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Abstract

Most fielded data integration systems focus on data aggregation applications, where individual data

sources all export fragments of a single relation. Given a query, the primary query processing objective

in these systems is that of selecting the appropriate subset of sources so as to optimize various user

objectives regarding the completeness and quality of the answers and the response time. In this paper

we consider three specific objectives: coverage, density and latency. To handle the often conflicting

nature of these objectives, we introduce a joint optimization model for source selection that supports

a spectrum of trade-offs between them. We also introduce our techniques in defining query classes for

different types of statistics and learning statistics with respect to corresponding query classes from the

autonomous data sources. We present comprehensive evaluation to demonstrate the effectiveness of our

multi-objective query processing model for data aggregation scenarios.
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I. I NTRODUCTION

The availability of structured information sources on the web has recently led to significant

interest in query processing frameworks that can integrate information sources available on the

Internet. Data integration systems [13], [21], [22], [28], [31] provide a uniform interface to a

multitude of information sources, query the relevant sources automatically and restructure the

information from different sources.

Many fielded data integration systems focus on “data aggregation” applications (such as

comparison shopping systems, bibliography mediators) where individual data sources all export

possibly overlapping fragments of a single relation. In such systems, users pose selection queries

on the mediator schema, which will be answered by accessing individual sources. The obvious

approach — of relaying each query to all the sources known to the mediator and collating the

answers — can quickly get out of hand. This is due to the limitations on mediator and data

source capacity, network resources, users’ tolerance of execution latency, and so on. Therefore

in data aggregation systems, the primary query processing task of the mediator is to select

an appropriate subset of sources that are most relevant to a given query and the specific user

objectives.

Source selection in data aggregation system needs to be adaptive to both the characteristics of

the sources and the objectives of the users. Often the users have multiple and possibly conflicting

objectives. Examples of such objectives include coverage objectives, cost-related objectives (e.g.

response time [17]), and data quality objectives (e.g. density [25]). For example users may like

to have many answers (highcoverage) that are of good quality (highdensityor fewest attributes

with missing values) and be retrieved fast (lowlatency). However these objectives are often

conflicting: the data sources that respond fast may not have good coverage, the sources that give

many answers may have poor answer quality, etc. The following two example scenarios further

illustrate some of the challenges here:
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1) In an online bibliography aggregation system such asBibfinder [3], a user may not care

about whetherall possible bibliography entries regarding her query are retrieved. She may

be satisfied to get most answers back without waiting for a long time. Unfortunately, the

sources that provide the most number of answers may not be the ones that respond with

the shortest delay. Therefore, the mediator needs to make trade-offs between the coverage

and latency objectives when selecting sources.

2) In an online used car trading aggregation system, a user who is looking for a used car

may not only want many query results, but they may also want the individual answers

to be of good quality (e.g. provide as much detailed information about the cars — body

style, configuration, price range, accident history, maintenance history availability, etc. —

as possible). Often sources that are populated either by automated information extraction

techniques, or by direct user entry, tend to have many tuples but also tend to have a

high percentage of missing (null) values in the tuples. Most users also prefer the query

to be processed quickly. In this scenario, the mediator has to accommodate the possibly

conflicting objectives of coverage, density and latency.

In both the scenarios above, different users may have very different preferences in terms of

the importance of the different objectives. For instance, some may want to have a few answers

really fast, and others may be willing to wait a little longer for more answers or for better

quality answers, etc. This requires the meditator to be adaptive to such user preferences and

support trade-offs among multiple objectives. There are two broad challenges in satisfying these

requirements: (i) how to estimate the quality of different query plans (source selections) w.r.t.

the various objectives, and (ii) how to select the optimal query plans, given the quality estimates.

Estimating the quality of a query plan: To estimate the quality of a query plan, the mediator

needs several types of source- and query- specific statistics. For example, it would need

coverage, overlap, density and latency estimates for various sources and source combinations.
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Unfortunately, the autonomous and decentralized nature of the data sources constrains the

mediators to operate with very little information about the structure, scope, content, and access

costs of the information sources they are trying to aggregate.

Finding Plans Optimal w.r.t. Multiple Objectives: Even after estimating the quality of the

candidate query plans (sets of selected sources), the mediator still needs to decide which specific

query plan(s) to execute in response to the user’s query. The classical approach to supporting

multi-objective optimization is to compute the pareto set of solutions. The pareto set has the

property that no solution in it is dominated by any other solution across all objectives. An

instance of this approach, going under the name ofskyline query processing, has been used to

support database tuple retrieval under multiple conflicting selection criteria [10]. Unfortunately,

the approach is often infeasible for selecting optimal query plans. Specifically, we will see that

the pareto sets can often contain a large number of query plans, and we cannot expect lay users

to be able to select the appropriate query plan from such large sets. An alternative approach is

to bundle the preferences over multiple objectives into a single “utility” metric. The challenge

here lies in finding appropriate models for defining utility in terms of the various objectives.

Our Approach: We have been developing a source- and user- adaptive query processing

framework for data aggregation that addresses the challenges discussed above. Figure 1 shows

the architecture of this framework which supports coverage, density and latency query objectives.

For estimating the quality of query plans, we developed methods to automatically learn

coverage, overlap, latency and density statistics of the sources. To keep the learning tractable

while maintaining the accuracy of the estimates, these statistics are learned and stored with

respect to query classes (rather than individual queries or entire sources). The definition of query

classes depends on the type of statistic being learned (as we shall see). While our methods for

learning density and latency statistics are new, the approach for learning coverage and overlap

statistics is borrowed from our previous work [29]. We learn density statistics with respect to
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Fig. 1. The Architecture of the Adaptive Data Aggregation.

the projection attribute setsof the queries (see below), and learn latency statistics with respect

to thebinding patternsof the queries.

