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Abstract

Current work in planning with preferences assumes that userpreferences are completely
specified, and aims to search for a single solution plan to satisfy these. In many real world
planning scenarios, however, the user may provide no knowledge or at best partial knowledge
of her preferences with respect to a desired plan. In such situations, rather than presenting a
single plan as the solution, the planner must instead provide aset of planscontaining one or
more plans that are similar to the one that the user really prefers. In this paper, we first propose
the usage of different measures to capture the quality of such plan sets. These are domain-
independent distance measures based on plan elements (suchas actions, states, or causal links)
if no knowledge of the user preferences is given, or theIntegrated Convex Preference(ICP)
measure in case incomplete knowledge of such preferences isprovided. We then investigate
various heuristic approaches to generate sets of plans in accordance with these measures, and
present empirical results that demonstrate the promise of our methods.1
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1. Introduction

In many real world planning scenarios, user preferences on plans are either unknown or at best
partially specified (c.f. Kambhampati (2007)). In such cases, the planner’s task changes from
finding asingleoptimal plan to finding asetof representative solutions or options. The user must
then be presented with this set in the hope that she will find atleast one of the constituent plans
desirable and in accordance with her preferences. Most workin automated planning ignores this

1This work is an extension of the work presented in Srivastavaet al. (2007) and Nguyen et al. (2009).
∗Corresponding author.

∗∗Authors listed in alphabetical order, with the exception ofthe first and the last.
Email addresses:natuan@asu.edu (Tuan Anh Nguyen),minh.b.do@nasa.gov (Minh Do),

gerevini@ing.unibs.it (Alfonso Emilio Gerevini),ivan.serina@unibz.it (Ivan Serina),
sbiplav@in.ibm.com (Biplav Srivastava),rao@asu.edu (Subbarao Kambhampati)

Preprint submitted to Artificial Intelligence April 13, 2012

*Manuscript
Click here to view linked References

http://ees.elsevier.com/artint/viewRCResults.aspx?pdf=1&docID=561&rev=2&fileID=36154&msid={01AF5337-3FC3-41DA-93A5-86F76FBBFA1C}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

reality, and assumes instead that user preferences (when expressed) will be provided in terms of
a completely specified objective function.

In this article, we study the problem of generating aset of plansusing partial knowledge of
the user preferences. This set is generated in the hope that the user will find at least one desirable
according to her preferences. Specifically, we consider twoqualitatively distinct scenarios:

• The planner is aware that the user has some preferences on thesolution plan, but it is not
provided with any knowledge on those preferences.

• The planner is provided with incomplete knowledge of the user preferences in the form
of planattributes(such as the duration or cost of a flight, or the importance of delivering
all priority packages on time in a logistics problem). Each of these plan attributes has a
different and unknown degree of importance, represented byweightsor trade-offvalues.
In general, users find it hard to indicate the exact value of a trade-off, but are more likely to
indicate that one attribute is more (or less) important thananother. For instance, a business
executive may consider the duration of a flight as a more important factor than its cost.
Incompletely specified preferences such as these can be modeled with a probability distri-
bution on weight values,2 and can therefore be assumed as input to the planner (together
with the attributes themselves).

In both of the cases above, our focus is on returning a set of plans. In principle, a larger plan
set implies that the user has a better chance of finding the plan that she desires; however, there
are two problems—one computational, and the other comprehensional. Plan synthesis, even for
a single plan, is costly in terms of computational resourcesused; for a large set of plans, this cost
only increases. The comprehensional problem, moreover, isthat it is unclear if the user will be
able to completely inspect a set of plans in order to find the plan she prefers. What is clearly
needed, therefore, is the ability to generate a set of plans with the highest chance of including the
user’s preferred plan among all sets ofbounded(small) number of plans. An immediate challenge
in this direction is formalizing what it means for ameaningfulset of plans—in other words, we
want to define aquality measurefor plan sets given an incomplete preference specification.

We propose different quality measures for the two scenarioslisted above. In the extreme
case where the user is unable to provide any knowledge of her preferences, we define a spectrum
of distance measures between two plans based on their syntactic features in order to define the
diversitymeasure of plan sets. These measures can be used regardless of the user preferences,
and by maximizing the diversity of a plan set we increase the chance that the set is uniformly
distributed in the unknown preference space. This makes it more likely that the set contains a
plan that is close to the one desired by the user.

The quality measure can be refined further when some knowledge of the user preferences is
provided. We assume that it is specified as a convex combination of the plan attributes mentioned
above, and incomplete in the sense that a distribution of trade-off weights, not their exact val-
ues, is available. The complete set of best plans (plans withthe best value function) can then be
pictured as the lower convex-hull of the Pareto set on the attribute space. To measure the qual-
ity of any (bounded) set of plans on the complete optimal set,we adapt the idea ofIntegrated
Preference Function(IPF) (Carlyle et al., 2003), and in particular its special case, theIntegrated

2If there is no prior information about this probability distribution, one option is to initialize it with the uniform
distribution and gradually improve it based on interactionwith the user.
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Convex Preference(ICP). This measure was developed in the Operations Research (OR) com-
munity in the context of multi-criteria scheduling, and is able to associate a robust measure of
representativeness with any set of solution schedules (Fowler et al., 2005).

Armed with these quality measures, we can formulate the problem of planning with partial
user preferences as finding a bounded set of the plans that hasthe best quality value. Our next
contribution therefore is to investigate effective approaches for using quality measures to search
for a high quality plan set efficiently. For the first scenario—when the preference specification
is not provided—two representative planning approaches are considered. The first, GP-CSP (Do
and Kambhampati, 2001), typifies the issues involved in generating diverse plans in bounded
horizon compilation approaches; while the second, LPG (Gerevini et al., 2003), typifies the
issues involved in modifying the heuristic search planners. Our investigations with GP-CSP
allow us to compare the relative difficulties of enforcing diversity with each of the three different
distance measures defined in the forthcoming sections. WithLPG, we find that the proposed
quality measure makes it more effective in generating plan sets over large problem instances.
For the second case—when part of the user preferences is provided—we also present a spectrum
of approaches that can solve this problem efficiently. We implement these approaches on top of
Metric-LPG (Gerevini et al., 2008). Our empirical evaluation compares these approaches both
among themselves as well as against the methods for generating diverse plans ignoring the partial
preference information, and the results demonstrate the promise of our proposed solutions.

The paper is organized as follows. We first discuss related work in the next section. Section 3
describes fundamental concepts in preferences and formal notations. In Section 4, we formalize
quality measures of plan set in the two scenarios discussed above. Sections 5 and 6 discuss
our various heuristic approaches to generate plan sets, together with the experimental results.
Section 7 gives the discussion including the limitations ofour work. We finish the paper with the
conclusion and future work in Section 8.

2. Related Work

There are currently very few research efforts in the planning literature that explicitly consider in-
completely specified user preferences during planning. Themost common approach for handling
multiple objectives is to assume that a specific way of combining the objectives is available (Re-
fanidis and Vlahavas, 2003; Do and Kambhampati, 2003), and then search for an optimal plan
with respect to this function. In a sense, such work can be considered as assuming a complete
specification of user preferences. Other relevant work includes (Bryce et al., 2007), in which the
authors devise a variant of the LAO* algorithm to search for aconditional plan with multiple
execution options for each observation branch, such that each of these options is non-dominated
with respect to objectives like probability and cost to reach the goal.

Our work can be seen as complementing the current research inplanning with preferences.
Under the umbrella of planning with preferences, most current work in planning focuses on
synthesizing either a single solution plan under the assumption that the user has no preferences,
or a single best solution assuming that a complete knowledgeof the preferences is given to the
planner. We, on the other hand, address the problem of synthesizing a set of plans when the
knowledge of user preferences is either completely unknown,3 or partially specified.

3Note that not knowing anything about the user’s preferencesis different from assuming that the user has no prefer-
ences.
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In the context of decision-theoretic planning, some work has considered Markov Decision
Processes withimprecisereward functions, which are used to represent user preferences on the
visited states during execution. These methods however assume that the true reward function is
revealed only during the execution of policies, whereas in our setting the incomplete knowledge
about user preferences is resolved after the synthesis of plans but before plan execution (with
some required effort from the user). Many different notionsof optimality for policies have been
defined with respect to the incomplete reward function, and the aim is to search for an optimal
policy. Theminimax regretcriterion (Regan and Boutilier, 2009, 2010; Xu and Mannor, 2009)
has been defined for the quality of policies when thetrue reward function is deterministic but
unknown in a given set of functions. This criterion seeks an optimal policy that minimizes
the loss (in terms of the expected discounted reward) assuming the presence of an adversary
who selects a reward function, among all possible ones, to maximize the loss should a policy
be chosen. Another criterion, calledmaximin, maximizes the worst-case expected reward also
assuming an adversary acting optimally against the agent (McMahan et al., 2003).

Incomplete knowledge of user preferences can also be resolved with some effort from the
userduring plan generation. This idea unfortunately has not been considered in previous work
on automated planning with preferences; there is however some work in two related areas, de-
cision theory and preference elicitation. In (Chajewska etal., 2000), the user is provided with a
sequence of queries, one at a time, until an optimal strategywith respect to the refined prefer-
ence model meets a stopping criterion, which is then output to the user. That work ignores the
user’s difficulty in answering questions that are posted, and instead emphasizes the construction
of those which will give the best value of information at every step. This issue is overcome by
(Boutilier, 2002) which takes into account the cost of answering future elicitation questions in or-
der to reduce the user’s effort. Boutilier et al. (2010) consider the preference elicitation problem
in which the incompleteness in user preferences is specifiedon both the set of features and the
utility function. In systems implementing the example-critiquing interaction mechanism (e.g.,
Viappiani et al. (2006), Linden et al. (1997)), a user critiques examples or options presented by
the system, and this information is then used to revise the preference model. The process contin-
ues until the user can pick a final choice from thek examples presented. There is one important
difference between these methods and ours: the “outcomes” or “configurations” in these scenar-
ios are considered given upfront (or can be obtained with lowcost), whereas a feasible solution
in many planning domains is computationally expensive to synthesize. As a result, an interactive
method in whicha sequence of plans or sets of plansneeds to be generated for critiquing may
not be suitable for our applications. Our approach, which presents a set of plans to the user to
select, requires less effort from the user and at the same time avoids presenting a single optimal
plan according to pessimistic or optimistic assumptions, such as those used in the minimax regret
and maximin criteria.

The problem of reasoning with partially specified preferences has also long been studied
in multi-attribute utility theory, though this work is alsodifferent from ours when ignoring the
computation cost of “alternatives”. Given prior preference statements on how the user com-
pares two alternatives, Hazen (1986) considers additive and multiplicative utility functions with
unknown scaling coefficients, which represents the user partial preferences, and proposes al-
gorithms for the consistency problem (i.e., if there existsa complete utility function consistent
with the prior preferences), the dominance problem (i.e., whether the prior information implies
that one alternative is preferred to another), and the potential optimality problem (i.e., if there
exists a complete utility function consistent with the prior preferences under which a particular
alternative is preference optimal). Ha and Haddawy (1999) addressed the last two problems for
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multi-linear utility functions with unknown coefficients.These efforts are similar to ours in how
the user preferences are partially represented. However, similar to the example-critiquing work
mentioned above, they assume that the user is able to providepairwise comparison between alter-
natives, which is then used to further constrain the set of complete utility functions representing
user preferences.

Our approach to generating diverse plan sets to cope with planning scenarios without knowl-
edge of user preferences is in the same spirit as (Tate et al.,1998) and (Myers, 2006; Myers and
Lee, 1999), though for different purposes. Myers, in particular, presents an approach to generate
diverse plans in the context of an HTN planner by requiring the meta-theory of the domain to
be available and by using bias on the meta-theoretic elements to control search (Myers and Lee,
1999). The metatheory of the domain is defined in terms of pre-defined attributes and their pos-
sible values covering roles, features and measures. Our work differs from this in two respects.
First, we focus on domain-independent distance measures. Second, we consider the computation
of diverse plans in the context of domain independent planners.

The problem of finding multiple butsimilar plans has been considered in the context of
replanning (Fox et al., 2006). Our work focuses on the problem of finding diverseplans by
a variety of measures when the user preferences exist but areeither completely unknown or
partially specified.

Outside the planning literature, our closest connection isfirst to the work by Gelain et al.
(2010), who considersoftconstraint satisfaction problems (CSPs) with incomplete preferences.
These are the problems where quantitative values of some constraints that represent their prefer-
ences are unspecified. Given such incomplete preferences, the authors are interested in finding
a single solution that is “necessarily” optimal (possibly with some effort from the user), i.e. an
assignment of variables that is optimal in all possible waysthat the currently unspecified pref-
erences can be revealed. In a sense, this notion of optimality is very similar to the maximin
criterion when seeking a solution that is optimal even with the “worst” selection of the unspeci-
fied preferences. Hebrard et al. (2005) use a model closer to ours that focuses on the problem of
finding similar/dissimilar solutions for CSPs, assuming that a domain-specific distance measure
between two solutions is already defined. It is instructive to note that unlike CSPs with finite vari-
able domains, where the number of potential solutions is finite (albeit exponential), the number
of distinct plans for a given problem can be infinite. Thus, effective approaches for generating a
good quality set of plans are even more critical.

