
Improving Text Collection Selection with Coverage and
Overlap Statistics

Thomas Hernandez
Arizona State University

Dept. of Computer Science and Engineering
Tempe, AZ 85287

th@asu.edu

Subbarao Kambhampati
Arizona State University

Dept. of Computer Science and Engineering
Tempe, AZ 85287

rao@asu.edu

ABSTRACT
In an environment of distributed text collections, the first
step in the information retrieval process is to identify which
of all available collections are more relevant to a given query
and which should thus be accessed to answer the query. This
paper addresses the challenge of collection selection when
there is full or partial overlap between the available text
collections, a scenario which has not been examined previ-
ously despite its real-world applications. A crucial problem
in this scenario lies in defining and estimating the overlap
between text collections. We present COSCO, a collection
selection approach which addresses these issues by approxi-
mating the overlap as the similarity between sets of results
returned by the collections. Collection statistics about cov-
erage and overlap are then gathered for past queries and
used for new queries to determine in which order the over-
lapping collections should be accessed to retrieve the most
new results in the least number of collections. This paper
contains an experimental evaluation which shows that the
presented approach displays the desired behavior of retriev-
ing more new results early on in the collection order, and
performs consistently and significantly better than CORI,
previously considered to be one of the best collection selec-
tion systems.

Keywords
collection selection, collection overlap, statistics gathering

1. INTRODUCTION
Traditional information retrieval techniques concentrate

on solving the problem of finding which documents within a
source could be relevant to a user query. The emphasis there
is on pinpointing the most relevant documents present in a
single – usually very large – set of documents, or collection.
Examples include news websites, online encyclopedias, sci-
entific bibliographies, and even general search engines such
as Google and Yahoo. The general approach used by these
systems to identify relevant documents is to analyze a query
in terms of its keywords and use term frequencies and docu-
ment frequencies obtained from the collection to determine
which document in the collection is most similar to the query
content [2].

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

Results

1. ……

2. ……

3. ……

 .

 .

User Query

Collection

Selection

Query

Execution

Results

Merging

Collection N
Collection 2
Collection 1

Figure 1: Multi-collection information retrieval.

A slightly more complicated scenario than the single-source
environment occurs when a user wishes to query several col-
lections simultaneously, as is the case in news meta-searchers
or bibliography search engines. The challenge of retrieving
relevant documents from a group of collections naturally
involves the same types of approach as described above.
However, having several potentially useful collections adds
a distributed1 aspect which must be solved prior to any ac-
tual retrieval of information. Unless the retrieval system
intends to search every information source at hand – which
of course would not be particularly efficient – it must choose
which collection or subset of collections to call to answer a
given query. This particular process is generally referred
to as collection selection. This is especially important be-
cause redundant or irrelevant calls are expensive in many re-
spects: in terms of query execution cost, quality of results,
post-query processing (i.e. duplicate removal and results
merging), network load, source load, etc. Naturally, as the
number of collections increase, effective collection selection
becomes essential for the performance of the overall retrieval
system.

Figure 1 illustrates the general architecture of a multi-
collection information retrieval system. As shown in the

1Distributed simply refers to the fact that the information is
spread over several collections; it does not necessarily imply
that the collections are physically distributed.

figure, in addition to the collection selection component, the
system requires two other components, which also constitute
important research directions: query execution and results
merging. The work presented in this paper aims to address
the specific issue of collection selection and we will thus not
go into more details about the two other components.

The general trend in the existing approaches for collec-
tion selection is to evaluate the “goodness” of each collection
based on some type of information about term, document,
and/or collection frequencies. In other words, these ap-
proaches require some term frequency statistics about each
collection in order to select the sources they deem relevant
to the query. This general strategy works fairly well when
the collections do not overlap. However, because all of these
approaches fail to take into account overlap between col-
lections when determining their collection order, they may
actually lead to two important problems:

1. They may decide to call a collection which has no new
documents (considering the documents which have al-
ready been retrieved at that moment). Take for exam-
ple the case of two mirror collections. If one is deemed
highly relevant, the other one would also be highly rel-
evant, and hence both collections would be called even
though calling the second one does not provide any
new results.

2. They may miss some documents from smaller sources.
In particular, smaller sources would have a harder time
appearing highly placed in the collection order, as their
low frequencies could prevent them from competing
“fairly.”

Evidently a collection selection approach which could pre-
vent the two cases mentioned above from occurring would
be useful and perhaps even complementary to the existing
approaches. Our motivation was thus to design a system
able to order the collections such that when a collection is
accessed, it is the collection which would provide the most
new results. To do so, our system must be capable of making
two types of predictions:

• How likely a collection is to have relevant documents,
and

• Whether a collection is useful given the ones already
selected.

This paper presents COSCO, our collection selection ap-
proach, which uses information on the coverage of individual
collections to predict the first point, and information on the
overlap between collections to predict the second point.

