ..., an〉 from s is defined as
γ(π, s) = γ(an, γ(an−1, ..., γ(a1, s))). The sequence π

is a valid plan for a planning problem P̃ if γ(I, π) ⊇ G.

Note that we neglect P̃ re(a) in applicability checking con-

dition and D̃el(a) in creating the resulting state to ensure
the completeness (that is, any plan achieving goals G in the
ground truth model D∗ is not excluded), and the soundness

(in the sense that any valid plan for P̃ is a plan achieving

G in at least one complete model D ∈ 〈〈D̃〉〉). To recall,
the transition function under a complete model D is defined
with STRIPS semantics: for the complete specification of
action a ∈ A in D, aD, and a state s ⊆ F : γD(〈aD〉, s) =
(s \ Del(aD)) ∪ Add(aD) if Pre(aD) ⊆ s (other-

wise, undefined); for πD = 〈aD
1 , ..., aD

n 〉, γD(πD, s) =
γD(aD

n , γD(aD
n−1, ..., γ

D(aD
1 , s))). Action sequence πD is

a plan achieving G under D if G ⊆ γD(πD, I).

Given that 〈〈D̃〉〉 can be exponentially large in terms of
possible preconditions and effects, validity is too weak to
guarantee on the quality of plans. The quality of a plan,
therefore, will be measured with its robustness value, which
will be presented in the next section.

3 A Robustness Measure for Plans
The robustness of a plan π for the problem P̃ = 〈F, A, I, G〉
is defined as the cumulative probability mass of the comple-

tions of D̃ under which π succeeds in achieving the goals
(Nguyen et al., 2010). More formally, let Pr(D) be the
probability distribution representing the modeler’s estimate

of the probability that a given model D ∈ 〈〈D̃〉〉 is the ground
truth model D∗;

∑
D∈〈〈D̃〉〉 Pr(D) = 1. The robustness of π

is defined as follows:

R(π, P̃)
def
≡

∑

D∈〈〈D̃〉〉,γD(πD,I)|=G

Pr(D). (1)

When the context is clear, we write R(π) for the robust-
ness of plan π. Note that given the uncorrelated incom-
pleteness assumption, the probability Pr(D) for a model

D ∈ 〈〈D̃〉〉 can be computed as the product of the weights

wpre
o (r), wadd

o (r), and wdel
o (r) for all o ∈ O and its possi-

ble preconditions/effects r if r is realized in D (or the prod-



uct of their “complement” 1 − wpre
o (r), 1 − wadd

o (r), and

1 − wdel
o (r) if r is not realized).

3.1 Plan Robustness Assessment as Weighted
Model Counting

The notion of plan robustness as the cummulative proba-
bility mass of the complete models under which plans suc-
ceed draw the connection to the computation of the weighted
model count of a logical formula. For the completeness of
our presentation,3 we now present the set of constraints for
the correctness of a plan π = 〈a1, ..., an〉, introduced by
Nguyen et al. (2010), whose weighted model count pro-
vides its plan robustness. We then show that plan robustness
assessment is indeed as hard as model counting problems.
In the following, a0 ≡ aI and an+1 ≡ aG are two spe-
cial complete actions: Add(aI) = I , Del(aI) = F \ I ,
Pre(aG) = G, Add(aG) = {T}, the other components are
empty. Plan π succeeds in achieving G if and only if all
actions in 〈a1, ..., an, an+1〉 are executable.

Variables: The variables used in the constraints are those
representing whether a possible precondition or effect of an
operator o ∈ O is realized: rpre

o , radd
o and rdel

o with the

associated weights wpre
o (r), wadd

o (r) and wdel
o (r) for each

predicate r respectively in P̃ re(o), Ãdd(o) and D̃el(o). An
assignment of these K variables corresponds to a complete

domain D ∈ 〈〈D̃〉〉, and those assignments satisfying the
following constraints determine the complete models under
which the plan succeeds. Abusing notation, we often write

ppre
a and wpre

a (p) for action a ∈ A, p ∈ P̃ re(a), and sim-

ilarly for p ∈ Ãdd(a) or D̃el(a), to refer to the boolean
variables and weights defined for the unique predicate and
operator from which they are instantiated.

Constraints: Given that all actions must be executable, and
that the initial state at the first step is complete, the truth
value of any proposition p at level i (1 < i ≤ n + 1) can
only be affected by actions at steps k ∈ {Ci

p, ..., i − 1}.