To support optimization, we develop models to combine the coverage, latency and density into

an aggregate quality (utility) metric. Specifically, we combine coverage and overlap statistics into

“residual coverage.” The residual coverage and density are combined into a statistic called 2D-

coverage. This 2D-coverage is then combined with the latency statistic using a discounted model

that weights tuples expected from a source in terms of the latency associated with that source.

The combinations are done in a parameterized fashion allowing the user ample flexibility to

change the relative importance associated with the various objectives.

Evaluation: We empirically evaluate the effectiveness of our multi-objective query processing

approach. The evaluation is performed both on controlled sources and in the context ofBibfinder

[3], an online bibliography aggregation system. Our experiments show that our query class based

statistics learning model is able to effectively capture the unique characteristics of each type of

statistics, and the source selection procedure is able to make flexible trade-offs among multiple
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objectives during query processing.

The rest of this paper is organized as follows. In the next section, we will discuss some

of the related work in multi-objective query optimization and source statistics learning in data

integration literature. Section III introduces the concepts of coverage, density and latency statistics

and our methods of learning them. Section IV focuses on our joint optimization model that uses

these statistics to make flexible trade-offs between multiple objectives. An empirical evaluation

of our framework is presented in Section V. We will conclude the paper and discuss some future

work in Section VI.

II. RELATED WORK

Several research efforts have focused on effective query processing in data integration scenarios

[22], [20], [21], [31], [27], [33]. Most of these efforts however have concentrated on the

“horizontal” aspects of data integration, where individual sources export different relations of the

mediator schema. The emphasis is on supporting joins across multiple sources. Since a majority

of the fielded data integration systems have been of the “data aggregation” variety, our work

focuses on selecting sources appropriately in such scenarios.

Multi-Objective Optimization: Multi-objective query planning has received very little attention

in data integration literature. Some exceptions include the work by Nauman et. al. [26]. Although

they focus on multiple quality metrics for the plan, our work differs from theirs in significant

ways. First, we focus on automatically computing the quality metrics through source statistics

learning. Second, unlike their work which defines utility as a simple inner product of weight

and quality vectors, we consider more sophisticated models for combining quality metrics into

utility metrics. Finally, we provide a systematic evaluation of our techniques in both controlled

and real-world data aggregation scenarios.

Some efforts in data integration literature attempt to handle multi-objective query planning



7

through decoupled strategies. For example, theInformation Manifold system [22], [12], [20]

attempts to optimize coverage of the query plans first, and then the response time. Earlier work by

Nie and Kambhampati [27] showed that such decoupled strategies can lead to highly suboptimal

plans, and motivated join optimization strategies. In contrast to [27], our work focuses on a

larger variety of statistics–coverage, overlap, density and response time, and on automatically

learning the statistics.

In contrast to multi-objective query planning, multi-objective retrieval has received more

attention in the database literature [10]. The work here, going under the name of “sky-line

query processing” focuses on efficiently computing the pareto-optimal set of database tuples

given a set of selection functions. Other researchers, including Agrawala and Wimmers [9] have

focused on frameworks for supporting expression and combination of user preferences.

Learning Coverage/Overlap Statistics: Some existing efforts consider the problem of text

database selection [19], [34] in the context of keyword queries submitted to meta-search engines.

To calculate the relevance of a text database to a keyword query, most of the work ([16], [35],

[23], [11]) uses the statistics about the document frequency of each single-word term in the query.

The document frequency statistics are similar to our coverage statistics if we consider an answer

tuple as a document. Although some of these efforts use a hierarchy of topics to categorize the

Web sources, they use only a single topic hierarchy and do not deal with computation of overlap

statistics. In contrast, we deal with classes made up from the Cartesian product of multiple

attribute value hierarchies, and are also interested in modeling overlap. This makes the issue of

storage space consumed by the statistics quite critical for us, necessitating our threshold-based

approaches for controlling the resolution of the statistics.

Learning Source Density Statistics:Naumann [24] introduces the concept of density that is

used to measure how well the attributes stored at a source are filled with actual values. We
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use a similar definition of density in our work, however we propose methods to effectively

and efficiently learn query-dependent density statistics. Our 2D coverage model is similar to

the completeness measure proposed by Naumann [24] which combines coverage and density.

However, our model uses a configurable parameter to allow users to set their own preferences

on coverage and density.

Learning Source Latency Statistics:There has also been previous work on learning response-

time statistics in data integration literature [17], [33]. [36] discusses collecting and managing

time-dependent latency distributions between individual clients and servers for wide area

applications. Our approach differs from these efforts by considering the impact of the query

pattern on the source latency value and acquiring finer granularity source latency estimation.

III. L EARNING SOURCESTATISTICS

To select sources with respect to coverage, density and latency objectives during query

processing, the mediator needs corresponding source statistics to make an approximate estimate

of the degree of relevance for each source in terms of the given objective(s). In this section we

introduce these statistics and how the mediator can automatically learn them from the autonomous

data sources.

To learn each type of statistic for every possible query is too costly (the space of all possible

queries is exponential to the number of attributes) and usually infeasible. The general statistics

learning model we advocate isto group individual queries into query classes and learn statistics

with respect to query classes. The advantage of this approach is two fold.

1. The mediator can manage the number of query classes to learn statistics on by making

query classes more abstract (less accurate statistics) or more specific (more accurate statistics),

depending on the learning and storage cost it is willing to pay, and the degree of statistical

accuracy it wants to achieve.
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2. With statistics on query classes, the mediator may be able to estimate the statistics for new

unseen queries by using the statistics of the query classes into which these queries are classified.