The challenges in finding set of interrelated plans also bearsome tangential similarities to
the work in other research areas and applications. In information retrieval, Zhang et al. (2002)
describe how to return relevant as well as novel (non-redundant) documents from a stream of
documents; their approach is to first find relevant docs and then find non-redundant ones. In
adaptive web services composition, the causal dependencies among some web services might
change at the execution time, and as a result the web service engine wants to have a set of diverse
plans/compositions such that if there is a failure while executing one composition, an alternative
may be used which is less likely to be failing simultaneously(Chafle et al., 2006). However, if
a user is helping in selecting the compositions, the plannercould be first asked for a set of plans
that may take into account the user’s trust in some particular sources and when she selects one
of them, it is next asked to find plans that are similar to the selected one. Another example of
the use of diverse plans can be found in (Memon et al., 2001) inwhich test cases for graphical
user interfaces (GUIs) are generated as a set of distinct plans, each corresponding to a sequence
of actions that a user could perform, given the user’s unknown preferences on how to interact
with the GUI to achieve her goals. The capability of synthesizing multiple plans would also have
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Figure 1: The planning problem with unknown (A) and partially known (B) user preferences can be reformulated as the
problem of synthesizing plan-sets with complete preferences over plan-sets (C).

potential application in case-based planning (e.g., Serina (2010)) where it is important to have
a plan set satisfying a case instance. These plans can be different in terms of criteria such as
resources, makespan and cost that can only be specified in theretrieval phase.

The primary focus of our paper are scenarios where the end user is interested in single plans,
but her preferences on that single plan are either unknown orpartially known to the planner. Our
work shows that an effective technique for handling these scenarios is to generate a set of diverse
plans and present them to the user (so she can select the single plan she is most interested in).
While we came to sets of plans as anintermediate stepfor handling lack of preference knowledge
about single plans, there are also applications where the end user is in fact interested insets of
plans(a.k.a “plan-sets”), and has preferences over these plan-sets. Techniques for handling this
latter problem do overlap with the techniques we develop in this paper, but it is important to
remember their distinct motivations. Figure 1 makes these distinctions clear by considering two
orthogonal dimensions. The X-axis is concerned with whether the end user is interested in single
plans or plan-sets. The Y-axis is concerned with the degree of the knowledge of user preferences.

In this space, traditional planning with preferences corresponds to (single-plan, full-
knowledge). The problems we are considering in this paper are (single-plan,no-knowledge)
and (single-plan,partial-knowledge), respectively. A contribution of our work is to show
that these two latter problems can be reformulated as (plan-set, full-knowledge), where the
quality of plan-sets is evaluated by the internal diversitymeasures we will develop. There are
also compelling motivations to study the (plan-set, full-knowledge) problem in its own
right if the end user is explicitly interested in plan-sets.This is the case, for example, in appli-
cations such as intrusion detection (Boddy et al., 2005), where the objective is to come up with
a set of plans that can inhibit system breaches, or option generation in mission planning, where
the commander wants a set of options not to immediately commit to one of them, but rather to
study their trade-offs.

The techniques we develop in this paper are related but not equivalent to the techniques
and inputs for solving that plan-set generation problem. Inparticular, when the end users are

6
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interested in plan sets, they may have preferences on plan-sets, not on single plans.4 This means
that (i) we need a language support for expressing preferences on plan sets such as the work on
DD-PREF language (desJardins and Wagstaff, 2005), and (ii)our planner has to take as input
and support a wide variety of plan-set preferences (in contrast to our current system where the
plan-set preference is decided internally—in terms of distance measures for unknown (single
plan) preference case, and in terms of IPF measure for partially known preference cases).5

3. Background and Notation

Given a planning problem with the set of solution plansS, a user preferencemodelis a transitive,
reflexive relation inS×S, which defines an ordering between two plansp andp′ in S. Intuitively,
p � p′ means that the user prefersp at least as much asp′. Note that this ordering can be
either partial (i.e. it is possible that neitherp � p′ nor p′ � p holds—in other words, they are
incomparable), or total (i.e. eitherp � p′ or p′ � p holds). A planp is considered (strictly) more
preferred than a planp′, denoted byp ≺ p′, if p � p′, p′ 6� p, and they are equally preferred if
p � p′ andp′ � p. A planp is an optimal (i.e., most preferred) plan ifp � p′ for any other plan
p′. A plan setP ⊆ S is considered more preferred thanP ′ ⊆ S, denoted byP ≪ P ′, if p ≺ p′

for anyp ∈ P andp′ ∈ P ′, and they are incomparable if there existsp ∈ P andp′ ∈ P ′ such
thatp andp′ are incomparable.

The ordering� implies a partition ofS into disjoint plan sets (orclasses) S0, S1, ... (S0 ∪
S1 ∪ ... = S, Si ∩ Sj = ∅) such that plans in the same set are equally preferred, and for any
setSi, Sj , eitherSi ≪ Sj , Sj ≪ Si, or they are incomparable. The partial ordering between
these sets can be represented as a Hasse diagram (Birkhoff, 1948) where the sets are vertices,
and there is an (upward) edge fromSj to Si if Si ≪ Sj and there is not anySk in the partition
such thatSi ≪ Sk ≪ Sj . We denotel(Si) as the “layer” of the setSi in the diagram, assuming
that the most preferred sets are placed at the layer 0, andl(Sj) = l(Si) + 1 if there is an edge
fromSj toSi. A plan in a set at a layer of smaller value, in general, is either more preferred than
or incomparable with ones at layers of higher values.6 Figure 2 shows two examples of Hasse
diagrams representing a total and partial preference ordering between plans. We will use this
representation of plan sets in Section 4 to justify the design of our quality measures for plan sets
when no knowledge of user preferences is available.

4This is akin to a college having explicit preferences on its freshman classes—such as student body diversity—over
and above their preferences on individual students.

5As an analogy, partial order planning was originally invented to speed up plan generation in classical planning—
where the end solutions are all action sequences. Of course,the techniqueof partial order planning is also useful when
the end user is interested not in action sequences butconcurrent plans. In this case however, we need a preference
language that allows the user to express preferences over concurrent plans, and we will also have to relax some specific
simplifications in normal partial order planners—such as single contributor causal link semantics. Another interesting
analogy is between MDP with discrete state space which becomes POMDPS in the context of partial observability. The
POMDPS can be handled by compiling them back to MDPs but with continuous state spaces (specifically, MDPs in the
space of belief states). It is also possible for an end user tobe interested in (fully observable) MDPs in continuous state
spaces. While this problem is related to the problem of solving POMDPs as MDPs in belief-space, it also has important
differences. In particular, the reward function in the continuous MDP will be in terms of continuous states, while in
the case of POMDPs is still in terms of the underlying discrete states. Further, some of the efficiency tricks that the
techniques for POMDPs employ based on the fact that the valuefunction has to be convex in the belief-space–will no
longer hold in general continuous MDPs.

6If � is a total ordering, then plans at a layer of smaller value arestrictly more preferred than ones at a layer of higher
value.
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Figure 2: The Hasse diagrams and layers of plan sets implied by two preference models. In (a),S1 ≪ S2 ≪ S3,
and any two plans are comparable. In (b), on the other hand,S1 ≪ S2 ≪ S4, S1 ≪ S3, and each plan inS3 is
incomparable with plans inS2 andS4.

The preference model of a user can be explicitly specified by iterating the set of plans and
providing the ordering between any two of them, and in this case answering queries such as
comparing two plans, finding a most preferred (optimal) planbecomes an easy task. This is,
however, practically infeasible since synthesizing a planin itself is hard, and the solution space
of a planning problem can be infinite. Many preferencelanguages, therefore, have been proposed
to represent the relation� in a more compact way, and serve as starting points foralgorithmsto
answer queries. Most preference languages fall into the following two categories:

• Quantitative languages define avalue functionV : S → R which assigns a real number to
each plan, with a precise interpretation thatp � p′ ⇐⇒ V (p) ≤ V (p′). Although this
function is defined differently in many languages, at a high level it combines the user pref-
erences on various aspects of plan that can be measured quantitatively. For instance, in the
context of decision-theoretic planning (Boutilier et al.,1999), the value function of a pol-
icy is defined as the expected rewards of states that are visited when the policy executes. In
partial satisfaction (over-subscription) planning (PSP)(Smith, 2004; Van Den Briel et al.,
2004), the quality of plans is defined as its total rewards of soft goals achieved minus
its total action costs. In PDDL2.1 (Fox and Long, 2003), the value function is an arith-
metic function of numerical fluents such as plan makespans, fuel used etc., and in PDDL3
(Gerevini et al., 2009) it is enhanced with individual preference specifications over state
trajectory constraints, defined as formulae with modal operators having their semantics
consistent with that used for modal operators in linear temporal logic (Pnueli, 1977) and
other modal temporal logics.

• Qualitative languages provide qualitative statements that are more intuitive for lay users to
specify. A commonly used language of this type isCP-networks(Boutilier et al., 2004),
where the user can specify her preference statements on values of plan attributes, possibly
given specification of others (for instance, “Among ticketswith the same prices, I prefer
airline A to airline B.”). Another example isLPP (Bienvenu et al., 2006) in which the
statements can be specified using LTL formulae, and possiblybeing aggregated in different
ways.

8
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Figure 3: The metamodel (Brafman and Domshlak, 2009). The user preference model is compactly represented by a
preference language, on which algorithms perform tasks of answering queries.

Figure 3 shows the conceptual relation of preference models, languages and algorithms. We
refer the reader to the work by Brafman and Domshlak (2009) for a more detailed discussion
on this metamodel, and by Baier and McIlraith (2009) for an overview of different preference
languages used in planning with preferences.

From the modeling point of view, in order to design a suitablelanguage capturing the user
preference model, the modeler should be provided with some knowledge of the user’s interest
that affects the way she evaluates plans (for instance, flight duration and ticket cost in a travel
planning scenario). Such knowledge in many cases, however,cannot be completely specified.
Our purpose therefore is to present a bounded set of plans to the user in the hope that it will
increase the chance that she can find a desired plan. In the next section, we formalize the quality
measures for plan sets in two situations where either no knowledge of the user preferences or
only part of them is given.

4. Quality Measures for Plan Sets

4.1. Syntactic Distance Measures for Unknown Preference Cases

We first consider the situation in which the user has some preferences for solution plans, but the
planner is not provided with any knowledge of such preferences. It is therefore impossible for the
planner to assume any particular form of preference language representing the hidden preference
model. There are two issues that need to be considered in formalizing a quality measure for plan
sets:

• What are the elements of plans that can be involved in a quality measure?

• How should a quality measure be defined using those elements?

For the first question, we observe that even though users are normally interested in some
high levelfeatures of plans that are relevant to them, many of those features can be considered as
“functions” ofbase levelelements of plans. For instance, the set of actions in the plan determines
the makespan of a (sequential) plan, and the sequence of states when the plan executes gives the
total reward of goals achieved. We consider the following three types of base level features of
plans which could be used in defining quality measure, independently of the domain semantics:

• Actions that are present in plans, which define various high level features of the plans such
as its makespan, execution cost etc. that are of interest to the user whose preference model
could be represented with preference languages such as in PSP and PDDL2.1.

9
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Basis Pros Cons
Actions Does not require No problem information

problem information is used
States Not dependent on any specificNeeds an execution

plan representation simulator to identify states
Causal links Considers causal proximity Requires domain theory

of state transitions (action)
rather than positional
(physical) proximity

Table 1: The pros and cons of different base level elements ofplan.

• Sequence of states that the agent goes through, which captures the behaviors resulting from
the execution of plans.In many preference languages defined using high level features of
plans such as the reward of goals collected (e.g., PSP), of the whole state (e.g., MDP),
or the temporal relation between propositions occur in states (e.g. PDDL3,PP (Son and
Pontelli, 2006) andLPP (Fritz and McIlraith, 2006)), the sequence of states can affect the
quality of plan evaluated by the user.

• The causal links representing how actions contribute to thegoals being achieved, which
measures the causal structures of plans.7 These plan elements can affect the quality of
plans with respect to the languages mentioned above, as the causal links capture both the
actions appearing in a plan and the temporal relation between actions and variables.

A similar conceptual separation of features has also been considered recently in the context
of case-based planning by Serina (2010), in which planning problems were assumed to be well
classified, in terms of costs to adapt plans of one problem to solve another, in someunknown
high level feature space. The similarity between problems in the space was implicitly defined
using kernel functions of their domain-independent graph representations. In our situation, we
aim to approximate quality of plan sets on the space of features that the user is interested in using
distance between plans with respect to base level features of plans mentioned above (see below).

Table 1 gives the pros and cons of using the different base level elements of plan. We note
that if actions in the plans are used in defining quality measure of plan sets, no additional problem
or domain theory information is needed. If plan behaviors are used as base level elements, the
representation of the plans that bring about state transition becomes irrelevant since only the
actual states that an execution of the plan will go through are considered. Hence, we can now
compare plans of different representations, e.g., four plans where the first is a deterministic plan,
the second is a contingent plan, the third is a hierarchical plan and the fourth is a policy encoding
probabilistic behavior. If causal links are used, then the causal proximity among actions is now
considered rather than just physical proximity in the plan.

Given those base level elements, the next question is how to define a quality measure of plan
sets using them. Recall that without any knowledge of the user preferences, there is no way
for the planner to assume any particular preference language, because of which the motivation
behind the choice of quality measure should come from the hidden user preference model. Given

7A causal linka1 → p− a2 records that a propositionp is produced bya1 and consumed bya2.
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a Hasse diagram induced from the user preference model, ak-plan set that will be presented to
the user can be considered to be randomly selected from the diagram. The probability of having
one plan in the set classified in a class at the optimal layer ofthe Hasse diagram would increase
when the individual plans are more likely to be at different layers, and this chance in turn will
increase if they are less likely to be equally preferred by the user.8 On the other hand, the effect
of base level elements of a plan on high level features relevant to the user suggests thatplans
similar with respect to base level features are more likely to be close to each other on the high
level feature space determining the user preference model.

In order to define a quality measure using base level featuresof plans, we proceed with the
following assumption:plans that are different from each other with respect to the base level
features are less likely to be equally preferred by the user,in other words they are more likely to
be at different layers of the Hasse diagram. With the purpose of increasing the chance of having
a plan that the user prefers, we propose the quality measure of plan sets as itsdiversitymeasure,
defined using the distance between two plans in the set with respect to a base level element. More
formally, the quality measureζ : 2S → R of a plan setP can be defined as either the minimal,
maximal, or average distance between plans:

• Minimal distance:

ζmin(P) = min
p,p′∈P

δ(p, p′) (1)

• Maximal distance:

ζmax(P) = max
p,p′∈P

δ(p, p′) (2)

• Average distance:

ζavg(P) =

(

|P|

2

)−1

×
∑

p,p′∈P

δ(p, p′) (3)

whereδ : S × S → [0, 1] is the distance measures between two plans.