Here, Ci
p ∈ {1, ..., i − 1} is the latest level before i at which

the truth value of p at Ci
p is completely “confirmed” by the

success of either action aCi
p

or aCi
p−1. Specifically, it is

confirmed T if p ∈ Pre(aCi
p
) or p ∈ Add(aCi

p−1); and

confirmed F if p ∈ Del(aCi
p−1).

Precondition establishment and protection: for each p ∈
Pre(ai) (1 ≤ i ≤ n + 1), we create constraints establishing
and protecting the T value of this precondition. If p = F at
level Ci

p, we add the following constraints to ensure that it
is supported before level i:

∨

Ci
p≤k≤i−1,p∈Ãdd(ak)

padd
ak

. (2)

Note that there exists at least one such action ak for ai

to be executable. If there exists actions am (Ci
p ≤ m ≤

i − 1) that possibly deletes p, we protect its value with the
constraints:

3In Section 4, we will use these constraints, together with our
approximation measures, during the synthesis of robust plans.

pdel
am

⇒
∨

m<k<i,p∈Ãdd(ak)

padd
ak

, (3)

or ¬pdel
am

if there is no such action ak possibly support p.
Note that the constraints for known preconditions of an+1

ensure that goals G are achieved after the plan execution.

Possible precondition establishment and protection: when a
possible precondition p of action ai (1 ≤ i ≤ n) is realized,
its value also needs to be established to T and protected.
Specifically, for p = F at level Ci

p, we add the constraints:

ppre
ai

⇒
∨

Ci
p≤k≤i−1,p∈Ãdd(ak)

padd
ak

. (4)

Finally, with actions am (Ci
p ≤ m ≤ i − 1) having p as a

possible delete effect, we must ensure that:

ppre
ai

⇒


pdel

am
⇒

∨

m<k<i,p∈Ãdd(ak)

padd
ak


 . (5)

We denote the set of constraints established for π as Σπ.
It can be shown that any assignment to Boolean variables
ppre

a , padd
a and pdel

a satisfying all constraints above cor-

responds to a complete domain model D ∈ 〈〈D̃〉〉 under
which all actions a1, ..., an and an+1 succeeds to execute.
The weighted model count of Σπ is therefore the robust-
ness of the plan. Throughout the paper, we use R(π) and
WMC(Σπ) interchangeably.

3.2 Complexity

The fact that weighted model counting can be used to com-
pute plan robustness does not immediately mean that as-
sessing plan robustness is hard. We now show that it is in-
deed #P -complete, the same complexity of model counting
problems.

Theorem 1. Given an incomplete model D̃ = 〈R, O〉

with annotations of weights 1
2 , a planning problem P̃ =

〈F, A, I, G〉 and a plan π. The problem of computing R(π)
is #P -complete.

Proof (sketch). The membership can be seen by having a
Counting TM nondeterministically guess a complete model,
and check the correctness of the plan. The number of ac-
cepting branches output is the number of complete mod-
els under which the plan succeeds. To prove the hardness,
we show that there is a polynomial-time reduction from an
instance 〈X,Σ〉 of MONOTONE 2-SAT, a #P -complete

problem (Valiant 1979), to an instance 〈D̃, P̃, π〉 such that

R(π) = |M(Σ)|
2n . The input of this problem is a set of n

Boolean variables X = {x1, ..., xn}, a monotone CNF for-
mulae Σ = {c1, c2, ..., cm} with m clauses cj = xj1 ∨ xj2,
where xj1, xj2 ∈ X . The required output is |M(Σ)|, the
number of assignments of X satisfying Σ.

Let G = 〈V, E〉 be the constraint graph of the clause
set Σ, where V = X and (xi, xj) ∈ E if xi ∨ xj ∈ Σ.
We partition this graph into connected components (or sub-
graph) G1, ..., Gl. Our set of propositions F then includes



propositions pk for each subgraph Gk (1 ≤ k ≤ l) and
propositions gj for each clause cj (1 ≤ j ≤ m): F =
{p1, ..., pl, g1, ..., gm}. We denote k(xi) and k(cj) as the in-
dices of the subgraphs containing xi and the edge (xj1, xj2).
The set of actions A consists of n + m actions axi

and
bgj

, respectively defined for each variable xi and proposi-

tion gj . Action axi
has Ãdd(axi

) = {pk(xi)} and the other
components are empty. Action bgj

is complete and defined

with Pre(bgj
) = Del(bgj

) = {pk(cj)}, Add(bgj
) = {gj}.