1.1 Challenges Involved
Using knowledge about coverage and overlap can defi-

nitely help in the overall distributed information retrieval
process and in the collection selection phase in particular. In
a structured environment like relational databases, the over-
lap for a given query between two databases can be simply
defined as the number of result tuples that both databases
have in common. However, overlap in the context of text
collections is much less straightforward to define and assess
than in the context of relational databases. Overlap in the

relational model is easy to identify by using keys and easy to
quantify by simply counting the number of duplicate tuples.
In contrast, overlap between two text collections means that
some documents are highly similar, as opposed to strictly
identical. In fact, if we were to consider only identical text
documents to determine the level of overlap between col-
lections, we would not be able to avoid calling a collection
that contains very similar documents as one that has already
been called.2 The overlap between two text collections could
thus be quantified as the number of results that are similar
above a certain threshold. The meaning of overlap having
changed, its complexity of computation also has changed,
not only because computing document similarity is usually
more expensive than checking for duplicate tuple keys, but
also because a single result from one collection could be sim-

ilar to several results from another collection. In fact, the
difficulty here lies in efficiently computing, gathering, and
then adequately using the overlap information.

1.2 Overview of the Proposed Solution
The solution developed in this paper addresses the collec-

tion selection issue in an environment of overlapping collec-
tions by using statistics on both the coverage of each col-
lection and the overlap between them. More specifically,
the intent is to be able to determine, for any specific user
query, which collections are more relevant (i.e. which col-
lections contain the most relevant results) and which set of
collections is most likely to offer the largest variety of results
(i.e. which collections are likely to have least overlap among
their results). Intuitively, we would want to call the most
relevant collection first, and then iteratively choose high cov-
erage collections that have least overlap with the already
selected collection(s). It is interesting to note, though, that
the framework we developed could also be used to determine
which set of collections would actually retrieve more redun-
dant documents – as opposed to more diverse documents,
our stated goal – since the coverage and overlap statistics
would serve us well in that respect.

Our approach, called3 COSCO, stores coverage and over-
lap statistics with respect to queries. Doing so ensures that
when a new query comes in, the system is able to find statis-
tics relevant to that particular query. However, since it is
infeasible to keep statistics with respect to every query, we
actually store them with respect to query classes instead.
Query classes are defined in terms of frequent keyword sets,
which are identified among past queries for which we have
coverage and overlap statistics. Any new query could then
be mapped to a set of known keyword sets. The benefit
of using frequent item sets in place of exact queries is that
previously unseen queries can also be mapped to some item
sets.

The coverage statistics are straightforward to obtain, as
they are related to the number of results returned by a col-
lection for a specific query. That number is usually readily
available from collections at query time. The overlap statis-
tics, as explained in Section 1.1, are more challenging to

2For example, we would hardly expect newspapers to pub-
lish perfectly identical stories.
3COSCO stands for COllection Selection with Coverage
and Overlap Statistics

a. Online Component

Gather coverage

and overlap

information for

past queries

Map the query to

frequent item sets

Determine

collection order for

query

Identify frequent

item sets among

queries

Compute statistics

for the frequent

item sets

Coverage / Overlap

Statistics

Compute statistics

for the query using

mapped item sets

b. Offline Component

User query

Collection

Order

1. ……

2. ……

 .

Collection Selection System

Figure 2: Architecture of COSCO, our collection selection system.

estimate and we propose to compute the overlap between
two collections by looking at their respective result sets, as
opposed to the individual results. This approach simplifies
greatly the overlap computation and yet seems to be an ef-
fective approximation, as will be shown in this paper.

1.3 Outline
The paper is organized as follows. Existing work related

to the particular problems presented above is discussed in
Section 2. COSCO, the contribution of this paper, is pre-
sented in Section 3. The experimental setup is described in
Section 4, followed by the results in Section 5. Finally, we
conclude in Section 6.

2. RELATED WORK
Several approaches have been taken to solve the collec-

tion selection problem. As mentioned by Powell and French
in their systematic comparison of collection selection algo-
rithms [14], the main idea until recently has been to try
to create a representative for each collection based on term
and document frequency information, and then use that in-
formation at query-time to determine which collections are
most promising for the incoming query. This is the case
for gGlOSS [6], the CVV ranking method [19], CORI [4],
SavvySearch [8], and many other approaches [17, 12, 16, 9,
11, 5], but none actually address the challenges incurred by
overlapping collections.

Using coverage and overlap statistics for source selection
has been explored by Nie and Kambhampati [13], however
our work differs sharply from theirs because their approach
addresses the relational data model, in which overlap can
be identified among tuples in a much more straightforward
way. Others have suggested using coverage information [9,
18] or overlap information [18, 16] in multi-collection scenar-
ios, but none have actually learned and used both coverage
and overlap statistics for the specific purpose of collection
selection.

3. THE COSCO APPROACH

3.1 General Approach
The problem of collection selection in a distributed group

of overlapping collections has not previously been addressed
in the literature, as it has usually been assumed that the

group of collections constitutes a perfect partition of all doc-
uments available. COSCO, the system presented in this pa-
per, concentrates on gathering coverage and overlap statis-
tics of collections and using these statistics at query time
to best estimate which set of collections should be searched.
The general approach for COSCO is illustrated in Figure 2
and described in more detail in this section. As illustrated,
the system is composed of an offline component which gath-
ers the statistics and an online component which determines
at runtime the collection ranking for a new incoming query.

3.2 Gathering and Computing the Statistics:
the Offline Component

The purpose of the offline component in the collection se-
lection system is to gather coverage and overlap information
about collections for particular queries, and compute rele-
vant statistics for the online component to use. More pre-
cisely, the offline component addresses three subproblems.
First it must obtain the appropriate coverage and overlap
information from the collections for a set of training queries.
It must then identify frequent item sets among previously
asked queries to better map new queries at runtime, as men-
tioned in Section 1.2. Finally it must compute new statistics
corresponding to each of these item sets.