4.1.1. Distance measures between plans
There are various choices on how to define the distance measureδ(p, p′) between two plans using
plan actions, sequence of states or causal links, and each way can have different impact on the
diversity of plan set on the Hasse diagram. In the following,we propose distance measures in
which a plan is considered as (i) a set of actions and causal links, or (ii) sequence of states the
agent goes through, which could be used independently of plan representation (e.g. total order,
partial order plans).

8To see this, consider a diagram withS1 = {p1, p2} at layer 0,S2 = {p3} andS3 = {p4} at layer 1, and
S4 = {p5} at layer 2. Assuming that we randomly select a set of 2 plans. If those plans are known to be at the same
layer, then the chance of having one plan at layer 0 is1

2
. However, if they are forced to be at different layers, then the

probability will be 3

4
.
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• Plan as a set of actions or causal links: given a planp, let A(p) andC(p) be the set of
actions or causal links ofp. The distance between two plansp andp′ can be defined as the
ratio of the number of actions (causal links) that do not appear in both plans to the total
number of actions (causal links) appearing in one of them:

δa(p, p
′) = 1−

|A(p) ∩ A(p′)|

|A(p) ∪ A(p′)|
(4)

δcl(p, p
′) = 1−

|C(p) ∩ C(p′)|

|C(p) ∪ C(p′)|
(5)

• Plan as a sequence of states: given two sequence of states(s0, s1, ..., sk) and(s′0, s
′
1, ..., s

′
k′)

resulting from executing two plansp andp′, and assume thatk′ ≤ k. Since the two se-
quences of states may have different lengths, there are various options in defining distance
measure betweenp andp′, and we consider here two options. In the first one, it can be
defined as the average of the distances between state pairs(si, s

′
i) (0 ≤ i ≤ k′), and each

statesk′+1,... sk is considered to contribute maximally (i.e., one unit) intothe difference
between two plans:

δs(p, p
′) =

1

k
× [

k′

∑

i=1

∆(si, s
′
i) + k − k′] (6)

On the other hand, we can assume that the agent continues to stay at the goal states′k′ in
the next(k − k′) time steps after executingp′, and the measure can be defined as follows:

δs(p, p
′) =

1

k
× [

k′

∑

i=1

∆(si, s
′
i) +

k
∑

i=k′+1

∆(si, s
′
k′)] (7)

The distance measure∆(s, s′) between two statess, s′ used in those two measures is
defined as

∆(s, s′) = 1−
|s ∩ s′|

|s ∪ s′|
(8)

These distance metrics would consider long plans to be distant from short plans. In the ab-
sence of information about user preferences, we cannot ruleout the possibility that the unknown
preference might actually favor longer plans (e.g., it is possible that a longer plan has cheaper
actions, making it attractive for the user). In the implementation of a system for computing di-
verse plans, while these distance measures affect which part of the (partial plan) search space a
planner tends to focus on, in general the length of resultingplans especially depends on whether
the search strategy of the planner attempts to minimize it. In our experiments, we will use two
types of planners employing exhaustive search and local search, respectively. For the second,
which does not attempt to minimize plan length, we will introduce additional constraints into the
search mechanism that, by balancing the differences in the generated diverse plans, also attempts
to control the relative size of resulting plans.

12
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Figure 4: Example illustrating plans with base-level elements. aI andaG denote dummy actions producing the initial
state and consuming the goal propositions, respectively (see text for more details).

Example: Figure 4 shows three plansp1, p2 andp3 for a planning problem where the initial
state is{r1} and the goal propositions are{r3, r4}. The specification of actions are shown in
the table. The action sets of the first two plans ({a1, a2, a3} and{a1, a2, a4}) are quite similar
(δa(p1, p2) = 0.5), but the causal links which involvea3 (a2 → r3 − a3, a3 → r4 − aG) anda4
(aI → r1−a4, a4 → r4−aG) make their difference more significant with respect to causal-link
based distance (δcl(p1, p2) = 4

7
). Two other plansp1 andp3, on the other hand, are very different

in terms of action sets (and therefore the sets of causal links): δa(p1, p3) = 1, but they are closer
in term of state-based distance (13

18
as defined in Equation 6, and0.5 if defined in Equation 7).

4.2. Integrated Preference Function (IPF) for Partial Preference Cases

We now discuss a quality measure for plan sets in the case whenthe user preference is partially
expressed. In particular, we consider scenarios in which the preference model can be repre-
sented by some quantitative language with an incompletely specified value function of high level
features. As an example, the quality of plans in PDDL2.1 (Foxand Long, 2003) and PDDL3
(Gerevini et al., 2009) are represented by a metric functioncombining metric fluents and prefer-
ence statements on state trajectory with parameters representing their relative importance. While
providing a convenient way to represent preference models,such parameterized value functions
present an issue of obtaining reasonable values for the relative importance of the features. A
common approach to model this type of incomplete knowledge is to consider those parameters
as a vector of random variables, whose values are assumed to be drawn from a distribution. This
is the representation that we will follow.

To measure the quality of plan sets, we propose the usage ofIntegrated Preference Function
(IPF) (Carlyle et al., 2003), which has been used to measure the quality of a solution set in a wide
range of multi-objective optimization problems. The IPF measure assumes that the user prefer-
ence model can be represented by two factors: (1) a probability distributionh(α) of parameter

13
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vectorα, whose domain is denoted byΛ, such that
∫

α∈Λ
h(α) dα = 1 (in the absence of any

special information about the distribution,h(α) can be assumed to be uniform), and (2) a value
functionV (p, α) : S × Λ → R combines different objective functions into a single real-valued
quality measure for planp. We assume that such objective functions represent aspectsof plans
that have to be minimized, such as makespan and execution cost. This incomplete specification
of the value function represents a set of candidate preference models, for each of which the user
will select a different plan, the one with the best value, from a given plan setP ⊆ S. The IPF
value of solution setP is defined as:

IPF (P) =

∫

α∈Λ

h(α)V (pα, α) dα (9)

with pα = argmin
p∈P

V (p, α), i.e., the best solution inP according toV (p, α) for each givenα

value. Letp−1
α be a range ofα values for whichp is an optimal solution according toV (p, α),

i.e.,V (p, α) ≤ V (p′, α) for all α ∈ p−1
α , p′ ∈ P \ {p}.

As pα is piecewise constant, theIPF (P) value can be computed as:

IPF (P) =
∑

p∈P

[
∫

α∈p
−1

α

h(α)V (p, α) dα

]

. (10)

LetP∗ = {p ∈ P : p−1
α 6= ∅}; then we have:

IPF (P) = IPF (P∗) =
∑

p∈P∗

[
∫

α∈p
−1

α

h(α)V (p, α) dα

]

. (11)

SinceP∗ is the set of plans that are optimal for some specific parameter vector,IPF (P)
now can be interpreted as the expected value that the user canget by selecting the best plan in
P . Therefore, the setP∗ of solutions (known aslower convex hullof P) with the minimal IPF
value is most likely to contain the desired solutions that the user wants, and in essence it is a
good representative of the plan setP .

The requirement forIPF (P) to exist is that the functionh(α)V (p, α) needs to be integrable
over thep−1

α domains.9 The complication in computing theIPF (P) value is in deriving a par-
tition of Λ, the domain ofα, into the rangesp−1

α for p ∈ P∗, and the computation of integration
over those ranges of the parameter vector. As we will describe, the computational effort to ob-
tain IPF (P) is negligible in our work with two objectives. Although it isbeyond the scope of
this article, we refer the readers to (Kim et al., 2006) for the calculation of the measure when
the value function is a convex combination of high number of objectives, and to (Bozkurt et al.,
2010) for the weighted Tchebycheff value function with two and three criteria.

In this work, in order to make our discussion on generating plan sets concrete, we will con-
centrate on metric temporal planning where each actiona ∈ A has a durationda and an execution
costca. The planner needs to find a planp = 〈a1, . . . , an〉, which is a sequence of actions that is
executable and achieves all goals. The two most common plan quality measures are:makespan,

9Although value function can take any form satisfying axiomsabout preferences, the user preferences in many real-
world scenarios can be represented or approximated with anadditive value function(Russell and Norvig, 2010), including
the setting in our application, which is integrable over theparameter domain. Sinceh(α) is integrable, so is the product
h(α)V (p, α) in those situations.
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which is the total execution time ofp; andplan cost, which is the total execution cost of all ac-
tions inp—both of them are high level features that can be affected by the actions in the plan. In
most real-world applications, these two criteria compete with each other: shorter plans usually
have higher cost and vice versa. We use the following assumptions:

• The desired objective function involves minimizing both components:time(p) measures
the makespan of the planp andcost(p) measures its execution cost.

• The quality of a planp is a convex combination:V (p, w) = w × time(p) + (1 − w) ×
cost(p), where weightw ∈ [0, 1] represents the trade-off between the two competing
objective functions.

• The belief distribution ofw over the range[0, 1] is known. If the user does not provide any
information or we have not learnt anything about the preference on the trade-off between
timeandcostof the plan, then the planner can assume a uniform distribution (and improve
it later using techniques such as preference elicitation).

Given that the exact value ofw is unknown, our purpose is to find a bounded representative
set of non-dominated10 plans minimizing the expected value ofV (p, w) with regard to the given
distribution ofw over[0, 1].

IPF for Metric Temporal Planning: The user preference model in our target domain of tempo-
ral planning is represented by a convex combination of thetimeandcostquality measures, and
the IPF measure now is calledIntegrated Convex Preference(ICP). Given a set of plansP∗, let
tp = time(p) andcp = cost(p) be the makespan and total execution cost of planp ∈ P∗, the
ICP value ofP∗ with regard to the objective functionV (p, w) = w× tp + (1−w)× cp and the
parameter vectorα = (w, 1 − w) (w ∈ [0, 1]) is defined as:

ICP (P∗) =

k
∑

i=1

∫ wi

wi−1

h(w)(w × tpi
+ (1− w) × cpi

)dw (12)

wherew0 = 0, wk = 1 andV (pi, w) ≤ V (p, w) for all p ∈ P∗ \ {pi} and everyw ∈
[wi−1, wi]. In other words, we divide[0, 1] into k non-overlapping regions such that in each
region(wi−1, wi) there is an optimal solutionpi ∈ P∗ according to the value function.

We select the IPF/ICP measure to evaluate our solution set for the following reasons:

• From the perspective ofdecision theory, presenting a plan setP ⊆ S to the user, among all
possible subsets ofS, can be considered as an “action” with possible “outcomes”p ∈ P
that can occur (i.e., being selected by the user) with probability

∫

α∈p
−1

α

h(α) dα. Since the
IPF (P) measures the expected utility ofP , presenting a set of plans with an optimal IPF
value is a rational action consistent with the current knowledge of the user preferences.

• If P1 dominatesP2 in the set Pareto dominancesense, thenIPF (P1) ≤ IPF (P2) for
any type of weight density functionh(α) (Carlyle et al., 2003), and this property also holds
with any scaling of the objective values for ICP measure (Fowler et al., 2005). Intuitively,
this means that if we “merge” those two plan sets, all nondominated plans “extracted” from
the resulting set are those inP1.

10A planp1 is dominated byp2 if time(p1) ≥ time(p2) andcost(p1) ≥ cost(p2) and at least one of the inequali-
ties is strict.
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Figure 5: Solid dots represent plans in the pareto set (p1, p2, p3, p5, p7). Connected dots represent plans in the lower
convex hull (p1, p3, p7) giving optimal ICP value for any distribution on trade-offbetweencostandtime.

• The value ofIPF (P) is monotonically nonincreasing over increasing sequencesof solu-
tion sets, and the set of plans optimal according to the utility functionV (p, α), i.e., the
efficient frontier, has the minimalIPF value (Carlyle et al., 2003). Thus, the measure can
be used as an indicator for the quality of a plan set during thesearch towards the efficient
frontier.

Empirically, extensive results on scheduling problems in (Fowler et al., 2005) have shown
that ICP measure“evaluates the solution quality of approximation robustly(i.e., similar to visual
comparison results) while other alternative measures can misjudge the solution quality”.

Example: Figure 5 shows our running example in which there are a total of 7 plans with their
time(p) andcost(p) values as follows:p1 = {4, 25}, p2 = {6, 22}, p3 = {7, 15}, p4 = {8, 20},
p5 = {10, 12}, p6 = {11, 14}, andp7 = {12, 5}. Among these 7 plans, 5 of them belong to
a pareto optimal set of non-dominated plans:Pp = {p1, p2, p3, p5, p7}. The other two plans
are dominated by some plans inPp: p4 is dominated byp3 andp6 is dominated byp5. Plans
in Pp are depicted in solid dots, and the set of plansP∗ = {p1, p3, p7} that are optimal for
some specific value ofw is highlighted by connected dots. In particular,p7 is optimal when
w ∈ [w0 = 0, w1 = 2

3
] wherew1 = 2

3
can be derived from the satisfaction of the constraints

V (p7, w) ≤ V (p, w), p ∈ {p1, p3}. Similarly,p3 andp1 are respectively optimal forw ∈ [w1 =
2

3
, w2 = 10

13
] andw ∈ [w2 = 10

13
, w3 = 1]. Assuming thath(w) is a uniform distribution, the

value ofICP (P) can therefore be computed as follows:
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ICP (P∗) =

∫ 2

3

0

h(w)V (p7, w)dw +

∫ 10

13

2

3

h(w)V (p3, w)dw +

∫ 1

10

13

h(w)V (p1, w)dw

=

∫ 2

3

0

[12w + 5(1− w)]dw +

∫ 10

13

2

3

[7w + 15(1− w)]dw +

+

∫ 1

10

13

[4w + 25(1− w)]dw

≈ 7.32.