Given D̃ = 〈F, A〉,4 we define a planning problem P̃ with
I = ∅, G = {g1, ..., gm} and a plan π that is the concatena-
tion of m “subplans”: π = π1 ◦ ... ◦ πm. Each subplan is
πj = 〈axj1

, axj2
, bgj

〉 (1 ≤ j ≤ m) such that cj = xj1∨xj2

is the clause corresponding to gj .
From the reduction, there is a one-to-one mapping be-

tween the assignments of X to 〈〈D̃〉〉: xi = T if and only if

axi
has pk(xi) as its add effect. The relation R(π) = |M(Σ)|

2n

can be established by verifying that an assignment σ satis-
fies Σ if and only if π succeeds under the corresponding
complete model Dσ.

4 Synthesizing Robust Plans

In this section, we present an anytime forward search ap-
proach to synthesizing robust plans. At a high level, in each
iteration it searches for a plan π with the robustness R(π)
greater than a threshold δ, which is set to zero initially. The
threshold is then updated with R(π), preparing for the next
iteration. The last plan produced is the most robust plan.

The main technical part of our approach, therefore, is
a procedure to extract a relaxed plan π̃, given the cur-
rent plan prefix πk of k actions and threshold δ, such that
WMC(Σπk

∧ Σπ̃) > δ. The length of π̃ estimates the ad-
ditional search cost h(πk, δ) to reach goals G, starting from
πk, with more than δ probability of success. Since WMC(·)
is costly to compute, we approximate it with a lower bound
l(·) and upper bound u(·), which will then be used during
the relaxed plan extraction. In particular, we look for the re-
laxed plan π̃ satisfying l(Σπk

∧ Σπ̃) > δ, and compute the
exact robustness of a candidate plan π only if u(Σπ) > δ.

In this section, we first introduce our lower and upper
bound for WMC(Σ) of a clause set Σ, presents our proce-
dure for extracting relaxed plan, and then discuss our choice
for the underlying search algorithm.

4.1 Approximating Weighted Model Count

Lower bound: We observe that the set of constraints Σ, con-
structed as in (2)-(5), can be converted into a set of clauses
containing only positive literals (or monotone clauses). In
particular, the variables padd

a only appear in positive form

in the resulting clauses. Variables ppre
a and pdel

a , however,
are all in negation form, thus can be replaced with nppre

a

and npdel
a having the corresponding weights 1 − wpre

a (p)
and 1 − wdel

a (p). As a result, the following theorem shows
that the quantity lΣ =

∏
ci

Pr(ci) can be used as a lower

bound for WMC(Σ), where Pr(ci) is the probability of

4The resulting robustness assessment problem does not have
objects, thusR ≡ F and O ≡ A.

ci = T. (Recall that for a monotone clause c =
∨

i xi,
Pr(c) = 1 −

∏
i(1 − wi), where wi is the probability of

xi = T.)

Theorem 2. Given a set of monotone clauses Σ =
{c1, ..., ck}, lΣ =

∏
ci∈Σ

Pr(ci) ≤ WMC(Σ).

Proof (sketch). For any two monotone clauses c and c′, we
can show that Pr(c|c′) ≥ Pr(c) holds. (As an intuition,
since c and c′ have “positive interaction” only, observing one
of the literals in c′ cannot reduce belief that c is T.) More
generally, Pr(c|c′

1 ∧ ... ∧ c′
t) ≥ Pr(c) holds for monotone

clauses c, c′
1, ..., c′

t. Therefore, WMC(Σ) = Pr(Σ) =
Pr(c1)Pr(c2|c1)...P r(ck|c1 ∧ ... ∧ ck−1) ≥

∏
ci

Pr(ci).

Upper bound: One trivial upper bound for Pr(Σ) is
minci

Pr(ci). We can however derive a much tighter bound
for WMC(Σ) by observing that literals representing the re-
alization of preconditions and effects on different predicates
would not be present in the same clauses. This suggests that
the set of clauses Σ is essentially decomposable into inde-
pendent sets of clauses, each contains literals on one spe-
cific predicate. Clauses related to the same predicate, fur-
thermore, can also be partitioned into smaller sets. Thus, to
derive a better upper bound for Pr(Σ), we first divide it into
independent clause sets Σ

1, ...,Σm, and compute an upper
bound uΣ as follows: uΣ =

∏
Σi minc∈Σi Pr(c).

4.2 Extracting Robust Relaxed Plan

We now introduce our procedure to extract a relaxed plan
π̃ such that l(Σπk

∧ Σπ̃) > δ, where Σπk
and Σπ̃ are the

sets of constraints for the executability of actions in πk and
π̃; note that Σπ̃ also includes constraints for aG, thus for
the achievement of G. Our procedure employs an extension
of the common relaxation technique by ignoring both the
known and possible delete effects of actions in constructing
π̃.5

Relaxed planning graph construction: we construct the
relaxed planning graph G = 〈L1, A1, ..., LT−1, AT−1, LT 〉
for the plan prefix πk, in which each proposition p and action
a at layer t is associated with clause sets Σp(t) and Σa(t).