The interesting challenge here is that the definition of appropriate query class may well depend

on the type of statistics.

A. Coverage/Overlap Statistics

We leverage the existing work ofStatMiner [28], [29] on frequency based source cover-

age/overlap statistics mining.StatMinerautomatically discovers frequently accessed query classes

and learns source coverage/overlap statistics with respect to these query classes. We will briefly

review the basic concepts and algorithms here to the extent they are needed to understand our

contributions. For more detailed information, we refer the readers to to the discussion in [28].

The mediator inStatMinerkeeps track of a query log which contains the past user queries.

For each query it keeps information of how often it is asked and how many answers came from

each source and source set. The query log is used in learning source statistics.

1) Coverage and Overlap:In data aggregation scenarios, the naive way of answering user

queries is to direct each query to all the data sources, collect the answers, remove the duplicates

and present the answers to the user. This will increase the query processing time and tuple

transmission cost as well as the work load of the individual sources. A more efficient and polite

approach is to send the queries to only the most relevant sources.

To figure out which sources are the most relevant to a given queryQ, the mediator needs the

coveragestatistics for each source with respect toQ, i.e. P (S|Q), the probability that a random

answer tuple for queryQ belongs to sourceS. The source with the highest coverage value for

Q will be the first source to be called. Considering the overlap between data sources, the second

source to be called will be the source that has the largestresidual coverage, which provides

the maximum number of answers that are not provided by the first source. In other words, the
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mediator needs to find the sourceS ′ that has the next best coverage but minimal overlap with

the first sourceS. Thus it needs theoverlap information about sourcesS and S ′ with respect

to queryQ, i.e. P ({S, S ′}|Q), the probability that a random answer tuple for queryQ belongs

to bothS andS ′.

2) AV Hierarchies and Query Classes:If we have coverage statistics for each source-query

combination as well as the overlap statistics of each possible source set with respect to each

possible query, we are able to compute the optimal order in which to access the sources for

each query. However this is unrealistic because the cost to learn and store such statistics with

respect to every possible query is extremely high (exponential in the number of data sources

and linear in the number of possible queries, which is an enormous number). To keep such

costs low,StatMiner learns and keeps statistics with respect to a small set of “frequently asked

query classes” instead of individual queries. The idea is to group the queries into query classes

and only learn coverage/overlap statistics for those frequently accessed query classes. When a

new query is issued on the mediator, it is mapped to the most relevant frequent query classes

for which statistics are kept, and these statistics are then used to estimate the coverage/overlap

information of sources with respect to the new query.

To group the queries into query classes,StatMiner classifies them in terms of their bound

attributes and their binding values in selection queries. To further abstract the classes it constructs

“attribute value hierarchies” for the attributes of the mediated relation. An “attribute value

hierarchy” (AV hierarchy) over an attributeA is a hierarchical classification of the values of

the attributeA. The leaf nodes represent the individual concrete values ofA and the non-leaf

nodes represent the abstract values that correspond to the union of the values of their descendants.

Figure 2 shows two very simple AV hierarchies for theconference andyear attributes of the

paper relation for theBibfinderscenario. The actual AV hierarchies are much more complicated.

For example, there are more than9, 500 nodes inauthor hierarchy and around800 nodes in
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conferencehierarchy.StatMinerhas a method to automatically construct these AV hierarchies.

This method essentially uses the agglomerative hierarchical clustering algorithm [18] to build a

hierarchical classification of each attribute. The distance measure used in this clustering algorithm

is the cosine distance of the vectors which represents the query result distribution information

(among the sources) for each individual attribute value.
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Fig. 2. AV hierarchies and corresponding query class hierarchy.

Since the selection queries on the mediated relation have one or more attributes,StatMiner

groups them using the AV hierarchies of the attributes. A query feature is defined as the

assignment of a classification attribute to a specific value from its AV hierarchy. Sets of features

are used to define query classes. Specifically, a query class is a set of (selection) queries that

all share a particular set of features. The space of query classes is just the Cartesian product

of the AV hierarchies for each of the classification attributes. For example Figure 2 shows a

class hierarchy for a simple mediator with AV hierarchies for two classification attributes. A

classCi is subsumed by classCj if every feature inCi is equal to, or a specialization of, the

same dimension feature inCj . A query Q is said to belong to a classC if the values of the

classification attributes inQ are equal to, or are specializations of, the features definingC.
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3) Learning and Using Coverage/Overlap Statistics:Since query classes represent an abstrac-

tion of the queries that belong to them,StatMineruses the statistics of the query classes as the

approximation of individual queries and thus cuts the cost of learning and storing the statistics. A

query submitted to the mediator can be mapped to a group of query classes to which it belongs.

The access frequencyof a query class is defined as the number of queries that are mapped to

the query class during a given period of time. Afrequent query classis a query class that has an

access frequency above a given threshold. In our previous work [28], we have proposed methods

to automatically identify thefrequent query classesfrom the entire query class hierarchy (the

Cartesian product of all AV hierarchies) based on the query log. The coverage/overlap statistics

of the individual queries that are mapped to the frequent query classes are then aggregated to

represent the class statistics.

After the source coverage/overlap statistics with respect to the frequent query classes are

gathered, they can be used in source selection for future queries. Specifically, when a new query

is submitted to the mediator, it is mapped to one or morefrequent query classesaccording to its

binding values on the classification attributes. The statistics of these frequent query classes are

combined to estimate the coverage/overlap information for the new query so that the mediator

can select the most relevant sources accordingly.