In the next two Sections 5 and 6, we investigate the problem ofgenerating high quality plan
sets for two cases mentioned: when no knowledge about the user preferences is given, and when
part of it is given as input to the planner.

5. Generating Diverse Plan Set in the Absence of Preference Knowledge

In this section, we describe approaches to searching for a set of diverse plans with respect to a
measure defined with base level elements of plans as discussed in the previous section. In partic-
ular, we consider the quality measure of plan set as the minimal pair-wise distance between any
two plans, and generate a set of plans containingk plans with the quality of at least a predefined
thresholdd. As discussed earlier, by diversifying the set of plans on the space of base level fea-
tures, it is likely that plans in the set would cover a wide range of space of unknown high level
features, increasing the possibility that the user can select a plan close to the one that she prefers.
The problem is formally defined as follows:

dDISTANTkSET : FindP with P ⊆ S, | P | = k andζ(P) = min
p,q∈P

δ(p, q) ≥ d

where any distance measure between two plans formalized in Section 4.1.1 can be used to im-
plementδ(p, p′).

We now consider two representative state-of-the-art planning approaches in generating di-
verse plan sets. The first one is GP-CSP (Do and Kambhampati, 2001) representing constraint-
based planning approaches, and the second one is LPG (Gerevini et al., 2003) that uses an effi-
cient local-search based approach. We use GP-CSP to comparing the relation between different
distance measures in diversifying plan sets. On the other hand, with LPG we stick to the action-
based distance measure, which is shown experimentally to bethe most difficult measure to en-
force diversity (see below), and investigate the scalability of heuristic approaches in generating
diverse plans.

5.1. Finding Diverse Plan Set with GP-CSP

The GP-CSP planner (Do and Kambhampati, 2001) converts the planning graph of Graphplan
(Blum and Furst, 1997) into a CSP encoding, and solves it using a standard CSP solver. A plan-
ning graph is a data structure consisting of alternating levels of proposition set and action set.
The set of propositions present in the initial state is the proposition set at the zero-th level of the
graph. Given ak-level planning graph, all actions whose preconditions arepresent in the propo-
sition set of the levelk are introduced into the next levelk + 1. In addition, one “noop” action
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Figure 6: An example of (a portion of) a planning graph. At each level, propositions presenting in a previous one and
noop actions are omitted, and at levelk only the actions used to support the goals are shown for simplification.

is also added for each proposition at levelk, which are both the precondition and effect of the
action. The set of propositions at the levelk + 1 is then constructed by taking the union of addi-
tive effects of all actions at the same level. This expansionprocess also computes and propagates
a set of “mutex” (i.e., mutually exclusive) constraints between pairs of propositions and actions
at each level. At the first level, the computation starts by marking as mutex the actions that are
statically interfering with each other (i.e., their preconditions and effects are inconsistent). The
mutex constraints are then propagated as follows: (i) at level k, two propositions are mutually
exclusive if any action at levelk achieving one of them is mutually exclusive with all actions
at the same level supporting the other one; (ii) two actions at level k + 1 are mutex if they are
statically interfering or if one of the precondition of the first action is mutually exclusive with
one of the precondition of the second action.

The planning graph construction stops at a levelT at which one of the following conditions is
satisfied: (i) all goal propositions are present in the proposition set of levelT without any mutex
constraints between them, or (ii) two consecutive levels ofthe graph have the same sets of actions,
propositions and mutex constraints. In the first case, the Graphplan algorithm searches this graph
backward (i.e., from levelT ) for a valid plan, and continuing the planning graph expansion before
a new search if no solution exists. In the second condition, the problem is provably unsolvable.
Figure 6, which is taken from (Do and Kambhampati, 2001), shows an example of two levels
of a planning graph. The top-level goals areG1, ..., G4 supported by actionsA1, ..., A4 at the
same levelk. Each of these actions has preconditions in the set{P1, ..., P6} appearing at the
level k − 1, which are in turn supported by actionsA5, ..., A11 at that level. The action pairs
{A5, A9}, {A7, A11} and{A6, A8} are mutually exclusive, however these mutex relations are
not enough to make any pair of propositions at levelk − 1 mutually exclusive.

The GP-CSP planner replaces the search algorithm in Graphplan by first converting the plan-
ning graph data structure into a constraint satisfaction problem, and then invoking a solver to
find an assignment of the encoding, which represents a valid plan for the original planning prob-
lem. In the encoding, the CSP variables correspond to the predicates that have to be achieved at
different levels in the planning graph (different planningsteps) and their possible values are the
actions that can support the predicates. For each CSP variable representing a predicatep, there
are two special values: i)⊥: indicates that a predicate is not supported by any action and is false
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Variables: G1, ..., G4, P1, ..., P6

Domains:
G1 : {A1,⊥}, G2 : {A2,⊥}, G3 : {A3,⊥}, G4 : {A4,⊥}
P1 : {A5,⊥}, P2 : {A6, A11,⊥}, P3 : {A7,⊥}
P4 : {A8, A9,⊥}, P5 : {A10,⊥}, P6 : {A10,⊥}

Constraints (Mutex):
P1 = A5 =⇒ P4 6= A9

P2 = A6 =⇒ P4 6= A8

P2 = A11 =⇒ P3 6= A7

Constraints (Activity):
G1 = A1 =⇒ P1 6= ⊥ ∧ P2 6= ⊥ ∧ P3 6= ⊥
G2 = A2 =⇒ P4 6= ⊥
G3 = A3 =⇒ P5 6= ⊥
G4 = A4 =⇒ P1 6= ⊥ ∧ P6 6= ⊥

Initial state: G1 6= ⊥ ∧G2 6= ⊥ ∧G3 6= ⊥ ∧G4 6= ⊥

Figure 7: The CSP encoding for the example planning graph.

at a particular level/planning-step; ii) “noop”: indicates that the predicate is true at a given level
i because it was made true at some previous levelj < i and no other action deletesp between
j andi. Constraints encode the relations between predicates and actions: 1) mutual exclusion
relations between predicates and actions; and 2) the causalrelationships between actions and
their preconditions. Figure 7 shows the CSP encoding corresponding the portion of the planning
graph in Figure 6.

5.1.1. Adapting GP-CSP to Different Distance Metrics
When the above planning encoding is solved by any standard CSP solver, it will return a solution
containing〈var, value〉 of the form{〈x1, y1〉, ...〈xn, yn〉}. The collection ofxi whereyi 6= ⊥
represents the facts that are made true at different time steps (plan trajectory) and can be used as a
basis for thestate-baseddistance measure;11 the set of(yi 6= ⊥)∧(yi 6= noop) represents the set
of actions in the plan and can be used foraction-baseddistance measure; lastly, the assignments
〈xi, yi〉 themselves represent the causal relations and can be used for thecausal-baseddistance
measure.

However, there are some technical difficulties we need to overcome before a specific distance
measure between plans can be computed. First, the same action can be represented by different
values in the domains of different variables. Consider a simple example in which there are two
factsp andq, both supported by two actionsa1 anda2. When setting up the CSP encoding,
we assume that the CSP variablesx1 andx2 are used to representp andq. The domains for
x1 andx2 are {v11, v12} and {v21, v22}, both representing the two actions{a1, a2} (in that
order). The assignments{〈x1, v11〉, 〈x2, v21〉} and{〈x1, v12〉, 〈x2, v22〉} have a distance of 2

11We implement the state-based distance between plans as defined in Equation 6.
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in traditional CSP because different values are assigned for each variablex1 andx2. However,
they both represent the same action set{a1, a2} and thus lead to the plan distance of 0 if we use
the action-based distance in our plan comparison. Therefore, we first need to translate the set
of values in all assignments back to the set of action instances before doing comparison using
action-based distance. The second complication arises forthe causal-based distance. A causal
link a1 → p − a2 between two actionsa1 anda2 indicates thata1 supports the precondition
p of a2. However, the CSP assignment〈p, a1〉 only provides the first half of each causal-link.
To complete the causal-link, we need to look at the values of other CSP assignments to identify
actiona2 that occurs at the later level in the planning graph and hasp as its precondition. Note
that there may be multiple “valid” sets of causal-links for aplan, and in the implementation we
simply select causal-links based on the CSP assignments.

5.1.2. Making GP-CSP Return a Set of Plans
To make GP-CSP return a set of plans satisfying thedDISTANTkSET constraint using one of
the three distance measures, we add “global” constraints toeach original encoding to enforce
d-diversity between every pair of solutions. When each global constraint is called upon by the
normal forward checking and arc-consistency checking procedures inside the default solver to
check if the distance between two plans is over a predefined value d, we first map each set of
assignments to an actual set of actions (action-based), predicates that are true at different plan-
steps (state-based) or causal-links (causal-based) usingthe method discussed in the previous
section. This process is done by mapping all〈var, value〉 CSP assignments into action sets
using a call to the planning graph, which is outside of the CSPsolver, but works closely with the
general purpose CSP solver in GP-CSP. The comparison is thendone within the implementation
of the global constraint to decide if two solutions are diverse enough.

We investigate two different ways to use the global constraints:

1. Theparallel strategy to return the set ofk plans all at once. In this approach, we create
one encoding that containsk identical copies of each original planning encoding created
using the GP-CSP planner. Thek copies are connected together usingk(k−1)/2 pair-wise
global constraints. Each global constraint between theith andjth copies ensures that two
plans represented by the solutions of those two copies will be at leastd distant from each
other. If each copy hasn variables, then this constraint involves2n variables.

2. Thegreedystrategy to return plans one after another. In this approach, thek copies are not
setup in parallel up-front, but sequentially. We add to theith copy one global constraint to
enforce that the solution of theith copy should bed-diverse from any of the earlieri − 1
solutions. The advantage of the greedy approach is that eachCSP encoding is significantly
smaller in terms of the number of variables (n vs. k × n), smaller in terms of the number
of global constraints (1 vs.k(k − 1)/2), and each global constraint also contains lesser
number of variables (n vs. 2 × n).12 Thus, each encoding in the greedy approach is
easier to solve. However, because each solution depends on all previously found solutions,
the encoding can be unsolvable if the previously found solutions comprise a bad initial
solution set.

5.1.3. Empirical Evaluation
We implemented the parallel and greedy approaches discussed earlier for the three distance mea-
sures and tested them with the benchmark set of Logistics problems provided with the Blackbox

12However, each constraint is more complicated because it encodes(i − 1) previously found solutions.
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log-easy rocket-a log-a log-b log-c log-d

δa 0.087 7.648 1.021 6.144 8.083 178.633
δs 0.077 9.354 1.845 6.312 8.667 232.475
δcl 0.190 6.542 1.063 6.314 8.437 209.287

Random 0.327 15.480 8.982 88.040 379.182 6105.510

Table 2: Average solving time (in seconds) to find a plan usinggreedy (first 3 rows) and by random (last row) approaches

log-easy rocket-a log-a log-b log-c log-d

δa 0.041/0.35 0.067/0.65 0.067/0.25 0.131/0.1* 0.126/0.15 0.128/0.2
δs 0.035/0.4 0.05/0.8 0.096/0.5 0.147/0.4 0.140/0.5 0.101/0.5
δcl 0.158/0.8 0.136/0.95 0.256/0.55 0.459/0.15* 0.346/0.3* 0.349/0.45

Table 3: Comparison of the diversity in the plan sets returned by the random and greedy approaches. Cases where random
approach is better than greedy approach are marked with *.

planner (Kautz and Selman, 1998). All experiments were run on a Linux Pentium 4, 3Ghz ma-
chine with 512MB RAM. For each problem, we test with different d values ranging from 0.01
(1%) to 0.95 (95%)13 andk increases from 2 ton wheren is the maximum value for which
GP-CSP can still find solutions within plan horizon. The horizon (parallel plan steps) limit is 30.

We found that the greedy approach outperformed the parallelapproach and solved signifi-
cantly higher number of problems. Therefore, we focus on thegreedy approach hereafter. For
each combination ofd, k, and a given distance measure, we record the solving time andoutput
the average/min/max pairwise distances of the solution sets.

Baseline Comparison:As a baseline comparison, we have also implemented arandomizedap-
proach. In this approach, we do not use global constraints but use random value ordering in the
CSP solver to generatek different solutions without enforcing them to be pairwised-distance
apart. For each distanced, we continue running the random algorithm until we findkmax solu-
tions wherekmax is the maximum value ofk that we can solve for the greedy approach for that
particulard value. In general, we want to compare with our approach of using global constraint
to see if the random approach can effectively generate diverse set of solutions by looking at: (1)
the average time to find a solution in the solution set; and (2)the maximum/average pairwise
distances betweenk ≥ 2 randomly generated solutions.