3.2.1 Gathering query statistics

3.2.1.1 Issues in defining overlap.
As was discussed in Section 1.1, the first issue that needs

to be addressed is how overlap is defined in this text collec-
tion environment. Cost of computation obviously depends
on whether we consider overlap to be equivalent to perfect
identity or rather high similarity. In fact, using a similarity
measure to evaluate overlap instead of a strict identity detec-
tion mechanism is needed for this environment, as the over-
all purpose of the system is to avoid retrieving redundant
documents and – certainly in scenarios of text collections –
redundant documents may not necessarily be perfectly iden-
tical.

As was mentioned earlier, the overlap between two col-
lections evaluates the degree to which one collection’s re-
sults are in common with another’s. The ideal overlap mea-
sure would therefore capture the number of results in a col-
lection C1 that have a similarity higher than a predeter-
mined threshold with a result in a collection C2. Unfor-

Collection C

1

1. Result A

2. Result B

3. Result C

4. Result D

5. Result E

6. Result F

7. Result G

Collection C

2

1. Result V

2. Result W

3. Result X

4. Result Y

5. Result Z

Figure 3: Two collections with overlapping results. A

line between two results indicates that there is a high

similarity between them.

Collection C

1

1. Result A

2. Result B

3. Result C

4. Result D

5. Result E

6. Result F

7. Result G

Collection C

2

1. Result V

2. Result W

3. Result X

4. Result Y

5. Result Z

Collection C

3

1. Result I

2. Result J

3. Result K

4. Result L

5. Result M

Figure 4: A simple example of three collections with

overlapping results. A line between two results indicates

that there is a high similarity between them.

tunately, using thresholds implies that collection overlap is
non-symmetric, in that a single result in C1 could very well
be highly similar to several results in C2. For example, Fig-
ure 3 shows a case where three results from collection C1 –
results A, C, and D – have a high similarity with a single
result from collection C2 – result W. Similarly, two distinct
results from C2 have a high similarity with result G from
C1.

An even more problematic situation arises when consid-
ering overlap between several collections. Extending the
notion of result-to-result overlap described in the previous
paragraph to more than two collections could become very
expensive. The fact that we want to capture similarity of
results – as opposed to simply equality – when computing
the overlap statistics for multiple collections would indeed
lead to some costly computation. Consider for example the
simplified case illustrated in Figure 4. Result E in C1 over-
laps with result Y in C2 as well as with result J in C3, while
result Y in C2 only overlaps with results I and L in C3. Con-
ceptually, we could relate this possible situation to the fact
that document overlap is not transitive. In such a scenario,
it seems reasonable to consider that the three collections
have some degree of overlap, however the difficulty lies in
quantifying this overlap. Although this instance is not very
likely to happen if the similarity threshold used to determine
overlap between two results is high, it is still a situation that
needs to be handled.

3.2.1.2 Definition of overlap.
To address the challenges mentioned previously, this pa-

per proposes an overlap approximation which amounts to
considering the set of result documents for a keyword query
over a particular collection as a single document instead of
a set of documents. Overlap between two collections for a
particular keyword query would thus be calculated as the
overlap between the union of the results of the two collec-
tions for that query. The motivation for this approach is
that it is much cheaper than considering individual results
for overlap computation and can still be effective enough
in determining to what degree the results of two collections
overlap for an individual query. Furthermore, we choose
to store statistics for overlaps between pairs of collections
only, as the online component will approximate the overlap
between several collections using only these pairwise over-
laps. Ignoring the actual overlap between sets of more than
two collections will naturally cause some imprecisions, but,
as will be shown, this approximation remains effective and
much more efficient than an approach which would require
overlap to be computed for all potential sets of collections.

More specifically, we first define a document to be a bag
of words.4 Following the approach described above, overlap
between collections C1 and C2 for a keyword query q is com-
puted as the size of the intersection5 R1q∩R2q , where Riq is
the bag corresponding to the union of the top k documents
for query q from collection Ci. In other words,

Riq =
k

⋃

j=1

resultsCi,q(j) (1)

where resultsCi,q(j) refers to jth document returned by col-
lection Ci for keyword query q. Finally, the definition for
overlap – as our approach suggests – is the following:

overlapq(Ci, Cj) = |Riq ∩Rjq | (2)

Notice that collection overlap as defined above is now a sym-
metric relation since overlapq(Ci, Cj) = overlapq(Cj , Ci).

3.2.1.3 Statistics stored.
In addition to the overlap information, other necessary

statistics include query frequency and collection coverage.
Both are much easier to collect for individual queries. The
query frequency simply refers to the number of times a par-
ticular query has been asked in the past, and we will define
it as freqq. Collection coverage for a query is the number of
results a collection returns for that query. Note that once the
coverage of each collection is known for a single query, the
absolute coverage becomes irrelevant; instead we can con-
sider coverage as a relative measure in terms of all results
available, making a closed-world assumption. The following

4In other words a document contains a set of terms, each
paired with its frequency of occurrence in the document.
5Recall that the intersection D1 ∩ D2 between two
bags of words D1 and D2 is simply a bag containing
each word which appears in both D1 and D2 and for
which the frequency is equal to the minimum number
of times the word appears in either D1 or D2. For
example, {(data, 2), (mining, 1), (integration, 2)} ∩
{(data, 1), (integration, 2), (system, 1)} ≡
{(data, 1), (integration, 2)}.

definition will be used for the coverage of a collection Ci

with respect to a query q:

coverageq(Ci) =
|resultsCi,q |

∑n

j=1
|resultsCj,q |

(3)

where resultsCi,q is the set of all documents returned by
collection Ci for keyword query q and n is the total num-
ber of collections being considered by the collection selection
engine. Notice that the denominator

∑n

j=1
|resultsCj ,q| in

Formula 3 may actually be counting some results multiple
times because of the overlap between collections, but this
does not affect the relative coverage measure of each collec-
tion for a particular query q since the sum would remain
constant for q.