This approach has been demonstrated to be very efficient and effective in coverage/overlap

statistics mining. These statistics have been shown to be useful in optimizing the overall coverage

during source selection.

B. Density Statistics

In data aggregation systems, incompleteness at the database record level is also inevitable.

First, web databases are often input by individuals without any curation. For example, web sites,

such ascars.com, andautotrader.com, obtain car information from individual car owners, who
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may or may not provide complete information for their cars, resulting in a lot of missing values

in databases. Second, data aggregation systems usually assume a single global relation, but in

many cases, not all the attributes are supported by every individual source. For example, a global

schema for used car trading has an attributebody style, which is supported inautotrader.com,

but notcars.com.

As a result, when a query is posted to the mediator schema and dispatched to the individual

sources, the answers returned from different sources are usually not equally good in their quality

- some sources may give better answers that have very few missing values, and others may return

answers with many missing values, or even have certain attributes missing all together. Naturally

such properties have to be captured by the mediator, so that the mediator can select the sources

that give answers with fewest missing values. Source density can be used to capture such database

tuple level completeness, or “horizontal completeness”.

The density of a tuple is simply the fraction of its attribute values that are not missing. Similar

to the definition proposed by Naumann [24], the density of a source with respect to a given query

can be defined as the average of the density of all answer tuples. We make an assumption that

whether an attribute value of a tuple is missing is independent to its actual value [14]. Therefore,

the density of sourceS on a queryQ is independent of the selection predicates inQ1. Thus

we can classify queries with respect to their projection attributes. Queries with the same set of

projection attributes share the same density value for a given sourceS, no matter what their

selection predicates are.

We define the density of a data source for a given query class (projection attribute set) as

1Admittedly this assumption does not always hold. For example, in a used car data aggregation system, suppose one of the

sources is specialized in Toyota cars. For the queries that are requesting Toyota cars, this source will have high density on

the makeattribute but zero density for queries that are looking for cars made by other manufacturers. However in most cases

where each source covers a reasonably large portion of the domain of each attribute and follows similar “generic model”, this

assumption approximately holds.
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follows. Let qc = {A1, A2, . . . , An} be a set of attributes andS be one of the data sources

in the aggregation system. For any given tuple2 t ∈ qc, the density oft is the number of

missing values in{t(A1), t(A2), . . . , t(An)} divided byn. Different tuples inqc may have missing

values on different attribute(s). Obviously there are2n possibledensity patternsof tuples in

qc, in terms of which attribute values are missing. For example, a tuple may belong to the

density pattern(A1,¬A2, A3), meaning that it has concrete values on attributesA1 andA3 but

is missing the value on attributeA2. For all tuples that belong to a same density patterndp,

sourceS has the same densitydensity(dp) which is simply the number of missing attribute

values divided by the total number of attributes in the projection attribute set. LetDP (qc) be

the set of2n density patterns, if we can assess the probability of the appearance of each of the

2n density patternsP (dp), then we can define the overall density of sourceS for query classqc

as:density(S|qc) =
∑

dp∈DP (qc)

P (dp) ∗ density(dp)

This model essentially uses the weighted average of the2n density patterns to measure the

overall density of the given projection attribute set, where the weight of each density pattern is

the likelihood of it being appearing in the database.

For a database relationR(A1, A2, . . . , An), the set of all possible projection attribute sets is the

power set of{A1, A2, . . . , An} which has2n members. For each projection attribute set, suppose

m is the number of attributes contained in the set, then we need to assess the joint probability of

all the2m density patterns. Overall, the number of joint probability values we need to assess will

be
∑

1≤m≤n

(
n
m

)
2m, which is a significantly large number. By making an independence assumption

among database attributes [14], we reduce the problem down to assessing then probabilities

of each attribute having a missing value, andcomputingthe joint probability values based on

the independent assumption. Collecting thesen probability values is straightforward. Based on

Assumption 1, as long as the mediator has a certain amount of sample records from each source,

2A tuple t ∈ qc means that t is one answer tuple for a queryQ that belongs to query classqc.
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it is able to figure out these probability values easily. During the bootstrap stage, the mediator

can simply dispatch user queries to all the sources instead of a selected subset (at this stage, not

enough source statistics are available for smart source selection anyway). The results returned

from each source are stored as sample records of that source. The density statistics can then be

collected once there are a reasonable amount of sample records for each source.

C. Latency Statistics

In data aggregation scenarios, the latency (response time) of a data source is the time needed

to retrieve the answers from the source. Naturally, with latency statistics, the mediator is able

to select the fastest sources to call to satisfy the users who want get tosomeanswers as quickly

as possible.

In data aggregation scenarios, sources on the internet often differ significantly in their latency.

For example, we sent 200 random queries from theBibfinder query log to all the sources,

and their average response time varied from 1100 milliseconds to 6200 milliseconds3. Some

existing work has been done in learning source latency profiles. For example, [17] defines latency

(response time) as a source specific measure with some variations across several dimensions (such

as time of a day, day of the week, quantity of data, etc.). Such a definition assumes that under

similar circumstances, the execution latency of a source isquery insensitiveand different queries

submitted to a source have similar latency values. However, we found that such an assumption

is questionable in many cases. For example, when we monitored queries onBibfinder, we found

that the same data sources sometimes give very different latency values for different queries.

There are many obvious reasons for such variance. For example, the source database may have

indices on some attributes but not on others, and thus selection queries on the indexed attributes

can be much faster than the ones on the other attributes.