Table 2 shows the comparison of average solving time to find one solution in the greedy
and random approaches. The results show that on an average, the random approach takes sig-
nificantly more time to find a single solution, regardless of the distance measure used by the
greedy approach. To assess the diversity in the solution sets, Table 3 shows the comparison of:
(1) the average pairwise minimum distance between the solutions in sets returned by the random
approach; and (2) the maximumd for which the greedy approach still can find a set of diverse
plans. The comparisons are done for all three distance measures. For example, the first cell
(0.041/0.35) in Table 3, implies that the minimum pairwise distance averaged for all solvable
k ≥ 2 using the random approach isd = 0.041 while it is 0.35 (i.e., 8x more diverse) for the
greedy approach using theδa distance measure. Except for 3 cases, using global constraints to
enforce minimum pairwise distance between solutions helpsGP-CSP return significantly more

13Increments of 0.01 from 0.01 to 0.1 and of 0.05 thereafter.
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d log-easy rocket-a log-a log-b log-c log-d

0.01 11,5,28 8,18,12 9,8,18 3,4,5 4,6,8 8,7,7
0.03 6,3,24 8,13,9 7,7,12 2,4,3 4,6,6 4,7,6
0.05 5,3,18 6,11,9 5,7,10 2,4,3 4,6,5 3,7,5
0.07 2,3,14 6,10,8 4,7,6 2,4,2 4,6,5 3,7,5
0.09 2,3,14 6,9,6 3,6,6 2,4,2 3,6,4 3,7,4
0.1 2,3,10 6,9,6 3,6,6 2,4,2 2,6,4 3,7,4
0.2 2,3,5 5,9,6 2,6,6 1,3,1 1,5,2 2,5,3
0.3 2,2,3 4,7,5 1,4,4 1,2,1 1,3,2 1,3,3
0.4 1,2,3 3,6,5 1,3,3 1,2,1 1,2,1 1,2,3
0.5 1,1,3 2,4,5 1,2,2 - 1,2,1 1,2,1
0.6 1,1,2 2,3,4 - - - -
0.7 1,1,2 1,2,2 - - - -
0.8 1,1,2 1,2,2 - - - -
0.9 - 1,1,2 - - - -

Table 4: For each givend value, each cell shows the largest solvablek for each of the three distance measuresδa, δs,
andδcl (in this order). The maximum values in cells are in bold.

diverse set of solutions. On average, the greedy approach returns 4.25x, 7.31x, and 2.79x more
diverse solutions than the random approach forδa, δs andδcl, respectively.

Analysis of the different distance-bases:Overall, we were able to solve 1264(d, k) combi-
nations for three distance measuresδa, δs, δcl using the greedy approach. We were particularly
interested in investigating the following issues:

• Q1: Computational efficiency - Is it easy or difficult to find a set of diverse solutions
using different distance measures? Thus, (1) for the samed andk values, which distance
measure is more difficult (time consuming) to solve; and (2) given an encoding horizon
limit, how high is the value ofd andk for which we can still find a set of solutions for a
given problem using different distance measures.

• Q2: Solution diversity - What, if any, is the correlation/sensitivity between different dis-
tance measures? Thus, how comparative diversity of solutions is when using different
distance measures.

RegardingQ1, Table 4 shows the highest solvablek value for each distanced and baseδa, δs,
andδcl. For a given(d, k) pair, enforcingδa appears to be the most difficult, thenδs, andδcl is
the easiest. GP-CSP is able to solve 237, 462, and 565 combinations of(d, k) respectively forδa,
δs andδcl. GP-CSP solvesdDISTANTkSET problems more easily withδs andδcl than withδa
due to the fact that solutions with different action sets (diverse with regard toδa) will likely cause
different trajectories and causal structures (diverse with regard toδs andδcl). Betweenδs and
δcl, δcl solves more problems for easier instances (log-easy, rocket-a and log-a) but less for the
harder instances, as shown in Table 4. We conjecture that forsolutions with more actions (i.e.,
in bigger problems) there are more causal dependencies between actions and thus it is harder to
reorder actions to create a different causal-structure.

For running time comparisons, among 216 combinations of(d, k) that were solved by all
three distance measures, GP-CSP takes the least amount of time forδa in 84 combinations, for
δs in 70 combinations and in 62 forδcl. The first three lines of Table 2 show the average time
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δa δs δcl

δa - 1.262 1.985
δs 0.485 - 0.883
δcl 0.461 0.938 -

Table 5: Cross-validation of distance measuresδa, δs, andδcl.

to find one solution ind-diversek-set for each problem usingδa, δs andδcl (which we callta,
ts andtc respectively). In general,ta is the smallest andts > tc in most problems. Thus, while
it is harder to enforceδa thanδs andδcl (as indicated in Table 4), when the encodings for all
three distances can be solved for a given(d, k), thenδa takes less time to search for one plan
in the diverse plan set; this can be due to tighter constraints (more pruning power for the global
constraints) and simpler global constraint setting.

To testQ2, in Table 5, we show the cross-comparison between differentdistance measures
δa, δs, andδcl. In this table, cell〈row, column〉 = 〈δ′, δ′′〉 indicates that over all combinations
of (d, k) solved for distanceδ′, the average valued′′/d′ whered′′ andd′ are distance measured
according toδ′′ andδ′, respectively (d′ ≥ d). For example,〈δs, δa〉 = 0.485 means that over
462 combinations of(d, k) solvable forδs, for eachd, the average distance betweenk solutions
measured byδa is 0.485× ds. The results indicate that when we enforced for δa, we will likely
find even more diverse solution sets according toδs (1.26× da) andδcl (1.98 × da). However,
when we enforced for eitherδs or δcl, we are not likely to find a more diverse set of solutions
measured by the other two distance measures. Nevertheless,enforcingd usingδcl will likely
give comparable diverse degreed for δs (0.94 × dc) and vice versa. We also observe thatds is
highly dependent on the difference between the parallel lengths of plans in the set. The distance
ds seems to be the smallest (i.e.,ds < da < dc) when allk plans have the same/similar number
of time steps. This is consistent with the fact thatδa andδcl do not depend on the steps in the
plan execution trajectory whileδs does.

5.2. Finding Diverse Plan Set with LPG

In this section, we consider the problem of generating diverse set of plans using another planning
approach, in particular the LPG planner which is able to scale up to bigger problems, compared
to GP-CSP. We focus on the action-based distance measure between plans, which has been shown
in the previous section to be the most difficult to enforce diversity. LPG is a local-search-based
planner, that incrementally modifies a partial plan in a search for a plan that contains no flaws
(Gerevini et al., 2003). The behavior of LPG is controlled byan evaluation function that is used
to select between different plan candidates in a neighborhood generated for local search. At
each search step, the elements in the search neighborhood ofthe current partial planπ are the
alternative possible plans repairing a selected flaw inπ. The elements of the neighborhood are
evaluated according to anaction evaluation functionE (Gerevini et al., 2003). This function is
used to estimate the cost of either adding or of removing an action nodea in the partial planp
being generated.

5.2.1. Revised Evaluation Function for Diverse Plans
In order to managedDISTANCEkSET problems, the functionE has been extended to include an
additional evaluation term that has the purpose of penalizing the insertion and removal of actions
that decreasethe distance of the current partial planp under adaptation from a reference plan
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p0. In general,E consists of four weighted terms, evaluating four aspects ofthe quality of the
current plan that are affected by the addition (E(a)i) or removal (E(a)r) of a

E(a)i = αE · Execution cost(a)i + αT · Temporal cost(a)i+

+ αS · Search cost(a)i + αD · |(p0 − p) ∩ p
i

R|

E(a)r = αE · Execution cost(a)r + αT · Temporal cost(a)r+

+ αS · Search cost(a)r + αD · |(p0 − p− a) ∩ p
r

R|.

The first three terms of the two forms ofE are unchanged from the standard behavior of
LPG. The fourth term, used only for computing diverse plans,is the new term estimating how
the proposed plan modification will affect the distance fromthe reference planp0. Each cost
term inE is computed using a relaxed temporal planpR (Gerevini et al., 2003).

The pR plans are computed by an algorithm, calledRelaxedPlan, formally described and
illustrated in (Gerevini et al., 2003). We have slightly modified this algorithm to penalize the
selection of actions decreasing the plan distance from the reference plan. The specific change to
RelaxedPlan for computing diverse plans is very similar to the change described in (Fox et al.,
2006), and it concerns the heuristic function for selectingthe actions for achieving the subgoals
in the relaxed plans. In the modified function forRelaxedPlan, we have an extra 0/1 term that
penalizes an actionb for pR if its addition decreases the distance ofp+ pR from p0 (in the plan
repair context investigated in (Fox et al., 2006),b is penalized if its additionincreasessuch a
distance).

The last term of the modified evaluation functionE is a measure of the decrease in plan
distance caused by adding or removinga: |(p0−p)∩piR| or |(p0−p−a)∩prR|, wherepiR contains
the new actiona. Theα-coefficients of theE-terms are used to weigh their relative importance.14

The values of the first 3 terms are automatically derived fromthe expression defining the plan
metric for the problem (Gerevini et al., 2003). The coefficient for the fourth new term ofE (αD)
is automatically set during search to a value proportional to d/δa(p, p0), wherep is the current
partial plan under construction. The general idea is to dynamically increase the value ofαD

according to the number of plansn that have been generated so far: ifn is much higher thank,
the search process consists of finding many solutions with not enough diversification, and hence
the importance of the lastE-term should increase.

5.2.2. Making LPG Return a Set of Plans
In order to compute a set ofk d-distant plans solving adDISTANCEkSET problem, we run LPG
multiple times, until the problem is solved, with the following two additional changes to the
standard version of LPG: (i) the preprocessing phase computing mutex relations and other reach-
ability information exploited during the relaxed plan construction is done only once for all runs;
(ii) we maintain an incremental set of valid plans, and we dynamically select one of them as the
reference planp0 for the next search. Concerning (ii), letP = {p1, ..., pn} be the set ofn valid
plans that have been computed so far, andCPlans(pi) the subset ofP containing all plans that
have a distance greater than or equal tod from a reference planpi ∈ P .

14These coefficients are also normalized to a value in[0, 1] using the method described in (Gerevini et al., 2003).
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The reference planp0 used in the modified heuristic functionE is a planpmax ∈ P which
has a maximal set of diverse plans inP , i.e.,

pmax = argmax
pi∈P

{|CPlans(pi)|} . (13)

The planpmax is incrementally computed each time the local search finds a new solution.
In addition to being used to identify the reference plan inE, pmax is also used for defining the
initial state (partial plan) of the search process. Specifically, we initialize the search using a
(partial) plan obtained by randomly removing some actions from a (randomly selected) plan in
the setCPlans(pmax) ∪ {pmax}.

The process of generating diverse plans starting from a dynamically chosen reference plan
continues until at leastk plans that are alld-distant from each other have been produced. The
modified version of LPG to compute diverse plans is called LPG-d.

5.2.3. Experimental Analysis with LPG-d
Recall that the distance functionδa, using set-difference, can be written as the sum of two terms:

δa(pi, pj) =
|A(pi)−A(pj)|

|A(pi) ∪ A(pj)|
+
|A(pj)−A(pi)|

|A(pi) ∪ A(pj)|
(14)

The first term represents the contribution of the actions inpi to the plan difference, while
the second term indicates the contribution ofpj to δa. We experimentally observed that in some
cases the differences between two diverse plans computed using δa are mostly concentrated in
only one of theδa components. This asymmetry means that one of the two plans can have many
more actions than the other one, which could imply that the quality of one of the two plans is
much worse than the quality of the other plan. In order to avoid this problem, we can parametrize
δa by imposing the two extra constraints

δAa ≥ d/γ andδBa ≥ d/γ

whereδAa andδBa are the first and second terms of the RHS of Equation 14, respectively, andγ
is an integer parameter “balancing” the diversity ofpi andpj .

In this section, we analyze the performance of LPG-d in four different benchmark domains:
DriverLog, Satellite, Storage and FloorTile from the 3rd, 5th and 7th IPCs.15 The main goals
of the experimental evaluation were (i) showing that LPG-d can efficiently solve a large set of
(d, k)-combinations, (ii) investigating the impact of theδa γ-constraints on performance, (iii)
comparing LPG-d and the standard LPG.

We tested LPG-d using both the default and parametrized versions of δa, with γ = 2 and
γ = 3. We give detailed results forγ = 3 and a more general evaluation forγ = 2 and the
original δa. We considerd that varies from0.05 to 0.95, using0.05 increment step, and withk
= 2...5, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32 (overall, a total of 266 (d, k)-combinations). Since
LPG-d is a stochastic planner, we use the median of the CPU times (in seconds) and the median
of the average plan distances (over five runs). The average plan distance for a set ofk plans
solving a specific(d, k)-combination (δav) is the average of the plans distances between all pairs
of plans in the set. The tests were performed on an Intel(R) Xeon(TM) CPU 3.00 GHz, 3Gb
RAM. The CPU-time limit was 300 seconds.

15We have similar results for other domains: Rovers (IPC3-5),Pathways (IPC5), Logistics (IPC2), ZenoTravel (IPC3).
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Figure 8: Performance of LPG-d (CPU-time and plan distance)for the problem pfile20 in the DriverLog-Time domain.

Figure 8 gives the results for the largest problem in the IPC-3 DriverLog-Time domain (fully-
automated track). LPG-d solves161 (d, k)-combinations, including combinationsd ≤ 0.4 and
k = 20, andd = 0.95 andk = 2. The average CPU time (top plots) is151.85 seconds. The
averageδav (bottom plots) is0.73, with δav always greater than0.57. With the originalδa
function LPG-d solves168 (d, k)-combinations, the average CPU time is149.5 seconds, and the
averageδav is 0.73; while with γ = 2 LPG-d solves139 combinations, the average CPU time is
144.2 seconds, and the averageδav is 0.72.

Figure 9 shows the results for the largest problem in the IPC-3 Satellite-Strips domain. LPG-
d solves242 (k, d)-combinations;153 of them require less than10 seconds. The average CPU
time is5.46 seconds, and the averageδav is 0.69. We observed similar results when using the
original δa function or the parametrizedδa with γ = 2 (in the second case, LPG-d solves 230
problems, while the average CPU time and the averageδav are nearly the same as withγ = 3).

Figure 10 shows the results for a middle-size problem in the IPC-5 Storage-Propositional
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Figure 9: Performance of LPG-d (CPU-time and plan distance)for the problem pfile20 in the Satellite-Strips domain.

domain. Withγ = 3 LPG-d solves252 (k, d)-combinations,58 of which require less than 10
seconds, while178 of them require less than 50 seconds. The average CPU time is25.4 seconds
and the averageδav is 0.91. With the originalδa, LPG-d solves257 (k, d)-combinations, the
average CPU time is14.5 seconds, and the averageδav is 0.9; with γ = 2, LPG-d solves201
combinations, the average CPU time is31 seconds and the averageδav is 0.93.