• L1 ≡ sk+1, where sk+1 = γ(πk, I). The clause set
Σp(1) for each p ∈ L1, constructed with Constraints (2)
and (3), represents the constraints on actions of πk under
which p = T at the first layer.

• Given proposition layer Lt, At contains all actions a
whose known preconditions appear in Lt (i.e., Pre(a) ⊆
Lt), and a complete action, noopp, for each p ∈ Lt:

Pre(noopp) = Add(noopp) = {p}, Del(noopp) = ∅ .
The constraints for the non-noop actions:

Σa(t) =
∧

p∈Pre(a)

Σp(t)∧
∧

q∈P̃ re(a)

(qpre
a ⇒ Σq(t)). (6)

All actions noop have the same constraints with their cor-
responding propositions.

5Thus, there are no protecting constraints in Σπ̃ caused by pos-
sible delete effects of actions in the relaxed plan.



• Given action layer At, the resulting proposition layer
Lt+1 contains all known and possible add effects of ac-
tions in At. The clause set of p at layer t + 1 will be
constructed by considering clause sets of all actions sup-
porting and possibly supporting it at the previous layer,
taking into account correctness constraints for the current
plan prefix, i.e., Σπk

. In particular:

Σp(t + 1) = arg max
Σ∈S1∪S2

l(Σ ∧ Σπk
), (7)

where S1 = {Σa(t) | p ∈ Add(a)} and S2 = {padd
a′ ∧

Σa′(t) | p ∈ Ãdd(a′)}.6

We stop expanding the relaxed planning graph at layer LT

satisfying: (1) G ⊆ LT , (2) the two layers LT−1 and LT ,
which include the set of propositions and their associated
clause sets, are exactly the same. If the second condition is
met, but not the first, then the relaxed plan extraction fails.
We also recognize an early stopping condition at which (1)
G ⊆ LT and (2) l(ΣG) > δ, where ΣG is the conjunction
of clauses attached to goals g ∈ G at layer T .

Relaxed plan extraction
We now extract actions from G, forming a relaxed plan π̃
such that l(Σπk

∧ Σπ̃) > δ. At a high level, our proce-
dure at each step will pop a subgoal for being potentially
supported. Each subgoal g is either a known or a possible
precondition of an action a that has been inserted into the
relaxed plan. The decision as to whether a subgoal should
be supported depends on many factors (see below), all of
which reflect our strategy that a new action is inserted only if
the insertion increases the robustness of the current relaxed
plan. If a new action is inserted, all of its known and possi-
ble preconditions will be pushed into the subgoal queue. Our
procedure will stop as soon as it reaches a complete relaxed
plan (see below) and its approximated robustness, specifi-
cally the value l(Σπk

∧ Σπ̃), exceeds the current threshold
δ (stop with success), or the subgoal queue is empty (stop
with failure).

The relaxed plan while being constructed might con-
tain actions a with unsupported known preconditions p, for
which the supporting and protecting constraints cannot be
defined. The constraints defining the (potential) executabil-
ity of actions in such an incomplete relaxed plan, therefore,
are not well-defined.7 This is when the clause sets propa-
gated in the relaxed planning graph play their role. In par-
ticular, we reuse the clause sets Σp(t) associated with un-
supported known preconditions p at the same layer t with
a in the relaxed planning graph. We combine them with
the constraints generated from Constraints 2-5 for (possi-
bly) supported known and possible preconditions, resulting
in constraints Σπ̃. Together with Σπk

, it is used to define
the robustness of the relaxed plan being constructed.

Algorithm 1 shows the details of our relaxed plan extrac-
tion procedure. We initialize the relaxed plan π̃ with 〈aG〉,

6Note that the observation about converting constraints into
monotone clauses, which faciliates our lower bound computation,
still holds for constraints in (6) and (7).

7Unsupported possible preconditions do not result in incom-
plete relaxed plan, since they do not have to be supported.

Algorithm 2: CheckPlan

1 Input: Plan prefix πk, threshold δ ∈ [0, 1], goals G.
2 Output: r ≡ R(πk) if success, or nothing if failure.
3 begin
4 if G ⊆ sk+1 then
5 Construct Σπ̃ using Constraints (2)-(5).
6 if u(Σπk

∧Σπ̃) > δ then
7 Compute R(πk) = WMC(Σπk

∧Σπ̃).
8 if R(πk) > δ then
9 r ← R(πk); return success.