3We uselatencyand response timeinterchangeably throughout this paper.
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This observation suggests that to accurately estimate latency for the new queries,the mediator

has to learn the latency values in a query sensitive manner. In other words, for any single data

source, we have to learn latency values for different types of queries. This leads to the next

challenge: how to properly classify the queries so that queries within the same category have

similar latency values for a given data source.

Based on our observations, query execution latency is usually less sensitive to the binding

values4, but rather more dependent on thebinding pattern5 of the queries. We define the time

required for a web data source to export the first page of answers as its latency value. Some

sources may export answers in multiple pages, but the time to retrieve the first page (which

includes query processing time of the sources and the time for the mediator to parse the returned

answer pages) is very small compared to the overall time. Obviously, for users who care less

about the completeness of the answer, the speed of retrieving the first page is more important.

Moreover, when comparing different queries with the same binding patterns on the same data

source, we found that the time to retrieve the first page is reasonably stable. Thus, we decided

to take this time as the latency value since it is more likely to be a good estimate for future

queries. Admittedly, different data sources choose to export different number of answer tuples

within each page. Thus, the time for the mediator to parse those pages would be different.

However, such differences in the size of pages can be ignored, as we noted that the source-side

query processing time almost always significantly dominates the mediator-side parsing time. In

other words, we consider the answers within the same page to have same latency values. As

4Naturally, for selection operation on certain attributes, different binding values may result in different number of answer

tuples and thus the transmission cost from the source to the mediator may be different. However we will discuss later that such

difference is very small compared to the query processing and connection setup cost.
5Binding pattern of a selection query describes whether each attribute is bound to a concrete value in the query, and if so,

how it is bound (equality, range, etc). For example, in theBibfinder scenario, queryq1(“data integration”, , “V LDB”, )

and q2(“planning graph”, , “AAAI”, ) have same binding patterns, but they have different binding patterns from query

q3( , “EF Codd”, “ < 1980”).
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shown in Figure 3, queries with different binding patterns tend to have very different latency

values. For queries from same binding pattern, their latency values may or may not be close to

each other, depending on what concrete values are bound in the queries. We can always refine

this classification of queries to get finer latency values, but our experiments in theBibfinder

scenario shows that the actual data sources we integrate have rather stable latency values for

queries with the same binding pattern, regardless of what the bound values are, as shown in

Figure 4. Therefore, we decided to learn source latency statistics based on the binding patterns

of queries.

Our method for learning the latency statistics is relatively straightforward. For each binding

pattern, we measure the average response time of a source given a group of testing queries which

conform to a specific binding pattern. We take the average response time over the set of test

queries as the latency value for this [source, binding pattern] combination. Note that if there are

n attributes and we only care whether or not each attribute is bound, there will be2n number of

binding patterns. In many applications,n is rather small and we can learn latency statistics for

all 2n binding patterns. However, in cases wheren is large, it will be an interesting problem to

automatically learn which of the binding patterns show more latency difference and are worth

learning and keeping statistics for.

Our experiments on theBibfinder test bed validates our model of defining the “query class” of

latency statistics with respect to the binding pattern of the queries. In fact, our experiments, given

a random query set, show that when the learned latency statistics are used to predict the expected

latency for new queries, the prediction has an estimation error (|estimatedlatency−reallatency|
reallatency

) which

is less than20% in most cases.

The major difference between our latency statistics learning model and most of the existing

work is that we collectquery sensitive latencyvalues for each [source, binding pattern]

combination, instead of more coarse,query insensitivesource latency values. As shown in Figure



18

Fig. 3. The average latency of the source DBLP shows significant variance between different binding patterns.
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The queries that fall in same binding pattern have similar latency values.

5, our approach estimates the latency values much better and more accurately identifies the fastest

data sources.

D. Summary of Statistics Learning Model

In summary, our framework learns all of the statistics with respect to the query classes. Our

general statistics learning model focuses on appropriately defining query classes for different
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Fig. 5. By using query sensitive latency values based on binding patterns, our approach identifies the fastest sources for

different queries more accurately and optimizes the retrieval cost much better.

types of statistics.

1) For the coverage statistics, the query classes are defined as the Cartesian product of attribute

value hierarchies according to the binding value found in the selection predicates of the

queries.

2) For the density statistics, the query classes are defined in terms of sets of projection

attributes within the queries.

3) For the latency statistics, the query classes are defined in terms of the binding patterns

within the queries.

When a query is submitted, it is mapped to appropriate query classes with respect to each

type of objective. The statistics we learn for these query classes are used as estimates for the

new query to guide the source selection.

Incremental Maintenance: In the preceding sections, we focused on how to learn the source

statistics. A related issue is that of maintenance. Given that the data sources on the web are
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autonomous and can change without notice, source statistics can become stale if they are not

actively maintained. This can happen either because of the change of the user interests, change of

the source contents or addition/deletion of the sources accessible to the mediator. Our statistics

learning framework is highly amenable to incremental maintenance technqiues, and we have

in fact developed and evaluated strategies for incremental maintenance. Because of the way

query classes are defined for the different statistics, density and latency statistics are relatively

straightforward to maintain, while coverage and overlap statistics present more interesting

technical challenges. For the latter, we develop an incremental approach where statistics are

calibrated with respect to the most recent window of user queries. Space considerations preclude

a complete discussion of these results; interested readers are referred to [14, Chapter 7].

IV. M ULTI -OBJECTIVE QUERY OPTIMIZATION

As discussed in the last section, by using coverage/overalp, density and latency statistics, the

mediator is able to optimize the individual objectives during source selection.