Figure 11 gives the results for the largest problem in the IPC-7 FloorTile-MetricTime domain.
LPG-d solves210 (d, k)-combinations;171 of them require less than 10 seconds. The average
CPU time is3.6 seconds, and the averageδav is 0.7. We observed similar results when using the
original δa function or the parametrizedδa with γ = 2 (in the second case, LPG-d solves191
problems, while the average CPU time and the averageδav are nearly the same as withγ = 3).

The local search in LPG is randomized by a “noise” parameter that is automatically set and
updated during search (Gerevini et al., 2003). This randomization is one of the techniques used
for escaping local minima, but it also can be useful for computing diverse plans: if we run the

27



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 0

 50

 100

 150

 200

 250

 300

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 5

 10
 15

 20
 25

 30
 35

 0.01

 0.1

 1

 10

 100

 1000

dDISTANCEkSET: Median of the cpu-time for the pfile15 problem of 
 gamma=3 - Storage Propositional domain

cpu-time

d

k

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 5

 10
 15

 20
 25

 30
 35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

dDISTANCEkSET: Median of the Average distances for the pfile15 problem of 
 gamma=3 - Storage Propositional domain

Distance

d

k

Figure 10: Performance of LPG-d (CPU-time and plan distance) for the problem pfile15 in the Storage-Propositional
domain.

search multiple times, each search is likely to consider different portions of the search space,
which can lead to different solutions. It is then interesting to compare LPG-d and a method in
which we simply run the standard LPG untilk d-diverse plans are generated. An experimental
comparison of the two approaches show that in many cases LPG-d performs better. In particular,
the new evaluation functionE is especially useful for planning problems that are easy to solve for
the standard LPG, and that admit many solutions. In these cases, the originalE function produces
many valid plans with not enough diversification. This problem is significantly alleviated by the
new term inE. An example of domain where we observed this behavior is Logistics.16

16E.g., LPG-d solved176 instances for the loga problem,47 of them in less than1 CPU second and118 of them
in less than10 CPU seconds; the average CPU time was3.75 seconds and the averageδav was0.47. While using the
standard LPG, only107 instances were solved,27 of them in less than1 CPU seconds and73 of them in less than10
CPU seconds; the average CPU time was5.14 seconds and the averageδav was0.33.
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Figure 11: Performance of LPG-d (CPU-time and plan distance) for the problem pfile20 in the FloorTile-MetricTime
domain.

6. Generating Plan Sets with Partial Preference Knowledge

In this section, we consider the problem of generating plan sets when the user preferences are
only partially expressed. In particular, we focus on metrictemporal planning where the prefer-
ence model is assumed to be represented by an incomplete value function specified by a convex
combination of two features:plan makespanandexecution cost, with the exact trade-off value
w drawn from a given distribution. The quality value of plan sets is measured by the ICP value,
as formalized in Equation 12. Our objective is to find a set of plansP ⊆ S where|P| ≤ k and
ICP (P) is the lowest.

Notice that we restrict the size of the solution set returned, not only for the comprehension
issue discussed earlier, but also for an important propertyof the ICP measure: it is a monotoni-
cally non-increasing function of the solution set (specifically, given two solution setsP1 andP2

such that the latter is a superset of the former, it is easy to see thatICP (P2) ≤ ICP (P1)).
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6.1. Sampling Weight Values

Given that the distribution of trade-off valuew is known, the straightforward way to find a set
of representative solutions is to first sample a set ofk values forw: {w1, w2, ..., wk} based on
the distributionh(w). For each valuewi, we can find an (optimal) planpi minimizing the value
of the overall value functionV (p, wi) = wi × tp + (1 − wi) × cp. The final set of solutions
P = {p1, p2, ....pk} is then filtered to remove duplicates and dominated solutions, thus selecting
the plans making up the lower-convex hull. The final set can then be returned to the user. While
intuitive and easy to implement, this sampling-based approach has several potential flaws that
can limit the quality of its resulting plan set.

First, given thatk solution plans are searched sequentially and independently of each other,
even if the planpi found for eachwi is optimal, the final solution setP = {p1, p2...pk} may
not even be the optimal set ofk solutions with regard to the ICP measure. More specifically,
for a given set of solutionsP , some trade-off valuew, and two non-dominated plansp, q such
thatV (p, w) < V (q, w), it is possible thatICP (P ∪ {p}) > ICP (P ∪ {q}). In our running
example (Figure 5), letP = {p2, p5} andw = 0.8 thenV (p1, w) = 0.8× 4+ 0.2× 25 = 8.2 <
V (p7, w) = 0.8 × 12 + 0.2 × 5 = 10.6. Thus, the planner will selectp1 to add toP because
it looks locally better given the weightw = 0.8. However,ICP ({p1, p2, p5}) ≈ 10.05 >
ICP ({p2, p5, p7}) ≈ 7.71 so indeed by taking previous set into consideration thenp7 is a much
better choice thanp1.

Second, the values of the trade-off parameterw are sampled based on a given distribution, and
independently of the particular planning problem being solved. As there is no relation between
the sampledw values and the solution space of a given planning problem, sampling approach
may return very few distinct solutions even if we sample a large number of weight valuesw. In
our example, if allw samples have valuesw ≤ 0.67 then the optimal solution returned for any of
them will always bep7. However, we know thatP∗ = {p1, p3, p7} is the optimal set according
to theICP measure. Indeed, ifw ≤ 0.769 then the sampling approach can only find the set
{p7} or {p3, p7} and still not be able to find the optimal setP∗.

6.2. ICP Sequential Approach

Given the potential drawbacks of the sampling approach outlined above, we also pursued an
alternative approach that takes into account the ICP measure more actively. Specifically, we
incrementally build the solution setP by finding a solutionp such thatP ∪ {p} has the lowest
ICP value. We can start with an empty solution setP = ∅, then at each step try to find a new
planp such thatP ∪ {p} has the lowest ICP value.

While this approach directly takes the ICP measure into consideration at each step of finding
a new plan and avoids the drawbacks of the sampling-based approach, it also has its own share
of potential flaws. Given that the set is built incrementally, the earlier steps where the first “seed”
solutions are found are very important. The closer the seed solutions are to the global lower
convex hull, the better the improvement in the ICP value. In our example (Figure 5), if the first
plan found isp2 then the subsequent plans found to best extend{p2} can bep5 and thus the final
set does not come close to the optimal setP∗ = {p1, p3, p7}.

6.3. Hybrid Approach

In this approach, we aim to combine the strengths of both the sampling and ICP-sequential
approaches. Specifically, we use sampling to find several plans optimizing for different weights.
The plans are then used to seed the subsequent ICP-sequential runs. By seeding the hybrid
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Algorithm 1 : Incrementally find solution setP

Input: A planning problem with a solution spaceS; maximum number of plans required1

k; number of sampled trade-off valuesk0 (0 < k0 < k); time boundt;
Output : A plan setP (|P| ≤ k);2

begin3

W ← samplek0 values forw;4

P ← find good quality plans inS for eachw ∈W ;5

while |P| < k andsearch time < t do6

Search forp s.t. ICP (P ∪ {p}) < ICP (P)7

P ← P ∪ {p}8

end9

ReturnP10

end11

approach with good quality plan set scattered across the pareto optimal set, we hope to gradually
expand the initial set to a final set with a much better overallICP value. Algorithm 1 shows the
pseudo-code for the hybrid approach. We first independentlysample the set ofk0 values (with
k0 pre-determined) ofw given the distribution onw (step 4). We then run a heuristic planner
multiple times to find an optimal (or good quality) solution for each trade-off valuew (step 5).
We then collect the plans found and seed the subsequent runs when we incrementally update the
initial plan set with plans that lower the overall ICP value (steps 6-8). The algorithm terminates
and returns the latest plan set (step 9) ifk plans are found or the time bound exceeds.

6.4. Making LPG Search Sensitive to ICP

We use a modified version of the Metric-LPG planner (Gereviniet al., 2008) in implementing our
algorithms, introducing thetotalcost numerical fluent into the domain to represent the plan cost
that we are interested in.17 Not only is Metric-LPG equipped with a very flexible local-search
framework that has been extended to handle various objective functions, but it can also be made
to search for single or multiple solutions. Specifically, for the sampling-based approach, we first
sample thew values based on a given distribution. For eachw value, we set the metric function
in the domain file to:w ×makespan + (1 − w) × totalcost, and run the original LPG in the
quality mode to heuristically find the best solution within the time limit for that metric function.
The final solution set is filtered to remove any duplicate solutions, and returned to the user.

For the ICP-sequential and hybrid approach, we can not use the original LPG implementation
as is and need to modify the neighborhood evaluation function in LPG to take into account the
ICP measure and the current plan setP . For the rest of this section, we will explain this procedure
in detail.

Background: Metric-LPG uses local search to find plans within the space ofnumerical action
graphs(NA-graph). This leveled graph consists of a sequence of interleaved proposition and
action layers. The proposition layers consist of a set of propositional and numerical nodes, while
each action layer consists of at most one action node, and a number of no-op links. An NA-graph

17Although we are interested in the plan cost as summation of action costs, our implementation can also be extended
for planning problems where plan cost is an expression involving numerical fluents.
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G represents a valid plan if all actions’ preconditions are supported by some actions appearing
in the earlier level inG. The search neighborhood for each local-search step is defined by a set
of graph modifications to fix some remaining inconsistencies(unsupported preconditions)p at a
particular levell. This can be done by either inserting a new actiona supportingp or removing
from the graph the actiona thatp is a precondition of (which can introduce new inconsistencies).

Each local move creates a new NA-graphG′, which is evaluated as a weighted combination
of two factors:SearchCost(G′) andExecCost(G′). Here,SearchCost(G′) is the amount of
search effort to resolve inconsistencies newly introducedby inserting or removing actiona; it is
measured by the number of actions in a relaxed planR resolving all such inconsistencies. The
total costExecCost(G′), which is a default function to measure plan quality, is measured by
the totalaction execution costsof all actions inR. The two weight adjustment valuesα andβ
are used to steer the search toward either finding a solution quickly (higherα value) or better
solution quality (higherβ value). Metric-LPG then selects the local move leading to the smallest
E(G′) value.

Adjusting the evaluation function E(G′) for finding set of plans with low ICP measure:
To guide Metric-LPG towards optimizing our ICP-sensitive objective function instead of the
original minimizing cost objective function, we need to replace the default plan quality mea-
sureExecCost(G′) with a new measureICPEst(G′). Specifically, we adjust the function
for evaluating each new NA-graph generated by local moves ateach step to be a combination
of SearchCost(G′) and ICPEst(G′). Given the set of found plansP = {p1, p2, ..., pn},
ICPEst(G′) guides Metric-LPG’s search toward a planp generated fromG′ such that the re-
sulting setP ∪{p} has a minimum ICP value:p = argmin

p
ICP (P ∪{p}). Thus,ICPEst(G′)

estimates the expected total ICP value if the best planp found by expandingG′ is added to the
current found plan setP . Like the original Metric-LPG,p is estimated bypR = G′

⋃

R where
R is the relaxed plan resolving inconsistencies inG′ caused by inserting or removinga. The
ICPEst(G′) for a given NA-graphG′ is calculated as:ICPEst(G′) = ICP (P ∪pR) with the
ICP measure as described in Equation 12. Notice here that whileP is the set of valid plans,pR is
not. It is an invalid plan represented by a NA-graph containing some unsupported preconditions.
However, Equation 12 is still applicable as long as we can measure the time and cost dimensions
of pR. To measure the makespan ofpR, we estimate the time points at which unsupported facts
in G′ would be supported inpR = G′ ∪ R and propagate them over actions inG′ to its last
level. We then take the earliest time point at which all factsat the last level appear to measure
the makespan ofpR. For the cost measure, we just sum the individual costs of allactions inpR.

At each step of Metric-LPG’s local search framework, combining two measuresICPEst(G′)
andSearchCost(G′) gives us an evaluation function that fits right into the original Metric-LPG
framework and prefers a NA-graphG′ in the neighborhood ofG that gives the best trade-off
between the estimated effort to repair and the estimated decrease in quality of the next resulting
plan set.

6.5. Experimental Results

We have implemented several approaches based on our algorithms discussed in the previous
sections: Sampling (Section 6.1), ICP-sequential (Section 6.2) and Hybrid that combines both
(Section 6.3) with both the uniform and triangular distributions. We consider two types of distri-
butions in which the most probable weight for plan makespan are 0.2 and 0.8, which we will call
“w02” and “w08” distributions respectively (Figure 12 shows these distributions). We test all
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Figure 12: The distributions: (a) uniform, (b) w02, (c) w08 (see text).

implementations against a set of 20 problems in each of several benchmark temporal planning
domains used in the previous International Planning Competitions (IPC): ZenoTravel, Driver-
Log, and Depots. The only modification to the original benchmark set is the added action costs.
The descriptions of these domains can be found at the IPC website (ipc.icaps-conference.org).
The experiments were conducted on an Intel Core2 Duo machinewith 3.16GHz CPU and 4Gb
RAM. For all approaches, we search for a maximum ofk = 10 plans within the 10-minute time
limit for each problem (i.e.,t = 10 minutes), and the resulting plan set is used to compute the
ICP value. In the Sampling approach, we generate ten trade-off valuesw betweenmakespanand
plan costbased on the distribution, and for each one we search for a plan p subject to the value
functionV (p, w) = w × tp + (1 − w) × cp. In the Hybrid approach, on the other hand, the
first Sampling approach is used withk0 = 3 generated trade-off values to find an initial plan set,
which is then improved by the ICP-Sequential runs. As Metric-LPG is a stochastic local search
planner, we run it three times for each problem and average the results. In 77% and 70% of 60
problems in the three tested domains for the Hybrid and Sampling approaches respectively, the
standard deviation of ICP values of plan sets are at most 5% ofthe average values. This indicates
that ICP values of plan set in different runs are quite stable. As the Hybrid approach is an im-
proved version of ICP-sequential and gives better results in almost all tested problems, we omit
the ICP-Sequential in discussions below. We now analyze theresults in more detailed.