In summary, the statistics stored for each query can be
considered as a vector of statistics, defined as

−−−→
statsq. The

components of
−−−→
statsq are the following:





coverageq(Ci), for all i from 1 to n
overlapq(Ci, Cj), for all i, j from 1 to n, with i < j
|Riq |, for all i from 1 to n.

Note that in addition to coverage and overlap statistics, we
also store |Riq | statistics. The size of the results bag Riq

is necessary and its usage will be clarified in Section 3.3.3
when describing the collection selection algorithm.

3.2.2 Identifying frequent item sets
With an overlap criterion now in hand and a statistics

vector available for each training query, the next point to
investigate relates to how to make use of the statistics. In
fact, keeping statistics with respect to each individual query
would not only be costly, but also of limited use since the
statistics could only be used for the exact same query. In
contrast, queries can be clustered in terms of their keywords
as well as their corresponding coverage and overlap statistics
with the objective of limiting the amount of statistics stored,
yet keeping enough information for the online component to
handle any incoming query.

Essentially, the method consists in using the Apriori al-
gorithm [1] to discover frequently occurring keyword sets
among previously asked queries. For example, the query
“data integration” contains three item sets: {data}, {integration},
and {data, integration}. All, some, or none of these item
sets may be frequent, and statistics will be stored only with
respect to those which are. While keeping the number of
statistics relatively low, this method also improves the odds
of having some partial statistics available for new queries, as
we would possibly be able to map previously unseen queries
to some item sets. Using the previous example, even though
the query “data” may not have been asked as such, the idea
is to use the statistics from the query “data integration” –
if it is frequent enough – to estimate those for “data”. The
purpose of identifying the frequent items sets among the
queries is to avoid having to store statistics for each query,
and instead store statistics with respect to frequently asked
keyword sets, which are more useful for the online compo-
nent, as will be explained in Section 3.3.

3.2.3 Computing statistics for frequent item sets
Once the frequent item sets are identified, statistics for

each of them need to be computed. The statistics of an

item set are computed by considering the statistics of all
the queries that contain the item set. Let QIS denote the
set of previously asked queries that contain the item set IS.
The statistics for an item set IS are defined as the weighted
average of the statistics of all the queries in QIS, according
to the following formula:

−−−−→
statsIS =

∑

qi∈QIS

freqqi
∑

qj∈QIS
freqqj

×
−−−−→
statsqi

(4)

As apparent in Formula 4, the statistics of the queries
are weighted by the frequency of each query, which was
collected in the previous phase in addition to

−−−→
statsq. Us-

ing
freqq

∑

qj∈QIS
freqqj

as the weight ensures that the statistics

for the item set would be closer to those of the most fre-
quent queries containing the item set. The statistics should
thus be more accurate more often.6 Notice that

−−−−→
statsIS will

contain estimated statistics for each of these components:
coverageIS(Ci), overlapIS(Ci, Cj), and |RiIS |.

A special case must also be dealt with when computing
the statistics vectors of the frequent item sets, and that is
for the empty item set, ISempty. It is necessary to have
statistics for the empty set in order to have statistics for
entirely new queries (i.e. those which contain none of the
frequent item sets identified by the offline component). The

statistics for the empty set,
−−−−−−−−→
statsISempty , are computed after

having obtained all
−−−−→
statsIS vectors.

−−−−−−−−→
statsISempty is calcu-

lated by averaging the statistics of all frequent item sets.
Let us denote as item sets the set of all frequent item sets.
The formula we use is then:

−−−−−−−−→
statsISempty =

∑

IS∈item sets

−−−−→
statsIS

|item sets|
(5)

The intuition behind this formula is that the statistics for
the empty set should try to reflect the general coverage and
overlap information of all collections, so that a query that
cannot be mapped to any stored keyword set would be as-
signed some average statistics which are representative of
all collections. With that reasoning in mind, the statistics
vector for the empty set is computed as the average of the
statistics of all stored item sets.

3.3 Collection Selection at Runtime: the On-
line Component

The online component of the collection selection system
is the component in charge of determining which is the best
set of collections to call for a given user query. This requires
essentially three phases. First the incoming query must be
mapped to a set of item sets for which the system has statis-
tics. Second, statistics for the query must be computed using
the statistics of all mapped item sets. Finally, using these
estimated query statistics, the system must determine which
collections to call and in what order.

3.3.1 Mapping the query to item sets
The system needs to map the user query to a set of item

sets in order to obtain some pre-computed statistics and esti-
mate the coverage and overlap statistics for the query. More

6This assumes that the new queries will follow a distribution
close to that of the previously asked queries.

specifically, the goal is to find which group of item sets cov-
ers most, if not all, of the query. When several sets compete
to cover one term, the set(s) with the most terms is(are) cho-
sen. Consider for example the query “data integration min-

ing”, and suppose that only the item sets {{data}, {mining},
{integration}, {data, mining}, {data, integration}} are fre-
quent. In that case, the query will be mapped to the two
frequent two-term sets7. Furthermore, if the item set {data,
integration, mining} was frequent, then clearly the query
would only be mapped to this three-term set.