However, in data aggregation systems, the users usually prefer query plans that are optimal

for multiple objectives. Unfortunately, these objectives often conflict. For example, sources with

high coverage are not necessarily the ones that respond quickly or provide quality answers. As a

result, a source selection plan which is optimal with respect to one objective cannot in general be

post-processed to account for the other objectives. For example, if for a given query, three data

sources have the following coverage and density statistics:S1(coverage = 0.60, density = 0.10),

S2(coverage = 0.55, density = 0.15), S3(coverage = 0.50, density = 0.50). If we try to find

only one source to call using a decoupled strategy [22], [26], [12], [31], [10], [20], [32],S3

will be eliminated first because it has the worst coverage, and thenS1 will be eliminated next

because it has the worst density.S2 will be selected although in reality,S3 may be the overall

best source to call, assuming coverage and overlap are equally important.
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Therefore, the mediator needs to generate plans which jointly optimize coverage, density and

latency so that users can get many high quality answers as soon as possible. Moreover, different

users usually have different preferences on the different objectives. For example, some users

would rather get a few answers as fast as possible, some may be willing to wait a little longer

for higher coverage and others may only like the good quality answers. The query processor in

our framework adopts a novel joint optimization model in source selection to resolve conflicting

user requirements with respect to coverage, density and latency and make flexible trade-offs

between them, using the various statistics gathered.

The goal of multi-objective query optimization is to find the “overall best” query plans in

terms of multiple user objectives. For a given queryQ, each query planp(Q) corresponds to

a vector in a three dimensional space, withcoverage, density and 1
Latency

(since lower latency

is preferred) as its three dimensions. The multi-objective query optimization then becomes the

problem of picking the best vectors among these vectors. The first principles solution to such a

problem is to present all non-dominated vectors (called the “pareto set”) 6 to the users and let

the users select one. Although such a technique is standard in sky-line query processing (c.f.

[10]), as we argued earlier, it is not well suited for query planning where the lay users may be

overwhelmed by the possibly large number of plans in the pareto set.7

A popular alternative is to convert the multi-objective problem to a single-objective problem

by aggregating the different dimensions of each vector into a scalar by using a utility function.

In this approach, only the plan with the best utility value is presented to the user. The challenge

6A vector v1 is dominated by vectorv2 if v1 is worse thanv2 in all dimensions.
7If there aren data sources and we are looking for query plans containingk best sources, then there are

(
n
k

)
query plans. To

see that in the worst case, the pareto set can be as large as
(

n
k

)
, consider a scenario where we only have two objectiveso1 and

o2, with o1 defining a strict total order over thek-size query plans, ando2 defining a total order which is the opposite of that

defined byo1. In this case, it is easy to each that every pair of
(

n
k

)
query plans are non-dominated by each other. Consequently,

all of themare in the pareto set. It is also easy to see that as the number of objectives increases, the chance that every query

plan will be in the pareto set increases
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here is finding appropriate and natural models to combine the various objectives.

Since coverage and density describe vertical and horizontal completeness respectively, we

naturally extend the joint measurement between them as “two dimensional coverage” (2D

coverage). We represent the set of all possible answers for a given queryQ as a table, with

each row being an answer tuple and each column an attribute from the projection attribute set

of Q. For any source or source setS, the 2D coverage ofS for Q is the portion of the table

cells that are covered by the answers fromS. Some sources may have high 2D coverage without

having the highest value on either of the individual dimensions (Figure 6 (c)).

A6A5A4A3A2A1

… ...

A6A5A4A3A2A1

… ...

A6A5A4A3A2A1

… ...

c
o

v
e

ra
g

e


c
o

v
e

ra
g

e


c
o

v
e

ra
g

e


a. High Coverage & Low Density b. High Density & Low Coverage c. High 2D Coverage

Fig. 6. Joint measurement of coverage and density with 2D Coverage.

2D coverage of a source or source set for a given query represents the area covered by its

answers, which can be simply estimated as:

2DCoverage(S|Q) = coverage(S|Q)× density(S|Q)

Note that here 2D coverage is exactly the percentage area of the table cells that are covered

by the answer tuples of S, assuming that coverage and density are of equal importance to the

user. In fact, different users may have different preferences in terms of coverage and density

- some may simply prefer more answers and others may like a few “good” answers that each

have complete information. Therefore, the above definition can be extended to a more general
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form as following:

2DCoverage(S|Q) = coverage(S|Q)κ × density(S|Q)1−κ

We call κ (0 ≤ κ ≤ 1) the scale factorin this formula since it is used to scale the measure

of coverage and density in computing the 2D coverage. Compared to the completeness model

proposed by Naumann [24], our 2D coverage model uses a configurable parameter to allow more

flexible trade-offs between coverage and density to reflect users’ own preferences.

With the concept of 2D coverage, the problem of jointly optimizing the coverage, density and

latency objectives is reduced to combining 2D coverage and latency statistics. The first model

we use is adiscount model, which emphasizes the expected 2D coverage of the data sources,

but discounts those estimates with the corresponding latency estimates. Specifically, we use the

following source utility model which takes into account both the coverage/overlap, density and

the latency statistics:

Util(Si) = ResidualCoverage(Si|Q)κ × density(Si|Q)1−κ × γLatency(Si|Q)

In the formula above, for a given queryQ, the 2D coverage estimate (combination of coverage

and density) of sourceSi on Q is discounted by the latency value of sourceSi for queries that

have same binding pattern asQ. The mediator uses the utility value in a greedy way to select

the sources to call. The source with the largest utility value is the first source added to the plan,

and then the source with the next largest utility, and so on. Note that to maximize the overall

coverage of the plan, we useresidual coveragewith respect to the set of already selected sources

as discussed in Section III-A. For the selection of the first source, theresidual coverageis just

the regular coverage value.