The utility of using the partial knowledge of user’s preferences: To evaluate the utility of
taking partial knowledge of user preferences into account,we first compare our results against
the naive approaches that generate a plan set without explicitly taking into account the partial
knowledge. Specifically, we run the default LPG planner withdifferent random seeds to find
multiple non-dominated plans. The LPG planner was run with both speedsetting, which finds
plans quickly, anddiversesetting, which takes longer time to find better set of diverseplans.
Figure 13 shows the comparison between quality of plan sets returned by Sampling and those
naive approaches when the distribution of the trade-off value w betweenmakespanand plan
cost is assumed to be uniform. Overall, among 20 tested problems for each of the ZenoTravel,
DriverLog, and Depots domains, the Sampling approach is better than LPG-speed in 19/20,
20/20 and 20/20 and is better than LPG-d in 18/20, 18/20, and 20/20 problems respectively. We
observed similar results comparing Hybrid and those two approaches: in particular, the Hybrid
approach is better than LPG-speed in all 60 problems and better than LPG-d in 19/20, 18/20,
and 20/20 problems respectively. These results support ourintuition that taking into account the
partial knowledge about user preferences (if it is available) increases the quality of plan set.

Comparing the Sampling and Hybrid approaches:We now compare the effectiveness of the
Sampling and Hybrid approaches in terms of the quality of returned plan sets with the uniform,
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Figure 13: Results for the ZenoTravel, DriverLog and Depotsdomains comparing the Sampling and baseline LPG
approaches on the overall ICP value (log scale) with the uniform distribution.

w02 and w08 distributions.
ICP value: We first compare the two approaches in terms of the ICP valuesof plan sets returned
indicating their quality evaluated by the user. Table 6, 7, and 8 show the results in the three
domains. In general, Hybrid tends to be better than Samplingin this criterion for most of the
domains and distributions. In particular, in the ZenoTravel domain it returns higher quality plan
sets in 15/20 problems when the distribution is uniform, 10/20 and 13/20 problems when it is w02
and w08 respectively (both approaches return plan sets withequal ICP values for two problems
with the w02 distribution and one problem with the w08 distribution). In the DriverLog domain,
Hybrid returns better plan sets for 11/20 problems with the uniform distribution (and for other
three problems the plan sets have equal ICP values), but worse with the triangular distributions:
8/20 (another 2 equals) and 9/20 (another one equals) with w02 and w08. The improvement on
the quality of plan sets that Hybrid contributes is more significant in the Depots domain: it is
better than Sampling in 11/20 problems with the uniform distribution (and equal in 3 problems),
in 12/20 problems with the w02 and w08 distributions (with w02 both approaches return plan
sets with equal ICP values for 4 problems, and for 2 problems when it is w08).

In many large problems of the ZenoTravel and DriverLog domains where Sampling performs
better than Hybrid, we notice that the first phase of the Hybrid approach that searches for the first
3 initial plans normally takes most of the allocated time, and therefore there is not much time
left for the second phase to improve the quality of plan set. We also observe that among the
three settings of the trade-off distributions, the positive effect of the second phase in Hybrid ap-
proach (which is to improve the quality of the initial plan sets) tends to be more stable across
different domains with uniform distribution, but less withthe triangular, in particular Sampling
wins Hybrid in the DriverLog domain when the distribution isw02. Perhaps this is because with
the triangular distributions, the chance that LPG planner (that is used in our Sampling approach)
returns the same plans even with different trade-off valueswould increase, especially when the
most probable value of makespan happens to be in a (wide) range of weights in which one single
plan is optimal. This result agrees with the intuition that when the knowledge about user pref-
erences isalmostcomplete (i.e., the distribution of trade-off value is “peak”), then the Sampling
approach with smaller number of generated weight values maybe good enough (assuming that a
good planner optimizing a complete value function is available).

Since the quality of a plan set depends on how the two featuresmakespan and plan cost are
optimized, and how the plans “span” the space of time and cost, we also compare the Sampling
and Hybrid approaches in terms of those two criteria. In particular, we compare plan sets returned
by the two approaches in terms of (i) theirmedianvalues of makespan and cost, which represent
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Prob Sampling Hybrid Prob Sampling Hybrid Prob Sampling Hybrid

1* 840.00 839.98 1 972.00 972.00 1 708.00 708.00
2* 2,661.43 2,661.25 2 3,067.20 3,067.20 2* 2,255.792 2,255.788
3* 1,807.84 1,805.95 3* 2,083.91 2,083.83 3* 1,535.54 1,535.32
4* 3,481.31 3,477.49 4* 4,052.75 4,026.92 4* 2,960.84 2,947.66
5* 3,007.97 2,743.85 5* 3,171.86 3,171.73 5* 2,782.16 2,326.94
6* 3,447.37 2,755.25 6* 4,288.00 3,188.61 6* 2,802.00 2,524.18
7* 4,006.38 3,793.44 7* 4,644.40 4,377.40 7* 3,546.95 3,235.63
8* 4,549.90 4,344.70 8* 5,060.81 5,044.43 8* 3,802.60 3,733.90
9* 6,397.32 5,875.13 9* 7,037.87 6,614.30 9* 5,469.24 5,040.88
10* 7,592.72 6,826.60 10* 9,064.40 7,472.37 10* 6,142.68 5,997.45
11* 5,307.04 5,050.07 11* 5,946.68 5,891.76 11* 4,578.09 4,408.36
12* 7,288.54 6,807.28 12* 7,954.74 7,586.28 12 5,483.19 5,756.89
13* 10,208.11 9,956.94 13* 11,847.13 11,414.88 13* 8,515.74 8,479.09
14 11,939.22 13,730.87 14 14,474.00 15,739.19 14* 11,610.38 11,369.46
15 9,334.68 13,541.28 15 16,125.70 16,147.28 15* 11,748.45 11,418.59
16* 16,724.21 13,949.26 16 19,386.00 19,841.67 16 14,503.79 15,121.77
17* 27,085.57 26,822.37 17 29,559.03 32,175.66 17 21,354.78 22,297.65
18 23,610.71 25,089.40 18 28,520.17 29,020.15 18 20,107.03 21,727.75
19 29,114.30 29,276.09 19 34,224.02 36,496.40 19 23,721.90 25,222.24
20 34,939.27 37,166.29 20 39,443.66 42,790.97 20 28,178.45 28,961.51

(a) (b) (c)

Table 6: The ICP value of plan sets in the ZenoTravel domain returned by the Sampling and Hybrid approaches with the
distributions (a) uniform, (b) w02 and (c) w08. The problemswhere Hybrid returns plan sets with better quality than
Sampling are marked with *.

Prob Sampling Hybrid Prob Sampling Hybrid Prob Sampling Hybrid

1 212.00 212.00 1 235.99 236.00 1 188.00 188.00
2* 363.30 348.38 2* 450.07 398.46 2* 333.20 299.70
3 176.00 176.00 3 203.20 203.20 3 148.80 148.80
4* 282.00 278.45 4* 336.01 323.79 4* 238.20 233.20
5* 236.83 236.33 5 273.80 288.51 5* 200.80 199.52
6* 222.00 221.00 6 254.80 254.80 6* 187.47 187.20
7 176.50 176.50 7* 226.20 203.80 7 149.20 149.20
8* 338.96 319.43 8 387.53 397.75 8 300.54 323.87
9* 369.18 301.72 9* 420.64 339.05 9* 316.80 263.92
10* 178.38 170.55 10* 196.44 195.11 10* 158.18 146.12
11* 289.04 232.65 11* 334.13 253.09 11* 245.38 211.60
12 711.48 727.65 12* 824.17 809.93 12* 605.86 588.82
13* 469.50 460.99 13 519.92 521.05 13 388.80 397.67
14 457.04 512.11 14 524.56 565.94 14 409.02 410.53
15* 606.81 591.41 15* 699.49 643.72 15 552.79 574.95
16 4,432.21 4,490.17 16 4,902.34 6,328.07 16 3,580.32 4,297.47
17 1,310.83 1,427.70 17 1,632.86 1,659.46 17 1,062.03 1,146.68
18* 1,800.49 1,768.17 18 1,992.32 2,183.13 18 1,448.36 1,549.09
19 3,941.08 4,278.67 19 4,614.13 7,978.00 19* 3,865.54 2,712.08
20 2,225.66 2,397.61 20 2,664.00 2,792.90 20 1,892.28 1,934.11

(a) (b) (c)

Table 7: The ICP value of plan sets in the DriverLog domain returned by the Sampling and Hybrid approaches with the
distributions (a) uniform, (b) w02 and (c) w08. The problemswhere Hybrid returns plan sets with better quality than
Sampling are marked with *.
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Prob Sampling Hybrid Prob Sampling Hybrid Prob Sampling Hybrid

1 27.87 27.87 1 28.56 28.56 1* 28.50 27.85
2 39.22 39.22 2 41.12 41.12 2 38.26 38.26
3* 51.36 50.43 3* 54.44 52.82 3* 49.49 48.58
4 43.00 43.00 4 46.00 46.00 4* 40.87 40.00
5 80.36 81.01 5 82.93 84.45 5 75.96 78.99
6 99.40 111.11 6 102.58 110.98 6 94.79 98.40
7* 38.50 38.49 7* 40.53 40.40 7* 37.04 36.60
8* 59.08 58.41 8* 62.15 62.08 8* 55.89 54.67
9 95.29 103.85 9 100.59 106.00 9 87.93 95.05

10* 52.04 50.00 10 52.40 52.40 10* 47.86 47.60
11 101.43 107.66 11* 110.18 108.07 11 97.56 99.06
12 123.09 129.34 12* 144.67 135.80 12 124.58 128.01
13* 57.37 57.22 13* 60.83 60.72 13 54.66 54.66
14* 62.75 62.33 14* 70.32 69.87 14* 65.20 62.02
15 116.82 117.86 15 113.15 124.28 15 101.09 124.43
16* 50.77 49.36 16* 54.98 54.12 16* 47.04 46.35
17* 38.38 37.77 17* 42.86 41.50 17* 37.56 36.92
18* 88.28 85.55 18* 94.53 90.02 18* 76.73 75.29
19* 82.60 82.08 19* 94.21 89.28 19* 74.73 72.45
20* 137.13 133.47 20* 150.80 135.93 20* 122.43 120.31

(a) (b) (c)

Table 8: The ICP value of plan sets in the Depots domain returned by the Sampling and Hybrid approaches with the
distributions (a) uniform, (b) w02 and (c) w08. The problemswhere Hybrid returns plan sets with better quality than
Sampling are marked with *.

how “close” the plan sets are to the origin of the space of makespan and cost, and (ii) their
standard deviationof makespan and cost values, which indicate how the sets spaneach feature
axis.

Table 9 summarizes for each domain, distribution and feature the number of problems in
which each approach (either Sampling or Hybrid) generates plan sets with better median of each
feature value (makespan and plan cost) than the other. Thereare 60 problems across 3 different
distributions, so in total, 180 cases for each feature. Sampling and Hybrid return plan sets with
better makespan in 40 and 62 cases, and with better plan cost in 52 and 51 cases (respectively),
which indicates that Hybrid is slightly better than Sampling on optimizing makespan but is pos-
sibly worse on optimizing plan cost. In ZenoTravel domain, for all distributions Hybrid likely
returns better plan sets on the makespan than Sampling, and Sampling is better on the plan cost
feature. In the DriverLog domain, Sampling is better on the makespan feature with both non-
uniform distributions, but worse than Hybrid with the uniform. On the plan cost feature, Hybrid
returns plan sets with better median than Sampling on the uniform and w02 distributions, and
both approaches perform equally well with the w08 distribution. In the Depots domain, Sam-
pling is better than Hybrid on both features with the uniformdistribution, and only better than
Hybrid on the makespan with the distribution w08.

In terms of spanning plan sets, Hybrid performs much better than Sampling on both features
across three domains, as shown in Table 10. In particular, over 360 cases for both makespan
and plan cost features, there are only 10 cases where Sampling produces plan sets with better
standard deviation than Hybrid on each feature. Hybrid, on the other hand, generates plan sets
with better standard deviation on makespan in 91 cases, and in 85 cases on the plan cost.

These experimental results support our arguments in Section 6.1 about the limits of sampling

36



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Median of makespan Median of cost
Domain Distribution S > H H > S S > H H > S

ZenoTravel
uniform 3 17 16 4

w02 6 12 14 4
w08 6 13 13 6

DriverLog
uniform 6 11 7 11

w02 10 8 8 10
w08 10 7 9 9

Depots
uniform 9 8 9 7

w02 7 9 5 9
w08 11 7 7 11

Table 9: Number of problems for each domain, distribution and feature where Sampling (Hybrid) returns plan sets with
better (i.e., smaller)medianof feature value than that of Hybrid (Sampling), denoted in the table byS > H (H > S,
respectively). We mark bold the numbers of problems that indicate the outperformance of the corresponding approach.

SD of makespan SD of cost
Domain Distribution S > H H > S S > H H > S

ZenoTravel
uniform 8 12 6 14

w02 4 14 7 11
w08 6 13 8 11

DriverLog
uniform 5 11 6 10

w02 7 10 7 9
w08 8 9 10 7

Depots
uniform 10 7 7 9

w02 7 9 5 10
w08 5 13 7 11

Table 10: Number of problems for each domain, distribution and feature where Sampling (Hybrid) returns plan sets with
better (i.e., larger)standard deviationof feature value than that of Hybrid (Sampling), denoted in the table byS > H

(H > S, respectively). We mark bold the numbers of problems that indicate the outperformance of the corresponding
approach.
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idea. Since one single plan could be optimal for a wide range of weight values, the search in
the Sampling approach with different trade-off values may focus on looking for plans only at
the same region of the feature space (specified by the particular value of the weight), which can
reduce the chance of having plans with better value on some particular feature. On the opposite
side, the Hybrid approach tends to be better in spanning plansets to a larger region of the space,
as the set of plans that have been found is taken into account during the search.