The algorithm used to map the query to its frequent item
sets is given in Algorithm 1. Practically speaking, the query

Algorithm 1 mapQuery(query Q, frequent item sets FIS)
→ ISQ

1: ISQ ← {}
2: freqQTerms← {}
3: for all terms t ∈ Q such that t ∈ FIS do

4: freqQTerms← freqQTerms∪ t
5: ISQ ← PowerSet(freqQTerms)
6: for all ISi ∈ ISQ such that ISi /∈ FIS do

7: Remove ISi from ISQ

8: for all ISi ∈ ISQ do

9: if ISi ⊂ ISj for some ISj ∈ ISQ then

10: Remove ISi from ISQ

11: Return ISQ

q is mapped by first taking all frequent item sets that are
contained in the query (lines 3 to 7). Among these selected
item sets, those that are subsets of another selected item set
are removed (lines 8 to 10) on the grounds that the statistics
of a subset would be less accurate. The resulting set, which
we call ISq, is the set of mapped item sets for the query q.

3.3.2 Computing statistics for the query
Once the incoming user query has been mapped to a set of

frequent item sets, the system computes coverage and over-
lap estimates by using the statistics of each mapped item set.
For example, if ISqnew = {{data, integration}, {mining}}
then the system would use the statistics of both item sets
{data, integration} and {mining} for its statistics estimates.

The query statistics for qnew , noted as
−−−−−−→
statsqnew , are calcu-

lated by averaging each of the mapped item set statistics.
When the query qnew was not mapped to any item set (i.e.

ISqnew = {} = ISempty), then we approximate
−−−−−−→
statsqnew as

being equal to
−−−−−−−−→
statsISempty . In summary, we can write the

following definition for
−−−−−−→
statsqnew :

−−−−−−→
statsqnew =











∑

IS∈ISqnew

−−−−−→
statsIS

|ISqnew |
, if ISqnew 6= ISempty

−−−−−−−−→
statsISempty , if ISqnew = ISempty.

(6)

3.3.3 Determining the collection order
The aim of our collection selection system is to make sure

that for any given k, the system would return a set of k

7even though smaller sets could cover the query (e.g. {data,
integration} and {mining})

collections which would result in the most number of dis-
tinct results of all sets of k collections. Another way to
consider this is that every time a new collection (from the
order suggested by our system) is called, then it is the col-
lection that would provide the most new results, taking into
account the collections that have already been called. By
taking into account coverage of collections with respect to
item sets, our strategy would thus avoid calling collections
that contain very few if any relevant documents. Moreover,
by taking into account overlap among collections, it would
avoid calling redundant collections which would not return
any new document.

Once the query statistics
−−−−−−→
statsqnew have been computed,

the collection selection process is the following. The first
collection selected is simply the one with highest coverage
coverageqnew(Ci). The next collections are selected by de-
termining which one would lead to the largest remaining
result set document. More formally, the collection selection
process is done according to Formula 7. At each step k, we
select collection Cl such that

l =































for k = 1 : argmax
i

[

coverageqnew(Ci)

]

for k > 1 :

argmax
i

[

|Riqnew | −
∑

Cj∈S overlapqnew (Ci, Cj)

]

(7)
where S is the set of already selected collections.

Notice that for k > 1, the formula is approximating the
remaining result set document size by looking at pairwise
overlaps only. As was explained in Section 3.2.1.2, we are es-
sentially assuming that higher-order statistics (i.e. overlaps
between more than two collections) are absent. This could
obviously cause some inaccuracies in the statistics estima-
tion, but as will be shown in section 4, the approximation
presented here is quite effective.

4. EXPERIMENTAL SETUP
The experiments described in this section were designed

to determine how well COSCO performed in an environment
of overlapping text collections and how it compared against
state of the art approaches that do not take overlap statis-
tics into account. For the latter, we used CORI,8 which
has been shown to be one of the best approaches [14]. The
experiments were performed in the domain of scientific bib-
liography collections, where the documents are publications
containing a title, an abstract, author names, etc. This
section describes which list of queries was used in the ex-
periments and which collection test bed the evaluation was
performed on.

4.1 List of Real User Queries
A list of real user queries was required to collect coverage

and overlap statistics, as well as to identify frequent item
sets. The queries were selected from the query-list gathered
by the BibFinder mediator [3, 13]. All the queries with a

8Our own implementation of CORI was based on the work
described in [4].

frequency greater than or equal to 4 were considered,9 which
resulted in 1,062 distinct queries and a total cumulative fre-
quency of 19,425. Approximately 87% of the queries had
frequency less than 10, and 95% had frequency less than
50. Interestingly the average number of terms per keyword
query was 2.2, which is surprisingly close to the average
length of queries posed to online search engines according
to some past surveys [10, 15].

4.2 Collection Test Bed
Six publicly available collections allowing full-text key-

word search were used.10 Each collection was sent the set of
1,062 queries and the top-20 results returned for each query
were retrieved, stored, and indexed for each collection. Not
all queries lead to 20 results and therefore a total of 89,177
results were actually retrieved.

In addition to the six online collections described above,
nine synthetic collections were created with the intent of
having both a relatively large test bed as well as a test bed
which definitely shows some controlled degree of overlap be-
tween collections:

• Six collections were created by taking a random proper
subset of 7,000 documents from each of the six real
collections.