The utility function has thediscount factorγ(0 < γ ≤ 1). When γ is 1, the utility is just

a function of the 2D coverage, and the source selection plan generated only optimizes on 2D

coverage. By reducingγ, the sources that have shorter latency are favored and thus the plan
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is able to jointly optimize both 2D coverage and latency. By adjustingγ, individual users can

express their preferences on 2D coverage and latency. In the next section, we will show that this

combined utility function does support natural trade-offs between multiple objectives.

One minor problem with this model is that it is slightly asymmetric. We can optimize only the

2D coverage by setting the discount factorγ to be 1, but there is no way that we can optimize

only the latency (although whenγ ≈ 0, it does essentially optimize the latency). We also looked

at another model which uses a weighed sum utility function [27]:

Util(Si) = ω × log(ResidualCoverage(Si|Q)κ × density(Si|Q)1−κ)

+ (1− ω)× (−Latency(Si|Q))

This weighted summodel simply combines the 2D coverage measure and latency measure. We

take logarithm of the coverage value so that it is comparable to the latency value and we take

the negative of the latency value to reward the faster data sources. The resulting utility function

can easily adapt to the full spectrum of optimization from “2D coverage only” to “latency only”

or somewhere in-between. Next we will show that both models can easily accommodate the

trade-off between the 2D coverage and latency objectives and optimize the query plan in all

three dimensions.

A. Parameter Estimation

Our model uses configurable parameters to accommodate different users’ preferences on the

importance of coverage, density and latency during source selection. In our current work, we

provide users sliding scales to set the values of these parameters. It can be argued that while the

users may have a qualitative understanding of the impact of these parameters on the query plans,

it is hard to expect them to have the quantitative understanding needed to make fine adjustments

to the parameters. An interesting future direction would be to adapt machine learning methods
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such as [15] to learn these preference parameters through user interactions.8

V. EXPERIMENTAL EVALUATION

We have experimented with a controlled test bed and a realBibfinder data aggregation test

bed to see if our joint optimization model can make reasonable trade-offs between coverage,

density and latency objectives.

A. Experimental Set Up

1) Controlled Test Bed: The controlled synthetic test bed we used in the evalu-

ation is set up in the following way. We used the Yahoo! autos database as the

base data which has around 100,000 used car records. The schema of the database is

cars(make,model,year,price,milage,location,color). We set up 30 artificial data sources, each of

which contains a randomly selected portion of the car database, ranging from10% to 50% in

size. To introduce horizontal incompleteness, each attribute of each database had values removed

at a random percentage, ranging also from10% to 50%. This way the sources all have different

coverage and density features for any given query.

In data aggregation scenarios, the mediator usually only has access to a small portion of the

data from the autonomous sources for the purpose of knowledge mining. Therefore, we used a

5% random portion of each of the 30 databases as their sample to learn the density statistics

with the techniques presented in Section III. As for coverage statistics, since we did not have a

query log for the synthetic test bed, we were not able to apply the techniques proposed in our

previous work [29]. Instead, we used a simplified way to collect coverage statistics by querying

8One approach would be to have an off-line training phase where representative users are shown plans from the pareto set,

estimates of their coverage, density and latency, as well as the results obtained by executing those plans. The users are then

allowed to choose a plan, and regression methods are used to fit the parameters of the utility model to make it conform to the

user choices.
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the sample databases and using the coverage/overlap values as the estimated coverage statistics.

Specifically, for a given query, the mediator first directs it to the samples of all of the data

sources to figure out the coverage and overlap information by looking at the query results from

each of the samples. This information is then used as an estimate of the real coverage/overlap

statistics of the actual sources in the source selection.

To simulate the source latency, each of the sources is given a randomly generated latency

value, ranging from 100 to 8000 milliseconds. The sources intensionally make a delay before

they send query results back to the mediator9.

2) Bibfinder Test Bed:We have also partially experimented with the realBibfinder

test bed. Bibfinder aggregates several computer science bibliography sources includ-

ing ACM Digital Library [1], ACM Guide [2], Network Bibliography [7], IEEE

xplorer [6], DBLP [5], CSB [4] and Sciencedirect[8]. Bibfinder has a global schema

Paper(title, author, conference/journal, year). For this test bed, we learned source cover-

age/overlap statistics with techniques proposed in [29] by using the real user queries logged

in Bibfinder. These user queries are also used in probing the individual sources to learn the

binding pattern based source latency statistics. InBibfinder, some sources do not export some

of the attributes found in the global schema, which indicates a lower density on the projection

attribute set that contains those missing attributes. However, the attributes that a given source

does export are usually complete, i.e, the tuples usually do not have missing values on these

attributes. Therefore, in theBibfinder scenario, there was not much of an interesting variation

in terms of the source density statistics for user queries. Thus, for this test bed, we could only

evaluate the joint optimization of coverage and latency. This is done by setting the density

component as a constant1 in both of the utility functions.

9Since the focus here is to evaluate the joint optimization model, we use same latency statistics for different binding patterns.

The binding pattern based latency statistics are used in our evaluation on theBibfinder test bed.
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B. Evaluation Results

1) Evaluation Results on Controlled Test Bed:We first evaluated on the synthetic test bed to

determine whether the 2D-coverage model is a reasonable and flexible way to combine coverage

and density statistics. We first chose a group of test queries, then generated source selection

plans with 2D-coverage statistics and executed these plans. We used the results to compare

the average coverage and average density measurements using different scale factor values.