10 end

11 end

12 end
13 return failure

14 end

Algorithm 3: InitializeConstraintsAndQueue

1 Input: Goals G, relaxed planning graph G.
2 Output: 〈Σπ̃, Q〉
3 begin
4 Σπ̃ ← T.

5 for g ∈ G \ s+
→aG

do
6 if g ∈ s→aG

then
7 c← Constraints (2)-(5) for g.
8 Σπ̃ ← Σπ̃ ∧ c.

9 end
10 else
11 Σπ̃ ← Σπ̃ ∧Σg(T ).
12 end
13 Push 〈g, aG, T 〉 into Q.

14 end
15 return 〈Σπ̃, Q〉.
16 end

the relaxed plan state s→aG
before aG and the set of propo-

sitions s+
→aG

known to be T (Line 4). The set s+
k+1 contains

propositions p known to be T after executing all actions in
πk—they are confirmed to be T at some step Ck+1

p < k+1,
and not being possibly deleted by any other actions at steps
after Ck+1

p . Line 5-7 checks if πk is actually a plan with the
robustness exceeding δ. This procedure, presented in Algo-
rithm 2, uses the bound u(Σπk

∧ Σπ̃) to prevent the exact
weighted model counting from being called unnecessarily.

Line 8 initializes the constraints Σπ̃ and the queue Q of
subgoals.8 This procedure, presented in Algorithm 3, uses
the constraints caused by actions of πk for goals g that are
(possibly) supported by πk (Line 6-9), and the clause sets in
G for those that are not (Line 11).

Line 10-37 of Algorithm 1 is our greedy process for build-
ing the relaxed plan. It first pops a triple 〈p, a, t〉 from Q to
consider for supporting, then checks some conditions un-
der which this subgoal can simply be skipped. Specifically,
if p 6∈ Lt (Line 11), which also implies that it is a possi-
ble precondition of a (otherwise, a cannot be included into
At), then there are not any actions in the layer At−1 that can

8In our implementation, subgoals in Q are ordered based on
their layers (lower layers are prefered), breaking ties on the types
of preconditions (known preconditions are prefered to possible pre-
conditions), and then on the number of supporting actions.



(possibly) support p. Line 13-15 includes the other two con-
ditions: abest is in fact the last action in πk, or it has already
been inserted into π̃. Here, abest is the best non-noop sup-
porting action for p at layer lbest of G (retrieved from Equa-
tion 7 and possibly a backward traversal over noop actions).

Line 16-18 handles a situation where the current relaxed
plan π̃ is actually incomplete—it includes actions having a
known precondition p not (possibly) supported; thus πk ◦ π̃
would have (exact) zero robustness. It is therefore reason-
able to immediately insert abest into the current relaxed plan
to support p. Note that this insertion means that abest is put
right after all actions at layers before lbest that have been in-
serted into π̃, maintaining the total-order of actions in π̃.

In other scenarios (Line 19-24), i.e., p ∈ Pre(a) ∩ s→a

or p ∈ P̃ re(a), from the plan validity perspective we
don’t need to add new action (possibly) supporting this sub-
goal. However, since valid relaxed plan might not be robust
enough (w.r.t. the current threshold δ), a new supporting ac-
tion might be needed. Here, we employ a greedy approach:
Line 20 evaluates the approximate robustness r′ of the re-
laxed plan if abest at layer lbest is inserted. If inserting this
action increases the current approximate robustness of the
relaxed plan, i.e., r′ > r, then the insertion will take place.

Line 25-36 are works to be done after a new action is
inserted into the relaxed plan. They include the updating
of relaxed plan states and set of propositions known to be
T (Line 26),9 the constraints Σπ̃ (Line 27) and the lower
bound on the robustness of the relaxed plan (Line 28). The
new approximate robustness will then be checked against the
threshold, and returns the relaxed plan with success if the
conditions meet (Line 29-32). We note that in addition to
the condition that the new approximate robustness exceeds
δ, the relaxed plan must also satisfy the validity condition:
all known preconditions of actions must be (possibly) sup-
ported. This ensures that all constraints in Σπ̃ come from
actions in π̃, not from the clause set propagated in G. In case
the new relaxed plan is not robust enough, we push known
and possible preconditions of the newly inserted action into
the subgoal queue Q, ignoring those known to be T (Line
33-35), and repeat the process. Finally, we again check if
the approximate robustness exceeds δ (Line 38) to return the
relaxed plan length with its approximate robustness; other-
wise, our procedure fails (Line 39).