• Three additional collections were created by “union-
ing” subsets of other collections.

Table 1 provides a summary of the test bed of fifteen collec-
tions used for the experiments.

Real # of Synthetic # of

Collections docs Collections docs

acmdl 15,207 acmdl sub 7,000
acmguide 17,364 acmguide sub 7,000
sciencedirect 13,047 sciencedirect sub 7,000
compendex 14,458 compendex sub 7,000
citeseer 16,343 citeseer sub 7,000
csb 12,758 csb sub 7,000

sc cs11 14,000
cp ci12 14,000
mix 1513 13,374

Table 1: Complete test bed of collections with the

number of documents they contain.

The nine synthetic collections were considered as being
complete bibliographies and a keyword-based search engine
was built on top of each. It is important to realize that
one cannot make the assumption that the results of a real
collection C for a query q are a super set of the results from

9Since the queries from the BibFinder query-list were rela-
tional in nature, each query selected was transformed into
a keyword query by simply merging all the fields from the
relational query.

10The ACM Digital Library, the ACM Guide, ScienceDirect,
Compendex, CiteSeer, and the Computer Science Bibliogra-
phy.

11sc cs is the union of sciencedirect sub and csb sub.
12cp ci is the union of compendex sub and citeseer sub.
13mix 15 contains 15% of each of the six real collections.

an artificial collection C sub for the same query q, since
the ranking method used by these newly created collections
was certainly different from the method used by the real
collections they originated from.

5. EXPERIMENTAL RESULTS

5.1 Training the System
The training phase of COSCO is essentially handled by

the offline component of the system and its purpose is to
compute and store some coverage and overlap statistics for
the online component to use.

The first step in the process is to prepare a list of train-
ing queries. In the experiments described here, the training
query list was composed of 90% of the query-list described
in Section 4.1. The remaining 10% were used when test-
ing the system (see section 5.2). The training and testing
queries thus formed two disjoint sets. Note that this means
in particular that our underlying assumption that future
queries would follow the same distribution as past queries
does not fully hold, which should make it more challenging
for COSCO.

With the set of training queries in hand, the next step
was to probe the collection test bed by sending each query
to each collection, retrieving the set of top-20 results, and
keeping coverage and overlap information for each query.
Identifying the frequent item sets in the training query-list
was performed by setting the minimum support threshold
to 0.05%,14 which resulted in a total of 681 frequent item
sets. Note that to avoid useless item sets, stop-words were
removed from the queries before the item set computation.
The computation itself only took a few seconds to run.

Finally, the last step the offline component must perform
is to compute the statistics for the frequent item sets and
store them for later use by the online query-processing com-
ponent. The statistics vectors

−−−−→
statsIS (one for each frequent

item set) and
−−−−−−−−→
statsISempty were computed as explained in

Section 3.2.3. The statistics fit in a 1.28MB file.

5.2 Testing the System
Testing our collection selection approach consisted in hav-

ing the online component of our system process each test
query. The main goal of these experiments was to analyze
to what degree each approach, including ours, was able to
output a collection order which ensured that when a collec-
tion was called, it was the one which provided the most new
results. A useful way to measure this is by keeping track of
the cumulative number of “new” results retrieved in terms
of the number of collections called. At this point we should
specify what is meant by a “new” result. A new result is one
that is not a duplicate of a result which has been retrieved
previously. We use the term duplicate in a loose way, mean-
ing that we consider a result to be a duplicate of another if
both are highly similar. In the experiments described here,
the similarity measure used was the Cosine Similarity [2],
with term frequencies as the term weights in a document.

5.2.1 Performance of COSCO

14An item set was essentially considered frequent if it ap-
peared in 9 or more queries.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Collection Rank using Coverage and Overlap

N
u

m
b

e
r

o
f

re
s

u
lt

s
,

d
u

p
,

n
e

w

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

n
e

w
 r

e
s

u
lt

s

results
 dup
 new
 cumulative

Figure 5: Performance of COSCO on the 15-collection

test bed.

Figure 5 shows the average performance of COSCO on the
test bed when using the statistics computed by the offline
component. The graph contains four useful plots. results

simply plots the average number of results retrieved by the
ith collection when calling collections in the order deter-
mined by COSCO. dup plots the average number of results
among those retrieved by the ith collection which had high
similarity with at least one result retrieved from the i − 1
previous collections called. Similarly, new plots the average
number of new results among those retrieved. As explained
earlier, the main graph to observe in this figure is cumulative

(whose y-axis is on the right-hand side of the figure), which
plots the cumulative number of new results retrieved. cumu-

lative truly shows how well the system can suggest the order
in which the collections should be accessed in order to re-
trieve the most results possible from only i collections. Note
first that the number of duplicates is lower than the number
of new results retrieved as the number of collections called
increases, up to a point where the number of duplicates nat-
urally surpasses the new results. Specifically, our approach
was able to suggest a collection order which ensured that, on
average, the first nine collections called would return more
new results than duplicates.

The number of new results retrieved follows a globally
descending trend, which is also a desirable behavior in a
collection selection system. In addition, the results plot
shows that COSCO will prefer calling smaller collections
with greater potential for new results than simply larger
collections. It can be seen in fact that in order to retrieve
the most new results after the first collection, our approach
chooses to call first collections which return fewer yet new
results, and only calls those larger collections in the second
half of the collection calls. Notice how the number of dupli-
cates surpasses the number of new results approximately at
the same time those larger collections start being called.