Contribution to the lower convex hull: The comparison above between Sampling and Hybrid
considers the two features separately. We now examine the relation between plan sets returned
by those approaches on the joint space of both features, in particular taking into account the
the dominance relation between plans in the two sets. In other words, we compare the relative
total number of plans in the lower convex-hull (LCH) found byeach approach. Given that this
is the set that should be returned to the user (to select one from), the higher number tends to
give her a better expected utility value. To measure the relative performance of both approaches
with respect to this criterion, we first create a setS combining the plans returned by them. We
then compute the setSlch ⊆ S of plans in the lower convex hull among all plans inS. Finally,
we measure the percentages of plans inSlch that are actually returned by each of our tested
approaches. Figures 14, 15 and 16 show the contribution to the LCH of plan sets returned by
Sampling and Hybrid in the ZenoTravel, DriverLog and Depotsdomains.

In general, we observe that the plan set returned by Hybrid contributes more into the LCH
than that of Sampling for most of the problems (except for some large problems) with most of
the distributions and domains. Specifically, in the ZenoTravel domain, Hybrid contributes more
plans to the LCH than Sampling in 15/20, 13/20 (and another 2 equals), 13/20 (another 2 equals)
problems for the uniform, w02 and w08 distributions respectively. In the DriverLog domain,
it is better than Sampling in 10/20 (another 6 equals), 10/20(another 4 equals), 8/20 (another
5 equals) problems; and Hybrid is better in 11/20 (another 6 equals), 11/20 (another 4 equals)
and 11/20 (another 4 equals) for the uniform, w02 and w08 distributions in the Depots domain.
Again, similar to the ICP value, the Hybrid approach is less effective on problems with large size
(except with the w08 distribution in the Depots domain) in which the searching time is mostly
used for finding initial plan sets. We also note that a plan setwith higher contribution to the
LCH is not guaranteed to have better quality, except for the extreme case where one plan set
contributes 100% and completely dominates the other which contributes 0% to the LCH. For
example, consider problem 14 in the ZenoTravel domain: eventhough the plan sets returned by
Hybrid contribute more than those of Sampling in all three distributions, it is only the w08 where
it has a better ICP value. The reason for this is that the ICP value depends also on the range of
the trade-off value (and its density) for which a plan in the LCH is optimal, whereas the LCH
is constructed by simply comparing plans in terms of their makespan and cost separately (i.e.,
using the dominance relation), ignoring their relative importance.

The sensitivity of plan sets to the distributions: All analysis having been done so far is to
compare the effectiveness of approaches with respect to a particular distribution of the trade-
off value. In this part, we examine how sensitive the plan sets are with respect to different
distributions.
Optimizing high-priority feature: We first consider how plan sets are optimized on each feature
(makespan and plan cost) by each approach with respect to twonon-uniform distributions w02
and w08. Those are the distributions representing scenarios where the users have different pri-
ority on the features, and plan sets should be biased to optimizing the feature that has higher
priority (i.e., larger value of weight). In particular, plans generated using the w08 distribution
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Figure 14: The contribution into the common lower convex hull of plan sets in the ZenoTravel domain with different
distributions.

Figure 15: The contribution into the common lower convex hull of plan sets in the DriverLog domain with different
distributions.

should have better (i.e.,smaller) makespan values than those found with the w02 distribution
(since in the makespan has higher priority in w08 than it is inw02); on the other hand, plan set
returned with w02 should have better values of plan cost thanthose with w08.

Table 11 summarizes for each domain, approach and feature, the number of problems in
which plan sets returned with one distribution (either w02 or w08) have bettermedianvalue
than with the other. We observe that for both features, the Sampling approach is very likely to
“push” plan sets to regions of the space of makespan and cost with better value of more interested
feature. On the other hand, the Hybrid approach tends to be more sensitive to the distributions on
both the features in the ZenoTravel domain, and is more sensitive only on the makespan feature
in the DriverLog and Depots domains. Those results generally show that our approaches can bias
the search towards optimizing features that are more desired by the user.

Spanning plan sets on individual features: Next, we examine how plan sets span each feature,
depending on the degree of incompleteness of the distributions. Specifically, we compare the
standard deviationof plan sets returned using the uniform distribution with those generated using
the w02 and w08 distributions. Intuitively, we expect that the plan sets returned with the uniform
distribution will have higher standard deviation than those with the distributions w02 and w08.

Table 12 shows for each approach, domain and feature, the number of problems generated
with the uniform distribution that have better standard deviation on the feature than those found
with the distribution w02. We observe that with the makespanfeature, both approaches return
plan sets that are more “spanned” on makespan in the Depots domain, but not with ZenoTravel
and DriverLog. With the plan cost feature, Hybrid shows its positive impact on all three domains,
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Median of makespan Median of cost
Approach Domain w02 > w08 w08 > w02 w02 > w08 w08 > w02

Sampling
ZenoTravel 5 13 11 8
DriverLog 6 10 13 5

Depots 6 12 10 7

Hybrid
ZenoTravel 5 10 10 4
DriverLog 4 10 6 9

Depots 8 10 4 11

Table 11: Number of problems for each approach, domain and feature where the plan sets returned with the w02 (w08)
distribution with better (i.e., smaller)medianof feature value than that with w08 (w02), denoted in the table byw02 >

w08 (w08 > w02, respectively). For each approach, we mark bold the numbersfor domains in which there are more
problems whose plan sets returned with w08 (w02) have bettermakespan (plan cost) median than those with w02 (w08,
respectively).

SD of makespan SD of cost
Approach Domain U > w02 w02 > U U > w02 w02 > U

Sampling
ZenoTravel 9 10 10 7
DriverLog 6 8 7 8

Depots 9 6 8 7

Hybrid
ZenoTravel 9 10 12 7
DriverLog 6 9 8 7

Depots 8 6 9 4

Table 12: Number of problems for each approach, domain and feature where the plan sets returned with the uniform
(w02) distribution have better (i.e., higher)standard deviationof the feature value than that with w02 (uniform), denoted
in the table byU > w02 (w02 > U , respectively). For each approach and feature, we mark boldthe numbers for
domains in which there are more problems whose plan sets returned with the uniform distribution have better standard
deviation value of the feature than those with the w02 distribution.

SD of makespan SD of cost
Approach Domain U > w08 w08 > U U > w08 w08 > U

Sampling
ZenoTravel 11 8 15 4
DriverLog 5 10 5 9

Depots 12 7 12 6

Hybrid
ZenoTravel 10 9 15 4
DriverLog 7 7 8 6

Depots 5 8 11 4

Table 13: Number of problems for each approach, domain and feature where the plan sets returned with the uniform
(w08) distribution with better (i.e., higher)standard deviationof feature value than that with w08 (uniform), denoted in
the table byU > w08 (w08 > U , respectively). For each approach and feature, we mark boldthe numbers for domains
in which there are more problems whose plan sets returned with the uniform distribution have better standard deviation
value of the feature than those with the w08 distribution.
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Figure 16: The contribution into the common lower convex hull of plan sets in the Depots domain with different distri-
butions.

whereas Sampling shows it with the ZenoTravel and Depots domains. Similarly, table 13 shows
the results comparing the uniform and w08 distributions. This time, Sampling returns plan sets
with better standard deviation on both features in the ZenoTravel and Depots domains, but not in
DriverLog. Hybrid also shows this in the ZenoTravel domain,but for the remaining two domains,
it tends to return plan sets with expected standard deviation on the plan cost feature only. From
all of these results, we observe that with the uniform distribution, both approaches likely generate
plan sets that span better than with non-uniform distributions, especially on the plan cost feature.

In summary, the experimental results in this section support the following hypotheses:

• Instead of ignoring the user preferences which are partially specified, one should take them
into account while synthesizing plans, as plan sets returned would have better quality.

• In generating plan sets sequentially to cope with the partial user preferences, the Sampling
approach that searches for plans separately and independently of the solution space tends
to return worse quality plan sets than the Hybrid approach.

• The resulting plan sets returned by the Hybrid approach tendto be more sensitive to the
user preferences than those found by the Sampling approach.

7. Discussion

To the best of our knowledge, this work is a first step in domain-independent planning with
preferences when the user preferences are not completely specified, in the same spirit ofmodel-
lite planning (Kambhampati, 2007). Our “language” to representthe partial preference model
assumes acompleteset of attributes of interest and a parameterized value function with unknown
parameter values. Although in our work the unknown values are restricted in acontinuousrange,
they can also be represented by a set of possiblediscretevalues. These two representations of
parameters’ incompleteness are also the ways imprecise parameters are modeled in bounded-
parameter MDPs (Givan et al., 2000) and MDPs with imprecise reward functions (Regan and
Boutilier, 2009, 2010; Xu and Mannor, 2009). Boutilier et al. (2010) consider the preference
elicitation problem with a more general framework where both the set of attributes and the utility
function are incomplete.

Our current representation and plan synthesis approach do have some limitations:
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• The representation of the underlying complete preference model in our setting, i.e., the
convex combination of metric quantities, is a subset of the preference language defined
by PDDL3 (Gerevini et al. (2009)), which has been commonly used to represent prefer-
ences in planning domains. In PDDL3, preferences are constraints on the state trajectory
of plans with “penalty” values (or weights) of being violated, and a plan is more preferable
if it has lower total penalty value. While one can model partially specified “penalty” for
preferences in PDDL3 with a distribution over continuous range or set of discrete values,
it is unclear how to represent incompleteness for other constructs of the language. Simi-
larly, it is an interesting question on how incompleteness can be extended for conditional
preferences (Boutilier et al., 2004).

• Using a convex combination of attributes as a utility function in our setting assumes that
the criteria of interest aremutual preferential independence: although each attribute is
important, it does not affect how the user trades off one other objectives to the other. This
property may be violated, for instance when we want to extendthis setting to include
preference statements in PDDL3 as attributes of interest. In a travel domain, for example,
a passenger might be more willing to accept a more expensive ticket for a non-stop flight
if she has to fly at night (i.e., the weight on the importance of“cost” is smaller).

• Our current implementation ignores the fact that changing the scale on objectives (e.g.
from “hours” to “minutes” in the makespan of plans) may change the bias of the distribu-
tion of the Pareto set of plans on the objective axis. In otherwords, the set may look more
uniform on the objective space using one scale than it is witha different scale (Branke,
2008). Although the ICP value agrees with the set Pareto dominance relation regardless of
the scaling mechanism used (Fowler et al., 2005), this effect can introduce a wrong evalu-
ation about the distribution of the entire Pareto set of plans in the objective space to a user
observing the representative set of plans (which may be biased towards some region of an
axis due to the scaling mechanism used).

• Given that IPF is a nonlinear function, it is a challenge to modify the Metric-LPG planner
to efficiently search for a set of plans optimizing such a quality measure. We believe
that the current modification of Metric-LPG used for our experiments can be improved
by designing new specific heuristics that are more effectivefor optimizing the measure. In
addition, as observed by Kim et al. (2006), the computation time for IPF measure increases
roughly exponentially with the number of objectives, and thus it is also challenging as to
how to effectively incorporate the measure into the search for planning problems with a
high number of criteria.

8. Conclusion and Future Work

In this paper, we consider the planning problem with the partial user preferences in two scenar-
ios where the knowledge about preference is completely unknown or only part of it is given. We
propose a general approach to this problem where a set of plans is presented to the user from
which she can select. For each situation of the incompleteness, we define a different quality
measure for plan sets and investigate approaches to generating plan sets with respect to the qual-
ity measure. In the first scenario when the user is known to have preferences over plans, but the
details are completely unknown, we define the quality of plansets as their diversity value, spec-
ified with syntactic features of plans (its action set, sequence of states, and set of causal links).
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We then consider generating diverse set of plans using two state-of-the-art planners, GP-CSP
and LPG. The approaches we developed for supporting the generation of diverse plans in GP-
CSP are broadly applicable to other planners based on bounded horizon compilation approaches
for planning. Similarly, the techniques we developed for LPG, such as biasing the relaxed plan
heuristics in terms of distance measures, could be applied to other heuristic planners. The ex-
perimental results with GP-CSP explicate the relative difficulty of enforcing the various distance
measures, as well as the correlation among the individual distance measures (as assessed in terms
of the sets of plans they find). The experiments with LPG demonstrate the potential of planning
using heuristic local search in producing large sets of highly diverse plans.

When part of the user preferences is given, in particular theset of features that the user is
interested in and the distribution of weights representingtheir relative importance, we propose
the usage ofIntegrated Preference Function, and its special caseIntegrated Convex Preference
function, to measure the quality of plan sets, and propose various heuristic approaches based
on the Metric-LPG planner (Gerevini et al., 2008) to find a good plan set with respect to this
measure. We show empirically that taking partial knowledgeof user preferences into account
does improve the quality of plan set returned to the users, and that our proposed approaches are
sensitive to the degree of preference incompleteness, represented by the distribution.

While a planning agent may well start with some partial knowledge of the user preference
model, in the long run, we would like the agent to be able to improve it through repeated in-
teractions with the user. In our context, at the beginning when the degree of incompleteness is
high, the learning will involve improving the estimate ofh(α) based on the feedback about the
specific plan that the user selects from the set returned by the system. This learning phase is
in principle well connected to the Bayesian parameter estimation approach in the sense that the
whole distribution of parameter vector,h(α), is updated after receiving feedback from the user,
taking into account the current distribution of all models (starting from a prior, for instance the
uniform distribution). Although such interactive learning framework has been discussed previ-
ously, as in (Chajewska et al. (2001)), the set of user’s decisions in this work is assumed to be
given, whereas in planning scenarios the cost of plan synthesis should be incorporated into the
our interactive framework, and the problem of presenting plan sets to the user needs also to be
considered. Recent work by Li et al. (2009) considered learning user preferences in planning,
but restricting to preference models that can be represented with hierachical task networks.
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