As shown in Figure 7, when the scale factor value increases, the sources with high coverage

are more favored during source selection and the coverage measure of the answers increases

correspondingly. Similarly, with the decrease of the scale factor value, the sources with high

density are more favored and thus the density of the answers also increases.
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average Result Set Coverage

average Result Set Density

Fig. 7. Supporting flexible trade-offs between coverage and density.

To evaluate the joint optimization model, we first chose 20 test queries on the car database,

then made query plans using discount utility functions, and finally executed the plans recording

the time needed to retrieve the first K tuples (K=1, 2, 3, . . . ). We varied the discount factor

γ to see its influence on query planning. Figure 8 shows the average time for retrieving the
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first K tuples using the 20 testing queries together with their average2D coveragefor varying

discount factor values. Figure 9 shows the results of similar experiments using the weighted sum

model. In both experiments, when the discount factorγ (or weight factorω) is 1, we have a

plan that only uses coverage/overlap and density statistics without considering the latency. Thus,

on average the speed of retrieving the first K answers is the lowest (because the faster sources

are not rewarded for being faster) and the average2D coverageis highest. On the other hand,

when the discount factor (or weight factor) decreases, the 2D coverage estimates for each of the

sources are increasingly discounted with respect to the latency. As a result, the plans generated

tend to favor the faster sources, while the average2D coverageis getting lower. In addition,

when the weight factorω in the weighted sum model is set to 0, the mediator effectively ignores

the coverage and density statistics and only looks for the fastest sources. Our experiment shows

that such plans retrieve the first K tuples fastest on average.
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Fig. 8. Combining 2D coverage and latency with different discount factor values, using discount model on controlled test bed.

We can plot the query plans in Figure 8 and Figure 9 in the two dimensional space of
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, as shown in Figure 10. The plots show that the plans

are non-dominated by each other.

0.4

0.45

0.5

0.55

0.6

0.65

0 0.5 1 1.5 2 2.5 3

1 / Average Latency (1/s)

A
v

e
ra

g
e

 2
D

 C
o

v
e

ra
g

e


0.4

0.45

0.5

0.55

0.6

0.65

0 0.5 1 1.5 2 2.5 3 3.5 4

1 / Average Latency (1/s)

A
v

e
ra

g
e

 2
D

 C
o

v
e

ra
g

e


Fig. 10. On average, the plans generated with different discount/weight factor values are non-dominated by each other, using

either the discount model or the weighted sum model

2) Evaluation Results on Bibfinder Test Bed:We conducted a similar experiment on the real

Bibfinder test bed, where currently only coverage and latency objectives are supported. For the

purpose of the evaluation, we definerelative coverageof a query plan as following. Suppose
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for a given queryQ, its coverage-only planCOP (Q) is the source selection plan that has the

discount factorγ = 1 or the weight factorω = 1, depending on which utility function is used.

COP (Q) is a plan that only optimizes the coverage. For any given query planp(Q) of Q, with its

own discount factor or weight factor, therelative coverageof p(Q) is the size of the result set of

p(Q) divided by the size ofCOP (Q). The relative coverage measures how much coverage can

be achieved by executing planp(Q), compared to a coverage-only planCOP (Q). The reason

why we use relative coverage of a plan instead of its absolute coverage (i.e, the fraction of all

possible answers that are covered by executing this plan) is that the latter requires theBibfinder

mediator to execute the naı̈ve plans that simply call all the sources available. Our expectation on

both of the joint-optimization models is that by varying the parameters of the utility functions

the users’ degree of preference on coverage and latency can be properly reflected in the query

plan generated.

For evaluation, we randomly chose 200 real user queries from the query log, made query plans

using each of the two utility functions, and executed the plan and recorded the time to retrieve

the first K tuples (K=1, 2, 3, . . . ). We varied the discount factorγ and the weight factorω to

see their influence on query planning. Figure 11 shows the average time for retrieving the first

K tuples using the 200 testing queries together with their averagerelative coverage(ARC) for

varying discount factor values. Figure 12 shows the results of using the weighted sum model.

In both figures, when the discount factorγ or weight factorω is 1, we have a plan that only

uses coverage/overlap statistics without considering the latency. Thus, on average the speed of

retrieving the first K answers is the lowest (because the faster sources are not rewarded for being

faster) and the averagerelative coverageis highest. On the other hand, when the discount factor

decreases in the discount model, the coverage estimates of the sources are increasingly discounted

with respect to the latency. As a result, the plans generated tend to favor the faster sources, while

the averagerelative coverageis getting lower. Similarly, in the weighted sum model, when the
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weight factorω is set to 0, the mediator effectively ignores the coverage statistics and only looks

for the fastest sources. As shown in Figure 12, such plans retrieve the first K tuples the fastest

on average.
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3) Summary of Evaluation:In summary, the experimental evaluation on both the test bed

with synthetic sources as well as the one with online bibliographic sources shows that:

1) The query class based statistics learned from the sources help to make accurate estimates

of the coverage/overlap, density and latency values for the new queries. These estimates

give very useful guidance during source selection.

2) The joint optimization approach presented here is able to handle the coverage, density and

latency objectives at the same time and make flexible trade-offs among them according to

the users’ preferences.
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VI. CONCLUSION AND FUTURE WORK

In this paper we described an adaptive data aggregation framework that can effectively mine

various types of source statistics to support various user query objectives. This framework has

been shown to be effective in resolving the often conflicting nature of these objectives, supporting

a spectrum of trade-offs between them and achieving multi-dimensional optimality during source

selection. Finally, the joint optimization model we propose supports configurable parameters to

adapt to users’ own preferences in terms of the different objectives.
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