5.2.2 Comparison of COSCO with the other Approaches
To better evaluate the overall performance of our system,

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Collection Rank

C
u

m
u

la
ti

v
e

 n
u

m
b

e
r

o
f

n
e

w
 r

e
s

u
lt

s

Oracular
 CORI
 COSCO
 Coverage-only

Figure 6: Performance of Oracular, CORI, COSCO, and

a variation of our approach on the 15-collection test bed.

COSCO was compared not only to CORI but also against an
oracle-like collection selection strategy, which we call Orac-

ular. We implemented Oracular by iteratively selecting the
collection which truly offers the most new results given the
collections already selected. Clearly this post-hoc method
requires to actually know which and how many results each
collection will return for a particular query.

Figure 6 displays the cumulative plots of the different ap-
proaches. Oracular clearly performs as expected, retrieving
the bulk of the results in the first few collection calls. When
considering the performance of CORI, the cumulative plot
shows a surprisingly close-to-constant rate of increase. The
detailed performance of CORI is not shown here due to space
limitations,15 but interestingly, at each new collection call, it
was apparent that CORI would retrieve approximately the
same number of new results as duplicates, unlike COSCO
which was clearly able to retrieve more new results than
duplicates in the top of the collection order.

Figure 6 also shows the performance of a variation of our
approach which only used coverage statistics to determine
the collection order. In that approach, the collections are
called simply in order of decreasing estimated coverage.

From this figure it can be seen that CORI almost consis-
tently requires k + 1 collections to retrieve the number of
results our approach retrieved in k collections. The largest
gap appears for k = 9. Both CORI and the coverage-only
approach need 11 collections to retrieve what our approach
did in 9. Finally it is worth noting that the coverage-only
strategy outperforms CORI in the first half of the collection
calls, before falling behind for the later half.

Naturally, Oracular is still far superior to the three other
approaches, including ours, but it is certainly not reason-
able to think a system using approximations and statistics
– either collection and term-based or coverage and overlap-
based – would be able to perform nearly as well as the oracle-
like solution. Considering this, the plots do show that not
only does COSCO perform consistently better than CORI, it
also achieves a performance which is characteristic of a good

15More extensive experimental results can be found in [7].

-5%

0%

5%

10%

15%

20%

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Collection Rank

Figure 7: Percentage difference between the cumula-

tive number of new results retrieved by CORI and by

COSCO.

collection selection system: it retrieves more new results in
the early collection calls.

Figure 7 illustrates the same experiments results under
a different perspective. The figure displays the percentage
difference between the cumulative number of new results re-
trieved by CORI after the xth collection and those retrieved
by COSCO. In fact, through most of the process our ap-
proach is able to retrieve between 5% and 15% more16 new
results than CORI, in the same number of collections.

5.2.3 Effects of Query Distribution
It is interesting to note that the performance of COSCO,

as shown so far, was quite satisfactory in spite of a testing
scenario which would most likely not allow our system to
make full use of its underlying concepts. In particular, the
set of queries used to test our system did not have the same
distribution as the training queries. In fact, only approxi-
mately 50% of the test queries were actually mapped to one
or more item sets for which statistics were stored.

Intuitively, since the initial assumption for our frequent
item set approach was that queries frequently asked in the
past would most likely be frequently asked in the future,
we would expect our system to perform even better in a
testing scenario which reflected this assumption. To test our
intuition, additional experiments on our system were thus
performed while ensuring that the query test set followed
the same distribution as the training set.

To achieve similar distributions in both test and train-
ing sets, the same initial list of 1,062 queries was used. We

16Notice that the plot shows a negative percentage for the
first two collections, implying that COSCO retrieves fewer
results than CORI. However, keep in mind that the per-
centage is based on the cumulative number of additional
new results. Therefore when considering the actual number
of results retrieved after the first collection – CORI retrieves
an average of 17.79 results while COSCO retrieves 17.10 re-
sults, one can realize that the negative percentage is in fact
insignificant. Similarly for the second collection call, where
both CORI and our approach retrieve an average of approx-
imately 28 results.

-5%

0%

5%

10%

15%

20%

25%

30%

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

Collection Rank

Figure 8: Percentage difference between the cumula-

tive number of new results retrieved by CORI and by

COSCO using a query test set with a similar distribu-

tion as the training set.

mentioned earlier that the total frequency of the 1,062 dis-
tinct queries was 19,425. The strategy here was to consider
these queries independently, and thus randomly select 90%
of them (i.e 17,482) for the training set, and the remaining
10% (i.e. 1,943) for the test set. Once the training was per-
formed by our offline component on this new set of queries,
the test set was processed by our online component.

With this new experimental setup, approximately 90% of
the test queries were successfully mapped to an item set for
which the offline component had stored statistics.

We only show the performance of COSCO with respect to
CORI in Figure 8, as this is where the greatest improvement
can be observed.17 Recall that in the previous experiments
our approach was able to retrieve up to 15% more results
than CORI when calling the same number of collections.
Figure 8 actually shows that our system performs even bet-
ter in the new experiments, which confirmed our intuition.
It can in fact retrieve up to approximately 30% more re-
sults than CORI after only 3 collections, which indicates
that COSCO is much more effective in selecting the top few
collections. Up until the 8th collection our system is able to
retrieve upwards of 15% more new results than CORI.