4.3 Search

We now discuss our choice for the underlying search algo-
rithm. We note that the search for our problem, in essence,
is performed over a space of belief states—in fact, our us-
age of the plan prefix πk, the state sk+1 = γ(πk, I) and

the set of known propositions s+
k+1 in the relaxed plan ex-

traction makes the representation of belief state in our ap-
proach implicit, as in Conformant-FF (Hoffmann and Braf-
man 2006) and Probabilistic-FF (Domshlak and Hoffmann
2006). Checking duplicate belief states, if needed during the
search, is expensive; to do this, for instance, Probabilistic-

9They are updated as follows: if aj and aj+1 are two actions at

steps j and j+1 of π̃, then s→aj+1
← s→aj

∪Add(aj)∪Ãdd(aj)

and s+
→aj+1

← s+
→aj
∪Add(aj).

FF invokes satisfiability tests for certain propositions at a
state just to check for a sufficient condition.

To avoid such an expensive cost, in searching for a plan
π with R(π) > δ we incorporate our relaxed plan extraction
into an extension of the stochastic local search with failed-
bounded restarts proposed by Coles, Fox and Smith (2007).
Given a plan prefix πk (initially empty) and its heuristic es-
timation h(πk, δ), we look for a sequence of actions π′ such
that the new sequence πk ◦ π′ has a better heuristic estima-
tion: h(πk ◦ π′, δ) < h(πk, δ). This is done by performing
multiple probes (Coles, Fox, and Smith 2007) starting from
sk+1 = γ(πk, I); the resulting sequence π is a plan with
R(π) > δ if h(π, δ) = 0. Since actions are stochastically
sampled during the search, there is no need to perform belief
state duplication detection.

5 Experimental Results

We test our planner, PISA, with incomplete domains gener-
ated from IPC domains: Depots, Driverlog, Freecell, Rover,
Satellite and Zenotravel. For each of these IPC domains,
we make them incomplete with np possible preconditions,
na possible add and nd possible delete effects. We make
possible lists using the following ways: (1) randomly “mov-
ing” some known preconditions and effects into the possible
lists, (2) delete effects that are not preconditions are ran-
domly made to be possible preconditions of the correspond-
ing operators, (3) predicates whose parameters fit into the
operator signatures, which however are not parts of the op-
erator, are randomly added into possible lists. For these ex-
periments, we vary np, na and nd in {0, 1, ..., 5}, resulting in

63−1 = 215 incomplete domains for each IPC domain men-
tioned above. We test our planner with the first 10 planning
problems in each domain, thus 2150 instances (i.e., a pair
of incomplete domain and planning problem). In addition,
we also test with the Parcprinter incomplete domain avail-
able to us from the distribution of DeFault planner, which
contains 300 instances. We restrict our experiments to in-
complete domains with only annotations of weights 1

2 ; this
is also the only setting that DeFault can accept. We run them
on a cluster of computing nodes, each possesses multiple In-
tel(R) Xeon(R) CPU E5440 @ 2.83GHz. For exact model
counting, we use Cachet model counting software (Sang et
al., 2005). For the search in PISA, we use the similar config-
uration in (Coles, Fox, and Smith 2007), except for the size
of the neighborhood being 5—our experiments on small set
of instances suggest this is probably the best. All experi-
ments were limited to the 15 minutes time bound.

Comparing to DeFault: We present our comparison between
PISA and DeFault on five domains: Freecell, Parcprinter,
Rover, Satellite and Zenotravel; DeFault cannot parse the
other domains. We note that, although DeFault reads do-
main files describing operators with annotations, it assumes
all annotations are specified at the grounded (or instantiated)
level. Thus, we follow the same treatment by assuming pos-
sible preconditions and effects of grounded actions are all
independent; the incompleteness amount can go up to, for
instance in the Freecell domain, K = 73034 annotations
(many of them however might be irrelevant to the actions in
a resulting plan). We use the best configuration of DeFault:



Figure 1: Number of instances for which PISA produces
better, equal and worse robust plans than DeFault.

prime implicant heuristics with size k = 2 and 2GB RAM
as suggested, running it in the anytime mode.

Figure 1 shows the number of instances for which PISA
generates plans having better, equal and worse robustness
values compared to DeFault.10 Since the planners run in
their anytime mode, returning plans with increasing plan ro-
bustness, we use the last plans produced by them in this
comparison. Out of five domains, PISA generates better
plans than DeFault in more instances of the four domains
Freecell, Parcprinter, Satellite, Zenotravel, and a bit less in
the Rover domain. More specifically, the percentage of in-
stances for which PISA returns plans with equal or better
robustness are always more than 50% in all domains: 61%
in Freecell, 65% in Parcprinter, 53% in Rover, 60% in Satel-
lite and 78.5% in Zenotravel. The percentages of instances
with strictly better robustness in these domains respectively
are 55.8%, 61.1%, 45.8%, 46.1% and 56.4%.