In conclusion, this second set of experiments demonstrated
that our system does indeed perform significantly better
than CORI when future queries follow the same distribu-
tion as past queries. More importantly, our complete set
of experiments showed that even in a scenario where future
queries do not follow the distribution of past queries, our
system consistently outperforms CORI and displays a be-
havior consistent with the Oracle-like behavior, retrieving
more new results early on in the collection order.

6. CONCLUSION AND FUTURE WORK
This paper addressed the issue of collection selection for

information retrieval in an environment composed of over-
lapping collections. We presented COSCO, a collection se-

17More results for this second set of experiments can be found
in [7].

lection system which takes into consideration the coverage
of individual collections and the overlap between collections
before determining which collection should be called next.
The strategy consisted in having an offline component to
gather and store coverage and overlap information about fre-
quent keyword sets, and an online component which would
use these stores statistics to determine the collection order
for an incoming query.

Experiments showed that, when directly compared to CORI,
COSCO leads to more new results being retrieved in the
same number of collections. This is ultimately what the
perfect collection selection method should guarantee: that
the set of collections accessed results in the maximum pos-
sible number of new results obtainable from that many col-
lections. Although we have shown and acknowledged that
our system can obviously not pretend to achieve the same
oracle-like behavior as the Oracular approach, it does pro-
vide significantly better collection orders than CORI and
seems to be adopting the same type of behavior as Oracu-

lar. We have also shown that using coverage statistics alone
cannot achieve the same quality of results. Finally, not-
ing that COSCO outperformed CORI despite experiments
which did not constitute the best possible scenario for our
approach, we also showed that when the distribution of the
test queries reflects the distribution of the training queries,
then our system performs even better against CORI, which
demonstrates the robustness of our approach.

Interestingly, while the current study and work related in
this paper focus on improving diversity in the documents re-
trieved from a group of collections, one should note that the
coverage and overlap statistics we concentrate on could also
be used to accomplish just the opposite and instead deter-
mine which collections would return redundant documents.

Future directions based on this work include exploring the
usefulness of removing some of the approximations made.
For example, what would be the cost and benefit of estimat-
ing collection overlap using result-level similarities instead
of using the similarity between result set documents. Fur-
thermore, would it be possible and worth the computation
to measure multi-collection overlap with more than just the
pairwise overlaps, as was done in the work presented in this
paper. Finally, probably the most interesting direction of
future work attempts to design a collection selection system
which would take into account both the content-based rel-
evance of the documents and/or collections, as well as the
overlap between the collections. This essentially considers
our work as a complementary strategy to those that have
been proposed in the literature, and preliminary work on
the subject seems to point to a promising system.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proceedings of VLDB Conference,
1994.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. ACM Press / Addison-Wesley,
1999.

[3] BibFinder: A Computer Science Bibliography
Mediator.
http://rakaposhi.eas.asu.edu/bibfinder, 2004.

[4] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
Proceedings of ACM SIGIR Conference, pages 21–28,
1995.

[5] J. G. Conrad and J. R. S. Claussen. Early
user–system interaction for database selection in
massive domain-specific online environments. ACM

Transactions on Information Systems, 21(1):94–131,
2003.

[6] L. Gravano, H. Garćıa-Molina, and A. Tomasic.
GlOSS: text-source discovery over the Internet. ACM

Transactions on Database Systems, 24(2):229–264,
1999.

[7] T. Hernandez. Improving text collection selection with
coverage and overlap statistics. MS thesis, Arizona
State University, October 2004.

[8] A. E. Howe and D. Dreilinger. SAVVYSEARCH: A
metasearch engine that learns which search engines to
query. AI Magazine, 18(2):19–25, 1997.

[9] P. Ipeirotis and L. Gravano. Distributed search over
the hidden web: Hierarchical database sampling and
selection. In Proceedings of VLDB Conference, 2002.

[10] B. J. Jansen and U. Pooch. A review of web searching
studies and a framework for future research. Journal

of the American Society for Information Science and

Technology, 52(3):235–246, 2001.

[11] Z. Liu, C. Luo, J. Cho, and W. Chu. A probabilistic
approach to metasearching with adaptive probing. In
Proceedings of the International Conference on Data

Engineering, 2004.

[12] W. Meng, C. Yu, and K.-L. Liu. Building efficient and
effective metasearch engines. ACM Computing

Surveys, 34(1):48–89, 2002.

[13] Z. Nie and S. Kambhampati. A frequency-based
approach for mining coverage statistics in data
integration. In Proceedings of the International

Conference on Data Engineering, 2004.

[14] A. L. Powell and J. C. French. Comparing the
performance of collection selection algorithms. ACM

Transactions on Information Systems, 21(4):412–456,
2003.

[15] C. Silverstein, M. Henzinger, H. Marais, and
M. Moricz. Analysis of a very large AltaVista query
log. Technical Report 1998-014, Digital SRC, 1998.

[16] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird.
The collection fusion problem. In Text REtrieval

Conference, TREC, 1994.

[17] Z. Wu, W. Meng, C. Yu, and Z. Li. Towards a
highly-scalable and effective metasearch engine. In
Proceedings of the World Wide Web Conference, pages
386–395, 2001.

[18] R. Yerneni, F. Naumann, and H. Garcia-Molina.
Maximizing coverage of mediated web queries.
Technical report, Stanford University, 2000.

[19] B. Yuwono and D. L. Lee. Server ranking for
distributed text retrieval systems on the internet. In
Database Systems for Advanced Applications, pages
41–50, 1997.