Robustness ratio: Regarding the robustness value, we
calculate the ratio of best robustness values of plans retured
by PISA to those by DeFault. Note that in this comparison,
we consider only instances for which both planners return
valid plans. These ratios are: 8069.65 in Freecell, 166.36
in Parcprinter, 1.78 in Rover, 135.97 in Satellite and 898.66
in Zenotravel. Thus, on average, PISA produces plans with
significantly higher robustness than DeFault.

Planning time: Not only does PISA produce higher qual-
ity for plans, it also takes much less planning time.11 To
demonstrate this, we first consider instances for which the
two approaches return best plans with the same robustness
values. Figure 2 shows the total time taken by PISA and
DeFault in these instances. We observe that in 95 instances
of Freecell domain that the two approaches produce equally
robust plans, PISA is faster in 72 instances, and slower in
the remaining 23 instances—thus, it wins in 75.8% of in-
stances. Comparing the ratio of planning times, PISA is ac-
tually 654.7x faster, on average, than DeFault in these 95 in-
stances. These faster vs. slower instances and the planning
time ratio are 8 vs. 2 (80.0%) and 29.6x for Parcprinter, 103
vs. 10 (91.1%) and 1665x for Rover, 281 vs. 28 (90.9%)

10We ignore instances for which both planners fail to return any
valid plan; for comparing instances with equal robustness, we only
consider those for which both planner return valid plans.

11In running time comparison, we consider only instances in
which both planners produce valid plans within the time bound.

and 562.7x for Satellite, 329 vs. 86 (79.3%) and 482.9x for
Zenotravel.

What is more interesting, in many cases, PISA is faster
than Default, even when it produces significantly more ro-
bust plans. To show this, we again considered the last plan
returned by each planner within the time bound, and the
time when it was returned. Even for instances where the
plan returned by PISA has strictly better robustness than
that returned by DeFault, PISA often managed to return its
plan significantly earlier. For example, in 65.4% of such in-
stances in Freecell domain (315 out of 482), the planning
time of PISA is also faster. These percentanges of instances
in Parcprinter, Rover, Satellite and Zenotravel are 52.8% (28
out of 53), 87.8% (144 out of 164), 55.9% (555 out of 992)
and 46.5% (491 out of 1057) respectively. We also notice
that PISA is faster than DeFault in synthesizing the first valid
plans (that is, plans π such that γ(π, I) ⊇ G) for most of
the instances in all domains: 84.9% (960 out of 1130) in-
stances in Freecell domain, 94% (141 out of 150) in Par-
cprinter, 98.1% (789 vs. 804) in Rover, 93.4% (1999 out of
2140) in Satellite and 92.4% (1821 out of 1971) in Zeno-
travel. We think that both the search and the fact that our
heuristic is sensitive to the robustness threshold, so that it
can perform pruning during search, contribute to the perfor-
mance of PISA in planning time.

Comparing with baseline approaches: We also compare
PISA with an approach in which the relaxed plans are ex-
tracted in the similar way used in the FF planner (Hoffmann
and Nebel 2001). In this approach, all annotations on possi-
ble preconditions and effects are ignored during the relaxed
plan extraction. Note that all the other designs in PISA (such
as checking l(Σπk

∧ Σπ̃) against δ and the search algo-
rithm) still remain the same. Unlike the earlier comparison
with DeFault, incompleteness annotations are now applied
at the operator level. PISA outperforms this FF-like heuris-
tic approach in five domains: in particular, it produces better
plans in 72.9% and worse in 8.3% instances of the Depots
domain; similarly, 75.3% and 4.2% instances of Driverlog,
70.2% and 2.9% for Rover, 84.1% and 1.8% for Satellite,
61% and 8.3% in Zenotravel. PISA however is not as good
as this baseline approach in the other two domains: it returns
worse plans in 53.1% and only better in 12.4% instances of
Freecell; the corresponding percentages in Parcprinter are
50.5% and 13.1%.

In the second baseline approach, we use exact model
counting WMC(Σ) during the extraction of relaxed plans,
replacing the approximation l(Σ). This approach, as antici-
pated, spends most of the running time for the exact model
counting. The results are discouraging, thus we will not go
into the details.

6 Related Work
There are currently very few research efforts in automated
planning literature that explicitly consider incompletely
specified domain models. Garland and Lesh (2002) were
the first discussing incomplete actions and generating robust
plans under incomplete domain models. Their notion of plan
robustness, however, only has tenuous heuristic connections
with the likelihood of successful execution of plans. As
mentioned earlier, Weber & Bryce (2011) present a heuristic
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Figure 2: Total time in seconds (log scale) to generate plans with the same robustness by PISA and DeFault. Instances below
the red line are those in which PISA is faster.

state space planner, DeFault, for synthesizing robust plans.
While there are some surface similarities between our re-
laxed plan extraction techniques (e.g. like us, they also
propagate logical formulas for propositions over the plan-
ning graph), PISA’s extraction procedure is more effective in
assessing the robustness of the candidate extensions. In con-
trast, Default primarily uses the FF heuristic, with robust-
ness considerations used only for breaking ties during the re-
laxed plan extraction. Empirical results do demonstrate that
PISA’s approach results in significantly better performance.
Zhuo et al. (2013a; 2013b) considers planning and learn-
ing problems with action models known to be incomplete
but without any annotations on the incompleteness; they as-
sume instead a set of successful plan cases. The work by
Fox et al. (2006) also explores robustness of plans, but their
focus is on temporal plans under unforeseen execution-time
variations.

The work by Jensen et al. (2004) on k-fault plans
for non-deterministic planning focused on reducing the
“faults” in plan execution. It is however based on the
context of stochastic/non-deterministic actions rather than
incompletely specified ones. In Markov Decision Pro-
cesses (MDPs) and decision-theoretic planning, a fairly
rich body of work has been done for imprecise transition
probabilities (which essentially define models of actions in
a domain) and seeking for max-min or min-max optimal
policies, assuming that Nature acts optimally against the
agent (Satia and Lave Jr 1973; White III and Eldeib 1994;
Givan, Leach, and Dean 2000; Nilim and Ghaoui 2005;
Delgado, Sanner, and De Barros 2011).

7 Conclusion and Future Work

This paper addresses the planning problem with incomplete
STRIPS action models where annotations are provided for
possible preconditions and effects. We show that the prob-
lem of assessing plan robustness is #P−complete, and
propose an heuristic approach to generating robust plans.
Our approach utilizes the structure of plan correctness con-
straints to derive the lower and upper bounds for the plan
robustness, which are then used to effectively extract robust
relaxed plans. Our planner outperforms a state-of-the-art
planner handling incomplete domains, in most of the tested
domains, both in terms of plan quality and planning time.
We are developing planning approaches in scenarios where
both annotations and successful traces are also available.
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Algorithm 1: Extracting robust relaxed plan.

1 Input: A threshold δ ∈ [0, 1], a plan prefix πk, its correctness
constraints Σπk

, the relaxed planning graph G of T layers.
2 Output: 〈h(πk, δ), r〉 if success, or nothing if failure.
3 begin

4 π̃ ← 〈aG〉, s→aG
← L1, s+

→aG
← s+

k+1
.

5 if r ← CheckPlan(πk, δ, G) succeeds then
6 return 〈0, r〉, success.
7 end
8 〈Σπ̃, Q〉 ← InitializeConstraintsAndQueue(G,G).
9 r ← l(Σπk

∧Σπ̃).
10 while Q not empty do
11 Pop 〈p, a, t〉 from Q s.t. p ∈ Lt.
12 〈abest, lbest〉 ← best supporting action and its layer in

G.
13 if lbest = 0 or π̃ contains 〈abest, lbest〉 then
14 continue.
15 end
16 if p ∈ Pre(a) and p 6∈ s→a then
17 Insert 〈abest, lbest〉 into π̃.
18 end
19 else

20 r′ ← evaluate(abest, lbest, π̃).

21 if r′ > r then
22 Insert 〈abest, lbest〉 into π̃.
23 end

24 end
25 if 〈abest, lbest〉 inserted into π̃ then

26 Update s→abest
, s+

→abest
, s→a′ and s+

→a′ for all a′

succeeding abest in π̃.
27 Update Σπ̃ .
28 r ← l(Σπk

∧Σπ̃).
29 count← number of unsupported known

preconditions in π̃.
30 if count = 0 and r > δ then
31 return 〈|π̃| − 1, r〉, success.
32 end

33 for q ∈ Pre(abest) ∪ P̃ re(abest) \ s+
→abest

do
34 Push 〈q, abest, lbest〉 into Q.
35 end

36 end

37 end
38 if r > δ then return 〈|π̃| − 1, r〉, success.
39 return failure.

40 end
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